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Abstract. We propose a novel, type-elimination-based method for standard reasoning in the de-
scription logicSHIQbs extended by DL-safe rules. To this end, we first establish a knowledge
compilation method converting the terminological part of an ALCIb knowledge base into an or-
dered binary decision diagram (OBDD) that represents a canonical model. This OBDD can in turn
be transformed into disjunctive Datalog and merged with theassertional part of the knowledge base
in order to perform combined reasoning. In order to leverageour technique for fullSHIQbs, we
provide a stepwise reduction fromSHIQbs toALCIb that preserves satisfiability and entailment of
positive and negative ground facts. The proposed techniqueis shown to be worst-case optimal w.r.t.
combined and data complexity.

1. Introduction

Description logics (DLs, see Baader et al., 2007) have become a major paradigm in Knowledge
Representation and Reasoning. This can in part be attributed to the fact that the DLs have been
found suitable to be the foundation for ontology modeling and reasoning for the Semantic Web. In
particular, the Web Ontology Language OWL (W3C OWL Working Group, 2009), a recommended
standard by the World Wide Web Consortium (W3C)1 for ontology modeling, is essentially a de-
scription logic (see, e.g., Hitzler et al., 2009, for an introduction to OWL and an in-depth description
of the correspondences). As such, DLs are currently gainingsignificant momentum in application
areas, and are being picked up as knowledge representation paradigm by both industry and applied
research.

1998 ACM Subject Classification:I.2.4, I.2.3, F.4.3, F.4.1.
Key words and phrases:description logics, type elimination, decision diagrams,Datalog.
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LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (1:12) 2012

c© S. Rudolph, M. Krötzsch, and P. Hitzler
CC© Creative Commons

http://creativecommons.org/about/licenses


2 S. RUDOLPH, M. KRÖTZSCH, AND P. HITZLER

The DL known asSHIQ is among the most prominent DL fragments that do not feature nominals,2

and it covers most of the OWL language. Various OWL reasonersimplement efficient reasoning
support forSHIQ by means of tableau methods, e.g., Pellet,3 FaCT++,4 or RacerPro,5.
However, even the most efficient implementations of reasoning algorithms to date do not scale up
to very data-intensive application scenarios. This motivates the search for alternative reasoning ap-
proaches that build upon different methods in order to address cases where tableau algorithms turn
out to have certain weaknesses. Successful examples are KAON2 (Motik and Sattler, 2006) based
on resolution, HermiT (Motik et al., 2009) based on hyper-tableaux, as well as the consequence-
based systems CB (Kazakov, 2009), ConDOR (Simančík et al., 2011), and ELK (Kazakov et al.,
2011). Moreover, especially for lightweight DLs, approaches based on rewriting queries (Calvanese et al.,
2007a) or both queries and data (Kontchakov et al., 2010) have been proposed.
In this paper, we propose the use of a variant oftype elimination, a notion first introduced by
Pratt (1979), as a reasoning paradigm for DLs. To implement the necessary computations on large
type sets in a compressed way, we suggest the use of ordered binary decision diagrams (OBDDs).
OBDDs have been applied successfully in the domain of large-scale model checking and verifica-
tion, but have hitherto seen only little investigation in DLs, e.g., by Pan et al. (2006).
Most of the description logics considered in this article exhibit restricted Boolean role expressions
as a non-standard modeling feature, which is indicated by ab or (if further restricted)bs in the
name of the DL. In particular, we propose a novel method for reasoning inSHIQbs knowledge
bases featuring terminological and assertional knowledgeincluding (in)equality statements as well
as DL-safe rules.
Our work starts by considering terminological reasoning inthe DLALCIb, which is less expressive
thanSHIQbs. We introduce a method that compiles anALCIb terminology into an OBDD
representation. Thereafter, we show that the output of thisalgorithm can be used for generating
a disjunctive Datalog program that can in turn be combined with ABox data to obtain a correct
reasoning procedure. Finally, the results forALCIb are lifted to fullSHIQbs by providing an
appropriate translation from the latter to the former.
This article combines and consolidates our previous work about pure TBox reasoning (Rudolph et al.,
2008c), its extension to ABoxes (Rudolph et al., 2008b) and some notes on reasoning in DLs with
Boolean role expressions (Rudolph et al., 2008a) by

• providing a collection of techniques for eliminatingSHIQbs modeling features that impede the
use of our type elimination approach,
• laying out the model-theoretic foundations for type-elimination-based reasoning for very expres-

sive description logics without nominals, using thedominometaphor for 2-types,
• elaborating the possibility of using OBDDs for making type elimination computationally feasible,
• providing a canonical translation of OBDDs into disjunctive Datalog to enable reasoning with

assertional information, and
• making the full proofs accessible in a published version.
Moreover, we extend our work by adding some missing aspects and completing the theoretical
investigations by

2Nominals, i.e., concepts that denote a set with exactly one element, usually cause a reasoning efficiency problem
when added toSHIQ. This is evident from the performance of existing systems, and finds its theoretical justification in
the fact that they increase worst-case complexity from ExpTime-completeness to NExpTime-completeness.

3http://clarkparsia.com/pellet/
4http://owl.man.ac.uk/factplusplus/
5http://www.racer-systems.com/
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• extending the procedures for reducingSHIQbs toALCIb to ABoxes and DL-safe rules,
• establishing worst-case optimality of our algorithms,
• extending the supported language: while our previous work only covered terminological rea-

soning inSHIQ (Rudolph et al., 2008c) and combined reasoning inALCIb (Rudolph et al.,
2008b), we now support reasoning inSHIQbs knowledge bases featuring terminological and
assertional knowledge, including (in)equality statements and DL-safe rules.

The structure of this article is as follows. Section 2 recalls relevant preliminaries. Section 3 dis-
cusses the computation of sets ofdominoesthat represent models ofALCIb knowledge bases.
Section 4 casts this computation into a manipulation of OBDDs as underlying data structures. Sec-
tion 5 discusses how the resulting OBDD presentation can be transformed to disjunctive Datalog
and establishes the correctness of the approach. Section 6 provides a transformation fromSHIQbs

to ALCIb, thereby extending the applicability of the proposed method to SHIQbs knowledge
bases. Section 7 discusses related work and Section 8 concludes.

2. The Description Logics SHIQbs andALCIb

We first recall some basic definitions of DLs and introduce ournotation. A more gentle first in-
troduction to DLs, together with pointers to further reading, is given in Rudolph (2011). Here, we
define a rather expressive description logicSHIQbs that extendsSHIQ with restricted Boolean
role expressions (see, e.g., Tobies, 2001).

Definition 2.1. A SHIQbs knowledge base is based on three disjoint sets ofconcept namesNC,
role namesNR, andindividual namesNI . The set ofatomic rolesR is defined byR ≔ NR ∪ {R− |
R ∈ NR}. In addition, we let Inv(R) ≔ R− and Inv(R−) ≔ R, and we extend this notation also to
sets of atomic roles. In the following, we use the symbolsR andS to denote atomic roles, if not
specified otherwise.
The set ofBoolean role expressionsB is defined as

BF R | ¬B | B ⊓ B | B ⊔ B.

We use⊢ to denote entailment between sets of atomic roles and role expressions. Formally, given a
setR of atomic roles, we inductively define:

• for atomic rolesR, R ⊢ R if R ∈ R, andR 0 Rotherwise,
• R ⊢ ¬U if R 0 U, andR 0 ¬U otherwise,
• R ⊢ U ⊓ V if R ⊢ U andR ⊢ V, andR 0 U ⊓ V otherwise,
• R ⊢ U ⊔ V if R ⊢ U orR ⊢ V, andR 0 U ⊔ V otherwise.

A Boolean role expressionU is restricted if ∅ 0 U. The set of all restricted role expressions is
denoted byT, and the symbolsU andV will be used throughout this paper to denote restricted role
expressions. ASHIQbs RBox is a set of axioms of the formU ⊑ V (role inclusion axiom) or
Tra(R) (transitivity axiom). The set ofnon-simpleroles (for a given RBox) is defined as the smallest
subset ofR satisfying:

• If there is an axiomTra(R), thenR is non-simple.
• If there is an axiomR⊑ S with Rnon-simple, thenS is non-simple.
• If R is non-simple, then Inv(R) is non-simple.

An atomic role issimple if it is not non-simple. InSHIQbs, every non-atomic Boolean role
expression must contain only simple roles.
Based on aSHIQbs RBox, the set ofconcept expressionsC is defined as

CF NC | ⊤ | ⊥ | ¬C | C ⊓ C | C ⊔ C | ∀T.C | ∃T.C | 6nR.C | >(n+ 1)R.C,
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wheren ≥ 0 denotes a natural number, and the roleS in expressions6n S.C and>(n + 1)S.C
is required to be simple. Common names for the various forms of concept expressions are given
in Table 1 (lower part). Throughout this paper, the symbolsC, D will be used to denote concept
expressions. ASHIQbs TBox(or terminology) is a set ofgeneral concept inclusion axioms(GCIs)
of the formC ⊑ D.

Besides the terminological components, DL knowledge basestypically include assertional knowl-
edge as well. In order to increase expressivity and to allow for a uniform presentation of our
approach we generalize this by allowing knowledge bases to contain so-called DL-safe rules as
introduced by Motik et al. (2005).

Definition 2.2. Let V be a countable set of first-order variables. Aterm is an element ofV ∪ NI .
Given termst andu, aconcept atom/role atom/equality atomis a formula of the formC(t)/R(t, u)/t ≈
u with C ∈ NC andR ∈ NR. A DL-safe rulefor SHIQbs is a formulaB→ H, whereB andH are
possibly empty conjunctions of (role, concept, and equality) atoms. To simplify notation, we will
often use finite setsS of atoms for representing the conjunction

∧

S.
A setP of DL-safe rules is called arule base. An extendedSHIQbs knowledge baseKB is a triple
〈T,R,P〉, whereT is aSHIQbs TBox,R is aSHIQbs RBox, andP is a rule base.

We only consider extended knowledge bases in this work, so wewill often just speak of knowledge
bases. In the literature, a DL ABox is usually allowed to contain assertions of the formA(a), R(a, b),
or a ≈ b, wherea, b ∈ NI , A ∈ NC, andR ∈ NR. We assume that all roles and concepts occurring in
the ABox are atomic.6 These assertions can directly be expressed as DL-safe rulesthat have empty
(vacuously true) bodies and a single head atom. Conversely,the negation of these assertions can be
expressed by rules that have the assertion as body atom whilehaving an empty (vacuously false)
head. Knowing this, we will not specifically consider assertions or negated assertions in the proofs
of this paper. For convenience we will, however, sometimes use the above notations instead of their
rule counterparts when referring to (positive or negated) ground facts.
As mentioned above, we will mostly consider fragments ofSHIQbs. In particular, an (extended)
ALCIb knowledge base is an (extended)SHIQbs knowledge base that contains no RBox axioms
and no number restrictions (i.e., concept expressions6n R.C or>n R.C). Consequently, an extended
ALCIb knowledge base only consists of a pair〈T,P〉, whereT is a TBox andP is a rule base. The
related DLALCQIb has been studied by Tobies (2001).
The semantics ofSHIQbs and its sublogics is defined in the usual, model-theoretic way. An
interpretationI consists of a set∆I called domain (the elements of it being calledindividuals)
together with a function·I mapping individual names to elements of∆I, concept names to subsets
of ∆I, and role names to subsets of∆I × ∆I.
The function·I is extended to role and concept expressions as shown in Table1. An interpretation
I satisfiesan axiomϕ if we find thatI |= ϕ, where
• I |= U ⊑ V if UI ⊆ VI,
• I |= Tra(R) if RI is a transitive relation,
• I |= C ⊑ D if CI ⊆ DI,

I satisfiesa knowledge base KB, denotedI |= KB, if it satisfies all axioms of KB.
It remains to define the semantics of DL-safe rules. A (DL-safe) variable assignment Zfor an
interpretationI is a mapping from the set of variablesV to {aI | a ∈ NI }. Given a termt ∈ NI ∪ V,

6This common assumption is made without loss of generality interms of knowledge base expressivity. It is essential
for defining the ABox-specific complexity measure ofdata complexity, although it might be questionable in cases where
ABox statements with complex concept expressions belong tothe part of the knowledge base that is frequently changing.
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Name Syntax Semantics

inverse role R− {〈x, y〉 ∈ ∆I × ∆I | 〈y, x〉 ∈ RI}
role negation ¬U {〈x, y〉 ∈ ∆I × ∆I | 〈x, y〉 < UI}
role conjunction U ⊓ V UI ∩ VI

role disjunction U ⊔ V UI ∪ VI

top ⊤ ∆I

bottom ⊥ ∅

negation ¬C ∆I \CI

conjunction C ⊓ D CI ∩ DI

disjunction C ⊔ D CI ∪ DI

universal restriction ∀U.C {x ∈ ∆I | 〈x, y〉 ∈ UI impliesy ∈ CI}
existential restriction ∃U.C {x ∈ ∆I | 〈x, y〉 ∈ UI, y ∈ CI for somey ∈ ∆I}
qualified 6n S.C {x ∈ ∆I | #{y∈∆I|〈x, y〉 ∈SI, y∈CI} ≤ n}

number restriction >n S.C {x ∈ ∆I | #{y∈∆I|〈x, y〉 ∈SI, y∈CI} ≥ n}

Table 1: Semantics of constructors inSHIQbs for an interpretationI with domain∆I

we settI,Z ≔ Z(t) if t ∈ V, and tI,Z ≔ tI otherwise. Given a concept atomC(t) / role atom
R(t, u) / equality atomt ≈ u, we writeI,Z |= C(t) / I,Z |= R(t, u) / I,Z |= t ≈ u if tI,Z ∈ CI /
〈tI,Z, uI,Z〉 ∈ RI / tI,Z = uI,Z, and we say thatI andZ satisfythe atom in this case.
An interpretationI satisfiesa ruleB → H if, for all variable assignmentsZ for I, eitherI andZ
satisfy all atoms inH, orI andZ fail to satisfy some atom inB. In this case, we writeI |= B→ H
and say thatI is amodelfor B→ H. An interpretation satisfies a rule baseP (i.e., it is amodelfor
it) whenever it satisfies all rules in it. An extended knowledge base KB= 〈T,R,P〉 is satisfiableif it
has an interpretationI that is a model forT,R, andP, and it isunsatisfiableotherwise.Satisfiability,
equivalence, andequisatisfiabilityof (extended) knowledge bases are defined as usual.
For convenience of notation, we abbreviate TBox axioms of the form⊤ ⊑ C by writing just C.
Statements such asI |= C andC ∈ KB are interpreted accordingly. Note thatC ⊑ D can thus be
written as¬C ⊔ D.
We often need to access a particular set of quantified and atomic subformulae of a DL concept
expression. These specificpartsare provided by the functionP : C→ 2C:

P(C) ≔































P(D) if C = ¬D,
P(D) ∪ P(E) if C = D ⊓ E or C = D ⊔ E,
{C} ∪ P(D) if C = QU.D with Q∈ {∃,∀,>n,6n},
{C} otherwise.

