
Logical Methods in Computer Science
Vol. 7 (2:14) 2011, pp. 1–36
www.lmcs-online.org

Submitted Feb. 2, 2009
Published May 20, 2011

KNOWLEDGE-BASED SYNTHESIS OF DISTRIBUTED SYSTEMS

USING EVENT STRUCTURES ∗

MARK BICKFORD a, ROBERT CONSTABLE b, JOSEPH Y. HALPERN c, AND SABINA PETRIDE d

Cornell University,Ithaca, NY 14853
e-mail address: {markb,rc,halpern,petride}@cs.cornell.edu

Abstract. To produce a program guaranteed to satisfy a given specification one can syn-
thesize it from a formal constructive proof that a computation satisfying that specification
exists. This process is particularly effective if the specifications are written in a high-level
language that makes it easy for designers to specify their goals. We consider a high-level
specification language that results from adding knowledge to a fragment of Nuprl specifi-
cally tailored for specifying distributed protocols, called event theory. We then show how
high-level knowledge-based programs can be synthesized from the knowledge-based specifi-
cations using a proof development system such as Nuprl. Methods of Halpern and Zuck
[20] then apply to convert these knowledge-based protocols to ordinary protocols. These
methods can be expressed as heuristic transformation tactics in Nuprl.

1. Introduction

Errors in software are extremely costly and disruptive. One approach to minimizing errors
is to synthesize programs from specifications. Synthesis methods have produced highly reli-
able moderate-sized programs in cases where the computing task can be precisely specified.
One of the most elegant synthesis methods is the use of so-called correct-by-construction
program synthesis (see, e.g., [5, 10, 12, 13, 14, 25]. Here programs are constructed from
proofs that the specifications are satisfiable. That is, a constructive proof that a specifi-
cation is satisfiable gives a program that satisfies the specification. This method has been
successfully used by several research groups and companies to construct large complex se-
quential programs; and it has been used to synthesize distributed protocols such as Paxos
[22], and various authentication protocols (see www.nuprl.org).

1998 ACM Subject Classification: F.3.1, F.3.2, F.4.1.
Key words and phrases: Epistemic logic, automated program synthesis, distributed automata, NuPRL.

∗ A preliminary version of this paper appeared in Proceedings of the 11th International Conference on
Logic for Programming, Artificial Intelligence, and Reasoning LPAR 2004, pp. 449-465.
a Supported in part by AF-AFOSR F49620-02-1-0170.
b Supported in part by ONR N00014-02-1-0455 and NSF 0208535.

c,d Supported in part by NSF under grants ITR-0325453, CCR-0208535, IIS-0534064, and IIS-0812045, by
ONR under grant N00014-02-1-0455, by the DoD Multidisciplinary University Research Initiative (MURI)
program administered by ONR under grants N00014-01-1-0795 and N00014-04-1-0725, and by AFOSR under
grants F49620-02-1-0101 and FA9550-05-1-0055.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-7 (2:14) 2011

c© M. Bickford, R. Constable, J. Y. Halpern, and S. Petride
CC© Creative Commons

http://creativecommons.org/about/licenses

2 M. BICKFORD, R. CONSTABLE, J. Y. HALPERN, AND S. PETRIDE

The Cornell Nuprl proof development system was among the first tools used to create
correct-by-construction functional and sequential programs [12]. Nuprl has also been used
extensively to optimize distributed protocols [30], and to formalize them in the language of
I/O Automata [7]. Recent work by two of the authors [11] has resulted in the definition of a
fragment of the higher-order logic used by Nuprl tailored to specifying distributed protocols,
called event theory, and the extension of Nuprl methods to synthesize distributed protocols
from specifications written in event theory [11]. Moreover, the current version of the Nuprl
prover is itself a distributed system [3].

However, as has long been recognized [19], designers typically think of specifications at
a high level, which often involves knowledge-based statements. For example, the goal of a
program might be to guarantee that a certain process knows certain information. It has
been argued that a useful way of capturing these high-level knowledge-based specifications
is by using high-level knowledge-based programs [19, 18]. Knowledge-based programs are
an attempt to capture the intuition that what an agent does depends on what it knows.
For example, a knowledge-based program may say that process 1 should stop sending a
bit to process 2 once process 1 knows that process 2 knows the bit. Such knowledge-based
programs and specifications have been given precise semantics by Fagin et al. [19, 18]. They
have already met with some degree of success, having been used both to help in the design
of new protocols and to clarify the understanding of existing protocols [15, 20, 27].

In this paper, we add knowledge operators to event theory raising its level of abstraction
and show by example that knowledge-based programs can be synthesized from constructive
proofs that specifications in event theory with knowledge operators are satisfiable. Our
example uses the sequence-transmission problem (STP), where a sender must transmit a
sequence of bits to a receiver in such a way that the receiver eventually knows arbitrarily
long prefixes of the sequence. Halpern and Zuck [20] provide knowledge-based programs for
the sequence-transmission problem, prove them correct, and show that many standard pro-
grams for the problem in the literature can be viewed as implementations of their high-level
knowledge-based programs. Here we show that one of these knowledge-based programs can
be synthesized from the specifications of the problem, expressed in event theory augmented
by knowledge. We can then translate the arguments of Halpern and Zuck to Nuprl, to show
that the knowledge-based program can be transformed to the standard programs in the
literature. This paper relies heavily on prior work on knowledge-based programs of Halpern
et al. [19, 18, 20]; the novelty lies in offering a proof of concept that knowledge-based speci-
fications and programs can be formulated in a constructive logic, and that knowledge-based
programs can be synthesized in a semi-automatic system like Nuprl.

Engelhardt, van der Meyden, and Moses [16, 17] have also provided techniques for
synthesizing knowledge-based programs from knowledge-based specifications, by successive
refinement. We see their work as complementary to ours. Since our work is based on Nuprl,
we are able to take advantage of the huge library of tactics provided by Nuprl to be able to
generate proofs. The expressive power of Nuprl also allows us to formalize all the high-level
concepts of interest (both epistemic and temporal) easily. Engelhardt, van der Meyden, and
Moses do not have a theorem-proving engine for their language. However, they do provide
useful refinement rules that can easily be captured as tactics in Nuprl.

The paper is organized as follows. In the next section we give a brief overview of
the Nuprl system, review event theory, discuss the type of programs we use (distributed
message automata), and show how automata can be synthesized from a specification. In
Section 3 we review epistemic logic, show how it can be translated into Nuprl, and show how

KNOWLEDGE-BASED SYNTHESIS OF DISTRIBUTED SYSTEMS USING EVENT STRUCTURES ∗ 3

knowledge-based automata can be captured in Nuprl. The sequence-transmission problem
is analyzed in Section 4. We conclude with a discussion of related work and future research
in Section 5.

2. Synthesizing programs from constructive proofs

2.1. Nuprl: a brief overview. Much current work on formal verification using theorem
proving, including Nuprl, is based on type theory (see [3] for a recent overview). A type can
be thought of as a set with structure that facilitates its use as a data type in computation;
this structure also supports constructive reasoning. The set of types is closed under the
product space and function constructors × and →, so that if A and B are types, so are
A× B and A → B , where, intuitively, A → B represents the computable functions from A
into B .

Constructive type theory (also called computational type theory), on which Nuprl is
based, was developed to provide a foundation for computer science and constructive math-
ematics. The key feature of constructive mathematics is that “there exists” is interpreted
as “we can construct (a proof of)”. Reasoning in the Nuprl type theory is intuitionistic [8],
in the sense that proving a certain fact is understood as constructing evidence for that fact.
For example, a proof of the fact that “there exists x of type A” builds an object of type
A, and a proof of the fact “for any object x of type A there exists an object y of type B
such that the relation R(x, y) holds” builds a function f that associates with each object a
of type A an object b of type B such that R(a, b) holds.

One consequence of this approach is that the principle of excluded middle does not
apply: while in classical logic, ϕ ∨ ¬ϕ holds for all formulas ϕ, in constructive type theory,
it holds exactly when we have evidence for either ϕ or ¬ϕ, and we can tell from this evidence
which of ϕ and ¬ϕ it supports. A predicate Determinate is definable in Nuprl such that
Determinate(ϕ) is true iff the principle of excluded middle holds for formula ϕ. (From here
on in, when we say that a formula is true, we mean that it is constructively true, that is,
provable in Nuprl.)

In this paper, we focus on synthesizing programs from specifications. Thus we must
formalize these notions in Nuprl. As a first step, we define a type Pgm in Nuprl and take
programs to be objects of type Pgm. Once we have defined Pgm, we can define other types
of interest. These definitions rely on a formalization of the notion of executions consistent
with a program, that is, executions that could have been generated by running the program.
As will be clear in the next sections, we can formally define in Nuprl a notion of consistency
for the programs and executions considered in this paper.

Definition 2.1.: A program semantics is a function S of type Pgm → Sem assigning to
each program Pg of type Pgm a meaning of type Sem = 2Sem

′

, where Sem ′ is the type of
executions consistent with the program Pgm under the semantics S . A specification is a
predicate X on Sem ′. A program Pg satisfies the specification X if X (e) holds for all e in
S (Pg). A specification X is satisfiable if there exists a program that satisfies X .

As Definition 2.1 suggests, all objects in Nuprl are typed. To simplify our discussion,
we typically suppress the type declarations. Definition 2.1 shows that the satisfiability of
a specification is definable in Nuprl. The key point for the purposes of this paper is that
from a constructive proof that X is satisfiable, we can extract a program that satisfies X .

4 M. BICKFORD, R. CONSTABLE, J. Y. HALPERN, AND S. PETRIDE

Theoremhood in constructive type theory is highly undecidable, so we cannot hope to
construct a proof completely automatically. However, experience has shown that, by having
a large library of lemmas and proof tactics, it is possible to “almost” automate quite a few
proofs, so that with a few hints from the programmer, correctness can be proved. For this
general constructive framework to be useful in practice, the parameters Pgm, Sem ′, and S
must be chosen so that (a) programs are concrete enough to be compiled, (b) specifications
are naturally expressed as predicates over Sem ′, and (c) there is a small set of rules for
producing proofs of satisfiability.

To use this general framework for synthesis of distributed, asynchronous algorithms,
we choose the programs in Pgm to be distributed message automata. Message automata
are closely related to IO-Automata [23] and are similar to UNITY programs [9] (but with
message-passing rather than shared-variable communication). We describe distributed mes-
sage automata in Section 2.3. As we shall see, they satisfy criterion (a).

The semantics of a program is the system, or set of runs, consistent with it. Typical
specifications in the literature are predicates on runs. We can view a specification as a
predicate on systems by saying that a system satisfies a specification exactly if all the runs
in the system satisfy it. To meet criterion (b), we formalize runs as structures that we call
event structures, much in the spirit of Lamport’s [21] model of events in distributed systems.
Event structures are explained in more detail in the next section. We have shown [11] that,
although satisfiability is undecidable, there is indeed a small set of rules from which we can
prove satisfiability in many cases of interest; these rules are discussed in Section 2.3.

2.2. Event structures. Consider a set AG of processes or agents; associated with each
agent i in AG is a set Xi of local variables. Agent i’s local state at a point in time is defined
as the values of its local variables at that time. We assume that the sets of local variables
of different agents are disjoint. Information is communicated by message passing. The set
of links is Links . Sending a message on some link l ∈ Links is understood as enqueuing the
message on l , while receiving a message corresponds to dequeuing the message. Commu-
nication is point-to-point: for each link l there is a unique agent source(l) that can send
messages on l , and a unique agent dest(l) that can receive message on l . For each agent i
and link l with source(l) = i, we assume that msg(l) is a local variable in Xi. Intuitively,
sending a message m will be identified with setting the variable msg(l) to m 6= ⊥.

We assume that communication is asynchronous, so there is no global notion of time.
Following Lamport [21], changes to the local state of an agent are modeled as events.
Intuitively, when an event “happens”, an agent either sends a message, receives a message
or chooses some values (perhaps nondeterministically). As a result of receiving the message
or the (nondeterministic) choice, some of the agent’s local variables are changed.

Lamport’s theory of events is the starting point of our formalism. To help in writing
concrete and detailed specifications, we add more structure to events. Formally, an event
is a tuple with three components. The first component of an event e is an agent i ∈ AG,
intuitively the agent whose local state changes during event e. We denote i as agent(e).
The second component of e is its kind, which is either a link l with dest(l) = i or a local
action a, an element of some given set Act of local actions. The only actions in Act are
those that set local variables to certain values. We denote this component as kind(e). We
often write kind(e) = rcv(l) rather than kind(e) = l to emphasize the fact that e is a receive
event; similarly we write kind(e) = local (a) rather than kind(e) = a to emphasize the fact
that a is a local action. The last component of e is its value v , a tuple of elements in some

KNOWLEDGE-BASED SYNTHESIS OF DISTRIBUTED SYSTEMS USING EVENT STRUCTURES ∗ 5

domain Val ; we denote this component as val(e). If e is a receive event, then val(e) is the
message received when e occurs; if e is a local event a, then val(e) represents the tuple of
values to which the variables are set by a. (For more details on the reasons that led to this
formalism, see [6].)

Rather than having a special kind to model send events, we model the sending of a
message on link l by changing the value of the local variable msg(l) that describes the
message sent on l. A special value ⊥ indicates that no message is sent when the event
occurs; changing msg(l) to a value other than ⊥ indicates that a message is sent on l .
This way of modeling send events has proved to be convenient. One advantage is that we
can model multicast: the event e of i broadcasting a message m to a group of agents just
involves a local action that sets msg(l) to m for each link l from i to one of the agents in
the group. Similarly, there may be an action in which agent i sends a message to some
agents and simultaneously updates other local variables.

Following Lamport [21], we model an execution of a distributed program as a sequence
of events satisfying a number of natural properties. We call such a sequence an event
structure.1 We take an event structure es to be a tuple consisting of a set E of events
and a number of additional elements that we now describe. These elements include the
functions dest, source, and msg referred to above, but there are others. For example,
Lamport assumes that every receive event e has a corresponding (and unique) event where
the message received at e was sent. To capture this in our setting, we assume that the
description of the event structure es includes a function send whose domain is the receive
events in es and whose range is the set of events in es; we require that agent(send(e)) =
source(l) if kind(e) = rcv(l). Note that, since we allow multicasts, different receive events
may have the same corresponding send event.

For each i ∈ AG, we assume that the set of events e in es associated with i is totally
ordered. This means that, for each event e, we can identify the sequence of events (history)
associated with agent i that preceded e. To formalize this, we assume that, for each agent
i ∈ AG, the description of es includes a total order ≺i on the events e in es such that
agent(e) = i. Define a predicate first and function pred such that first(e) holds exactly
when e is the first event in the history associated with agent(e) in es; if first(e) does not
hold, then pred (e) is the unique predecessor of e in es. Following Lamport [21], we take ≺
to be the least transitive relation on events in es such that send(e)≺e if e is a receive event
and e≺e′ if e≺ie

′. We assume that ≺ is well-founded. We abbreviate (e′≺e) ∨ (e = e′) as
e ′�e, or e�e′. Note that ≺i is defined only for events associated with agent i: we write
e≺ie

′ only if agent(e) = agent(e′) = i.
The local state of an agent defines the values of all the variables associated with the

agent. While it is possible that an event structure contains no events associated with a
particular agent, for ease of exposition, we consider only event structures in which each
agent has at least one local state, and denote the initial local state of agent i as initstate i.
(Note that one way to ensure this is to assume that each local variable has an initial value;
the initial state is the state that assigns each local variable its initial value.) In event
structures es where at least one event associated with a given agent i occurs, initstate i
represents i’s local state before the first event associated with i occurs in es . Formally, the
local state of an agent i is a function that maps Xi and a special symbol vali to values. (The
role of vali will be explained when we give the semantics of the logic.) If x ∈ Xi, we write

1We use the term sequence as a simplification. As explained in the remainder of the section, just as for
Lamport, executions are technically partial orders on events respecting local orders and causality.

