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Abstract. We study the question of whether, for a given class of finite graphs, one
can define, for each graph of the class, a linear ordering in monadic second-order logic,
possibly with the help of monadic parameters. We consider two variants of monadic
second-order logic: one where we can only quantify over sets of vertices and one where we
can also quantify over sets of edges. For several special cases, we present combinatorial
characterisations of when such a linear ordering is definable. In some cases, for instance
for graph classes that omit a fixed graph as a minor, the presented conditions are necessary
and sufficient; in other cases, they are only necessary. Other graph classes we consider
include complete bipartite graphs, split graphs, chordal graphs, and cographs. We prove
that orderability is decidable for the so called HR-equational classes of graphs, which are
described by equation systems and generalize the context-free languages.

1. Introduction

When studying the expressive power of monadic second-order logic (MSO) for finite graphs,
often the question arises of whether one can define a linear order on the vertex set. For
instance, the property that a set has even cardinality cannot, in general, be expressed in
MSO. If, however, the considered set is linearly ordered, we can write down a corresponding
MSO-formula. The same holds for every predicate Cardq(X) expressing that the cardinality
of the set X is a multiple of q. It follows that the extension of MSO by the predicates
Cardq(X), called counting monadic second-order logic (CMSO), is no more powerful than
MSO on every class of structures on which a linear order is MSO-definable.

Another example of a situation where the availability of a linear order facilitates cer-
tain logical constructions is the definability of graph decompositions such as the modular
decomposition of a graph. It is shown in [4] that the modular decomposition of a graph is
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definable in MSO if the graph is equipped with a linear order. Finally,1 although we will not
address complexity questions in this article, we recall that, over linearly ordered structures,
the complexity class PTIME is captured by least fixed-point logic [11, 16].

A formula ϕ(x, y) with two free first-order variables x and y defines a (linear) order on
a relational structure A if the binary relation consisting of all pairs (a, b) of elements of A
satisfying A |= ϕ(a, b) is a linear order on A. We say that ϕ(x, y) defines an order on a
class of structures if it defines a linear order on each structure of that class. Our objective
is to provide combinatorial characterisations of classes of finite graphs whose representing
structures are MSO-orderable, i.e., on which one can define an order by an MSO-formula.
(The question of whether a partial order is definable is trivial since equality is a partial order.
Therefore, we only consider linear orders in this article.)

As defined above the notion of an MSO-orderable class is too restrictive. To get in-
teresting results, we allow in the above definitions formulae with parameters. That is, we
take a formula ϕ(x, y; Z̄) with additional free set variables Z̄ = 〈Z0, . . . , Zn−1〉 and, for each
structure A in the given class, we choose values P0, . . . , Pn−1 ⊆ A for these variables such
that the binary relation

{ (a, b) | A |= ϕ(a, b; P̄ ) }

is a linear order on A.
There is no MSO-formula (even with parameters) that defines a linear order on all finite

graphs. An easy way to see this is to observe that every ordered structure is rigid, i.e.,
that it has no non-trivial automorphism. Since we can find graphs that are not rigid, even
after labelling them with a fixed number of parameters, it follows that no formula can order
all graphs. The same argument shows that the following classes of finite graphs are not
MSO-orderable: (1) graphs without edges; (2) cliques; (3) stars; (4) trees of a fixed height;
and (5) bipartite graphs. On the other hand, to take an easy example, the class of all finite
connected graphs of degree at most d (for fixed d) is MSO-orderable.

If graphs are replaced by their incidence graphs, MSO-formulae become more powerful,
because they can use quantifications over sets of edges. In this case we speak of MSO2-
orderable classes. Otherwise, we call the class MSO1-orderable. Due to the greater expressive
power, the family of MSO2-orderable classes properly includes that of MSO1-orderable ones.
This means that, in the combinatorial characterisations presented below, the conditions for
MSO1-orderability must be stronger than those for MSO2-orderability. For instance, the
class of all cliques is MSO2-orderable but not MSO1-orderable.

There are simple combinatorial criteria showing that a class is not MSO-orderable. For
instance, a class of trees is not MSO-orderable if the degree of vertices is unbounded. The
reason is that an MSO-formula can only distinguish between a bounded number of neigh-
bours of a vertex. If the number of neighbours is too large, we can swap two of the attached
subtrees without affecting the truth value of the formula. Generalising this example, we
obtain the following criterion for MSO2-orderability: if a class C is MSO2-orderable, there
exists a function f such that, whenever we remove k vertices from a graph in C, the resulting
graph has at most f(k) connected components (Proposition 4.4).

1Yet another example is the construction of (a combinatorial description of) a plane embedding of a
connected planar graph. Such embeddings are definable in MSO if we can order the neighbours of each
vertex (see [5]). For 3-connected graphs such an ordering is always definable, but for graphs that are not
3-connected this is not always the case.
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In many cases, it turns out that this necessary condition is also sufficient. For instance,
we will prove in Theorem 4.13 below that a class of graphs omitting some graph as a minor
is MSO2-orderable if, and only if, it has the above property.

This article is organised as follows. Sections 2 and 3 introduce notation and basic defin-
itions. The main part consists of Sections 4 and 5, which collect our results on, respectively,
MSO2-orderability and MSO1-orderability.

For MSO2-orderability, we present a necessary condition in Section 4.1. We prove that
this condition is also sufficient for trees (Theorem 4.8) and, more generally, for classes
of graphs omitting some graph as a minor (Theorem 4.13). For some classes of bipartite
graphs and of split graphs, we obtain a similar result, using a slightly stronger combinatorial
condition (Theorems 4.29 and 4.32). Furthermore, we prove that some classes are not MSO2-
orderable in a very strong sense: they contain no infinite subclass that is MSO2-orderable.
This is the case for trees of bounded height (Corollary 4.9) and graphs of bounded n-depth
tree-width (Proposition 4.15). Finally, we also prove that, for certain effectively presented
classes of graphs, MSO2-orderability is decidable (Corollary 4.23).

For MSO1-orderability the picture we obtain is slightly more sketchy. We present a
necessary condition for MSO1-orderability in Section 5.1. We prove that it is also sufficient
for cographs (Theorem 5.15) and graphs of bounded n-depth ⊗-width (Theorem 5.23).

Finally, we consider reductions between orderability properties in Section 6. We show
that, for split graphs and bipartite graphs, the question of MSOi-orderability is as hard as for
arbitrary graphs. This indicates that we are far from having a combinatorial characterisation
of orderability for such classes.

2. Preliminaries

Let us fix our notation and terminology. We write [n] := {0, . . . , n − 1}, for n ∈ N. We
denote tuples ā = 〈a0, . . . , an−1〉 with a bar. The empty tuple is 〈〉. We write A ∆ B for
the symmetric difference of two sets A and B. We denote partial orders by symbols like
≤ and �, and the corresponding strict partial orders by < and ≺, respectively.

2.1. Structures and graphs. In this article we consider only purely relational structures
A = 〈A,RA

0 , . . . , R
A
n−1〉 with finite signatures Σ = {R0, . . . , Rn−1}. The universe A will

always be finite, and we allow it to be empty as this convention is common in graph theory.
In some places we will also allow relational structures with constants, but when doing so
we will always mention it explicitly. For a relation R and a set X, we write R ↾ X for the
restriction of R to X. For a tuple R̄ of relations, we denote by R̄ ↾ X the corresponding
tuple of restrictions.

We will mainly consider graphs instead of arbitrary relational structures. For basic
notions of graph theory, we refer the reader to the book [10]. In this article, graphs will
always be finite, simple, loop-free, and undirected, with the exception of rooted trees and
forests, which we consider to be oriented (see below). We will denote the edge between
vertices u and v by (u, v). Note that the same edge can also be written as (v, u). There are
two ways to represent a graph G = 〈V,E〉 by a structure. Both of them will be used. We
can use structures of the form ⌊G⌋ := 〈V, edg〉 where the universe V consists of the set of
vertices and we have a binary edge relation edg ⊆ V × V , or we can use structures of the
form ⌈G⌉ := 〈V ∪E, inc〉 where the universe contains both, the vertices and the (undirected)
edges of the graph and we have a binary incidence relation inc ⊆ V × E telling us which
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vertices belong to which edges. If C is a class of graphs, we denote the corresponding classes
of relational structures by ⌊C⌋ and ⌈C⌉, respectively.

Forests will always be rooted and directed in such a way that every edge is oriented
away from the root. The tree-order associated with a forest F is the partial order defined
by

x �F y :⇐⇒ some path from a root to y contains x .

If x ≺ y, we call x a predecessor of y and y a successor of x. We speak of immediate
predecessors and immediate successors if there is no vertex in between. The n-th level of a
forest F consists of all vertices at distance n from some root. Hence, the roots form level 0.
The height of F is the maximal level of its vertices.

Definition 2.1. A graph G = 〈V,E〉 is r-sparse2 if, for every subset X ⊆ V , we have∣∣E ↾ X
∣∣ ≤ r · |X|. ♦

We denote by A ⊕ B the disjoint union of the structures A and B. For structures
⌊G⌋ and ⌊H⌋ encoding graphs, we also use a dual operation ⌊G⌋ ⊗ ⌊H⌋ that, after forming
the disjoint union of ⌊G⌋ and ⌊H⌋, adds all possible edges connecting a vertex of G to a
vertex of H. For a set S ⊆ A of elements, we write A[S] for the substructure of A induced
by S and A−S for A[A−S]. We use the analogous notation G[S] and G−S, for graphs G.

We assume that the reader is familiar with the notion of a tree decomposition and the
tree-width of a graph (see, e.g., [10, 7]). At a few places, we will refer to a variant of tree-
width, called n-depth tree-width, that was introduced in [2]. It is defined in terms of tree
decompositions where the height of the index tree is at most n.

Finally, we will employ tools related to the notion of clique-width, which is defined for
graphs with ports in a finite set [k], that is, graphs G = 〈V,E, π〉 equipped with a function
π : V → [k]. We say that a vertex a ∈ V has port label a if π(v) = a. The notion of
clique-width is defined in terms of the following operations on graphs3 with ports:

• for each a ∈ [k], a constant a denoting the graph with a single vertex that has port label a;
• the disjoint union ⊕ of two graphs with ports;
• the edge addition operation adda,b, for a, b ∈ [k], adding all edges between some vertex

with port label a and some vertex with port label b that do not already exist;
• the port relabelling operation relabh, for h : [k] → [k], changing each port label a to the

port label h(a).

Each term using these operations defines a graph with ports in [k]. The clique-width of a
graph G = 〈V,E〉 is the least number k such that, for some function π : V → [k], there
exists a term denoting 〈G,π〉 (for details cf. [7, 8, 9]). We denote the clique width of G by
cwd(G).

2In [7] such graphs are called uniformly r-sparse.
3For a detailed discussion of concrete graphs versus graphs defined up to isomorphism, see Section 2.2

of [7]
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2.2. Monadic second-order logic. Monadic second-order logic (MSO)4 is the extension
of first-order logic by set variables and quantifiers over such variables. The quantifier-rank
qr(ϕ) of an MSO-formula ϕ is the maximal number of nested quantifiers in ϕ, where we
count both, first-order and second-order quantifiers. The monadic second-order theory of
quantifier rank h of a structure A is the set of all MSO-formulae of quantifier rank h satisfied
by A. We denote it by MThh(A). Frequently, we are interested not in the theory of the
structure A itself, but in the theory of an expansion 〈A, P̄ , ā〉 by unary predicates P̄ and
constants ā. In this case we write MThh(A, P̄ , ā) omitting the brackets. Note that such
situations are the only ones in which we allow constants in structures.

Let us remark that, for a fixed signature and a given maximal quantifier-rank, there
are only finitely many formulae up to logical equivalence. Furthermore, we can effectively
compute an upper bound on the number of classes and there exists an effective normal form
for formulae. However, since equivalence of formulae is undecidable, this normal form does
not represent logical equivalence. Hence, some equivalence classes contain several formulae
in normal form. Details can be found, e.g., in Section 5.6 of [7]. In particular, it follows
that, for every h ∈ N, there are only finitely many theories of quantifier-rank h and we can
represent each such theory by the finite set of formulae in normal form it contains. A detailed
calculation shows that the number of such theories is roughly exph(n) where

exp0(n) := n and expk+1(n) := 2expk(n)

and the number n only depends on the signature, but not on the quantifier-rank h. Recall
that a function f : N → N is elementary if it is bounded from above by a function of the
form expk, for some fixed k ∈ N. Furthermore, it follows that we can construct, for each
theory Θ of quantifier-rank h, a single formula χΘ that is equivalent to it, i.e., such that

A |= χΘ ⇐⇒ MThh(A) = Θ .

In fact, χΘ is just the conjunction of all formulae in normal form contained in Θ. For this
reason we will also denote it by

∧
Θ.

Let ϕ(x̄, Ȳ ; Z̄) be an MSO-formula with free first-order variables x̄ and free second-order
variables Ȳ , Z̄. Given a structure A and sets Pi ⊆ A, we can assign the values P̄ to the
variables Z̄. This way we obtain a formula ϕ(x̄, Ȳ ; P̄ ) with partially assigned variables. The
values P̄ are called the parameters of this formula. The relation defined by a formula ϕ(x̄; P̄ )
in a structure A is the set

ϕ(x̄; P̄ )A := { ā | A |= ϕ(ā; P̄ ) } .