We generalizeP to DL knowledge bases KB by definingP(KB) to be the union of the setsP(C)
for all TBox axiomsC in KB, where we express TBox axioms as simple concept expressions as
explained above.
Given an extended knowledge base KB, we obtain its negation normal formNNF(KB) by keeping
all RBox statements and DL-safe rules untouched and converting every TBox conceptC into its
negation normal formNNF(C) in the usual, recursively defined way:
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NNF(¬⊤) ≔ ⊥

NNF(¬⊥) ≔ ⊤

NNF(C) ≔ C if C ∈ {A,¬A,⊤,⊥}
NNF(¬¬C) ≔ NNF(C)
NNF(C ⊓ D) ≔ NNF(C) ⊓ NNF(D)
NNF(¬(C ⊓ D)) ≔ NNF(¬C) ⊔ NNF(¬D)
NNF(C ⊔ D) ≔ NNF(C) ⊔ NNF(D)
NNF(¬(C ⊔ D)) ≔ NNF(¬C) ⊓ NNF(¬D)

NNF(∀U.C) ≔ ∀U.NNF(C)
NNF(¬∀U.C) ≔ ∃U.NNF(¬C)
NNF(∃U.C) ≔ ∃U.NNF(C)
NNF(¬∃U.C) ≔ ∀U.NNF(¬C)
NNF(6n R.C) ≔ 6n R.NNF(C)
NNF(¬6n R.C) ≔ >(n+ 1)R.NNF(C)
NNF(>n R.C) ≔ >n R.NNF(C)
NNF(¬>n R.C) ≔ 6(n− 1)R.NNF(C)

It is well known that KB andNNF(KB) are semantically equivalent.
In places, we will additionally require another well-knownnormalization step that simplifies the
structure of KB byflatteningit to a knowledge baseFLAT(KB). This is achieved by transforming
KB into negation normal form and exhaustively applying the following transformation rules:

• Select an outermost occurrence ofQU.D in KB, such that Q∈ {∃,∀,6n,>n} and D is a non-
atomic concept.
• Substitute this occurrence withQU.F whereF is a fresh concept name (i.e., one not occurring in

the knowledge base).
• If Q∈ {∃,∀,>n}, add¬F ⊔ D to the knowledge base.
• If Q= 6n addNNF(¬D) ⊔ F to the knowledge base.

Obviously, this procedure terminates, yielding a flat knowledge baseFLAT(KB) all TBox axioms
of which are⊓,⊔-expressions over formulae of the form⊤, ⊥, A, ¬A, or QU.A with A an atomic
concept name. Flattening is known to be a satisfiability-preserving transformation; we include the
proof for the sake of self-containedness.

Proposition 2.3. For everySHIQbs knowledge baseKB, we find thatKB and FLAT(KB) are
equisatisfiable.

Proof. We first prove inductively that every model ofFLAT(KB) is a model of KB. Let KB′ be an
intermediate knowledge base and let KB′′ be the result of applying one single substitution step to
KB′ as described in the above procedure. We now show that any model I of KB′′ is a model of KB′.
Let QU.D be the concept expression substituted in KB′. Note that after every substitution step, the
knowledge base is still in negation normal form. Thus, we seethat QU.D occurs outside the scope
of any negation or quantifier in a KB′ axiomE′, and the same is the case forQU.F in the respective
KB′′ axiomE′′ obtained after the substitution. Hence, if we show that (QU.F)I ⊆ ( QU.D)I, we can
conclude thatE′′I ⊆ E′I. FromI being a model of KB′′ and thereforeE′′I = ∆I, we would then
easily derive thatE′I = ∆I and hence find thatI |= KB′, as all other axioms from KB′ are trivially
satisfied due to their presence in KB′′.
It remains to show (QU.F)I ⊆ ( QU.D)I. To show this, consider some arbitraryδ ∈ ( QU.F)I. We
distinguish various cases:

• Q= >n
Then there are distinct individualsδ1, . . . , δn ∈ ∆

I with 〈δ, δi〉 ∈ UI andδi ∈ FI for 1 ≤ i ≤ n.
Since¬F ⊔ D ∈ KB′′, we haveI |= ¬F ⊔ D, and thereforeδi ∈ DI for all then distinctδi . Thus
δ ∈ (>n U.F)I.
• Q= 6n

Then the number of individualsδ′ ∈ ∆I with 〈δ, δ′〉 ∈ UI andδ′ ∈ FI is not greater thann.
SinceNNF(¬D) ⊔ F ∈ KB′′, we knowDI ⊆ FI. Thus, also the number of individualsδ′ ∈ ∆I

with 〈δ, δ′〉 ∈ UI andδ′ ∈ DI cannot be greater thann, leading to the conclusionδ ∈ (6n U.D)I.
Hence, we have (6n U.F)I ⊆ (6n U.D)I.
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The arguments for Q= ∃ and Q= ∀ are very similar, since these cases can be treated like>1U.F
and60U.¬F, respectively. Thus we obtainδ ∈ ( QU.D)I in each case as required.
For the other direction of the claim, note that every modelI of KB can be transformed into a model
J of FLAT(KB) by following the flattening process described above: Let KB′′ result from KB′ by
substituting QU.D by QU.F and adding the respective axiom. Furthermore, letI′ be a model of
KB′. Now we construct the interpretationI′′ as follows:FI

′′

≔ ( QU.D)I
′

and for all other concept
and role namesN we setNI

′′

≔ NI
′

. ThenI′′ is a model of KB′′.

3. Building Models from Domino Sets

In this section, we introduce the notion of a set ofdominoesfor a givenALCIb TBox. Rules (and
thus ABox axioms) will be incorporated in Section 5 later on.Intuitively, a domino abstractly rep-
resents two individuals in anALCIb interpretation, reflecting their satisfied concepts and mutual
role relationships. Thereby, dominoes are conceptually very similar to the concept of 2-types, as
used in investigations on two-variable fragments of first-order logic, e.g., by Grädel et al. (1997).
We will see that suitable sets of such two-element pieces suffice to reconstruct models ofALCIb,
which also reveals certain model-theoretic properties of this not so common DL. In particular, every
satisfiableALCIb TBox admits tree-shaped models. This result is rather a by-product of our main
goal of decomposing models into unstructured sets of local domino components, but it explains
why our below constructions have some similarity with common approaches of showing tree-model
properties by unraveling models.
After introducing the basics of our domino representation,we present an algorithm for deciding
satisfiability of anALCIb terminology based on sets of dominoes.

3.1. From Interpretations to Dominoes. We now introduce the basic notion of a domino set, and
its relationship to interpretations. Given a DL with concepts C and rolesR, a dominooverC ⊆ C
is an arbitrary triple〈A,R,B〉, whereA,B ⊆ C andR ⊆ R. In the following, we will always
assume a fixed language and refer to dominoes over that language only. We now formalize the idea
of deconstructing an interpretation into a set of dominoes.

Definition 3.1. Given an interpretationI = 〈∆I, ·I〉, and a setC ⊆ C of concept expressions, the
domino projectionof I w.r.t.C, denoted byπC(I) is the set that contains, for allδ, δ′ ∈ ∆I, the triple
〈A,R,B〉 with

A = {C ∈ C | δ ∈ CI}, R = {R∈ R | 〈δ, δ′〉 ∈ RI}, B = {C ∈ C | δ′ ∈ CI}.

It is easy to see that domino projections do not faithfully represent the structure of the interpretation
that they were constructed from. But, as we will see below, domino projections capture enough
information to reconstruct models of a TBoxT, as long asC is chosen to contain at leastP(T). For
this purpose, we introduce the inverse construction of interpretations from arbitrary domino sets.

Definition 3.2. Given a setD of dominoes, the induceddomino interpretationI(D) = 〈∆I, ·I〉 is
defined as follows:

(1) ∆I consists of all nonempty finite words overD where, for each pair of subsequent letters
〈A,R,B〉 and〈A′,R′,B′〉 in a word, we haveB = A′.

(2) For a wordσ = 〈A1,R1,A2〉〈A2,R2,A3〉 . . . 〈Ai−1,Ri−1,Ai〉 and a concept nameA ∈ NC, we
define tail(σ) ≔ Ai and setσ ∈ AI iff A ∈ tail(σ).



8 S. RUDOLPH, M. KRÖTZSCH, AND P. HITZLER

(3) For a role nameR ∈ NR, we set〈σ1, σ2〉 ∈ RI if
σ2 = σ1〈A,R,B〉 with R∈ R or σ1 = σ2〈A,R,B〉 with Inv(R) ∈ R.

We can now show that certain domino projections contain enough information to reconstruct models
of a TBox.

Proposition 3.3. Consider a setC ⊆ C of concept expressions, and an interpretationJ, and let
K ≔ I(πC(J)) denote the induced domino interpretation of the domino projection ofJ w.r.t. C.
Then, for anyALCIb concept expression C∈ C with P(C) ⊆ C, we have thatJ |= C iff K |= C.
Especially, for anyALCIb TBoxT, we haveJ |= T iff I(πP(T)(J)) |= T.

Proof. Consider someC ∈ C as in the claim. We first show the following: given anyJ-individual
δ andK-individual σ such that tail(σ) = {D ∈ C | δ ∈ DJ }, we find thatσ ∈ CK iff δ ∈ CJ .
Clearly, the overall claim follows from that statement using the observation that a suitableδ ∈ ∆J

must exist for allσ ∈ ∆K and vice versa. We proceed by induction over the structure ofC, noting
thatP(C) ⊆ C impliesP(D) ⊆ C for any subconceptD of C.
The base caseC ∈ NC is immediately satisfied by our assumption on the relationship of δ andσ,
sinceC ∈ P(C). For the induction step, we first note that the caseC ∈ {⊤,⊥} is also trivial. For
C = ¬D andC = D ⊓ D′ as well asC = D ⊔ D′, the claim follows immediately from the induction
hypothesis forD andD′.
Next consider the caseC = ∃U.D, and assume thatδ ∈ CJ . Hence there is someδ′ ∈ ∆J such
that〈δ, δ′〉 ∈ UJ andδ′ ∈ DJ . Then the pair〈δ, δ′〉 generates a domino〈A,R,B〉 and∆K contains
σ′ = σ〈A,R,B〉. 〈δ, δ′〉 ∈ UJ impliesR ⊢ U (by definition of⊢ and due to the fact thatR contains
exactly thoseR ∈ R with 〈δ, δ′〉 ∈ RJ ), and hence〈σ,σ′〉 ∈ UK . Applying the induction hypothesis
to D, we concludeσ′ ∈ DK . Nowσ ∈ CK follows from the construction ofK .
For the converse, assume thatσ ∈ CK . Hence there is someσ′ ∈ ∆K such that〈σ,σ′〉 ∈ UK and
σ′ ∈ DK . By the definition ofK , there are two possible cases:

• σ′ = σ〈tail(σ),R, tail(σ′)〉 andR ⊢ U: Consider the twoJ-individuals 〈δ′, δ′′〉 generating the
domino〈tail(σ),R, tail(σ′)〉. Fromσ′ ∈ DK and the induction hypothesis, we obtainδ′′ ∈ DJ .
Together with〈δ′, δ′′〉 ∈ UJ this impliesδ′ ∈ CJ . SinceC = ∃U.D ∈ C, we also haveC ∈ tail(σ)
and thusδ ∈ CJ as claimed.
• σ = σ′〈tail(σ′),R, tail(σ)〉 and Inv(R) ⊢ U: This case is similar to the first case, merely exchang-

ing the order of〈δ′, δ′′〉 and using Inv(R) instead ofR.
Finally, the caseC = ∀U.D is dual to the caseC = ∃U.D, and we will omit the repeated argument.
Note, however, that this case does not follow from the semantic equivalence of∀U.D and¬∃U.¬D,
since the proof hinges upon the fact that¬D is contained inC which is not given directly.

3.2. Constructing Domino Sets. As shown in the previous section, the domino projection of a
model of anALCIb TBox can contain enough information for reconstructing a model. This ob-
servation can be the basis for designing an algorithm that decides TBox satisfiability. Usually (es-
pecially in tableau-based algorithms), checking satisfiability amounts to the attempt to construct a
(representation of a) model. As we have seen, in our case it suffices to try to construct just a model’s
domino projection. If this can be done, we know that there is amodel, if not, there is none.
In what follows, we first describe the iterative construction of such a domino set from a given TBox,
and then show that it is indeed a decision procedure for TBox satisfiability.
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Algorithm 1 Computing the canonical domino setDT of a TBoxT

Input: T anALCIb TBox,C = P(FLAT(T))
Output: the canonical domino setDT of T

1: initializeD0 as the set of all dominoes〈A,R,B〉 overC satisfying:
2: for all C ∈ FLAT(T), the GCI

�
D∈A D ⊓

�
D∈C\A ¬D ⊑ C is a tautology7 (kb)

3: for all ∃U.A ∈ C with A ∈ B andR ⊢ U, we have∃U.A ∈ A, (ex)
4: for all ∀U.A ∈ C with ∀U.A ∈ A andR ⊢ U, we haveA ∈ B. (uni)
5: i := 0
6: repeat
7: i := i+1
8: determineDi as the set of all dominoes〈A,R,B〉 ∈ Di−1 satisfying:
9: for all ∃U.A ∈ A, there is some〈A,R′,B′〉 ∈ Di−1 with R′ ⊢ U andA ∈ B′, (delex)

10: for all ∀U.A ∈ C \A, there is some〈A,R′,B′〉 ∈ Di−1 with R′ ⊢ U but A < B′, (deluni)
11: 〈B, Inv(R),A〉 ∈ Di−1. (sym)
12: until Di = Di−1

13: DT := Di

14: return DT

Algorithm 1 describes the construction of the canonical domino setDT of anALCIb TBox T.
Thereby, roughly speaking, conditionkb ensures that all the concept partsA andB of the con-
structed domino set abide by the axioms of the considered TBox. The conditionex guarantees that,
in every domino〈A,R,B〉, the concept setA must contain all the existential concepts for which
R andB serve as witnesses. Conversely,uni makes sure that every universally quantified concept
recorded inA is appropriately propagated toB, given a suitableR. Once enforced, the conditions
kb, ex, anduni remain valid even if the domino set is reduced further, hencethey need to be taken
care of only at the beginning of the algorithm. In contrast, the conditionsdelex, deluni, andsym
may be invalidated again by removing dominoes from the set, thus they need to be applied in an
iterated way until a fixpoint is reached. Conditiondelex removes all dominoes with the concept
setA if A contains an existential concept for which no appropriate “witness” domino (in the above
sense) can be found in the set. Likewise,deluni removes all dominoes with the concept setA if A
doesnot contain a universal concept which should hold given all the remaining dominoes. Finally,
sym ensures that the domino set contains only dominoes that do have a “symmetric partner”, i.e.,
one that is created by swappingA with B and inverting all ofR.
Given that every domino〈A,R,B〉 satisfiesA,B ⊆ C andR ⊆ R, and that bothC andR are linearly
bounded by the size ofT, D0 is exponential in the size of the TBox, hence the iterative deletion
of dominoes must terminate after at most exponentially manysteps. Below we will show that this
procedure is indeed sound and complete for checking TBox satisfiability. Before that, we will show
a canonicity result forDT.

Lemma 3.4. Consider anALCIb terminologyT and an arbitrary modelI of T. Then the domino
projectionπP(FLAT(T))(I) is contained inDT.

Proof. The claim is shown by a simple induction over the construction of DT. In the following,
we use〈A,R,B〉 to denote an arbitrary domino ofπP(FLAT(T))(I). For the base case, we must show
thatπP(FLAT(T))(I) ⊆ D0. Let 〈A,R,B〉 to denote an arbitrary domino ofπP(FLAT(T))(I) which was

7Please note that the formulae inFLAT(T) and inA ⊆ C are such that this can easily be checked by evaluating the
Boolean operators inC as ifA was a set of true propositional variables.
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generated from elements〈δ, δ′〉. Then〈A,R,B〉 satisfies conditionkb, sinceδ ∈ CI for anyC ∈
FLAT(T). The conditionsexanduni are obviously satisfied.
For the induction step, assume thatπP(FLAT(T))(I) ⊆ Di , and let〈A,R,B〉 again denote an arbitrary
domino ofπP(FLAT(T))(I) which was generated from elements〈δ, δ′〉.