6 M. BICKFORD, R. CONSTABLE, J. Y. HALPERN, AND S. PETRIDE

s(x) to denote the value of x in i’s local state s. Similarly, s(vali) is the value of vali in
s. If agent(e) = i, we take state before e to be the local state of agent i before e; similarly,
state after e denotes i’s local state after event e occurs. The value (state after e)(x) is in
general different from (state before e)(x). How it differs depends on the event e, and will be
clarified in the semantics. We assume that (state after e)(vali) = val(e); that is, the value
of the special symbol vali in a local state is just the value of the event that it follows. If
x ∈ Xi, we take x before e to be an abbreviation for (state before e)(x); that is, the value of
x in the state before e occurs; similarly, x after e is an abbreviation for (state after e)(x).

Example 2.2.: Suppose that Act contains send and send+inc(x), where x ∈ Xi, and that
V al contains the natural numbers. Let n and v be natural numbers. Then

• the event of agent i receiving message m on link l in the event structure es is modeled
by the tuple e = (i, l,m), where agent(e) = i, kind(e) = rcv(l), and val(e) = m;

• the event of agent i sending message m on link l in es is represented by the tuple
e = (i, send ,m), where msg(l) after e = m;

• the event e of agent i sending m on link l and incrementing its local variable x by v
in es is represented by the tuple e such that agent(e) = i, kind(e) = send+inc(x), and
val(e) = 〈m, v′〉, where msg(l) after e = m and x after e = x before e+ v = v′.

Definition 2.3.: An event structure is a tuple

es = 〈AG ,Links , source , dest ,Act , {Xi}i∈AG ,Val , {initstate i}i∈AG , E, agent ,
send ,first , {≺i}i∈AG ,≺〉

where AG is a set of agents, Links is a set of links such that source : Links −→ AG ,
dest : Links −→ AG, Act is a set of actions, Xi is a set of variables for agent i ∈ AG
such that, for all links l ∈ Links, msg(l) ∈ Xi if i = source(l), Val is a set of values,
initstate i is the initial local state of agent i ∈ AG, E is a set of events for agents AG ,
kinds Kind = Links ∪ Act , and domain Val , functions agent , send and first are defined as
explained above, ≺is are local precedence relations and ≺ is a causal order such that the
following axioms, all expressible in Nuprl, are satisfied:

• if e has kind rcv(l), then the value of e is the message sent on l during event send(e),
agent(e) = dest(l), and agent(send(e)) = source(l):

∀e ∈ es.∀l . (kind(e) = rcv(l)) ⇒
(val(e) = msg(l) after send(e)) ∧ (agent(e) = dest(l)) ∧ (agent(send(e)) = source(l)).

2

• for each agent i , events associated with i are totally ordered:

∀e ∈ es.∀e′ ∈ es.(agent(e) = agent(e′) = i⇒ e≺ie
′ ∨ e′≺ie ∨ e = e′).

• e is the first event associated with agent i if and only if there is no event associated with
i that precedes e:

∀e ∈ es ∀i . (agent(e) = i) ⇒ (first(e) ⇔ ∀e ′ ∈ es. ¬(e ′≺ie)).

• the initial local state of agent i is the state before the first event associated with i, if any:

∀i . (∀e ∈ es. (agent(e) = i ⇒ (first(e) ⇔ (state before e = initstate i)))).

2For simplicity, in the remainder of this paper, we abuse notation and write e ∈ es to indicate that e is
an event that occurs in es.

KNOWLEDGE-BASED SYNTHESIS OF DISTRIBUTED SYSTEMS USING EVENT STRUCTURES ∗ 7

• the predecessor of an event e immediately precedes e in the causal order:

∀e ∈ es. ∀i . ((agent(e) = i) ∧ ¬first(e)) ⇒
((pred (e)≺ie) ∧ (∀e ′ ∈ es. ¬(pred(e)≺ie

′≺ie))).

• the local variables of agent agent(e) do not change value between the predecessor of e
and e:

∀e ∈ es. ∀i . (agent(e) = i ∧ ¬first(e)) ⇒
∀x ∈ Xi . (x after pred (e) = x before e).

• the causal order ≺ is well-founded:

∀P . (∀e. (∀e ′≺e. P(e ′)) ⇒ P(e)) ⇒ (∀e. P(e)),

where P is an arbitrary predicate on events. (It is easy to see that this axiom is sound if
≺ is well-founded. On the other hand, if ≺ is not well-founded, then let P be a predicate
that is false exactly of the events e such that there is an infinite descending sequence
starting with e. In this case, the antecedent of the axiom holds, and the conclusion does
not.)

In our proofs, we will need to argue that two events e and e′ are either causally related
or they are not. It can be shown [11] that this can be proved in constructive logic iff the
predicate first satisfies the principle of excluded middle. We enforce this by adding the
following axiom to the characterization of event structures:

∀e ∈ es. Determinate(first(e)).

The set of event structures is definable in Nuprl (see [11]). We use event structures to
model executions of distributed systems. We show how this can be done in the next section.

2.3. Distributed message automata. As we said, the programs we consider are message
automata. Roughly speaking, we can think of message automata as nondeterministic state
machines, though certain differences exist. Each basic message automaton is associated
with an agent i ; a message automaton associated with i essentially says that, if certain
preconditions hold, i can take certain local actions. (We view receive actions as being out
of the control of the agent, so the only actions governed by message automata are local
actions.) At each point in time, i nondeterministically decides which actions to perform,
among those whose precondition is satisfied. We next describe the syntax and semantics of
message automata.

2.3.1. Syntax. We consider a first-order language for tests in automata. Fix a set AG of
agents, a set Xi of local variables for each agent i in AG, and a set X∗ of variables that
includes ∪i∈AGXi (but may have other variables as well). The language also includes special
constant symbols vali, one for each agent i ∈ AG, predicate symbols in some finite set P ,
and function symbols in some finite set F . Loosely speaking, vali is used to denote the
value of an event associated with agent i; constant symbols other than val1, . . . ,valn are
just 0-ary function symbols in F . We allow quantification only over variables other than
local variables; that is, over variables x /∈ ∪i∈AGXi. Allowing non-local variables is not an
artificial generalization; just by looking at a few classic distributed problems, we can see
that non-local variables are ubiquitous. For example, in a problem where each agent has an
input variable and the goal is for agents to compute an aggregate of the local inputs, the
aggregate is a non-local variable.

8 M. BICKFORD, R. CONSTABLE, J. Y. HALPERN, AND S. PETRIDE

Message automata are built using a small set of basic programs, which may involve
formulas in the language above. Fix a set Act of local actions and a set Links of links
between agents in AG.3 There are five types of basic programs for agent i:

• @i initially ψ;
• @i if kind = k then x := t, where k ∈ Act ∪ Links and x ∈ Xi;
• @i kind = local (a) only if ϕ;
• @i if necessarily ϕ then i.o. kind = local (a); and
• @i only events in L affect x, where L is a list of kinds in Act ∪ Links and x ∈ Xi.

Note that all basic programs for agent i are prefixed by @i.
We can form more complicated programs from simpler programs by composition. We

can compose automata associated with different or same agents. (Note that, since message
automata associated with same agent can be composed in our language, we are not relying
on a standard notion of parallel composition.) Thus, the set (type) Pgm of programs is the
smallest set that includes the basic programs such that if Pg1 and Pg2 are programs, then
so is Pg1 ⊕ Pg2.

4

Readers familiar with UNITY [9] will see some obvious similarities. In UNITY, a
program consists of an initial condition on a global state, a set of guarded assignment
statements that update this state non-deterministically as if running an unbounded loop,
and a set of allowed actions. As we said earlier, communication occurs through reading and
writing shared variables (rather than by message passing, as in Nuprl). States in Nuprl are
also considerably more expressive than those used in UNITY.

2.3.2. Semantics. We give semantics by associating with each program the set of event
structures consistent with it. Intuitively, a set of event structures is consistent with a
distributed message automaton if each event structure in the set is generated from an
execution of the automaton. The semantics can be defined formally in Nuprl as a relation
between a distributed program Pg and an event structure es. In this section, we define the
consistency relation for programs and give the intuition behind these programs.

In classical logic, we give meaning to formulas using an interpretation, that is, an
interpretation consists of a domain and an assignment of each predicate and function symbol
to a predicate and function, respectively, over that domain. In the Nuprl setting, we are
interested in constructive interpretations I, which can be characterized by a formula ϕI .
We can think of ϕI as characterizing a domain Val I and the meaning of the function and
predicate symbols. If I is an interpretation with domain Val I , an I-local state for i maps
Xi ∪ {vali} to Val I ; an I-global state is a tuple of I-local states, one for each agent in AG .
Thus, if s = (s1, . . . , sn) is an I-global state, then si is i’s local state in s. (Note that we
previously used s to denote a local state, while here s denotes a global state. We will always
make it clear whether we are referring to local or global states.)

For consistency with our later discussion of knowledge-based programs, we allow the
meaning of some predicate and function symbols that appear in tests in programs to depend
on the global state. We say that a function or predicate symbol is rigid if it does not depend
on the global state. For example, if the domain is the natural numbers, we will want to
treat +, ×, and < as rigid. However, having the meaning of a function or predicate depend

3We are being a little sloppy here, since we do not distinguish between an action a and the name for the
action that appears in a program, and similarly for links and the variables in Xi.

4Here we are deliberately ignoring the difference between sets and types.

KNOWLEDGE-BASED SYNTHESIS OF DISTRIBUTED SYSTEMS USING EVENT STRUCTURES ∗ 9

on the global state is not quite as strange as it may seem. For example, we may want to
talk about an array whose values are encoded in agent 1’s variables x1, x2, and x3. An
array is just a function, so the interpretation of the function may change as the values of x1,
x2, and x3 change. For each nonrigid predicate symbol P ∈ P and function symbol f ∈ F ,
we assume that there is a predicate symbol P+ and function symbol f+ whose arity is one
more than that of P (resp., f); the extra argument is a global state. We then associate
with every formula ϕ and term t that appears in a program a formula ϕ+ and term t+ in
the language of Nuprl. We define ϕ+ by induction on the structure of ϕ. For example, for
an atomic formula such as P (c), if P and c are rigid, then (P (c))+ is just P (c). If P and
c are both nonrigid, then (P (c))+ is P+(c+(s), s), where s is interpreted as a global state.5

We leave to the reader the straightforward task of defining ϕ+ and t+ for atomic formulas
and terms. We then take (ϕ ∧ ψ)+ = ϕ+ ∧ ψ+, (¬ϕ)+ = ¬ϕ+, and (∀xϕ)+ = ∀xϕ+.

An I-valuation V associates with each non-local variable (i.e., variable not in ∪i∈AGXi)
a value in Val I . Given an interpretation I, an I-global state s, and an I-valuation V , we
take IV (ϕ)(s) to be an abbreviation for the formula (expressible in Nuprl) that says ϕI

together with the conjunction of atomic formulas of the form x = V (x) for all non-local
variables x that appear in ϕ, x = si(x) for variables x ∈ Xi, i ∈ AG , that appear in ϕ, and
s = s implies ϕ+. Thus, IV (ϕ)(s) holds if there is a constructive proof that the formula
that characterizes I together with the (atomic) formulas that describe V (x) and s, and a
formula that says that s is represented by s, imply ϕ+. It is beyond the scope of this paper
(and not necessary for what we do here) to discuss constructive proofs in Nuprl; details can
be found in [12]. However, it is worth noting that, for a first-order formula ϕ, if IV (ϕ)(s)
holds, then ϕ+ is true in state s with respect to the semantics of classical logic in I. The
converse is not necessarily true. Roughly speaking, IV (ϕ)(s) holds if there is evidence for
the truth of ϕ+ in state s (given valuation V). We may have evidence for neither ϕ+ nor
¬ϕ+.

A formula ϕ is an i-formula in interpretation I if its meaning in I depends only in
i’s local state; that is, for all global states s and s′ such that si = s′i, IV (ϕ)(s) holds iff
IV (ϕ)(s

′) does. Similarly, t is an i-term in I if x = t is an i-formula in I, for x a non-local
variable. It is easy to see that ϕ is an i-formula in all interpretations I if all the predicate
and function symbols in ϕ are rigid, and ϕ does not mention variables in Xj for j 6= i and
does not mention the constant symbol valj for j 6= i. Intuitively, this is because if we have a
constructive proof that ϕ holds in s with respect to valuation V , and ϕ is an i-formula, then
all references to local states of agents other than i can be safely discarded from the argument
to construct a proof for ϕ based solely on si. If ϕ is an i-formula, then we sometimes abuse
notation and write IV (ϕ)(si) rather than IV (ϕ)(s). Note that the valuation V is not needed
for interpreting formulas whose free variables are all local; in particular, V is not needed
to interpret i-formulas. For the rest of this paper, if the valuation is not needed, we do
not mention it, and simply write I(ϕ). Given a formula ϕ and term t, we can easily define
Nuprl formulas i-formula(ϕ,I) and i-term(t,I) that are constructively provable if ϕ is an
i-formula in I (resp., t is an i-term in I).

We define a predicate ConsistentI on programs and event structures such that, intu-
itively, Consistent I (Pg , es) holds if the event structure es is consistent with program Pg ,
given interpretation I. We start with basic programs. The basic program @i initially ψ
is an initialization program, which is intended to hold in an event structure es if ψ is an

5Since Nuprl is a higher-order language, there is no problem having a variable ranging over global states
that is an argument to a predicate.

10 M. BICKFORD, R. CONSTABLE, J. Y. HALPERN, AND S. PETRIDE

i-formula and i’s initial local state satisfies ψ. Thus,

Consistent I(@i initially ψ, es) =def i-formula(ψ, I) ∧ I(ψ)(initstate i).

(This notation implicitly assumes that initstate i is as specified by es, according to Defini-
tion 2.1. For simplicity, we have opted for this notation instead of es .initstate i.)

We call a basic program of the form @i if kind = k then x := t an effect program. It
says that, if t is an i-term, then the effect of an event e of kind k is to set x to t. We define

Consistent I(@i if kind = k then x := t, es) =def

i-term(t, I) ∧ ∀e@i ∈ es. (kind(e) = k ⇒ (state after e)(x) = I (t)(state before e)),

where we write ∀e@i ∈ es. ϕ as an abbreviation for ∀e ∈ es.agent(e) = i⇒ ϕ. The notation
above implicitly assumes that before and after are as specified by es. Again, this expression
is an abbreviation for a formula expressible in Nuprl whose intended meaning should be
clear; Consistent I(@i if kind = k then x := t, es) holds if there is a constructive proof of
the formula.

We can use a program of this type to describe a message sent on a link l. For example,

@i kind = local (a) then msg(l) := f(vali)

says that for all events e, f(v) is sent on link l if the kind of e is a, the local state of agent
i before e is si, and v = si(vali).

The third type of program, @i kind = local (a) only if ϕ, is called a precondition
program. It says that an event of kind a can occur only if the precondition ϕ (which must
be an i-formula) is satisfied:

Consistent I(@i kind = local (a) only if ϕ, es) =def

i-formula(ϕ, I) ∧ ∀e@i ∈ es. (kind(e) = local (a) ⇒ I(ϕ)(state before e)).

