MONADIC SECOND-ORDER DEFINABLE GRAPH ORDERINGS

ACHIM BLUMENSATH ${ }^{a}$ AND BRUNO COURCELLE ${ }^{b}$
${ }^{a}$ TU Darmstadt
e-mail address: blumensath@mathematik.tu-darmstadt.de
${ }^{b}$ Labri, Bordeaux University, Honorary member of Institut Universitaire de France e-mail address: courcell@labri.fr

Abstract

We study the question of whether, for a given class of finite graphs, one can define, for each graph of the class, a linear ordering in monadic second-order logic, possibly with the help of monadic parameters. We consider two variants of monadic second-order logic: one where we can only quantify over sets of vertices and one where we can also quantify over sets of edges. For several special cases, we present combinatorial characterisations of when such a linear ordering is definable. In some cases, for instance for graph classes that omit a fixed graph as a minor, the presented conditions are necessary and sufficient; in other cases, they are only necessary. Other graph classes we consider include complete bipartite graphs, split graphs, chordal graphs, and cographs. We prove that orderability is decidable for the so called HR-equational classes of graphs, which are described by equation systems and generalize the context-free languages.

1. Introduction

When studying the expressive power of monadic second-order logic (MSO) for finite graphs, often the question arises of whether one can define a linear order on the vertex set. For instance, the property that a set has even cardinality cannot, in general, be expressed in MSO. If, however, the considered set is linearly ordered, we can write down a corresponding MSO-formula. The same holds for every predicate $\operatorname{Card}_{q}(X)$ expressing that the cardinality of the set X is a multiple of q. It follows that the extension of MSO by the predicates $\operatorname{Card}_{q}(X)$, called counting monadic second-order logic (CMSO), is no more powerful than MSO on every class of structures on which a linear order is MSO-definable.

Another example of a situation where the availability of a linear order facilitates certain logical constructions is the definability of graph decompositions such as the modular decomposition of a graph. It is shown in [4] that the modular decomposition of a graph is

[^0]definable in MSO if the graph is equipped with a linear order. Finally 1 although we will not address complexity questions in this article, we recall that, over linearly ordered structures, the complexity class PTIME is captured by least fixed-point logic [11, 16].

A formula $\varphi(x, y)$ with two free first-order variables x and y defines a (linear) order on a relational structure \mathfrak{A} if the binary relation consisting of all pairs (a, b) of elements of \mathfrak{A} satisfying $\mathfrak{A} \models \varphi(a, b)$ is a linear order on A. We say that $\varphi(x, y)$ defines an order on a class of structures if it defines a linear order on each structure of that class. Our objective is to provide combinatorial characterisations of classes of finite graphs whose representing structures are MSO-orderable, i.e., on which one can define an order by an MSO-formula. (The question of whether a partial order is definable is trivial since equality is a partial order. Therefore, we only consider linear orders in this article.)

As defined above the notion of an MSO-orderable class is too restrictive. To get interesting results, we allow in the above definitions formulae with parameters. That is, we take a formula $\varphi(x, y ; \bar{Z})$ with additional free set variables $\bar{Z}=\left\langle Z_{0}, \ldots, Z_{n-1}\right\rangle$ and, for each structure \mathfrak{A} in the given class, we choose values $P_{0}, \ldots, P_{n-1} \subseteq A$ for these variables such that the binary relation

$$
\{(a, b) \mid \mathfrak{A} \models \varphi(a, b ; \bar{P})\}
$$

is a linear order on A.
There is no MSO-formula (even with parameters) that defines a linear order on all finite graphs. An easy way to see this is to observe that every ordered structure is rigid, i.e., that it has no non-trivial automorphism. Since we can find graphs that are not rigid, even after labelling them with a fixed number of parameters, it follows that no formula can order all graphs. The same argument shows that the following classes of finite graphs are not MSO-orderable: (1) graphs without edges; (2) cliques; (3) stars; (4) trees of a fixed height; and (5) bipartite graphs. On the other hand, to take an easy example, the class of all finite connected graphs of degree at most d (for fixed d) is MSO-orderable.

If graphs are replaced by their incidence graphs, MSO-formulae become more powerful, because they can use quantifications over sets of edges. In this case we speak of $\mathrm{MSO}_{2}{ }^{-}$ orderable classes. Otherwise, we call the class MSO_{1}-orderable. Due to the greater expressive power, the family of MSO_{2}-orderable classes properly includes that of MSO_{1}-orderable ones. This means that, in the combinatorial characterisations presented below, the conditions for MSO_{1}-orderability must be stronger than those for MSO_{2}-orderability. For instance, the class of all cliques is MSO_{2}-orderable but not MSO_{1}-orderable.

There are simple combinatorial criteria showing that a class is not MSO-orderable. For instance, a class of trees is not MSO-orderable if the degree of vertices is unbounded. The reason is that an MSO-formula can only distinguish between a bounded number of neighbours of a vertex. If the number of neighbours is too large, we can swap two of the attached subtrees without affecting the truth value of the formula. Generalising this example, we obtain the following criterion for MSO_{2}-orderability: if a class \mathcal{C} is MSO_{2}-orderable, there exists a function f such that, whenever we remove k vertices from a graph in \mathcal{C}, the resulting graph has at most $f(k)$ connected components (Proposition 4.4).

[^1]In many cases, it turns out that this necessary condition is also sufficient. For instance, we will prove in Theorem 4.13 below that a class of graphs omitting some graph as a minor is MSO_{2}-orderable if, and only if, it has the above property.

This article is organised as follows. Sections 2 and 3 introduce notation and basic definitions. The main part consists of Sections 4 and 5, which collect our results on, respectively, MSO_{2}-orderability and MSO_{1}-orderability.

For MSO_{2}-orderability, we present a necessary condition in Section 4.1. We prove that this condition is also sufficient for trees (Theorem 4.8) and, more generally, for classes of graphs omitting some graph as a minor (Theorem 4.13). For some classes of bipartite graphs and of split graphs, we obtain a similar result, using a slightly stronger combinatorial condition (Theorems 4.29 and 4.32). Furthermore, we prove that some classes are not $\mathrm{MSO}_{2}{ }^{-}$ orderable in a very strong sense: they contain no infinite subclass that is MSO_{2}-orderable. This is the case for trees of bounded height (Corollary 4.9) and graphs of bounded n-depth tree-width (Proposition 4.15). Finally, we also prove that, for certain effectively presented classes of graphs, MSO_{2}-orderability is decidable (Corollary 4.23).

For MSO_{1}-orderability the picture we obtain is slightly more sketchy. We present a necessary condition for MSO $_{1}$-orderability in Section 5.1. We prove that it is also sufficient for cographs (Theorem 5.15) and graphs of bounded n-depth \otimes-width (Theorem 5.23).

Finally, we consider reductions between orderability properties in Section 6. We show that, for split graphs and bipartite graphs, the question of MSO_{i}-orderability is as hard as for arbitrary graphs. This indicates that we are far from having a combinatorial characterisation of orderability for such classes.

2. Preliminaries

Let us fix our notation and terminology. We write $[n]:=\{0, \ldots, n-1\}$, for $n \in \mathbb{N}$. We denote tuples $\bar{a}=\left\langle a_{0}, \ldots, a_{n-1}\right\rangle$ with a bar. The empty tuple is \rangle. We write $A \Delta B$ for the symmetric difference of two sets A and B. We denote partial orders by symbols like \leq and \preceq, and the corresponding strict partial orders by $<$ and \prec, respectively.
2.1. Structures and graphs. In this article we consider only purely relational structures $\mathfrak{A}=\left\langle A, R_{0}^{\mathfrak{A}}, \ldots, R_{n-1}^{\mathfrak{A}}\right\rangle$ with finite signatures $\Sigma=\left\{R_{0}, \ldots, R_{n-1}\right\}$. The universe A will always be finite, and we allow it to be empty as this convention is common in graph theory. In some places we will also allow relational structures with constants, but when doing so we will always mention it explicitly. For a relation R and a set X, we write $R \upharpoonright X$ for the restriction of R to X. For a tuple \bar{R} of relations, we denote by $\bar{R} \upharpoonright X$ the corresponding tuple of restrictions.

We will mainly consider graphs instead of arbitrary relational structures. For basic notions of graph theory, we refer the reader to the book [10]. In this article, graphs will always be finite, simple, loop-free, and undirected, with the exception of rooted trees and forests, which we consider to be oriented (see below). We will denote the edge between vertices u and v by (u, v). Note that the same edge can also be written as (v, u). There are two ways to represent a graph $G=\langle V, E\rangle$ by a structure. Both of them will be used. We can use structures of the form $\lfloor G\rfloor:=\langle V, \mathrm{edg}\rangle$ where the universe V consists of the set of vertices and we have a binary edge relation edg $\subseteq V \times V$, or we can use structures of the form $\lceil G\rceil:=\langle V \cup E$, inc \rangle where the universe contains both, the vertices and the (undirected) edges of the graph and we have a binary incidence relation inc $\subseteq V \times E$ telling us which
vertices belong to which edges. If \mathcal{C} is a class of graphs, we denote the corresponding classes of relational structures by $\lfloor\mathcal{C}\rfloor$ and $\lceil\mathcal{C}\rceil$, respectively.

Forests will always be rooted and directed in such a way that every edge is oriented away from the root. The tree-order associated with a forest F is the partial order defined by

$$
x \preceq_{F} y \quad: \Longleftrightarrow \quad \text { some path from a root to } y \text { contains } x .
$$

If $x \prec y$, we call x a predecessor of y and y a successor of x. We speak of immediate predecessors and immediate successors if there is no vertex in between. The n-th level of a forest F consists of all vertices at distance n from some root. Hence, the roots form level 0 . The height of F is the maximal level of its vertices.
Definition 2.1. A graph $G=\langle V, E\rangle$ is r-spars ${ }^{2}$ if, for every subset $X \subseteq V$, we have $|E \upharpoonright X| \leq r \cdot|X|$.

We denote by $\mathfrak{A} \oplus \mathfrak{B}$ the disjoint union of the structures \mathfrak{A} and \mathfrak{B}. For structures $\lfloor G\rfloor$ and $\lfloor H\rfloor$ encoding graphs, we also use a dual operation $\lfloor G\rfloor \otimes\lfloor H\rfloor$ that, after forming the disjoint union of $\lfloor G\rfloor$ and $\lfloor H\rfloor$, adds all possible edges connecting a vertex of G to a vertex of H. For a set $S \subseteq A$ of elements, we write $\mathfrak{A}[S]$ for the substructure of \mathfrak{A} induced by S and $\mathfrak{A}-S$ for $\mathfrak{A}[A-S]$. We use the analogous notation $G[S]$ and $G-S$, for graphs G.

We assume that the reader is familiar with the notion of a tree decomposition and the tree-width of a graph (see, e.g., [10, 7]). At a few places, we will refer to a variant of treewidth, called n-depth tree-width, that was introduced in [2]. It is defined in terms of tree decompositions where the height of the index tree is at most n.

Finally, we will employ tools related to the notion of clique-width, which is defined for graphs with ports in a finite set $[k]$, that is, graphs $G=\langle V, E, \pi\rangle$ equipped with a function $\pi: V \rightarrow[k]$. We say that a vertex $a \in V$ has port label a if $\pi(v)_{m}=a$. The notion of clique-width is defined in terms of the following operations on graphs $\sqrt[3]{ }$ with ports:

- for each $a \in[k]$, a constant a denoting the graph with a single vertex that has port label a;
- the disjoint union \oplus of two graphs with ports;
- the edge addition operation $\operatorname{add}_{a, b}$, for $a, b \in[k]$, adding all edges between some vertex with port label a and some vertex with port label b that do not already exist;
- the port relabelling operation relab $_{h}$, for $h:[k] \rightarrow[k]$, changing each port label a to the port label $h(a)$.
Each term using these operations defines a graph with ports in $[k]$. The clique-width of a graph $G=\langle V, E\rangle$ is the least number k such that, for some function $\pi: V \rightarrow[k]$, there exists a term denoting $\langle G, \pi\rangle$ (for details cf. [7, [8, (9). We denote the clique width of G by cwd (G).

[^2]2.2. Monadic second-order logic. Monadic second-order logic (MSO) $\sqrt{4}^{4}$ is the extension of first-order logic by set variables and quantifiers over such variables. The quantifier-rank $\operatorname{qr}(\varphi)$ of an MSO-formula φ is the maximal number of nested quantifiers in φ, where we count both, first-order and second-order quantifiers. The monadic second-order theory of quantifier rank h of a structure \mathfrak{A} is the set of all MSO-formulae of quantifier rank h satisfied by \mathfrak{A}. We denote it by $\operatorname{MTh}_{h}(\mathfrak{A})$. Frequently, we are interested not in the theory of the structure \mathfrak{A} itself, but in the theory of an expansion $\langle\mathfrak{A}, \bar{P}, \bar{a}\rangle$ by unary predicates \bar{P} and constants \bar{a}. In this case we write $\operatorname{MTh}_{h}(\mathfrak{A}, \bar{P}, \bar{a})$ omitting the brackets. Note that such situations are the only ones in which we allow constants in structures.

Let us remark that, for a fixed signature and a given maximal quantifier-rank, there are only finitely many formulae up to logical equivalence. Furthermore, we can effectively compute an upper bound on the number of classes and there exists an effective normal form for formulae. However, since equivalence of formulae is undecidable, this normal form does not represent logical equivalence. Hence, some equivalence classes contain several formulae in normal form. Details can be found, e.g., in Section 5.6 of [7. In particular, it follows that, for every $h \in \mathbb{N}$, there are only finitely many theories of quantifier-rank h and we can represent each such theory by the finite set of formulae in normal form it contains. A detailed calculation shows that the number of such theories is roughly $\exp _{h}(n)$ where

$$
\exp _{0}(n):=n \quad \text { and } \quad \exp _{k+1}(n):=2^{\exp _{k}(n)}
$$

and the number n only depends on the signature, but not on the quantifier-rank h. Recall that a function $f: \mathbb{N} \rightarrow \mathbb{N}$ is elementary if it is bounded from above by a function of the form $\exp _{k}$, for some fixed $k \in \mathbb{N}$. Furthermore, it follows that we can construct, for each theory Θ of quantifier-rank h, a single formula χ_{Θ} that is equivalent to it, i.e., such that

$$
\mathfrak{A} \models \chi_{\Theta} \quad \Longleftrightarrow \quad \operatorname{MTh}_{h}(\mathfrak{A})=\Theta .
$$

In fact, χ_{Θ} is just the conjunction of all formulae in normal form contained in Θ. For this reason we will also denote it by $\Lambda \Theta$.

Let $\varphi(\bar{x}, \bar{Y} ; \bar{Z})$ be an MSO-formula with free first-order variables \bar{x} and free second-order variables \bar{Y}, \bar{Z}. Given a structure \mathfrak{A} and sets $P_{i} \subseteq A$, we can assign the values \bar{P} to the variables \bar{Z}. This way we obtain a formula $\varphi(\bar{x}, \bar{Y} ; \bar{P})$ with partially assigned variables. The values \bar{P} are called the parameters of this formula. The relation defined by a formula $\varphi(\bar{x} ; \bar{P})$ in a structure \mathfrak{A} is the set

$$
\varphi(\bar{x} ; \bar{P})^{\mathfrak{A}}:=\{\bar{a} \mid \mathfrak{A} \models \varphi(\bar{a} ; \bar{P})\} .
$$

One important tool to compute monadic theories is the so-called Composition Theorem (see, e.g, [17, 1, [7]), which allows one to compute the theory of a structure composed from smaller parts from the theories of these parts. There are several variants of the Composition Theorem. We will employ the following version.

Definition 2.2. Let $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{m-1}$ be structures and let $\bar{a}^{i}=\left\langle a_{0}^{i}, \ldots, a_{n-1}^{i}\right\rangle \in A_{i}^{n}$ be n tuples, for $i<m$. The amalgamation of the structures \mathfrak{A}_{i} over the parameters \bar{a}^{i} is the structure $\left\langle\mathfrak{A}^{\prime}, \bar{a}^{\prime}\right\rangle$ obtained from the disjoint union $\mathfrak{A}_{0} \oplus \cdots \oplus \mathfrak{A}_{m-1}$ by, for every $k<n$,

[^3]merging the elements $a_{k}^{0}, \ldots, a_{k}^{m-1}$ into a single element a_{k}^{\prime}. The tuple $\bar{a}^{\prime}=\left\langle a_{0}^{\prime}, \ldots, a_{n-1}^{\prime}\right\rangle$ consists of the elements resulting from the merging.

Theorem 2.3 (Composition Theorem). Let $\mathfrak{A}_{0}, \ldots, \mathfrak{A}_{m-1}$ be structures and, for $i<m$, let $\bar{a}_{i} \in A_{i}^{n}$ be n-tuples and $\bar{c}_{i} \in A_{i}^{l_{i}} l_{i}$-tuples. Let $\left\langle\mathfrak{A}^{\prime}, \bar{a}^{\prime}\right\rangle$ be the amalgamation of the structures \mathfrak{A}_{i} over \bar{a}_{i}. Then

$$
\operatorname{MTh}_{h}\left(\mathfrak{A}^{\prime}, \bar{a}^{\prime} \bar{c}_{0} \ldots \bar{c}_{m-1}\right)
$$

is uniquely determined by the theories

$$
\operatorname{MTh}_{h}\left(\mathfrak{A}_{0}, \bar{a}_{0} \bar{c}_{0}\right), \ldots, \operatorname{MTh}_{h}\left(\mathfrak{A}_{m-1}, \bar{a}_{m-1} \bar{c}_{m-1}\right) .
$$

Furthermore, the function mapping these theories to the theory of the amalgamation is computable.

Since disjoint unions are particular amalgamations, we obtain the following corollary.
Corollary 2.4. There exists an computable function mapping $\operatorname{MTh}_{h}(\mathfrak{A})$ and $\operatorname{MTh}_{h}(\mathfrak{B})$ to $\operatorname{MTh}_{h}(\mathfrak{A} \oplus \mathfrak{B})$.
2.3. Transductions. The notion of a monadic second-order transduction provides a versatile framework to define transformations of structures. To simplify the definition we first introduce three particular types of transductions and we obtain MSO-transductions as compositions of these.

