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Asstract. We propose a novel, type-elimination-based method fardstal reasoning in the de-
scription logic SHIQbs extended by DL-safe rules. To this end, we first establish awvledge
compilation method converting the terminological part of &£CIb knowledge base into an or-
dered binary decision diagram (OBDD) that represents argaalomodel. This OBDD can in turn
be transformed into disjunctive Datalog and merged withatsgertional part of the knowledge base
in order to perform combined reasoning. In order to leveragretechnique for fullSHIQbs, we
provide a stepwise reduction fro81H 7 Qbs to ALCI b that preserves satisfiability and entailment of
positive and negative ground facts. The proposed technggsteown to be worst-case optimal w.r.t.
combined and data complexity.

1. INTRODUCTION

Description logics (DLs, see Baader et al., 2007) have becarmajor paradigm in Knowledge
Representation and Reasoning. This can in part be attiiliot¢he fact that the DLs have been
found suitable to be the foundation for ontology modelind easoning for the Semantic Web. In
particular, the Web Ontology Language OWL (W3C OWL Workinmp@®,2009), a recommended
standard by the World Wide Web Consortium (\/\/@tb)r ontology modeling, is essentially a de-
scription logic (see, e.d., Hitzler etlal., 2009, for anaatuction to OWL and an in-depth description
of the correspondences). As such, DLs are currently gaisigugificant momentum in application
areas, and are being picked up as knowledge representatiadigm by both industry and applied
research.
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The DL known asSH ZQ is among the most prominent DL fragments that do not feataneimald]
and it covers most of the OWL language. Various OWL reasomepiement dicient reasoning
support forSH I Q by means of tableau methods, e.g., PEEACT++[1 or RacerPrd,

However, even the mosfiiient implementations of reasoning algorithms to date dosoale up

to very data-intensive application scenarios. This mtgwdhe search for alternative reasoning ap-
proaches that build uponftierent methods in order to address cases where tableautlatgstiurn
out to have certain weaknesses. Successful examples ar&lRQA@otik and Sattler, 2006) based
on resolution, HermiTL(Motik et al., 2009) based on hypdéddgaux, as well as the consequence-
based systems CB (Kazakov, 2009), ConDOR (Sitfiaat al.,| 2011), and ELK (Kazakov etlal.,
2011). Moreover, especially for lightweight DLs, approasivased on rewriting queries (Calvanese let al.,
2007a) or both queries and data (Kontchakov et al.,'201® haen proposed.

In this paper, we propose the use of a variantygfe elimination a notion first introduced by
Pratt (1979), as a reasoning paradigm for DLs. To implemenhecessary computations on large
type sets in a compressed way, we suggest the use of orderay kliecision diagrams (OBDDs).
OBDDs have been applied successfully in the domain of lacgée model checking and verifica-
tion, but have hitherto seen only little investigation inf)le.qg., by Pan et al. (2006).

Most of the description logics considered in this articldibi restricted Boolean role expressions
as a non-standard modeling feature, which is indicated byoa (if further restricted)bs in the
name of the DL. In particular, we propose a novel method fasoeing inSH 7Qbs knowledge
bases featuring terminological and assertional knowlédglading (in)equality statements as well
as DL-safe rules.

Our work starts by considering terminological reasoninthenDL ALCI'b, which is less expressive
than SHIQbs. We introduce a method that compiles &/.C7b terminology into an OBDD
representation. Thereafter, we show that the output ofalgierithm can be used for generating
a disjunctive Datalog program that can in turn be combineith iBox data to obtain a correct
reasoning procedure. Finally, the results J8C7b are lifted to full SHZQbs by providing an
appropriate translation from the latter to the former.

This article combines and consolidates our previous wookigpure TBox reasoning (Rudolph et al.,
2008¢c), its extension to ABoxes (Rudolph et lal., 2008b) amdesnotes on reasoning in DLs with
Boolean role expressions (Rudolph etlal., 2008a) by

¢ providing a collection of techniques for eliminati® 7 Qbs modeling features that impede the
use of our type elimination approach,

¢ laying out the model-theoretic foundations for type-ehiation-based reasoning for very expres-
sive description logics without nominals, using tt@minometaphor for 2-types,

¢ elaborating the possibility of using OBDDs for making typiendnation computationally feasible,

e providing a canonical translation of OBDDs into disjunetidatalog to enable reasoning with
assertional information, and

e making the full proofs accessible in a published version.

Moreover, we extend our work by adding some missing aspextscampleting the theoretical
investigations by

2Nominals, i.e., concepts that denote a set with exactly dement, usually cause a reasonirfjokency problem
when added t&H 7 Q. This is evident from the performance of existing systemd, finds its theoretical justification in
the fact that they increase worst-case complexity from Exgfcompleteness to NExpTime-completeness.