Note that we allow conditions of the form kind(e) = local (a) here, not the more general
condition of the form kind(e) = k allowed in effect programs. We do not allow conditions of
the form kind(e) = rcv(l) because we assume that receive events are not under the control
of the agent.

Standard formalizations of input-output automata (see [23]) typically assume that ex-
ecutions satisfy some fairness constraints. We assume here only a weak fairness constraint
that is captured by the basic program @i if necessarily ϕ then i.o. kind = local (a), which
we call a fairness program. Intuitively, it says that if ϕ holds from some point on, then
an event with kind local (a) will eventually occur. For an event sequence with only finitely
many states associated with i, we take ϕ to hold “from some point on” if ϕ holds at the
last state. In particular, this means that the program cannot be consistent with an event
sequence for which there are only finitely many events associated with i if ϕ holds of the
last state associated with i. Define

Consistent I(@i if necessarily ϕ then i.o. kind = local (a), es) =def

i-formula(ϕ, I)∧
[((∃e@i ∈ es) ∧ ∀e@i ∈ es . ∃e′ �i e. I(¬ϕ)(state after e′) ∨ (kind(e′) = local (a)))
∨ (¬(∃e@i ∈ es) ∧ I(¬ϕ)(initstate i))].

The last type of basic program, @i only events in L affect x, is called a frame program.
It ensures that only events of kinds listed in L can cause changes in the value of variable x .

KNOWLEDGE-BASED SYNTHESIS OF DISTRIBUTED SYSTEMS USING EVENT STRUCTURES ∗ 11

The precise semantics depends on whether x has the form msg(l). If x does not have the
form msg(l), then

ConsistentI(@i only events in L affect x,es) =def

∀e@i ∈ es. ((x after e) 6= (x before e)⇒(kind(e) ∈ L)).

If x has the form msg(l), then we must have source(l) = i. Recall that sending a message
m on l is formalized by setting the value of msg(l) to m. We assume that messages are
never null (i.e., m 6= ⊥). No messages are sent during event e if msg(l)after e = ⊥. If x
has the form msg(l), then

Consistent I(@i only events in L affect msg(l),es) =def

∀e@i ∈ es. ((msg(l) after e 6= ⊥)⇒(kind(e) ∈ L)).

Finally, an event structure es is said to be consistent with a distributed program Pg that
is not basic if es is consistent with each of the basic programs that form Pg:

Consistent I(Pg1 ⊕ Pg2, es) =def Consistent I(Pg1, es) ∧ Consistent I(Pg2, es).

Definition 2.4.: Given an interpretation I, the semantics of a program Pg is the set of
event structures consistent with Pg under interpretation I. We denote by SI this semantics
of programs: SI (Pg) = {es | Consistent I (Pg , es)}. We write Pg |≈I X if Pg satisfies X
with respect to interpretation I; that is, if X (es) is true for all es ∈ SI (Pg)).

Note that SI (Pg1 ⊕ Pg2) = SI (Pg1) ∩ SI (Pg2). Since the Consistent I predicate is de-
finable in Nuprl, we can formally reason in Nuprl about the semantics of programs.

A specification is a predicate on event structures. Since our main goal is to derive from
a proof that a specification X is satisfiable by a program that satisfies X , we want to rule
out the trivial case where the derived program Pg has no executions, so that it vacuously
satisfies the specification X .

Definition 2.5.: Program Pg is consistent (with respect to interpretation I) if SI(Pg) 6= ∅.
The specification X is realizable (with respect to interpretation I) if it is not vacuously
satisfied, that is, if ∃Pg .(Pg |≈I X∧SI(Pg) 6= ∅). Pg realizes X (with respect to I) if
Pg |≈I X and Pg is consistent (with respect to I).

Thus, a specification is realizable if there exists a consistent program that satisfies it,
and, given an interpretation I, a program is realizable if there exists an event structure
consistent with it (with respect to I). Since we reason constructively, this means that a
program is realizable if we can construct an event structure consistent with the program.
This requires not only constructing sequences of events, one for each agent, but all the other
components of the event structure as specified in Definition 2.3, such as AG and Act .

All basic programs other than initialization and fairness programs are vacuously satis-
fied (with respect to every interpretation I) by the empty event structure es consisting of
no events. The empty event structure is consistent with these basic programs because their
semantics in defined in terms of a universal quantification over events associated with an
agent. It is not hard to see that an initialization program @i initially ψ is consistent with
respect to interpretation I if and only if ψ is satisfiable in I; i.e., there is some global state
s such that I(ψ)(si) holds. For if es is an event structure with initstatei = si, then clearly
es realizes @i initially ψ.

Fair programs are realizable with respect to interpretations I where the precondition
ϕ satisfies the principle of excluded middle (that is, ϕI ⇒ Determinate(ϕ+) is provable

12 M. BICKFORD, R. CONSTABLE, J. Y. HALPERN, AND S. PETRIDE

in Nuprl), although they are not necessarily realized by a finite event structure. To see
this, note that if ϕ satisfies the principle of excluded middle in I, then either there is an
I-local state s∗i for agent i such that I(¬ϕ)(s∗i) holds, or I(ϕ)(si) holds for all I-local states
si for i. In the former case, consider an empty event structure es with domain ValI and
initstate i = s∗i ; it is easy to see that es is consistent with @i if necessarily ϕ then

i.o. kind = local (a). Otherwise, let Act = {a}. Let es be an event structure where Act
is the set of local actions, Val I is the set of values, the sequence of events associated with
agent i in es is infinite, and all events associated with agent i have kind local (a). Again, it
is easy to see that es is consistent with @i if necessarily ϕ then i.o. kind = local (a).

If ϕ does not satisfy the principle of excluded middle in I, then

@i if necessarily ϕ then i.o. kind = local (a)

may not be realizable with respect to I. This would be the case if, for example, neither
I(ϕ)(si) nor I(¬ϕ)(si) holds for any local state si.

Note that two initialization programs may each be consistent although their composition
is not. For example, if both ψ and ¬ψ are satisfiable i-formulas, then each of @i initially ψ
and @i initially ¬ψ is consistent, although their composition is not. Nevertheless, all
programs synthesized in this paper can be easily proven consistent.

2.3.3. Axioms. Constable and Bickford [11] derived from the formal semantics of distributed
message automata some Nuprl axioms that turn out to be useful for proving the satisfiability
of a specification. We now present (a slight modification of) their axioms. The axioms have
the form Pg |≈I X, where Pg is a program and X is a specification, that is, a predicate
on event structures; the axiom is sound if all event structures es consistent with program
Pg under interpretation I satisfy the specification X. We write |≈I to make clear that
the program semantics is given with respect to an interpretation I. There is an axiom for
each type of basic program other than frame programs, two axioms for frame programs
(corresponding to the two cases in the semantic definition of frame programs), together
with an axiom characterizing composition and a refinement axiom.

Ax-init::

@i initially ψ |≈I λes. i -formula(ψ, I) ∧ I (ψ)(initstate i).

(Note that the right-hand side of |≈ is a specification; given an event structure es, it is
true if i-formula(ψ, I) ∧ I(ψ)(initstate i) holds in event structure es .)

Ax-cause::

@i if kind = k then x:=t |≈I λes. i -term(t , I) ∧ ∀e@i ∈ es . (kind(e) = k ⇒
(state after e)(x) = I (t)(state before e)).

Ax-if::

@i kind = local (a) only if ϕ |≈I

λes. i -formula(ϕ, I)∧
∀e@i ∈ es. (kind(e) = local (a) ⇒ I (ϕ)(state before e)).

Ax-fair::

@i if necessarily ϕ then i.o. kind = local (a) |≈I

λes. i-formula(ϕ, I)∧
[((∃e@i ∈ es)∧

∀e@i ∈ es . ∃e′ �i e. I(¬ϕ)(state after e′) ∨ (kind(e′) = local (a)))
∨(¬(∃e@i ∈ es) ∧ I(¬ϕ)(initstate i))].

KNOWLEDGE-BASED SYNTHESIS OF DISTRIBUTED SYSTEMS USING EVENT STRUCTURES ∗ 13

Ax-affect::

@i only events in L affect x |≈I

λes. ∀e@i ∈ es. (x after e 6= x before e)⇒(kind(e) ∈ L).

Ax-sends::

@i only events in L affect msg(l) |≈I

λes. ∀e@i ∈ es. (msg(l) after e 6= ⊥)⇒(kind(e) ∈ L).

Ax-⊕:: (Pg1 |≈I P) ∧ (Pg2 |≈I Q) ⇒ (Pg1 ⊕ Pg2 |≈I P ∧Q).
Ax-ref:: (Pg |≈I P) ∧ (P ⇒ Q) ⇒ (Pg |≈I Q).

Lemma 2.1. Axioms Ax-init, Ax-cause, Ax-if , Ax-fair, Ax-affect, Ax-sends, Ax-⊕,
and Ax-ref hold for all interpretations I.

Proof. This is immediate from Definitions 2.1 and 2.4, and the definition of Consistent I .

2.3.4. A general scheme for program synthesis. Recall that, given a specification ϕ and an
interpretation I, the goal is to prove that ϕ is satisfiable with respect to I, that is, to show
that ∃Pg. (Pg |≈I ϕ) holds. We now provide a general scheme for doing this. Consider the
following scheme, which we call GS :

(1) Find specifications ϕ1, ϕ2, . . . , ϕn such that ∀es. (ϕ1(es)∧ϕ2(es)∧· · ·∧ϕn(es) ⇒ ϕ(es))
is true under interpretation I.

(2) Find programs Pg1, Pg2, . . . , Pgn such that Pgi |≈I ϕi holds for all i ∈ {1, . . . n}.
(3) Conclude that Pg |≈I ϕ, where Pg = Pg1 ⊕ Pg2 ⊕ · · · ⊕ Pgn.

Step 1 of GS is proved using the rules and axioms encoded in the Nuprl system; Step
2 is proved using the axioms given in Section 2.3.3. It is easy to see that GS is sound in
the sense that, if we can show using GS that Pg satisfies ϕ, then Pg does indeed satisfy ϕ.
We formalize this in the following proposition.

Proposition 2.6.: Scheme GS is sound.

2.4. Example. As an example of a specification that we use later, consider the run-based
specification FairI (ϕ, t , l), where i 6= j, l is a link with source(l) = i and dest(l) = j, ϕ is
an i-formula, and t is an i-term. FairI (ϕ, t , l) is a conjunction of a safety condition and a
liveness condition. The safety condition asserts that if a message is received on link l , then it
is the term t interpreted with respect to the local state of the sender, and that ϕ, evaluated
with respect to the local state of the sender, holds. (More precisely, ϕ holds when evaluated
with respect to the state of agent i before e occurs, that is, in state before e.) The liveness
condition says that, if (there is a constructive proof that) condition ϕ is enabled from some
point on in an infinite event sequence, then eventually a message sent on l is delivered.
(Thus, the specification imposes a weak fairness requirement.) We define FairI(ϕ, t, l) as
follows:

FairI(ϕ, t, l) =defλes. i-formula(ϕ, I) ∧ i-term(t, I)∧
(∀e′ ∈ es. (kind(e′) = rcv (l) ⇒
I (ϕ)(state before send(e′)) ∧ val(e′) = I(t)(state before send(e′))) ∧

((∃e@i ∈ es∧
∀e@i ∈ es . ∃e′ �i e. I(¬ϕ)(state after e′)) ∨ (¬(∃e@i ∈ es) ∧ I(¬ϕ)(initstate i))
∨ (∃e@i ∈ es ∧ ∀e@i ∈ es. ∃e′ �i e. kind(e

′) = rcv(l) ∧ send(e′) �i e)).

14 M. BICKFORD, R. CONSTABLE, J. Y. HALPERN, AND S. PETRIDE

We are interested in this fairness specification only in settings where communication
satisfies a (strong) fairness requirement: if infinitely often an agent sends a message on a
link l, then infinitely often some message is delivered on l. We formalize this assumption
using the following specification:

FairSend(l) =def λes . (∀e@i ∈ es . ∃e′ ≻i e. msg(l) after e′ 6= ⊥)
⇒ (∀e@i ∈ es. ∃e ′. kind(e ′) = rcv(l) ∧ send(e ′) ≻i e).

We explain below why we need communication to satisfy strong fairness rather than weak
fairness (which would require only that if a message is sent infinitely often, then a message
is eventually delivered).

In this section, we show that, assuming that the communication on link l satisfies a
strong fairness requirement, the specification above is satisfiable, and that a program that
satisfies it can be formulated in our language. Furthermore, we show that there are simple
conditions on the formulas involved in this program that ensure the existence of at least one
execution of the program. Though the specification above and the program that satisfies
it refer to a single agent, we show that it is not difficult to extend our results to a system
with many agents.

For an arbitrary action a, let Fair -Pg(ϕ, t , l, a) be the following program for agent i :

@i kind = local (a) only if ϕ ⊕
@i if kind = local (a) then msg(l):=t ⊕
@i only events in [a] affect msg(l) ⊕
@i if necessarily ϕ then i.o. kind = local (a).

The first basic program says that i takes action a only if ϕ holds. The second basic program
says that the effect of agent i taking action a is for t to be sent on link l; in other words, a
is i’s action of sending t to agent j. The third program ensures that only action a has the
effect of sending a message to agent j. With this program, if agent j (the receiver) receives
a message from agent i (the sender), then it must be the case that the value of the message
is t and that ϕ was true with respect to i’s local state when it sent the message to j. The
last basic program ensures that if ϕ holds from some point on in an infinite event sequence,
then eventually an event of kind a holds; thus, i must send the message t infinitely often.
The fairness requirement on communication ensures that if an event of kind a where i sends
t occurs infinitely often, then t is received infinitely often.

Lemma 2.2. For all actions a, Fair-Pg(ϕ,t, l, a) satisfies

λes .FairSend(l)(es) ⇒ FairI(ϕ, t, l)(es)

with respect to all interpretations I such that ϕ is an i-formula and t is an i-term in I.

Proof. We present the key points of the proof here, omitting some details for ease of ex-
position. We follow the scheme GS . We assume that i-formula(ϕ, I) and i-term(t, I) both
hold.

Step 1. For each event structure es, FairI(ϕ, t, l)(es) is equivalent to a conjunction of
three formulas:

ϕ1(es) : ∀e′ ∈ es. (kind(e′) = rcv (l)) ⇒ I(ϕ)(state before send(e′))
ϕ2(es) : ∀e′ ∈ es. (kind(e′) = rcv (l)) ⇒ val(e′) = I(t)(state before send(e′))
ϕ3(es) : (∃e@i ∈ es ∧ ∀e@i ∈ es. ∃e′ �i e. I(¬ϕ)(state after e′))∨

(¬(∃e@i ∈ es) ∧ I(¬ϕ)(initstate i)∨
(∃e@i ∈ es ∧ ∀e@i ∈ es. ∃e′.kind(e′) = rcv (l) ∧ send(e′) ≻i e).

KNOWLEDGE-BASED SYNTHESIS OF DISTRIBUTED SYSTEMS USING EVENT STRUCTURES ∗ 15

We want to find formulas ψ1(es), . . . , ψ4(es) that follow from the four basic programs that
make up Fair -Pg(ϕ,t, l, a) and together imply ϕ1(es) ∧ ϕ2(es) ∧ ϕ3(es). It will simplify
matters to reason directly about the events where a message is sent on link l. We thus assume
that, for all events e, agent i sends a message on link l during event e iff kind(e) = local(a).
This assumption is expressed by:

ψ1(es) =def ∀e@i ∈ es. (msg(l) after e 6= ⊥) ⇒ (kind(e) = local (a)).