Definition 2.5. (a) Let $k \geq 2$ be a natural number. The operation copy_{k} maps a structure \mathfrak{A} to the expansion

$$
\operatorname{copy}_{k}(\mathfrak{A}):=\left\langle\mathfrak{A} \oplus \cdots \oplus \mathfrak{A}, \sim, P_{0}, \ldots, P_{k-1}\right\rangle
$$

of the disjoint union of k copies of \mathfrak{A} by the following relations. Denoting the copy of an element $a \in A$ in the i-th component of $\mathfrak{A} \oplus \cdots \oplus \mathfrak{A}$ by the pair $\langle a, i\rangle$, we define

$$
P_{i}:=\{\langle a, i\rangle \mid a \in A\} \quad \text { and } \quad\langle a, i\rangle \sim\langle b, j\rangle: \Longleftrightarrow a=b
$$

For $k=1$, we set $\operatorname{copy}_{1}(\mathfrak{A}):=\mathfrak{A}$.
(b) For $m \in \mathbb{N}$, we define the multi-valued operation $\exp _{m}$ that maps a structure \mathfrak{A} to all of its possible expansions by m unary predicates $Q_{0}, \ldots, Q_{m-1} \subseteq A$. Note that $\exp _{0}$ is just the identity.
(c) A basic MSO-transduction is a partial operation τ on relational structures described by a list

$$
\left\langle\chi, \delta(x), \varphi_{0}(\bar{x}), \ldots, \varphi_{s-1}(\bar{x})\right\rangle
$$

of MSO-formulae called the definition scheme of τ. Given a structure \mathfrak{A} that satisfies the sentence χ, the operation τ produces the structure

$$
\tau(\mathfrak{A}):=\left\langle D, R_{0}, \ldots, R_{s-1}\right\rangle
$$

where

$$
D:=\{a \in A \mid \mathfrak{A} \models \delta(a)\} \quad \text { and } \quad R_{i}:=\left\{\bar{a} \in D^{\varrho_{i}} \mid \mathfrak{A} \models \varphi_{i}(\bar{a})\right\}
$$

(ϱ_{i} is the arity of R_{i}.) If $\mathfrak{A} \not \vDash \chi$ then $\tau(\mathfrak{A})$ is undefined.
(d) A quantifier-free transduction is a basic MSO-transduction, where all formulae in the definition scheme are quantifier free.
(e) A k-copying MSO-transduction τ is a (multi-valued) operation on relational structures of the form $\tau_{0} \circ \operatorname{copy}_{k} \circ \exp _{m}$ where τ_{0} is a basic MSO-transduction. When the value of k does not matter, we will simply speak of a transduction.

Due to $\exp _{m}$, a structure can be mapped to several structures by τ. Consequently, we define $\tau(\mathfrak{A})$ as the set of possible values $\left(\tau_{0} \circ \operatorname{copy}_{k}\right)(\mathfrak{A}, \bar{P})$ where \bar{P} ranges over all m-tuples of subsets of A.
(f) An MSO-transduction τ is domain-preserving if, it is 1-copying and, for every structure \mathfrak{A} such that $\tau(\mathfrak{A})$ is defined, the image $\tau(\mathfrak{A})$ has the same universe as \mathfrak{A}.

Remark 2.6. (a) The expansion by m unary predicates corresponds, in the terminology of [3, 6], to using m parameters.
(b) Note that every basic MSO-transduction is a 1-copying MSO-transduction without parameters.

The most important property of MSO-transductions is the fact that they are compatible with MSO-theories in the following sense (see, e.g., Theorem 5.10 of [7]).

Lemma 2.7 (Backwards Translation). Let τ be a transduction. For every MSO-sentence φ, there exists an MSO-sentence φ^{τ} such that, for all structures \mathfrak{A},

$$
\mathfrak{A} \models \varphi^{\tau} \quad \Longleftrightarrow \quad \mathfrak{B} \models \varphi \quad \text { for some } \mathfrak{B} \in \tau(\mathfrak{A})
$$

Furthermore, if τ is quantifier-free, then the quantifier-rank of φ^{τ} is no larger than that of φ.
Corollary 2.8. Let τ be a quantifier-free transduction and \mathfrak{A} and \mathfrak{B} structures.

$$
\operatorname{MTh}_{h}(\mathfrak{A})=\operatorname{MTh}_{h}(\mathfrak{B}) \quad \text { implies } \quad \operatorname{MTh}_{h}(\tau(\mathfrak{A}))=\operatorname{MTh}_{h}(\tau(\mathfrak{B}))
$$

2.4. Equational classes and the Semi-Linearity Theorem. We can use monadic secondorder transductions to define two important families of graph classes: the $H R$-equational and the $V R$-equational classes of graphs.

The family $\mathcal{V} \mathcal{R}$ of $V R$-equational graph classes consists of all classes \mathcal{C} such that $\lfloor\mathcal{C}\rfloor$ is the image of the class \mathcal{T} of all trees under a monadic second-order transduction. Similarly, the family $\mathcal{H} \mathcal{R}$ of $H R$-equational graph classes consists of all classes \mathcal{C} such that $\lceil\mathcal{C}\rceil$ is the image of \mathcal{T} under a monadic second-order transduction.

Both families can alternatively be defined using systems of equations in a corresponding graph algebra: the VR-equational classes are the solutions of systems of equations over the VR-algebra of graphs, i.e., the graph algebra whose operations define clique-width, and the HR-equational classes are the solutions of systems of equations over the HR-algebra of graphs, i.e., the graph algebra whose operations define tree-width. We recall that every HR-equational class (of simple graphs) is VR-equational.

VR-equationality and HR-equationality are two possible generalisations of the notion of a context-free language to graphs. In light of the alternative definition in terms of systems of equations it is not surprising that there is a close connection between VR-equationality and clique-width and between HR-equationality and tree-width. Every class in $\mathcal{V} \mathcal{R}$ has bounded clique-width, while classes in $\mathcal{H} \mathcal{R}$ have bounded tree-width. Conversely, every MSO_{1}-definable class of graphs of bounded clique-width is VR-equational and every $\mathrm{MSO}_{2^{-}}$ definable class of graphs of bounded tree-width is HR-equational. However, some VR-equational or HR-equational classes are not of this form. This corresponds to the fact that some context-free languages are not regular.

There is a third characterisation of $\mathcal{V \mathcal { R }}$ and $\mathcal{H R}$ in terms of graph grammars. VRequational classes can be generated by vertex replacement grammars, while HR-equational classes can be generated by hyperedge replacement grammars. We refer the reader to the book [7] for details. In the present article, we will only consider such classes specified, as defined above, as images of trees under transductions. Note that the definition scheme of a class \mathcal{C} provides a finite representation of \mathcal{C}. Consequently, we can process VR-equational and HR-equational classes by algorithms and we can state decision problems in a meaningful way.

One important property of a VR-equational class \mathcal{C} is the fact that the spectrum of every MSO-definable set predicate inside \mathcal{C} is semi-linear. Recall that a set $S \subseteq \mathbb{N}^{n}$ is semi-linear if it is a finite union of sets of the form

$$
P=\left\{\bar{k}+i_{0} \bar{p}_{0}+\cdots+i_{m-1} \bar{p}_{m-1} \mid i_{0}, \ldots, i_{m-1} \in \mathbb{N}\right\},
$$

for fixed tuples $\bar{k}, \bar{p}_{0}, \ldots, \bar{p}_{m-1} \in \mathbb{N}^{n}$.
The following result is Theorem 7.42 of [7] (the fact that one can compute a representation of the semi-linear set is not stated explicitly in [7], but it follows from the proof since all of its steps are effective).
Theorem 2.9 (Semi-Linearity Theorem). Let \mathcal{C} be a $V R$-equational class of graphs and let $\varphi\left(X_{0}, \ldots, X_{n-1}\right)$ be an MSO-formula. The set

$$
\begin{gathered}
M_{\varphi}(\mathcal{C}):=\left\{\left(\left|P_{0}\right|, \ldots,\left|P_{n-1}\right|\right) \mid\right. \\
\lfloor G\rfloor \models \varphi(\bar{P}) \text { for some } G=\langle V, E\rangle \in \mathcal{C} \\
\text { and } \left.P_{0}, \ldots, P_{n-1} \subseteq V\right\}
\end{gathered}
$$

is semi-linear, and a finite representation of this set can be computed from φ and a representation of \mathcal{C}.

3. Definable orders

For simplicity, we will use the term order for linear orders. When considering non-linear partial orders, we will explicitly speak of partial orders.
Definition 3.1. Let Σ be a relational signature and \mathcal{C} a class of Σ-structures.
(a) An MSO-formula $\varphi(x, y ; \bar{Z})$ defines an order on \mathcal{C} if, for every non-empty structure $\mathfrak{A} \in \mathcal{C}$, there are sets $P_{0}, \ldots, P_{n-1} \subseteq A$ such that the formula $\varphi(x, y ; \bar{P})$ defines an order on \mathfrak{A}.
(b) The class \mathcal{C} is MSO-orderable if there is an MSO-formula φ defining an order on \mathcal{C}.
(c) A class \mathcal{C} of graphs MSO_{1}-orderable if the class $\lfloor\mathcal{C}\rfloor$ is MSO-orderable, and we call it MSO_{2}-orderable if $\lceil\mathcal{C}\rceil$ is MSO-orderable.
Remark 3.2. (a) For orderability by a formula $\varphi(x, y ; \bar{Z})$, we only require that there are some parameters \bar{P} such that $\varphi(x, y ; \bar{P})$ defines an order. We do not care about the behaviour of φ for other values of the parameters. We could require the formula $\varphi\left(x, y ; \bar{P}^{\prime}\right)$ to be always false for such parameters \bar{P}^{\prime}. This is no loss of generality, as we can replace $\varphi(x, y ; \bar{Z})$ by the formula

$$
\varphi(x, y ; \bar{Z}) \wedge \operatorname{ord}_{\varphi}(\bar{Z})
$$

where the formula

$$
\begin{aligned}
\operatorname{ord}_{\varphi}(\bar{Z}): & =\forall x \forall y[\varphi(x, y ; \bar{Z}) \wedge \varphi(y, x ; \bar{Z}) \leftrightarrow x=y] \\
& \wedge \forall x \forall y \forall z[\varphi(x, y ; \bar{Z}) \wedge \varphi(y, z ; \bar{Z}) \rightarrow \varphi(x, z ; \bar{Z})]
\end{aligned}
$$

states that the relation defined by φ with parameters \bar{Z} is an order.
(b) For every MSO-formula $\varphi(x, y ; \bar{Z})$ there exists a largest class \mathcal{C}_{φ} of Σ-structures that is ordered by φ. This class can be defined by $\exists \bar{Z} \operatorname{ord}_{\varphi}(\bar{Z})$. Fixing an enumeration $\varphi_{0}(x, y ; \bar{Z}), \ldots, \varphi_{n-1}(x, y ; \bar{Z})$ of all MSO-formulae of quantifier-rank m with k parameters Z_{0}, \ldots, Z_{k-1}, we obtain the class $\mathcal{C}_{m, k}$ of all Σ-structures ordered by some of these formulae. It is defined by $\exists \bar{Z} \bigvee_{i<n} \operatorname{ord}_{\varphi_{i}}(\bar{Z})$. This class can be ordered by the formula

$$
\psi_{m, k}(x, y ; \bar{Z}):=\bigvee_{i<n}\left[\bigwedge_{j<i} \neg \operatorname{ord}_{\varphi_{j}}(\bar{Z}) \wedge \operatorname{ord}_{\varphi_{i}}(\bar{Z}) \wedge \varphi_{i}(x, y ; \bar{Z})\right] .
$$

It follows that any MSO-orderable class \mathcal{C} can be ordered by $\psi_{m, k}$ for sufficiently large m and k.

Remark 3.3. By definition, a class is MSO_{2}-orderable if, in each graph $G=\langle V, E\rangle$, we can define a order on the set $V \cup E$. This is in fact equivalent to requiring just an order on the set V of vertices since, for simple graphs, any such order induces one on $V \cup E$. For instance, we can require that every vertex is smaller than all edges, and that an edge (u, v) is smaller than an edge $\left(u^{\prime}, v^{\prime}\right)$ (orienting these pairs such that $u<v$ and $u^{\prime}<v^{\prime}$) if either $u<u^{\prime}$, or $u=u^{\prime}$ and $v<v^{\prime}$.

Proposition 3.4. Let \mathcal{C} and \mathcal{K} be non-empty classes of Σ-structures.
(a) $\mathcal{C} \cup \mathcal{K}$ is MSO-orderable if, and only if, \mathcal{C} and \mathcal{K} are MSO-orderable.
(b) $\mathcal{C} \oplus \mathcal{K}:=\{\mathfrak{A} \oplus \mathfrak{B} \mid \mathfrak{A} \in \mathcal{C}, \mathfrak{B} \in \mathcal{K}\}$ is MSO-orderable if, and only if, \mathcal{C} and \mathcal{K} are MSO-orderable.

Proof. (a) Clearly, if φ defines an order on $\mathcal{C} \cup \mathcal{K}$, it also defines orders on \mathcal{C} and on \mathcal{K}. Conversely, let $\varphi(x, y ; \bar{Z})$ and $\psi\left(x, y ; \bar{Z}^{\prime}\right)$ be MSO-formulae defining an order on, respectively, \mathcal{C} and \mathcal{K}. Let $\operatorname{ord}_{\varphi}(\bar{Z})$ be the formula (of quantifier-rank $\operatorname{qr}(\varphi)+3$) from Remark 3.2 stating that the relation defined by φ with parameters \bar{Z} is an order. Then we can order $\mathcal{C} \cup \mathcal{K}$ by the formula

$$
\vartheta\left(x, y ; \bar{Z}, \bar{Z}^{\prime}\right):=\left[\operatorname{ord}_{\varphi}(\bar{Z}) \wedge \varphi(x, y ; \bar{Z})\right] \vee\left[\neg \operatorname{ord}_{\varphi}(\bar{Z}) \wedge \psi\left(x, y ; \bar{Z}^{\prime}\right)\right] .
$$

(b) First, suppose that \mathcal{C} and \mathcal{K} are ordered by the formulae $\varphi(x, y ; \bar{Z})$ and $\psi\left(x, y ; \bar{Z}^{\prime}\right)$, respectively. We order $\mathcal{C} \oplus \mathcal{K}$ as follows. Consider $\mathfrak{A} \oplus \mathfrak{B} \in \mathcal{C} \oplus \mathcal{K}$ and let \bar{P} and \bar{Q} be the parameters used by φ and ψ to order \mathfrak{A} and \mathfrak{B}, respectively. Using the set B as one additional parameter, we can define the order

$$
\begin{aligned}
x \leq y \quad & \Longleftrightarrow \\
& \text { or } x, y \in A \text { and } \mathfrak{A} \models \varphi(x, y ; \bar{P}) \\
& \text { or } x \in A \text { and } \mathfrak{B} \models \psi(x, y ; \bar{Q}) \\
& y \in B .
\end{aligned}
$$

Conversely, suppose that there is a formula $\varphi(x, y ; \bar{Z})$ ordering $\mathcal{C} \oplus \mathcal{K}$. We construct a formula $\psi(x, y ; \bar{Z})$ ordering \mathcal{C}. (The orderability of \mathcal{K} follows by symmetry.) By the Composition Theorem, there exist finite lists $p_{0}, \ldots, p_{m-1}, q_{0}, \ldots, q_{m-1}$, and s_{0}, \ldots, s_{n-1},
t_{0}, \ldots, t_{n-1} of MSO-theories of quantifier-rank $h:=\operatorname{qr}(\varphi)$ and $h+3=\operatorname{qr}\left(\operatorname{ord}_{\varphi}\right)$, respectively, such that, for all $\mathfrak{A} \in \mathcal{C}, \mathfrak{B} \in \mathcal{K}, \bar{P}$ in $\mathfrak{A} \oplus \mathfrak{B}$, and $a, b \in A$,

$$
\begin{aligned}
\mathfrak{A} \oplus \mathfrak{B} \models \varphi(a, b ; \bar{P}) \quad \Longleftrightarrow & \operatorname{MTh}_{h}(\mathfrak{A}, \bar{P} \upharpoonright A, a, b)=p_{i} \text { and } \\
& \operatorname{MTh}_{h}(\mathfrak{B}, \bar{P} \upharpoonright B)=q_{i}, \text { for some } i<m, \\
\text { and } \quad \mathfrak{A} \oplus \mathfrak{B} \models \operatorname{ord}_{\varphi}(\bar{P}) \Longleftrightarrow & \operatorname{MTh}_{h+3}(\mathfrak{A}, \bar{P} \upharpoonright A)=s_{i} \text { and } \\
& \operatorname{MTh}_{h+3}(\mathfrak{B}, \bar{P} \upharpoonright B)=t_{i}, \text { for some } i<n .
\end{aligned}
$$

We fix a structure $\mathfrak{B}_{0} \in \mathcal{K}$ and set

$$
I:=\left\{i<n \mid \mathfrak{B}_{0} \models \exists \bar{Z} \bigwedge t_{i}(\bar{Z})\right\}
$$

For each $i \in I$, we choose parameters \bar{Q}_{i} in \mathfrak{B}_{0} such that $\operatorname{MTh}_{h+3}\left(\mathfrak{B}_{0}, \bar{Q}_{i}\right)=t_{i}$, and we set

$$
J_{i}:=\left\{j<m \mid \operatorname{MTh}_{h}\left(\mathfrak{B}_{0}, \bar{Q}_{i}\right)=q_{j}\right\} .
$$