One important tool to compute monadic theories is the so-called Composition Theorem
(see, e.g, [17, 1, 7]), which allows one to compute the theory of a structure composed from
smaller parts from the theories of these parts. There are several variants of the Composition
Theorem. We will employ the following version.

Definition 2.2. Let A0, . . . ,Am−1 be structures and let āi = 〈ai0, . . . , a
i
n−1〉 ∈ An

i be n-

tuples, for i < m. The amalgamation of the structures Ai over the parameters āi is the
structure 〈A′, ā′〉 obtained from the disjoint union A0 ⊕ · · · ⊕ Am−1 by, for every k < n,

4There is also counting monadic second-order logic (CMSO) which extends MSO by set predicates of the
form Cardq(X) expressing that the cardinality of X is a multiple of q. Although our results are stated and
proved for MSO, they also hold for CMSO: the technical core of our proofs is the composition theorem which
holds for CMSO as well. We currently do not have an example of a class of structures that is CMSO-orderable
but not MSO-orderable, but it seems likely that such classes do exist.
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merging the elements a0k, . . . , a
m−1
k into a single element a′k. The tuple ā′ = 〈a′0, . . . , a

′
n−1〉

consists of the elements resulting from the merging. ♦

Theorem 2.3 (Composition Theorem). Let A0, . . . ,Am−1 be structures and, for i < m,

let āi ∈ An
i be n-tuples and c̄i ∈ Ali

i li-tuples. Let 〈A′, ā′〉 be the amalgamation of the
structures Ai over āi. Then

MThh(A
′, ā′c̄0 . . . c̄m−1)

is uniquely determined by the theories

MThh(A0, ā0c̄0), . . . ,MThh(Am−1, ām−1c̄m−1) .

Furthermore, the function mapping these theories to the theory of the amalgamation is com-
putable.

Since disjoint unions are particular amalgamations, we obtain the following corollary.

Corollary 2.4. There exists an computable function mapping MThh(A) and MThh(B) to
MThh(A⊕B).

2.3. Transductions. The notion of a monadic second-order transduction provides a ver-
satile framework to define transformations of structures. To simplify the definition we first
introduce three particular types of transductions and we obtain MSO-transductions as com-
positions of these.

Definition 2.5. (a) Let k ≥ 2 be a natural number. The operation copyk maps a structure A
to the expansion

copyk(A) := 〈A⊕ · · · ⊕ A,∼, P0, . . . , Pk−1〉

of the disjoint union of k copies of A by the following relations. Denoting the copy of an
element a ∈ A in the i-th component of A⊕ · · · ⊕ A by the pair 〈a, i〉, we define

Pi := { 〈a, i〉 | a ∈ A } and 〈a, i〉 ∼ 〈b, j〉 :⇐⇒ a = b .

For k = 1, we set copy1(A) := A.
(b) For m ∈ N, we define the multi-valued operation expm that maps a structure A to

all of its possible expansions by m unary predicates Q0, . . . , Qm−1 ⊆ A. Note that exp0 is
just the identity.

(c) A basic MSO-transduction is a partial operation τ on relational structures described
by a list

〈
χ, δ(x), ϕ0(x̄), . . . , ϕs−1(x̄)

〉

of MSO-formulae called the definition scheme of τ . Given a structure A that satisfies the
sentence χ, the operation τ produces the structure

τ(A) := 〈D,R0, . . . , Rs−1〉

where

D := { a ∈ A | A |= δ(a) } and Ri := { ā ∈ D̺i | A |= ϕi(ā) } .

(̺i is the arity of Ri.) If A 6|= χ then τ(A) is undefined.
(d) A quantifier-free transduction is a basic MSO-transduction, where all formulae in

the definition scheme are quantifier free.
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(e) A k-copying MSO-transduction τ is a (multi-valued) operation on relational struc-
tures of the form τ0 ◦ copyk ◦ expm where τ0 is a basic MSO-transduction. When the value
of k does not matter, we will simply speak of a transduction.

Due to expm, a structure can be mapped to several structures by τ . Consequently, we
define τ(A) as the set of possible values (τ0 ◦ copyk)(A, P̄ ) where P̄ ranges over all m-tuples
of subsets of A.

(f) An MSO-transduction τ is domain-preserving if, it is 1-copying and, for every struc-
ture A such that τ(A) is defined, the image τ(A) has the same universe as A. ♦

Remark 2.6. (a) The expansion by m unary predicates corresponds, in the terminology of
[3, 6], to using m parameters.

(b) Note that every basic MSO-transduction is a 1-copying MSO-transduction without
parameters. ♦

The most important property of MSO-transductions is the fact that they are compatible
with MSO-theories in the following sense (see, e.g., Theorem 5.10 of [7]).

Lemma 2.7 (Backwards Translation). Let τ be a transduction. For every MSO-sentence ϕ,
there exists an MSO-sentence ϕτ such that, for all structures A,

A |= ϕτ ⇐⇒ B |= ϕ for some B ∈ τ(A) .

Furthermore, if τ is quantifier-free, then the quantifier-rank of ϕτ is no larger than that of ϕ.

Corollary 2.8. Let τ be a quantifier-free transduction and A and B structures.

MThh(A) = MThh(B) implies MThh(τ(A)) = MThh(τ(B)) .

2.4. Equational classes and the Semi-Linearity Theorem. We can use monadic second-
order transductions to define two important families of graph classes: the HR-equational and
the VR-equational classes of graphs.

The family VR of VR-equational graph classes consists of all classes C such that ⌊C⌋ is
the image of the class T of all trees under a monadic second-order transduction. Similarly,
the family HR of HR-equational graph classes consists of all classes C such that ⌈C⌉ is the
image of T under a monadic second-order transduction.

Both families can alternatively be defined using systems of equations in a corresponding
graph algebra: the VR-equational classes are the solutions of systems of equations over
the VR-algebra of graphs, i.e., the graph algebra whose operations define clique-width, and
the HR-equational classes are the solutions of systems of equations over the HR-algebra of
graphs, i.e., the graph algebra whose operations define tree-width. We recall that every
HR-equational class (of simple graphs) is VR-equational.

VR-equationality and HR-equationality are two possible generalisations of the notion of
a context-free language to graphs. In light of the alternative definition in terms of systems
of equations it is not surprising that there is a close connection between VR-equationality
and clique-width and between HR-equationality and tree-width. Every class in VR has
bounded clique-width, while classes in HR have bounded tree-width. Conversely, every
MSO1-definable class of graphs of bounded clique-width is VR-equational and every MSO2-
definable class of graphs of bounded tree-width is HR-equational. However, some VR-equa-
tional or HR-equational classes are not of this form. This corresponds to the fact that some
context-free languages are not regular.
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There is a third characterisation of VR and HR in terms of graph grammars. VR-
equational classes can be generated by vertex replacement grammars, while HR-equational
classes can be generated by hyperedge replacement grammars. We refer the reader to the
book [7] for details. In the present article, we will only consider such classes specified, as
defined above, as images of trees under transductions. Note that the definition scheme of a
class C provides a finite representation of C. Consequently, we can process VR-equational
and HR-equational classes by algorithms and we can state decision problems in a meaningful
way.

One important property of a VR-equational class C is the fact that the spectrum of every
MSO-definable set predicate inside C is semi-linear. Recall that a set S ⊆ N

n is semi-linear
if it is a finite union of sets of the form

P = { k̄ + i0p̄0 + · · ·+ im−1p̄m−1 | i0, . . . , im−1 ∈ N } ,

for fixed tuples k̄, p̄0, . . . , p̄m−1 ∈ N
n.

The following result is Theorem 7.42 of [7] (the fact that one can compute a represent-
ation of the semi-linear set is not stated explicitly in [7], but it follows from the proof since
all of its steps are effective).

Theorem 2.9 (Semi-Linearity Theorem). Let C be a VR-equational class of graphs and let
ϕ(X0, . . . ,Xn−1) be an MSO-formula. The set

Mϕ(C) :=
{
(|P0|, . . . , |Pn−1|)

∣∣ ⌊G⌋ |= ϕ(P̄ ) for some G = 〈V,E〉 ∈ C

and P0, . . . , Pn−1 ⊆ V
}

is semi-linear, and a finite representation of this set can be computed from ϕ and a repres-
entation of C.

3. Definable orders

For simplicity, we will use the term order for linear orders. When considering non-linear
partial orders, we will explicitly speak of partial orders.

Definition 3.1. Let Σ be a relational signature and C a class of Σ-structures.
(a) An MSO-formula ϕ(x, y; Z̄) defines an order on C if, for every non-empty structure

A ∈ C, there are sets P0, . . . , Pn−1 ⊆ A such that the formula ϕ(x, y; P̄ ) defines an order
on A.

(b) The class C is MSO-orderable if there is an MSO-formula ϕ defining an order on C.
(c) A class C of graphs MSO1-orderable if the class ⌊C⌋ is MSO-orderable, and we call

it MSO2-orderable if ⌈C⌉ is MSO-orderable. ♦

Remark 3.2. (a) For orderability by a formula ϕ(x, y; Z̄), we only require that there are
some parameters P̄ such that ϕ(x, y; P̄ ) defines an order. We do not care about the behaviour
of ϕ for other values of the parameters. We could require the formula ϕ(x, y; P̄ ′) to be always
false for such parameters P̄ ′. This is no loss of generality, as we can replace ϕ(x, y; Z̄) by
the formula

ϕ(x, y; Z̄) ∧ ordϕ(Z̄) ,
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where the formula

ordϕ(Z̄) := ∀x∀y[ϕ(x, y; Z̄) ∧ ϕ(y, x; Z̄) ↔ x = y]

∧ ∀x∀y∀z[ϕ(x, y; Z̄) ∧ ϕ(y, z; Z̄) → ϕ(x, z; Z̄)]

states that the relation defined by ϕ with parameters Z̄ is an order.
(b) For every MSO-formula ϕ(x, y; Z̄) there exists a largest class Cϕ of Σ-structures

that is ordered by ϕ. This class can be defined by ∃Z̄ ordϕ(Z̄). Fixing an enumeration
ϕ0(x, y; Z̄), . . . , ϕn−1(x, y; Z̄) of all MSO-formulae of quantifier-rank m with k parameters
Z0, . . . , Zk−1, we obtain the class Cm,k of all Σ-structures ordered by some of these formulae.
It is defined by ∃Z̄

∨
i<n ordϕi

(Z̄). This class can be ordered by the formula

ψm,k(x, y; Z̄) :=
∨

i<n

[∧

j<i

¬ordϕj
(Z̄) ∧ ordϕi

(Z̄) ∧ ϕi(x, y; Z̄)
]
.

It follows that any MSO-orderable class C can be ordered by ψm,k for sufficiently large
m and k. ♦

Remark 3.3. By definition, a class is MSO2-orderable if, in each graph G = 〈V,E〉, we can
define a order on the set V ∪E. This is in fact equivalent to requiring just an order on the
set V of vertices since, for simple graphs, any such order induces one on V ∪E. For instance,
we can require that every vertex is smaller than all edges, and that an edge (u, v) is smaller
than an edge (u′, v′) (orienting these pairs such that u < v and u′ < v′) if either u < u′, or
u = u′ and v < v′. ♦

Proposition 3.4. Let C and K be non-empty classes of Σ-structures.

(a) C ∪ K is MSO-orderable if, and only if, C and K are MSO-orderable.
(b) C ⊕ K := {A ⊕ B | A ∈ C, B ∈ K } is MSO-orderable if, and only if, C and K are

MSO-orderable.

Proof. (a) Clearly, if ϕ defines an order on C ∪ K, it also defines orders on C and on K.
Conversely, let ϕ(x, y; Z̄) and ψ(x, y; Z̄ ′) be MSO-formulae defining an order on, respectively,
C and K. Let ordϕ(Z̄) be the formula (of quantifier-rank qr(ϕ)+3) from Remark 3.2 stating
that the relation defined by ϕ with parameters Z̄ is an order. Then we can order C ∪ K by
the formula

ϑ(x, y; Z̄, Z̄ ′) := [ordϕ(Z̄) ∧ ϕ(x, y; Z̄)] ∨ [¬ordϕ(Z̄) ∧ ψ(x, y; Z̄
′)] .

(b) First, suppose that C and K are ordered by the formulae ϕ(x, y; Z̄) and ψ(x, y; Z̄ ′),
respectively. We order C ⊕ K as follows. Consider A ⊕ B ∈ C ⊕ K and let P̄ and Q̄ be
the parameters used by ϕ and ψ to order A and B, respectively. Using the set B as one
additional parameter, we can define the order

x ≤ y :⇐⇒ x, y ∈ A and A |= ϕ(x, y; P̄ )

or x, y ∈ B and B |= ψ(x, y; Q̄)

or x ∈ A and y ∈ B .