It is easy to check that (ψ1(es) ∧ ψ2(es)) ⇒ ϕ1(es)) is true, where ψ2(es) is

∀e@i ∈ es . (kind(e) = local (a)) ⇒ I(ϕ)(state before e).

Similarly, using the axiom of event structures given in Section 2.2 that says that the value
of a receive event e on l is the value of msg(l) after send(e), it is easy to check that
(ψ1(es) ∧ ψ3(es)) ⇒ ϕ2(es)) is true, where ψ3(es) is

∀e@i ∈ es .(kind(e) = local (a)) ⇒msg(l) after e = I(t)(state before e).

We can show that (ψ3(es) ∧ ψ4(es) ∧ FairSend(l)) ⇒ ϕ3(es) is true, where ψ4 is

(∃e@i ∧ ∀e@i ∈ es. ∃e′ �i e. I(¬ϕ)(state after e′))∨
(¬(∃e@i ∈ es) ∧ I(¬ϕ)(initstate i))∨
(∃e@i ∈ es ∧ ∀e@i ∈ es. ∃e′ �i e. kind(e

′) = local (a)).

It follows that

(∀es.(ψ1 (es) ∧ ψ2 (es) ∧ ψ3 (es) ∧ ψ4 (es)) ⇒ (FairSend(l)(es) ⇒ FairI (ϕ, t , l)(es))).

Step 2. By Ax-sends,

@i only events in [a] affect msg(l) |≈I ψ1.

By Ax-if ,
@i kind = local (a) only if ϕ |≈I ψ2.

By Ax-cause,
@i if kind = local (a) then msg(l):=t |≈I ψ3;

and by Ax-fair

@i if necessarily ϕ then i.o. kind = local (a) |≈I ψ4.

By the soundness of GS (Proposition 2.6), Fair -Pg(ϕ, t , l , a) satisfies λes.FairSend(l)(es) ⇒
FairI(ϕ, t, l)(es) with respect to I.

Lemma 2.3. For all interpretations I such that ϕ is an i-formula and t is an i-term in
I, if ϕ satisfies the principle of excluded middle with respect to I, then Fair-Pg(ϕ,t, l, a) is
consistent with respect to I.

Proof. This argument is almost identical to that showing that fair programs are realizable
with respect to interpretations where the precondition satisfies the principle of excluded
middle. Since ϕ satisfies the principle of excluded middle with respect to I, either there
exists an I-local state s∗i for agent i such that I(¬ϕ)(s∗i) holds, or I(ϕ)(si) holds for all
I-local states si for i. In the former case, let es be an empty event structure such that
i, j ∈ AG , l ∈ Links, a ∈ Act, and initstate i = s∗i . In the latter case, choose es with AG
and Links as above, let Act = {a, b}, and where i and j alternate sending and receiving the
message t on link l, where these events have kind a and b, respectively.

16 M. BICKFORD, R. CONSTABLE, J. Y. HALPERN, AND S. PETRIDE

Corollary 2.7.: For all interpretations I such that if ϕ is an i-formula and t is an i-term
in I, if ϕ satisfies the principle of excluded middle with respect to I, then the specification
FairI(ϕ, t, l) is realizable with respect to I.

Proof. This is immediate from Lemmas 2.2 and 2.3, and from the fact that the event
structure constructed in Lemma 2.2 satisfies FairSend(l).

The notion of strong communication fairness is essential for the results above: FairI (ϕ,
t , l) may not be realizable if we assume that communication satisfies only a weak notion
of fairness that says that if a message is sent after some point on, then it is eventually
received. This is so essentially because our programming language is replacing standard “if
condition then take action” programs with weaker variants that ensure that, if after some
point a condition holds, then eventually some action is taken.

We now show that the composition of Fair -Pg(ϕ, t , l , a) and Fair -Pg(ϕ, t , l ′, a) for
different links l and l′ satisfies the corresponding fairness assumptions.

Lemma 2.4. For all distinct actions a and a ′, and all distinct links l and l′, Fair-Pg(ϕ,
t, l, a) ⊕ Fair-Pg(ϕ′, t′, l′, a′) satisfies

λes .(FairSend(l)(es) ∧ FairSend(l′)(es)) ⇒
(FairI(ϕ, t, l)(es) ∧ FairI(ϕ

′, t′, l′)(es))

with respect to all interpretations I such that ϕ is an i-formula, t is an i-term, ϕ′ is an
i′-formula, and t′ is an i′-term in I.

Proof. Suppose a 6= a ′. We again use scheme GS .
Step 1. Clearly, we can take ϕ1 to be λes . FairSend(l)(es) ⇒ FairI(ϕ, t, l)(es) and ϕ2

to be λes. FairSend(l′)(es) ⇒ FairI(ϕ
′, t′, l′)(es).

Step 2. By Lemma 2.2, Fair-Pg(ϕ,t , l, a) |≈I ϕ1 and Fair-Pg(ϕ′,t′, l′, a′) |≈I ϕ2.

Finally, we can show that Fair-Pg(ϕ,t, l, a) ⊕ Fair-Pg(ϕ′,t′, l′, a′) is consistent, where l is
a link from i to j, l′ is a link from i′ to j′, and l 6= l′ (so that we may have i = i′ or j =
j′, but not both), and thus the specification λes.(FairSend(l)(es) ∧ FairSend(l ′)(es)) ⇒
(FairI(ϕ, t, l)(es) ∧ FairI(ϕ

′, t ′, l ′)(es)) is realizable with respect to I. if both ϕ and ϕ′

satisfy the principle of excluded middle with respect to I.

Lemma 2.5. For all interpretations I such that ϕ is an i-formula, t is an i-term, ϕ′ is
an i′-formula, and t′ is an i-term in I, if both ϕ and ϕ′ satisfy the principle of excluded
middle with respect to I, then, for all distinct actions a and a′ and all distinct links l and
l′, Fair-Pg(ϕ,t, l, a)⊕ Fair-Pg(ϕ′,t′, l′, a′) is consistent with respect to I.

Proof. If I(¬ϕ ∧ ¬ϕ′)(s) holds for some global state s, then let es be the empty event
structure such that initstate i = si and initstate i′ = si′ . Clearly es is consistent with
Fair-Pg(ϕ,t, l, a) ⊕ Fair-Pg(ϕ′,t′, l′, a′). Otherwise, let es be an event structure with do-
main Val I , i, j, i

′, j′ ∈ AG, and l, l′ ∈ Links , consisting of an infinite sequence of states
such that if I(ϕ) holds for infinitely many states, then i sends t on link l infinitely often;
if I(ϕ′) holds for infinitely many states, then i′ sends t′ on link l′ infinitely often; if t is
sent on l infinitely often, then j receives it on link l infinitely often; and if t′ is sent on
l′ infinitely often, then j′ receives it on l′ infinitely often. It is straightforward to con-
struct such an event structure es. Again, it should be clear that es is consistent with
Fair-Pg(ϕ,t, l, a) ⊕ Fair-Pg(ϕ′,t′, l′, a′).

KNOWLEDGE-BASED SYNTHESIS OF DISTRIBUTED SYSTEMS USING EVENT STRUCTURES ∗ 17

3. Adding knowledge to Nuprl

We now show how knowledge-based programs can be introduced into Nuprl.

3.1. Consistent cut semantics for knowledge. We want to extend basic programs to
allow for tests that involve knowledge. For simplicity, we take AG = {1, 2, . . . , n}. As
before, we start with finite sets P of predicate symbols and F of function symbols, and
close off under conjunction, negation, and quantification over non-local variables; but now,
in addition, we also close off under application of the temporal operators and ♦, and the
epistemic operators Ki, i = 1, . . . , n, one for each process i.

We again want to define a consistency relation in Nuprl for each program. To do that,
we first need to review the semantics of knowledge. Typically, semantics for knowledge is
given with respect to a pair (r,m) consisting of a run r and a timem, assumed to be the time
on some external global clock (that none of the processes necessarily has access to [19]). In
event structures, there is no external notion of time. Fortunately, Panangaden and Taylor
[24] give a variant of the standard definition with respect to what they call asynchronous
runs, which are essentially identical to event structures. We can simply apply their definition
in our framework, replacing using “event structure” instead of “asynchronous run”, as we
do in the following account.

The truth of formulas is defined relative to a pair (Sys, c), consisting of a system Sys
(i.e., a set of event structures) and a consistent cut c of some event structure es ∈ Sys ,
where a consistent cut c in es is a set of events in es closed under the causality relation.
Recall from Section 2.2 that this amounts to c satisfying the constraint that, if e′ is an event
in c and e is an event in es that precedes e′ (i.e., e ≺ e′), then e is also in c. We write
c ∈ Sys if c is a consistent cut in some event structure in Sys .

Traditionally, a knowledge formula Kiϕ is interpreted as true at a point (r,m) if ϕ
is true regardless of i’s uncertainty about the whole system at (r,m). Since we interpret
formulas relative to a pair (Sys, c), we need to make precise i’s uncertainty at such a pair.
For the purposes of this paper, we assume that each agent keeps track of all the events
that have occurred and involved him (which corresponds to the assumption that agents
have perfect recall); we formalize this assumption below. Even in this setting, agents can be
uncertain about what events have occurred in the system, and about their relative order.
Consider, for example, the scenario in the left panel of Figure 1: agent i receives a message
from agent j (event e2), then sends a message to agent k (e3), then receives a second message
from agent j (e6), and then performs an internal action (e7). Agent i knows that send(e2)
occurred prior to e2 and that send(e6) occurred prior to e6. However, i considers possible
that after receiving his message, agent k sent a message to j which was received by j before
e7 (see the right panel of Figure 1).

In general, as argued by Panangaden and Taylor, agent i considers possible any consis-
tent cut in which he has recorded the same sequence of events. To formalize this intuition,
we define equivalence relations ∼i, i = 1, . . . , n, on consistent cuts by taking c ∼i c

′ if i’s
history is the same in c and c′. Given two consistent cuts c and c′, we say that c � c′ if,
for each process i, process i’s history in c is a prefix of process i’s history in c′. Relative to
(Sys, c), agent i considers possible any consistent cut c′ ∈ Sys such that c′ ∼i c.

Since the semantics of knowledge given here implicitly assumes that agents have per-
fect recall, we restrict to event structures that also satisfy this assumption. So, for the
remainder of this paper, we restrict to systems where local states encode histories, that is,

18 M. BICKFORD, R. CONSTABLE, J. Y. HALPERN, AND S. PETRIDE

Figure 1: Two consistent cuts that cannot be distinguished by agent i.

we restrict to systems Sys such that, for all event structures es, es ′ ∈ Sys , if e is an event
in es , e′ is an event in es ′, agent(e) = agent(e′) = i, and state before e = state before e′,
then i has the same history in both es and es ′. For simplicity, we guarantee this by as-
suming that each agent i has a local variable history i ∈ Xi that encodes its history. Thus,
we take initstate i(history i) = ⊥ and for all events e associated with agent i, we have
(s after e)(history i) = (s before e)(historyi) · e. It immediately follows that in two global
states where i has the same local state, i must have the same history. Let System be the
set of all such systems.

Recall that events associated with the same agent are totally ordered. This means that
we can associate with every consistent cut c a global state sc: for each agent i, sci is i’s local
state after the last event ei associated with i in c occurs. Since local states encode histories,
it follows that if sci = sc

′

i , then c ∼i c
′. It is not difficult to see that the converse is also

true; that is, if c ∼i c
′, then sci = sc

′

i . We also write sc ≺ sc
′
if c ≺ c′. In the following, we

assume that all global states in a system Sys have the form sc for some consistent cut c.
Nuprl is sufficiently expressive that epistemic and modal operators can be defined within

it. Thus, to interpret formulas with epistemic operators and temporal operators, we just
translate them to formulas that do not mention them. Since the truth of an epistemic
formula depends not only on a global state, but on a pair (Sys , c), where the consistent
cut c can be identified with a global state in some event structure in Sys , the translated
formulas will need to include variables that, intuitively, range over systems and global states.
To make this precise, we expand the language so that it includes rigid binary predicates CC

and �, a rigid binary function ls, and rigid constants s and Sys. Intuitively, s represents
a global state, Sys represents a system, CC(x, y) holds if y is a consistent cut (i.e., global
state) in system x, ls(x, i) is i’s local state in global state x, and � represents the ordering
on consistent cuts defined above.

For every formula that does not mention modal operators, we take ϕt = ϕ. We define

(Kiϕ)
t =def ∀s

′((CC(Sys, s′) ∧ ls(s′, i) = ls(s, i)) ⇒ ϕt[s/s′])),

(ϕ)t =def ∀s
′((CC(Sys, s′) ∧ s′ � s ⇒ ϕt[s/s′]),

and
(♦ϕ)t =def ∃s

′((CC(Sys, s′) ∧ s′ � s ∧ ϕt[s/s′]).

KNOWLEDGE-BASED SYNTHESIS OF DISTRIBUTED SYSTEMS USING EVENT STRUCTURES ∗ 19

Given an interpretation I, let I ′ be the interpretation that extends I by adding (i.e.,
conjoining) to ϕI formulas characterizing Sys, s, CC, ls, and � appropriately. That is,
the formulas force Sys to represent a set of event structures, s to be a consistent cut in
one of these event structures, and so on. These formulas are all expressible in Nuprl. We
now define a predicate I ′V (ϕ) on systems and global states by simply taking I ′V (ϕ)(Sys , s)
to hold iff ϕI′ together with the conjunction of atomic formulas of the form x = V (x) for
all non-local variables x that appear in ϕ, x = si(x) for variables x ∈ Xi, i ∈ AG, that
appear in ϕ, s = s, and Sys = Sys , imply (ϕt)+ (where, in going from ϕt to (ϕt)+, we
continue to use the s). Thus, we basically reduce a modal formula to a non-modal formula,
and evaluate it in system Sys using IV .

Just as in the case of non-epistemic formulas, the valuation V is not needed to interpret
formulas whose only free variables are in ∪i∈AGXi. For such formulas, we typically write
I ′(ϕ)(Sys , s) instead of I ′V (ϕ)(Sys , s). We can also define i-formulas and i-terms in an in-
terpretation I ′. For an i-formula, we often write I ′V (ϕ)(Sys , si) rather than I ′V (ϕ)(Sys , s).
Note that a Boolean combination of epistemic formulas whose outermost knowledge oper-
ators are Ki is guaranteed to be an i-formula in every interpretation, as is a formula that
has no nonrigid functions or predicates and does not mention Kj for j 6= i. The former
claim is immediate from the following lemma.

Proposition 3.1.: For all formulas ϕ, systems Sys , and global states s and s ′, if si = s′i,
then I ′(Kiϕ)(Sys , s) holds iff I

′(Kiϕ)(Sys , s
′) does.

Proof. Follows from the observation that if we have a proof in Nuprl that an i-formula holds
given I ′, Sys, and s ∈ Sys , then we can rewrite the proof so that it mentions only si rather
than s. Thus, we actually have a proof that the i-formula holds in all states s′ ∈ Sys such
that s′i = si.

3.2. Knowledge-based programs and specifications. In this section, we show how we
can extend the notions of program and specification presented in Section 2 to knowledge-
based programs and specifications. This allows us to employ the large body of tactics
and libraries already developed in Nuprl to synthesize knowledge-based programs from
knowledge-based specifications.