We claim that the formula

$$
\left.\psi(x, y ; \bar{Z}):=\bigvee_{i \in I}\left[\bigwedge_{\substack{k \in I \\ k<i}} \neg \vartheta_{k}(\bar{Z}) \wedge \vartheta_{i}(\bar{Z}) \wedge \bigvee_{j \in J_{i}} \chi_{j}(x, y ; \bar{Z})\right)\right]
$$

orders \mathcal{C} where $\vartheta_{i}(\bar{Z}):=\bigwedge s_{i}$ and $\chi_{i}(x, y ; \bar{Z}):=\bigwedge p_{i}$. Let $\mathfrak{A} \in \mathcal{C}$ and let $l \in I$ be the minimal index such that $\mathfrak{A} \models \exists \bar{Z} \vartheta_{l}(\bar{Z})$. We choose sets \bar{P} in \mathfrak{A} such that $\operatorname{MTh}_{h+3}(\mathfrak{A}, \bar{P})=s_{l}$. By choice of s_{l} and t_{l} it follows that $\varphi\left(x, y ; \bar{P} \cup \bar{Q}_{l}\right)$ orders $\mathfrak{A} \oplus \mathfrak{B}_{0}$. $\left(\bar{P} \cup \bar{Q}_{l}\right.$ denotes the tuple where each component is the union of the corresponding components of \bar{P} and \bar{Q}_{l}.) For $a, b \in A$, it further follows that

$$
\begin{aligned}
\mathfrak{A} \models \psi(a, b ; \bar{P}) \quad \Longleftrightarrow \quad & \text { there is some } i \in I \text { such that } \\
& \operatorname{MTh}_{h+3}(\mathfrak{A}, \bar{P})=s_{i}, \\
& \operatorname{MTh}_{h+3}(\mathfrak{A}, \bar{P}) \neq s_{k}, \text { for all } k<i, \text { and } \\
& \operatorname{MTh}_{h}(\mathfrak{A}, \bar{P}, a, b)=p_{j}, \quad \text { for some } j \in J_{i}, \\
\Longleftrightarrow & \operatorname{MTh}_{h}(\mathfrak{A}, \bar{P}, a, b)=p_{j}, \quad \text { for some } j \in J_{l}, \\
\Longleftrightarrow & \operatorname{there~is~some~} j<m \text { such that } \quad \operatorname{MTh}_{h}(\mathfrak{A}, \bar{P}, a, b)=p_{j} \text { and } \operatorname{MTh}_{h}\left(\mathfrak{B}_{0}, \bar{Q}_{l}\right)=q_{j} \\
\Longleftrightarrow & \mathfrak{A} \oplus \mathfrak{B}_{0} \models \varphi\left(a, b ; \bar{P} \cup \bar{Q}_{l}\right) .
\end{aligned}
$$

Hence, $\psi(x, y ; \bar{P})$ orders \mathfrak{A}.
Remark 3.5. Every class consisting of a single (finite) structure is obviously MSO-orderable. By Proposition 3.4, it follows that all finite classes are MSO-orderable.
Remark 3.6. Let \mathcal{C} be a class of graphs and let $\varphi(x, y ; \bar{Z})$ be an MSO-formula defining an order on $\lceil\mathcal{C}\rceil$. Let \mathcal{C}_{+}be the class of all graphs obtained from graphs in \mathcal{C} by adding edges arbitrarily. Then $\left\lceil\mathcal{C}_{+}\right\rceil$can be ordered by the formula $\varphi_{+}\left(x, y ; \bar{Z}, Z^{\prime}\right)$ obtained from $\varphi(x, y ; \bar{Z})$ by replacing every atomic formula of the form $\operatorname{inc}(u, v)$ by the formula $\operatorname{inc}(u, v) \wedge v \in Z^{\prime}$, and by relativising every quantifier to the set Z^{\prime}. (If \bar{P} are parameters such that $\varphi(x, y ; \bar{P})$ orders the graph $G=\langle V, E\rangle$, then $\varphi_{+}(x, y ; \bar{P}, V \cup E)$ orders every supergraph $G_{+}=\left\langle V, E_{+}\right\rangle$ such that $E_{+} \supseteq E$.)

Remark 3.7. Definition 3.1 can be formulated in terms of monadic second-order transductions. A class \mathcal{C} of Σ-structures is MSO-orderable if, and only if, there exists a noncopying, domain-preserving transduction σ mapping each structure $\mathfrak{A} \in \mathcal{C}$ to an expansion $\langle\mathfrak{A}, \leq\rangle$ by a linear order \leq. Moreover it is easy to write down a transduction τ mapping any ordered structure $\langle\mathfrak{A}, \leq\rangle$ to a path that connects all elements of \mathfrak{A}. Consequently, if \mathcal{C} is infinite (up to isomorphism) and MSO-orderable, we obtain an MSO-transduction $\tau \circ \sigma$ mapping \mathcal{C} to the class of all finite paths. This implies that, in the transduction hierarchy (cf. [2]), the class \mathcal{C} lies above the class of all paths.

The opposite of an orderable class is a class of which no infinite subclass can be ordered. We call such classes hereditarily unorderable.
Definition 3.8. A class \mathcal{C} of structures is hereditarily MSO-unorderable, if it is infinite and no infinite subclass of \mathcal{C} is MSO-orderable. For classes of graphs, we define the terms hereditarily MSO_{1}-unorderable and hereditarily MSO_{2}-unorderable analogously.

Example 3.9. (a) The class $\mathcal{C}=\left\{K_{n} \mid n \in \mathbb{N}, n>0\right\}$ of cliques is MSO_{2}-orderable and hereditarily MSO_{1}-unorderable. To order K_{n}, we can choose a set of edges P forming a Hamiltonian path in K_{n}. Let Q be a singleton set consisting of one end-point of this path. Then we can use P and Q to define a linear order on K_{n}.

Without using MSO_{2}-parameters, such a definition is not possible. For each fixed number k of parameters and all sufficiently large n, every expansion of K_{n} by k parameters P_{0}, \ldots, P_{k-1} admits a nontrivial automorphism. Consequently, no formula can define a linear order on $\left\langle K_{n}, \bar{P}\right\rangle$.
(b) The class \mathcal{T}_{n} of trees of height at most n is both, hereditarily MSO_{1}-unorderable and hereditarily MSO_{2}-unorderable. This follows from Theorem 4.8 below.

4. MSO_{2}-DEFINABLE ORDERINGS

In this section we derive characterisations for MSO_{2}-orderable classes. MSO_{1}-orderability will be considered in Section 5.
4.1. Necessary conditions. We start by providing a necessary condition for MSO_{2}-orderability. Below we will then show that, for certain classes of graphs, this condition is also sufficient.

Definition 4.1. Let $\mathfrak{A}=\langle A, \bar{R}\rangle$ be a relational structure.
(a) We call \mathfrak{A} connected if it cannot be written as a disjoint union $\mathfrak{A}=\mathfrak{B} \oplus \mathfrak{C}$ of two nonempty substructures. A connected component of \mathfrak{A} is a maximal substructure that is connected and nonempty.
(b) For a number $k \in \mathbb{N}$, we denote by $\operatorname{Sep}(\mathfrak{A}, k)$ the maximal number of connected components of $\mathfrak{A}-S$, where $S \subseteq A$ ranges over all sets of size at most k. For a graph G, we set $\operatorname{Sep}(G, k):=\operatorname{Sep}(\lfloor G\rfloor, k)$.
(c) For a function $f: \mathbb{N} \rightarrow \mathbb{N}$, we say that a class \mathcal{C} of structures has property $\operatorname{SEP}(f)$ if $\operatorname{Sep}(\mathfrak{A}, k) \leq f(k), \quad$ for all $\mathfrak{A} \in \mathcal{C}$ and all $k \in \mathbb{N}$.
We say that \mathcal{C} has property SEP, if it has property $\operatorname{SEP}(f)$, for some function $f: \mathbb{N} \rightarrow \mathbb{N}$. \diamond

Example 4.2. For complete bipartite graphs $K_{n, m}$ with $n \leq m$ we have

$$
\operatorname{Sep}\left(K_{n, m}, k\right)= \begin{cases}1 & \text { if } k<n \\ m & \text { if } k \geq n\end{cases}
$$

For complete d-partite graphs $K_{m_{0}, \ldots, m_{d-1}}$ with $m_{0} \geq \cdots \geq m_{d-1}$ and $d \geq 2$, we have

$$
\operatorname{Sep}\left(K_{m_{0}, \ldots, m_{d-1}}, k\right)= \begin{cases}1 & \text { if } k<m_{1}+\cdots+m_{d-1} \\ m_{0} & \text { if } k \geq m_{1}+\cdots+m_{d-1}\end{cases}
$$

We leave the straightforward verification to the reader.
Example 4.3. Let $f: \mathbb{N} \rightarrow \mathbb{N} \backslash\{0\}$ be a function and let $n \in \mathbb{N}$. We construct a graph $G_{n}(f)$ such that

$$
\operatorname{Sep}\left(G_{n}(f), k\right) \geq f(k), \quad \text { for all } k \leq n
$$

Let T be the tree of height n, where every vertex v on level k has $f(k)$ immediate successors. That is,

$$
T:=\left\{w \in \mathbb{N}^{\leq n} \mid w(k)<f(k) \text { for all } k\right\} .
$$

The desired graph $G_{n}(f)$ is obtained from this tree by adding all edges (x, y) such that $x \prec y$. For a given $k \leq n$, choose a path v_{0}, \ldots, v_{k-1} of length $k-1$ from the root v_{0} to some vertex v_{k-1} on level $k-1$. Removing the set $S:=\left\{v_{0}, \ldots, v_{k-1}\right\}$ we obtain a graph $G_{n}(f)-S$ with more than $f(k)$ connected components, since each of the $f(k)$ immediate successors of v_{k-1} belongs to a different connected component.

Let us show that having property SEP is a necessary condition for a class to be $\mathrm{MSO}_{2}{ }^{-}$ orderable.

Proposition 4.4. There exists a function $f: \mathbb{N}^{3} \rightarrow \mathbb{N}$ such that $\operatorname{Sep}(G, k) \leq f(n, m, k)$ for every graph G such that $\lceil G\rceil$ can be ordered by an MSO-formula of the form $\varphi(x, y ; \bar{P})$ where $\operatorname{qr}(\varphi) \leq m$ and $\bar{P}=\left\langle P_{0}, \ldots, P_{n-1}\right\rangle$ are parameters. Furthermore, the function $f(n, m, k)$ is effectively elementary in the argument k, that is, there exists a computable function g such that $f(n, m, k) \leq \exp _{g(n, m)}(k)$.
Proof. Fixing $k, m, n \in \mathbb{N}$, we define $f(n, m, k):=d$ where d is an upper bound on the number of MSO-theories of the form $\operatorname{MTh}_{m}\left(\lceil H\rceil, P_{0}, \ldots, P_{n-1}, v_{0}, \ldots, v_{k}\right)$ where H is a graph, P_{0}, \ldots, P_{n-1} are parameters, and v_{0}, \ldots, v_{k} are vertices of H. For fixed n and m, we can choose d to be elementary in k.

Let $\varphi(x, y ; \bar{Z})$ be an MSO-formula of quantifier-rank at most m, let G be a graph with $\operatorname{Sep}(G, k)>f(n, m, k)$, and let P_{0}, \ldots, P_{n-1} parameters from G. We have to show that $\varphi(x, y ; \bar{P})$ does not order $\lceil G\rceil$. Fix a set $S=\left\{s_{0}, \ldots, s_{k-1}\right\}$ of vertices such that $G-S$ has more than d connected components. Fix distinct connected components C_{0}, \ldots, C_{d} of $G-S$ and vertices $a_{i} \in C_{i}$. By choice of d, there are indices $i<j$ such that

$$
\begin{aligned}
& \operatorname{MTh}_{m}\left(\left\lceil G\left[C_{i} \cup S\right]\right\rceil, \bar{P} \upharpoonright\left(C_{i} \cup S\right), s_{0}, \ldots, s_{k-1}, a_{i}\right) \\
= & \operatorname{MTh}_{m}\left(\left\lceil G\left[C_{j} \cup S\right]\right\rceil, \bar{P} \upharpoonright\left(C_{j} \cup S\right), s_{0}, \ldots, s_{k-1}, a_{j}\right) .
\end{aligned}
$$

As the structure $\left\langle\lceil G\rceil, \bar{P}, s_{0}, \ldots, s_{k-1}, a_{i}, a_{j}\right\rangle$ is the amalgamation of the structures

$$
\begin{aligned}
& \left\langle\left\lceil G\left[C_{i} \cup S\right]\right\rceil, \bar{P} \upharpoonright\left(C_{i} \cup S\right), s_{0}, \ldots, s_{k-1}, a_{i}\right\rangle, \\
& \left\langle\left\lceil G\left[C_{j} \cup S\right]\right\rceil, \bar{P} \upharpoonright\left(C_{j} \cup S\right), s_{0}, \ldots, s_{k-1}, a_{j}\right\rangle,
\end{aligned}
$$

and

$$
\left\langle\left\lceil G\left[C_{l} \cup S\right]\right\rceil, \bar{P} \upharpoonright\left(C_{l} \cup S\right), s_{0}, \ldots, s_{k-1}\right\rangle, \quad \text { for } l \neq i, j
$$

over the tuple $\left\langle s_{0}, \ldots, s_{k-1}\right\rangle$, it therefore follows by Theorem 2.3 that

$$
\operatorname{MTh}_{m}\left(\lceil G\rceil, \bar{P}, s_{0}, \ldots, s_{k-1}, a_{i}, a_{j}\right)=\operatorname{MTh}_{m}\left(\lceil G\rceil, \bar{P}, s_{0}, \ldots, s_{k-1}, a_{j}, a_{i}\right) .
$$

In particular,

$$
G \models \varphi\left(a_{i}, a_{j} ; \bar{P}\right) \quad \Longleftrightarrow \quad G \models \varphi\left(a_{j}, a_{i} ; \bar{P}\right) .
$$

Hence, $\varphi(x, y ; \bar{P})$ does not define an order.
Corollary 4.5. An MSO_{2}-orderable class of graphs \mathcal{C} has property $\operatorname{SEP}(f)$, for an elementary function f.

The converse does not hold. For instance, according to Theorem 4.29 below, the class of bipartite graphs of the form $K_{n, 2^{2}}$ is not MSO_{2}-orderable, while we have seen in Example 4.2 that it has property $\operatorname{SEP}(f)$ for the elementary function f such that $f(n)=2^{2^{n}}$. Our objective therefore is to get converse results for particular classes of graphs satisfying certain combinatorial conditions.

Remark 4.6. We have noted in Remark 3.6 that, if a graph G can be ordered by an $\mathrm{MSO}_{2^{-}}$ formula φ, we can construct from φ a MSO_{2}-formula ψ ordering every graph H obtained from G by adding edges. In this case, we further have $\operatorname{Sep}(H, k) \leq \operatorname{Sep}(G, k)$, for all k.
Remark 4.7. All results of Section 4 also hold for directed graphs since there is an $\mathrm{MSO}_{2}{ }^{-}$ formula with two parameters that defines an orientation of every undirected graph (see Proposition 9.46 of [7). It follows that a class of directed graphs is MSO_{2}-orderable if, and only if, the corresponding class of undirected graphs is. This is different for MSO_{1} orderability.

As a simple introductory example, let us consider classes of trees.
Theorem 4.8. Let \mathcal{T} be a class of (undirected) trees. The following statements are equivalent:
(1) \mathcal{T} is MSO_{1}-orderable.
(2) \mathcal{T} is MSO_{2}-orderable.
(3) \mathcal{T} has property SEP.
(4) There exists a number $d \in \mathbb{N}$ such that every tree in \mathcal{T} has maximal degree at most d.

Proof. (1) $\Rightarrow(2)$ is trivial.
$(2) \Rightarrow(3)$ has been shown in Corollary 4.5
$(3) \Rightarrow$ (4) Suppose that \mathcal{T} has property $\operatorname{SEP}(f)$ and let $T \in \mathcal{T}$. Every vertex $v \in T$ has at most $f(1)$ neighbours since $T-\{v\}$ has at most $f(1)$ connected components. Consequently, the maximal degree of T is bounded by $f(1)$.
$(4) \Rightarrow(1)$ Let T be a tree with maximal degree at most d. We use d parameters P_{0}, \ldots, P_{d-1} to order T. Fixing a vertex $r \in T$ as root, we obtain an injective embedding $g: T \rightarrow d^{<m}$, for some number $m \in \mathbb{N}$. We set

$$
P_{i}:=\{v \in T \mid g(v)=w i \text { for some } w\} .
$$

Note that r is the only vertex of T that is not contained in any of these sets. Hence, using \bar{P}, we can define the tree-order \preceq on T. We can also define the lexicographic ordering:

$$
u \leq v \quad: \Longleftrightarrow u \preceq v, \text { or } u_{0} \in P_{i}, v_{0} \in P_{k}, \text { for } i<k \text {, where } u_{0}, v_{0} \text { are the }
$$

immediate successors of the longest common
prefix of u and v with $u_{0} \preceq u$ and $v_{0} \preceq v$.
Corollary 4.9. Let $k \in \mathbb{N}$. The class of trees of height at most k is hereditarily MSO_{2} unorderable.

Proof. For any given height k, there are only finitely many trees (up to isomorphism) satisfying condition (4) of the theorem.
4.2. Omitting a minor. We start by presenting a characterisation for classes of graphs omitting a fixed graph as minor (for an introduction to graph minors see, e.g., [10]). For short, we will say that such a class omits a minor. Recall that a spanning forest F of a graph G is defined to be directed. A spanning forest F is normal if the ends of every edge of G are comparable with respect to the tree-order \preceq_{F} on F (see, e.g., Section 1.5 of [10]).

Definition 4.10. Let G be a graph and $F \subseteq G$ a normal spanning forest of G.
(a) We denote the set of predecessors of a vertex x by

$$
\operatorname{Pred}_{F}(x):=\left\{y \mid y \prec_{F} x\right\} .
$$

(b) For $x \in G$, we define

$$
B_{F}(x):=\left\{v \prec_{F} x \mid \text { there is an edge }(u, v) \text { of } G \text { such that } x \preceq_{F} u\right\} .
$$

Lemma 4.11. Let G be a graph, F a normal spanning forest of $G, x \in G$, and $B \subseteq$ $\operatorname{Pred}_{F}(x)$.
(a) If $|B| \geq p$ and there are p immediate successors y of x such that $B_{F}(y)=B \cup\{x\}$, then $K_{p, p}$ is a minor of G.
(b) If $|B|<p$ and $\operatorname{Sep}(G, p) \leq d$, then there are at most d immediate successors y of x such that $B_{F}(y)=B \cup\{x\}$.
Proof. (a) Suppose that there are p distinct immediate successors y_{0}, \ldots, y_{p-1} of x with $B\left(y_{i}\right)=B \cup\{x\}$ and fix distinct vertices $b_{0}, \ldots, b_{p-1} \in B$. Let H be the minor of G obtained by contracting the subtrees rooted at y_{0}, \ldots, y_{p-1} to single vertices $\widetilde{y}_{0}, \ldots, \widetilde{y}_{p-1}$ and by removing all remaining vertices except for $\widetilde{y}_{0}, \ldots, \widetilde{y}_{p-1}$ and b_{0}, \ldots, b_{p-1}. Then $H \cong K_{p, p}$.
(b) Set $S:=B \cup\{x\}$ and let y_{0}, \ldots, y_{n-1} be an enumeration of all immediate successors of x such that $B\left(y_{i}\right)=S$. Then y_{0}, \ldots, y_{n-1} lie in different connected components of $G-S$. Hence, $n \leq \operatorname{Sep}(G, p) \leq d$.
Theorem 4.12. For every $p, d \in \mathbb{N}$, the class $\mathcal{C}_{p, d}$ of all graphs G that satisfy $\operatorname{Sep}(G, p) \leq d$ and that do not contain $K_{p, p}$ as a minor is MSO_{2}-orderable.
Proof. Consider a graph $G \in \mathcal{C}_{p, d}$. Let F be a normal spanning forest of G. Since G has $\operatorname{Sep}(G, 0) \leq d$ connected components, the forest F has at most d roots. Recall that a forest is oriented with edges pointing away from the roots. We can encode F by two parameters: its set of edges and its set of roots. (Since the first set consists of edges and the second one of vertices, we could even take their union as a single parameter.) We will use a lexicographic
order on F to order G, based on orderings (i) of the roots of F and (ii) of the immediate successors of every vertex of F.