• For delex, note that∃U.A ∈ A implies δ ∈ (∃U.A)I. Thus there is an individualδ′′ such that
〈δ, δ′′〉 ∈ UI andδ′′ ∈ AI. Clearly, the domino generated by〈δ, δ′′〉 satisfies the conditions of
delex.
• For deluni, note that∀U.A < A implies δ < (∀U.A)I. Thus there is an individualδ′′ such that
〈δ, δ′′〉 ∈ UI andδ′′ < AI. Clearly, the domino generated by〈δ, δ′′〉 satisfies the conditions of
deluni.
• The condition ofsym for 〈A,R,B〉 is clearly satisfied by the domino generated from〈δ′, δ〉.

Therefore, the considered domino〈A,R,B〉 must be contained inDi+1 as well.

Note that, in contrast to tableau procedures, the presentedalgorithm starts with a large set of domi-
noes and successively deletes undesired dominoes. Indeed,we will soon show that the constructed
domino set is the largest such set from which a domino model can be obtained. The algorithm
thus may seem to be of little practical use. In Section 4, we therefore refine the above algorithm to
employ Boolean functions as implicit representations of domino sets, such that the efficient compu-
tational methods of OBDDs can be exploited. In the meantime,however, domino sets will serve us
well for showing the required correctness properties.
An important property of domino interpretations constructed from canonical domino sets is that
the (semantic) concept membership of an individual can typically be (syntactically) read from the
domino it has been constructed of.

Lemma 3.5. Consider anALCIb TBoxT with nonempty canonical domino setDT, and define
C ≔ P(FLAT(T)) andI = 〈∆I, ·I〉 ≔ I(DT). Then, for all C∈ C andσ ∈ ∆I, we have thatσ ∈ CI

iff C ∈ tail(σ). Moreover,I |= FLAT(T).

Proof. First note that the domain ofI is nonempty wheneverDT is. Now if C ∈ NC is an atomic
concept, the first claim follows directly from the definitionof I. The remaining cases that may
occur inP(FLAT(T)) areC = ∃U.A andC = ∀U.A.
First consider the caseC = ∃U.A, and assume thatσ ∈ CI. Thus there isσ′ ∈ ∆I with 〈σ,σ′〉 ∈ UI

andσ′ ∈ AI. The construction of the domino model admits two possible cases:
• σ′ = σ〈tail(σ),R, tail(σ′)〉 with R ⊢ U and A ∈ tail(σ′). SinceDT ⊆ D0, we find that
〈tail(σ),R, tail(σ′)〉 satisfies conditionex, and thusC ∈ tail(σ) as required.
• σ = σ′〈tail(σ′),R, tail(σ)〉 with Inv(R) ⊢ U andA ∈ tail(σ′). By conditionsym,DT also contains

the domino〈tail(σ), Inv(R), tail(σ′)〉, and we can again invokeex to concludeC ∈ tail(σ).

For the other direction, assume∃U.A ∈ tail(σ). ThusDT must contain some domino〈A,R, tail(σ)〉,
and bysym also the domino〈tail(σ), Inv(R),A〉. By conditiondelex, the latter implies thatDT

contains a domino〈tail(σ),R′,A′〉. According todelex, we find thatσ′ = σ〈tail(σ),R′,A′〉 is an
I-individual such that〈σ,σ′〉 ∈ UI andσ′ ∈ AI. Thusσ ∈ (∃U.A)I as claimed.
For the second case, considerC = ∀U.A and assume thatσ ∈ CI. ThenDT contains some domino
〈A,R, tail(σ)〉, and bysym also the domino〈tail(σ), Inv(R),A〉. For a contradiction, suppose that
∀U.A < tail(σ). By conditiondeluni, the latter implies thatDT contains a domino〈tail(σ),R′,A′〉.
According todeluni, we find thatσ′ = σ〈tail(σ),R′,A′〉 is anI-individual such that〈σ,σ′〉 ∈ UI

andσ′ < DI. But thenσ < (∀U.A)I, yielding the required contradiction.
For the other direction, assume that∀U.A ∈ tail(σ). According to the construction of the domino
model, there are two possible cases for elementsσ′ with 〈σ,σ′〉 ∈ UI:
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• σ′ = σ〈tail(σ),R, tail(σ′)〉 with R ⊢ U. SinceDT ⊆ D0, 〈tail(σ),R, tail(σ′)〉 must satisfy condi-
tion uni, and thusA ∈ tail(σ′).
• σ = σ′〈tail(σ′),R, tail(σ)〉 with Inv(R) ⊢ U. By conditionsym, DT also contains the domino
〈tail(σ), Inv(R), tail(σ′)〉, and we can again invokeuni to concludeA ∈ tail(σ′).

Thus,A ∈ tail(σ′) for all U-successorsσ′ of σ, and henceσ ∈ (∀U.A)I as claimed.

For the rest of the claim, note that any domino〈A,R,B〉must satisfy conditionkb. Using condition
sym, we conclude that for anyσ ∈ ∆I, the axiom

�
D∈tail(σ) D ⊑ C is a tautology for allC ∈

FLAT(T). As shown above,σ ∈ DI for all D ∈ tail(σ), and thusσ ∈ C. Hence every individual of
I is an instance of each concept ofFLAT(T) as required.

The previous lemma shows soundness of our decision algorithm. Conversely, completeness is
shown by the following lemma.

Lemma 3.6. Consider anALCIb TBoxT. If T is satisfiable, then its canonical domino setDT is
nonempty.

Proof. This is a straightforward consequence of Lemma 3.4: given a modelI of T, the domino
projectionπP(FLAT(T))(I) is nonempty and (by Lemma 3.4) contained inDT. HenceDT is nonempty.

We now are ready to establish our main result on checking TBoxsatisfiability and the complexity
of the given algorithm:

Theorem 3.7. AnALCIb TBoxT is satisfiable iff its canonical domino setDT is nonempty. Al-
gorithm 1 thus describes a decision procedure for satisfiability of ALCIb TBoxes. Moreover, the
algorithm runs in exponential time and hence is worst-case optimal.

Proof. The first proposition of the theorem is a direct consequence of Lemma 3.5, Proposition 2.3
(page 6), and Lemma 3.6.
For worst-case optimality, recall thatSHIQbs is ExpTime-complete (see Rudolph et al., 2008a,
where ExpTime-hardness already directly follows from the results by Schild, 1991). Now, consid-
ering the presented algorithm, we find that the setC = P(FLAT(T)) is linearly bounded by the size
of T, whence the size of the set of all dominoes is exponentially bounded by|T|. Applying the
conditionskb, ex, anduni to obtainD0 can be done by subsequently checking every domino, each
check taking at mostO(|T|) time, hence the overall time for that step is exponentiallybounded. Now,
consider the iterated application of thedelex, deluni, andsym conditions. By the same argumenta-
tion as forkb, ex, anduni, one iteration takes exponential time. On the other hand, each iteration
step reduces the domino set by at least one domino (otherwise, the termination criterion would be
satisfied) which gives us a bound of exponentially many steps. Finally note that exponentially many
exponentially long steps still yield a procedure that is overall exponentially bounded.

4. Sets as Boolean Functions

The algorithm of the previous section may seem to be of littlepractical use, since it requires com-
putations on an exponentially large set of dominoes. The required computation steps, however, can
also be accomplished with an indirect representation of thepossible dominoes based on Boolean
functions. Indeed, every propositional logic formula represents a set of propositional interpretations
for which the function evaluates totrue. Using a suitable encoding, each propositional interpretation
can be understood as a domino, and a propositional formula can represent a domino set.
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As a representation of propositional formulae well-provenin other contexts, we use binary decision
diagrams (BDDs). These data structures have been used to represent complex Boolean functions
in model-checking (see, e.g., Burch et al., 1990). A particular optimization of these structures are
ordered BDDs (OBDDs) that use a dynamic precedence order of propositional variables to obtain
compressed representations. We provide a first introduction to OBDDs below. A more detailed
exposition and further literature pointers are given by Huth and Ryan (2000).

4.1. Boolean Functions and Operations.We first explain how sets can be represented by means
of Boolean functions. This will enable us, given a fixed finitebase setS, to represent every family
of setsS ⊆ 2S by a single Boolean function.
A Boolean functionon a setVar of variables is a functionϕ : 2Var → {true, false}. The underlying
intuition is thatϕ(V) computes the truth value of a Boolean formula based on the assumption that
exactly the variables ofV are set totrue. A simple example are the functions~true� and~false�,
that map every input totrue or false, respectively. Another example are so-calledcharacteristic
functionsof the form~v�χ for somev ∈ Var, which are defined as~v�χ(V) ≔ true iff v ∈ V.
Boolean functions over the same set of variables can be combined and modified in several ways.
Especially, there are the obvious Boolean operators for negation, conjunction, disjunction, and im-
plication. By slight abuse of notation, we will use the common (syntactic) operator symbols¬, ∧,
∨, and→ to also represent such (semantic) operators on Boolean functions. Given, e.g., Boolean
functionsϕ andψ, we find that (ϕ ∧ ψ)(V) = true iff ϕ(V) = true andψ(V) = true. Note that the
result of the application of∧ results in another Boolean function, and is not to be understood as a
syntactic logical formula.
Another operation on Boolean functions is existential quantification over a set of variablesV ⊆
Var, written as∃V.ϕ for some functionϕ. Given an input setW ⊆ Var of variables, we define
(∃V.ϕ)(W) = true iff there is some V′ ⊆ V such thatϕ(V′ ∪ (W \ V)) = true. In other words,
there must be a way to set truth values of variables inV such thatϕ evaluates totrue. Universal
quantification is defined analogously, and we thus have∀V.ϕ ≔ ¬∃V.¬ϕ as usual. Mark that our use
of ∃ and∀ overloads notation, and should not be confused with role restrictions in DL expressions.

4.2. Ordered Binary Decision Diagrams. Binary Decision Diagrams (BDDs), intuitively speak-
ing, are a generalization of decision trees that allows for the reuse of nodes. Structurally, BDDs are
directed acyclic graphs whose nodes are labeled by variables from some setVar. The only exception
are twoterminalnodes that are labeled bytrueandfalse, respectively. Every non-terminal node has
two outgoing edges, corresponding to the two possible truthvalues of the variable.

Definition 4.1. A BDD is a tupleO = 〈N, nroot, ntrue, nfalse, low, high,Var, λ〉 where

• N is a finite set callednodes,
• nroot ∈ N is called theroot node,
• ntrue, nfalse ∈ N are called theterminal nodes,
• low, high : N \ {ntrue, nfalse} → N are twochild functionsassigning to every non-terminal node

a low and ahigh child node. Furthermore the graph obtained by iterated application has to be
acyclic, i.e., for no noden exists a sequence of applications oflow andhigh resulting inn again.
• Var is a finite set ofvariables.
• λ : N\{ntrue, nfalse} → Var is thelabeling functionassigning to every non-terminal node a variable

from Var.
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OBDDs are a particular realization of BDDs where a certain ordering is imposed on variables to
achieve more efficient representations. We will not require to consider the background of this opti-
mization in here. Every BDD based on a variable setVar = {x1, . . . , xn} represents ann-ary Boolean
functionϕ : 2Var → {true, false}.

Definition 4.2. Given a BDDO = 〈N, nroot, ntrue, nfalse, low, high,Var, λ〉 the Boolean functionϕO :
2Var → {true, false} is defined recursively as follows:

ϕO ≔ ϕnroot ϕntrue = ~true� ϕnfalse = ~false�

ϕn =
(

¬~λ(n)�χ ∧ ϕlow(n)

)

∨
(

~λ(n)�χ ∧ ϕhigh(n)

)

for n ∈ N \ {ntrue, nfalse}

In other words, the valueϕ(V) for someV ⊆ Var is determined by traversing the BDD, starting from
the root node: at a node labeled withv ∈ Var, the evaluation proceeds with the node connected by
thehigh-edge ifv ∈ V, and with the node connected by thelow-edge otherwise. If a terminal node
is reached, its label is returned as a result.
BDDs for some Boolean formulas might be exponentially largein general (compared to|Var|),
but often there is a representation which allows for BDDs of manageable size. Finding the opti-
mal representation is NP-complete, but heuristics have shown to yield good approximate solutions
(Wegener, 2004). Hence (O)BDDs are often conceived as efficiently compressed representations
of Boolean functions. In addition, many operations on Boolean functions – such as the aforemen-
tioned negation, conjunction, disjunction, implication as well as propositional quantification – can
be performed directly on the corresponding OBDDs by fast algorithms.

4.3. Translating Dominos into Boolean Functions.To apply the above machinery to DL rea-
soning, consider a flattenedALCIb TBox T = FLAT(T). A set of propositional variablesVar is
defined asVar ≔ R∪

(

P(T)×{1, 2}
)

. We thus obtain a bijection between dominoes over the setP(T)
and setsV ⊆ Var given by〈A,R,B〉 7→ (A × {1}) ∪ R ∪ (B × {2}). Hence, any Boolean function
overVar represents a domino set as the collection of all variable sets for which it evaluates totrue.
We can use this observation to rephrase the construction ofDT in Algorithm 1 into an equivalent
construction of a function~T�.
We first represent DL conceptsC and role expressionsU by characteristic Boolean functions over
Var as follows.

~C� ≔































¬~D� if C = ¬D
~D� ∧ ~E� if C = D ⊓ E
~D� ∨ ~E� if C = D ⊔ E
~〈C, 1〉�χ if C ∈ P(T)

~U� ≔































¬~V� if U = ¬V
~V� ∧ ~W� if U = V ⊓W
~V� ∨ ~W� if U = V ⊔W
~U�χ if U ∈ R

We can now define a decision procedure based on Boolean functions, as displayed in Algorithm 2.
This algorithm is an accurate translation of Algorithm 1, where the intermediate Boolean functions
ϕkb , ϕex, ϕuni , ϕdelex

i , ϕdeluni
i , ϕ

sym
i represent domino sets containing all dominoes satisfying the re-

spective conditions from Algorithm 1. By computing their conjunction with each other (and, for
the latter three, with the Boolean function representing the domino set from the previous iteration)
we intersect the respective domino sets which results in their successive pruning as described in
Algorithm 1. The algorithm is a correct procedure for checking consistency ofALCIb TBoxes
as unsatisfiability ofT coincides with~T� ≡ false. Note that all necessary computation steps can
indeed be implemented algorithmically: Any Boolean function can be evaluated for a fixed variable
input V, and equality of two functions can (naively) be checked by comparing the results for all
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Algorithm 2 Computing the boolean representation~T� of the canonical domino setDT of a TBox

Input: T anALCIb TBox,C = P(FLAT(T))
Output: the canonical domino set ofT, represented as Boolean function~T�

1: ϕkb :=
∧

C∈T

~C�

2: ϕuni :=
∧

∀U.C∈P(T)

~〈∀U.C, 1〉�χ ∧ ~U�→ ~〈C, 2〉�χ

3: ϕex :=
∧

∃U.C∈P(T)

~〈C, 2〉�χ ∧ ~U�→ ~〈∃U.C, 1〉�χ

4: ~T�0 ≔ ϕkb ∧ ϕuni ∧ ϕex

5: i := 0
6: repeat
7: i := i+1

8: ϕdelex
i :=

∧

∃U.C∈P(T)

~〈∃U.C, 1〉�χ → ∃
(

R ∪ C×{2}
)

.
(

~T�i−1 ∧ ~U� ∧ ~〈C, 2〉�χ
)

9: ϕdeluni
i :=

∧

∀U.C∈P(T)

~〈∀U.C, 1〉�χ → ¬∃
(

R ∪ C×{2}
)

.
(

~T�i−1 ∧ ~U� ∧ ¬~〈C, 2〉�χ
)

10: ϕ
sym
i (V) := ~T�i−1

(

{

〈D, 1〉 | 〈D, 2〉 ∈ V
}

∪
{

Inv(R) | R ∈ V
}

∪
{

〈D, 2〉 | 〈D, 1〉 ∈ V
}

)

11: ~T�i ≔ ~T�i−1 ∧ ϕ
delex
i ∧ ϕdeluni

i ∧ ϕ
sym
i

12: until ~T�i ≡ ~T�i−1

13: ~T� ≔ ~T�i
14: return ~T�

possible input sets (which are finitely many sinceVar is finite). The algorithm terminates since the
sequence is decreasing w.r.t.{V | ~T�i (V) = true}, and since there are only finitely many Boolean
functions overVar.