3httpV/clarkparsia.compellev

4http;//ow|.man.ac.u}factplusplu;s

5httpy/www. racer-systems.com
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e extending the procedures for reduciS@{ 7 Qbs to ALCIb to ABoxes and DL-safe rules,

e establishing worst-case optimality of our algorithms,

e extending the supported language: while our previous waitlk oovered terminological rea-
soning iINnSHIQ (Rudolph et al., 2008c) and combined reasoningAiriC b (Rudolph et al.,
2008b), we now support reasoning # 7 Qbs knowledge bases featuring terminological and
assertional knowledge, including (in)equality stateraemd DL-safe rules.

The structure of this article is as follows. Sectidn 2 recadllevant preliminaries. Sectiéh 3 dis-
cusses the computation of setsdafminoesthat represent models ofi.LC7b knowledge bases.
Sectior 4 casts this computation into a manipulation of OB@B underlying data structures. Sec-
tion[3 discusses how the resulting OBDD presentation camamesformed to disjunctive Datalog
and establishes the correctness of the approach. SEttionifgs a transformation frolSH 7 Qbg

to ALCIDb, thereby extending the applicability of the proposed mettmS7H 7Qbs knowledge
bases. Sectidd 7 discusses related work and Sédtion 8 desclu

2. Tue DescriptioN Locics SHIQbs ano ALCIb

We first recall some basic definitions of DLs and introduce matation. A more gentle first in-

troduction to DLs, together with pointers to further reayirs given in_ Rudolph (2011). Here, we
define a rather expressive description lo§it{ 7 Qbs that extendsSH 7 Q with restricted Boolean

role expressions (see, e.g., Tobies, 2001).

Definition 2.1. A SHI@Qbs knowledge base is based on three disjoint setsoatept namekslc,
role nameNRg, andindividual namesN,. The set ofatomic rolesR is defined byR := NR U {R™ |

R € Ng}. In addition, we let InR) := R~ and InvR™) := R, and we extend this notation also to
sets of atomic roles. In the following, we use the symi®ndS to denote atomic roles, if not
specified otherwise.

The set oBoolean role expressiord is defined as

B:=R|-B|BnB|BuB.

We user to denote entailment between sets of atomic roles and rpiessions. Formally, given a
setR of atomic roles, we inductively define:

o for atomic roleR, R r Rif Re R, andR ¥ R otherwise,
e Rr-Uif Rk U, andR ¥ -U otherwise,

e RrUMVIfRFUandR + V, andXR ¥ U 'V otherwise,
e RFrULUVIfFRFUOrR YV, andR ¥ U UV otherwise.

A Boolean role expressiob) is restrictedif @ ¥ U. The set of all restricted role expressions is
denoted byT, and the symbols) andV will be used throughout this paper to denote restricted role
expressions. ASHIQbs RBoxis a set of axioms of the ford C V (role inclusion axiom) or
Tra(R) (transitivity axiom). The set afion-simpleoles (for a given RBox) is defined as the smallest
subset oR satisfying:

e [f there is an axiomira(R), thenR is non-simple.

o If there is an axionR C S with Rnon-simple, thers is non-simple.

¢ If Ris non-simple, then InK) is non-simple.

An atomic role issimpleif it is not non-simple. InSHIQbs, every non-atomic Boolean role
expression must contain only simple roles.

Based on 88H 7Qbs RBoX, the set otoncept expressiorG is defined as

C:=Nc|T|L|-C|CRC|CuUC]|VYT.C|3AT.C|<nR.C|>(n+1)R.C,
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wheren > 0 denotes a natural number, and the 18lén expressionskn S.C and>(n + 1)S.C

is required to be simple. Common names for the various forht®cept expressions are given
in Table[1 (lower part). Throughout this paper, the symi@I® will be used to denote concept
expressions. ASHIQbs TBox(or terminology is a set ogeneral concept inclusion axiong&CIs)

of the formC C D.

Besides the terminological components, DL knowledge bggsesally include assertional knowl-
edge as well. In order to increase expressivity and to allewaf uniform presentation of our
approach we generalize this by allowing knowledge base®mtat so-called DL-safe rules as
introduced by Motik et al. (2005).

Definition 2.2. LetV be a countable set of first-order variablestemis an element o¥/ U N;.
Given termg andu, aconcept atopole atormequality atonis a formula of the fornC(t)/R(t, u)/t ~
u with C € N¢c andR € Ng. A DL-safe rulefor SHIQbsis a formulaB — H, whereB andH are
possibly empty conjunctions of (role, concept, and eqggafitoms. To simplify notation, we will
often use finite setS of atoms for representing the conjunctignS.

A set? of DL-safe rules is called aule base An extendedSH 7 Qbs knowledge baskB is a triple
(T, R, Py, whereT is aSHIQbs TBox, R is aSHI@Qbs RBox, and? is a rule base.

We only consider extended knowledge bases in this work, seilveften just speak of knowledge
bases. In the literature, a DL ABox is usually allowed to eimassertions of the fori(a), R(a, b),
ora= b, wherea,b € N|, A € N¢, andR € Nr. We assume that all roles and concepts occurring in
the ABox are atomiff. These assertions can directly be expressed as DL-safethaldsave empty
(vacuously true) bodies and a single head atom. Convetkelyiegation of these assertions can be
expressed by rules that have the assertion as body atom kehileg an empty (vacuously false)
head. Knowing this, we will not specifically consider aseed or negated assertions in the proofs
of this paper. For convenience we will, however, sometinsesthe above notations instead of their
rule counterparts when referring to (positive or negatedygd facts.