Consider a vertex $x \in F$ with immediate successors y_{0}, \ldots, y_{m-1}. Since each set $B_{F}\left(y_{i}\right)$ is linearly ordered by \preceq_{F}, we can define a preorder on the immediate successors by using the lexicographic ordering of the sets $B_{F}\left(y_{i}\right)$:

$$
y_{i} \sqsubseteq y_{k} \quad: \Longleftrightarrow \quad B_{F}\left(y_{i}\right) \leq_{\operatorname{lex}} B_{F}\left(y_{k}\right) .
$$

To prove that there is a definable order extending this preorder, it is sufficient to show that the equivalence classes of this preorder have bounded cardinality. Let $k:=\max \{p, d\}$. For every set $B \subseteq \operatorname{Pred}_{F}(x)$, there are at most k immediate successors y_{i} of x with $B_{F}\left(y_{i}\right)=$ $B \cup\{x\}$: for $|B| \geq p$, this follows from Lemma 4.11(a); for $|B|<p$, it follows from Lemma 4.11(b).

The parameters needed to define the desired linear order consist of the set of edges of the spanning forest F and $d+k$ parameters to distinguish and order the roots of F and to order the immediate successors y of a vertex x that have the same set $B_{F}(y)$.
Theorem 4.13. Let \mathcal{C} be a class of graphs omitting a minor H. The following statements are equivalent:
(1) \mathcal{C} is MSO_{2}-orderable.
(2) \mathcal{C} has property SEP.
(3) \mathcal{C} has property $\operatorname{SEP}(f)$ for some elementary function f.

Furthermore, given H we can compute a number k such that we can replace $\operatorname{SEP}(f)$ by $\operatorname{SEP}\left(\exp _{k}\right)$ in (3).
Proof. (1) \Rightarrow (3) follows by Corollary 4.5 and $(3) \Rightarrow(2)$ is trivial.
For $(2) \Rightarrow(1)$, suppose that \mathcal{C} has property $\operatorname{SEP}(f)$. By Theorem 4.12, all classes $\mathcal{C}_{p, d}$ are MSO_{2}-orderable. Since every graph with n vertices and m edges is a minor of $K_{n, m}$, we can choose p sufficiently large such that H is a minor of $K_{p, p}$. Set $d:=f(p)$. Then $\mathcal{C} \subseteq \mathcal{C}_{p, d}$ and it follows that \mathcal{C} is also MSO_{2}-orderable.
Remark 4.14. (a) For each $k \in \mathbb{N}$, the class of graphs of tree-width at most k excludes some (planar) graph as a minor and, hence, it satisfies the conditions of Theorem 4.13.
(b) Although this fact is not directly related to our work, we mention that Grohe has proved that every class of graphs excluding a minor is orderable in least fixed-point logic. It follows that least fixed-point logic captures PTIME on these classes [15, 14].

In contrast to Remark 4.14(a), we have the following result for classes of graphs of bounded n-depth tree-width (which is defined as tree-width, but where we only consider tree decompositions with index trees of height at most n). This graph complexity measure was introduced in [2].
Proposition 4.15. Let $n, k \in \mathbb{N}$. A class of graphs of n-depth tree-width at most k is MSO_{2} orderable if, and only if, it is finite. Hence, the class of all graphs of n-depth tree-width at most k is hereditarily MSO_{2}-unorderable.

Proof. Let \mathcal{C} be an infinite class of graphs of n-depth tree-width at most k. As we have argued in Remark 3.7, if \mathcal{C} were MSO_{2}-orderable, we could define an MSO_{2}-transduction mapping it to the class of all finite paths. This is not possible by Theorem 6.4 of [2].

In the following we try to compute a better bound on the function f in Theorem4.13(3). We can improve the bound from elementary to singly exponential.

Lemma 4.16. Let G be a graph such that $\operatorname{Sep}(G, p) \leq d$ and $K_{p, p}$ is not a minor of G. Let F be a normal spanning forest of G and S a set of at most k vertices of G. For every vertex $x \in S$, at most $k+2^{k} \cdot \max \{p, d\}$ connected components of $G-S$ contain an immediate successor of x (in F).

Proof. Let $s_{0} \prec_{F} \cdots \prec_{F} s_{m-1}=x$ be an enumeration of $\operatorname{Pred}_{F}(x) \cup\{x\}$. For an immediate successor y of x, we define
$I(y):=\left\{i<m \mid\right.$ there is some $z \in B_{F}(y)$ such that $z \prec_{F} s_{i}$ and $\left(i=0\right.$ or $\left.\left.s_{i-1} \prec_{F} z\right)\right\}$.
If y and y^{\prime} are immediate successors of x in different connected components of $G-S$, then $I(y) \cap I\left(y^{\prime}\right)=\emptyset$. Consequently, there are at most $m \leq k$ connected components of $G-S$ containing an immediate successor y of x such that $I(y) \neq \emptyset$.

It remains to show that there are at most $2^{k} \cdot \max \{p, d\}$ components of $G-S$ containing an immediate successor y with $I(y)=\emptyset$. Every such immediate successor y satisfies $B(y) \subseteq$ S. Hence, $B(y)$ can take at most $2^{m} \leq 2^{k}$ values and, according to Lemma 4.11, for each such value $B \subseteq S$ there are at most max $\{p, d\}$ immediate successors y with $B(y)=B$.
Proposition 4.17. Let G be a graph such that $\operatorname{Sep}(G, p) \leq d$ and $K_{p, p}$ is not a minor of G. Then

$$
\operatorname{Sep}(G, k) \leq d+k^{2}+k 2^{k} \cdot \max \{p, d\}, \quad \text { for } k \geq p
$$

Proof. Let F be a normal spanning forest of G and S a set of at most k vertices of G. We have seen in Lemma 4.16 that, for every vertex $x \in S$, at most $k+2^{k} \cdot \max \{p, d\}$ connected components of $G-S$ contain an immediate successor of x. Since every connected component of $G-S$ contains a root of F or the immediate successor of some $x \in S$, there are at most $d+k\left(k+2^{k} \cdot \max \{p, d\}\right)$ such components.

Every class omitting some minor H also omits $K_{p, p}$ as a minor, for all sufficiently large p. The following corollary states that, in order to determine whether such a class is MSO_{2}-orderable, it is sufficient to bound the numbers $\operatorname{Sep}(G, p)$ as opposed to the function $k \mapsto \operatorname{Sep}(G, k)$.
Corollary 4.18. Let $p \in \mathbb{N}$. A class \mathcal{C} of graphs omitting $K_{p, p}$ as a minor is MSO_{2}-orderable if, and only if,

$$
\sup \{\operatorname{Sep}(G, p) \mid G \in \mathcal{C}\}<\infty
$$

Remark 4.19. Graphs omitting a minor H are r-sparse (cf. Definition (2.1), for some number r depending on H. Since, for r-sparse graphs, the expressive powers of MSO_{1} and MSO_{2} coincide, it follows that the criterion in Corollary 4.18 also characterises MSO_{1}-orderability.

Remark 4.20. The proof technique of Theorem 4.12 can be extended to order certain classes of graphs that do not omit any graph as a minor. We give two examples.
(a) First, let us consider the class of graphs H_{p}, for $p \geq 1$, defined as follows. The set of vertices of H_{p} is

$$
V:=\{*\} \cup[p] \cup[p] \times S_{p},
$$

Figure 1: The graph H_{2}.
where S_{p} is the set of permutations of $[p]$. The graph H_{p} has the following edges:

$(*, 0)$	
$(*,(0, \sigma))$	for $\sigma \in S_{p}$,
$(i, i+1)$	for $i \in[p], i<p-1$,
$((i, \sigma),(i+1, \sigma))$	for $i \in[p], \sigma \in S_{p}, i<p-1$,
$(i,(\sigma(i), \sigma))$	for $i \in[p], \sigma \in S_{p}, i<p$.

The graph H_{2} is shown in Figure 1. (e is the identity and τ is the transposition of 0 and 1.) Note that the vertex $*$ has degree $1+p!$. Clearly, H_{p} contains $K_{p, p!}$ as a minor. Nevertheless, the class of graphs H_{p} is MSO_{2}-orderable. We can use a spanning tree whose root is the vertex $p-1$ and whose edges consist of the first four of the above types. To compare two immediate successors $(0, \sigma)$ and $(0, \tau)$ of the vertex $*$, we can use a lexicographic order on S_{p} (where we identify a permutation σ with the sequence $\sigma(0) \ldots \sigma(p-1)$). Since each H_{p} is 2-sparse (as it has an orientation of indegree 2, cf. Proposition 9.40 of [7]), it follows that the class is even MSO_{1}-orderable (cf. Theorem 9.37 of [7]).
(b) Another example is the class of cliques. It is MSO_{2}-orderable and does not omit a minor. If we replace each edge by a path of length 2 , we obtain a class of 2 -sparse graphs that is MSO_{2}-orderable and that still does not omit a minor.

Remark 4.21. It is not possible to extend Theorem 4.13 to r-sparse graphs. A counterexample is given by the class \mathcal{C} of all graphs obtained from a bipartite graph of the form $K_{n, f(n)}$ by replacing every edge by a path of length 2 , where $f: \mathbb{N} \rightarrow \mathbb{N}$ is a fixed nonelementary function. This is a class of 2 -sparse graphs with property SEP that, according to Corollary 4.5, is not MSO_{2}-orderable.
4.3. Deciding MSO_{2}-orderability. In Theorem 4.13 above, we have presented a combinatorial property characterising MSO_{2}-orderability for classes of graphs omitting a minor. A natural question is whether this property is decidable. Of course, this question does only make sense for classes of graphs that can be described in a finitary way. Therefore, we will concentrate on HR-equational and VR-equational classes.

Proposition 4.22. It is decidable whether a VR-equational class \mathcal{C} has property SEP.

Proof. Let \mathcal{C} be a VR-equational class and let $\varphi(X, Y)$ be an MSO-formula expressing, for a graph G, that the set Y contains exactly one vertex of each connected component of $G-X$. The class \mathcal{C} has property SEP if, and only if, there exists a function f such that, for all $G=\langle V, E\rangle \in \mathcal{C}$ and $P, Q \subseteq V$,

$$
G \models \varphi(P, Q) \quad \text { implies } \quad|Q| \leq f(|P|) .
$$

According to the Semi-Linearity Theorem, the set

$$
M(\mathcal{C}):=\{(|P|,|Q|) \mid G \models \varphi(P, Q) \text { for some } G=\langle V, E\rangle \in \mathcal{C} \text { and } P, Q \subseteq V\}
$$

is semi-linear and an effective description of $M(\mathcal{C})$ can be computed from a system of equations for \mathcal{C}. Using this description, we can check whether or not, for every $n \in \mathbb{N}$, the set $\{p \mid(n, p) \in M(\mathcal{C})\}$ is bounded. This is the case if, and only if, \mathcal{C} has property SEP.
Corollary 4.23. For an HR-equational class \mathcal{C}, it is decidable whether \mathcal{C} is MSO_{2}-orderable.
Proof. An HR-equational class \mathcal{C} has bounded tree-width (Proposition 4.7 of [7]) and, hence, omits some $K_{p, p}$ as a minor. Since HR-equational classes (of simple graphs) are VRequational, it follows from Theorem 4.13 that \mathcal{C} is MSO_{2}-orderable if, and only if, it has property SEP. The latter is decidable by the above proposition.
Remark 4.24. An alternative decidability proof can be based on Corollary 4.18, As the tree-width of $K_{p, p}$ is p, every class \mathcal{C} of tree-width at most $p-1$ omits $K_{p, p}$ as a minor. Furthermore, an upper bound on the tree-width of an HR-equational class \mathcal{C} can be computed from a system of equations for \mathcal{C} (see Proposition 4.7 of [7]). By Corollary 4.18, \mathcal{C} is $\mathrm{MSO}_{2^{-}}$ orderable if, and only if, the set $\{\operatorname{Sep}(G, p) \mid G \in \mathcal{C}\}$ is bounded. To check this condition, we consider the formula $\varphi(X)$ expressing that there exists a set S of size $|S| \leq p$ such that X contains exactly one vertex of each connected component of $G-S$. By the Semi-Linearity Theorem, we can compute a representation of the semi-linear set

$$
M(\mathcal{C}):=\{|P| \mid G \models \varphi(P) \text { for some } G=\langle V, E\rangle \in \mathcal{C} \text { and } P \subseteq V\}
$$

Using this representation we can check whether or not $M(\mathcal{C})$ is finite.
For VR-equational classes we do not obtain decidability since we cannot apply Theorem 4.13. We conjecture that a corresponding statement holds also for these classes.
Conjecture 4.25. Every VR-equational class that has property SEP is MSO_{2}-orderable.
Below we will prove this conjecture for the special cases of complete d-partite graphs (Corollary 4.30) and chordal graphs (Corollary 4.37).
4.4. Dense graphs. We have characterised MSO_{2}-orderability in Theorem 4.13 for classes excluding a minor. The graphs in such classes are sparse. In this section and the next one, we consider the opposite extreme of certain dense graphs, in particular, multi-partite graphs and chordal graphs.
Lemma 4.26. Let $s, r \in \mathbb{N}$ and let \mathcal{C} be a class of graphs such that each $G \in \mathcal{C}$ is obtained from some $K_{n, m}$ with $n \leq m \leq 2^{\text {sn+r }}$ by possibly adding new edges. Then \mathcal{C} is MSO_{2} orderable.

Proof. Consider a graph $G=\langle V, E\rangle \in \mathcal{C}$ obtained by adding new edges from a bipartite graph $K_{n, m}$ where $n \leq m \leq 2^{s n+r}$ (see also Remark 3.6). If $n=0$, then G has $m \leq 2^{r}$ vertices and we can order G using r parameters. Thus, it remains to consider the case where $n>0$. Since $m \leq 2^{s n+r} \leq 2^{(s+r) n}$, there exists an injective function $\mu:[m] \rightarrow \mathcal{P}([(s+r) n])$. Fixing enumerations a_{0}, \ldots, a_{n-1} and b_{0}, \ldots, b_{m-1} of the two vertex classes of $K_{n, m}$, we define an ordering of G using the following parameters.

$$
\begin{aligned}
A & :=\left\{a_{i} \mid i<n\right\} \subseteq V \\
B & :=\left\{b_{i} \mid i<m\right\} \subseteq V \\
S & :=\left\{\left(a_{i}, b_{j}\right) \mid i \leq j\right\} \subseteq E \\
R_{k} & :=\left\{\left(a_{i}, b_{j}\right) \mid k n+i \in \mu(j)\right\} \subseteq E, \quad \text { for } k<s+r
\end{aligned}
$$

First, we define a strict order $<_{A}$ on A by

$$
u<_{A} v \quad: \Longleftrightarrow u \neq v \text { and, for all } x \in B,(u, x) \in S \Rightarrow(v, x) \in S
$$

By definition of S, this order is linear. We extend it to all vertices of G by defining $u<v$ if, and only if, one of the following conditions holds:

- $u, v \in A$ and $u<_{A} v$.
- $u \in A$ and $v \in B$.
- $u, v \in B, u \neq v$, and, if k is the minimal number such that, for some $x \in A$,

$$
(x, u) \in R_{k} \Leftrightarrow(x, v) \notin R_{k},
$$

and if $x \in A$ is the $<_{A}$-least element with this property, then $(x, u) \in R_{k}$ and $(x, v) \notin R_{k}$.

The technique employed in this proof will be used several times in this article. Given an already defined order on a set A, we can order the vertices not in A using the lexicographic ordering on their sets of neighbours in A.

Lemma 4.27. A class \mathcal{C} of complete bipartite graphs is MSO_{2}-orderable if, and only if, there exists a constant s such that

$$
K_{n, m} \in \mathcal{C} \text { with } n \leq m \quad \text { implies } \quad m \leq 2^{s(n+1)}
$$

Proof. (\Leftarrow) is a special case of Lemma 4.26,
(\Rightarrow) Suppose that \mathcal{C} is ordered by an MSO-formula $\varphi(x, y ; \bar{Z})$ with s set variables Z_{0}, \ldots, Z_{s-1}. We claim that there is no $K_{n, m} \in \mathcal{C}$ such that $m>2^{s(n+1)}$.