Proposition 4.3. For anyALCIb TBoxT and variable set V∈ Var as above, we find that~T�(V) =
true iff V represents a domino inDT as defined in Definition 1.

Proof. It is easy to see that the Boolean operations used in constructing ~T� directly correspond to
the set operations in Definition 1, such that~T�(V) = true iff V represents a domino inDKB.

All required operations and checks are provided by standardOBDD implementations, and thus can
be realized in practice.

In the remainder of this section, we illustrate the above algorithm by an extended example to which
we will also come back to explain the later extensions of the inference algorithm. Therefore, con-
sider the followingALCIb knowledge baseKB.

PhDStudent ⊑ ∃has.Diploma
Diploma ⊑ ∀has−.Graduate

Diploma⊓Graduate ⊑ ⊥

Diploma(laureus) PhDStudent(laureus)

For now, we are only interested in the terminological axioms, the consistency of which we would
like to establish. As a first transformation step, all TBox axioms are transformed into the following
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h iPhDStudent,1

h9 h9has.Diploma,1i has.Diploma,1i

h iDiploma,2

h iDiploma,1

h iGraduate,1

h iGraduate,2

has

has

h8 h8has .Graduate,1i has .Graduate,1i- -

-

1 0

h iPhDStudent,1

h9has.Diploma,1i

h iDiploma,1

h iGraduate,1

h8has .Graduate,1i-

1 0

Figure 1: OBDDs arising when processing the terminology ofKB; following traditional BDD no-
tation, solid arrows indicatehigh successors, dashed arrows indicatelow successors, and
the topmost node is the root

universally valid concepts in negation normal form:

¬PhDStudent⊔ ∃has.Diploma ¬Diploma⊔ ∀has−.Graduate ¬Diploma⊔ ¬Graduate

The flattening step can be skipped since all concepts are already flat. Now the relevant concept
expressions for describing dominoes are given by the set

P(T) = {∃has.Diploma,∀has−.Graduate,Diploma,Graduate,PhDStudent}.

We thus obtain the following setVar of Boolean variables (althoughVar is just a set, our presentation
follows the domino intuition):

〈∃has.Diploma, 1〉 has 〈∃has.Diploma, 2〉
〈∀has−.Graduate, 1〉 has− 〈∀has−.Graduate, 2〉
〈Diploma, 1〉 〈Diploma, 2〉
〈Graduate, 1〉 〈Graduate, 2〉
〈PhDStudent, 1〉 〈PhDStudent, 2〉

We are now ready to construct the OBDDs as described. Figure 1(left) displays an OBDD corre-
sponding to the following Boolean function:

ϕkb ≔ (¬~〈PhDStudent, 1〉�χ ∨ ~〈∃has.Diploma, 1〉�χ)
∧(¬~〈Diploma, 1〉�χ ∨ ~〈∀has−.Graduate, 1〉�χ)
∧(¬~〈Diploma, 1〉�χ ∨ ¬~〈Graduate, 1〉�χ)
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and Fig. 1 (right) shows the OBDD representing the function~T�0 obtained fromϕkb by conjunc-
tively adding

ϕex = ¬~〈Diploma, 2〉�χ ∨ ¬~has�χ ∨ ~〈∃has.Diploma, 1〉�χ and
ϕuni = ¬~〈∀has−.Graduate, 1〉�χ ∨ ¬~has−�χ ∨ ~〈Graduate, 2〉�χ.

Then, after the first iteration of the algorithm, we arrive atan OBDD representing~T�1 which is
displayed in Fig. 2. This OBDD turns out to be the final result~T�. The input TBox is derived to
be consistent since there is a path from the root node to 1.

h iPhDStudent,1

h iPhDStudent,2 h iPhDStudent,2 h iPhDStudent,2 h iPhDStudent,2

h9 h9 h9 h9

h9

has.Diploma,2i has.Diploma,2i ,has.Diploma.,2,i has.Diploma,2i

has.Diploma,1i

h iDiploma,2 h iDiploma,2 h iDiploma,2 h iDiploma,2

h iDiploma,1 h iDiploma,1 h iDiploma,1

h iGraduate,1 h iGraduate,1 h iGraduate,1

h iGraduate,2h iGraduate,2 h iGraduate,2 h iGraduate,2

has has has

has

h8

h8 h8 h8

has .Graduate,1i

has .Graduate,2i has .Graduate,2i has .Graduate,2i

-

- - -

- - -

1

h8has .Graduate,1i-

Figure 2: Final OBDD obtained when processingKB, using notation as in Fig. 1; arrows to the 0
node have been omitted for better readability
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5. Reasoning with ABox and DL-Safe Rules via Disjunctive Datalog

The above algorithm does not yet take any assertional information about individuals into account,
nor does it cover DL-safe rules. The proof of Theorem 3.7 hinges upon the fact that the constructed
domino setDT induces a model of the terminologyT, and Lemma 3.4 states that this is indeed
the greatestmodel in a certain sense. This provides some first intuition of the problems arising
when ABoxes are to be added to the knowledge base:ALCIb knowledge bases with ABoxes do
generally not have a greatest model.
We thus employdisjunctive Datalog(see Eiter et al., 1997) as a paradigm that allows us to incor-
porate ABoxes into the reasoning process. The basic idea is to forge a Datalog program that –
depending on two given individualsa andb – describes possible dominoes that may connecta and
b in models of the knowledge base. There might be various, irreconcilable such dominoes in differ-
ent models, but disjunctive Datalog supports such choice since it admits multiple minimal models.
As long as the knowledge base has some model, there is at leastone possible domino for every pair
of individuals (possibly without connecting roles) – only if this is not the case, the Datalog program
will infer a contradiction. Another reason for choosing disjunctive Datalog is that it allows for the
straightforward incorporation of DL-safe rules.
We use the OBDD computed from the terminology as a kind of pre-compiled version of the relevant
terminological information. ABox information is then considered as an incomplete specification of
dominoes that must be accepted by the OBDD, and the Datalog program simulates the OBDD’s
evaluation for each of those.

Definition 5.1. Consider an extendedALCIb knowledge base KB= 〈T,P〉, and an OBDDO =
〈N, nroot, ntrue, nfalse, low, high,Var, λ〉 that represents the function~T� as defined by Algorithm 2. A
disjunctive Datalog programDD(KB) is defined as follows.DD(KB) uses the following predicates:

• a unary predicateSC for every concept expressionC ∈ P(FLAT(T)),
• a binary predicateSR for every atomic roleR ∈ NR,
• a binary predicateAn for every OBDD noden ∈ N,
• the equality predicate≈.
The constants inDD(KB) are the individual names used inP. The disjunctive Datalog rules of
DD(KB) are defined as follows:8

(1) For every DL-safe ruleB→ H from RB, DD(KB) contains the rule obtained fromB→ H by
replacing allC(x) by SC(x) and allR(x, y) by SR(x, y).

(2) DD(KB) contains rules→ Anroot(x, y) andAnfalse(x, y)→.
(3) If n ∈ N with λ(n) = 〈C, 1〉 thenDD(KB) contains rules

SC(x) ∧ An(x, y)→ Ahigh(n)(x, y) andAn(x, y)→ Alow(n)(x, y) ∨ SC(x).
(4) If n ∈ N with λ(n) = 〈C, 2〉 thenDD(KB) contains rules

SC(y) ∧ An(x, y)→ Ahigh(n)(x, y) andAn(x, y)→ Alow(n)(x, y) ∨ SC(y).
(5) If n ∈ N with λ(n) = R for someR ∈ NR thenDD(KB) contains rules

SR(x, y) ∧ An(x, y)→ Ahigh(n)(x, y) andAn(x, y)→ Alow(n)(x, y) ∨ SR(x, y).
(6) If n ∈ N with λ(n) = R− for someR ∈ NR thenDD(KB) contains rules

SR(y, x) ∧ An(x, y)→ Ahigh(n)(x, y) andAn(x, y)→ Alow(n)(x, y) ∨ SR(y, x).

Note that the arity of predicates inDD(KB) is bounded by 2. Hence, the number of ground atoms
is quadratic with respect to the number of constants (individual names), whence the worst-case
complexity for satisfiability checking is NP w.r.t. the number of individuals (and especially w.r.t.

8Note that we use disjunctive Datalog with equality. However, every disjunctive Datalog program with equality can
be reduced to one without equality in linear time, as equality can be axiomatized (see, e.g., Fitting, 1996).
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the number of facts), as opposed to the NExpTime complexity of disjunctive Datalog in general
(Dantsin et al., 2001). Note that, of course,DD(KB) may still be exponential in the size of KB
in the worst case:DD(KB) is linear in the size of the underlying OBDD which in turnmay have
exponential size compared to the set of propositional variables used in the represented Boolean
functions. Finally the number of these variables is linearly bounded by the size of KB. It remains
to show the correctness of the Datalog translation.

Lemma 5.2. Given an extendedALCIb knowledge baseKB such thatI is a model ofKB, there
is a modelJ of DD(KB) such that

• I |= C(a) iff J |= SC(a),
• I |= R(a, b) iff J |= SR(a, b), and
• I |= a ≈ b iff J |= a ≈ b.

for any a, b ∈ NI , C ∈ NC, and R∈ NR.

Proof. Let KB = 〈T,P〉. We define an interpretationJ of DD(KB). The domain ofJ contains
the named individuals fromI, i.e.,∆J = {aI | a ∈ NI }. For individualsa, we setaJ ≔ aI. The
interpretation of predicate symbols is now defined as follows (note thatAJn is defined inductively
on the path length fromnroot to n):

• δ ∈ SJC iff δ ∈ CI

• 〈δ1, δ2〉 ∈ SJR iff 〈δ1, δ2〉 ∈ RI

• 〈δ1, δ2〉 ∈ AJnroot for all δ1, δ2 ∈ ∆
J

• 〈δ1, δ2〉 ∈ AJn for n , nroot if there is a noden′ such that〈δ1, δ2〉 ∈ AJn′ , and one of the following
is the case:
− λ(n′) = 〈C, i〉, for somei ∈ {1, 2}, andn = low(n′) andδi < CI

− λ(n′) = 〈C, i〉, for somei ∈ {1, 2}, andn = high(n′) andδi ∈ CI

− λ(n′) = Randn = low(n′) and〈δ1, δ2〉 < RI

− λ(n′) = Randn = high(n′) and〈δ1, δ2〉 ∈ RI

Mark that, in the last two items,R is any role expression fromVar, i.e., a role name or its inverse.
Also note that due to the acyclicity ofO, the interpretation of theA-predicates is indeed well-
defined. We now show thatJ is a model ofDD(KB). To this end, first note that the extensions of
predicatesSC andSR in J were defined to coincide with the extensions ofC andR on the named
individuals ofI. SinceI satisfiesP, all rules introduced in item (1) of Definition 5.1 are satisfied by
J. The restriction of DL-safe rules to named individuals can be discarded here since∆J contains
only named individuals from∆I.
Similarly, we find that the rules of cases (3)–(6) are satisfied byJ. Consider the first rule of (3),
SC(x) ∧ An(x, y) → Ahigh(n)(x, y), and assume thatδ1 ∈ SJC and〈δ1, δ2〉 ∈ AJn . Thusδ1 ∈ CI. Using

the preconditions of (3) and the definition ofJ, we conclude that〈δ1, δ2〉 ∈ AJhigh(n). The second
rule of case (3) covers the analogous negative case. All other cases can be treated similarly.
Finally, for case (2), we need to show thatAJnfalse

= ∅. For that, we first explicate the correspondence
between domain elements ofI and sets of variables ofO. Given elementsδ1, δ2 ∈ ∆

I we define
Vδ1,δ2 ≔ {〈C, n〉 | C ∈ P(FLAT(T)), δn ∈ CI} ∪ {R | 〈δ1, δ2〉 ∈ RI}, the set of variables corresponding
to theI-domino betweenδ1 andδ2.
Now AJnfalse

= ∅ clearly is a consequence of the following claim: for allδ1, δ2 ∈ ∆
I and alln ∈ N,

we find that〈δ1, δ2〉 ∈ An impliesϕn(Vδ1,δ2) = true (using the notation of Definition 4.2). The proof
proceeds by induction. For the casen = nroot, we find thatϕnroot = ~T�. SinceVδ1,δ2 represents a
domino ofI, the claim thus follows by combining Proposition 4.3 and Lemma 3.4.
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For the induction step, letn be a node such that〈δ1, δ2〉 ∈ An follows from the inductive definition of
J based on some predecessor noden′ for which the claim has already been established. Note thatn′

may not be unique. The cases in the definition ofJ must be considered individually. Thus assume
n′, n, andδ1 satisfy the first case, and that〈δ1, δ2〉 ∈ An. By induction hypothesis,ϕn′(Vδ1,δ2) = true,
and by Definition 4.2 the given case yieldsϕn(Vδ1,δ2) = true as well. The other cases are similar.

Lemma 5.3. Given anALCIb knowledge baseKB such thatJ is a model ofDD(KB), there is a
modelI of KB such that

• I |= C(a) iff J |= SC(a),
• I |= R(a, b) iff J |= SR(a, b), and
• I |= a ≈ b iff J |= a ≈ b,

for any a, b ∈ NI , C ∈ NC, and R∈ NR.

Proof. Let KB = 〈T,P〉. We construct an interpretationI whose domain∆I consists of all se-
quences starting with an individual name followed by a (possibly empty) sequence of dominoes
fromDT such that, for everyσ ∈ ∆I,

• if σ begins witha〈A,R,B〉, then{C | C ∈ P(FLAT(T)), aJ ∈ SJC } = A, and
• if σ contains subsequent letters〈A,R,B〉 and〈A′,R′,B′〉, thenB = A′.

For a sequenceσ = a〈A1,R1,A2〉〈A2,R2,A3〉 . . . 〈Ai−1,Ri−1,Ai〉, we define tail(σ) ≔ Ai , whereas
for a σ = a we define tail(σ) ≔ {C | C ∈ P(FLAT(T)), aJ ∈ SJC }. Now the mappings ofI are
defined as follows:

• for a ∈ NI , we haveaI ≔ a,
• for A ∈ NC, we haveσ ∈ AI iff A ∈ tail(σ),
• for R ∈ NR, we have〈σ1, σ2〉 ∈ RI if one of the following holds
− σ1 = a ∈ NI andσ2 = b ∈ NI and〈a, b〉 ∈ SJR , or
− σ2 = σ1〈A,R,B〉 with R ∈ R, or
− σ1 = σ2〈A,R,B〉 with Inv(R) ∈ R.