As mentioned above, we will mostly consider fragmentsS@f 7Qbs. In particular, an (extended)
ALCIbknowledge base is an (extendesi}f 7 Qbs knowledge base that contains no RBox axioms
and no number restrictions (i.e., concept expressionR C or >n RC). Consequently, an extended
ALCIbknowledge base only consists of a pait P), whereT is a TBox andP is a rule base. The
related DLALCQIb has been studied by Tobies (2001).

The semantics o08H7Qbs and its sublogics is defined in the usual, model-theoretig. wan
interpretationZ consists of a seh! called domain (the elements of it being calleiddividualy
together with a function’ mapping individual names to elementsAdf, concept names to subsets
of A7, and role names to subsets/Adf x AZ.

The function- is extended to role and concept expressions as shown in[TaBle interpretation

I satisfiesan axiomy if we find thatf [ ¢, where

e TEUCVIfU! c VI,

e 7 E Tra(R) if R is a transitive relation,

e TECCDIf Cf c DY,

I satisfiesa knowledge base KB, denotéd= KB, if it satisfies all axioms of KB.

It remains to define the semantics of DL-safe rules. A (Dlepahriable assignment Zor an
interpretations is a mapping from the set of variabl¥sto {a’ | a € N;}. Given a termt € N; UV,

6This common assumption is made without loss of generalitgrims of knowledge base expressivity. It is essential
for defining the ABox-specific complexity measuredaita complexityalthough it might be questionable in cases where
ABox statements with complex concept expressions belottgetpart of the knowledge base that is frequently changing.
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Name Syntax | Semantics

inverse role R {(xy) e AT x AT | (y,x) e Rf}

role negation -U {(xy) e AL x AT | (xy) ¢ UL}

role conjunction unv |Ufnve

role disjunction uuv |Ufuve

top T Af

bottom L 0

negation -C Af\ct

conjunction cnb |cInDf

disjunction cubD |cfuDf

universal restriction | YVU.C | {x € Af | (x,y) € U impliesy € C’}

existential restriction) JU.C | {xe AL | (x,y) € UL,y e C! for somey € A}

qualified <NSC | {xe Al |#yeATx y)eST,yeCl} <n}
number restriction) >nS.C | {x e AT | #{ye AT(x, y) e ST, yeCL} > n}

Table 1: Semantics of constructorsSiH 7Qbs for an interpretationd” with domainA?

we sett’? = Z(t) if t € V, andt!4 = t! otherwise. Given a concept ato@(t) / role atom
R(t, u) / equality atomt ~ u, we write7,Z = C(t) / I,Z E R(t,u) /I,Z =t ~ uif t{? e C!/
tH% uh?%y e R/ t54 = uf%, and we say thaf andZ satisfythe atom in this case.

An interpretation/ satisfiesa ruleB — H if, for all variable assignmentz for 7, eitherZ andZ
satisfy all atoms irH, or 7 andZ fail to satisfy some atom iB. In this case, we writd = B — H
and say thaf is amodelfor B — H. An interpretation satisfies a rule beBdi.e., it is amodelfor
it) whenever it satisfies all rules in it. An extended knovgedbase KB= (T, R, P) is satisfiableif it
has an interpretatiofi that is a model fof", R, and®, and it isunsatisfiableotherwise.Satisfiability
equivalenceandequisatisfiabilityof (extended) knowledge bases are defined as usual.

For convenience of notation, we abbreviate TBox axioms efftsm T T C by writing justC.
Statements such @& C andC € KB are interpreted accordingly. Note tHatC D can thus be
written as—-C U D.

We often need to access a particular set of quantified andiawubformulae of a DL concept
expression. These specifiartsare provided by the functioR : C — 2C:

P(D) if C=-D,
PID)UP(E)ifC=DnEorC=DUE,
{CyUP(D) ifC=0QU.DwithQ e {3,V¥,>n,<n},
{C} otherwise.

We generalizeP to DL knowledge bases KB by defining(KB) to be the union of the set3(C)
for all TBox axiomsC in KB, where we express TBox axioms as simple concept expresss
explained above.