3.2.1. Syntax and semantics. Define knowledge-based message automata just as we defined
message automata in Section 2.3, except that we now allow arbitrary epistemic formulas
in tests. If we want to emphasize that the tests can involve knowledge, we talk about
knowledge-based initialization, precondition, effect, and fairness programs. For the purposes
of this paper, we take knowledge-based programs to be knowledge-based message automata.
Formally, there are five basic knowledge-based clauses for agent i:

• @i initially ψ;
• @i if kind = k then x := t;
• @i kind = local (a) only if ϕ;
• @i if necessarily ϕ then i.o. kind = local (a); and
• @i only events in L affect x,

where ψ and ϕ are i-knowledge-based formulas, k ∈ Act ∪ Links, x ∈ Xi, t is an i-term,
and L is a list of kinds in Act ∪ Links.

20 M. BICKFORD, R. CONSTABLE, J. Y. HALPERN, AND S. PETRIDE

We give semantics to knowledge-based programs by first associating with each know-
ledge-based program a function from systems to systems. Let (Pgkb)t be the result of
replacing every formula ϕ in Pgkb by ϕt. Note that (Pgkb)t is a standard program, with
no modal formulas. Given an interpretation I and a system Sys , let I(Sys) be the inter-
pretation that is characterized by the formula that results from adding (i.e., conjoining) to
ϕI the formula Sys = Sys.6 Now we can apply the semantics of Section 2.3.2 to get the
system SI(Sys)((Pg

kb)t). In more detail, since (Pgkb)t is a standard program, we can apply

Definition 2.4, which says that the semantics of (Pgkb)t with respect to the interpretation
I(Sys) is the set of all event structures in Sys that are consistent with (Pgkb)t with respect
to I(Sys); that is,

SI(Sys)((Pg
kb)t) = {es | Consistent I(Sys)((Pg

kb)t, es)}.

(Note that, technically, (Pgkb)t does take a system as an argument, which was not the case
of the type of programs defined in Section 2.; however, as (Pgkb)t is independent of the
system argument, its semantics is also independent of any system, which is why we treat it
as a standard program.) Since (Sys = Sys) is a conjunct of I(Sys), all the event structures
es in SI(Sys)((Pg

kb)t) must be in the set Sys ; in other words, SI(Sys)((Pg
kb)t) ⊆ Sys , for all

systems Sys .
In general, the system SI(Sys)((Pg

kb)t) will be a strict subset of the system Sys . Indeed,

SI(Sys)((Pg
kb)t) may even be empty (if there exists no event structure in Sys consistent

with (Pgkb)t when interpreted with respect to I(Sys)). For example, consider a system
with two agents, i and j, where xj ∈ Xj is a local variable of agent j. Let i follow the

simple program Pgkb = @i initially Ki(xj = 0) that says that initially i knows that

j’s variable xj has value 0. Clearly, Pgkb is a knowledge-based program, an instance of
the knowledge-based initialization clause @i initially ψ for ψ = Ki(xj = 0). By definition,
ψt = ∀s′. (CC(Sys, s′)∧ls(s′, i) = ls(s, i)) ⇒ (s′j(x) = 0). That is, I(Sys)(ψt)(initstate i) =
(Sys = Sys)∧∀s′. (CC(Sys, s′)∧ ls(s′, i) = ls(s, i) = initstate i ⇒ (s′j(x) = 0). This means
that an event structure es in Sys is consistent with the clause @i initially ψt (i.e., with
(Pgkb)t) if and only if, for all consistent cuts (i.e., global states) s in Sys such that i’s local
state in s is same as the initial state of i in es, xj has value 0 in j’s local state in s. Consider
now a system Sys such that sj(xj) 6= 0 for all s in Sys . Clearly, no event structure in Sys

satisfies this condition, which means that SI(Sys)((Pg
kb)t) = ∅. On the other hand, if Sys

is a system such that sj(xj) = 0 for all s in Sys , then SI(Sys)((Pg
kb)t) = Sys .

A system Sys represents a knowledge-based program Pgkb (with respect to interpreta-
tion I) if it is a fixed point of this mapping; that is, if SI(Sys)((Pg

kb)t) = Sys . Intuitively, if
Sys is a fixed point, then when interpreted with respect to Sys , the program is acting the
way it should. Following Fagin et al. [19, 18], we take the semantics of a knowledge-based
program Pgkb to be the set of systems that represent it.

Definition 3.2.: A knowledge-based program semantics is a function associating with a
knowledge-based program Pgkb and an interpretation I the systems that represent Pgkb

with respect to I; that is, Skb
I (Pgkb) = {Sys ∈ System | SI(Sys)((Pg

kb)t) = Sys}.

6The notation I(Sys) may seem somewhat awkward for a formula, but in this case it is a formula that
characterizes a system, so it is perhaps not so unreasonable. In any case, since this formula will appear in
subscripts (e.g., in Definition 3.2), it seems a better choice than, say, ISys .

KNOWLEDGE-BASED SYNTHESIS OF DISTRIBUTED SYSTEMS USING EVENT STRUCTURES ∗ 21

As observed by Fagin et al. [19, 18], it is possible to construct knowledge-based programs
that are represented by no systems, exactly one system, or more than one system. However,
there exist conditions (which are often satisfied in practice) that guarantee that a knowledge-
based program is represented by exactly one system. Note that, in particular, standard
programs, when viewed as knowledge-based programs, are represented by a unique system;
indeed, S kb

I (Pg) = {SI (Pg)}. Thus, we can view S kb
I as extending SI .

A (standard) program Pg implements the knowledge-based program Pgkb with respect
to interpretation I if SI(Pg) represents Pg

kb with respect to I, that is, if SI(SI(Pg))((Pg
kb)t)

= SI(Pg). In other words, by interpreting the tests in Pgkb with respect to the system
generated by Pg, we get back the program Pg.

3.2.2. Knowledge-based specifications. Recall that a standard specification is a predicate on
event structures. Following [18], we take a knowledge-based specification to be a predicate
on systems.

Definition 3.3.: A knowledge-based specification is a predicate on System. A knowledge-
based program Pgkb satisfies a knowledge-based specification Y kb with respect to I, written
Pgkb |≈I Y kb , if all the systems representing Pgkb with respect to I satisfy Y kb, that is, if the
following formula holds: ∀Sys ∈ S kb

I (Pgkb). Y kb(Sys). The knowledge-based specification

Y kb is realizable with respect to I if there exists a (standard) program Pg such that SI(Pg) 6=
∅ and Pg |≈I Y kb (i.e., Y kb(SI(Pg)) is true).

As for standard basic programs, it is not difficult to show that knowledge-based pre-
condition, effect, and frame programs are trivially consistent: we simply take Sys to consist
of only one event structure es with no events. A knowledge-based initialization program is
realizable iff ϕI∧ψ

t is satisfiable. Finding sufficient conditions for fair knowledge-based pro-
grams to be realizable is nontrivial. We cannot directly translate the constructions sketched
for the standard case to the knowledge-based case because, at each step in the construction
(when an event structure has been only partially constructed), we would have to argue that
a certain knowledge-based fact holds when interpreted with respect to an entire system
and an entire event structure. However, in the next section, the knowledge-based programs
used in the argument for STP (which do include fairness requirements) are shown to be
realizable.

3.2.3. Axioms. We now consider the extent to which we can generalize the axioms charac-
terizing (standard) programs presented in Section 2.3 to knowledge-based programs.

Basic knowledge-based message automata other than knowledge-based precondition and
fairness requirement programs satisfy analogous axioms to their standard counterparts. The
only difference is that now we view the specifications as functions on systems, not on event
structures. For example, the axiom corresponding to Ax-init is

Ax-initK :
@i initially ψ |≈I λSys . i -formula(ψ, I) ∧ ∀es ∈ Sys . I (ψ)(Sys , initstate i).

(Note that here, just as in the definition ofAx-init, for simplicity, we write initstate i instead
of es .initstate i. Since ψ is constrained to be an i-formula in I, it makes sense to talk about
I(ψ)(Sys , initstate i) instead of I(ψ)(Sys , s) for a global state s with si = initstate i.) The
knowledge-based analogues of axioms Ax-cause, Ax-affect, and Ax-sends are denoted

22 M. BICKFORD, R. CONSTABLE, J. Y. HALPERN, AND S. PETRIDE

Ax-causeK, Ax-affectK, and Ax-sendsK, respectively, and are identical to the standard
versions of these axioms. The knowledge-based counterparts of Ax-if and Ax-fair now
involve epistemic preconditions, which are interpreted with respect to a system:

Ax-ifK : @i kind = local (a) only if ϕ |≈I λSys. i-formula(ϕ, I)∧
∀es ∈ Sys . ∀e@i ∈ es. (kind(e) = local (a)) ⇒ I(ϕ)(Sys , state before e)

Ax-fairK : @i if necessarily ϕ then i.o. kind = local (a) |≈I λSys . i-formula(ϕ, I)∧
∀es ∈ Sys . ((∃e@i ∈ es ∧ ∀e@i ∈ es. ∃e′ �i e.

I(¬ϕ)(Sys , state after e′) ∨ kind(e′) = local(a))∨
(¬(∃e@i ∈ es) ∧ I(¬ϕ)(Sys , initstate i(es)))).

There are also obvious analogues axioms Ax-ref and Ax-⊕, which we denote Ax-refK
and Ax-⊕K respectively.

Lemma 3.1. Axioms Ax-initK, Ax-causeK, Ax-affectK, Ax-sendsK, Ax-ifK, Ax -
fairK, and Ax-refK hold for all interpretations I.

Proof. Since the proofs for all axioms are similar in spirit, we prove only that Ax-ifK holds
for all interpretations I ′. Fix an interpretation I. Let Pgkb be the program @i kind =
local (a) only if ϕ, where ϕ is an i-formula. Let Y kb be an instance of Ax-ifK:

λSys . i-formula(ϕ, I) ∧ ∀es ∈ Sys . ∀e@i ∈ es . (kind(e) = local (a)) ⇒
I(ϕ)(Sys , state before e).

By Definition 3.3, Pgkb |≈I Y kb is true if and only if, for all systems Sys ∈ Skb
I (Pgkb),

Y kb(Sys) holds. That is, for all systems Sys such that SI(Sys)((Pg
kb)t) = Sys , the following

holds:

∀es ∈ Sys . i-formula(ϕ, I) ∧ ∀e@i ∈ es . (kind(e) = local (a)) ⇒ I(ϕ)(Sys , state before e).

Let Sys be a system such that SI(Sys)((Pg
kb)t) = Sys . By Definition 2.4, all event structures

in Sys are consistent with the program (Pgkb)t with respect to interpretation I(Sys). Recall
that (Pgkb)t is the (standard) program @i kind = local (a) only if ϕt, where I(Sys)(ϕt)(s) =
I(ϕ)(Sys , s). We can thus apply axiom Ax-if and conclude that the following holds for all
event structures es consistent with I (Sys)((Pgkb)t) with respect to I(Sys) (i.e., for all
es ∈ Sys):

i-formula(ϕt, I(Sys)) ∧ ∀e@i ∈ es. (kind(e) = local (a)) ⇒ I(Sys)(ϕt)(state before e).

The first conjunct says that, for all global states s and s′ in Sys , if si = s′i then I(Sys)(ϕ
t)(s)

= I(Sys) (ϕt)(s′), which is equivalent to saying that I(ϕ)(Sys , s) = I(ϕ)(Sys , s′), that is,
i-formula(ϕ, I) holds. The second conjunct is equivalent to

∀e@ies. (kind(e) = local (a)) ⇒ I(ϕ)(Sys , state before e),

by the definition of ϕt and I(Sys). Thus, Y kb(Sys) holds under interpretation I.

KNOWLEDGE-BASED SYNTHESIS OF DISTRIBUTED SYSTEMS USING EVENT STRUCTURES ∗ 23

The proof of Lemma 3.1 involves only unwinding the definition of satisfiability for
knowledge-based specifications and the application of simple refinement rules, already im-
plemented in Nuprl. In general, proofs of epistemic formulas will also involve reasoning in
the logic of knowledge. Sound and complete axiomatizations of (nonintuitionistic) first-order
logic of knowledge are well-known (see [19] for an overview) and can be formalized in Nuprl
in a straightforward way. This is encouraging, since it supports the hope that Nuprl’s infer-
ence mechanism is powerful enough to deal with knowledge specifications, without further
essential additions.

Note that Ax-⊕K is not included in Lemma 3.1. That is because it does not always
hold, as the following example shows.

Example 3.4.: Let Y kb
i =def (¬K1−i(xi = i)) for i = 0, 1, where xi ∈ Xi, and let I = ∅.

Let Pgi, i = 0, 1 be the standard program for agent i such that SI(Pg i) consists of all the
event structures such that xi = i at all times; that is, Pgi is the program

@i initially xi = i ⊕ @i only events in ∅ affect xi .

Since Pgi places no constraints on x1−i, is straightforward to prove that Pgi |≈I Y kb
1−i, for

i = 0, 1. On the other hand, SI(Pg1 ⊕Pg2) consists of all the event structures where xi = i
at all times, for i = 0, 1, so Pg0 ⊕ Pg1 |≈I ¬Y kb

0 ∧ ¬Y kb
1 .

3.3. Examples. In this section, we give some examples of programs in our framework. A
few simple programs are given in Section 3.3.1, while a more complex program is discussed
in Section 3.3.2.

3.3.1. Simple examples. Suppose that a sender S wants to send the value of a bit to a
receiver R, and that this value does not change over time. This can be easily modeled in
our framework by requiring the sender S to follow this program:

@S initially (xS = 0) ∨ (xS = 1) ⊕
@S only events in [] affect xS ,

where xS is a variable local to S. The first clause says that the initial value of xS is either
0 or 1, while the second clause says that the value of xS does not change.

Call this program Pg0S . The goal is for the receiver R to eventually know the (value
of the) bit xS. We write this specification simply as Y kb =def ♦KR(xS), where KR(xS) is
an abbreviation for KR(xS = 0) ∨ KR(xS = 1). Intuitively, whether this specification is
satisfiable or not depends on the assumptions made regarding the communication between
S and R, that is, regarding the links lSR and lRS , and on whether agents forget facts they
once knew. For simplicity, we assume that agents have perfect recall. Among other things,
this implies that if R knows the bit at some point in time, since the bit does not change its
value, R will know the the value of the bit at all later times. Suppose we further assume that
communication on lSR is reliable: all messages sent on lSR are guaranteed to be eventually
received by R. It is then not difficult to see that Y kb is achieved if the sender continues to
send the bit to R as long as he does not know that R knows the bit. For if at some point
in time S knows that R knows the bit, then R knows the bit, and will subsequently always
know it; and if S does not know that R knows the bit, then S will send the value of the bit

24 M. BICKFORD, R. CONSTABLE, J. Y. HALPERN, AND S. PETRIDE

and R will eventually receive it. We can model this in the framework by assuming that S
follows the program

Pg0S ⊕ @S kind = local (aS) only if ¬KS (KR(xS))
⊕ @S if kind = local (aS) then msg(lSR) := xS .

The role of R so far has been passive. If the communication on lRS is also reliable, we
can ensure that S sends fewer messages by having R sending some token to S as soon as
he receives the bit. To reason at a more abstract level, we can ensure that R sends a token
to S as soon as he knows the bit. This is modeled by having R follow the program:

@R kind = local (aR) only if KR(xS) ⊕
@S if kind = local (aR) then msg(lRS) := token ,

where token is an arbitrary constant. In this program, aR is the action of R sending a token
to S.