Conversely, suppose that there is a formula ϕ(x, y; Z̄) ordering C ⊕ K. We construct
a formula ψ(x, y; Z̄) ordering C. (The orderability of K follows by symmetry.) By the
Composition Theorem, there exist finite lists p0, . . . , pm−1, q0, . . . , qm−1, and s0, . . . , sn−1,
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t0, . . . , tn−1 of MSO-theories of quantifier-rank h := qr(ϕ) and h+3 = qr(ordϕ), respectively,
such that, for all A ∈ C, B ∈ K, P̄ in A⊕B, and a, b ∈ A,

A⊕B |= ϕ(a, b; P̄ ) ⇐⇒ MThh(A, P̄ ↾ A, a, b) = pi and

MThh(B, P̄ ↾ B) = qi , for some i < m ,

and A⊕B |= ordϕ(P̄ ) ⇐⇒ MThh+3(A, P̄ ↾ A) = si and

MThh+3(B, P̄ ↾ B) = ti , for some i < n .

We fix a structure B0 ∈ K and set

I := { i < n | B0 |= ∃Z̄
∧
ti(Z̄) } .

For each i ∈ I, we choose parameters Q̄i in B0 such that MThh+3(B0, Q̄i) = ti, and we set

Ji := { j < m | MThh(B0, Q̄i) = qj } .

We claim that the formula

ψ(x, y; Z̄) :=
∨

i∈I

[∧

k∈I
k<i

¬ϑk(Z̄) ∧ ϑi(Z̄) ∧
∨

j∈Ji

χj(x, y; Z̄))
]

orders C where ϑi(Z̄) :=
∧
si and χi(x, y; Z̄) :=

∧
pi. Let A ∈ C and let l ∈ I be the minimal

index such that A |= ∃Z̄ϑl(Z̄). We choose sets P̄ in A such that MThh+3(A, P̄ ) = sl. By
choice of sl and tl it follows that ϕ(x, y; P̄ ∪ Q̄l) orders A⊕B0. (P̄ ∪ Q̄l denotes the tuple
where each component is the union of the corresponding components of P̄ and Q̄l.) For
a, b ∈ A, it further follows that

A |= ψ(a, b; P̄ ) ⇐⇒ there is some i ∈ I such that

MThh+3(A, P̄ ) = si ,

MThh+3(A, P̄ ) 6= sk , for all k < i , and

MThh(A, P̄ , a, b) = pj , for some j ∈ Ji ,

⇐⇒ MThh(A, P̄ , a, b) = pj , for some j ∈ Jl ,

⇐⇒ there is some j < m such that

MThh(A, P̄ , a, b) = pj and MThh(B0, Q̄l) = qj

⇐⇒ A⊕B0 |= ϕ(a, b; P̄ ∪ Q̄l) .

Hence, ψ(x, y; P̄ ) orders A.

Remark 3.5. Every class consisting of a single (finite) structure is obviously MSO-orderable.
By Proposition 3.4, it follows that all finite classes are MSO-orderable. ♦

Remark 3.6. Let C be a class of graphs and let ϕ(x, y; Z̄) be an MSO-formula defining an
order on ⌈C⌉. Let C+ be the class of all graphs obtained from graphs in C by adding edges
arbitrarily. Then ⌈C+⌉ can be ordered by the formula ϕ+(x, y; Z̄, Z

′) obtained from ϕ(x, y; Z̄)
by replacing every atomic formula of the form inc(u, v) by the formula inc(u, v) ∧ v ∈ Z ′,
and by relativising every quantifier to the set Z ′. (If P̄ are parameters such that ϕ(x, y; P̄ )
orders the graph G = 〈V,E〉, then ϕ+(x, y; P̄ , V ∪E) orders every supergraph G+ = 〈V,E+〉
such that E+ ⊇ E.) ♦
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Remark 3.7. Definition 3.1 can be formulated in terms of monadic second-order transduc-
tions. A class C of Σ-structures is MSO-orderable if, and only if, there exists a noncopying,
domain-preserving transduction σ mapping each structure A ∈ C to an expansion 〈A,≤〉 by
a linear order ≤. Moreover it is easy to write down a transduction τ mapping any ordered
structure 〈A,≤〉 to a path that connects all elements of A. Consequently, if C is infinite (up
to isomorphism) and MSO-orderable, we obtain an MSO-transduction τ ◦ σ mapping C to
the class of all finite paths. This implies that, in the transduction hierarchy (cf. [2]), the
class C lies above the class of all paths. ♦

The opposite of an orderable class is a class of which no infinite subclass can be ordered.
We call such classes hereditarily unorderable.

Definition 3.8. A class C of structures is hereditarily MSO-unorderable, if it is infinite
and no infinite subclass of C is MSO-orderable. For classes of graphs, we define the terms
hereditarily MSO1-unorderable and hereditarily MSO2-unorderable analogously. ♦

Example 3.9. (a) The class C = {Kn | n ∈ N, n > 0 } of cliques is MSO2-orderable and
hereditarily MSO1-unorderable. To order Kn, we can choose a set of edges P forming a
Hamiltonian path in Kn. Let Q be a singleton set consisting of one end-point of this path.
Then we can use P and Q to define a linear order on Kn.

Without using MSO2-parameters, such a definition is not possible. For each fixed num-
ber k of parameters and all sufficiently large n, every expansion of Kn by k parameters
P0, . . . , Pk−1 admits a nontrivial automorphism. Consequently, no formula can define a
linear order on 〈Kn, P̄ 〉.

(b) The class Tn of trees of height at most n is both, hereditarily MSO1-unorderable
and hereditarily MSO2-unorderable. This follows from Theorem 4.8 below. ♦

4. MSO2-definable orderings

In this section we derive characterisations for MSO2-orderable classes. MSO1-orderability
will be considered in Section 5.

4.1. Necessary conditions. We start by providing a necessary condition for MSO2-order-
ability. Below we will then show that, for certain classes of graphs, this condition is also
sufficient.

Definition 4.1. Let A = 〈A, R̄〉 be a relational structure.
(a) We call A connected if it cannot be written as a disjoint union A = B⊕ C of two

nonempty substructures. A connected component of A is a maximal substructure that is
connected and nonempty.

(b) For a number k ∈ N, we denote by Sep(A, k) the maximal number of connected
components of A − S, where S ⊆ A ranges over all sets of size at most k. For a graph G,
we set Sep(G, k) := Sep(⌊G⌋, k).

(c) For a function f : N → N, we say that a class C of structures has property SEP(f) if

Sep(A, k) ≤ f(k) , for all A ∈ C and all k ∈ N .

We say that C has property SEP, if it has property SEP(f), for some function f : N → N. ♦
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Example 4.2. For complete bipartite graphs Kn,m with n ≤ m we have

Sep(Kn,m, k) =

{
1 if k < n ,

m if k ≥ n .

For complete d-partite graphs Km0,...,md−1
with m0 ≥ · · · ≥ md−1 and d ≥ 2, we have

Sep(Km0,...,md−1
, k) =

{
1 if k < m1 + · · · +md−1 ,

m0 if k ≥ m1 + · · · +md−1 .

We leave the straightforward verification to the reader. ♦

Example 4.3. Let f : N → N \ {0} be a function and let n ∈ N. We construct a graph
Gn(f) such that

Sep(Gn(f), k) ≥ f(k) , for all k ≤ n .

Let T be the tree of height n, where every vertex v on level k has f(k) immediate successors.
That is,

T := {w ∈ N
≤n | w(k) < f(k) for all k } .

The desired graph Gn(f) is obtained from this tree by adding all edges (x, y) such that
x ≺ y. For a given k ≤ n, choose a path v0, . . . , vk−1 of length k − 1 from the root v0 to
some vertex vk−1 on level k − 1. Removing the set S := {v0, . . . , vk−1} we obtain a graph
Gn(f) − S with more than f(k) connected components, since each of the f(k) immediate
successors of vk−1 belongs to a different connected component. ♦

Let us show that having property SEP is a necessary condition for a class to be MSO2-
orderable.

Proposition 4.4. There exists a function f : N3 → N such that Sep(G, k) ≤ f(n,m, k) for
every graph G such that ⌈G⌉ can be ordered by an MSO-formula of the form ϕ(x, y; P̄ ) where
qr(ϕ) ≤ m and P̄ = 〈P0, . . . , Pn−1〉 are parameters. Furthermore, the function f(n,m, k) is
effectively elementary in the argument k, that is, there exists a computable function g such
that f(n,m, k) ≤ expg(n,m)(k).

Proof. Fixing k,m, n ∈ N, we define f(n,m, k) := d where d is an upper bound on the
number of MSO-theories of the form MThm(⌈H⌉, P0, . . . , Pn−1, v0, . . . , vk) where H is a
graph, P0, . . . , Pn−1 are parameters, and v0, . . . , vk are vertices of H. For fixed n and m, we
can choose d to be elementary in k.

Let ϕ(x, y; Z̄) be an MSO-formula of quantifier-rank at most m, let G be a graph with
Sep(G, k) > f(n,m, k), and let P0, . . . , Pn−1 parameters from G. We have to show that
ϕ(x, y; P̄ ) does not order ⌈G⌉. Fix a set S = {s0, . . . , sk−1} of vertices such that G− S has
more than d connected components. Fix distinct connected components C0, . . . , Cd of G−S
and vertices ai ∈ Ci. By choice of d, there are indices i < j such that

MThm
(
⌈G[Ci ∪ S]⌉, P̄ ↾ (Ci ∪ S), s0, . . . , sk−1, ai

)

= MThm
(
⌈G[Cj ∪ S]⌉, P̄ ↾ (Cj ∪ S), s0, . . . , sk−1, aj

)
.

As the structure
〈
⌈G⌉, P̄ , s0, . . . , sk−1, ai, aj

〉
is the amalgamation of the structures

〈
⌈G[Ci ∪ S]⌉, P̄ ↾ (Ci ∪ S), s0, . . . , sk−1, ai

〉
,

〈
⌈G[Cj ∪ S]⌉, P̄ ↾ (Cj ∪ S), s0, . . . , sk−1, aj

〉
,
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and
〈
⌈G[Cl ∪ S]⌉, P̄ ↾ (Cl ∪ S), s0, . . . , sk−1

〉
, for l 6= i, j ,

over the tuple 〈s0, . . . , sk−1〉, it therefore follows by Theorem 2.3 that

MThm
(
⌈G⌉, P̄ , s0, . . . , sk−1, ai, aj

)
= MThm

(
⌈G⌉, P̄ , s0, . . . , sk−1, aj , ai

)
.

In particular,

G |= ϕ(ai, aj ; P̄ ) ⇐⇒ G |= ϕ(aj , ai; P̄ ) .

Hence, ϕ(x, y; P̄ ) does not define an order.

Corollary 4.5. An MSO2-orderable class of graphs C has property SEP(f), for an element-
ary function f .

The converse does not hold. For instance, according to Theorem 4.29 below, the class of
bipartite graphs of the formKn,22n is not MSO2-orderable, while we have seen in Example 4.2

that it has property SEP(f) for the elementary function f such that f(n) = 22
n

. Our
objective therefore is to get converse results for particular classes of graphs satisfying certain
combinatorial conditions.

Remark 4.6. We have noted in Remark 3.6 that, if a graph G can be ordered by an MSO2-
formula ϕ, we can construct from ϕ a MSO2-formula ψ ordering every graph H obtained
from G by adding edges. In this case, we further have Sep(H, k) ≤ Sep(G, k), for all k. ♦

Remark 4.7. All results of Section 4 also hold for directed graphs since there is an MSO2-
formula with two parameters that defines an orientation of every undirected graph (see
Proposition 9.46 of [7]). It follows that a class of directed graphs is MSO2-orderable if,
and only if, the corresponding class of undirected graphs is. This is different for MSO1-
orderability. ♦

As a simple introductory example, let us consider classes of trees.

Theorem 4.8. Let T be a class of (undirected) trees. The following statements are equival-
ent:

(1) T is MSO1-orderable.
(2) T is MSO2-orderable.
(3) T has property SEP.
(4) There exists a number d ∈ N such that every tree in T has maximal degree at most d.

Proof. (1) ⇒ (2) is trivial.
(2) ⇒ (3) has been shown in Corollary 4.5.
(3) ⇒ (4) Suppose that T has property SEP(f) and let T ∈ T . Every vertex v ∈ T has at

most f(1) neighbours since T −{v} has at most f(1) connected components. Consequently,
the maximal degree of T is bounded by f(1).

(4) ⇒ (1) Let T be a tree with maximal degree at most d. We use d parameters
P0, . . . , Pd−1 to order T . Fixing a vertex r ∈ T as root, we obtain an injective embedding
g : T → d<m, for some number m ∈ N. We set

Pi := { v ∈ T | g(v) = wi for some w } .
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Note that r is the only vertex of T that is not contained in any of these sets. Hence, using P̄ ,
we can define the tree-order � on T . We can also define the lexicographic ordering:

u ≤ v :⇐⇒ u � v , or u0 ∈ Pi, v0 ∈ Pk, for i < k, where u0, v0 are the

immediate successors of the longest common

prefix of u and v with u0 � u and v0 � v .

Corollary 4.9. Let k ∈ N. The class of trees of height at most k is hereditarily MSO2-
unorderable.

Proof. For any given height k, there are only finitely many trees (up to isomorphism) satis-
fying condition (4) of the theorem.