Given an extended knowledge base KB, we obtain its negatomal formNNF(KB) by keeping
all RBox statements and DL-safe rules untouched and congegivery TBox concepC into its
negation normal fornNF(C) in the usual, recursively defined way:

P(C) =
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NNF(=T) =1 NNF(YU.C)  := VU.NNF(C)
NNF(-.L) =T NNF(=VU.C) := JU.NNF(-C)
NNF(C) = CifCe{A-AT,1} NNF(FU.C) := JU.NNF(C)
NNF(=-C) = NNF(C) NNF(-3U.C) := YU.NNF(-C)
NNF(CrD) := NNF(C)r NNF(D) NNF(<nRC) := <nRNNF(C)
NNF(=(C D)) := NNF(-C)LUNNF(=D)  NNF(=<nRC) = >(n+ 1)RNNF(C)
NNF(CLUD) := NNF(C)L NNF(D) NNF(>nRC) := >nRNNF(C)

NNF(=(C U D)) := NNF(=C)MNNF(=D)  NNF(->nRC) = <(n-1)RNNF(C)
It is well known that KB andNNF(KB) are semantically equivalent.
In places, we will additionally require another well-knowormalization step that simplifies the
structure of KB byflatteningit to a knowledge baseLAT(KB). This is achieved by transforming
KB into negation normal form and exhaustively applying thkofving transformation rules:

e Select an outermost occurrence@if).D in KB, such thatQ € {3,V,<n,>n} andD is a non-
atomic concept.

e Substitute this occurrence witpU.F whereF is a fresh concept name (i.e., one not occurring in
the knowledge base).

e If O €{3,V,>n}, add=F u D to the knowledge base.

e If O = <naddNNF(=D) u F to the knowledge base.

Obviously, this procedure terminates, yielding a flat krenige bas&LAT(KB) all TBox axioms

of which arer, L-expressions over formulae of the form L, A, =A, or QU.A with A an atomic

concept name. Flattening is known to be a satisfiabilitys@ngng transformation; we include the

proof for the sake of self-containedness.

Proposition 2.3. For every SHIQbs knowledge bas&B, we find thatKB and FLAT(KB) are
equisatisfiable.

Proof. We first prove inductively that every model BEAT(KB) is a model of KB. Let KB be an
intermediate knowledge base and let’KBe the result of applying one single substitution step to
KB’ as described in the above procedure. We now show that anyl Mad&B"’ is a model of KB.
Let QU.D be the concept expression substituted irf KiBote that after every substitution step, the
knowledge base is still in negation normal form. Thus, wethaeQU.D occurs outside the scope
of any negation or quantifier in a KBxiomE’, and the same is the case U.F in the respective
KB’ axiomE” obtained after the substitution. Hence, if we show tgal.F)? < (QU.D), we can
conclude thaE””? c E’X. FromI being a model of KB and therefor€e”! = A?, we would then
easily derive thaE’l = A’ and hence find thaf = KB’, as all other axioms from KBare trivially
satisfied due to their presence in KB
It remains to show@U.F)? c (QU.D)?. To show this, consider some arbitraiye (QU.F)?. We
distinguish various cases:
° Q = 2N
Then there are distinct individuads, . . ., 6, € AL with (6,6;) € UL ands; e F{ for1 <i < n.
Since—F L D € KB”, we havel E —F u D, and thereforg; € D for all then distincts;. Thus
5 e (=nUF).
e O =xn
Then the number of individuals € A? with (5,6’) € UZ andé’ € FZ is not greater tham.
SinceNNF(-=D) LU F € KB”, we knowD? c FZ. Thus, also the number of individuass € A?
with (6,¢8”) € UZ and¢’ € D’ cannot be greater tham leading to the conclusiofi e (<n U.D)~.
Hence, we havesh U.F)! ¢ (<nU.D)’.
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The arguments foD = 3 andQ = V are very similar, since these cases can be treate@:liké: F
and<0U.—F, respectively. Thus we obtaihe (QU.D)? in each case as required.

For the other direction of the claim, note that every maflef KB can be transformed into a model
J of FLAT(KB) by following the flattening process described abovet KB” result from KB by
substitutingQU.D by QU.F and adding the respective axiom. Furthermore febe a model of
KB’. Now we construct the interpretatidi’ as follows:FZ” := (QU.D)?" and for all other concept
and role namedl we setN?” := N?". ThenZ” is a model of KB'. O

3. Bubing MobeLs From DomiNo SeTs

In this section, we introduce the notion of a setlominoedor a givenALCIb TBox. Rules (and
thus ABox axioms) will be incorporated in Sectioh 5 later értuitively, a domino abstractly rep-
resents two individuals in aflLCZb interpretation, reflecting their satisfied concepts andualut
role relationships. Thereby, dominoes are conceptualty sinilar to the concept of 2-types, as
used in investigations on two-variable fragments of firsteo logic, e.g., by Gradel etlal. (1997).
We will see that suitable sets of such two-element piecégsuo reconstruct models ALCIb,
which also reveals certain model-theoretic propertiefisfiitot so common DL. In particular, every
satisfiableALCIb TBox admits tree-shaped models. This result is rather arbglyzt of our main
goal of decomposing models into unstructured sets of looatido components, but it explains
why our below constructions have some similarity with comrapproaches of showing tree-model
properties by unraveling models.

After introducing the basics of our domino representatior, present an algorithm for deciding
satisfiability of anALCIb terminology based on sets of dominoes.