With this program, R continues to send the token once he learns the bit. We can
minimize communication further by having R send the token only if he does not know that
S knows that he knows the bit:

@R kind = local (aR) only if KR(xS) ∧ ¬KR(KSKR(xS)) ⊕
@S if kind = local (aR) then msg(lRS) := token.

3.3.2. A knowledge-based specification and program for fairness. Recall from Section 2.4
that the specification FairSend(l) ⇒ FairI (ϕ, t , l) is satisfied by the program Fair - Pg(ϕ,t,
l , a), for all actions a. We now consider a knowledge-based version of this specification. If
ϕ is an i-knowledge-based formula and t is an i-term in I, define

FairkbI (ϕ, t, l) =def λSys . ∀es ∈ Sys . FairI(Sys)(ϕ
t, t, l)(es),

that is

FairkbI (ϕ, t, l) =def

λSys .i-formula(ϕ, I) ∧ i-term(t, I)∧
∀es ∈ Sys .((∀e′ ∈ es. (kind(e′) = rcv(l)) ⇒

I (ϕ)(Sys , state before send(e′)) ∧ val(e′) = I(t)(Sys , state before send(e′)))
∧((∃e@i ∈ es ∧ ∀e@i ∈ es. ∃e′ �i e. I(¬ϕ)(Sys , state after e′))∨

(∃e@i ∈ es ∧ ∀e@i ∈ es. ∃e′. kind(e′) = rcv(l) ∧ send(e′) �i e)∨
(¬(∃e@i ∈ es) ∧ I(¬ϕ)(Sys , initstatei))).

For example, FairkbI (Kiϕ, t, l) says that every message received on l is given by the term
t interpreted at the local state of the sender i, and that i must have known fact ϕ when
it sent this message on l; furthermore, if from some point on i knows that ϕ holds, then
eventually a message is received on l.

As in Section 2.4, we assume that message communication satisfies a strong fair-
ness condition. The knowledge-based version of the condition FairSend(l) simply asso-

ciates with each system Sys the specification FairSend(l); that is, FairSendkb(l) is just
λSys . ∀es ∈ Sys.FairSend(l)(es).

Lemma 3.2. For all interpretations I such that ϕ is an i-formula and t is an i-term in I,
and all actions a, we have that

Fair-Pg(ϕ,t, l, a) |≈I FairSendkb(l) ⇒ FairkbI (ϕ, t, l).

KNOWLEDGE-BASED SYNTHESIS OF DISTRIBUTED SYSTEMS USING EVENT STRUCTURES ∗ 25

The proof is similar in spirit to that of Lemma 3.1; by supplying a system Sys as an
argument to the specification, we essentially reduce to the situation in Lemma 2.2. We
leave details to the reader.

We can also prove the following analogue of Lemma 2.4.

Lemma 3.3. For all interpretations I such that ϕ is an i-formula, ϕ′ is a j-formula, t is
an i-term, and t′ is a j-term in I, all distinct links l and l ′, and all distinct actions a and
a′, we have that

Fair-Pg(ϕ,t, l, a) ⊕ Fair-Pg(ϕ′,t′, l′, a′) |≈I

(FairSendkb(l) ∧ FairSendkb(l′)) ⇒ (FairkbI (ϕ, t, l) ∧ FairkbI (ϕ′, t′, l′)).

4. The sequence-transmission problem (STP)

In this section, we give a more detailed example of how a program satisfying a knowledge-
based specificationX can be extracted fromX using the Nuprl system. We do the extraction
in two stages. In the first stage, we use Nuprl to prove that the specification is satisfiable.
The proof proceeds by refinement: at each step, a rule or tactic (i.e., a sequence of rules
invoked under a single name) is applied, and new subgoals are generated; when there are
no more subgoals to be proved, the proof is complete. The proof is automated, in the sense
that subgoals are generated by the system upon tactic invocation. From the proof, we
can extract a knowledge-based program Pgkb that satisfies the specification. In the second
stage, we find standard programs that implement Pgkb . This two-stage process has several
advantages:

• A proof carried out to derive Pgkb does not rely on particular assumptions about how
knowledge is gained. Thus, it is potentially more intuitive and elegant than a proof based
on certain implementation assumptions.

• By definition, if Pgkb satisfies a specification, then so do all its implementations.
• This methodology gives us a general technique for deriving standard programs that imple-
ment the knowledge-based program, by finding stronger (non-knowledge-based) predicates
that imply the knowledge preconditions in Pgkb .

We illustrate this methodology by applying it to a problem that has received consider-
able attention in the context of knowledge-based programming, the sequence-transmission
problem (STP).

4.1. Synthesizing a knowledge-based program for STP. The STP involves a sender
S that has an input tape with a (possibly infinite) sequence X = X (0),X (1), . . . of bits,
and wants to transmit X to a receiver R; R must write this sequence on an output tape
Y . (Here we assume that X (n) is a bit only for simplicity; our analysis of the STP does
not essentially change once we allow X (n) to be an element of an arbitrary constructive
domain.) A solution to the STP must satisfy two conditions:

(1) (safety): at all times, the sequence Y of bits written by R is a prefix of X , and
(2) (liveness): every bit X (n) is eventually written by R on the output tape.

Halpern and Zuck [20] give two knowledge-based programs that solve the STP, and show
that a number of standard programs in the literature, like Stenning’s [26] protocol, the
alternating-bit protocol [4], and Aho, Ullman and Yannakakis’s algorithms [1], are all par-
ticular instances of these programs.

26 M. BICKFORD, R. CONSTABLE, J. Y. HALPERN, AND S. PETRIDE

If messages cannot be lost, duplicated, reordered, or corrupted, then S could simply
send the bits in X to R in order. However, we are interested in solutions to the STP
in contexts where communication is not reliable. It is easy to see that if undetectable
corruption is allowed, then the STP is not solvable. Neither is it solvable if all messages can
be lost. Thus, following [20], we assume (a) that all corruptions are detectable and (b) a
strong fairness condition: for any given link l, if infinitely often a message is sent on l, then
infinitely often some message is delivered on l. We formalize strong fairness by restricting
to systems where FairSend(l) holds for all links l.

The safety and liveness conditions for STP are run-based specifications. As argued by
Fagin et al. [18], it is often better to think in terms of knowledge-based specifications for
this problem. The real goal of the STP is to get the receiver to know the bits. Writing
KR(X (n)) as an abbreviation for KR(X(n) = 0)∨KR(X(n) = 1), we really want to satisfy
the knowledge-based specification

ϕkb
stp =def ∀n ♦KR(X (n)).

This is the specification we now synthesize.
Since we are assuming fairness, S can ensure that R learns the nth bit by sending it

sufficiently often. Thus, S can ensure that R learns the nth bit if, infinitely often, either S
sends X (n) or S knows that R knows X (n). (Note that once S knows that R knows X(n),
S will continue to know this, since local states encode histories.) We can enforce this by
using an appropriate instantiation of Fairkb.

Let cS be a (nonrigid) constant that, intuitively, represents the smallest n such that
S does not know that R knows X(n), if such an n exists. That is, we want the following
formula to be true:

∃n. ¬KSKRX(n)) ⇒ (¬KSKRX(cS) ∧ ∀k < cS . KSKRX(k)).

We abbreviate the formula ∀k < n. KSKR(X(k)) ∧ ¬KSKR(X(n)) as KSKR(X[0..n)).
Let ϕS be the knowledge-based formula that holds at a consistent cut c if and only if

there exists a smallest n such that, at c, S does not know that R knows X(n):

ϕS =def ∃n. KSKR(X [0..n)).

Let tS be the term 〈cS ,X(cS)〉.
7 Let lSR denote the communication link from S to R. Now

consider the knowledge-based specification FairkbI (ϕS , tS , lSR). Fair
kb
I (ϕS , tS , lSR) holds in

a system Sys if, (1) whenever R receives a message from S , the message is a pair of the
form 〈n,X(n)〉; (2) at the time S sent this message to R, S knew that R knew the first
n elements in the sequence X , but S did not know whether R knew X (n); and (3) R is
guaranteed to either eventually receive the message 〈n,X(n)〉 or eventually know X (n).

How does the sender learn which bits the receiver knows? One possibility is for S to
receive from R a request to send X (n). This can be taken by S to be a signal that R
knows all the preceding bits. We can ensure that S gets this information by again using
an appropriate instantiation of Fairkb . Define cR be a (nonrigid) constant that, intuitively,
represents the smallest n such that R does not know X(n), if such an n exists. In other
words, we want the following formula to be true:

∃n. ¬KRX(n) ⇒ (¬KRX(cR) ∧ ∀k < cR. KRX(k)).

7We are implicitly assuming here that the pairing function that maps x and y to 〈x, y〉 is in the language.

KNOWLEDGE-BASED SYNTHESIS OF DISTRIBUTED SYSTEMS USING EVENT STRUCTURES ∗ 27

We abbreviate ∀k < n. KR(X(k)) ∧ ¬KR(X(n)) simply as KR(X[0..n)). We take ϕR

to be the knowledge-based formula

ϕR =def ∃n. KR(X [0..n)),

which says that there exists a smallest n such that R does not know X(n) (or, equivalently,
such that cR = n holds). Finally, let lRS denote the communication link from R to S.
FairkbI (ϕR, tR, lRS) implies that whenever S receives a message n from R, it is the case
that, at the time R sent this message, R knew the first n elements of X , but not X (n).
Note that, for all n, S is guaranteed to eventually receive a message n unless R eventually
knows X (n).

We can now use the Nuprl system to verify our informal claim that we have refined the
initial specification ϕkb

stp . That is, the Nuprl system can prove

(FairkbI (ϕS , tS , lSR) ∧ FairkbI (ϕR, cR, lRS)∧
((∃n. ¬KSKRX (n)) ⇒ KSKRX [0..cS))∧
((∃n. ¬KRX (n)) ⇒ KRX [0..cR))) ⇒ ϕkb

stp .

No new techniques are needed for this proof: we simply unwind the definitions of the
semantics of knowledge formulas and of the fairness specifications, and proceed with a
standard proof by induction on the smallest n such that R does not know X (n).

It follows from Lemma 3.3 that FairkbI (ϕS , tS , lSR) ∧ FairkbI (ϕR, cR, lRS) is satisfied by
the combination of two simple knowledge-based programs, assuming that message commu-
nication on links lSR and lRS satisfies the strong fairness conditions FairSendkb(lSR) and

FairSendkb(lRS). That is, for any two distinct actions aS and aR, the following is true:

Fair -Pg(ϕS , tS , lSR, aS)⊕ Fair -Pg(ϕR, cR, lRS , aR) |≈I

(FairSend kb(lSR) ∧ FairSend kb(lRS)) ⇒(FairkbI (ϕS , tS , lSR) ∧ FairkbI (ϕR , cR, lRS)).

As explained in Section 2.4, FairSend kb(lSR) ∧ FairSend kb(lRS) says that if infinitely often
a message is sent on lSR then infinitely often a message is received on lSR, and, similarly, if
infinitely often a message is sent on lRS then infinitely often a message is received on lRS ;
as mentioned at the beginning of this section, we restrict to systems where these conditions
are met. Furthermore, it is not difficult to show that we can use simple initialization clauses
to guarantee that the constraints on the interpretation of cS and cR are satisfied:

@S initially ((∃n. ¬KSKRX(n)) ⇒ KSKRX[0..cS)) |≈I

(∃n. ¬KSKRX (n)) ⇒ KSKRX [0..cS),

@R initially ((∃n. ¬KRX(n)) ⇒ KRX[0..cR)) |≈I

(∃n. ¬KRX (n)) ⇒ KRX [0..cR).

Thus, PgkbS (ϕS , tS , lSR, aS)⊕ PgkbR (ϕR, cR, lRS , aR)) |≈I ϕkb
stp , where

PgkbS (ϕS , tS , lSR, aS) =def Fair -Pg(ϕS , tS , lSR, aS)⊕
@S initially ((∃n. ¬KSKRX(n)) ⇒ KSKRX[0..cS)),

PgkbR (ϕR, cR, lRS , aR)) =def Fair -Pg(ϕR, cR, lRS , aR)⊕
@R initially ((∃n. ¬KRX(n)) ⇒ KRX[0..cR)).

28 M. BICKFORD, R. CONSTABLE, J. Y. HALPERN, AND S. PETRIDE

From the definition of Fair -Pg(ϕR, cR, lRS , aR) in Section 2.4, it follows that PgkbS (ϕS , tS ,
lSR, aS) is the following composition:

@S initially ((∃n. ¬KSKRX(n)) ⇒ KSKRX[0..cS))⊕
@S kind = local (aS) only if ∃n. KSKR(X [0..n)) ⊕
@S if kind = local (aS) then msg(lSR) := tS ⊕
@S only events in [aS] affect msg(lSR)⊕
@S if necessarily ∃n. KSKR(X [0..n)) then i.o. kind = local(aS).

Using the program notation of Fagin et al. [19], PgkbS (ϕS , tS , lSR, aS) is essentially semanti-
cally equivalent to the following collection of programs, one for each value n:

if KS(KRX(0) ∧ . . . ∧KRX(n− 1)) ∧ ¬KSKRX(n) then sendlSR
(〈n,X(n)〉) else skip.

In both of these programs, S takes the same action under the same circumstances, and with
the same effects on its local state. That is, given a run r (i.e., a sequence of global states)
consistent with the collection of knowledge-based programs, we can construct an event
structure es consistent with PgkbS (ϕS , tS , lSR, aS) such that the sequence of local states of
S in es , with stuttering eliminated, is the same as in r. The converse is also true. More
precisely, in a run r consistent with the collection of knoweldge-based programs, at each
point of time, either S knows that R knows the value of X(n) for all n, or there exists a
smallest n such that ¬KSKR(X(n)) holds. In the first case, S does nothing, while in the
second case S sends 〈n,X(n)〉 on lSR. Similarly, in an event structure es consistent with
PgkbS (ϕS , tS , lSR, aS), if S knows that R knows X (n) for all n, then S does nothing; if not,
then it is impossible for S to know that R knows the first n bits, but never know that R
knows X (n), without eventually S taking an aS action with value 〈n,X(n)〉. This means
that for each run r consistent with the collection of knowledge-based programs, the event
structure es in which S starts from the same initial state as in r and performs action aS
as soon as it is enabled has the same sequence of local states of S as r . For each event
structure es consistent with PgkbS (ϕS , tS , lSR, aS), in the run r of global states in es with
stuttering eliminated, S takes action aS as soon as enabled; subsequently, r is consistent
with the collection of knowledge-based programs.

Similarly, PgkbR (ϕR, cR, lRS , aR) is essentially semantically equivalent to the following
collection of programs, one for each value n:

if KRX(0) ∧ . . . · · · ∧KRX(n− 1) ∧ ¬KRX(n) then sendlRS
(n) else skip.

Thus, the derived program is essentially one of the knowledge-based programs considered
by Halpern and Zuck [20]. This is not surprising, since our derivation followed much the
same reasoning as that of Halpern and Zuck. However, note that we did not first give a
knowledge-based program and then verify that it satisfied the specification. Rather, we
derived the knowledge-based programs for the sender and receiver from the proof that the
specification was satisfiable. And, while Nuprl required “hints” in terms of what to prove,
the key ingredients of the proof, namely, the specification FairkbI (ϕ, t , l) and the proof
that Fair -Pg(ϕ, t , l , a) realizes it, were already in the system, having been used in other
contexts. Thus, this suggests that we may be able to apply similar techniques to derive
programs satisfying other specifications in communication systems with only weak fairness
guarantees.