For a contradiction, suppose that there is such a graph $K_{n, m} \in \mathcal{C}$. Let \bar{P} be the parameters such that $\varphi(x, y ; \bar{P})$ orders $\left\lceil K_{n, m}\right\rceil$. We enumerate the two vertex sets of $K_{n, m}$ as a_{0}, \ldots, a_{n-1} and b_{0}, \ldots, b_{m-1}. Since $m>2^{s(n+1)}$ there is a subset $I \subseteq[m]$ of cardinality $|I|>2^{s(n+1)} / 2^{s}=2^{s n}$ such that

$$
b_{i} \in P_{l} \Leftrightarrow b_{j} \in P_{l} \quad \text { for all } i, j \in I \text { and all } l<s .
$$

Similarly, there is a subset $J \subseteq I$ of cardinality $|J|>2^{s n} / 2^{s n}=1$ such that

$$
\left(a_{k}, b_{i}\right) \in P_{l} \Leftrightarrow\left(a_{k}, b_{j}\right) \in P_{l} \quad \text { for all } i, j \in J \text { and all } l<s \text { and } k<n
$$

Hence, there are at least two indices $i<j$ in J. The mapping $\pi: K_{n, m} \rightarrow K_{n, m}$ that interchanges b_{i} and b_{j} and leaves every other vertex fixed is an automorphism of the structure $\left\langle\left\lceil K_{n, m}\right\rceil, \bar{P}\right\rangle$. Hence,

$$
\left\lceil K_{n, m}\right\rceil \models \varphi\left(b_{i}, b_{j} ; \bar{P}\right) \quad \Longleftrightarrow \quad\left\lceil K_{n, m}\right\rceil \models \varphi\left(b_{j}, b_{i} ; \bar{P}\right)
$$

and φ does not define an order on $K_{n, m}$. A contradiction.
Lemma 4.28. Let \mathcal{C} be a class of graphs of the form $K_{m_{0}, \ldots, m_{d-1}}$ where

$$
d>2 \quad \text { and } \quad m_{1}+\cdots+m_{d-1} \geq m_{0} \geq m_{1} \geq \cdots \geq m_{d-1} \geq 1
$$

Then \mathcal{C} is MSO_{2}-orderable.
Proof. Consider $K_{m_{0}, \ldots, m_{d-1}} \in \mathcal{C}$ with $m_{0} \geq \cdots \geq m_{d-1} \geq 1$. Let A_{0}, \ldots, A_{d-1} be the vertex sets of this graph and let $a_{0}^{k}, \ldots, a_{m_{k}-1}^{k}$ be an enumeration of A_{k}. Using the parameter

$$
R:=\left\{\left(a_{0}^{k}, a_{0}^{k+1}\right) \mid 0 \leq k<d-1\right\}
$$

we can define the preorder

$$
u \sqsubseteq v \quad: \Longleftrightarrow \quad u \in A_{i} \text { and } v \in A_{k} \text { for all } i \leq k
$$

As usual, we write

$$
\begin{array}{rll}
u \equiv v & : \Longleftrightarrow & u \sqsubseteq v \text { and } v \sqsubseteq u, \\
u \sqsubset v & : \Longleftrightarrow & u \sqsubseteq v \text { and } v \nsubseteq u .
\end{array}
$$

Using the parameter $S:=\left\{\left(a_{i}^{k}, a_{j}^{k+1}\right) \mid i \leq j\right\}$ and \sqsubseteq, we can define a linear order \leq_{B} on $B:=A_{1} \cup \cdots \cup A_{d-1}$ by setting $u \leq_{B} v$ if, and only if,

- $u \sqsubset v$ or
- $u \equiv v$ and, for all $x \sqsubset u,(x, u) \in S$ implies $(x, v) \in S$.

Hence, it remains to define a linear order \leq_{A} on A_{0}. Since $m_{0} \leq m_{1}+\cdots+m_{d-1}$, we can fix an enumeration b_{0}, \ldots, b_{n-1} of B and use the parameter $S_{0}:=\left\{\left(a_{i}^{0}, b_{j}\right) \mid i \leq j\right\}$ to define such an order.
Theorem 4.29. Let \mathcal{C} be a class of graphs that are all complete d-partite for some $d \in \mathbb{N}$. (We do not require the number d to be the same for every graph.) The following statements are equivalent:
(1) \mathcal{C} is MSO_{2}-orderable.
(2) There exists a constant s such that \mathcal{C} has property $\operatorname{SEP}(f)$ where $f(k)=2^{s(k+1)}$.
(3) There exists a constant s such that

$$
K_{m_{0}, \ldots, m_{d-1}} \in \mathcal{C} \quad \text { implies } \quad M \leq 2^{s(N-M+1)}
$$

where $M:=\max _{i<d} m_{i}$ and $N:=\sum_{i<d} m_{i}$.
Proof. (3) \Rightarrow (1) Consider $K_{m_{0}, \ldots, m_{d-1}} \in \mathcal{C}$ with $m_{0} \geq \cdots \geq m_{d-1} \geq 1$. We distinguish several cases.

- If $d \leq 2$, the claim follows by Lemma 4.26,
- If $d>2$ and $M \geq N-M$, we have $K_{N-M, M} \subseteq K_{m_{0}, \ldots, m_{d-1}}$ and the claim follows by Remark 3.6 and Lemma 4.26.
- If $d>2$ and $M<N-M$ the claim follows by Lemma 4.28,
$(1) \Rightarrow(3)$ Suppose that $\lceil\mathcal{C}\rceil$ is ordered by an MSO-formula $\varphi(x, y ; \bar{Z})$ with s set variables Z_{0}, \ldots, Z_{s-1}. We claim that there is no $K_{m_{0}, \ldots, m_{d-1}} \in \mathcal{C}$ with $M>2^{s(N-M)+s}$.

For a contradiction, suppose that there is such a graph $K_{m_{0}, \ldots, m_{d-1}} \in \mathcal{C}$. Let \bar{P} be parameters such that $\varphi(x, y ; \bar{P})$ orders $K_{m_{0}, \ldots, m_{d-1}}$. Let A be a vertex set of $K_{m_{0}, \ldots, m_{d-1}}$ of size M and let B be its complement. We enumerate A and B as a_{0}, \ldots, a_{M-1} and
b_{0}, \ldots, b_{N-M-1}, respectively. Since $M>2^{s(N-M)+s}$ there is a subset $I \subseteq[M]$ of cardinality $|I|>2^{s(N-M)+s} / 2^{s}=2^{s(N-M)}$ such that

$$
a_{i} \in P_{l} \Leftrightarrow a_{j} \in P_{l} \quad \text { for all } i, j \in I \text { and all } l<s
$$

Similarly, there is a subset $J \subseteq I$ of cardinality $|J|>2^{s(N-M)} / 2^{s(N-M)}=1$ such that

$$
\left(a_{i}, b_{k}\right) \in P_{l} \Leftrightarrow\left(a_{j}, b_{k}\right) \in P_{l} \quad \text { for all } i, j \in J, l<s, \text { and } k<N-M
$$

Hence, there are at least two different indices $i, j \in J$. The mapping $\pi: K_{m_{0}, \ldots, m_{d-1}} \rightarrow$ $K_{m_{0}, \ldots, m_{d-1}}$ that interchanges a_{i} and a_{j} and leaves every other vertex fixed is an automorphism of the structure $\left\langle\left\lceil K_{m_{0}, \ldots, m_{d-1}}\right\rceil, \bar{P}\right\rangle$. Hence,

$$
\left\lceil K_{m_{0}, \ldots, m_{d-1}}\right\rceil \models \varphi\left(a_{i}, a_{j} ; \bar{P}\right) \quad \Longleftrightarrow \quad\left\lceil K_{m_{0}, \ldots, m_{d-1}}\right\rceil \models \varphi\left(a_{j}, a_{i} ; \bar{P}\right)
$$

and φ does not define an order on $K_{m_{0}, \ldots, m_{d-1}}$. A contradiction.
$(3) \Rightarrow(2)$ Let $K_{m_{0}, \ldots, m_{d-1}}$ be a complete d-partite graph and set $M:=\max _{i<d} m_{i}$ and $N:=\sum_{i<d} m_{i}$. If $M \leq 2^{s(N-M+1)}$, then

$$
\begin{aligned}
\operatorname{Sep}\left(K_{m_{0}, \ldots, m_{d-1}}, k\right) & = \begin{cases}1 & \text { if } k<N-M \\
M & \text { if } k \geq N-M\end{cases} \\
& \leq \begin{cases}2^{s(k+1)} & \text { if } k<N-M \\
2^{s(N-M+1)} & \text { if } k \geq N-M\end{cases} \\
& \leq 2^{s(k+1)} .
\end{aligned}
$$

$(2) \Rightarrow(3)$ Suppose that \mathcal{C} has property $\operatorname{SEP}(f)$ where $f(k)=2^{s(k+1)}$. Note that

$$
\operatorname{Sep}\left(K_{m_{0}, \ldots, m_{d-1}}, k\right)= \begin{cases}1 & \text { if } k<N-M \\ M & \text { if } k \geq N-M\end{cases}
$$

where M and N are as above. It follows that

$$
M=\operatorname{Sep}\left(K_{m_{0}, \ldots, m_{d-1}}, N-M\right) \leq f(N-M)=2^{s(N-M+1)}
$$

As a corollary we obtain a special case of Conjecture 4.25 for classes of complete d-partite graphs.

Corollary 4.30. Let \mathcal{C} be a VR-equational class of complete d-partite graphs, for some fixed natural number $d>1$. Then \mathcal{C} is MSO_{2}-orderable if, and only if, it has property SEP. This property is decidable.

Proof. For every $d \in \mathbb{N}$, there is an MSO-formula $\varphi_{d}\left(X_{0}, \ldots, X_{d-1}\right)$ stating that X_{0}, \ldots, X_{d-1} are the vertex sets of a complete d-partite graph. By the Semi-Linearity Theorem, it follows that the set

$$
M_{d}:=\left\{\left(m_{0}, \ldots, m_{d-1}\right) \mid K_{m_{0}, \ldots, m_{d-1}} \in \mathcal{C}\right\}
$$

is semi-linear.
Suppose that \mathcal{C} has property SEP. By Example 4.2, it follows that, for every choice of m_{0}, \ldots, m_{d-2}, there are only finitely many m_{d-1} such that $K_{m_{0}, \ldots, m_{d-2}, m_{d-1}} \in \mathcal{C}$. Semilinearity of M_{d} therefore implies that there are numbers $a, b \in \mathbb{N}$ such that

$$
m_{d-1} \leq a\left(m_{0}+\cdots+m_{d-2}\right)+b, \quad \text { for all } K_{m_{0}, \ldots, m_{d-1}} \in \mathcal{C}
$$

By Theorem 4.29 it follows that \mathcal{C} is MSO_{2}-orderable.
4.5. Split graphs and chordal graphs. As the next step towards Conjecture 4.25, the case of a VR-equational class of cographs suggests itself, but, so far, we were unable to find a proof. (See Section 5.2 for the definition of a cograph. Note that Corollary 4.30 contains a solution for complete multi-partite graphs, which are a special kind of cographs.) Instead, we consider split graphs and, more generally, chordal graphs.

Definition 4.31. Let G be a graph.
(a) G is a split graph if there exists a partition of its vertex set into two parts A and B such that A induces a clique whereas B is independent, i.e., $G[B]$ contains no edges.
(b) Let F be a spanning forest of G with tree-order \preceq_{F}. We call F a perfect spanning forest if it is normal (cf. Section 4.2) and, for every vertex $v \in F$, the set of all neighbours u of v such that $u \prec_{F} v$ induces a clique in G.
(c) G is chordal if it has a perfect spanning forest.

Every split graph is chordal. There are many equivalent definitions of chordal graphs. See Proposition 2.72 of [7] for an overview and a proof of their equivalence.
Theorem 4.32. A class \mathcal{C} of split graphs is MSO_{2}-orderable if, and only if, there is some $s \in \mathbb{N}$ such that \mathcal{C} has property $\operatorname{SEP}(f)$ for the function f such that $f(n)=2^{s(n+1)}$.
Proof. (\Leftarrow) Given s, we construct an MSO_{2}-formula $\varphi(x, y ; \bar{Z})$ with $s+1$ parameters that orders every split graph G such that $\operatorname{Sep}(G, n) \leq 2^{s(n+1)}$, for all n. Let $G=\langle V, E\rangle$ be such a split graph and let $V=A \cup B$ be the partition of V into a clique A and an independent set B. We use one parameter P to define an order on A as follows. Fixing an enumeration a_{0}, \ldots, a_{n-1} of A we set

$$
P:=\left\{a_{0}\right\} \cup\left\{\left(a_{i}, a_{i+1}\right) \mid i<n-1\right\} .
$$

Then we can write down an MSO_{2}-formula $\psi(x, y ; P)$ stating that every path that connects the unique vertex in P to y and that only uses edges in P contains the vertex x. This defines a linear order \leq_{A} on A.

We use this order to define an order on B as follows. For $b \in B$ let

$$
N(b):=\{a \in A \mid(a, b) \in E\} .
$$

We first define a preorder \sqsubseteq on B by

$$
b \sqsubseteq b^{\prime} \quad: \Longleftrightarrow \quad N(b)=N\left(b^{\prime}\right) \text { or the } \leq_{A} \text {-least element of } N(b) \Delta N\left(b^{\prime}\right) \text { belongs to } N(b) .
$$

Since this preorder is linear, i.e., there are no incomparable elements, it is sufficient to define an order on each class of the equivalence relation associated with \sqsubseteq. Given $b \in B$, we fix an enumeration b_{0}, \ldots, b_{m-1} of all vertices $b_{i} \in B$ such that $N\left(b_{i}\right)=N(b)$ and a \leq_{A}-increasing enumeration a_{0}, \ldots, a_{n-1} of $N(b)$. Then

$$
m \leq \operatorname{Sep}(G, n) \leq 2^{s(n+1)}
$$

Choosing an injective function $\pi:[m] \rightarrow \mathcal{P}([s(n+1)])$, we set, for $k<s$,

$$
Q_{k}:=\left\{\left(b_{i}, a_{l}\right) \mid k(n+1)+l \in \pi(i)\right\} \cup\left\{b_{i} \mid k(n+1)+n \in \pi(i)\right\} .
$$

Using the parameters Q_{0}, \ldots, Q_{s-1}, we can order b_{0}, \ldots, b_{m-1} by

$$
b_{i}<_{B} b_{j} \quad: \Longleftrightarrow \quad \text { the least element of } \pi(i) \Delta \pi(j) \text { belongs to } \pi(i) .
$$

Finally, by combining \leq_{A}, \sqsubseteq, and $<_{B}$, we can define an order on all vertices of G.
(\Rightarrow) Suppose that a split graph $G=\langle V, E\rangle$ is ordered by a formula $\varphi(x, y ; \bar{P})$ with s parameters P_{0}, \ldots, P_{s-1}. We will prove that $\operatorname{Sep}(G, n) \leq 2^{(s+1)(n+1)}$. Let $V=A \cup B$
be the partition of V into a clique A and an independent set B. We start by showing that, for every $b \in B$, there are at most $2^{s(|N(b)|+1)}$ vertices $b^{\prime} \in B$ with $N\left(b^{\prime}\right)=N(b)$, where $N(b)$ is defined as above. Let b_{0}, \ldots, b_{m-1} be a list of distinct vertices of B such that $N\left(b_{0}\right)=\cdots=N\left(b_{m-1}\right)$. For a contradiction, suppose that $m>2^{s\left|N\left(b_{0}\right)\right|+s}$. Then there are indices $i<j$ such that

$$
\begin{array}{rlrl}
b_{i} \in P_{k} & \Longleftrightarrow b_{j} \in P_{k}, & \text { for all } k<s, \\
\left(b_{i}, a\right) \in P_{k} & \Longleftrightarrow\left(b_{j}, a\right) \in P_{k}, & & \text { for all } k<s \text { and } a \in N\left(b_{0}\right) .
\end{array}
$$

It follows that the mapping that interchanges b_{i} and b_{j} and that fixes every other vertex of $\langle G, \bar{P}\rangle$ is an automorphism. Hence,

$$
\lceil G\rceil \models \varphi\left(b_{i}, b_{j} ; \bar{P}\right) \quad \Longleftrightarrow \quad\lceil G\rceil \models \varphi\left(b_{j}, b_{i} ; \bar{P}\right),
$$

and φ does not define an order on G. A contradiction.
To compute $\operatorname{Sep}(G, n)$ consider a set $S \subseteq V$ of size $|S| \leq n$. We have seen above that, for every set $X \subseteq S \cap A$, there are at most $2^{s(|X|+1)}$ vertices $b \in B$ such that $N(b)=X$. Setting $k:=|S \cap A|$, it follows that there are at most $2^{k} \cdot 2^{s(k+1)}$ vertices $b \in B$ such that $N(b) \subseteq S \cap A$. Consequently, $G-S$ has at most

$$
1+2^{k} \cdot 2^{s(k+1)} \leq 2^{s k+s+k+1}=2^{(s+1)(k+1)} \leq 2^{(s+1)(n+1)}
$$

connected components and the claim follows.
Lemma 4.33. For every increasing and unbounded function $g: \mathbb{N} \rightarrow \mathbb{N}$ there exists a class of split graphs that is not MSO_{2}-orderable but has property $\operatorname{SEP}(f)$ for the function f such that $f(n):=2^{n g(n)}$.

Proof. For $k \in \mathbb{N}$, let $G_{k}:=K_{k} \otimes D_{2^{k g(k)}}$ where D_{n} denotes the graph with n vertices and no edges. We claim that $\mathcal{C}:=\left\{G_{k} \mid k \in \mathbb{N}\right\}$ has the desired properties. Note that

$$
\operatorname{Sep}\left(G_{k}, n\right) \leq \begin{cases}1 & \text { if } n<k \\ 2^{n g(n)} & \text { if } n \geq k\end{cases}
$$

Hence, \mathcal{C} has property SEP, but it does not have property $\operatorname{SEP}(f)$, for any function f such that $f(n)=2^{s(n+1)}$ for some $s \in \mathbb{N}$. By Theorem 4.32, it follows that \mathcal{C} is not MSO_{2} orderable.

Remark 4.34. The class in the preceding lemma is not VR-equational since it does not satisfy the Semi-Linearity Theorem. Hence, it does not provide a counterexample to Conjecture 4.25 .

It would be interesting to extend Theorem 4.32 to classes of chordal graphs. At this point, we are only able to present a sufficient condition for MSO_{2}-orderability. But there are examples showing that it is not necessary. We start with a technical lemma.

Lemma 4.35. Let F be a perfect spanning forest of a chordal graph G with tree-order \preceq_{F}. If $u \prec_{F} v \preceq_{F} w$ are vertices then

$$
(u, w) \in E \quad \text { implies } \quad(u, v) \in E .
$$

Proof. Let $x_{n} \prec_{F} \cdots \prec_{F} x_{0}$ be the path in F from $v=x_{n}$ to $w=x_{0}$. We show by induction on i, that $\left(u, x_{i}\right) \in E$. For $i=0$, there is nothing to do. Hence, suppose that $i>0$ and that we have already shown that $\left(u, x_{i-1}\right) \in E$. Then u and x_{i} are both neighbours of x_{i-1}. Since $u, x_{i} \prec_{F} x_{i-1}$, it follows by definition of a perfect spanning forest that $\left(u, x_{i}\right) \in E$.