3.1. From Interpretations to Dominoes. We now introduce the basic notion of a domino set, and
its relationship to interpretations. Given a DL with contsep and rolesk, adominooverC c C

is an arbitrary triple(A, R, B), whereA,B € € andR C R. In the following, we will always
assume a fixed language and refer to dominoes over that igaguiy. We now formalize the idea
of deconstructing an interpretation into a set of dominoes.

Definition 3.1. Given an interpretatiod = (A?,-Y), and a se€ c C of concept expressions, the
domino projectiorof 7 w.r.t. C, denoted byre(Z) is the set that contains, for @lls’ € A?, the triple
(A, R, B) with

A={CeC|seCl), R={ReR|({§eR), B={CeC|d eCl}

It is easy to see that domino projections do not faithfullgresent the structure of the interpretation
that they were constructed from. But, as we will see belownido projections capture enough
information to reconstruct models of a TB@x as long a£ is chosen to contain at leaB(T). For
this purpose, we introduce the inverse construction ofmétations from arbitrary domino sets.

Definition 3.2. Given a sefD of dominoes, the inducedomino interpretation (D) = (A, ) is
defined as follows:

(1) A consists of all nonempty finite words ovEr where, for each pair of subsequent letters
(A, R, BYand(A’, R’, B’Y in a word, we havé = A’.

(2) For awordo = (A1, R1, A2){(Az, R, Az) ... (Ai_1, Ri_1, A;) and a concept nam& € Nc, we
define tailg) := A; and setr € AL iff A e tail(o).
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(3) For arole nam® € Ng, we set(oq, 02) € RY if
o2 =01(A,R,BywithRe R or o1 =02A,R,B)with Inv(R) € R.

We can now show that certain domino projections contain gindauformation to reconstruct models
of a TBox.

Proposition 3.3. Consider a se? C C of concept expressions, and an interpretati@n and let
K = I(me(J)) denote the induced domino interpretation of the dominogutipn of 7 w.r.t. C.
Then, for anyALCIb concept expression €C with P(C) C €, we have thaff E C iff K E C.
Especially, for anyALC1b TBoxT, we haveJ k T iff I (rp(J)) E 7.

Proof. Consider som€ € C as in the claim. We first show the following: given affyindividual

s and K-individual o such that tail¢) = {D € € | § € DJ}, we find thate € CX iff 5 € C7.

Clearly, the overall claim follows from that statement @sthe observation that a suitalies A7

must exist for all- € AX and vice versa. We proceed by induction over the structuf®, obting

thatP(C) c € impliesP(D) c C for any subconcepd of C.

The base cas€ € Nc is immediately satisfied by our assumption on the relatignehs and o,

sinceC € P(C). For the induction step, we first note that the c@se {T, L} is also trivial. For

C=-DandC =DnD’" aswellasxC = D u D’, the claim follows immediately from the induction

hypothesis foD andD’.

Next consider the cageé = JU.D, and assume that e C7. Hence there is som& € AJ such

that(s,6’) € UJ and¢’ € DJ. Then the paiKs, &’y generates a domingd, R, B) andAX contains

o’ = o(A,R,B). (5,6 € UT impliesR r U (by definition of- and due to the fact that contains

exactly thoseR € R with (5,6”) € RY), and hencéo, o) € UK. Applying the induction hypothesis

to D, we concluder’ € D. Now o € C* follows from the construction ok

For the converse, assume timate CX. Hence there is some’ € AX such thato, o’) € UX and

o’ € DX, By the definition ofX, there are two possible cases:

e o/ = o(tail(o), R, tail(c”)) andR + U: Consider the twgy-individuals(§’, 8”’) generating the
domino tail(c), R, tail(c”)). Fromo’ € DX and the induction hypothesis, we obtaih € DJ.
Together withk¢”, 5"y € U this impliess’ € C7. SinceC = 3U.D € €, we also have ¢ tail(o)
and thuss € C7 as claimed.

e o = o/(tail(0”), R, tail(o)) and Inv(R) + U: This case is similar to the first case, merely exchang-
ing the order of¢’, 6"y and using InvR) instead ofR.

Finally, the cas& = YU.D is dual to the cas€ = 3U.D, and we will omit the repeated argument.
Note, however, that this case does not follow from the seimaquivalence ofU.D and-3U.-D,
since the proof hinges upon the fact thdd is contained ir€ which is not given directly. ]

3.2. Constructing Domino Sets. As shown in the previous section, the domino projection of a
model of anALCIb TBox can contain enough information for reconstructing aleio This ob-
servation can be the basis for designing an algorithm theitlde TBox satisfiability. Usually (es-
pecially in tableau-based algorithms), checking satigfiplamounts to the attempt to construct a
(representation of a) model. As we have seen, in our cas#iitesIto try to construct just a model’s
domino projection. If this can be done, we know that therensodel, if not, there is none.