Thus, intuitively,I is constructed by extracting the named individuals as well their concept (and
mutual role) memberships fromJ, and appending an appropriate domino-constructed tree model
to each of those named individuals. We proceed by showing that I is indeed a model of KB.
First note that the definition ofI ensures that, for all individual namesa, b ∈ NI , we indeed have
I |= C(a) iff J |= SC(a), I |= R(a, b) iff J |= SR(a, b), andI |= a ≈ b iff J |= a ≈ b. Therefore, the
validity of the rules introduced via case (1) ensures thatI is a model ofP.
For showing that the TBox is also satisfied, we begin with the following auxiliary observation: for
every two individual namesa, b ∈ NI , andRab ≔ {R | 〈aJ , bJ 〉 ∈ SJR } ∪ {Inv(R) | 〈bJ , aJ 〉 ∈ SJR },
the domino〈tail(a),Rab, tail(b)〉 is contained inDT (Claim †). Using Proposition 4.3, it suffices to
show that the Boolean function~T� if applied toVa,b ≔ {tail(a) × {1} ∪ Rab ∪ tail(b) × {2}} yields
true. Since~T� = ϕnroot , this is obtained by showing the following: for anya, b ∈ NI , we find
that 〈aJ , bJ 〉 ∈ AJn impliesϕn(Va,b) = true. Indeed, (†) follows since we have〈aJ , bJ 〉 ∈ AJnroot

due to the first rule of (2) in Definition 5.1. We proceed by induction, starting at the leafs of the
OBDD. The case〈a, b〉 ∈ AIntrue

is immediate, and〈a, b〉 ∈ AInfalse
is excluded by the second rule of

(2). For the induction step, consider nodesn, n′ ∈ N such that eitherλ(n) ∈ Va,b andn′ = high(n),
or λ(n) < Va,b andn′ = low(n). We assume that〈aJ , bJ 〉 ∈ AJn , and, by induction, that the claim
holds forn′. If λn = 〈C, 1〉, then one of the rules of case (3) applies toaJ andbJ . In both cases, we
can infer〈aJ , bJ 〉 ∈ AJn′ , and henceϕn′(Va,b) = true. Together with the assumptions for this case,
Definition 4.2 impliesϕn(Va,b) = true, as required. The other cases are analogous. This shows (†).
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Now we can proceed to show that all individuals ofI are contained in the extension of each concept
expression ofFLAT(T). To this end, we first show thatσ ∈ CI iffC ∈ tail(σ) for all C ∈ P(FLAT(T)).
If C ∈ NC is atomic, this follows directly from the definition ofI. The remaining cases that may
occur inP(FLAT(T)) areC = ∃U.A andC = ∀U.A.
First consider the caseC = ∃U.A and assume thatσ ∈ CI. Thus there isσ′ ∈ ∆I with 〈σ,σ′〉 ∈ UI

andσ′ ∈ AI. The construction of the domino model admits three possiblecases:

• σ,σ′ ∈ NI andRσσ′ ⊢ U and A ∈ tail(σ′). Now by (†), the domino〈tail(σ),Rσσ′ , tail(σ′)〉
satisfies conditionexof Algorithm 1, and thusC ∈ tail(σ) as required.
• σ′ = σ〈tail(σ),R, tail(σ′)〉 with R ⊢ U and A ∈ tail(σ′). SinceDT ⊆ D0, we find that
〈tail(σ),R, tail(σ′)〉 satisfies conditionex, and thusC ∈ tail(σ) as required.
• σ = σ′〈tail(σ′),R, tail(σ)〉 with Inv(R) ⊢ U andA ∈ tail(σ′). By conditionsym, DT contains the

domino〈tail(σ), Inv(R), tail(σ′)〉, and again we useex to concludeC ∈ tail(σ).
For the converse, assume that∃U.A ∈ tail(σ). SoDT contains a domino〈A,R, tail(σ)〉. This is
obvious if the sequenceσ ends with a domino. Ifσ = a ∈ NI , then it follows by applying (†) to
a with the first individual being arbitrary. BysymDT also contains the domino〈tail(σ),R,A〉. By
conditiondelex, the latter implies thatDT contains a domino〈tail(σ),R′,A′〉 such thatR′ ⊢ U and
A ∈ A′. Thusσ′ = σ〈tail(σ),R′,A′〉 is anI-individual such that〈σ,σ′〉 ∈ UI andσ′ ∈ AI, and
we obtainσ ∈ (∃U.A)I as claimed.
For the second case, considerC = ∀U.A and assume thatσ ∈ CI. As above, we find thatDT

contains some domino〈A,R, tail(σ)〉, where (†) is needed ifσ ∈ NI . By sym we find a domino
〈tail(σ),R,A〉. For a contradiction, suppose that∀U.A < tail(σ). By conditiondeluni, the latter
implies thatDT contains a domino〈tail(σ),R′,A′〉 such thatR′ ⊢ U and A < A′. Thusσ′ =
σ〈tail(σ),R′,A′〉 is anI-individual such that〈σ,σ′〉 ∈ UI andσ′ < AI. But thenσ < (∀U.A)I,
which is the required contradiction.
For the other direction, assume that∀U.A ∈ tail(σ). According to the construction ofI, for all
elementsσ′ with 〈σ,σ′〉 ∈ UI, there are three possible cases:
• σ,σ′ ∈ NI andRσσ′ ⊢ U. Now by (†), the domino〈tail(σ),Rσσ′ , tail(σ′)〉 satisfies conditionuni,

whenceA ∈ tail(σ′).
• σ′ = σ〈tail(σ),R, tail(σ′)〉 with R ⊢ U. SinceDT ⊆ D0, 〈tail(σ),R, tail(σ′)〉 must satisfy condi-

tion uni, and thusA ∈ tail(σ′).
• σ = σ′〈tail(σ′),R, tail(σ)〉 with Inv(R) ⊢ U. By conditionsym, DT also contains the domino
〈tail(σ), Inv(R), tail(σ′)〉, and we can again useuni to concludeA ∈ tail(σ′).

Thus,A ∈ tail(σ′) for all U-successorsσ′ of σ, and henceσ ∈ (∀U.A)I as claimed.
To finish the proof, note that any domino〈A,R,B〉 ∈ DT satisfies conditionkb. Using sym, we
have that for anyσ ∈ ∆I, the axiom

�
D∈tail(σ) D ⊑ C is a tautology for allC ∈ FLAT(T). As shown

above,σ ∈ DI for all D ∈ tail(σ), and thusσ ∈ CI. Hence every individual ofI is an instance of
each concept ofFLAT(T) as required.

Lemmas 5.2 and 5.3 give rise to the following theorem which finishes the technical development of
this section by showing thatDD(KB) faithfully captures both positive and negative groundconclu-
sions of KB, and in particular thatDD(KB) and KB are equisatisfiable.

Theorem 5.4. For every extendedALCIb knowledge baseKB hold

• KB andDD(KB) are equisatisfiable,
• KB |= C(a) iff DD(KB) |= SC(a),
• KB |= R(a, b) iff DD(KB) |= SR(a, b), and
• KB |= a ≈ b iff DD(KB) |= a ≈ b,
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for any a, b ∈ NI , C ∈ NC, and R∈ NR.

Proof. Immediate from Lemma 5.2 and Lemma 5.3.

Coming back to our example knowledge baseKB from Section 4, the corresponding disjunctive
Datalog programDD(KB) contains 70 rules: two rules for each of the 33 labeled nodesfrom the
OBDD displayed in Fig. 2, the two rules→ Anroot(x, y) andAnfalse(x, y) → as well as the two rules→
SDiploma(laureus) and→ SPhDStudent(laureus) introduced by conceiving the two ABox statements as
DL-safe rules and translating them accordingly. The program turns out to be unsatisfiable, witnessed
by the unsatisfiable subprogram displayed in Fig. 3.

→ SDiploma(laureus) → SPhDStudent(laureus)
→ A0(x, y)

A0(x, y) ∧ S∃has.Diploma(x)→ A5(x, y) A0(x, y) → A1(x, y) ∨ S∃has.Diploma(x)
A1(x, y) ∧ SPhDS tudent(x)→ Afalse(x, y)

A5(x, y) ∧ S∀has−.Graduate(y)→ A9(x, y) A5(x, y) → A8(x, y) ∨ S∀has− .Graduate(y)
A8(x, y) ∧ SGraduate(y)→ A13(x, y) A8(x, y) → A12(x, y) ∨ SGraduate(y)
A9(x, y) ∧ SGraduate(y)→ A13(x, y) A9(x, y) → A16(x, y) ∨ SGraduate(y)
A12(x, y) ∧ SDiploma(y)→ Afalse(x, y)
A13(x, y) ∧ SDiploma(y)→ Afalse(x, y)

A16(x, y) ∧ S∃has.Diploma(y)→ Afalse(x, y) A16(x, y) → A20(x, y) ∨ S∃has.Diploma(y)
A20(x, y) ∧ SPhDS tudent(y)→ Afalse(x, y)

Afalse(x, y)→

Figure 3: Unsatisfiable subprogram ofDD(KB) witnessing unsatisfiability ofKB

6. Polynomial Transformation from SHIQbs toALCIb

In this section, we present a stepwise satisfiability-preserving transformation from the description
logic SHIQbs to the more restrictedALCIb. This transformation is necessary as our type-
elimination method applies directly only to the latter.

6.1. Unravelings. For our further considerations, we will use a well-known model transformation
technique which will come handy for showing equisatisfiability of knowledge base transformations
introduced later on (for an introductory account on unravelings in a DL setting cf., e.g., Rudolph
(2011)). Essentially, the transformation takes an arbitrary model of aSHIQbs knowledge base and
converts it into a model that is “tree-like”. We start with some preliminary definitions. The first one
exploits that role subsumption on non-simple roles can be decided by an easy syntactic check that
takes only role hierarchy axioms into account.

Definition 6.1. Based on a fixedSHIQbs knowledge base KB, we define⊑∗ as the smallest binary
relation on the non-simple atomic rolesRn such that:
• R⊑∗ R for every atomic roleR,
• R⊑∗ S and Inv(R) ⊑∗ Inv(S) for every RBox axiomR⊑ S, and
• R⊑∗ T wheneverR⊑∗ S andS ⊑∗ T for some atomic roleS.

Furthermore, we writeR⊏∗ S wheneverR⊑∗ S andS 6⊑∗ R.
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The next definition introduces a standard model transformation technique that is often used to show
variants of the tree model property of a logic. We adopt the definition of Glimm et al. (2007).

Definition 6.2. Let KB be a consistent extendedSHIQbs knowledge base, and letI = 〈∆I, ·I〉 be
a model for KB.
The unraveling of I is an interpretation that is obtained fromI as follows. We define the set
S ⊆ (∆I)∗ of sequencesto be the smallest set such that

• for everya ∈ NI , aI is a sequence;
• δ1 · · · δn · δn+1 is a sequence, if
− δ1 · · · δn is a sequence,
− δi+1 , δi−1 for all i = 2, . . . , n,
− 〈δn, δn+1〉 ∈ RI for someR ∈ NR.

For eachσ = δ1 · · · δn ∈ S, setlast(σ) ≔ δn. Now, we define the unraveling ofI as the interpretation
J = 〈∆J , ·J〉 with ∆J = S and we define the interpretation of concept and role names as follows
(whereσ,σ′ ∈ ∆J are arbitrary sequences in∆J ):

(a) for eacha ∈ NI , setaJ ≔ aI;
(b) for each concept nameA ∈ NC, setσ ∈ AJ iff last(σ) ∈ AI;
(c) for each role nameR ∈ NR, set〈σ,σ′〉 ∈ RJ iff
• σ′ = σδ for someδ ∈ ∆I and〈last(σ), last(σ′)〉 ∈ RI or
• σ = σ′δ for someδ ∈ ∆I and〈last(σ), last(σ′)〉 ∈ RI or
• σ = aI, σ′ = bI for somea, b ∈ NI and〈aI, bI〉 ∈ RI.

Unraveling a model of an extendedSHIQbs knowledge base results in an interpretation that still
satisfies most of the knowledge base’s axioms, except for transitivity axioms. The following defini-
tion provides a “repair strategy” for unravelings such thatalso the transitivity conditions are again
satisfied. The presented definition is inspired by a similar one by Motik (2006).

Definition 6.3. Given an interpretationI and a knowledge base KB, we define thecompletionof I
with respect to KB as the new interpretationJ = 〈∆J , ·J〉 as follows:

• ∆J ≔ ∆I,
• aJ ≔ aI for everya ∈ NI ,
• AJ ≔ AI for everyA ∈ NC,
• for all simple rolesR, we setRJ ≔ RI,
• for all non-simple rolesR, RJ is set to the transitive closure ofRI if Tra(R) ∈ KB, otherwise

RJ ≔ RI ∪
⋃

S⊏∗R with Tra(S)∈KB or Tra(Inv(S))∈KB(SI)∗, where (SI)∗ denotes the transitive closure

of SI.

Having the above tools at hand, we are now ready to show that unraveling and subsequently com-
pleting a model of an extended knowledge base will result in amodel. This correspondence will be
helpful for showing the completeness of the knowledge base transformation steps introduced below.

Lemma 6.4. LetKB be an extendedSHIQbs knowledge base and letI be a model ofKB. More-
over, letJ be the unraveling ofI and letK be the completion ofJ. Then the following hold:

(1) J satisfies all axioms ofKB that are not transitivity axioms.
(2) For all sequencesσ1, σ2, . . . , σn−1, σn with n> 3 and〈σi , σi+1〉 ∈ RJ for 1 ≤ i ≤ n, and where

σ1, σn ∈ {aJ | a ∈ NI } andσ2, . . . , σn−1 < {aJ | a ∈ NI }, we haveσ1 = σn andσ2 = σn−1.
(3) K is a model ofKB.
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Proof. For the first claim, we investigate all the possible axiom types. First, asI andJ coincide
w.r.t. concept and role memberships of all named individuals (i.e., individualsσ for whichσ = aI

for somea ∈ NI ), they satisfy the same DL-safe rules.
For role hierarchy axiomsU ⊑ V with U,V restricted, suppose for a contradiction thatJ does not
satisfyU ⊑ V, i.e., that there are two elementsσ,σ′ ∈ ∆J such that〈σ,σ′〉 ∈ UJ but 〈σ,σ′〉 < VJ .
As U is restricted, either bothσ andσ′ are named individuals orσ′ = σδ or σ = σ′δ. Therefore
we know that〈last(σ), last(σ′)〉 ∈ UI but 〈last(σ), last(σ′)〉 < VI which would violateU ⊑ V and
hence, gives a contradiction.
Next, we consider TBox axioms (remember that we assume them to be normalized into axioms
⊤ ⊑ C with C in negation normal form). By induction on the role depth, we will show that for
every conceptD it holds thatσ ∈ DJ iff last(σ) ∈ DI. The satisfaction of⊤ ⊑ C in J then directly
follows via∆J = {σ ∈ ∆J | last(σ) ∈ ∆I} = {σ ∈ ∆J | last(σ) ∈ CI} = CJ .
As base case, note that forD ∈ NC, the claim follows by definition, while forD = ⊤ andD = ⊥
the claim trivially holds. For the induction steps, note that (i) the claimed correspondence trans-
fers immediately from concepts to their Boolean combinations and (ii) that for everyσ ∈ ∆J , the
function last(·) gives rise to an isomorphismϕ between the neighborhood ofσ in J and the neigh-
borhood oflast(σ) in I. More precisely,ϕ maps{σ′ ∈ ∆J | 〈σ,σ′〉 ∈ RJ for someR ∈ R} to
{δ′ ∈ ∆I | 〈last(σ), δ′〉 ∈ RI for someR ∈ R} such that〈σ,σ′〉 ∈ SJ iff 〈last(σ), ϕ(σ′)〉 ∈ SI for all
rolesS ∈ NR as well asσ′ ∈ EJ iff ϕ(σ′) ∈ EI for conceptsE that have a smaller role depth thanD
(by induction hypothesis). Thereby, the claimed correspondence transfers to existential, universal,
and cardinality restrictions as well.
For the second claim, we observe that by the definition of the unraveling, no individualσ = δ1 . . . δk

can be directly connected by some role to an individualσ′ = δ′1 . . . δ
′
l with δ1 , δ

′
1 unlessk = l = 1

in which case both individuals would be named by construction. On the other hand, every role chain
starting from some named individualδ and not containing any other named individual contains only
individuals of the formδw with w ∈ (∆I)∗. Thus, we conclude thatσ1 = σn. Now, suppose
σ2 , σn−1. By construction we haveσ2 = σ1δ andσn−1 = σnδ

′ = σ1δ
′ with δ , δ′. However,

then by construction, every role path fromσ2 to σn−1 must containσ1 which is named and hence
contradicts the assumption. Thereforeσ2 = σn−1.
Considering the third claim, we easily find that all transitivity axioms as well as role hierarchy
statements are satisfied by construction. For the TBox axioms, the argumentation is similar to
the one used to prove the first claim but it has to be extended bythe following observation: By
construction, for all new role instances〈σ,σ′〉 ∈ RK \ RJ introduced by the completion, there is
already aσ∗ with 〈σ,σ∗〉 ∈ RJ such that〈σ,σ∗〉 ∈ SJ iff 〈σ,σ′〉 ∈ SI for all rolesS ∈ NR as
well asσ∗ ∈ EJ iff σ′ ∈ EI for conceptsE. Therefore (and since non-simple roles are forbidden
in cardinality constraints) the concept extensions do not change inK compared toJ. Finally, the
DL-safe rules are valid: Due to the first claim they hold inJ. Then, they also hold inK since, by
constructionK andJ coincide when restricted to named individuals. In order to see the latter, note
thatJ also coincides withI w.r.t. named individuals andI satisfies all transitivity axioms, thus the
completion does not introduce new role instances, as far as named individuals are concerned.