KNOWLEDGE-BASED SYNTHESIS OF DISTRIBUTED SYSTEMS USING EVENT STRUCTURES ∗ 29

4.2. Synthesis of standard programs for STP. This takes care of the first stage of the
synthesis process. We now want to find a standard program that implements the knowledge-
based program. As discussed by Halpern and Zuck [20], the exact standard program that
we use depends on the underlying assumptions about the communications systems. Here
we sketch an approach to finding such a standard program.

The first step is to identify the exact properties of knowledge that are needed for the
proof. This can be done by inspecting the proof to see which properties of the knowledge
operators KS and KR are used. The idea is then to replace formulas involving the knowledge
operators by standard (non-epistemic formulas) which have the relevant properties.

Suppose that ϕ̃kb
S is a formula that has a free variable m, and is guaranteed to be an

S-formula in all interpretations I. Roughly speaking, we can think of ϕ̃kb
S as corresponding

to KSKR(X(m)).
Let ϕkb

S be an abbreviation of

∃n. ((∀k < n. ϕ̃kb
S [m/k]) ∧ ¬ϕ̃kb

S [m/n]).

Thus, ϕkb
S is the analogue of ϕS in Section 4.1. Similarly, suppose that ϕ̃kb

R is a formula
that has a free variable m, and is guaranteed to be an R-formula in all interpretations I;
let ϕkb

R be an abbreviation of

∃n. ((∀k < n. ϕ̃kb
R [m/k]) ∧ ¬ϕ̃kb

R [m/n]).

We can think of ϕ̃kb
R as corresponding to KR(X(m)).

We also use constants c̃S and c̃R that are analogues of cS , cR; ϕ̃
kb
S plays the same

role in the definition of c̃S as KSKR(X(m)) played in the definition of cS , and ϕ̃
kb
R plays

the same role in the definition of c̃R as KR(X(m)) played in the definition of cR. Thus,
we take c̃S to be a constant that represents the least n such that ϕ̃kb

S [m/n] does not hold

(that is, we want (∃n. ¬ϕ̃kb
S [m/n]) ⇒ (∀k < cS . ϕ̃

kb
S [m/k] ∧ ¬ϕ̃kb

S [m/cS]) to be true), and
define t̃S as the pair 〈c̃S ,X(c̃S)〉. Similarly, we take c̃R to be a constant that represents
the least n such that ϕ̃kb

R [m/n] does not hold (that is, we want (∃n. ¬ϕ̃kb
R [m/n]) ⇒ (∀k <

cR. ϕ̃
kb
R [m/k] ∧ ¬ϕ̃kb

R [m/cR]) to be true).

Let ϕ̃kb
stp(ϕ̃

kb
R) be the specification that results by using ϕ̃kb

R [m/n] instead of KR(X(n))

in ϕkb
stp :

ϕ̃kb
stp(ϕ̃

kb
R) =def ∀n. ♦ϕ̃

kb
R [m/n].

We prove the goal ϕ̃kb
stp(ϕ̃

kb
R) by refinement: at each step, a rule (or tactic) of Nuprl is

applied, and a number of subgoals (typically easier to prove) are generated; the rule gives
a mechanism of constructing a proof of the goal from proofs of the subgoals. Some of the
subgoals cannot be further refined in an obvious manner; this is the case, for example, for
the simple conditions on ϕ̃kb

S or ϕ̃kb
R . The new theorem states that, under suitable conditions

on ϕ̃kb
S and ϕ̃kb

R , ϕkb(ϕ̃kb
R) is satisfiable if both FairkbI (ϕkb

S , t̃S , lSR) and FairkbI (ϕkb
R , c̃R, lRS)

are satisfiable.8

8The Nuprl lemma that corresponds to this result can be viewed at

http://www.cs.cornell.edu/info/projects/nuprl/fdlcontent/p0 963683 /send-minimal-realizable.html.

For ease of exposition, we have simplified and modified some Nuprl notation in our presentation in
this paper. The differences between the Nuprl lemma and the result of the paper are discussed at
http://www.cs.cornell.edu/home/halpern/papers/synthesis-appendix.pdf.

30 M. BICKFORD, R. CONSTABLE, J. Y. HALPERN, AND S. PETRIDE

We now explain the conditions placed on the predicates ϕ̃kb
S and ϕ̃kb

R . One condition is

that ϕ̃kb
R be stable, that is, once true, it stays true:

Stable(ϕ̃kb
R) =def λSys . ∀es ∈ Sys . ∀eR@R ∈ es. ∀n. I(ϕ̃kb

R [m/n])(Sys , state before eR) ⇒
I (ϕ̃kb

R [m/n])(Sys , state after eR).

Assuming Stable(ϕ̃kb
R) allows us to prove ϕkb

R by induction on the least index n such that

¬ϕ̃kb
R [m/n] holds.

To allow us to carry out a case analysis on whether ϕ̃kb
R holds, we also assume that ϕ̃kb

R

satisfies the principle of excluded middle; that is, we assume that Determinate(ϕ̃kb
R) =def

Determinate(∀n. (ϕ̃kb
R [m/n])t). For similar reasons, we also restrict ϕ̃kb

S to being stable and

determinate; that is, we require that Stable(ϕ̃kb
S) and Determinate(ϕ̃kb

S) both hold.

The third condition we impose establishes a connection between ϕ̃kb
S and ϕ̃kb

R , and

ensures that, for all values n, if ϕ̃kb
S [m/n] holds, then eventually ϕ̃kb

R [m/n] will also hold:

Implies(ϕ̃kb
S , ϕ̃

kb
R) =def

λSys . ∀es ∈ Sys . ∀n. ∀eS@S ∈ es . I(ϕ̃kb
S [m/n])(Sys , state before eS) ⇒

∃eR ≻ eS@R ∈ es . I (ϕ̃kb
R [m/n])(Sys , state after eR).

To explain the next condition, recall that ϕ̃R is meant to represent KR(X(m)). With

this interpretation, I(∀k ≤ n. ϕ̃
kb[m/k]
R)(Sys , state before send(eS)) says that R knows the

first n bits before it sends a message to S . We would like it to be the case that, just
as with the knowledge-based derivation, when S receives R’s message, S knows that R
knows the nth bit. Since we think of ϕ̃kb

S as saying that KSKR(X(m)) holds, we expect

I(ϕ̃kb
S [m/n])(Sys , state after eS) to be true. Define Rcv(ϕ̃kb

S , ϕ̃
kb
R , lRS) to be an abbreviation

of
λSys .∀es ∈ Sys . ∀eS@S ∈ es. (kind(eS) = rcv (lRS)) ⇒

∀n. (∀k ≤ n. I (ϕ̃kb
R [m/n])(Sys , state before send(eS))) ⇒

I (ϕ̃kb
S [m/n])(Sys , state after eS).

With this background, we can describe the last condition. Intuitively, it says that if n is
the least value for which ϕ̃kb

S fails when S sends a message to R, then ϕ̃kb
R holds for n upon

message delivery:

Rcv(ϕ̃kb
R , ϕ̃

kb
S , lSR) ≡

λSys . ∀es ∈ Sys . ∀eR@R ∈ es . (kind(eR) = rcv(lSR)) ⇒
∀n. (∀k < n. I (ϕ̃kb

S [m/k])(Sys , state before send(eR))∧
I (¬ϕ̃kb

S [m/n])(Sys , state before send(eR))
⇒ I (ϕ̃kb

R [m/n])(Sys , state after eR)).

We abbreviate the conjunction of these conditions as ψkb(ϕ̃kb
S , ϕ̃

kb
R , t̃S , t̃R, lSR, lRS). The new

theorem says

ψkb(ϕ̃kb
S , ϕ̃

kb
R , t̃S , c̃R, lSR, lRS)∧

FairkbI (ϕkb
S , t̃S , lSR) ∧ FairkbI (ϕkb

R , c̃R, lRS)∧
((∃n. ¬ϕ̃kb

S [m/n]) ⇒ (∀k < n. ϕ̃kb
S [m/k] ∧ ¬ϕ̃kb

S [m/cS]))∧
((∃n. ¬ϕ̃kb

R [m/n]) ⇒ (∀k < n. ϕ̃kb
R [m/k] ∧ ¬ϕ̃kb

R [m/cR]))
⇒ϕkb(ϕ̃kb

R).

KNOWLEDGE-BASED SYNTHESIS OF DISTRIBUTED SYSTEMS USING EVENT STRUCTURES ∗ 31

We can prove that the following is true for any two distinct actions aS and aR:

PgkbS (ϕkb
S , t̃S , lSR, aS)⊕ PgkbR (ϕkb

R , c̃R, lRS , aR) |≈I

ψkb(ϕ̃kb
S , ϕ̃

kb
R , t̃S , c̃R, lSR, lRS) ∧ FairSend(lRS) ⇒ ϕkb

stp(ϕ̃
kb
R),

where

PgkbS (ϕkb
S , t̃S , lSR, aS) =def

Fair -Pg(ϕkb
S , t̃S , lSR, aS)⊕

@S initially ((∃n. ¬ϕ̃kb
S [m/n]) ⇒ (∀k < cS . ϕ̃

kb
S [m/k] ∧ ¬ϕ̃kb

S [m/cS])),

PgkbR (ϕkb
R , t̃R, lRS , aR)) =def

Fair -Pg(ϕkb
R , t̃R, lRS , aR)⊕

@R initially ((∃n. ¬ϕ̃kb
R [m/n]) ⇒ (∀k < cR. ϕ̃

kb
R [m/k] ∧ ¬ϕ̃kb

R [m/cR])).

In particular, for the terms tS and cR and formulas ϕS and ϕR defined in the previous
section, we can show that ψkb(ϕkb

S , ϕ
kb
R , tS , cR, lSR, lRS) is true. Thus, the new theorem is

indeed a generalization of the previous results.
The formulas ϕS and ϕR are not the only ones that satisfy these conditions. Most

importantly for the purpose of extracting standard programs, the conditions are satisfied
by non-epistemic formulas, that is, formulas whose interpretations do not depend on the
entire system, just on the local states of the sender or the receiver agents, respectively. Note
that Lemma 2.5 guarantees that the extracted program is consistent.

4.2.1. Stenning’s protocol. In the next two sections, we show that by making relatively
straightforward choices for the formulas ϕ̃kb

S and ϕ̃kb
R and terms t̃S and t̃R, we can derive

two well-known solutions for STP, Stenning’s protocol [26] and an infinite-state variant of
the alternating-bit protocol [4]. We start with Stenning’s protocol.

In Stenning’s protocol, the sender transmit the bits on the tape in order to the receiver.
The sender S keeps track of the position iS of the bit in the sequence that he will next send
to R, while the receiver R keeps track of the first position iR in the sequence for which he
has not received the corresponding bit. Initially, both iS and iR are set to 0. S always
sends R message of the form 〈X(iS), iS〉. When R receives a message from S whose second
component is iR, then R increments iR and acknowledges the messages by sending S the
message iR; R disregards other messages. If S receives iR and iR > iS (it is easy to see that
this can happen only if iR = iS +1), then S increments iS ; S disregards all other messages.
Note that it is straightforward to write clauses that ensure that iS and iR indeed have these
properties. The clauses should say that initially both iS and iR are set to 0, that iS only
changes when S receives from R a message larger than iS , and that, if infinitely often this
is the case, then infinitely often iS is incremented; similarly, the clauses should say that
iR only changes when R receives from S a message whose last component is iR, and if
infinitely often this is the case, then infinitely often iR is increased. As apparent from this
short description, all such clauses can be expressed in the message automata framework.

We can choose ϕ̃kb
R such that ϕ̃kb

R (m) holds in R’s local state sR exactly when sR records

that R has received a message containing index m (that is, ϕ̃kb
R (m) =def iR > m), and

choose ϕ̃kb
S such that ϕ̃kb

S (m) holds in S’s local state sS exactly when sS records that S has

received an index strictly greater than m (that is, ϕ̃kb
S =def iS > m) . It is not difficult

to show that ψkb(ϕ̃kb
S , ϕ̃

kb
R , t̃S , c̃R , lSR, lRS) holds, except that now this specification is not

knowledge-based. Note that ϕkb
S (= ∃n. (∀k < n. ϕ̃kb

S [m/k]) ∧ ¬ϕ̃kb
S [m/n]) = true and,

32 M. BICKFORD, R. CONSTABLE, J. Y. HALPERN, AND S. PETRIDE

similarly, ϕkb
R = true. In addition, ϕkb

stp(ϕ̃
kb
R) implies ϕkb

stp, which means that, assuming
message communication is fair,

PgS (ϕ
kb
S , t̃S , lSR, aS)⊕ PgR(ϕ

kb
R , t̃R, lRS , aR)

(together with the basic clauses ensuring that the variables iS and iR behave appropriately)
satisfies the STP specification, as long as aS and aR are distinct actions. Note that the
program PgS (ϕ

kb
S , t̃S , lSR, aS)⊕ PgR(ϕ

kb
R , t̃R, lRS , aR) is realizable. We have thus extracted

a program that realizes the STP specification. Moreover, we can show that this program is
essentially semantically equivalent to Stenning’s protocol.

The Nuprl system is semi-automatic, in the sense that the programmer indicates at
each step which refinement rule to apply. Users can group a sequence of rules together into
what is called a tactic. In the discussion above, we did not apply any Nurpl tactics in the
derivation. However, the reader can easily check that each refinement step in the proof
outlined above is either a basic refinement rule (i.e., induction, case analysis for a formula
satisfying the principle of excluded middle), or an instance of the fairness specification from
Section 2.4.

The key point here is that by replacing the knowledge tests by stronger predicates that
imply them and do not explicitly mention knowledge, we can derive standard programs that
implement the knowledge-based program. We believe that other standard implementations
of the knowledge-based program can be derived in a similar way, although we have not yet
carried out the derivation.

4.2.2. The alternating-bit protocol. Stenning’s protocol works even if messages can be drop-
ped or duplicated, and messages can be reordered. All that is required is that communi-
cation is fair, in the sense that a message sent infinitely often is eventually received. The
alternating-bit protocol also works in an environment where messages can be dropped or
duplicated, but it does require that messages are received in the order in which they are
sent. The advantage of making this extra assumption is that now a finite-state protocol can
be used. Instead of using counters iS and iR to keep track of which prefix of the sequence
has been received, it suffices to use a bit that alternates in value to do this.

In more detail, the sender starts by reading the first value, stores it in the variable xS ,
and sends (xS , iS) to the receiver, where iS is a bit initially set to 0. The receiver maintains
a bit iR, initialized to λ (a null value). Upon receiving a message (xS , iS) from the sender, if
iS 6= iR, then the receiver sets iR = iS , writes xS , and acknowledges (xS , iS) (by sending iR
to the sender); if iS = iR, then the receiver ignores the message. When the sender receives
a message iR from the receiver with iR = iS , then the sender reads the next bit in the
sequence into xS and sets iS to 1 − iS ; otherwise, the sender ignores the message. (Note
that the values of iS alternates between 0 and 1, hence the name of the protocol.)