In what follows, we first describe the iterative construetad such a domino set from a given TBox,
and then show that it is indeed a decision procedure for TRGxf@bility.
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Algorithm 1 Computing the canonical domino sg¢ of a TBoxT

Input: T anALCIbTBox, C = P(FLAT(T))
Output: the canonical domino sé&ty of T

1: initialize Dg as the set of all dominogdl, R, B) over € satisfying:

2 for all C € FLAT(T), the GCI[ Ipcg DM [ 1pees "D ECisa tautolog@ (kb)

3 forall JU.Ae Cwith Ae B andR + U, we havedU.A e A, (ex)

4 for all YU.A € C with YU.A € A andR + U, we haveA € B. (uni)

5 1:=0

6: repeat

7. =i+l

8: determineD; as the set of all dominoggl, R, B) € D;_; satisfying:

9 for all JU.A € A, there is someéA, R’, B’ e Dij_1 with R’ + U andA e B, (delex)
10: forall YU.A e C\ A, there is somgA, R, B’) € Dj_1 with R’ + U butA ¢ B’, (deluni)
11 (B, Inv(R), A) € Dj_1. (sym)
12: until D; = Dj_1
13: Dy = Dj

14: return Dy

Algorithm [1 describes the construction of the canonical ihonsetDs of an ALCIb TBox 7.
Thereby, roughly speaking, conditidib ensures that all the concept padsand B of the con-
structed domino set abide by the axioms of the consideredkTBiwe conditionex guarantees that,
in every domino(A, R, B), the concept setl must contain all the existential concepts for which
R andB serve as witnesses. Converselgi makes sure that every universally quantified concept
recorded inA is appropriately propagated 1, given a suitabléR. Once enforced, the conditions
kb, ex, anduni remain valid even if the domino set is reduced further, héheg need to be taken
care of only at the beginning of the algorithm. In contralsg tonditionsdelex, deluni, andsym
may be invalidated again by removing dominoes from the ket they need to be applied in an
iterated way until a fixpoint is reached. Conditidelex removes all dominoes with the concept
setA if A contains an existential concept for which no appropriatérigss” domino (in the above
sense) can be found in the set. Likewideluni removes all dominoes with the concept geif A
doesnot contain a universal concept which should hold given all #raaining dominoes. Finally,
sym ensures that the domino set contains only dominoes that\dodéymmetric partner”, i.e.,
one that is created by swappirgwith B and inverting all ofR.

Given that every domingA, R, B) satisfiesA, B € € andR C R, and that botl® andR are linearly
bounded by the size df, Dg is exponential in the size of the TBox, hence the iterativietam

of dominoes must terminate after at most exponentially nstegs. Below we will show that this
procedure is indeed sound and complete for checking TBdsfisdility. Before that, we will show

a canonicity result fobs.

Lemma 3.4. Consider anALCIb terminologyJ and an arbitrary model of J. Then the domino
projectionzprLary)(£) is contained irDy.

Proof. The claim is shown by a simple induction over the constractibD+. In the following,
we use&(A, R, B) to denote an arbitrary domino @b ar(7))(Z). For the base case, we must show
that mprLar(r)(Z) € Do. Let (A, R, B) to denote an arbitrary domino ab e ar(7))(Z) which was

’Please note that the formulaeRhAT(T) and inA C C are such that this can easily be checked by evaluating the
Boolean operators i€ as if A was a set of true propositional variables.
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generated from elements, &’). Then(A, R, B) satisfies conditiorkb, sinces € C’ for anyC €
FLAT(T). The conditionseexanduni are obviously satisfied.

For the induction step, assume thar ar)) (L) < Dj, and let(A, R, B) again denote an arbitrary
domino ofrpELary) () Which was generated from elemeki#so’).

e Fordelex note thatdU.A € A impliess € (3U.A)Y. Thus there is an individuai” such that
6,6y e UL ands” € AL. Clearly, the domino generated Kk, 6”) satisfies the conditions of
delex

e Fordeluni, note thatYU.A ¢ A impliesé ¢ (YU.A)?. Thus there is an individual” such that
6,6y € UL ands” ¢ AL. Clearly, the domino generated Kk, 6”) satisfies the conditions of
deluni.

e The condition ofsymfor (A, R, B) is clearly satisfied by the domino generated fr@if) 5).

Therefore, the considered domind, R, B) must be contained ik, as well. ]

Note that, in contrast to tableau procedures, the presafgedthm starts with a large set of domi-
noes and successively deletes undesired dominoes. Ingleet)l soon show that the constructed
domino set is the largest such set from which a domino modelbeaobtained. The algorithm
thus may seem to be of little practical use. In Sediion 4, wectlore refine the above algorithm to
employ Boolean functions as implicit representations ghofm sets, such that théheient compu-
tational methods of OBDDs can be exploited. In the meanthmoiever, domino sets will serve us
well for showing the required correctness properties.

An important property of domino interpretations constedcfrom canonical domino sets is that
the (semantic) concept membership of an individual carcallyi be (syntactically) read from the
domino it has been constructed of.

Lemma 3.5. Consider anALCIb TBoxT with nonempty canonical domino sBt, and define
@ := P(FLAT(7)) and T = (A%, -1) := 1(Dy). Then, for all Ce € ando € A?, we have thatr € C/
iff C € tail(o). Moreover,Z | FLAT(T).