6.2. From SHIQbs to ALCHIQb. As observed by Rudolph et al. (2008a), a slight generaliza-
tion of results by Motik (2006) yields that anySHIQbs knowledge base KB can be transformed
into an equisatisfiableALCHIQb knowledge base. For the case of extended knowledge bases, this
transformation has to be adapted in order to correctly treatthe entailment of ground factsR(a, b) for
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non-simple rolesR via transitivity. We start by defining this modified transformation, whereby the
ground fact entailment is taken care of by appropriate DL-safe rules.

Definition 6.5. Let cl(KB) denote the smallest set of concept expressions where

• NNF(¬C ⊔ D) ∈ cl(KB) for any TBox axiomC ⊑ D,
• D ∈ cl(KB) for every subexpressionD of some conceptC ∈ cl(KB),
• NNF(¬C) ∈ cl(KB) for any6n R.C ∈ cl(KB),
• ∀S.C ∈ cl(KB) wheneverTra(S) ∈ KB andS ⊑∗ R for a roleRwith ∀R.C ∈ cl(KB).

Finally, letΘS(KB) denote the extended knowledge base obtained from KB by removing all transi-
tivity axiomsTra(R) and

• adding the axiom∀R.C ⊑ ∀R.(∀R.C) to KB whenever∀R.C ∈ cl(KB),
• adding the axiom∃(R⊓ R−).⊤ ⊑ SelfR to KB, whereSelfR is a fresh concept,
• adding the DL-safe rulesSelfR(x)→ R(x, x) andR(x, y),R(y, z)→ R(x, z) to KB.

Note that the knowledge base translation defined byΘS can be done in polynomial time. We now
show that the defined transformation works as expected, making use of the model transformation
techniques established in the previous section. Parts of the proof are adopted from Motik (2006).

Proposition 6.6. Let KB be an extendedSHIQbs knowledge base. ThenKB andΘS(KB) are
equisatisfiable.

Proof. Obviously, every modelI of KB is a model ofΘS(KB) if we additionally stipulateSelfR ≔
{δ | 〈δ, δ〉 ∈ RI}.
For the other direction, letK be a model ofΘS(KB). Let nowI be the unraveling ofK and letJ
be the completion ofI w.r.t. KB. AsΘS(KB) does not contain any transitivity statements, we know
by Lemma 6.4 (1) thatI is a model ofΘS(KB) as well.
As a direct consequence of the definition of the completion, note that for all simple rolesV we have
VJ = VI (fact†).
We now prove thatJ is a model of KB by considering all axioms, starting with the RBox. Every
transitivity axiom of KB is obviously satisfied by the definition ofJ. Moreover, every role inclusion
V ⊑W axiom is also satisfied:
If both V andW are Boolean role expressions (which by definition contain only simple roles) this
is a trivial consequence of (†). If V is a Boolean role expression andW is a non-simple role, this
follows from (†) and the fact that, by construction ofJ, we haveRI ⊆ RJ for every non-simple role
R. As a remaining case, assume that bothV andW are non-simple roles. IfW is not transitive, this
follows directly from the definition, otherwise we can conclude it from the fact that the transitive
closure is a monotone operation w.r.t. set inclusion.

We proceed by examining the concept expressionsC ∈ cl(KB) and show via structural induction
thatCI ⊆ CJ . As base case, for every concept of the formA or ¬A for A ∈ NC this claim follows
directly from the definition ofJ. We proceed with the induction steps for all possible forms of a
complex conceptC (mark that allC ∈ cl(KB) are in negation normal form):

• Clearly, if DI1 ⊆ DJ1 and DI2 ⊆ DJ2 by induction hypothesis, we can directly conclude (D1 ⊓

D2)I ⊆ (D1 ⊓ D2)J as well as (D1 ⊔ D2)I ⊆ (D1 ⊔ D2)J .
• Likewise, as we haveVI ⊆ VJ for all simple role expressions and non-simple rolesV and again

DI ⊆ DJ due to the induction hypothesis, we can conclude (∃V.D)I ⊆ (∃V.D)J as well as
(>n V.D)I ⊆ (>n V.D)J .
• Now, considerC = ∀V.D. If V is a simple role expression, we know thatVJ = VI, whence we

can derive (∀V.D)I ⊆ (∀V.D)J from the induction hypothesis.
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It remains to consider the caseC = ∀R.D for non-simple rolesR. Assumeσ ∈ (∀R.D)I. If
there is noσ′ with 〈σ,σ′〉 ∈ RJ , thenσ ∈ (∀R.D)J is trivially true. Now assume there are such
σ′. For each of them, we can distinguish two cases:
− 〈σ,σ′〉 ∈ RI, implyingσ′ ∈ DI and, via the induction hypothesis,σ′ ∈ DJ ,
− 〈σ,σ′〉 < RI. Yet, by construction ofJ, this means that there is a roleS with S ⊑∗ R and

Tra(S) ∈ KB and a sequenceσ = σ0, . . . , σn = σ
′ with 〈σk, σk+1〉 ∈ SI for all 0 ≤ k < n. Then

σ ∈ (∀R.D)I impliesσ ∈ (∀S.D)I, and henceσ1 ∈ DI. By Definition 6.5,ΘS(KB) contains
the axiom∀S.D ⊑ ∀S.(∀S.D), and henceσ1 ∈ (∀S.D)I. Continuing this simple induction, we
find thatσk ∈ DI for all k = 1, . . . , n includingσn = σ

′.
So we can conclude that for all suchσ′ we haveσ′ ∈ DI. Via the induction hypothesis follows
σ ∈ DJ and hence we can concludeσ ∈ (∀R.D)J .
• Finally, considerC = 6n R.D and assumeσ ∈ (6n R.D)I. From the fact thatR must be simple

follows RJ = RI. Moreover, since bothD andNNF(¬D) are contained incl(KB) the induction
hypothesis givesDJ = DI. Those two facts together implyσ ∈ (6n R.D)I.

Now considering an arbitrary KB TBox axiomC ⊑ D, we findNNF(¬C⊔D)I = ∆I asI is a model
of KB. Moreover – by the correspondence just shown – we haveNNF(¬C⊔D)I ⊆ NNF(¬C⊔D)J

and hence alsoNNF(¬C ⊔ D)J = ∆J makingC ⊑ D an axiom satisfied inJ.
For showing that all DL-safe rules from KB are satisfied, we will prove thatI andJ coincide
on the satisfaction of all ground atoms – satisfaction of KB inJ then follows from satisfaction of
KB in I. By construction, this is obviously the case for all atoms ofthe shapea ≈ b, C(a) and
R(a, b) for a, b ∈ NI , C ∈ NC andR ∈ NR simple. Moreover we have thatJ |= R(a, b) whenever
I |= R(a, b). To settle the other direction, supposeR non-simple andJ |= R(a, b) butI 6|= R(a, b).
But then, there must be a roleS ⊑∗ R that is declared transitive and satisfiesJ |= S(a, b) but
I 6|= S(a, b). Let us assume thatS is a minimal such role w.r.t.⊑∗. Then, by construction, there
must be a sequenceaI = σ1, σ2, . . . , σk−1, σk = bI with 〈σi , σi+1〉 ∈ SI. This sequence can be
split into subsequences at elementsoIi for which there is aoi ∈ NI , i.e., at named individuals,
leaving us with subsequences (i) of subsequent named individualsoIi , o

I
i+1 or (ii) of the shapeoIi =

σi,1, σi,2, . . . , σi,n−1, σi,n = oIi+1 with σi,2, . . . , σi,n−1 unnamed individuals. For case (ii), Lemma 6.4
(2) guaranteesoIi = oIi+1 andσi,2 = σi,n−1, which impliesoIi ∈ (∃(R ⊓ R−).⊤)I. Then, due to
the according axiom∃(R⊓ R−).⊤ ⊑ SelfR in ΘS(KB), we obtainoIi ∈ SelfIR and by the DL-safe
rule SelfR(x) → R(x, x) we have〈oIi , o

I
i 〉 ∈ RI. Hence, we know thatR(oi , oi+1) holds inI for

all our subsequencesoIi . . .o
I
i+1. But then, a (possibly iterated) application of the DL-saferule

R(x, y) ∧ R(y, z) → R(x, z) also yields thatR(a, b) is valid inI, contradicting our assumption. This
finishes the proof.

6.3. From ALCHIQb toALCHIb6. We now show how any extendedALCHIQb knowledge
base KB can be transformed into an extendedALCHIb6 knowledge baseΘ>(KB). The difference
between the two DLs is that the latter does not allow> number restrictions. This transformation
(as well as the one presented in Section 6.5) makes use of the Boolean role constructors and differs
conceptually and technically from another method for removing qualified number restrictions from
DLs described by DeGiacomo and Lenzerini (1994).
Given anALCHIQb knowledge base KB, theALCHIb6 knowledge baseΘ>(KB) is obtained by
first flattening KB and then iteratively applying the following procedure toFLAT(KB), terminating
if no > restrictions are left:
• Choose an occurrence of>n U.A in the knowledge base.
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• Substitute this occurrence by∃R1.A⊓ . . . ⊓ ∃Rn.A, whereR1, . . . ,Rn are fresh role names.
• For everyi ∈ {1, . . . , n}, addRi ⊑ U to the knowledge base’s RBox.
• For every 1≤ i < k ≤ n, add∀(Ri ⊓Rk).⊥ to the knowledge base.

Observe that this transformation can be done in polynomial time, assuming a unary encoding of the
numbersn. It remains to show that KB andΘ>(KB) are indeed equisatisfiable.

Lemma 6.7. LetKB be an extendedALCHIQb knowledge base. Then we have that the extended
ALCHIb6 knowledge baseΘ>(KB) andKB are equisatisfiable.

Proof. First we prove that every model ofΘ>(KB) is a model of KB. We do so by an inductive
argument, showing that no additional models can be introduced in any substitution step of the above
conversion procedure. Hence, assume KB′′ is an intermediate knowledge base that has a model
I, and that is obtained from KB′ by eliminating the occurrence of>n U.A as described above.
Considering KB′′, we find due to the KB′′ axioms∀(Ri ⊓ Rk).⊥ that no two individualsδ, δ′ ∈ ∆I

can be connected by more than one of the rolesR1, . . . ,Rn. In particular, this enforcesδ′ , δ′′,
whenever〈δ, δ′〉 ∈ RIi and 〈δ, δ′′〉 ∈ RIj for distinct Ri and Rj. Now consider an arbitraryδ ∈

(∃R1.A⊓ . . . ⊓ ∃Rn.A)I. This ensures the existence of individualsδ1, . . . , δn with 〈δ, δi〉 ∈ RIi and
δi ∈ AI for 1 ≤ i ≤ n. By the above observation, all suchδi are pairwise distinct. Moreover,
the axiomsRi ⊑ U ensure〈δ, δi〉 ∈ UI for all i, hence we find thatδ ∈ (>n U.A)I. So we know
(∃R1.A ⊓ . . . ⊓ ∃Rn.A)I ⊆ (>n U.C)I. From the fact that both of those concept expressions occur
outside any negation or quantifier scope (as the transformation starts with a flattened knowledge
base and does not itself introduce such nestings) in axiomsD′′ ∈ KB′′ andD′ ∈ KB′ which are
equal up to the substituted occurrence, we can derive thatD′′I ⊆ D′I. Then, fromD′′I = ∆I

follows D′I = ∆I makingD′ valid in I. Apart fromD′, all other axioms from KB′ coincide with
those from KB′′ and hence are naturally satisfied inI. So we find thatI is a model of KB′.
At the end of our inductive chain, we finally arrive atFLAT(KB) which is equisatisfiable to KB by
Proposition 2.3.
Second, we show thatΘ>(KB) has a model if KB has. By Proposition 2.3, satisfiabilityof KB entails
the existence of a model ofFLAT(KB). Moreover, every model ofFLAT(KB) can be transformed to
a model ofΘ>(KB), as we will show using the same inductive strategy as above by doing iterated
model transformations following the syntactic knowledge base conversions. Again, assume KB′′

is an intermediate knowledge base obtained from KB′ by eliminating the occurrence of>n U.A as
described above, and supposeI is a model of KB′. Based onI, we now (nondeterministically)
construct an interpretationJ as follows:
• ∆J ≔ ∆I,
• for all C ∈ NC, let CJ ≔ CI,
• for all S ∈ NR \ {Ri | 1 ≤ i ≤ n}, let SJ ≔ SI,
• for everyδ ∈ (>n U.A)I, choose pairwise distinctǫδ1, . . . , ǫ

δ
n with 〈δ, ǫδi 〉 ∈ UI andǫδi ∈ AI (their

existence being ensured byδ’s aforementioned concept membership) and letRJi ≔ {〈δ, ǫ
δ
i 〉 | δ ∈

(>n U.A)I}.

Now, it is easy to see thatJ satisfies all newly introduced axioms of the shape∀(Ri ⊓ Rk).⊥, as the
ǫδi have been chosen to be distinct for everyδ. Moreover the axiomsRi ⊑ U are obviously satisfied
by construction. Finally, for allδ ∈ (>n U.A)I the construction ensuresδ ∈ (∃R1.A⊓ . . . ⊓ ∃Rn.A)J

witnessed by the respectiveǫδi . So we have (>n U.A)I ⊆ (∃R1.A ⊓ . . . ⊓ ∃Rn.A)J . Now, again
exploiting the fact that both of those concept expressions occur in negation normalized universal
concept axiomsD′ ∈ KB′ and D′′ ∈ KB′′ that are equal up to the substituted occurrence, we
can derive thatD′I ⊆ D′′J . Then, fromD′I = ∆I follows D′′J = ∆J making D′′ valid in J.
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Apart from D′ (and the newly introduced axioms considered above), all other axioms from KB′′

coincide with those from KB′ and hence are satisfied inJ, as they do not depend on theRi whose
interpretations are the only ones changed inJ compared toI. So we find thatJ is a model of
KB′′.