Let cntS be a variable representing how many times the bit iS has been flipped; similarly,
let cntR be a variable representing how many times the bit iR has been flipped. Let
ϕ̃kb
S =def (cntS ≥ m + 1), ϕ̃kb

R =def (cntR ≥ m + 1), t̃S =def 〈xS , iS〉, and t̃R =def iR.
Intuitively, whenever cntR ≥ m + 1 holds, that is, whenever R has flipped his bit at least
m+ 1 times, R knows the first m+ 1 bits in the sequence, that is, X(0), X(1) . . . X(m);
similarly, whenever cntS ≥ m + 1 holds, that is, whenever S has flipped his bit m + 1
times, it must be that S has received acknowledgments that R has received bits X(0), X(1)
. . . X(m). (For a formal proof of this claim, see [20]. Note that the proof in [20] relies
essentially on the fact that messages cannot be reordered.)

KNOWLEDGE-BASED SYNTHESIS OF DISTRIBUTED SYSTEMS USING EVENT STRUCTURES ∗ 33

As in Stenning’s protocol, we need to add some basic clauses that ensure that the
variables iS and iR have the right properties. These clauses should say that initially iS is
set to 0, that iS is flipped only if S receives the message iS from R, and that, if infinitely
often R receives a message from R equal to iS , then iS is flipped infinitely often; similarly,
the clauses should say that initially iR is set to a null value, that iR is changed only when
R receives a message from S (either equal to iR, if iR is not null, or not null), and that,
if infinitely often this is the case, then infinitely often iR is changed. Note that all these
clauses can be easily expressed using the message automata language.

We now show that ϕ̃kb
S , ϕ̃kb

R , t̃S and t̃R chosen as above satisfy all the conditions identified
during the derivation at the beginning of this section. We do not give a formal proof here;
rather, we present enough details for the reader to have an understanding of how the proof
works. It is not difficult to see that both Stable(ϕ̃kb

R) and Stable(ϕ̃kb
S) hold, as both cntS and

cntR can never decrease, and that Determinate(ϕ̃kb
R) and Determinate(ϕ̃kb

S) also hold. To

see that FairkbI (ϕkb
R , t̃R, lRS) also holds, recall that ϕkb

R is defined as ∃n. ∀k < n. ϕ̃kb
R [m/k]∧

¬ϕ̃kb
R [m/n], which is equivalent to ∃n.∀k < n. (cntR ≥ k + 1) ∧ (cntR < n + 1), that is,

∃n. cntR = n, and so ϕkb
R is always true. By inspecting the definition of FairkbI (ϕkb

R , t̃R, lRS),

this implies that FairkbI (ϕkb
R , t̃R, lRS) is reduced to showing that the following holds in all

runs es of the alternating-bit protocol: ∃eR@R ∈ es ∧ ∀e@R ∈ es . ∃e′ ∈ es.kind(e′) =
rcv(lRS) ∧ send(e′) � e@R. In other words, we need to show that, in all runs of the
alternating-bit protocol, some event occurs associated with R, and for all events associated
with R, such as R receiving a message from S, there will be a subsequent message sent by
R to S and received by S. This is clearly true for the alternating-bit protocol. Similarly,
FairkbI (ϕkb

S , t̃S , lSR) is reduced to the condition ∃e@S ∈ es ∧ ∀e@S ∈ es . ∃e′. kind(e′) =
rcv(lSR) ∧ send(e′) � e@S ∈ es , which basically says that some event associated with S
occurs and that, whenever S receives a message from R, there will be a subsequent message
sent by S to R and received by R. Again, this is true for all runs of the alternating-bit
protocol; that is, ϕkb

S , like ϕkb
S , is equivalent to the formula true in all runs of the system

corresponding to the alternating-bit protocol.
The formula Implies(ϕ̃kb

S , ϕ̃
kb
R) is equivalent in this case to the following formula:

∀n. ∀eS@S ∈ es. ((cntS ≥ n+1) before eS) ⇒ ∃eR ≻ eS@R ∈ es. ((cntR ≥ n+1) after eR).

This says that if the sender has flipped his bit at least n+1 times before he sends a message
to R, upon receiving that message R will have flipped his bit at least n+1 times, as well. In
fact, we can see that with the alternating-bit protocol (that is, with the enforced semantics
for iS and iR), if S has flipped his bit exactly k times before he sends a message to R, and
if that message is received by R, then, when R receives this message, either R has already
flipped his bit exactly k + 1 times and discards this message, or R has flipped his bit k
times, R does not discard this message and flips his bit one more time, ensuring R will have
been flipped his bit k + 1 times after receiving this message.

The formula Rcv (ϕ̃kb
S , ϕ̃

kb
R , lRS) is equivalent to

∀eS@S . (kind(eS) = rcv(lRS)) ⇒
∀n.((∀k ≤ n. ((cntR ≥ k + 1) before send(eS))) ⇒ ((cntS ≥ n + 1) after eS)).

This formula basically says that if R has flipped his bit at least n+ 1 times before sending
a message to S, and S receives this message, then S will have flipped his bit at least n+ 1
after seeing this message. We leave it to the reader to check that this is true for the runs
of the alternating-bit protocol (again, based on the enforced semantics for iS and iR).

34 M. BICKFORD, R. CONSTABLE, J. Y. HALPERN, AND S. PETRIDE

Finally, the formula Rcv(ϕ̃kb
R , ϕ̃

kb
S , lSR) is equivalent to

∀eR@R. (kind(eR) = rcv(lSR)) ⇒
∀n. (((∀k < n. cntS ≥ k + 1 ∧ cntS < n + 1) before send(eR))

⇒ ((cntR ≥ n + 1) after eR)).

This formula says that if S has flipped his bit exactly n times before he sends a message to R,
and R receives this message, then after receiving this message R will have flipped his bit at
least n+1 times. This easily follows from the argument made above that Implies(ϕ̃kb

S , ϕ̃
kb
R)

holds. It follows that all the conditions that we identified for deriving a standard program
from a knowledge-based program are satisfied. Thus, if messages are not reordered, the
specification for the sequence-transmission problem is satisfied by the standard program

Fair-Pgkb(ϕkb
S , t̃S , lSR, aS)⊕ Fair-PgkbI (ϕkb

R , t̃R, lRS , aR).

Since, as we showed above, both ϕkb
S and ϕkb

R are always true for our particular choices of

ϕ̃kb
S , ϕ̃kb

R , t̃S, and t̃R, this becomes

@S kind = local(aS) only if true ⊕
@S if kind = local(aS) then msg(lSR) := 〈xS , iS 〉 ⊕
@S only events in [aS] affect msg(lSR) ⊕
@S if neccessarily true then i.o. kind = local(aS) ⊕
@R kind = local(aR) only if true ⊕
@R if kind = local(aR) then msg(lRS) := iR ⊕
@R only events in [aR] affect msg(lRS) ⊕
@R if neccessarily true then i.o. kind = local(aR).

Note that this program indeed corresponds to the alternating-bit protocol.

5. Conclusion and Future Work

We have shown that the mechanism for synthesizing programs from specifications in Nuprl
can be extended to knowledge-based programs and specifications, Moreover, we have shown
that axioms much in the spirit of those used for standard programs can be used to synthesize
knowledge-based programs as well. We applied this methodology to the analysis of the
sequence-transmission problem, and showed that the knowledge-based programs proposed
by Halpern and Zuck for solving the STP problem can be synthesized in Nuprl. We also
sketched an approach for deriving standard programs that implement the knowledge-based
programs that solve the STP. A feature of our approach is that the extracted standard
programs are closer to the pseudocode that designers write, and can be translated into
running code.

There has been work on synthesizing both standard programs and knowledge-based
programs from knowledge-based specifications. In the case of synchronous systems with
only one process, Van der Meyden and Vardi [28] provide a necessary and sufficient con-
dition for a certain type of knowledge-based specification to be realizable, and show that,
when it holds, a program can be extracted that satisfies the specification. Still assuming a
synchronous setting, but this time allowing multiple agents, Engelhardt, van der Meyden,
and Moses [16, 17] propose a refinement calculus in which one can start with an epistemic
and temporal specification and use refinement rules that eventually lead to standard formu-
las. The refinement rules annotate formulas with preconditions and postconditions, which
allow programs to be synthesized from the leaf formulas in a straightforward way. A search

KNOWLEDGE-BASED SYNTHESIS OF DISTRIBUTED SYSTEMS USING EVENT STRUCTURES ∗ 35

up the tree generated in the refinement process suffices to build a program that satisfies
the specification. The extracted programs are objects of a programming language that
allows concurrent and sequential executions, variable assignments, loops and conditional
statements.

We view our method for synthesizing programs from knowledge-based specifications as
an alternative to this approach. As in the Engelhart et al. approach, the Nuprl programs
that we extract are close to programs in standard programming languages. Arguably,
distributed I/O message automata are general enough to express most of the distributed
programs of interest when communication is done by message passing. Our approach has
the additional advantage of working in asynchronous settings.

A number of questions, both theoretical and more applicative, still remain open. While
synthesis of distributed programs from epistemic and temporal specifications is not com-
putable in general, recent results [29] show that, under certain assumptions about the setting
in which agents communicate, the problem is computable. It would be worth understanding
the extent to which these assumptions apply to our setting. Arguably, to prove a result of
this type, we need a better understanding of how properties of a number of knowledge-based
programs relate to the properties of their composition; this would also allow us to prove
stronger composition rules than the one presented in Section 3.2. As we said, we believe
that the approach that we sketched for extracting a standard program from the knowledge-
based specification for the STP problem can be extended into a general methodology. As
pointed out by Engelhart et al., the key difficulty in extracting standard programs from ab-
stract specifications is in coming up with good standard tests to replace the abstract tests
in a program. However, it is likely that, by reducing the complexity of the problem and
focusing only on certain classes of knowledge-based specifications, “good” standard tests
can be more easily identified.

Acknowledgements

We would like to thank Richard Eaton from the Nuprl group for making the Nuprl lemma
corresponding to our proof of the sequence-transmission problem available online.

References

[1] A. V. Aho, J. D. Ullman, A. D. Wyner, and M. Yannakakis. Bounds on the size and transmission rate
of communication protocols. Computers and Mathematics with Applications, 8(3):205–214, 1982. This
is a later version of [2].

[2] A. V. Aho, J. D. Ullman, and M. Yannakakis. Modeling communication protocols by automata. In
Proc. 20th IEEE Symp. on Foundations of Computer Science, pages 267–273. 1979.

[3] S. Allen, M. Bickford, R. Constable, R. Eaton, C. Kreitz, L. Lorigo, and E. Moran. Innovations in
computational type theory using nuprl. In Journal of Applied Logic, volume 4, pages 428–469, 2006.

[4] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A note on reliable full-duplex transmission over
half-duplex links. Communications of the ACM, 12:260–261, 1969.

[5] S. Berghofer. Program extraction in simply-typed higher-order logic. In In H. Geuvers and F. Wiedijk,
editors, Types for Proofs and Programs, International Workshop, (TYPES 2002), LNCS, volume 2646,
pages 21–38. Springer-Verlag, 2002.

[6] M. Bickford and R. L. Constable. A causal logic of events in formalized computational type theory.
Report, Cornell University, 2005.

[7] M. Bickford, C. Kreitz, R. van Renesse, and X. Liu. Proving hybrid protocols correct. In R. Boulton
and P. Jackson, editors, 14th International Conference on Theorem Proving in Higher Order Logics,
LNCS, Volume 2152, pages 105–120. Springer-Verlag, 2001.

36 M. BICKFORD, R. CONSTABLE, J. Y. HALPERN, AND S. PETRIDE

[8] L. E. J. Brouwer. On the significance of the principle of excluded middle in mathematics, especially in
function theory. J. für die Reine und Angewandte Mathematik, 154:1–7, 1923.

[9] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley, Reading, Mass.,
1988.

[10] R. L. Constable. Constructive mathematics and automatic program writers. In In Proceedings of the
IFIP Congress, pages 229–233. North-Holland, 1971.

[11] R. L. Constable and M. Bickford. Formal foundations of computer security. In NATO Science for Peace
and Security Series D: Information and Communication Security, volume 14, pages 29–52.

[12] R. L. Constable et al. Implementing Mathematics with the Nuprl Proof Development System. Prentice-
Hall, NJ, 1986.

[13] T. Coquand and G. Huet. The calculus of constructions. Information and Computation, 76:95–120,
1988.

[14] C. Cornes, J. Courant, J.-C. Filliâtre, G. P. Huet, P. Manoury, C. Paulin-Mohring, C. Muñoz, C. Murthy,
C. Parent, A. Säıbi, and B. Werner. The Coq proof assistant reference manual. Technical report, INRIA-
Rocquencourt, CNRS, and ENS Lyon, 1996.

[15] C. Dwork and Y. Moses. Knowledge and common knowledge in a Byzantine environment: crash failures.
Information and Computation, 88(2):156–186, 1990.

[16] K. Engelhardt, R. van der Meyden, and Y. Moses. A program refinement framework supporting rea-
soning about knowledge and time. In J. Tiuryn, editor, Proc. Foundations of Software Science and
Computation Structures (FOSSACS 2000), pages 114–129. Springer-Verlag, Berlin/New York, 1998.

[17] K. Engelhardt, R. van der Meyden, and Y. Moses. A refinement theory that supports reasoning about
knowledge and time for synchronous agents. In Proc. International Conference on Logic for Program-
ming, Artificial Intelligence, and Reasoning, pages 125–141. Springer-Verlag, Berlin/New York, 2001.

[18] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Knowledge-based programs. Distributed Computing,
10(4):199–225, 1997.

[19] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning About Knowledge.
MIT Press, 1995.

[20] J. Y. Halpern and L. D. Zuck. A little knowledge goes a long way: knowledge-based derivations and
correctness proofs for a family of protocols. Journal of the ACM, 39(3):449–478, 1992.

[21] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of the
ACM, 21(7):558–565, 1978.

[22] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133–169, 1998.
[23] N. A. Lynch and M. R. Tuttle. An introduction to input/output automata. CWI Quarterly, 2(3):219–

246, 1989. Also available as MIT Technical Memo MIT/LCS/TM-373.
[24] P. Panangaden and S. Taylor. Concurrent common knowledge: defining agreement for asynchronous

systems. Distributed Computing, 6(2):73–93, 1992.
[25] C. Paulin-Mohring and B. Werner. Synthesis of ML programs in the system Coq. Journal of Symbolic

Computation, 15:607–640, 1993.
[26] M. V. Stenning. A data transfer protocol. Comput. Networks, 1:99–110, 1976.
[27] F. Stulp and R. Verbrugge. A knowledge-based algorithm for the Internet protocol (TCP). Bulletin of

Economic Research, 54(1):69–94, 2002.
[28] R. van der Meyden and M. Y. Vardi. Synthesis from knowledge-based specifications. In Proc. Ninth

International Conference on Concurrency Theory (CONCUR’98), pages 34–49, 1998.
[29] R. van der Meyden and T. Wilke. Synthesis of distributed systems from knowledge-based specifications.

Technical Report UNSW-CSE-TR-0504, University of New South Wales, 2005.
[30] X.Liu, C. Kreitz, R. van Renesse, J.Hickey, M. Hayden, K. Birman, and R. Constable. Building reliable,

high-performance communication systems from components. In ACM Symposium on Operating Systems
Principles (SOSP), 1999.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Synthesizing programs from constructive proofs
	2.1. Nuprl: a brief overview
	2.2. Event structures
	2.3. Distributed message automata
	2.4. Example

	3. Adding knowledge to Nuprl
	3.1. Consistent cut semantics for knowledge
	3.2. Knowledge-based programs and specifications
	3.3. Examples

	4. The sequence-transmission problem (STP)
	4.1. Synthesizing a knowledge-based program for STP
	4.2. Synthesis of standard programs for STP

	5. Conclusion and Future Work
	Acknowledgements
	References