4.2. Omitting a minor. We start by presenting a characterisation for classes of graphs
omitting a fixed graph as minor (for an introduction to graph minors see, e.g., [10]). For
short, we will say that such a class omits a minor. Recall that a spanning forest F of a
graph G is defined to be directed. A spanning forest F is normal if the ends of every edge
of G are comparable with respect to the tree-order �F on F (see, e.g., Section 1.5 of [10]).

Definition 4.10. Let G be a graph and F ⊆ G a normal spanning forest of G.
(a) We denote the set of predecessors of a vertex x by

PredF (x) := { y | y ≺F x } .

(b) For x ∈ G, we define

BF (x) := { v ≺F x | there is an edge (u, v) of G such that x �F u } . ♦

Lemma 4.11. Let G be a graph, F a normal spanning forest of G, x ∈ G, and B ⊆
PredF (x).

(a) If |B| ≥ p and there are p immediate successors y of x such that BF (y) = B∪{x}, then
Kp,p is a minor of G.

(b) If |B| < p and Sep(G, p) ≤ d, then there are at most d immediate successors y of x
such that BF (y) = B ∪ {x} .

Proof. (a) Suppose that there are p distinct immediate successors y0, . . . , yp−1 of x with
B(yi) = B ∪ {x} and fix distinct vertices b0, . . . , bp−1 ∈ B. Let H be the minor of G
obtained by contracting the subtrees rooted at y0, . . . , yp−1 to single vertices ỹ0, . . . , ỹp−1 and
by removing all remaining vertices except for ỹ0, . . . , ỹp−1 and b0, . . . , bp−1. Then H ∼= Kp,p.

(b) Set S := B∪{x} and let y0, . . . , yn−1 be an enumeration of all immediate successors
of x such that B(yi) = S. Then y0, . . . , yn−1 lie in different connected components of G−S.
Hence, n ≤ Sep(G, p) ≤ d.

Theorem 4.12. For every p, d ∈ N, the class Cp,d of all graphs G that satisfy Sep(G, p) ≤ d
and that do not contain Kp,p as a minor is MSO2-orderable.

Proof. Consider a graph G ∈ Cp,d. Let F be a normal spanning forest of G. Since G has
Sep(G, 0) ≤ d connected components, the forest F has at most d roots. Recall that a forest
is oriented with edges pointing away from the roots. We can encode F by two parameters:
its set of edges and its set of roots. (Since the first set consists of edges and the second one of
vertices, we could even take their union as a single parameter.) We will use a lexicographic
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order on F to order G, based on orderings (i) of the roots of F and (ii) of the immediate
successors of every vertex of F .

Consider a vertex x ∈ F with immediate successors y0, . . . , ym−1. Since each set BF (yi)
is linearly ordered by �F , we can define a preorder on the immediate successors by using
the lexicographic ordering of the sets BF (yi):

yi ⊑ yk :⇐⇒ BF (yi) ≤lex BF (yk) .

To prove that there is a definable order extending this preorder, it is sufficient to show that
the equivalence classes of this preorder have bounded cardinality. Let k := max {p, d}. For
every set B ⊆ PredF (x), there are at most k immediate successors yi of x with BF (yi) =
B ∪ {x}: for |B| ≥ p, this follows from Lemma 4.11 (a); for |B| < p, it follows from
Lemma 4.11 (b).

The parameters needed to define the desired linear order consist of the set of edges of
the spanning forest F and d+ k parameters to distinguish and order the roots of F and to
order the immediate successors y of a vertex x that have the same set BF (y).

Theorem 4.13. Let C be a class of graphs omitting a minor H. The following statements
are equivalent:

(1) C is MSO2-orderable.
(2) C has property SEP.
(3) C has property SEP(f) for some elementary function f .

Furthermore, given H we can compute a number k such that we can replace SEP(f) by
SEP(expk) in (3).

Proof. (1) ⇒ (3) follows by Corollary 4.5 and (3) ⇒ (2) is trivial.
For (2) ⇒ (1), suppose that C has property SEP(f). By Theorem 4.12, all classes Cp,d

are MSO2-orderable. Since every graph with n vertices and m edges is a minor of Kn,m, we
can choose p sufficiently large such that H is a minor of Kp,p. Set d := f(p). Then C ⊆ Cp,d
and it follows that C is also MSO2-orderable.

Remark 4.14. (a) For each k ∈ N, the class of graphs of tree-width at most k excludes
some (planar) graph as a minor and, hence, it satisfies the conditions of Theorem 4.13.

(b) Although this fact is not directly related to our work, we mention that Grohe has
proved that every class of graphs excluding a minor is orderable in least fixed-point logic. It
follows that least fixed-point logic captures PTIME on these classes [15, 14]. ♦

In contrast to Remark 4.14 (a), we have the following result for classes of graphs of
bounded n-depth tree-width (which is defined as tree-width, but where we only consider tree
decompositions with index trees of height at most n). This graph complexity measure was
introduced in [2].

Proposition 4.15. Let n, k ∈ N. A class of graphs of n-depth tree-width at most k is MSO2-
orderable if, and only if, it is finite. Hence, the class of all graphs of n-depth tree-width at
most k is hereditarily MSO2-unorderable.

Proof. Let C be an infinite class of graphs of n-depth tree-width at most k. As we have
argued in Remark 3.7, if C were MSO2-orderable, we could define an MSO2-transduction
mapping it to the class of all finite paths. This is not possible by Theorem 6.4 of [2].
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In the following we try to compute a better bound on the function f in Theorem 4.13 (3).
We can improve the bound from elementary to singly exponential.

Lemma 4.16. Let G be a graph such that Sep(G, p) ≤ d and Kp,p is not a minor of G. Let
F be a normal spanning forest of G and S a set of at most k vertices of G. For every vertex
x ∈ S, at most k + 2k · max {p, d} connected components of G − S contain an immediate
successor of x (in F ).

Proof. Let s0 ≺F · · · ≺F sm−1 = x be an enumeration of PredF (x)∪{x}. For an immediate
successor y of x, we define

I(y) := { i < m | there is some z ∈ BF (y) such that z ≺F si and (i = 0 or si−1 ≺F z) } .

If y and y′ are immediate successors of x in different connected components of G− S, then
I(y) ∩ I(y′) = ∅. Consequently, there are at most m ≤ k connected components of G − S
containing an immediate successor y of x such that I(y) 6= ∅.

It remains to show that there are at most 2k ·max {p, d} components of G−S containing
an immediate successor y with I(y) = ∅. Every such immediate successor y satisfies B(y) ⊆
S. Hence, B(y) can take at most 2m ≤ 2k values and, according to Lemma 4.11, for each
such value B ⊆ S there are at most max {p, d} immediate successors y with B(y) = B.

Proposition 4.17. Let G be a graph such that Sep(G, p) ≤ d and Kp,p is not a minor of G.
Then

Sep(G, k) ≤ d+ k2 + k2k ·max {p, d} , for k ≥ p .

Proof. Let F be a normal spanning forest of G and S a set of at most k vertices of G. We
have seen in Lemma 4.16 that, for every vertex x ∈ S, at most k+2k ·max {p, d} connected
components of G−S contain an immediate successor of x. Since every connected component
of G− S contains a root of F or the immediate successor of some x ∈ S, there are at most
d+ k(k + 2k ·max {p, d}) such components.

Every class omitting some minor H also omits Kp,p as a minor, for all sufficiently
large p. The following corollary states that, in order to determine whether such a class is
MSO2-orderable, it is sufficient to bound the numbers Sep(G, p) as opposed to the function
k 7→ Sep(G, k).

Corollary 4.18. Let p ∈ N. A class C of graphs omitting Kp,p as a minor is MSO2-orderable
if, and only if,

sup {Sep(G, p) | G ∈ C } <∞ .

Remark 4.19. Graphs omitting a minor H are r-sparse (cf. Definition 2.1), for some num-
ber r depending on H. Since, for r-sparse graphs, the expressive powers of MSO1 and MSO2

coincide, it follows that the criterion in Corollary 4.18 also characterises MSO1-orderability.
♦

Remark 4.20. The proof technique of Theorem 4.12 can be extended to order certain
classes of graphs that do not omit any graph as a minor. We give two examples.

(a) First, let us consider the class of graphs Hp, for p ≥ 1, defined as follows. The set
of vertices of Hp is

V := {∗} ∪ [p] ∪ [p]× Sp ,
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∗

0

1

(0, e)

(1, e)

(0, τ)

(1, τ)

Figure 1: The graph H2.

where Sp is the set of permutations of [p]. The graph Hp has the following edges:

(∗, 0)

(∗, (0, σ)) for σ ∈ Sp ,

(i, i+ 1) for i ∈ [p], i < p− 1 ,

((i, σ), (i + 1, σ)) for i ∈ [p], σ ∈ Sp, i < p− 1 ,

(i, (σ(i), σ)) for i ∈ [p], σ ∈ Sp, i < p .

The graph H2 is shown in Figure 1. (e is the identity and τ is the transposition of 0 and 1.)
Note that the vertex ∗ has degree 1+p!. Clearly, Hp contains Kp,p! as a minor. Nevertheless,
the class of graphs Hp is MSO2-orderable. We can use a spanning tree whose root is the
vertex p − 1 and whose edges consist of the first four of the above types. To compare two
immediate successors (0, σ) and (0, τ) of the vertex ∗, we can use a lexicographic order on Sp
(where we identify a permutation σ with the sequence σ(0) . . . σ(p − 1)). Since each Hp is
2-sparse (as it has an orientation of indegree 2, cf. Proposition 9.40 of [7]), it follows that
the class is even MSO1-orderable (cf. Theorem 9.37 of [7]).

(b) Another example is the class of cliques. It is MSO2-orderable and does not omit a
minor. If we replace each edge by a path of length 2, we obtain a class of 2-sparse graphs
that is MSO2-orderable and that still does not omit a minor. ♦

Remark 4.21. It is not possible to extend Theorem 4.13 to r-sparse graphs. A counter-
example is given by the class C of all graphs obtained from a bipartite graph of the form
Kn,f(n) by replacing every edge by a path of length 2, where f : N → N is a fixed non-
elementary function. This is a class of 2-sparse graphs with property SEP that, according
to Corollary 4.5, is not MSO2-orderable. ♦

4.3. Deciding MSO2-orderability. In Theorem 4.13 above, we have presented a combin-
atorial property characterising MSO2-orderability for classes of graphs omitting a minor. A
natural question is whether this property is decidable. Of course, this question does only
make sense for classes of graphs that can be described in a finitary way. Therefore, we will
concentrate on HR-equational and VR-equational classes.

Proposition 4.22. It is decidable whether a VR-equational class C has property SEP.
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Proof. Let C be a VR-equational class and let ϕ(X,Y ) be an MSO-formula expressing, for a
graph G, that the set Y contains exactly one vertex of each connected component of G−X.
The class C has property SEP if, and only if, there exists a function f such that, for all
G = 〈V,E〉 ∈ C and P,Q ⊆ V ,

G |= ϕ(P,Q) implies |Q| ≤ f(|P |) .

According to the Semi-Linearity Theorem, the set

M(C) :=
{
(|P |, |Q|)

∣∣ G |= ϕ(P,Q) for someG = 〈V,E〉 ∈ C and P,Q ⊆ V
}

is semi-linear and an effective description of M(C) can be computed from a system of equa-
tions for C. Using this description, we can check whether or not, for every n ∈ N, the set
{ p | (n, p) ∈M(C) } is bounded. This is the case if, and only if, C has property SEP.

Corollary 4.23. For an HR-equational class C, it is decidable whether C is MSO2-orderable.

Proof. An HR-equational class C has bounded tree-width (Proposition 4.7 of [7]) and, hence,
omits some Kp,p as a minor. Since HR-equational classes (of simple graphs) are VR-
equational, it follows from Theorem 4.13 that C is MSO2-orderable if, and only if, it has
property SEP. The latter is decidable by the above proposition.

Remark 4.24. An alternative decidability proof can be based on Corollary 4.18. As the
tree-width of Kp,p is p, every class C of tree-width at most p − 1 omits Kp,p as a minor.
Furthermore, an upper bound on the tree-width of an HR-equational class C can be computed
from a system of equations for C (see Proposition 4.7 of [7]). By Corollary 4.18, C is MSO2-
orderable if, and only if, the set {Sep(G, p) | G ∈ C } is bounded. To check this condition,
we consider the formula ϕ(X) expressing that there exists a set S of size |S| ≤ p such that
X contains exactly one vertex of each connected component of G−S. By the Semi-Linearity
Theorem, we can compute a representation of the semi-linear set

M(C) :=
{
|P |

∣∣ G |= ϕ(P ) for some G = 〈V,E〉 ∈ C and P ⊆ V
}
.

Using this representation we can check whether or not M(C) is finite. ♦

For VR-equational classes we do not obtain decidability since we cannot apply The-
orem 4.13. We conjecture that a corresponding statement holds also for these classes.

Conjecture 4.25. Every VR-equational class that has property SEP is MSO2-orderable.

Below we will prove this conjecture for the special cases of complete d-partite graphs
(Corollary 4.30) and chordal graphs (Corollary 4.37).