Proof. First note that the domain df is nonempty wheneveédy is. Now if C € N¢ is an atomic
concept, the first claim follows directly from the definitiai 7. The remaining cases that may
occur inP(FLAT(7)) areC = JU.AandC = YU.A.

First consider the cas@ = JU.A, and assume that € C!. Thus there is~’ € AT with (o, 07) € UL
ando’ € AL. The construction of the domino model admits two possibsesa

e 0/ = o(tail(o), R, tail(c”’)) with R + U and A € tail(o”’). SinceDy C Dg, we find that
(tail(0), R, tail(c”)) satisfies conditiorx, and thusC € tail(o) as required.

e o = ¢’/(tail(0”), R, tail(o)) with Inv(R) + U andA e tail(c”). By conditionsym, Dy also contains
the domino(tail(co), Inv(R), tail(c”')), and we can again invokexto concludeC € tail(o).

For the other direction, assurai®.A € tail(o). ThusDs must contain some domin@l, R, tail(o)),

and bysym also the domindtail(o), Inv(R), A). By conditiondelex the latter implies thaDs

contains a domindtail(c), R’, A’). According todelex we find thato’ = o(tail(o’), R’, A’) is an

Z-individual such thato, o’y € UZ ando’ € AL. Thuso € (3U.A)Y as claimed.

For the second case, consid®e YU.A and assume that € C!. ThenDy contains some domino

(A, R, tail(0)), and bysym also the domindtail(c), Inv(R), A). For a contradiction, suppose that

YU.A ¢ tail(o). By conditiondeluni, the latter implies thabs contains a domingtail(o), R, A’).

According todeluni, we find thato’ = o(tail(c), R’,.A’) is anZ-individual such thato, o) € UL

ando’ ¢ D?. But theno ¢ (VU.A)?, yielding the required contradiction.

For the other direction, assume th&fl.A € tail(c"). According to the construction of the domino

model, there are two possible cases for elemehisith (o, o’y € UZ:
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e o’ = gtail(o), R, tail(o”)) with R + U. SinceDy C Dy, (tail(o), R, tail(c")) must satisfy condi-
tion uni, and thusA e tail(o”).

e o = o'(tail(o”), R, tail(c)) with Inv(R) + U. By conditionsym, Dy also contains the domino
(tail(o), Inv(R), tail(c”)), and we can again invokani to concludeA e tail(o”).

Thus, A € tail(c”) for all U-successors” of o, and hencer € (YU.A)! as claimed.

For the rest of the claim, note that any domigty R, B) must satisfy conditiokb. Using condition
sym, we conclude that for anyg- € AZ, the axiom[ Iperilry D C C is a tautology for allC €
FLAT(T). As shown abovey € D for all D € tail(c), and thusr € C. Hence every individual of
I is an instance of each conceptRfAT(T) as required. L]

The previous lemma shows soundness of our decision algurit@onversely, completeness is
shown by the following lemma.

Lemma 3.6. Consider anALCIb TBox7. If T is satisfiable, then its canonical domino &gt is
nonempty.

Proof. This is a straightforward consequence of Lenima 3.4: giverodein? of T, the domino
projectionztp(earry)(Z) is nonempty and (by Lemnia 3.4) containedin. HenceDg is nonempty.
L]

We now are ready to establish our main result on checking T&disfiability and the complexity
of the given algorithm:

Theorem 3.7. An ALCIb TBoxT is satisfiable ff its canonical domino sébs is honempty. Al-
gorithm[1 thus describes a decision procedure for satidftglof ALCTb TBoxes. Moreover, the
algorithm runs in exponential time and hence is worst-cgsémal.

Proof. The first proposition of the theorem is a direct consequen¢eimmal3.b, Proposition 2.3
(pagd b), and Lemmia3.6.

For worst-case optimality, recall th&H 7Qbs is ExeTimMe-complete (see Rudolph et/&l., 2008a,
where &pTmve-hardness already directly follows from the results by BicHi991). Now, consid-
ering the presented algorithm, we find that the&et P(FLAT(7)) is linearly bounded by the size
of T, whence the size of the set of all dominoes is exponentialiynded by|T|. Applying the
conditionskb, ex, anduni to obtainDg can be done by subsequently checking every domino, each
check taking at mogD(|T|) time, hence the overall time for that step is exponentiadiynded. Now,
consider the iterated application of telex deluni, andsym conditions. By the same argumenta-
tion as forkb, ex, anduni, one iteration takes exponential time. On the other harth @aration
step reduces the domino set by at least one domino (otherihiséermination criterion would be
satisfied) which gives us a bound of exponentially many steépslly note that exponentially many
exponentially long steps still yield a procedure that isralleexponentially bounded. L]