6.4. From ALCHIb6 toALCIb6. In the presence of restricted role expressions, role subsump-
tion axioms can be easily transformed into TBox axioms, as the subsequent lemma shows. This
allows to dispense with role hierarchies inALCHIb6 thereby restricting it toALCIb6.

Lemma 6.8. For any two restricted role expressions U and V, the RBox axiom U ⊑ V and the TBox
axiom∀(U ⊓ ¬V).⊥ are equivalent.

Proof. By the semantics’ definition,U ⊑ V holds in an interpretationI exactly if for every two
individualsδ, δ′ with 〈δ, δ′〉 ∈ UI it also holds that〈δ, δ′〉 ∈ VI. This in turn is the case if and only if
there are noδ, δ′ with 〈δ, δ′〉 ∈ UI but 〈δ, δ′〉 < VI (the latter being expressible as〈δ, δ′〉 ∈ (¬V)I).
This condition can be formulated as (U ⊓ ¬V)I = ∅, which is equivalent to∀(U ⊓ ¬V).⊥.

Note thatU ⊓ ¬V is restricted (hence an admissible role expression) whenever U is – this can be
seen from the fact that∅ 0 U implies∅ 0 U ⊓ ¬V due to the definition of⊢ and the Boolean role
operator⊓. Consequently, for any extendedALCHIb6 knowledge base KB, letΘH (KB) denote
theALCIb6 knowledge base obtained by substituting every RBox axiomU ⊑ V by the TBox
axiom∀(U ⊓ ¬V).⊥. The above lemma assures equivalence of KB andΘH (KB) (and hence also
their equisatisfiability). Obviously, this reduction can be done in linear time.

6.5. From ALCIb6 to ALCIF b. The elimination of the6 concept descriptions from an ex-
tendedALCIb6 knowledge base is more intricate than the previously described transformations.
Thus, to simplify our subsequent presentation, we assume that all Boolean role expressionsU oc-
curring in concept expressions of the shape6n U.C are atomic, i.e.U ∈ R. This can be easily
achieved by introducing a new role nameRU and substituting6n U.C by 6n RU .C as well as adding
the two TBox axioms∀(U ⊓ ¬RU).⊥ and∀(¬U ⊓ RU).⊥ (this ensures that the interpretations ofU
andRU always coincide).
To further make the presentation more conceivable, we subdivide it into two steps: first we eliminate
concept expressions of the shape6n R.C merely leaving axioms of the form61R.⊤ (also known
as role functionality statements) as the only occurrences of number restrictions, hence obtaining an
ALCIF b knowledge base.9 Then, in a second step discussed in the next section, we eliminate all
occurrences of axioms of the shape61R.⊤.
Let KB anALCIb6 knowledge base. We obtain theALCIF b knowledge baseΘ6(KB) by first
flattening KB and then successively applying the following steps (stopping when no further such
occurrence is left):

• Choose an occurrence of the shape6n R.A which is not a functionality axiom61R.⊤,
• substitute this occurrence by∀(R⊓ ¬R1 ⊓ . . . ⊓ ¬Rn).¬A whereR1, . . . ,Rn are fresh role names,
• for everyi ∈ {1, . . . , n}, add∀Ri .A as well as61Ri .⊤ to the knowledge base.

This transformation can clearly be done in polynomial time,again assuming a unary encoding of
the numbern. We now show that this conversion yields an equisatisfiable extended knowledge base.
Structurally, the proof is similar to that of Lemma 6.7.

9Following the notational convention, we useF to indicate the modeling feature of role functionality.
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Lemma 6.9. Given an extendedALCIb6 knowledge baseKB, the extendedALCIF b knowledge
baseΘ6(KB) andKB are equisatisfiable.

Proof. KB andFLAT(KB) are equisatisfiable by Proposition 2.3, so it remains toshow equisatisfia-
bility of FLAT(KB) andΘ6(KB).
First, we prove that every model ofΘ6(KB) is a model ofFLAT(KB). We do so in an inductive
way by showing that no additional models can be introduced inany substitution step of the above
conversion procedure. Hence, assume KB′′ is an intermediate knowledge base with modelI, and
that is obtained from KB′ by eliminating the occurrence of6n R.A as described above. Now consider
an arbitraryδ ∈ (∀(R⊓ ¬R1 ⊓ . . . ⊓ ¬Rn).¬A)I. This ensures that whenever an individualδ′ ∈ ∆I

satisfies〈δ, δ′〉 ∈ RI andδ′ ∈ A, it must additionally satisfy〈δ, δ′〉 ∈ RIi for one i ∈ {1, . . . , n}.
However, it follows from the KB′′-axioms61Ri .⊤ that there is at most one suchδ′ for eachRi.
Thus, there can be at mostn individualsδ′ with 〈δ, δ′〉 ∈ RI andδ′ ∈ A. This impliesδ ∈ (6n R.A)I.
So we have (∀(R ⊓ ¬R1 ⊓ . . . ⊓ ¬Rn).¬A)I ⊆ (6n R.A)I. Due to the flattened knowledge base
structure, both of those concept expressions occur outsidethe scope of any negation or quantifier
within axiomsD′′ ∈ KB′′ andD′ ∈ KB′ that are equal up to the substituted occurrence. Hence, we
can derive thatD′′I ⊆ D′I. Then, fromD′′I = ∆I follows D′I = ∆I makingD′ valid in I. Apart
from D′, all other axioms from KB′ are contained in KB′′ and hence are naturally satisfied inI. So
we find thatI is a model of KB′ as well.
Second, we show that every model ofFLAT(KB) can be transformed to a model ofΘ6(KB). We use
the same induction strategy as above by doing iterated modeltransformations following the syntactic
knowledge base conversions. Again, assume KB′′ is an intermediate knowledge base obtained from
KB′ by eliminating the occurrence of a6n R.C as described above, and supposeI is a model of
KB′. Based onI, we now (nondeterministically) construct an interpretationJ as follows:
• ∆J ≔ ∆I,
• for all C ∈ NC, let CJ ≔ CI,
• for all S ∈ NR \ {Ri | 1 ≤ i ≤ n}, let SJ ≔ SI,
• for every δ ∈ (6n R.A)I, let ǫδ1, . . . , ǫ

δ
k be an exhaustive enumeration (with arbitrary but fixed

order) of all thoseǫ ∈ ∆I with 〈δ, ǫ〉 ∈ RI and ǫ ∈ AI. Therebyδ’s aforementioned concept
membership ensuresk ≤ n. Now, letRJi ≔ {〈δ, ǫ

δ
i 〉 | δ ∈ (6n R.A)I}.

Now, it is easy to see thatJ satisfies all newly introduced axioms of the shape61Ri .⊤ as every
δ has at most oneRi-successor (namelyǫδi , if δ ∈ (6n R.A)I, and none otherwise). Moreover, the
axioms∀Ri .A are satisfied, as theǫδi have been chosen accordingly.
Finally for all δ ∈ (6n R.A)I the construction ensuresδ ∈ (∀(R⊓ ¬R1 ⊓ . . . ⊓ ¬Rn).¬A)J as by
construction, eachR-successor ofδ that lies within the extension ofA is contained inǫδ1, . . . , ǫ

δ
k

and therefore alsoRi-successor ofδ for somei. Now, again exploiting the fact that both of those
concept expressions occur in negation normalized universal concept axiomsD′ ∈ KB′ andD′′ ∈
KB′′ that are equal up to the substituted occurrence, we can derive thatD′I ⊆ D′′J . Then, from
D′I = ∆I follows D′′J = ∆J makingD′′ valid in J. Apart fromD′′ (and the newly introduced
axioms considered above), all other axioms from KB′′ coincide with those from KB′ and hence are
satisfied inJ, as they do not depend on theRi whose interpretations are the only ones changed in
J compared toI. So we find thatJ is a model of KB′′.
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6.6. From ALCIF b toALCIb. In the sequel, we show how the role functionality axioms of the
shape61R.⊤ can be eliminated from anALCIF b knowledge base while still preserving equisat-
isfiability. Partially, the employed rewriting is the same as the one proposed forALCIF TBoxes
by Calvanese et al. (1998), however, in the presence of ABoxes more needs to be done.
Essentially, the idea is to add axioms that enforce that for every functional roleR, any twoR-
successors coincide with respect to their properties expressible in “relevant” DL role and concept
expressions. To this end, we consider the parts of a knowledge base as defined in Section 2 on page
5. While it is not hard to see that the introduced axioms follow from R’s functionality, the other
direction (a Leibniz-style “identitas indiscernibilium”argument) needs a closer look.
Taking an extendedALCIF b knowledge base KB, letΘF (KB) denote the extendedALCIb
knowledge base obtained from KB by removing every role functionality axiom61R.⊤ and instead
adding

• ∀R.¬D ⊔ ∀R.D for everyD ∈ P(KB \ {α ∈ KB | α = 61R.⊤ for someR ∈ R}),
• ∀(R⊓ S).⊥ ⊔ ∀(R⊓ ¬S).⊥ for every atomic roleS from KB, as well as
• the DL-safe ruleR(x, y),R(x, z)→ y ≈ z.

Clearly, this transformation can also be done in polynomialtime and space w.r.t. the size of KB.
Our goal is now to prove equisatisfiability of KB andΘF (KB). The following lemma establishes
the easier direction of this correspondence.

Lemma 6.10. AnyALCIF b knowledge baseKB entails all axioms of theALCIb knowledge
baseΘF (KB), i.e. KB |= ΘF (KB).

Proof. Let J be a model of KB. We need to show thatJ also satisfies the additional rules and
axioms introduced inΘF (KB).
First letD be an arbitrary concept. Note that∀R.¬D⊔∀R.D is equivalent to the GCI∃R.D ⊑ ∀R.D.
This is satisfied if, for anyδ ∈ ∆J , if δ has anR-successor inDJ , then allR-successors ofδ are
in DJ . This is trivially satisfied ifδ has at most oneR-successor, which holds sinceJ satisfies the
functionality axiom61R.⊤ ∈ KB. Since we have shown the satisfaction for arbitrary concepts D,
this holds in particular for those fromP(KB \ {α ∈ KB | α = 61R.⊤ for someR∈ R}).
Second, letS be an atomic role. Mark that∀(R⊓ S).⊥ ⊔ ∀(R⊓ ¬S).⊥ is equivalent to the GCI
∃(R⊓S).⊤ ⊑ ∀(R⊓¬S).⊥. This means that for anyδ ∈ ∆J , all R-successors are alsoS-successors
of it, whenever one of them is. Again, this is trivially satisfied asδ has at most oneR-successor.
Finally all newly introduced rules of the formR(x, y),R(x, z) → y ≈ z are satisfied inJ as a
consequence of the functionality statements in KB.

The other direction for showing equisatisfiability, which amounts to finding a model of KB given
one forΘF (KB), is somewhat more intricate and requires some intermediate considerations.

Lemma 6.11. If KB is anALCIF b knowledge base with61R.⊤ ∈ KB then in every modelJ of
ΘF (KB) we find that〈δ, δ1〉 ∈ RJ and〈δ, δ2〉 ∈ RJ imply

• for all C ∈ P(KB \ {α ∈ KB | α = 61R.⊤ for some R∈ R}), we haveδ1 ∈ CJ iff δ2 ∈ CJ ,
• for all S ∈ NR, we have〈δ, δ1〉 ∈ SJ iff 〈δ, δ2〉 ∈ SJ .

Proof. For the first proposition, assumeδ1 ∈ CJ . From〈δ, δ1〉 ∈ RJ follows δ ∈ (∃R.C)J . Due to
theΘF (KB) axiom∀R.¬C⊔∀R.C (being equivalent to the GCI∃R.C ⊑ ∀R.C) follows δ ∈ (∀R.C)J .
Since〈δ, δ2〉 ∈ RJ , this impliesδ2 ∈ CJ . The other direction follows by symmetry.
To show the second proposition, assume〈δ, δ1〉 ∈ SJ . Since also〈δ, δ1〉 ∈ RJ , we have〈δ, δ1〉 ∈

R⊓SJ and henceδ ∈ (∃(R⊓S).⊤)J . From theΘF (KB) axiom∀(R⊓S).⊥⊔∀(R⊓¬S).⊥ (which
is equivalent to the GCI∃(R⊓ S).⊤ ⊑ ¬∃(R ⊓ ¬S).⊤) we concludeδ ∈ (¬∃(R ⊓ ¬S).⊤)J , in
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words:δ has noR-successor that is not itsS-successor. Thus, as〈δ, δ2〉 ∈ RJ , it must also hold that
〈δ, δ2〉 ∈ SJ . Again, the other direction follows by symmetry.

In order to convert a model ofΘF (KB) into one of KB, we will have to enforce role functional-
ity where needed by cautiously deleting individuals from the original model. Definition 6.13 will
provide a method for this. To this end, some auxiliary notions defined beforehand will come in
handy.

Definition 6.12. LetJ be an interpretation, and letI be the unraveling ofJ.10 For a domain ele-
mentσ ∈ ∆I and anR ∈ R, we define the set ofR-neighborsof σ in I by nbR

I
(σ) ≔ {σ′ | 〈σ,σ′〉 ∈

RI}. Among theR-neighbors, we distinguish betweensubordinate R-neighborssubR
I
(σ) ≔ {σδ |

〈σ,σδ〉 ∈ RI} and thenon-subordinate R-neighborsnonsubR
I
(σ) ≔ nbR

I
(σ) \ subR

I
(σ).

Definition 6.13. LetJ be an interpretation, and letI be the unraveling ofJ. Given an extended
ALCIF b knowledge base KB, let KB∗ ≔ KB \ {α ∈ KB | α = 61R.⊤ for someR ∈ R}, let
D ≔ P(KB) and letS ≔ {R | 61R.⊤ ∈ KB}.
Then, an interpretationK will be called KB-pruning of I, if K can be constructed fromI in the
following way: Let first∆0 = ∆

I. Next, iteratively determine∆i+1 from ∆i as follows:

• Select a word-length minimalσ from ∆i where there is anS ∈ S for which nbS
I
(σ) > 1 and

subS
I
(σ) > 0.

• If nonsubS
I
(σ) > 0, let∆′ = subS

I
(σ), otherwise let∆′ = subS

I
(σ) \ {σ′} for an arbitrarily chosen

σ′ ∈ subS
I
(σ).

Delete∆′ from ∆i as well as allσ∗∗ having someσ∗ ∈ ∆′ as prefix.

Finally, letK be the limit of this process:∆K ≔
⋂

i∈N ∆i and·K is the function·I restricted to∆K .

Roughly speaking, any KB-pruning of I is (nondeterministically) constructed by deleting surplus
functional-role-successors. Mark that the tree-like structure of non-named individuals of the unrav-
eling is crucial in order to make the process well-defined.

Lemma 6.14. LetKB be an extendedALCIF b knowledge base, letJ be a model ofΘF (KB) and
let I be an unraveling ofJ. Then, anyKB-pruningK ofI is a model ofKB.

Proof. By construction, we know thatI is a model ofΘF (KB). Now, letK be a KB-pruning of
I. For showingK |= KB, we divide KB into two sets, namely the set of role functionality axioms
{α ∈ KB | α = 61R.⊤ for someR ∈ R} and all the remaining axioms, denoted by KB∗, and show
K |= KB∗ andK |= {α ∈ KB | α = 61R.⊤ for someR ∈ R} separately.