4.4. Dense graphs. We have characterised MSO2-orderability in Theorem 4.13 for classes
excluding a minor. The graphs in such classes are sparse. In this section and the next one,
we consider the opposite extreme of certain dense graphs, in particular, multi-partite graphs
and chordal graphs.

Lemma 4.26. Let s, r ∈ N and let C be a class of graphs such that each G ∈ C is obtained
from some Kn,m with n ≤ m ≤ 2sn+r by possibly adding new edges. Then C is MSO2-
orderable.
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Proof. Consider a graph G = 〈V,E〉 ∈ C obtained by adding new edges from a bipartite
graph Kn,m where n ≤ m ≤ 2sn+r (see also Remark 3.6). If n = 0, then G has m ≤ 2r

vertices and we can order G using r parameters. Thus, it remains to consider the case where
n > 0. Since m ≤ 2sn+r ≤ 2(s+r)n, there exists an injective function µ : [m] → P([(s+ r)n]).
Fixing enumerations a0, . . . , an−1 and b0, . . . , bm−1 of the two vertex classes of Kn,m, we
define an ordering of G using the following parameters.

A := { ai | i < n } ⊆ V ,

B := { bi | i < m } ⊆ V ,

S := { (ai, bj) | i ≤ j } ⊆ E ,

Rk := { (ai, bj) | kn+ i ∈ µ(j) } ⊆ E , for k < s+ r .

First, we define a strict order <A on A by

u <A v :⇐⇒ u 6= v and, for all x ∈ B, (u, x) ∈ S ⇒ (v, x) ∈ S .

By definition of S, this order is linear. We extend it to all vertices of G by defining u < v
if, and only if, one of the following conditions holds:

• u, v ∈ A and u <A v.
• u ∈ A and v ∈ B.
• u, v ∈ B, u 6= v, and, if k is the minimal number such that, for some x ∈ A,

(x, u) ∈ Rk ⇔ (x, v) /∈ Rk,

and if x ∈ A is the <A-least element with this property, then (x, u) ∈ Rk and (x, v) /∈ Rk.

The technique employed in this proof will be used several times in this article. Given an
already defined order on a set A, we can order the vertices not in A using the lexicographic
ordering on their sets of neighbours in A.

Lemma 4.27. A class C of complete bipartite graphs is MSO2-orderable if, and only if, there
exists a constant s such that

Kn,m ∈ C with n ≤ m implies m ≤ 2s(n+1).

Proof. (⇐) is a special case of Lemma 4.26.
(⇒) Suppose that C is ordered by an MSO-formula ϕ(x, y; Z̄) with s set variables

Z0, . . . , Zs−1. We claim that there is no Kn,m ∈ C such that m > 2s(n+1).
For a contradiction, suppose that there is such a graph Kn,m ∈ C. Let P̄ be the

parameters such that ϕ(x, y; P̄ ) orders ⌈Kn,m⌉. We enumerate the two vertex sets of Kn,m

as a0, . . . , an−1 and b0, . . . , bm−1. Since m > 2s(n+1) there is a subset I ⊆ [m] of cardinality

|I| > 2s(n+1)/2s = 2sn such that

bi ∈ Pl ⇔ bj ∈ Pl for all i, j ∈ I and all l < s .

Similarly, there is a subset J ⊆ I of cardinality |J | > 2sn/2sn = 1 such that

(ak, bi) ∈ Pl ⇔ (ak, bj) ∈ Pl for all i, j ∈ J and all l < s and k < n .

Hence, there are at least two indices i < j in J . The mapping π : Kn,m → Kn,m that
interchanges bi and bj and leaves every other vertex fixed is an automorphism of the structure
〈⌈Kn,m⌉, P̄ 〉. Hence,

⌈Kn,m⌉ |= ϕ(bi, bj ; P̄ ) ⇐⇒ ⌈Kn,m⌉ |= ϕ(bj , bi; P̄ ) ,
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and ϕ does not define an order on Kn,m. A contradiction.

Lemma 4.28. Let C be a class of graphs of the form Km0,...,md−1
where

d > 2 and m1 + · · ·+md−1 ≥ m0 ≥ m1 ≥ · · · ≥ md−1 ≥ 1 .

Then C is MSO2-orderable.

Proof. Consider Km0,...,md−1
∈ C with m0 ≥ · · · ≥ md−1 ≥ 1. Let A0, . . . , Ad−1 be the vertex

sets of this graph and let ak0, . . . , a
k
mk−1 be an enumeration of Ak. Using the parameter

R := { (ak0 , a
k+1
0 ) | 0 ≤ k < d− 1 }

we can define the preorder

u ⊑ v :⇐⇒ u ∈ Ai and v ∈ Ak for all i ≤ k .

As usual, we write

u ≡ v :⇐⇒ u ⊑ v and v ⊑ u ,

u ⊏ v :⇐⇒ u ⊑ v and v 6⊑ u .

Using the parameter S := { (aki , a
k+1
j ) | i ≤ j } and ⊑, we can define a linear order ≤B on

B := A1 ∪ · · · ∪Ad−1 by setting u ≤B v if, and only if,

• u ⊏ v or
• u ≡ v and, for all x ⊏ u, (x, u) ∈ S implies (x, v) ∈ S.

Hence, it remains to define a linear order ≤A on A0. Since m0 ≤ m1+ · · ·+md−1, we can fix
an enumeration b0, . . . , bn−1 of B and use the parameter S0 := { (a0i , bj) | i ≤ j } to define
such an order.

Theorem 4.29. Let C be a class of graphs that are all complete d-partite for some d ∈ N.
(We do not require the number d to be the same for every graph.) The following statements
are equivalent:

(1) C is MSO2-orderable.
(2) There exists a constant s such that C has property SEP(f) where f(k) = 2s(k+1).
(3) There exists a constant s such that

Km0,...,md−1
∈ C implies M ≤ 2s(N−M+1)

where M := maxi<dmi and N :=
∑

i<dmi.

Proof. (3) ⇒ (1) Consider Km0,...,md−1
∈ C with m0 ≥ · · · ≥ md−1 ≥ 1. We distinguish

several cases.

• If d ≤ 2, the claim follows by Lemma 4.26.
• If d > 2 and M ≥ N −M , we have KN−M,M ⊆ Km0,...,md−1

and the claim follows by
Remark 3.6 and Lemma 4.26.

• If d > 2 and M < N −M the claim follows by Lemma 4.28.

(1) ⇒ (3) Suppose that ⌈C⌉ is ordered by an MSO-formula ϕ(x, y; Z̄) with s set variables
Z0, . . . , Zs−1. We claim that there is no Km0,...,md−1

∈ C with M > 2s(N−M)+s.

For a contradiction, suppose that there is such a graph Km0,...,md−1
∈ C. Let P̄ be

parameters such that ϕ(x, y; P̄ ) orders Km0,...,md−1
. Let A be a vertex set of Km0,...,md−1

of size M and let B be its complement. We enumerate A and B as a0, . . . , aM−1 and
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b0, . . . , bN−M−1, respectively. Since M > 2s(N−M)+s there is a subset I ⊆ [M ] of cardinality
|I| > 2s(N−M)+s/2s = 2s(N−M) such that

ai ∈ Pl ⇔ aj ∈ Pl for all i, j ∈ I and all l < s .

Similarly, there is a subset J ⊆ I of cardinality |J | > 2s(N−M)/2s(N−M) = 1 such that

(ai, bk) ∈ Pl ⇔ (aj , bk) ∈ Pl for all i, j ∈ J , l < s , and k < N −M .

Hence, there are at least two different indices i, j ∈ J . The mapping π : Km0,...,md−1
→

Km0,...,md−1
that interchanges ai and aj and leaves every other vertex fixed is an automorph-

ism of the structure 〈⌈Km0,...,md−1
⌉, P̄ 〉. Hence,

⌈Km0,...,md−1
⌉ |= ϕ(ai, aj ; P̄ ) ⇐⇒ ⌈Km0,...,md−1

⌉ |= ϕ(aj , ai; P̄ ) ,

and ϕ does not define an order on Km0,...,md−1
. A contradiction.

(3) ⇒ (2) Let Km0,...,md−1
be a complete d-partite graph and set M := maxi<dmi and

N :=
∑

i<dmi. If M ≤ 2s(N−M+1), then

Sep(Km0,...,md−1
, k) =

{
1 if k < N −M

M if k ≥ N −M

≤

{
2s(k+1) if k < N −M

2s(N−M+1) if k ≥ N −M

≤ 2s(k+1).

(2) ⇒ (3) Suppose that C has property SEP(f) where f(k) = 2s(k+1). Note that

Sep(Km0,...,md−1
, k) =

{
1 if k < N −M ,

M if k ≥ N −M ,

where M and N are as above. It follows that

M = Sep(Km0,...,md−1
, N −M) ≤ f(N −M) = 2s(N−M+1).

As a corollary we obtain a special case of Conjecture 4.25 for classes of complete d-partite
graphs.

Corollary 4.30. Let C be a VR-equational class of complete d-partite graphs, for some fixed
natural number d > 1. Then C is MSO2-orderable if, and only if, it has property SEP. This
property is decidable.

Proof. For every d ∈ N, there is an MSO-formula ϕd(X0, . . . ,Xd−1) stating thatX0, . . . ,Xd−1

are the vertex sets of a complete d-partite graph. By the Semi-Linearity Theorem, it follows
that the set

Md := { (m0, . . . ,md−1) | Km0,...,md−1
∈ C }

is semi-linear.
Suppose that C has property SEP. By Example 4.2, it follows that, for every choice

of m0, . . . ,md−2, there are only finitely many md−1 such that Km0,...,md−2,md−1
∈ C. Semi-

linearity of Md therefore implies that there are numbers a, b ∈ N such that

md−1 ≤ a(m0 + · · · +md−2) + b , for all Km0,...,md−1
∈ C .

By Theorem 4.29 it follows that C is MSO2-orderable.
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4.5. Split graphs and chordal graphs. As the next step towards Conjecture 4.25, the
case of a VR-equational class of cographs suggests itself, but, so far, we were unable to find
a proof. (See Section 5.2 for the definition of a cograph. Note that Corollary 4.30 contains
a solution for complete multi-partite graphs, which are a special kind of cographs.) Instead,
we consider split graphs and, more generally, chordal graphs.

Definition 4.31. Let G be a graph.
(a) G is a split graph if there exists a partition of its vertex set into two parts A and B

such that A induces a clique whereas B is independent, i.e., G[B] contains no edges.
(b) Let F be a spanning forest of G with tree-order �F . We call F a perfect spanning

forest if it is normal (cf. Section 4.2) and, for every vertex v ∈ F , the set of all neighbours u
of v such that u ≺F v induces a clique in G.

(c) G is chordal if it has a perfect spanning forest. ♦

Every split graph is chordal. There are many equivalent definitions of chordal graphs.
See Proposition 2.72 of [7] for an overview and a proof of their equivalence.

Theorem 4.32. A class C of split graphs is MSO2-orderable if, and only if, there is some
s ∈ N such that C has property SEP(f) for the function f such that f(n) = 2s(n+1).

Proof. (⇐) Given s, we construct an MSO2-formula ϕ(x, y; Z̄) with s + 1 parameters that

orders every split graph G such that Sep(G,n) ≤ 2s(n+1), for all n. Let G = 〈V,E〉 be such
a split graph and let V = A ∪ B be the partition of V into a clique A and an independent
set B. We use one parameter P to define an order on A as follows. Fixing an enumeration
a0, . . . , an−1 of A we set

P := {a0} ∪ { (ai, ai+1) | i < n− 1 } .

Then we can write down an MSO2-formula ψ(x, y;P ) stating that every path that connects
the unique vertex in P to y and that only uses edges in P contains the vertex x. This defines
a linear order ≤A on A.

We use this order to define an order on B as follows. For b ∈ B let

N(b) := { a ∈ A | (a, b) ∈ E } .

We first define a preorder ⊑ on B by

b ⊑ b′ :⇐⇒ N(b) = N(b′) or the ≤A-least element of N(b) ∆N(b′) belongs to N(b) .

Since this preorder is linear, i.e., there are no incomparable elements, it is sufficient to define
an order on each class of the equivalence relation associated with ⊑. Given b ∈ B, we fix an
enumeration b0, . . . , bm−1 of all vertices bi ∈ B such that N(bi) = N(b) and a ≤A-increasing
enumeration a0, . . . , an−1 of N(b). Then

m ≤ Sep(G,n) ≤ 2s(n+1) .

Choosing an injective function π : [m] → P([s(n + 1)]), we set, for k < s,

Qk := { (bi, al) | k(n+ 1) + l ∈ π(i) } ∪ { bi | k(n+ 1) + n ∈ π(i) } .

Using the parameters Q0, . . . , Qs−1, we can order b0, . . . , bm−1 by

bi <B bj :⇐⇒ the least element of π(i) ∆ π(j) belongs to π(i) .