Proposition 4.36. Let \mathcal{C} be a class of chordal graphs with property $\operatorname{SEP}(f)$ where $f(n)=$ $2^{s(n+1)}$, for some $s \in \mathbb{N}$. Then \mathcal{C} is MSO_{2}-orderable.
Proof. Let $G=\langle V, E\rangle$ be a chordal graph such that $\operatorname{Sep}(G, n) \leq 2^{s(n+1)}$. To order G, we fix a perfect spanning forest F of G. It is sufficient to define, for every vertex v, an order on the immediate successors of v in F. Then we can use the lexicographic ordering on F to order G. Fix a vertex v and let u_{0}, \ldots, u_{n-1} be the immediate successors of v in F. For $i<n$, we define

$$
B_{i}:=\left\{w \preceq_{F} v \mid\left(w, u_{i}\right) \in E\right\} .
$$

We start by showing that, for every set $B \subseteq V$, there are at most $2^{s(|B|+1)}$ indices i such that $B_{i}=B$. Given B, let I be the set of all $i<n$ such that $B_{i}=B$. By Lemma 4.35, it follows that, for every $i \in I$ and every edge $(x, y) \in E$ such that $x \prec_{F} u_{i} \preceq_{F} y$, we have $x \in B_{i}=B$. Hence,

$$
|I| \leq \operatorname{Sep}(G,|B|) \leq 2^{s(|B|+1)}
$$

as desired. As in the proof of Theorem 4.32, we can use $s+1$ parameters Q_{0}, \ldots, Q_{s} to colour the edges of the subgraphs $B_{i} \otimes u_{i}$ such a way that we can define the ordering

$$
u_{i}<u_{k} \quad \Longleftrightarrow \quad i<k, \quad \text { for } i, k \in I
$$

Consequently, we can order all immediate successors of v by

$$
\begin{aligned}
u_{i} \leq u_{k}: \Longleftrightarrow & B_{i}=B_{k} \text { and } i \leq k, \text { or } \\
& \text { the } \prec_{F} \text {-least element of } B_{i} \Delta B_{k} \text { belongs to } B_{i} .
\end{aligned}
$$

Corollary 4.37. Let \mathcal{C} be a $V R$-equational class of chordal graphs. The following statements are equivalent:
(1) \mathcal{C} is MSO_{2}-orderable.
(2) \mathcal{C} has property SEP.
(3) There are constants $r, s \in \mathbb{N}$ such that \mathcal{C} has property $\operatorname{SEP}(f)$ where f is the function such that $f(n)=r n+s$.
These properties are decidable.
Since we have already proved $(3) \Rightarrow(1)$ and $(1) \Rightarrow(2)$ in Proposition 4.36 and Corollary 4.5, only the implication $(2) \Rightarrow(3)$ remains to be proved. We leave this proof to the reader; it is similar to that of Corollary 4.30,

5. MSO_{1}-DEFINABLE ORDERS

After having studied MSO_{2}-orderability, we consider MSO_{1}-orderability. For classes that are r-sparse, for some r, MSO_{1} and MSO_{2} have the same expressive power (see Theorem 9.38 of [7]). For these classes we can therefore use the results of Section 4 For general classes, MSO_{1}-orderability turns out to be more difficult to characterise than MSO_{2}-orderability.
5.1. Necessary conditions. We will employ tools related to the notion of clique-width. Instead of using the exact operations defining clique-width (cf. Section 2.1), we introduce related ones that are more convenient in our context.

Definition 5.1. Let $k \in \mathbb{N}$ and $R \subseteq[k] \times[k]$.
(a) For undirected graphs G and H with ports in $[k]$, we construct the undirected graph $G \otimes_{R} H$ by adding to the disjoint union $G \oplus H$ all edges (x, y) such that

- either $x \in G$ and $y \in H$, or $x \in H$ and $y \in G$; and
- x has port label a and y has port label b, for some $(a, b) \in R$.

Similarly, we define $G \otimes_{R} H$ for graphs G and H with ports expanded by additional unary predicates (vertex colours) and constants.
(b) For a graph G with ports, we denote by $\operatorname{Del}(G)$ the graph obtained from G by deleting all port labels.

Remark 5.2. (a) The operation \otimes_{R} is associative and commutative with the empty graph as neutral element. Furthermore, $\otimes_{R}=\otimes_{R \cup R^{-1}}$.
(b) With only one port label, there are two operations of the form \otimes_{R} : the operations \oplus and \otimes used to build cographs (see Section 5.2 below).
(c) We have $\overline{G \otimes_{R} H}=\bar{G} \otimes_{R^{\prime}} \bar{H}$ where $R^{\prime}:=([k] \times[k]) \backslash R$ and \bar{G} denotes the edge complement of G.
(d) We can express \otimes_{R} as a combination of the operations defining clique-width in the following way:

$$
G \otimes_{R} H=\operatorname{relab}_{h_{-}}\left(\operatorname{add}_{a_{0}, b_{0}}\left(\cdots \operatorname{add}_{a_{n}, b_{n}}\left(G \oplus \operatorname{relab}_{h_{+}}(H)\right) \cdots\right)\right)
$$

for suitable functions $h_{+}:[k] \rightarrow[2 k]$ and $h_{-}:[2 k] \rightarrow[k]$ and port labels $a_{0}, b_{0}, \ldots, a_{n}, b_{n} \in$ $[2 k]$. (h_{+}is needed to make the port labels appearing in H distinct from those appearing in G.)

Remark 5.3. (a) As in Proposition 3.4(b), one can show that

$$
\mathcal{C} \otimes_{R} \mathcal{K}:=\left\{G \otimes_{R} H \mid G \in \mathcal{C}, H \in \mathcal{K}\right\}
$$

is MSO-orderable if, and only if, \mathcal{C} and \mathcal{K} are MSO-orderable.
(b) $\overline{\mathcal{C}}:=\{\bar{G} \mid G \in \mathcal{C}\}$ is MSO-orderable if, and only if, \mathcal{C} is MSO-orderable.

To give a necessary condition for MSO_{1}-orderability, we introduce a combinatorial property similar to SEP, but based on the operation \otimes_{R}.

Definition 5.4. Let G be a graph (without port labels) and $k \in \mathbb{N}$.
(a) We denote by $\operatorname{Cut}(G, k)$ the maximal number n such that there exist nonempty graphs H_{0}, \ldots, H_{n-1} with ports in $[k]$ and a relation $R \subseteq[k] \times[k]$ such that

$$
G \cong \operatorname{Del}\left(H_{0} \otimes_{R} \cdots \otimes_{R} H_{n-1}\right)
$$

(b) We say that a class \mathcal{C} of graphs has property $\operatorname{CUT}(f)$, for a function $f: \mathbb{N} \rightarrow \mathbb{N}$, if

$$
\operatorname{Cut}(G, k) \leq f(k), \quad \text { for all } G \in \mathcal{C} \text { and all } k \in \mathbb{N}
$$

We say that \mathcal{C} has property CUT, if it has property $\operatorname{CUT}(f)$, for some $f: \mathbb{N} \rightarrow \mathbb{N}$.
Remark 5.5. Note that $\operatorname{Cut}(G, k)=\operatorname{Cut}(\bar{G}, k)$.
For the proof that CUT is a necessary condition for MSO_{1}-orderability, we use the following technical lemma.

Lemma 5.6. Let $G, G^{\prime}, H, H^{\prime}$ be labelled graphs, $\bar{P}, \bar{P}^{\prime}, \bar{Q}, \bar{Q}^{\prime}$ tuples of sets of vertices of the respective graphs, and $\bar{a}, \bar{a}^{\prime}, \bar{b}, \bar{b}^{\prime}$ tuples of vertices. For each port label c, let $C_{c}, C_{c}^{\prime}, D_{c}, D_{c}^{\prime}$ be the sets of all vertices of, respectively, $G, G^{\prime}, H, H^{\prime}$ that have port label c. Then

$$
\begin{array}{ll}
& \operatorname{MTh}_{m}(\lfloor G\rfloor, \bar{P}, \bar{C}, \bar{a})=\operatorname{MTh}_{m}\left(\left\lfloor G^{\prime}\right\rfloor, \bar{P}^{\prime}, \bar{C}^{\prime}, \bar{a}^{\prime}\right) \\
\text { and } \quad & \operatorname{MTh}_{m}(\lfloor H\rfloor, \bar{Q}, \bar{D}, \bar{b})=\operatorname{MTh}_{m}\left(\left\lfloor H^{\prime}\right\rfloor, \bar{Q}^{\prime}, \bar{D}^{\prime}, \bar{b}^{\prime}\right)
\end{array}
$$

implies that

$$
\operatorname{MTh}_{m}\left(\left\lfloor G \otimes_{R} H\right\rfloor, \bar{S}, \bar{a} \bar{b}\right)=\operatorname{MTh}_{m}\left(\left\lfloor G^{\prime} \otimes_{R} H^{\prime}\right\rfloor, \bar{S}^{\prime}, \bar{a}^{\prime} \bar{b}^{\prime}\right),
$$

where $S_{i}:=P_{i} \cup Q_{i}$ and $S_{i}^{\prime}=P_{i}^{\prime} \cup Q_{i}^{\prime}$.
Proof. Let σ be a quantifier-free transduction that maps a structure \mathfrak{A} to its expansion $\langle\mathfrak{A}, I\rangle$ where $I:=A \times A$ is the equivalence relation on A with a single class. Given R, we can write down a quantifier-free transduction τ such that

$$
\left\langle\left\lfloor G \otimes_{R} H\right\rfloor, \bar{S}, \bar{a} \bar{b}\right\rangle=\tau(\sigma(\langle\lfloor G\rfloor, \bar{P}, \bar{C}, \bar{a}\rangle) \oplus \sigma(\langle\lfloor H\rfloor, \bar{Q}, \bar{D}, \bar{b}\rangle))
$$

and $\quad\left\langle\left\lfloor G^{\prime} \otimes_{R} H^{\prime}\right\rfloor, \bar{S}^{\prime}, \bar{a}^{\prime} \bar{b}^{\prime}\right\rangle=\tau\left(\sigma\left(\left\langle\left\lfloor G^{\prime}\right\rfloor, \bar{P}^{\prime}, \bar{C}^{\prime}, \bar{a}^{\prime}\right\rangle\right) \oplus \sigma\left(\left\langle\left\lfloor H^{\prime}\right\rfloor, \bar{Q}^{\prime}, \bar{D}^{\prime}, \bar{b}^{\prime}\right\rangle\right)\right)$.
This transduction uses the relation I to mark the two components of the disjoint union. The claim now follows from the Composition Theorem and the Backwards Translation Lemma. \square
Proposition 5.7. There exists a function $f: \mathbb{N}^{3} \rightarrow \mathbb{N}$ such that $\operatorname{Cut}(G, k) \leq f(n, m, k)$ for every graph G such that $\lfloor G\rfloor$ can be ordered by an MSO-formula of the form $\varphi(x, y ; \bar{P})$ where $\operatorname{qr}(\varphi) \leq m$ and $\bar{P}=\left\langle P_{0}, \ldots, P_{n-1}\right\rangle$ are parameters. Furthermore, the function $f(n, m, k)$ is effectively elementary in the argument k, that is, there exists a computable function g such that $f(n, m, k) \leq \exp _{g(n, m)}(k)$.
Proof. Fixing $k, m, n \in \mathbb{N}$, we choose for $f(n, m, k)$ an upper bound on the number of MSOtheories of the form

$$
\operatorname{MTh}_{m}\left(\lfloor H\rfloor, v, P_{0}, \ldots, P_{n-1}, Q_{0}, \ldots, Q_{k-1}\right)
$$

where H is a graph, v is a vertex of H and $P_{0}, \ldots, Q_{0}, \ldots$ are parameters. For fixed m, we can choose this bound to be elementary in k.

Let $\varphi(x, y ; \bar{Z})$ be an MSO-formula of quantifier-rank at most m, let G be a graph with $\operatorname{Cut}(G, k)>f(n, m, k)$, and let P_{0}, \ldots, P_{n-1} be parameters from G. We have to show that $\varphi(x, y ; \bar{P})$ does not order G. We choose graphs H_{0}, \ldots, H_{d-1} with $d=\operatorname{Cut}(G, k)$ and a relation $R \subseteq[k] \times[k]$ such that

$$
G=\operatorname{Del}\left(H_{0} \otimes_{R} \cdots \otimes_{R} H_{d-1}\right) .
$$

For $c<k$, let

$$
C_{c}:=\left\{x \in G \mid x \in H_{i}, \text { for some } i<d, \text { and } x \text { has port label } c \text { in } H_{i}\right\} .
$$

Since $d>f(n, m, k)$, there are indices $i<j$ such that

$$
\operatorname{MTh}_{m}\left(\left\lfloor H_{i}\right\rfloor, a_{i}, \bar{P} \upharpoonright H_{i}, \bar{C} \upharpoonright H_{i}\right)=\operatorname{MTh}_{m}\left(\left\lfloor H_{j}\right\rfloor, a_{j}, \bar{P} \upharpoonright H_{j}, \bar{C} \upharpoonright H_{j}\right) .
$$

As there exists a graph F such that

$$
\left\langle\lfloor G\rfloor, a_{i} a_{j}, \bar{P}, \bar{Q}\right\rangle=\left\langle\left\lfloor H_{i}\right\rfloor, a_{i}, \bar{P} \upharpoonright H_{i}, \bar{C} \upharpoonright H_{i}\right\rangle \otimes_{R}\left\langle\left\lfloor H_{j}\right\rfloor, a_{j}, \bar{P} \upharpoonright H_{j}, \bar{C} \upharpoonright H_{j}\right\rangle \otimes_{R} F
$$

and $\left\langle\lfloor G\rfloor, a_{j} a_{i}, \bar{P}, \bar{Q}\right\rangle=\left\langle\left\lfloor H_{j}\right\rfloor, a_{j}, \bar{P} \upharpoonright H_{j}, \bar{C} \upharpoonright H_{j}\right\rangle \otimes_{R}\left\langle\left\lfloor H_{i}\right\rfloor, a_{i}, \bar{P} \upharpoonright H_{i}, \bar{C} \upharpoonright H_{i}\right\rangle \otimes_{R} F$,
it follows by Lemma 5.6 that

$$
\operatorname{MTh}_{m}\left(\lfloor G\rfloor, a_{i} a_{j}, \bar{P}, \bar{C}\right)=\operatorname{MTh}_{m}\left(\lfloor G\rfloor, a_{j} a_{i}, \bar{P}, \bar{C}\right) .
$$

In particular, we have

$$
\lfloor G\rfloor \models \varphi\left(a_{i}, a_{j} ; \bar{P}\right) \quad \Longleftrightarrow \quad\lfloor G\rfloor \models \varphi\left(a_{j}, a_{i} ; \bar{P}\right) .
$$

Hence, $\varphi(x, y ; \bar{P})$ does not define an order on G.
Corollary 5.8. An MSO_{1}-orderable class of graphs \mathcal{C} has property $\operatorname{CUT}(f)$, for an elementary function f.

Example 5.9. The following classes are not MSO_{1}-orderable:

- the class of all cliques K_{n};
- the class of all complete bipartite graphs $K_{n, m}$;
- any class of graphs of the form $G \otimes\left(H_{0} \oplus \cdots \oplus H_{n}\right)$ where the number n is unbounded and each H_{i} is nonempty.
In each case, after fixing a number k of parameters, we can choose a graph G that is sufficiently large such that any colouring with k parameters P_{0}, \ldots, P_{k-1} admits a nontrivial automorphism. Hence, no formula can define an order on $\langle\lfloor G\rfloor, \bar{P}\rangle$.

As MSO_{1}-orderability implies MSO_{2}-orderability, we can expect that the property CUT implies SEP. The following lemma proves this fact.
Lemma 5.10. A class \mathcal{C} of graphs with property $\operatorname{CUT}(f)$ has property $\operatorname{SEP}(g)$ where g is the function such that $g(n):=f\left(n+2^{n}\right)-1$.
Proof. Let $G=\langle V, E\rangle \in \mathcal{C}$ and consider a set $S \subseteq V$ of size $|S| \leq n$. Let C_{0}, \ldots, C_{d-1} be an enumeration of the connected components of $G-S$. We claim that $d \leq g(n)$.

We define colourings $\varrho: S \rightarrow D$ and $\pi_{i}: C_{i} \rightarrow D$, for $i<d$, as follows. The set of colours is $D:=S \cup \mathcal{P}(S)$. (To be formally correct, we have to take the set $[k]$ where $k:=|S \cup \mathcal{P}(S)|$. To simplify notation, we will use $S \cup \mathcal{P}(S)$ instead.) We set

$$
\varrho(s):=s \quad \text { and } \quad \pi_{i}(v):=\{s \in S \mid(v, s) \in E\} .
$$

It follows that

$$
G=\operatorname{Del}\left(\langle S, \varrho\rangle \otimes_{R}\left\langle C_{0}, \pi_{0}\right\rangle \otimes_{R} \cdots \otimes_{R}\left\langle C_{d-1}, \pi_{d-1}\right\rangle\right),
$$

where

$$
R:=\{(s, X) \in S \times \mathcal{P}(S) \mid s \in X\} .
$$

Consequently, $\operatorname{Cut}(G,|D|) \geq d+1$. Since $|D| \leq n+2^{n}$, it follows that

$$
d+1 \leq \operatorname{Cut}\left(G, n+2^{n}\right) \leq f\left(n+2^{n}\right)=g(n)+1 .
$$

The converse obviously does not hold. A special case, where it does hold is the case of r-sparse graphs (cf. Definition 2.1). This case is of particular interest since, for r-sparse graphs, the expressive powers of MSO_{1} and MSO_{2} coincide (see Theorem 9.37 of [7]).
Lemma 5.11. The graph $K_{m, n}$ is r-sparse if, and only if, $r \geq \frac{m n}{m+n}$.
Proof. Every induced subgraph of $K_{m, n}$ is of the form $K_{m^{\prime}, n^{\prime}}$ with $m^{\prime} \leq m$ and $n^{\prime} \leq n$. Such a subgraph has $m^{\prime}+n^{\prime}$ vertices and $m^{\prime} n^{\prime}$ edges. The ratio is

$$
\frac{m^{\prime} n^{\prime}}{m^{\prime}+n^{\prime}}=\frac{1}{\frac{1}{m^{\prime}}+\frac{1}{n^{\prime}}} \leq \frac{1}{\frac{1}{m}+\frac{1}{n}}=\frac{m n}{m+n}
$$

Lemma 5.12. A class \mathcal{C} of r-sparse graphs with property $\operatorname{SEP}(f)$ has property CUT (g) where $g(k):=f\left(2 k^{2} r(2 r+1)\right)$.
Proof. Let $G \in \mathcal{C}$. Suppose that

$$
G=\operatorname{Del}\left(\left(H_{0}, \pi_{0}\right) \otimes_{R} \cdots \otimes_{R}\left(H_{d-1}, \pi_{d-1}\right)\right) \quad \text { where } R \subseteq[k] \times[k] .
$$

Without loss of generality, we may assume that R is symmetric. We have to show that $d \leq g(k)$.