We start by showingK |= KB∗. To this end, we prove that, for eachC ∈ P(KB∗) and for every
individual σ from K , we haveσ ∈ CK exactly if σ ∈ CI. Clearly, this statement extends to
concepts that are Boolean combinations of elements fromP(KB∗), i.e., to all axioms in KB∗. We
omit this easy structural induction.
The claim forC ∈ P(KB∗) is shown by induction over the depth of role restrictions inC, and we
assume that is has already been shown for concepts of smallerrole depth. We consider three cases:
• C ∈ NC ∪ {⊤,⊥}

Then the coincidence follows directly from the construction ofK .
• C = ∃U.D

“⇒” σ ∈ (∃U.D)K means that there is aK-individual σ′ with 〈σ,σ′〉 ∈ UK andσ′ ∈ DK .

10Remember that by construction, the individuals ofI are sequences of individuals ofJ . For better readability, we
will strictly useσ – with possible subscripts – forI-individuals andδ for J-individuals.
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Because of the construction ofK by pruningI, this means also〈σ,σ′〉 ∈ UI and by induction
hypothesis, we haveσ′ ∈ DI, ergoσ ∈ (∃U.D)I.
“⇐” If σ ∈ (∃U.D)I, there is anI-individual σ′ with 〈σ,σ′〉 ∈ UI andσ′ ∈ DI. In case
σ′ is not deleted during the construction ofK , it proves (by using the induction hypothesis on
D) thatσ ∈ (∃U.D)K . Otherwise, it must have been deleted due to the existence ofanotherI-
individualσ′′ for with Lemma 6.11 ensures{R ∈ R | 〈σ,σ′′〉 ∈ RI} = {R ∈ R | 〈σ,σ′〉 ∈ RI} and
{E ∈ P(KB∗) | σ′′ ∈ EI} = {E ∈ P(KB∗) | σ′ ∈ EI}. W.l.o.g.,σ′′ does not get deleted in the
whole construction procedure. Yet, then theK-individualσ′′ obviously provesσ ∈ (∃U.D)K .
• C = ∀R.D

“⇒” Assume the contrary, i.e.,σ ∈ (∀U.D)K but σ < (∀U.D)I which means that there is an
I-individual σ′ with 〈σ,σ′〉 ∈ UI but σ′ < DI. In caseσ′ has not been deleted during the
construction ofK , it disprovesσ ∈ (∀U.D)K (by invoking the induction hypothesis onD) leading
to a contradiction. Otherwise,σ′ is deleted because of the existence of anotherI-individual
σ′′ for with Lemma 6.11 ensures{R ∈ R | 〈σ,σ′′〉 ∈ RI} = {R ∈ R | 〈σ,σ′〉 ∈ RI} and
{E ∈ P(KB∗) | σ′′ ∈ EI} = {E ∈ P(KB∗) | σ′ ∈ EI}. W.l.o.g.,σ′′ does not get deleted in the
whole construction procedure. Yet, then theK-individualσ′′ obviously contradictsσ ∈ (∃U.D)K .
“⇐” Assume the contrary, i.e.,σ ∈ (∀U.D)I butσ < (∀U.D)K . The latter means that there is a
K-individualσ′ with 〈σ,σ′〉 ∈ UK andσ′ < DK . Because of the construction ofK by pruning
I, this means also〈σ,σ′〉 ∈ UI andσ′ < DI, ergoσ < (∀U.D)I, contradicting the assumption.

We proceed by showing that every roleR with 61R.⊤ ∈ KB is functional inK . Let σ ∈ ∆K

and letσ1, σ2 be twoR-successors ofσ. We consider two cases: First, assume thatσ1 = aK1 and
σ2 = aK2 for a1, a2 ∈ NI . Then, by construction of the unraveling we can derive that there must be
ana3 ∈ NI with σ = aK3 . However, then, the DL-safe ruleR(x, y),R(x, z) → y ≈ z from ΘF (KB)
ensuresσ1 = σ2. Next we consider the case that at least one ofσ1, σ2 is unnamed. By Lemma
6.11 and the point-wise correspondence betweenI andK shown in the previous part of the proof,
two statements hold: First, for allC ∈ P(KB∗), we have thatσ1 ∈ CK iff σ2 ∈ CK . Second, for all
S ∈ NR we have that〈σ,σ1〉 ∈ SK iff 〈σ,σ2〉 ∈ SK . However, in the pruning process generating
K , exactly such duplicate occurrences are erased, leaving atmost oneR-successor perσ. Thus we
concludeσ1 = σ2. This completes the proof that all axioms from KB are satisfied inK .

Finally, we are ready to establish the equisatisfiability result also for this last transformation step.

Theorem 6.15. For any extendedALCIF b knowledge baseKB, theALCIb knowledge base
ΘF (KB) andKB are equisatisfiable.

Proof. Lemma 6.10 ensures that every model of KB is also a model ofΘF (KB). Moreover, by
Lemma 6.14, given a modelJ for of ΘF (KB), any KB-pruning ofJ ’s unraveling (the existence of
which is ensured by constructive definition) is a model of KB.This finishes the proof.

Eventually, the results of this section can be composed to show how to transform an extended
SHIQbs knowledge base KB into an equisatisfiable extendedALCIb knowledge base by com-
putingΘSHQ(KB) ≔ ΘFΘ6ΘHΘ>ΘS(KB). Moreover, as each of the single transformation steps
is time polynomial, so is the overall procedure. Therefore,we are able to check the satisfiability of
any extendedSHIQ knowledge base using the method presented in the previous sections, by first
transforming it intoALCIb and then checking.
This result is recorded in the below theorem, where we also exploit it to show an even stronger result
about the correspondence between KB andΘSHQ(KB).

Theorem 6.16.LetKB be an extendedSHIQbs knowledge base. Then the following hold:
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• KB andΘSHQ(KB) are equisatisfiable,
• KB |= C(a) iff ΘSHQ(KB) |= C(a),
• KB |= R(a, b) iff ΘSHQ(KB) |= R(a, b), and
• KB |= a ≈ b iff ΘSHQ(KB) |= a ≈ b,

for any a, b ∈ NI , C ∈ NC, and R∈ NR.

Proof. Equisatisfiability follows from the fact that each of the transformationsΘF ,Θ6,ΘH ,Θ>,ΘS
preserves satisfiability. We then use the established equisatisfiability of KB andΘSHQ(KB) to
prove the other claims. Assume KB|= C(a). This means that the knowledge base KB′ obtained by
extending KB with the DL-safe ruleC(a) → is unsatisfiable. Now we observe thatΘSHQ(KB′) is
obtained by extendingΘSHQ(KB) with C(a)→. SinceΘSHQ(KB′) is unsatisfiable, so isΘSHQ(KB)
extended withC(a) →, and henceΘSHQ(KB) |= C(a) as required. The other direction of the claim
follows via a similar argumentation. The remaining cases are shown analogously.

Consolidating all our results, we now can formulate our maintheorem for checking satisfiability as
well as entailment of positive and negative ground facts forextendedSHIQbs knowledge bases.

Theorem 6.17.LetKB be an extendedSHIQbs knowledge base and let

P ≔ DD(ΘSHQ(KB)).

Then the following hold:

• KB is satisfiable iff P is,
• KB |= C(a) iff P |= SC(a),
• KB |= R(a, b) iff P |= SR(a, b), and
• KB |= a ≈ b iff P |= a ≈ b,

for any a, b ∈ NI , C ∈ NC, and R∈ NR.

Proof. Combine Theorem 6.16 with Theorem 5.4.

Note also that the above observation immediately allows us to add reasoning support forDL-safe
conjunctive queries, i.e. conjunctive queries that assumeall variables to range only over named
individuals. It is easy to see that, as a minor extension, onecould generally allow for concept
expressions∀R.A and∃R.A in queries and rules, simply becauseDD(KB) represents these elements
of P(FLAT(T)) as atomic symbols in disjunctive Datalog.

7. RelatedWork

Boolean constructors on roles have been investigated in thecontext of both description and modal
logics. Borgida (1996) used them extensively for the definition of a DL that is equivalent to the
two-variable fragment of FOL.
It was shown by Hustadt and Schmidt (2000) that the DL obtained by augmentingALC with full
Boolean role constructors (ALB) is decidable. Lutz and Sattler (2001) established NExpTime-
completeness of the standard reasoning tasks in this logic.Restricting to only role negation (Lutz and Sattler,
2001) or only role conjunction (Tobies, 2001) retains ExpTime-completeness. On the other hand,
complexity does not increase beyond NExpTime even when allowing for inverses, qualified num-
ber restrictions, and nominals. This was shown by Tobies (2001) via a polynomial translation of
ALCOIQB into C2, the two variable fragment of first order logic with countingquantifiers, which
in turn was proven to be NExpTime-complete by Pratt-Hartmann (2005). Also the description logic
ALBO (Schmidt and Tishkovsky, 2007) falls in that range of NExpTime-complete DLs.
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On the contrary, it was also shown by Tobies (2001) that restricting tosafeBoolean role constructors
keepsALC’s reasoning complexity in ExpTime, even when adding inverses and qualified number
restrictions (ALCQIb).
For logics including modeling constructs that deal with role composition like transitivity or –
more general – complex role inclusion axioms, results on complexities in the presence of Boolean
role constructors are more sparse. Lutz and Walther (2005) show thatALC can be extended by
negation and regular expressions on roles while keeping reasoning within ExpTime. Furthermore,
Calvanese et al. (2007b) provided ExpTime complexity for a similar logic that includes inverses and
qualified number restriction but reverts to safe negation onroles. The present work showed that rea-
soning remains in ExpTime for extendedSHIQbs knowledge bases. Regarding DLs that combine
nominals and role composition, it was shown thatunsafeBoolean role constructors can be added to
SHOIQ andSROIQ (resulting in DLsSHOIQBs andSROIQBs) without affecting their respec-
tive worst-case complexities of NExpTime and N2ExpTime (Rudolph et al., 2008a). The restriction
to simple roles, on the other hand, is essential to retain decidability. Furthermore, conjunctions of
simple roles (which are trivially safe in the absence of rolenegation) can be added to tractable DLs
of theEL and DLP families without increasing their worst-case complexity (Rudolph et al., 2008a).

Type-based reasoning techniques have been described sporadically in the area of DLs but never
been practically adopted.
Lutz et al. (2005) use a particular kind of types, calledmosaicsfor finite model reasoning. Eiter et al.
(2009) use similar structures, calledknotsfor query answering in the description logicSHIQ. Both
notions show a similarity to the notion of(counting) star typesused for reasoning in fragments of
first order logic (Pratt-Hartmann, 2005), in that they do notonly store information about single
domain individuals but also about all their direct neighbors. As opposed to this, our notion of domi-
noes exhibits more similarity to the notion of (non-counting) two-typesused in first-order logic,
e.g., by Grädel et al. (1997); both notions encode information related to pairs of domain individuals
(rather than whole neighborhoods).
The approach of constructing a canonical model (resp. a sufficient representation of it) in a down-
ward manner (i.e., by pruning a larger structure) shows somesimilarity to Pratt’s type elimination
technique (Pratt, 1979), originally used to decide satisfiability of modal formulae.
Canonical models themselves have been a widely used notion in modal logic (Popkorn, 1994;
Blackburn et al., 2001), however, due to the additional expressive power ofALCIb compared to
standard modal logics like K (being the modal logic counterpart of the description logicALC),
we had to substantially modify the notion of a canonical model used there: in order to cope with
number restrictions, we use infinite tree models based on unravelings whereas the canonical models
in the mentioned approaches are normally finite and obtainedvia filtrations.
Related in spirit (namely to use BDD-based reasoning for DL reasoning tasks and to use a type
elimination-like technique for doing so) is the work presented by Pan et al. (2006). However, the
established results as well as the approaches differ greatly from ours: the authors establish a proce-
dure for deciding the satisfiability ofALC concepts in a setting not allowing for general TBoxes,
while our approach can check satisfiability ofSHIQ (resp.ALCIb) knowledge bases supporting
general TBoxes, thereby generalizing the results by Pan et al. (2006) significantly.

The presented method for reasoning with DL-safe rules and assertional data exhibits similarities
to the algorithm underlying the KAON2 reasoner (Motik, 2006; Hustadt et al., 2007, 2008). In
particular, pre-transformations are first applied toSHIQ knowledge bases, before a saturation
procedure is applied to the TBox part that results in a disjunctive Datalog program that can be
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combined with the assertional part of the knowledge base. Asin our case, extensions with DL-
safe rules and ground conjunctive queries are possible. Theprocessing presented here, however,
is very different from KAON2. Besides using OBDDs, it also employs Boolean role constructors
that admit an indirect encoding of number restrictions. Moreover, as opposed to our approach, the
transformation in Motik (2006) does not preserveall ground consequences:SHIQ consequences
of the formR(a, b) with R being non-simple may not be entailed by the created Datalog program.
This shortcoming could, however, be easily corrected alongthe lines of our approach. On the other
hand, the KAON2 transformation avoids the use of disjunctions in Datalog for knowledge bases
that are Horn (i.e., free of disjunctive information). Reasoning for Horn-SHIQ can thus be done
in ExpTime, which is worst-case optimal (Krötzsch et al., 2012). In contrast, our OBDD encoding
requires disjunctive Datalog in all cases, leading to a NExpTime procedure even for Horn-SHIQ.

8. Discussion

We have presented a new worst-case optimal reasoning algorithm for standard reasoning tasks for
extendedSHIQbs knowledge bases. The algorithm compilesSHIQbs terminologies into disjunc-
tive Datalog programs, which are then combined with assertional information and DL-safe rules for
satisfiability checking and (ground) query answering. To this end, OBDDs are used as a conve-
nient intermediate data structure to process terminologies and are subsequently transformed into
disjunctive Datalog programs that can naturally account for ABox data and DL-safe rules. The
generation of disjunctive Datalog may require exponentially many computation steps, the cost of
which depends on the concrete OBDD implementation at hand – findingoptimal OBDD encodings
is NP-complete but heuristic approximations are often usedin practice. Querying the disjunctive
Datalog program then is co-NP-complete w.r.t. the size of the ABox, so that the data complexity
of the algorithm is worst-case optimal (Motik, 2006). Concerning combined complexity of testing
the satisfiability of extended knowledge bases, the ExpTime OBDD construction step dominates the
subsequent disjunctive Datalog reasoning part, so the overall combined complexity of the algorithm
is ExpTime resulting in worst-case optimality for this case as well, given the ExpTime-hardness of
satisfiability checking inSHIQbs.
It is also worthwhile to briefly discuss the applicability ofour method to knowledge bases featuring
so-calledcomplex role inclusion axioms(RIAs). By means of techniques described by Kazakov
(2008), any (pure, that is, non-extended)SRIQbs knowledge base can be transformed into an eq-
uisatsfiableALCHIQb knowledge base, however, like Motik’s original transitivity elimination,
this transformation does not preserve all ground consequences. Consequently, it is not satisfiability-
preserving for extendedSRIQbs knowledge bases. Still, capitalizing on these RIA-removaltech-
niques, our method provides a way for satisfiability checking forSRIQbs knowledge bases without
DL-safe rules that is worst-case optimal w.r.t. both combined and data complexity. We believe,
however, that it would be not to hard a task to modify the transformation to even preserve ground
consequences.
For future work, the algorithm needs to be evaluated in practice. A crude prototype implementa-
tion was used to generate the examples within this paper, andhas shown to outperform tableaux
reasoners in certain handcrafted cases, but more extensiveevaluations with an optimized implemen-
tation on real-world ontologies are needed for a conclusivestatement on the practical potential of
this new reasoning strategy. It is also evident that redundancy elimination techniques are required
to reduce the number of generated Datalog rules, which is also an important aspect of the KAON2
implementation.
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Another avenue for future research is the extension of the approach to more modeling features such
as role chain axioms and nominals – significant revisions of the model-theoretic considerations are
needed for these cases.
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