Finally, by combining ≤A, ⊑, and <B, we can define an order on all vertices of G.
(⇒) Suppose that a split graph G = 〈V,E〉 is ordered by a formula ϕ(x, y; P̄ ) with

s parameters P0, . . . , Ps−1. We will prove that Sep(G,n) ≤ 2(s+1)(n+1). Let V = A ∪ B
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be the partition of V into a clique A and an independent set B. We start by showing
that, for every b ∈ B, there are at most 2s(|N(b)|+1) vertices b′ ∈ B with N(b′) = N(b),
where N(b) is defined as above. Let b0, . . . , bm−1 be a list of distinct vertices of B such that

N(b0) = · · · = N(bm−1). For a contradiction, suppose that m > 2s|N(b0)|+s. Then there are
indices i < j such that

bi ∈ Pk ⇐⇒ bj ∈ Pk , for all k < s ,

(bi, a) ∈ Pk ⇐⇒ (bj , a) ∈ Pk , for all k < s and a ∈ N(b0) .

It follows that the mapping that interchanges bi and bj and that fixes every other vertex of
〈G, P̄ 〉 is an automorphism. Hence,

⌈G⌉ |= ϕ(bi, bj ; P̄ ) ⇐⇒ ⌈G⌉ |= ϕ(bj , bi; P̄ ) ,

and ϕ does not define an order on G. A contradiction.
To compute Sep(G,n) consider a set S ⊆ V of size |S| ≤ n. We have seen above that,

for every set X ⊆ S ∩ A, there are at most 2s(|X|+1) vertices b ∈ B such that N(b) = X.

Setting k := |S ∩ A|, it follows that there are at most 2k · 2s(k+1) vertices b ∈ B such that
N(b) ⊆ S ∩A. Consequently, G− S has at most

1 + 2k · 2s(k+1) ≤ 2sk+s+k+1 = 2(s+1)(k+1) ≤ 2(s+1)(n+1)

connected components and the claim follows.

Lemma 4.33. For every increasing and unbounded function g : N → N there exists a class
of split graphs that is not MSO2-orderable but has property SEP(f) for the function f such

that f(n) := 2ng(n).

Proof. For k ∈ N, let Gk := Kk ⊗D2kg(k) where Dn denotes the graph with n vertices and
no edges. We claim that C := {Gk | k ∈ N } has the desired properties. Note that

Sep(Gk, n) ≤

{
1 if n < k ,

2ng(n) if n ≥ k .

Hence, C has property SEP, but it does not have property SEP(f), for any function f such

that f(n) = 2s(n+1) for some s ∈ N. By Theorem 4.32, it follows that C is not MSO2-
orderable.

Remark 4.34. The class in the preceding lemma is not VR-equational since it does not
satisfy the Semi-Linearity Theorem. Hence, it does not provide a counterexample to Con-
jecture 4.25. ♦

It would be interesting to extend Theorem 4.32 to classes of chordal graphs. At this
point, we are only able to present a sufficient condition for MSO2-orderability. But there
are examples showing that it is not necessary. We start with a technical lemma.

Lemma 4.35. Let F be a perfect spanning forest of a chordal graph G with tree-order �F .
If u ≺F v �F w are vertices then

(u,w) ∈ E implies (u, v) ∈ E .

Proof. Let xn ≺F · · · ≺F x0 be the path in F from v = xn to w = x0. We show by induction
on i, that (u, xi) ∈ E. For i = 0, there is nothing to do. Hence, suppose that i > 0 and
that we have already shown that (u, xi−1) ∈ E. Then u and xi are both neighbours of xi−1.
Since u, xi ≺F xi−1, it follows by definition of a perfect spanning forest that (u, xi) ∈ E.
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Proposition 4.36. Let C be a class of chordal graphs with property SEP(f) where f(n) =
2s(n+1), for some s ∈ N. Then C is MSO2-orderable.

Proof. Let G = 〈V,E〉 be a chordal graph such that Sep(G,n) ≤ 2s(n+1). To order G, we
fix a perfect spanning forest F of G. It is sufficient to define, for every vertex v, an order
on the immediate successors of v in F . Then we can use the lexicographic ordering on F
to order G. Fix a vertex v and let u0, . . . , un−1 be the immediate successors of v in F . For
i < n, we define

Bi := {w �F v | (w, ui) ∈ E } .

We start by showing that, for every set B ⊆ V , there are at most 2s(|B|+1) indices i such
that Bi = B. Given B, let I be the set of all i < n such that Bi = B. By Lemma 4.35, it
follows that, for every i ∈ I and every edge (x, y) ∈ E such that x ≺F ui �F y, we have
x ∈ Bi = B. Hence,

|I| ≤ Sep(G, |B|) ≤ 2s(|B|+1)

as desired. As in the proof of Theorem 4.32, we can use s + 1 parameters Q0, . . . , Qs to
colour the edges of the subgraphs Bi ⊗ ui such a way that we can define the ordering

ui < uk ⇐⇒ i < k , for i, k ∈ I .

Consequently, we can order all immediate successors of v by

ui ≤ uk :⇐⇒ Bi = Bk and i ≤ k , or

the ≺F -least element of Bi ∆Bk belongs to Bi .

Corollary 4.37. Let C be a VR-equational class of chordal graphs. The following statements
are equivalent:

(1) C is MSO2-orderable.
(2) C has property SEP.
(3) There are constants r, s ∈ N such that C has property SEP(f) where f is the function

such that f(n) = rn+ s.

These properties are decidable.

Since we have already proved (3) ⇒ (1) and (1) ⇒ (2) in Proposition 4.36 and Corol-
lary 4.5, only the implication (2) ⇒ (3) remains to be proved. We leave this proof to the
reader; it is similar to that of Corollary 4.30.

5. MSO1-definable orders

After having studied MSO2-orderability, we consider MSO1-orderability. For classes that are
r-sparse, for some r, MSO1 and MSO2 have the same expressive power (see Theorem 9.38
of [7]). For these classes we can therefore use the results of Section 4. For general classes,
MSO1-orderability turns out to be more difficult to characterise than MSO2-orderability.
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5.1. Necessary conditions. We will employ tools related to the notion of clique-width.
Instead of using the exact operations defining clique-width (cf. Section 2.1), we introduce
related ones that are more convenient in our context.

Definition 5.1. Let k ∈ N and R ⊆ [k]× [k].
(a) For undirected graphs G and H with ports in [k], we construct the undirected graph

G⊗R H by adding to the disjoint union G⊕H all edges (x, y) such that

• either x ∈ G and y ∈ H, or x ∈ H and y ∈ G; and
• x has port label a and y has port label b, for some (a, b) ∈ R.

Similarly, we define G⊗R H for graphs G and H with ports expanded by additional unary
predicates (vertex colours) and constants.

(b) For a graph G with ports, we denote by Del(G) the graph obtained from G by
deleting all port labels. ♦

Remark 5.2. (a) The operation ⊗R is associative and commutative with the empty graph
as neutral element. Furthermore, ⊗R = ⊗R∪R−1 .

(b) With only one port label, there are two operations of the form ⊗R : the operations
⊕ and ⊗ used to build cographs (see Section 5.2 below).

(c) We have G⊗R H = G ⊗R′ H where R′ := ([k] × [k]) \ R and G denotes the edge
complement of G.

(d) We can express ⊗R as a combination of the operations defining clique-width in the
following way:

G⊗R H = relabh−
(adda0,b0(· · · addan,bn(G⊕ relabh+(H)) · · · )) ,

for suitable functions h+ : [k] → [2k] and h− : [2k] → [k] and port labels a0, b0, . . . , an, bn ∈
[2k]. (h+ is needed to make the port labels appearing in H distinct from those appearing
in G.) ♦

Remark 5.3. (a) As in Proposition 3.4 (b), one can show that

C ⊗R K := {G⊗R H | G ∈ C, H ∈ K }

is MSO-orderable if, and only if, C and K are MSO-orderable.
(b) C := {G | G ∈ C } is MSO-orderable if, and only if, C is MSO-orderable. ♦

To give a necessary condition for MSO1-orderability, we introduce a combinatorial prop-
erty similar to SEP, but based on the operation ⊗R.

Definition 5.4. Let G be a graph (without port labels) and k ∈ N.
(a) We denote by Cut(G, k) the maximal number n such that there exist nonempty

graphs H0, . . . ,Hn−1 with ports in [k] and a relation R ⊆ [k]× [k] such that

G ∼= Del(H0 ⊗R · · · ⊗R Hn−1) .

(b) We say that a class C of graphs has property CUT(f), for a function f : N → N, if

Cut(G, k) ≤ f(k) , for all G ∈ C and all k ∈ N .

We say that C has property CUT, if it has property CUT(f), for some f : N → N. ♦

Remark 5.5. Note that Cut(G, k) = Cut(G, k). ♦

For the proof that CUT is a necessary condition for MSO1-orderability, we use the
following technical lemma.
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Lemma 5.6. Let G,G′,H,H ′ be labelled graphs, P̄ , P̄ ′, Q̄, Q̄′ tuples of sets of vertices of the
respective graphs, and ā, ā′, b̄, b̄′ tuples of vertices. For each port label c, let Cc, C

′
c,Dc,D

′
c be

the sets of all vertices of, respectively, G,G′,H,H ′ that have port label c. Then

MThm(⌊G⌋, P̄ , C̄, ā) = MThm(⌊G′⌋, P̄ ′, C̄ ′, ā′)

and MThm(⌊H⌋, Q̄, D̄, b̄) = MThm(⌊H ′⌋, Q̄′, D̄′, b̄′)

implies that

MThm
(
⌊G⊗R H⌋, S̄, āb̄

)
= MThm

(
⌊G′ ⊗R H

′⌋, S̄′, ā′b̄′
)
,

where Si := Pi ∪Qi and S′
i = P ′

i ∪Q
′
i.

Proof. Let σ be a quantifier-free transduction that maps a structure A to its expansion 〈A, I〉
where I := A×A is the equivalence relation on A with a single class. Given R, we can write
down a quantifier-free transduction τ such that

〈
⌊G⊗R H⌋, S̄, āb̄

〉
= τ

(
σ(〈⌊G⌋, P̄ , C̄, ā〉)⊕ σ(〈⌊H⌋, Q̄, D̄, b̄〉)

)

and
〈
⌊G′ ⊗R H

′⌋, S̄′, ā′b̄′
〉
= τ

(
σ(〈⌊G′⌋, P̄ ′, C̄ ′, ā′〉)⊕ σ(〈⌊H ′⌋, Q̄′, D̄′, b̄′〉)

)
.

This transduction uses the relation I to mark the two components of the disjoint union. The
claim now follows from the Composition Theorem and the Backwards Translation Lemma.

Proposition 5.7. There exists a function f : N3 → N such that Cut(G, k) ≤ f(n,m, k) for
every graph G such that ⌊G⌋ can be ordered by an MSO-formula of the form ϕ(x, y; P̄ ) where
qr(ϕ) ≤ m and P̄ = 〈P0, . . . , Pn−1〉 are parameters. Furthermore, the function f(n,m, k) is
effectively elementary in the argument k, that is, there exists a computable function g such
that f(n,m, k) ≤ expg(n,m)(k).

Proof. Fixing k,m, n ∈ N, we choose for f(n,m, k) an upper bound on the number of MSO-
theories of the form

MThm(⌊H⌋, v, P0, . . . , Pn−1, Q0, . . . , Qk−1)

where H is a graph, v is a vertex of H and P0, . . . , Q0, . . . are parameters. For fixed m, we
can choose this bound to be elementary in k.

Let ϕ(x, y; Z̄) be an MSO-formula of quantifier-rank at most m, let G be a graph with
Cut(G, k) > f(n,m, k), and let P0, . . . , Pn−1 be parameters from G. We have to show that
ϕ(x, y; P̄ ) does not order G. We choose graphs H0, . . . ,Hd−1 with d = Cut(G, k) and a
relation R ⊆ [k]× [k] such that

G = Del(H0 ⊗R · · · ⊗R Hd−1) .

For c < k, let

Cc := {x ∈ G | x ∈ Hi, for some i < d, and x has port label c in Hi } .

Since d > f(n,m, k), there are indices i < j such that

MThm(⌊Hi⌋, ai, P̄ ↾ Hi, C̄ ↾ Hi) = MThm(⌊Hj⌋, aj , P̄ ↾ Hj, C̄ ↾ Hj) .

As there exists a graph F such that

〈⌊G⌋, aiaj , P̄ , Q̄〉 = 〈⌊Hi⌋, ai, P̄ ↾ Hi, C̄ ↾ Hi〉 ⊗R 〈⌊Hj⌋, aj , P̄ ↾ Hj, C̄ ↾ Hj〉 ⊗R F

and 〈⌊G⌋, ajai, P̄ , Q̄〉 = 〈⌊Hj⌋, aj , P̄ ↾ Hj, C̄ ↾ Hj〉 ⊗R 〈⌊Hi⌋, ai, P̄ ↾ Hi, C̄ ↾ Hi〉 ⊗R F ,
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it follows by Lemma 5.6 that

MThm(⌊G⌋, aiaj , P̄ , C̄) = MThm(⌊G⌋, ajai, P̄ , C̄) .

In particular, we have

⌊G⌋ |= ϕ(ai, aj ; P̄ ) ⇐⇒ ⌊G⌋ |= ϕ(aj , ai; P̄ ) .