Set $I_{a}:=\left\{i<d \mid \pi_{i}^{-1}(a) \neq \emptyset\right\}$. First, let us show that

$$
\left|I_{a}\right| \leq 2 r+1 \quad \text { or } \quad\left|I_{b}\right| \leq 2 r+1, \quad \text { for every }(a, b) \in R .
$$

For a contradiction, suppose that there is some $(a, b) \in R$ that $\left|I_{a}\right| \geq 2 r+2$ and $\left|I_{b}\right| \geq 2 r+2$. Choose subsets $I_{a}^{\prime} \subseteq I_{a}$ and $I_{b}^{\prime} \subseteq I_{b}$ of size $m:=2 r+2$ and select vertices $x_{i} \in \pi_{i}^{-1}(a)$, for $i \in I_{a}^{\prime}$, and $y_{i} \in \pi_{i}^{-1}(b)$, for $i \in I_{b}^{\prime}$. The subgraph induced by these vertices has $m^{2}-\left|I_{a} \cap I_{b}\right| \geq m^{2}-m$ edges and $2 m$ vertices. Since

$$
\frac{m^{2}-m}{2 m}=\frac{m-1}{2}=\frac{2 r+1}{2}>r,
$$

it follows that G is not r-sparse. A contradiction.
For $a, b \in[k]$, we set

$$
\begin{aligned}
S_{a b} & :=\bigcup\left\{\pi_{i}^{-1}(a)\left|i \in I_{a},\left|\pi_{i}^{-1}(a)\right| \leq 2 r\right\},\right. \\
S & :=\bigcup\left\{S_{a b}\left|(a, b) \in R,\left|I_{a}\right| \leq 2 r+1\right\} .\right.
\end{aligned}
$$

Note that

$$
\left|S_{a b}\right| \leq 2 r\left|I_{a}\right| \quad \text { and } \quad|S| \leq|R| \cdot(2 r+1) \cdot(2 r) \leq 2 k^{2} r(2 r+1) .
$$

We claim that every connected component of $G-S$ is contained in $H_{i}-S$, for some i. For a contradiction, suppose that there is a connected component C of $G-S$ containing vertices from both $H_{i}-S$ and $H_{j}-S$. Then there exists an edge (x, y) of G with $x \in H_{i}-S$ and $y \in H_{j}-S$. Let $a:=\pi_{i}(x)$ and $b:=\pi_{j}(y)$. Then $(a, b) \in R$. We have shown above that $\left|I_{a}\right| \leq 2 r+1$ or $\left|I_{b}\right| \leq 2 r+1$. In the first case, we have $x \in \pi_{i}^{-1}(a) \subseteq S_{a b} \subseteq S$, in the second case, we have $y \in \pi_{i}^{-1}(b) \subseteq S_{b a} \subseteq S$. Hence, both cases lead to a contradiction.

It follows that $G-S$ has at least d connected components. Consequently,

$$
d \leq \operatorname{Sep}(G,|S|) \leq \operatorname{Sep}\left(G, 2 k^{2} r(2 r+1)\right) \leq f\left(2 k^{2} r(2 r+1)\right)=g(k)
$$

5.2. Cographs. A well-known VR-equational class is the class of cographs. A cograph is a graph that can be constructed from single vertices using the operations of disjoint union \oplus and complete join \otimes. Each cograph can be denoted by a term over \oplus, \otimes, and a constant 1 that denotes an isolated vertex. For instance, $(1 \oplus 1) \otimes(1 \oplus 1 \oplus 1)$ denotes the graph $K_{2,3}$, and $1 \otimes 1 \otimes \cdots \otimes 1$ denotes a clique. Since \oplus and \otimes are associative and commutative, we consider them as operations of variable arity and we ignore the order of the arguments. The class \mathcal{C} of cographs is VR-equational. It can be defined by the equation

$$
\mathcal{C}=\mathcal{C} \oplus \mathcal{C} \cup \mathcal{C} \otimes \mathcal{C} \cup\{1\}
$$

A cograph G with more than one vertex is either disconnected and of the form $G=$ $H_{0} \oplus \cdots \oplus H_{n}$ for connected cographs H_{0}, \ldots, H_{n}, or it is connected and of the form $G=$ $H_{0} \otimes \cdots \otimes H_{n}$ for cographs H_{0}, \ldots, H_{n} each of which is either disconnected or a single vertex.

Furthermore, these decompositions of G are unique, up to the ordering of H_{0}, \ldots, H_{n}. Using this observation, we can associate with every cograph a unique term as follows.
Definition 5.13. A term t over the operations $\oplus, \otimes, 1$ (where we consider \oplus and \otimes as manyary operations with unordered arguments) is a cotree if there is no node that is labelled by the same operation as one of its immediate successors. Every cograph has a unique cotree. The depth of a cograph is the height of this cotree.
Example 5.14. The cograph G defined by the term

$$
(1 \otimes(1 \oplus(1 \oplus(1 \otimes 1)))) \otimes((1 \otimes(1 \otimes 1)) \oplus 1)
$$

has the cotree

The leaves of this tree correspond to the vertices of G and every subtree is the cotree of an induced subgraph of G.

Recall (see, e.g., [4]) that a module of a graph $G=\langle V, E\rangle$ is a set M of vertices such that every vertex in $V \backslash M$ is either adjacent to all elements of M, or to none of them. A module M is called strong if there is no module N such that $M \backslash N$ and $N \backslash M$ are both nonempty (cf. [18, 4, 12]). Clearly, being a module and being a strong module are expressible in MSO_{1}. In a cograph there are two types of strong modules: the connected and the disconnected ones.
Theorem 5.15. Let \mathcal{C} be a class of cographs. The following statements are equivalent.
(1) \mathcal{C} is MSO_{1}-orderable.
(2) \mathcal{C} has property CUT.
(3) There exists a constant $d \in \mathbb{N}$ such that the cotree of every graph in \mathcal{C} has outdegree at most d.
Proof. (3) $\Rightarrow(1)$ is Corollary 6.12 from [4] and $(1) \Rightarrow(2)$ was shown in Corollary 5.8,
For $(2) \Rightarrow(3)$, suppose that, for every $d \in \mathbb{N}$, there exists a graph $G_{d} \in \mathcal{C}$ with a cotree of maximal outdegree at least d. It is sufficient to show that $\operatorname{Cut}\left(G_{d}, 3\right)>d$.

By assumption, we can find a strong module A of G_{d} containing strong submodules B_{0}, \ldots, B_{n-1}, for $n>d$, such that either (i) $A=B_{0} \oplus \cdots \oplus B_{n-1}$, or (ii) $A=B_{0} \otimes \cdots \otimes B_{n-1}$. Let $C:=G-A$ be the graph induced by the complement of A. Every vertex $v \in C$ is either connected to all vertices of A, or to none of them. We assign the port label 0 to the former vertices and the port label 1 to the latter ones. Each vertex of A gets port label 2. It follows that

$$
G_{d}=C \otimes_{R} B_{0} \otimes_{R} \cdots \otimes B_{n-1}
$$

where $R=\{(0,2),(2,0)\}$ or $R=\{(0,2),(2,0),(2,2)\}$. Consequently, we have $\operatorname{Cut}\left(G_{d}, 3\right) \geq$ $n+1>d$.
Corollary 5.16. Let $k \in \mathbb{N}$. The class of cographs of depth at most k is hereditarily $\mathrm{MSO}_{1}-$ unorderable.
Proof. For any given depth k, there are only finitely many cographs (up to isomorphism) satisfying condition (3) of Theorem 5.15,

Corollary 5.17. For $V R$-equational classes of cographs, MSO_{1}-orderability is decidable.
Proof. Let \mathcal{C} be a VR-equational class of cographs. By Theorem 5.15, it is sufficient to decide whether there is a constant d such that every cotree of a graph in \mathcal{C} has maximal outdegree at most d. Let $\varphi(X)$ be an MSO_{1}-formula stating that there exists a strong module Z such that $X \subseteq Z$ and every strong module $Y \subset Z$ contains at most one element of X. Given a cograph G, it follows that the maximal outdegree of the cotree of G is equal to the maximal size of a set X satisfying φ in G. Using the Semi-Linearity Theorem, we can decide whether this size is bounded.

Remark 5.18. If a class \mathcal{C} of cographs is MSO_{1}-orderable, there exists an MSO-transduction mapping each graph in \mathcal{C} to its cotree (see [4]). But, conversely, the existence of such an MSO-transduction is not enough to ensure MSO_{1}-orderability: there exists an MSOtransduction from the class of all cographs of depth k to their respective cotrees (this is a routine construction). But, as we have just seen, this class is hereditarily MSO_{1}-unorderable.
5.3. \otimes-decompositions. Cographs are precisely the graphs of clique-width 2. A natural aim is thus to extend the equivalence (1) $\Leftrightarrow(2)$ of Theorem 5.15 to classes of graphs of bounded clique-width. However, we must leave this as a conjecture. Instead we only consider the special case of graphs where the height of the decomposition (as defined below) is bounded. Such graphs generalise cographs of bounded depth, and we show that they are hereditarily MSO_{1}-unorderable.

We start by introducing a kind of decomposition associated with the notion of cliquewidth.

Definition 5.19. Let $G=\langle V, E\rangle$ be a graph.
(a) A \otimes-decomposition of G of width k is a family $\left(H_{v}\right)_{v \in T}$ of labelled graphs $H_{v}=$ $\left\langle U_{v}, F_{v}, \pi_{v}\right\rangle$ with $\pi_{v}: U_{v} \rightarrow[k]$ such that

- the index set T is a rooted tree,
- $H_{\langle \rangle}=\left\langle V, E, \pi_{\langle \rangle}\right\rangle$, for some labelling $\pi_{\langle \rangle}$,
- $\left|U_{v}\right|=1$, for every leaf $v \in T$,
- for every internal node $v \in T$ with immediate successors u_{0}, \ldots, u_{d-1}, there is some $R_{v} \subseteq[k] \times[k]$ such that

$$
\operatorname{Del}\left(H_{v}\right)=\operatorname{Del}\left(H_{u_{0}} \otimes_{R_{v}} \cdots \otimes_{R_{v}} H_{u_{d-1}}\right)
$$

We call $\otimes_{R_{v}}$ the operation at v. Note that the port labels of H_{v} and $H_{u_{0}}, \ldots, H_{u_{d-1}}$ are unrelated. (Hence, the labelling $\pi_{\langle \rangle}$of the root is arbitrary. We have added it to keep the notation uniform.)
(b) A strong \otimes-decomposition of G is a \otimes-decomposition $\left(H_{v}\right)_{v \in T}$ such that, for each internal node $v \in T$ with immediate successors u_{0}, \ldots, u_{d-1}, there is some $R_{v} \subseteq[k] \times[k]$ and some function $\varrho:[k] \rightarrow[k]$ such that

$$
H_{v}=\operatorname{relab}_{\varrho}\left(H_{u_{0}} \otimes_{R_{v}} \cdots \otimes_{R_{v}} H_{u_{d-1}}\right)
$$

(c) The height of a \otimes-decomposition $\left(H_{v}\right)_{v \in T}$ is the height of the tree T.
(d) We define $\operatorname{wd}_{n}^{\otimes}(G)$ as the least number k such that G has a \otimes-decomposition of width at most k and height at most n. Similarly, we define $\operatorname{swd}_{n}^{\otimes}(G)$ as the least number k
such that G has a strong \otimes-decomposition of width at most k and height at most n. We call $\mathrm{wd}_{n}^{\otimes}(G)$ the n-depth \otimes-width of G and $\operatorname{swd}_{n}^{\otimes}(G)$ is its strong n-depth \otimes-width. 5

Remark 5.20. (a) For every graph G and all n, m such that $m<n$, we have

$$
\begin{aligned}
\operatorname{wd}_{n}^{\otimes}(G) & \leq \operatorname{swd}_{n}^{\otimes}(G) \leq|V|, \\
\operatorname{wd}_{n}^{\otimes}(G) & \leq \operatorname{wd}_{m}^{\otimes}(G), \\
\operatorname{swd}_{n}^{\otimes}(G) & \leq \operatorname{swd}_{m}^{\otimes}(G) .
\end{aligned}
$$

and
(b) Recall the definition of clique-width in Section [2.1] Since the operation \otimes_{R} can be expressed by the operations clique-width is based on, but by using twice as many port labels, it follows that the clique-width of a graph is at most twice its strong n-depth \otimes-width (for any n). Since, conversely, for sufficiently large n, the strong n-depth \otimes-width of a graph G is at most its clique-width, it follows that, for every graph G and all sufficiently large n,

$$
\operatorname{swd}_{n}^{\otimes}(G) \leq \operatorname{cwd}(G) \leq 2 \cdot \operatorname{swd}_{n}^{\otimes}(G)
$$

If we define $\operatorname{swd}^{\otimes}(G)$ as the minimal value of $\operatorname{swd}_{n}^{\otimes}(G)$ when n ranges over \mathbb{N}, we therefore obtain a nontrivial width measure that is equivalent to clique-width.
(c) Note that $\mathrm{wd}_{n}^{\otimes}(G) \leq 2$, for every graph G with n vertices. Hence, the width $\mathrm{wd}_{n}^{\otimes}(G)$ is only of interest if there is a bound on n.

Because of its relation to clique-width, the strong \otimes-width is of more interest than the \otimes-width (which becomes trivial for large depths). We have introduced the simpler notion of \otimes-width since, in the special case we consider, there exists a bound on the depth of \otimes decompositions. In this case we can use the following lemma to transform a bound on the \otimes-width of a class into a bound on its strong \otimes-width.

Lemma 5.21. For every graph G and every $n \in \mathbb{N}$,

$$
\operatorname{wd}_{n}^{\otimes}(G) \leq \operatorname{swd}_{n}^{\otimes}(G) \leq\left[\operatorname{wd}_{n}^{\otimes}(G)\right]^{n+1}
$$

Proof. The first inequality being trivial, we only prove the second one. Given a \otimes-decomposition $\left(H_{v}\right)_{v \in T}$ of G of height n and width $k:=\operatorname{wd}_{n}^{\otimes}(G)$, we construct a strong \otimes-decomposition $\left(H_{v}^{\prime}\right)_{v \in T}$ of G of the same height and width k^{n}. Consider $v \in T$ and let v_{0}, \ldots, v_{m} be the path in T from the root $\left\rangle=v_{0}\right.$ to $v=v_{m}$, where $m<n$. Suppose that $H_{v}=\left\langle U_{v}, F_{v}, \pi_{v}\right\rangle$. We set $H_{v}^{\prime}:=\left\langle U_{v}, F_{v}, \pi_{v}^{\prime}\right\rangle$ where

$$
\pi_{v}^{\prime}(x):=\left\langle\pi_{v_{0}}(x), \ldots, \pi_{v_{m}}(x)\right\rangle
$$

This labelling uses $1+k+k^{2}+\cdots+k^{n} \leq k^{n+1}$ port labels. Then

$$
H_{v}^{\prime}=\operatorname{relab}_{\varrho}\left(H_{u_{0}}^{\prime} \otimes_{R_{v}} \cdots \otimes_{R_{v}} H_{u_{d-1}}^{\prime}\right),
$$

where the function ϱ maps $\left\langle a_{0}, \ldots, a_{m}, a_{m+1}\right\rangle$ to $\left\langle a_{0}, \ldots, a_{m}\right\rangle$.

[^4]Lemma 5.22. Let G be a graph and $\left(H_{v}\right)_{v \in T} a \otimes$-decomposition of G of width at most k. Every vertex of T has less than $\operatorname{Cut}\left(G, k+2^{k}\right)$ immediate successors.

Proof. Suppose that $H_{v}=\left\langle U_{v}, F_{v}, \pi_{v}\right\rangle$. Let $v \in T$ be a vertex with immediate successors u_{0}, \ldots, u_{m-1}. Hence,

$$
H_{v}=H_{u_{0}} \otimes_{R} \cdots \otimes_{R} H_{u_{m-1}},
$$

where \otimes_{R} is the operation at v. Let $C:=G-H_{v}$, i.e., the subgraph induced by the complement of the set of vertices of H_{v}. We claim that

$$
G=C \otimes_{R^{\prime}} H_{u_{0}} \otimes_{R^{\prime}} \cdots \otimes_{R^{\prime}} H_{u_{m-1}}
$$

for a suitable labelling $\varrho: C \rightarrow\left[k+2^{k}\right]$ of C and a suitable relation $R^{\prime} \subseteq\left[k+2^{k}\right] \times\left[k+2^{k}\right]$. This implies that $m+1 \leq \operatorname{Cut}\left(G, k+2^{k}\right)$, as desired.

It remains to define ϱ and R^{\prime}. Fix a bijection $\pi_{0}: \mathcal{P}([k]) \rightarrow\left[2^{k}\right]$ and set $\pi(B):=$ $\pi_{0}(B)+k$, for $B \subseteq[k]$. Defining

$$
\varrho(x):=\pi\left(\left\{\pi_{v}(y) \mid y \in U_{v},(x, y) \in E\right\}\right), \quad \text { for } x \in C
$$

and $\quad R^{\prime}:=R \cup\{(a, \pi(B)) \mid a \in[k], B \subseteq[k], a \in B\}$,
we obtain $G=C \otimes_{R^{\prime}} H_{u_{0}} \otimes_{R^{\prime}} \cdots \otimes_{R^{\prime}} H_{u_{m-1}}$.
We obtain the following characterisation of MSO_{1}-orderable classes of bounded n-depth \otimes-width.