Hence, ϕ(x, y; P̄ ) does not define an order on G.

Corollary 5.8. An MSO1-orderable class of graphs C has property CUT(f), for an element-
ary function f .

Example 5.9. The following classes are not MSO1-orderable:

• the class of all cliques Kn ;
• the class of all complete bipartite graphs Kn,m ;
• any class of graphs of the form G ⊗ (H0 ⊕ · · · ⊕Hn) where the number n is unbounded

and each Hi is nonempty.

In each case, after fixing a number k of parameters, we can choose a graph G that is
sufficiently large such that any colouring with k parameters P0, . . . , Pk−1 admits a nontrivial
automorphism. Hence, no formula can define an order on 〈⌊G⌋, P̄ 〉. ♦

As MSO1-orderability implies MSO2-orderability, we can expect that the property CUT

implies SEP. The following lemma proves this fact.

Lemma 5.10. A class C of graphs with property CUT(f) has property SEP(g) where g is
the function such that g(n) := f(n+ 2n)− 1.

Proof. Let G = 〈V,E〉 ∈ C and consider a set S ⊆ V of size |S| ≤ n. Let C0, . . . , Cd−1 be
an enumeration of the connected components of G− S. We claim that d ≤ g(n).

We define colourings ̺ : S → D and πi : Ci → D, for i < d, as follows. The set of colours
is D := S ∪P(S). (To be formally correct, we have to take the set [k] where k := |S ∪P(S)|.
To simplify notation, we will use S ∪ P(S) instead.) We set

̺(s) := s and πi(v) := { s ∈ S | (v, s) ∈ E } .

It follows that

G = Del
(
〈S, ̺〉 ⊗R 〈C0, π0〉 ⊗R · · · ⊗R 〈Cd−1, πd−1〉

)
,

where

R := { (s,X) ∈ S ×P(S) | s ∈ X } .

Consequently, Cut(G, |D|) ≥ d+ 1. Since |D| ≤ n+ 2n, it follows that

d+ 1 ≤ Cut(G,n + 2n) ≤ f(n+ 2n) = g(n) + 1 .

The converse obviously does not hold. A special case, where it does hold is the case
of r-sparse graphs (cf. Definition 2.1). This case is of particular interest since, for r-sparse
graphs, the expressive powers of MSO1 and MSO2 coincide (see Theorem 9.37 of [7]).

Lemma 5.11. The graph Km,n is r-sparse if, and only if, r ≥ mn
m+n

.

Proof. Every induced subgraph of Km,n is of the form Km′,n′ with m′ ≤ m and n′ ≤ n. Such
a subgraph has m′ + n′ vertices and m′n′ edges. The ratio is

m′n′

m′ + n′
=

1
1
m′ +

1
n′

≤
1

1
m

+ 1
n

=
mn

m+ n
.
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Lemma 5.12. A class C of r-sparse graphs with property SEP(f) has property CUT(g) where
g(k) := f(2k2r(2r + 1)).

Proof. Let G ∈ C. Suppose that

G = Del
(
(H0, π0)⊗R · · · ⊗R (Hd−1, πd−1)

)
where R ⊆ [k]× [k] .

Without loss of generality, we may assume that R is symmetric. We have to show that
d ≤ g(k).

Set Ia := { i < d | π−1
i (a) 6= ∅ }. First, let us show that

|Ia| ≤ 2r + 1 or |Ib| ≤ 2r + 1 , for every (a, b) ∈ R .

For a contradiction, suppose that there is some (a, b) ∈ R that |Ia| ≥ 2r+2 and |Ib| ≥ 2r+2.
Choose subsets I ′a ⊆ Ia and I ′b ⊆ Ib of size m := 2r + 2 and select vertices xi ∈ π−1

i (a),

for i ∈ I ′a, and yi ∈ π−1
i (b), for i ∈ I ′b. The subgraph induced by these vertices has

m2 − |Ia ∩ Ib| ≥ m2 −m edges and 2m vertices. Since

m2 −m

2m
=
m− 1

2
=

2r + 1

2
> r ,

it follows that G is not r-sparse. A contradiction.
For a, b ∈ [k], we set

Sab :=
⋃{

π−1
i (a)

∣∣ i ∈ Ia, |π
−1
i (a)| ≤ 2r

}
,

S :=
⋃{

Sab
∣∣ (a, b) ∈ R, |Ia| ≤ 2r + 1

}
.

Note that

|Sab| ≤ 2r|Ia| and |S| ≤ |R| · (2r + 1) · (2r) ≤ 2k2r(2r + 1) .

We claim that every connected component of G− S is contained in Hi − S, for some i.
For a contradiction, suppose that there is a connected component C of G − S containing
vertices from both Hi−S and Hj−S. Then there exists an edge (x, y) of G with x ∈ Hi−S
and y ∈ Hj − S. Let a := πi(x) and b := πj(y). Then (a, b) ∈ R. We have shown above

that |Ia| ≤ 2r + 1 or |Ib| ≤ 2r + 1. In the first case, we have x ∈ π−1
i (a) ⊆ Sab ⊆ S, in the

second case, we have y ∈ π−1
i (b) ⊆ Sba ⊆ S. Hence, both cases lead to a contradiction.

It follows that G− S has at least d connected components. Consequently,

d ≤ Sep(G, |S|) ≤ Sep(G, 2k2r(2r + 1)) ≤ f(2k2r(2r + 1)) = g(k) .

5.2. Cographs. A well-known VR-equational class is the class of cographs. A cograph is a
graph that can be constructed from single vertices using the operations of disjoint union ⊕
and complete join ⊗. Each cograph can be denoted by a term over ⊕, ⊗, and a constant 1
that denotes an isolated vertex. For instance, (1⊕ 1) ⊗ (1⊕ 1⊕ 1) denotes the graph K2,3,
and 1 ⊗ 1 ⊗ · · · ⊗ 1 denotes a clique. Since ⊕ and ⊗ are associative and commutative, we
consider them as operations of variable arity and we ignore the order of the arguments. The
class C of cographs is VR-equational. It can be defined by the equation

C = C ⊕ C ∪ C ⊗ C ∪ {1} .

A cograph G with more than one vertex is either disconnected and of the form G =
H0 ⊕ · · · ⊕Hn for connected cographs H0, . . . ,Hn, or it is connected and of the form G =
H0⊗· · ·⊗Hn for cographs H0, . . . ,Hn each of which is either disconnected or a single vertex.
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Furthermore, these decompositions of G are unique, up to the ordering of H0, . . . ,Hn. Using
this observation, we can associate with every cograph a unique term as follows.

Definition 5.13. A term t over the operations ⊕, ⊗, 1 (where we consider ⊕ and ⊗ as many-
ary operations with unordered arguments) is a cotree if there is no node that is labelled by
the same operation as one of its immediate successors. Every cograph has a unique cotree.
The depth of a cograph is the height of this cotree. ♦

Example 5.14. The cograph G defined by the term

(1⊗ (1⊕ (1⊕ (1⊗ 1)))) ⊗ ((1 ⊗ (1⊗ 1)) ⊕ 1)

has the cotree
⊗

1 ⊕ ⊕

⊗ 1 1 ⊗ 1

1 1 1 1 1

The leaves of this tree correspond to the vertices of G and every subtree is the cotree of an
induced subgraph of G. ♦

Recall (see, e.g., [4]) that a module of a graph G = 〈V,E〉 is a set M of vertices such
that every vertex in V \ M is either adjacent to all elements of M , or to none of them.
A module M is called strong if there is no module N such that M \ N and N \ M are
both nonempty (cf. [18, 4, 12]). Clearly, being a module and being a strong module are
expressible in MSO1. In a cograph there are two types of strong modules: the connected
and the disconnected ones.

Theorem 5.15. Let C be a class of cographs. The following statements are equivalent.

(1) C is MSO1-orderable.
(2) C has property CUT.
(3) There exists a constant d ∈ N such that the cotree of every graph in C has outdegree at

most d.

Proof. (3) ⇒ (1) is Corollary 6.12 from [4] and (1) ⇒ (2) was shown in Corollary 5.8.
For (2) ⇒ (3), suppose that, for every d ∈ N, there exists a graph Gd ∈ C with a cotree

of maximal outdegree at least d. It is sufficient to show that Cut(Gd, 3) > d.
By assumption, we can find a strong module A of Gd containing strong submodules

B0, . . . , Bn−1, for n > d, such that either (i) A = B0⊕· · ·⊕Bn−1, or (ii) A = B0⊗· · ·⊗Bn−1.
Let C := G−A be the graph induced by the complement of A. Every vertex v ∈ C is either
connected to all vertices of A, or to none of them. We assign the port label 0 to the former
vertices and the port label 1 to the latter ones. Each vertex of A gets port label 2. It follows
that

Gd = C ⊗R B0 ⊗R · · · ⊗Bn−1

where R = {(0, 2), (2, 0)} or R = {(0, 2), (2, 0), (2, 2)}. Consequently, we have Cut(Gd, 3) ≥
n+ 1 > d.

Corollary 5.16. Let k ∈ N. The class of cographs of depth at most k is hereditarily MSO1-
unorderable.

Proof. For any given depth k, there are only finitely many cographs (up to isomorphism)
satisfying condition (3) of Theorem 5.15.



30 A. BLUMENSATH AND B. COURCELLE

Corollary 5.17. For VR-equational classes of cographs, MSO1-orderability is decidable.

Proof. Let C be a VR-equational class of cographs. By Theorem 5.15, it is sufficient to decide
whether there is a constant d such that every cotree of a graph in C has maximal outdegree
at most d. Let ϕ(X) be an MSO1-formula stating that there exists a strong module Z such
that X ⊆ Z and every strong module Y ⊂ Z contains at most one element of X. Given a
cograph G, it follows that the maximal outdegree of the cotree of G is equal to the maximal
size of a set X satisfying ϕ in G. Using the Semi-Linearity Theorem, we can decide whether
this size is bounded.

Remark 5.18. If a class C of cographs is MSO1-orderable, there exists an MSO-transduction
mapping each graph in C to its cotree (see [4]). But, conversely, the existence of such
an MSO-transduction is not enough to ensure MSO1-orderability: there exists an MSO-
transduction from the class of all cographs of depth k to their respective cotrees (this is a
routine construction). But, as we have just seen, this class is hereditarily MSO1-unorderable.

♦

5.3. ⊗-decompositions. Cographs are precisely the graphs of clique-width 2. A natural
aim is thus to extend the equivalence (1) ⇔ (2) of Theorem 5.15 to classes of graphs of
bounded clique-width. However, we must leave this as a conjecture. Instead we only consider
the special case of graphs where the height of the decomposition (as defined below) is
bounded. Such graphs generalise cographs of bounded depth, and we show that they are
hereditarily MSO1-unorderable.

We start by introducing a kind of decomposition associated with the notion of clique-
width.

Definition 5.19. Let G = 〈V,E〉 be a graph.
(a) A ⊗-decomposition of G of width k is a family (Hv)v∈T of labelled graphs Hv =

〈Uv, Fv , πv〉 with πv : Uv → [k] such that

• the index set T is a rooted tree,
• H〈〉 = 〈V,E, π〈〉〉, for some labelling π〈〉,
• |Uv| = 1, for every leaf v ∈ T ,
• for every internal node v ∈ T with immediate successors u0, . . . , ud−1, there is some
Rv ⊆ [k]× [k] such that

Del(Hv) = Del(Hu0 ⊗Rv · · · ⊗Rv Hud−1
) .

We call ⊗Rv the operation at v. Note that the port labels of Hv and Hu0 , . . . ,Hud−1
are

unrelated. (Hence, the labelling π〈〉 of the root is arbitrary. We have added it to keep the
notation uniform.)

(b) A strong ⊗-decomposition of G is a ⊗-decomposition (Hv)v∈T such that, for each
internal node v ∈ T with immediate successors u0, . . . , ud−1, there is some Rv ⊆ [k] × [k]
and some function ̺ : [k] → [k] such that

Hv = relab̺(Hu0 ⊗Rv · · · ⊗Rv Hud−1
) .

(c) The height of a ⊗-decomposition (Hv)v∈T is the height of the tree T .
(d) We define wd⊗n (G) as the least number k such that G has a ⊗-decomposition of

width at most k and height at most n. Similarly, we define swd⊗n (G) as the least number k
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such that G has a strong ⊗-decomposition of width at most k and height at most n. We
call wd⊗n (G) the n-depth ⊗-width of G and swd⊗n (G) is its strong n-depth ⊗-width.5 ♦

Remark 5.20. (a) For every graph G and all n, m such that m < n, we have

wd⊗n (G) ≤ swd⊗n (G) ≤ |V | ,

wd⊗n (G) ≤ wd⊗m(G) ,

and swd⊗n (G) ≤ swd⊗m(G) .

(b) Recall the definition of clique-width in Section 2.1. Since the operation ⊗R can be
expressed by the operations clique-width is based on, but by using twice as many port labels,
it follows that the clique-width of a graph is at most twice its strong n-depth ⊗-width (for
any n). Since, conversely, for sufficiently large n, the strong n-depth ⊗-width of a graph G
is at most its clique-width, it follows that, for every graph G and all sufficiently large n,

swd⊗n (G) ≤ cwd(G) ≤ 2 · swd⊗n (G) .

If we define swd⊗(G) as the minimal value of swd⊗n (G) when n ranges over N, we therefore
obtain a nontrivial width measure that is equivalent to clique-width.

(c) Note that wd⊗n (G) ≤ 2, for every graph G with n vertices. Hence, the width wd⊗n (G)
is only of interest if there is a bound on n. ♦

Because of its relation to clique-width, the strong ⊗-width is of more interest than the
⊗-width (which becomes trivial for large depths). We have introduced the simpler notion
of ⊗-width since, in the special case we consider, there exists a bound on the depth of ⊗-
decompositions. In this case we can use the following lemma to transform a bound on the
⊗-width of a class into a bound on its strong ⊗-width.

Lemma 5.21. For every graph G and every n ∈ N,

wd⊗n (G) ≤ swd⊗n (G) ≤
[
wd⊗n (G)

]n+1
.

Proof. The first inequality being trivial, we only prove the second one. Given a ⊗-decompos-
ition (Hv)v∈T of G of height n and width k := wd⊗n (G), we construct a strong ⊗-decomposi-
tion (H ′

v)v∈T of G of the same height and width kn. Consider v ∈ T and let v0, . . . , vm be the
path in T from the root 〈〉 = v0 to v = vm, where m < n. Suppose that Hv = 〈Uv, Fv , πv〉.
We set H ′

v := 〈Uv, Fv , π
′
v〉 where

π′v(x) := 〈πv0(x), . . . , πvm(x)〉 .

This labelling uses 1 + k + k2 + · · ·+ kn ≤ kn+1 port labels. Then

H ′
v = relab̺(H

′
u0

⊗Rv · · · ⊗Rv H
′
ud−1

) ,

where the function ̺ maps 〈a0, . . . , am, am+1〉 to 〈a0, . . . , am〉.

5Recently a closely related notion, called shrub-depth, was introduced in [13]. Its exact relation to strong
n-depth ⊗-width remains to be investigated.



32 A. BLUMENSATH AND B. COURCELLE

Lemma 5.22. Let G be a graph and (Hv)v∈T a ⊗-decomposition of G of width at most k.
Every vertex of T has less than Cut(G, k + 2k) immediate successors.

Proof. Suppose that Hv = 〈Uv , Fv, πv〉. Let v ∈ T be a vertex with immediate successors
u0, . . . , um−1. Hence,

Hv = Hu0 ⊗R · · · ⊗R Hum−1 ,

where ⊗R is the operation at v. Let C := G − Hv, i.e., the subgraph induced by the
complement of the set of vertices of Hv. We claim that

G = C ⊗R′ Hu0 ⊗R′ · · · ⊗R′ Hum−1 ,

for a suitable labelling ̺ : C → [k+2k] of C and a suitable relation R′ ⊆ [k+2k]× [k+2k].
This implies that m+ 1 ≤ Cut(G, k + 2k), as desired.

It remains to define ̺ and R′. Fix a bijection π0 : P([k]) → [2k] and set π(B) :=
π0(B) + k, for B ⊆ [k]. Defining

̺(x) := π({πv(y) | y ∈ Uv , (x, y) ∈ E }) , for x ∈ C ,

and R′ := R ∪ { (a, π(B)) | a ∈ [k], B ⊆ [k], a ∈ B } ,

we obtain G = C ⊗R′ Hu0 ⊗R′ · · · ⊗R′ Hum−1 .

We obtain the following characterisation of MSO1-orderable classes of bounded n-depth
⊗-width.

Theorem 5.23. Let C be a class of graphs such that, for some n, k ∈ N,

wd⊗n (G) ≤ k , for all G ∈ C .

The following statements are equivalent:

(1) C is MSO1-orderable.
(2) C has property CUT.
(3) There is a constant d ∈ N such that every G ∈ C has a ⊗-decomposition (Hv)v∈T of

height at most n and width at most k where every vertex of T has outdegree at most d.
(4) C is finite.

Proof. (4) ⇒ (1) is trivial and (1) ⇒ (2) follows from Corollary 5.8.
(2) ⇒ (3) Suppose that C has property CUT(f). Let G ∈ C and let (Hv)v∈T be a ⊗-

decomposition of G of height at most n and width at most k. Then it follows by Lemma 5.22
that every vertex of T has less than d := f(k + 2k) immediate successors.

(3) ⇒ (4) Since every tree of height at most n and maximal outdegree at most d has at
most 1 + (d− 1) + (d− 1)2 + · · ·+ (d− 1)n−1 < dn vertices, it follows that every graph in C
has at most that many elements.

We obtain the following extension of Corollary 5.16.

Corollary 5.24. For every n, k ∈ N, the class of all graphs of n-depth ⊗-width at most k
is hereditarily MSO1-unorderable.
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6. Reductions between difficult cases

In this section we consider classes of graphs for which the question of orderability is as hard
as in the general case.

Definition 6.1. Let G = 〈V,E〉 be a graph.
(a) The incidence graph of G is the graph Inc(G) := 〈V ∪E, I, P 〉 where the edge relation

I := inc ∪ inc−1 = { (x, y) | x is an end-vertex of y or y is an end-vertex of x }

is the symmetric version of the incidence relation and P := V is a unary relation identifying
the vertices of G.

(b) The incidence split graph of G is the graph IS(G) := 〈V ∪ E, J〉 where

J := I ∪ { (x, y) ∈ V × V | x 6= y }

and I is the symmetric incidence relation from (a). Note that IS(G) is a split graph.
(c) For a class of graphs C, we set

Inc(C) := { Inc(G) | G ∈ C } and IS(C) := { IS(G) | G ∈ C } . ♦

The proposition below suggests that obtaining a characterisation of MSO1-orderability
for classes of split graphs is as hard as obtaining one of MSO2-orderability for arbitrary
classes of graphs. We start with a technical lemma.

Lemma 6.2. Let C be a class of graphs.

(a) C has property SEP if, and only if, Inc(C) has property SEP.
(b) Inc(C) has property CUT if, and only if, IS(C) has property CUT.

Proof. (a) (⇐) Suppose that Inc(C) has property SEP(f), for some f : N → N. We claim
that C also has property SEP(f). Let G = 〈V,E〉 be a graph in C. To compute Sep(G, k)
consider a set S ⊆ V of cardinality |S| ≤ k. Let C0, . . . , Cm−1 be the connected components
of G − S. Then the connected components of Inc(G) − S are C ′

0, . . . , C
′
m−1, e0, . . . , en−1

where e0, . . . , en−1 is an enumeration of the edges of G[S] and C ′
i is the induced subgraph

of Inc(G) that is obtained from Inc(Ci) by adding (as vertices) all edges of G connecting a
vertex in S to some vertex of Ci. It follows that

Sep(G, k) ≤ Sep(Inc(G), k) ≤ f(k) .

(⇒) Suppose that C has property SEP(f), for some f : N → N. Let G = 〈V,E〉 be
a graph in C with Inc(G) = 〈V ∪ E, I, P 〉. To compute Sep(Inc(G), k) we consider a set
S ⊆ V ∪ E of size |S| ≤ k. For each edge e ∈ S ∩ E, we select one end-vertex. Let X be
the set of these end-vertices and set S′ := (S \ E) ∪ X. Then Inc(G) − S′ has at least as
many connected components as Inc(G) − S. Since S′ ⊆ V it follows by what we have seen

above that Inc(G)−S′ has at most m+
(
k
2

)
connected components, where m is the number

of connected components of G− S′. Consequently,

Sep(Inc(G), k) ≤ Sep(G, k) +
k

2
(k − 1) .

It follows that Inc(C) has property SEP(f ′) for the function f ′ such that f ′(k) = f(k) +
k
2 (k − 1).

(b) (⇒) Suppose that Inc(C) has property CUT(f), for some f : N → N. Let Inc(G) =
〈V ∪ E, I, P 〉 be a graph in Inc(C) and let IS(G) = 〈V ∪ E, J〉. To compute Cut(IS(G), k)
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suppose that

IS(G) = Del(H0 ⊗R · · · ⊗R Hm−1) ,

for k-labelled graphs H0, . . . ,Hm−1 and a relation R ⊆ [k]× [k]. Suppose that Hi = 〈Ui, Ji〉,
for i < m, and let πi be the labelling of Hi. We set H ′

i := 〈Ui, Ii, Pi〉 where Ii := Ji \ (V ×V )
and Pi := Ui ∩ V . We label H ′

i by

π′i(v) :=

{
πi(v) if v /∈ V ,

πi(v) + k if v ∈ V .

Then Inc(G) = Del(H ′
0 ⊗R′ · · · ⊗R′ H ′

m−1), where

R′ := { (x, y), (x + k, y), (x, y + k) | (x, y) ∈ R } .

Consequently, Cut(IS(G), k) ≤ Cut(Inc(G), 2k) ≤ f(2k).
(⇐) Suppose that IS(C) has property CUT(f), for some f : N → N. Let Inc(G) =

〈V ∪ E, I, P 〉 be a graph in Inc(C) and let IS(G) = 〈V ∪ E, J〉. To compute Cut(Inc(G), k)
suppose that

Inc(G) = Del(H0 ⊗R · · · ⊗R Hm−1) ,

for k-labelled graphs H0, . . . ,Hm−1 and a relation R ⊆ [k] × [k]. Suppose that Hi =
〈Ui, Ii, Pi〉, for i < m, and let πi be the labelling of Hi. We define the graph H ′

i := 〈Ui, Ji〉
where Ji := Ii ∪ { (x, y) | x, y ∈ Pi, x 6= y } with labelling

π′i(v) :=

{
πi(v) if v ∈ V ,

πi(v) + k if v /∈ V .

Then IS(G) = Del(H ′
0 ⊗R′ · · · ⊗R′ H ′

m−1), where

R′ := ([k]× [k]) ∪ { (x, y), (x + k, y), (x, y + k), (x + k, y + k) | (x, y) ∈ R } .

Consequently, Cut(Inc(G), k) ≤ Cut(IS(G), 2k) ≤ f(2k).

Proposition 6.3. Let C be a class of graphs.

(a) C is MSO2-orderable if, and only if, IS(C) is MSO1-orderable.
(b) C has property SEP if, and only if, IS(C) has property CUT.

Proof. (a) is a routine construction. (b) follows by the preceding lemma since Inc(C) is
2-sparse and, by Lemmas 5.10 and 5.12, such a class has property SEP if, and only if, it has
property CUT.

Corollary 6.4. Let P be a graph property such that a class of split graphs is MSO1-orderable
if, and only if, it has properties CUT and P. Then a class of arbitrary graphs is MSO2-
orderable if, and only if, it has properties SEP and IS−1(P).

Remark 6.5. (a) Characterising MSO2-orderable classes therefore amounts to character-
ising MSO1-orderable classes of split graphs contained in the image of the function IS.

(b) If C is a class of graphs with property SEP that is not MSO2-orderable, then IS(C)
is a class of split graphs with property CUT that is not MSO1-orderable. ♦

We also present a lemma suggesting that finding a characterisation of MSO1-orderability
for classes of bipartite graphs is as hard as finding a characterisation of MSO1-orderability
for arbitrary classes of graphs. We leave the proof – which is similar to the one above – to
the reader.
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Definition 6.6. For a graph G = 〈V,E〉 we define

BP(G) := 〈V × [4], E′〉

where

E′ :=
{
((x, 0), (y, 3))

∣∣ (x, y) ∈ E
}

∪
{
((x, i), (x, i + 1))

∣∣ x ∈ V, 0 ≤ i < 3
}
.

For classes C of graphs, we define BP(C) := {BP(G) | G ∈ C } as usual. ♦

Lemma 6.7. Let C be a class of graphs.

(a) C is MSO1-orderable if, and only if, BP(C) is MSO1-orderable.
(b) C has property CUT if, and only if, BP(C) has property CUT.

7. Conclusion

For arbitrary classes of graphs, it is difficult to obtain necessary and sufficient conditions
for MSOi-orderability, as there are many different ways to construct MSO-definable order-
ings depending on many different structural properties of the considered graphs. General
conditions should thus cover simultaneously a large number of possibilities. It is therefore
necessary to consider particular graph classes. We have obtained necessary and sufficient
conditions in Theorems 4.13, 4.29, 4.32, and 5.15 with corresponding decidability results for
the VR-equational classes of graphs.

Concerning future work, we think that the following questions should be fruitfully in-
vestigated:

(a) Does Conjecture 4.25 hold? We have already proved several special cases and more
cases seem to be within reach. It remains to be seen whether the full conjecture can be
solved.

(b) Which condition must be added to the property SEP to yield a necessary and
sufficient condition for MSO2-orderability of a class of cographs? And more generally, for
graph classes of bounded clique-width?

(c) What could be an extension of Theorem 5.15, say, for classes of ‘bounded strong
⊗-width’?

(d) Which operations do preserve MSOi-orderability? Candidates include the opera-
tions defining tree-width or clique-width, graph substitutions, and monadic second-order
transductions. We presented a few simple results in Proposition 3.4 and Remark 5.3, but it
should not be too hard to develop a more comprehensive theory.
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