Theorem 5.23. Let \mathcal{C} be a class of graphs such that, for some $n, k \in \mathbb{N}$,

$$
\operatorname{wd}_{n}^{\otimes}(G) \leq k, \quad \text { for all } G \in \mathcal{C}
$$

The following statements are equivalent:
(1) \mathcal{C} is MSO_{1}-orderable.
(2) \mathcal{C} has property CUT.
(3) There is a constant $d \in \mathbb{N}$ such that every $G \in \mathcal{C}$ has $a \otimes$-decomposition $\left(H_{v}\right)_{v \in T}$ of height at most n and width at most k where every vertex of T has outdegree at most d. (4) \mathcal{C} is finite.

Proof. (4) $\Rightarrow(1)$ is trivial and $(1) \Rightarrow(2)$ follows from Corollary 5.8
$(2) \Rightarrow(3)$ Suppose that \mathcal{C} has property CUT (f). Let $G \in \mathcal{C}$ and let $\left(H_{v}\right)_{v \in T}$ be a \otimes decomposition of G of height at most n and width at most k. Then it follows by Lemma5.22 that every vertex of T has less than $d:=f\left(k+2^{k}\right)$ immediate successors.
(3) \Rightarrow (4) Since every tree of height at most n and maximal outdegree at most d has at most $1+(d-1)+(d-1)^{2}+\cdots+(d-1)^{n-1}<d^{n}$ vertices, it follows that every graph in \mathcal{C} has at most that many elements.

We obtain the following extension of Corollary 5.16.
Corollary 5.24. For every $n, k \in \mathbb{N}$, the class of all graphs of n-depth \otimes-width at most k is hereditarily MSO_{1}-unorderable.

6. Reductions between difficult cases

In this section we consider classes of graphs for which the question of orderability is as hard as in the general case.

Definition 6.1. Let $G=\langle V, E\rangle$ be a graph.
(a) The incidence graph of G is the graph $\operatorname{Inc}(G):=\langle V \cup E, I, P\rangle$ where the edge relation $I:=\operatorname{inc} \cup \mathrm{inc}^{-1}=\{(x, y) \mid x$ is an end-vertex of y or y is an end-vertex of $x\}$
is the symmetric version of the incidence relation and $P:=V$ is a unary relation identifying the vertices of G.
(b) The incidence split graph of G is the graph $\operatorname{IS}(G):=\langle V \cup E, J\rangle$ where

$$
J:=I \cup\{(x, y) \in V \times V \mid x \neq y\}
$$

and I is the symmetric incidence relation from (a). Note that $\operatorname{IS}(G)$ is a split graph.
(c) For a class of graphs \mathcal{C}, we set

$$
\operatorname{Inc}(\mathcal{C}):=\{\operatorname{Inc}(G) \mid G \in \mathcal{C}\} \quad \text { and } \quad \operatorname{IS}(\mathcal{C}):=\{\operatorname{IS}(G) \mid G \in \mathcal{C}\}
$$

The proposition below suggests that obtaining a characterisation of MSO_{1}-orderability for classes of split graphs is as hard as obtaining one of MSO_{2}-orderability for arbitrary classes of graphs. We start with a technical lemma.
Lemma 6.2. Let \mathcal{C} be a class of graphs.
(a) \mathcal{C} has property SEP if, and only if, $\operatorname{Inc}(\mathcal{C})$ has property SEP.
(b) $\operatorname{Inc}(\mathcal{C})$ has property CUT if, and only if, IS(C) has property CUT.

Proof. (a) (\Leftarrow) Suppose that $\operatorname{Inc}(\mathcal{C})$ has property $\operatorname{SEP}(f)$, for some $f: \mathbb{N} \rightarrow \mathbb{N}$. We claim that \mathcal{C} also has property $\operatorname{SEP}(f)$. Let $G=\langle V, E\rangle$ be a graph in \mathcal{C}. To compute $\operatorname{Sep}(G, k)$ consider a set $S \subseteq V$ of cardinality $|S| \leq k$. Let C_{0}, \ldots, C_{m-1} be the connected components of $G-S$. Then the connected components of $\operatorname{Inc}(G)-S$ are $C_{0}^{\prime}, \ldots, C_{m-1}^{\prime}, e_{0}, \ldots, e_{n-1}$ where e_{0}, \ldots, e_{n-1} is an enumeration of the edges of $G[S]$ and C_{i}^{\prime} is the induced subgraph of $\operatorname{Inc}(G)$ that is obtained from $\operatorname{Inc}\left(C_{i}\right)$ by adding (as vertices) all edges of G connecting a vertex in S to some vertex of C_{i}. It follows that

$$
\operatorname{Sep}(G, k) \leq \operatorname{Sep}(\operatorname{Inc}(G), k) \leq f(k)
$$

(\Rightarrow) Suppose that \mathcal{C} has property $\operatorname{SEP}(f)$, for some $f: \mathbb{N} \rightarrow \mathbb{N}$. Let $G=\langle V, E\rangle$ be a graph in \mathcal{C} with $\operatorname{Inc}(G)=\langle V \cup E, I, P\rangle$. To compute $\operatorname{Sep}(\operatorname{Inc}(G), k)$ we consider a set $S \subseteq V \cup E$ of size $|S| \leq k$. For each edge $e \in S \cap E$, we select one end-vertex. Let X be the set of these end-vertices and set $S^{\prime}:=(S \backslash E) \cup X$. Then $\operatorname{Inc}(G)-S^{\prime}$ has at least as many connected components as $\operatorname{Inc}(G)-S$. Since $S^{\prime} \subseteq V$ it follows by what we have seen above that $\operatorname{Inc}(G)-S^{\prime}$ has at most $m+\binom{k}{2}$ connected components, where m is the number of connected components of $G-S^{\prime}$. Consequently,

$$
\operatorname{Sep}(\operatorname{Inc}(G), k) \leq \operatorname{Sep}(G, k)+\frac{k}{2}(k-1)
$$

It follows that $\operatorname{Inc}(\mathcal{C})$ has property $\operatorname{SEP}\left(f^{\prime}\right)$ for the function f^{\prime} such that $f^{\prime}(k)=f(k)+$ $\frac{k}{2}(k-1)$.
(b) (\Rightarrow) Suppose that $\operatorname{Inc}(\mathcal{C})$ has property CUT (f), for some $f: \mathbb{N} \rightarrow \mathbb{N}$. Let $\operatorname{Inc}(G)=$ $\langle V \cup E, I, P\rangle$ be a $\operatorname{graph} \operatorname{in} \operatorname{Inc}(\mathcal{C})$ and let $\operatorname{IS}(G)=\langle V \cup E, J\rangle$. To compute $\operatorname{Cut}(\operatorname{IS}(G), k)$
suppose that

$$
\operatorname{IS}(G)=\operatorname{Del}\left(H_{0} \otimes_{R} \cdots \otimes_{R} H_{m-1}\right)
$$

for k-labelled graphs H_{0}, \ldots, H_{m-1} and a relation $R \subseteq[k] \times[k]$. Suppose that $H_{i}=\left\langle U_{i}, J_{i}\right\rangle$, for $i<m$, and let π_{i} be the labelling of H_{i}. We set $H_{i}^{\prime}:=\left\langle U_{i}, I_{i}, P_{i}\right\rangle$ where $I_{i}:=J_{i} \backslash(V \times V)$ and $P_{i}:=U_{i} \cap V$. We label H_{i}^{\prime} by

$$
\pi_{i}^{\prime}(v):= \begin{cases}\pi_{i}(v) & \text { if } v \notin V \\ \pi_{i}(v)+k & \text { if } v \in V\end{cases}
$$

Then $\operatorname{Inc}(G)=\operatorname{Del}\left(H_{0}^{\prime} \otimes_{R^{\prime}} \cdots \otimes_{R^{\prime}} H_{m-1}^{\prime}\right)$, where

$$
R^{\prime}:=\{(x, y),(x+k, y),(x, y+k) \mid(x, y) \in R\} .
$$

Consequently, $\operatorname{Cut}(\operatorname{IS}(G), k) \leq \operatorname{Cut}(\operatorname{Inc}(G), 2 k) \leq f(2 k)$.
(\Leftarrow) Suppose that $\operatorname{IS}(\mathcal{C})$ has property $\operatorname{CUT}(f)$, for some $f: \mathbb{N} \rightarrow \mathbb{N}$. Let $\operatorname{Inc}(G)=$ $\langle V \cup E, I, P\rangle$ be a graph in $\operatorname{Inc}(\mathcal{C})$ and let $\operatorname{IS}(G)=\langle V \cup E, J\rangle$. To compute $\operatorname{Cut}(\operatorname{Inc}(G), k)$ suppose that

$$
\operatorname{Inc}(G)=\operatorname{Del}\left(H_{0} \otimes_{R} \cdots \otimes_{R} H_{m-1}\right),
$$

for k-labelled graphs H_{0}, \ldots, H_{m-1} and a relation $R \subseteq[k] \times[k]$. Suppose that $H_{i}=$ $\left\langle U_{i}, I_{i}, P_{i}\right\rangle$, for $i<m$, and let π_{i} be the labelling of H_{i}. We define the graph $H_{i}^{\prime}:=\left\langle U_{i}, J_{i}\right\rangle$ where $J_{i}:=I_{i} \cup\left\{(x, y) \mid x, y \in P_{i}, x \neq y\right\}$ with labelling

$$
\pi_{i}^{\prime}(v):= \begin{cases}\pi_{i}(v) & \text { if } v \in V \\ \pi_{i}(v)+k & \text { if } v \notin V\end{cases}
$$

Then $\operatorname{IS}(G)=\operatorname{Del}\left(H_{0}^{\prime} \otimes_{R^{\prime}} \cdots \otimes_{R^{\prime}} H_{m-1}^{\prime}\right)$, where

$$
R^{\prime}:=([k] \times[k]) \cup\{(x, y),(x+k, y),(x, y+k),(x+k, y+k) \mid(x, y) \in R\} .
$$

Consequently, $\operatorname{Cut}(\operatorname{Inc}(G), k) \leq \operatorname{Cut}(\operatorname{IS}(G), 2 k) \leq f(2 k)$.
Proposition 6.3. Let \mathcal{C} be a class of graphs.
(a) \mathcal{C} is MSO_{2}-orderable if, and only if, $\mathrm{IS}(\mathcal{C})$ is MSO_{1}-orderable.
(b) \mathcal{C} has property SEP if, and only if, $\operatorname{IS}(\mathcal{C})$ has property CUT.

Proof. (a) is a routine construction. (b) follows by the preceding lemma since $\operatorname{Inc}(\mathcal{C})$ is 2 -sparse and, by Lemmas 5.10 and 5.12, such a class has property SEP if, and only if, it has property CUT.
Corollary 6.4. Let \mathcal{P} be a graph property such that a class of split graphs is MSO_{1}-orderable if, and only if, it has properties CUT and \mathcal{P}. Then a class of arbitrary graphs is $\mathrm{MSO}_{2}{ }^{-}$ orderable if, and only if, it has properties SEP and $\mathrm{IS}^{-1}(\mathcal{P})$.

Remark 6.5. (a) Characterising MSO_{2}-orderable classes therefore amounts to characterising MSO_{1}-orderable classes of split graphs contained in the image of the function IS.
(b) If \mathcal{C} is a class of graphs with property SEP that is not MSO_{2}-orderable, then $\operatorname{IS}(\mathcal{C})$ is a class of split graphs with property CUT that is not MSO_{1}-orderable.

We also present a lemma suggesting that finding a characterisation of MSO_{1}-orderability for classes of bipartite graphs is as hard as finding a characterisation of MSO_{1}-orderability for arbitrary classes of graphs. We leave the proof - which is similar to the one above - to the reader.

Definition 6.6. For a graph $G=\langle V, E\rangle$ we define

$$
\operatorname{BP}(G):=\left\langle V \times[4], E^{\prime}\right\rangle
$$

where

$$
\begin{aligned}
E^{\prime}: & =\{((x, 0),(y, 3)) \mid(x, y) \in E\} \\
& \cup\{((x, i),(x, i+1)) \mid x \in V, 0 \leq i<3\} .
\end{aligned}
$$

For classes \mathcal{C} of graphs, we define $\operatorname{BP}(\mathcal{C}):=\{\operatorname{BP}(G) \mid G \in \mathcal{C}\}$ as usual.
Lemma 6.7. Let \mathcal{C} be a class of graphs.
(a) \mathcal{C} is MSO_{1}-orderable if, and only if, $\mathrm{BP}(\mathcal{C})$ is MSO_{1}-orderable.
(b) \mathcal{C} has property CUT if, and only if, $\mathrm{BP}(\mathcal{C})$ has property CUT.

7. Conclusion

For arbitrary classes of graphs, it is difficult to obtain necessary and sufficient conditions for MSO_{i}-orderability, as there are many different ways to construct MSO-definable orderings depending on many different structural properties of the considered graphs. General conditions should thus cover simultaneously a large number of possibilities. It is therefore necessary to consider particular graph classes. We have obtained necessary and sufficient conditions in Theorems $4.13,4.29,4.32$, and 5.15 with corresponding decidability results for the VR-equational classes of graphs.

Concerning future work, we think that the following questions should be fruitfully investigated:
(a) Does Conjecture 4.25 hold? We have already proved several special cases and more cases seem to be within reach. It remains to be seen whether the full conjecture can be solved.
(b) Which condition must be added to the property SEP to yield a necessary and sufficient condition for MSO_{2}-orderability of a class of cographs? And more generally, for graph classes of bounded clique-width?
(c) What could be an extension of Theorem 5.15, say, for classes of 'bounded strong \otimes-width'?
(d) Which operations do preserve MSO_{i}-orderability? Candidates include the operations defining tree-width or clique-width, graph substitutions, and monadic second-order transductions. We presented a few simple results in Proposition 3.4 and Remark 5.3, but it should not be too hard to develop a more comprehensive theory.

References

[1] A. Blumensath, T. Colcombet, and C. Löding, Logical theories and compatible operations, in Logic and Automata: History and Perspectives, J. Flum, E. Grädel, and T. Wilke, eds., Amsterdam University Press, 2007, pp. 73-106.
[2] A. Blumensath and B. Courcelle, On the monadic second-order transduction hierarchy, Logical Methods in Computer Science, 6 (2010).
[3] B. Courcelle, The monadic second-order logic of graphs VIII: Orientations, Annals of Pure and Applied Logic, 72 (1995), pp. 103-143.
[4] -, The monadic second-order logic of graphs X: Linear Orderings, Theoretical Computer Science, 160 (1996), pp. 87-143.
[5] —_, The monadic second-order logic of graphs XII: Planar graphs and planar maps, Theoretical Computer Science, 237 (2000), pp. 1-32.
[6] - The monadic second-order logic of graphs XIV: Uniformly sparse graphs and edge set quantifications, Theoretical Computer Science, 299 (2003), pp. 1-36.
[7] B. Courcelle and J. Engelfriet, Graph structure and monadic second-order logic, Cambridge University Press, 2012.
[8] B. Courcelle, J. Engelfriet, and G. Rozenberg, Handle-rewriting hypergraph grammars, Journal of Computer and System Science, 46 (1993), pp. 218-270.
[9] B. Courcelle and S. Olariu, Upper bounds to the clique-width of graphs, Discrete Applied Mathematics, 101 (2000), pp. 77-114.
[10] R. Diestel, Graph theory, Springer, 4th ed., 2010.
[11] H.-D. Ebbinghaus and J. Flum, Finite model theory, Springer Verlag, 1995.
[12] A. Ehrenfeucht, T. Harju, and G. Rozenberg, The theory of 2-structures, a framework for decompositions and transformations of graphs, World Scientific, 1999.
[13] R. Ganian, P. Hlinený, J. Nesetril, J. Obdrzálek, P. Ossona de Mendez, and R. Ramadurai, When trees grow low: shrubs and fast MSO_{1}, in Mathematical Foundations of Computer Science, LNCS 7464, 2012, pp. 419-430.
[14] M. Grohe, Descriptive complexity, canonisation, and definable graph structure theory, monograph, to appear.
[15] ——, Fixed-point definability and polynomial time on graphs with excluded minors, in Proc. 25th IEEE Symp. on Logic in Computer Science, LICS, 2010, pp. 179-188.
[16] N. Immerman, Descriptive complexity, Springer-Verlag, 1999.
[17] J. A. Makowsky, Algorithmic aspects of the Feferman-Vaught Theorem, Annals of Pure and Applied Logic, 126 (2004), pp. 159-213.
[18] R. Möhring and F. Radermacher, Substitution decomposition for discrete structures and connections with combinatorial optimization, Annals of Discrete Mathematics, 19 (1984), pp. 257-355.

[^0]: 2012 ACM CCS: [Mathematics of computing]: Discrete mathematics-Graph theory-Hypergraphs; [Theory of computation]: Logic-Finite Model Theory.

 Key words and phrases: Monadic second-order logic, Definability, Linear orders.
 ${ }^{a}$ Work partially supported by DFG grant BL 1127/2-1.

[^1]: ${ }^{1}$ Yet another example is the construction of (a combinatorial description of) a plane embedding of a connected planar graph. Such embeddings are definable in MSO if we can order the neighbours of each vertex (see [5]). For 3-connected graphs such an ordering is always definable, but for graphs that are not 3 -connected this is not always the case.

[^2]: ${ }^{2}$ In 7] such graphs are called uniformly r-sparse.
 ${ }^{3}$ For a detailed discussion of concrete graphs versus graphs defined up to isomorphism, see Section 2.2 of $\mathbf{7}$

[^3]: ${ }^{4}$ There is also counting monadic second-order logic (CMSO) which extends MSO by set predicates of the form $\operatorname{Card}_{q}(X)$ expressing that the cardinality of X is a multiple of q. Although our results are stated and proved for MSO, they also hold for CMSO: the technical core of our proofs is the composition theorem which holds for CMSO as well. We currently do not have an example of a class of structures that is CMSO-orderable but not MSO-orderable, but it seems likely that such classes do exist.

[^4]: ${ }^{5}$ Recently a closely related notion, called shrub-depth, was introduced in 13. Its exact relation to strong n-depth \otimes-width remains to be investigated.