4, Sts As BooLeEan FuncTiONS

The algorithm of the previous section may seem to be of |gtketical use, since it requires com-
putations on an exponentially large set of dominoes. Theiredi computation steps, however, can
also be accomplished with an indirect representation ofpthssible dominoes based on Boolean
functions. Indeed, every propositional logic formula esmts a set of propositional interpretations
for which the function evaluates tnie. Using a suitable encoding, each propositional interficeta
can be understood as a domino, and a propositional formnleegaesent a domino set.
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As a representation of propositional formulae well-proireather contexts, we use binary decision
diagrams (BDDs). These data structures have been usedréseap complex Boolean functions
in model-checking (see, e.g., Burch etal., 1990). A padicaptimization of these structures are
ordered BDDs (OBDDs) that use a dynamic precedence ordewopbpitional variables to obtain
compressed representations. We provide a first introdu¢tcOBDDs below. A more detailed
exposition and further literature pointers are given bytHarnd Ryan((2000).

4.1. Boolean Functions and Operations.We first explain how sets can be represented by means
of Boolean functions. This will enable us, given a fixed firbise se§, to represent every family
of setsS c 25 by a single Boolean function.

A Boolean functioron a seWar of variables is a functio : 2¥&" — {true, falsg. The underlying
intuition is thate(V) computes the truth value of a Boolean formula based on thengstion that
exactly the variables of are set tdrue. A simple example are the functiofigrue] and [fals€],
that map every input térue or false respectively. Another example are so-caltdthracteristic
functionsof the form[[v], for somev € Var, which are defined gp/]|, (V) := trueiffve V.

Boolean functions over the same set of variables can be caulind modified in several ways.
Especially, there are the obvious Boolean operators foatimy conjunction, disjunction, and im-
plication. By slight abuse of notation, we will use the commgsyntactic) operator symbols A,
VvV, and— to also represent such (semantic) operators on Booleatidoac Given, e.g., Boolean
functionsy andy, we find that A ¥)(V) = trueiff (V) = true andy(V) = true. Note that the
result of the application of results in another Boolean function, and is not to be undedsas a
syntactic logical formula.

Another operation on Boolean functions is existential difiaation over a set of variableg <
Var, written as3dV.g for some functionp. Given an input seW C Var of variables, we define
AV.e)(W) = true iff there is some VC V such thatp(V’ U (W \ V)) = true. In other words,
there must be a way to set truth values of variable¥ such thaty evaluates tdrue. Universal
guantification is defined analogously, and we thus hMe = -3V.—¢ as usual. Mark that our use
of 3 andV overloads notation, and should not be confused with roleicéens in DL expressions.

4.2. Ordered Binary Decision Diagrams. Binary Decision Diagrams (BDDs), intuitively speak-
ing, are a generalization of decision trees that allowstferreuse of nodes. Structurally, BDDs are
directed acyclic graphs whose nodes are labeled by vasifilolen some seé¥ar. The only exception
are twoterminalnodes that are labeled tye andfalse respectively. Every non-terminal node has
two outgoing edges, corresponding to the two possible iraliles of the variable.

Definition 4.1. A BDD is a tupleO = (N, Nyoot, Nirue, Ntalse, lOW, high, Var, 1) where

N is a finite set callethodes

Nroot € N is called theroot node

Nyue, Niaise € N are called theerminal nodes

low, high : N\ {nye, Ntase} — N are twochild functionsassigning to every non-terminal node
alow and ahigh child node. Furthermore the graph obtained by iteratediggmn has to be
acyclic, i.e., for no noda exists a sequence of applicationdaf andhigh resulting inn again.

e Var is a finite set ofvariables

e 1: N\{nyue, Ntaise} — Var is thelabeling functionassigning to every non-terminal node a variable
from Var.
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OBDDs are a particular realization of BDDs where a certattedng is imposed on variables to
achieve moreféicient representations. We will not require to consider thekground of this opti-
mization in here. Every BDD based on a variable\&at= {X, ..., Xy} represents an-ary Boolean
functiony : 2¥&" — {true, falseg.

Definition 4.2. Given a BDDO = {N, Nyoot, Nirue, Ntalse, I0W, high, Var, 1) the Boolean functiopg :
2Var  (true, falsg is defined recursively as follows:

Yo = (pnroot Sonm,e = []:true]] Sonfalse = [[falsq]
$n = (_'[[’l(n)]])( A SD'OW(”)) v (lI/l(n)]]x A SDhigh(n)) forne N\ {Ngye, Nfaise}

In other words, the valug(V) for someV C Var is determined by traversing the BDD, starting from
the root node: at a node labeled witle Var, the evaluation proceeds with the node connected by
thehigh-edge ifv € V, and with the node connected by tle-edge otherwise. If a terminal node
is reached, its label is returned as a result.

BDDs for some Boolean formulas might be exponentially larggeneral (compared tivar|),
but often there is a representation which allows for BDDs ahageable size. Finding the opti-
mal representation is NP-complete, but heuristics haversho yield good approximate solutions
(Wegener, 2004). Hence (O)BDDs are often conceivedffadently compressed representations
of Boolean functions. In addition, many operations on Banl&nctions — such as the aforemen-
tioned negation, conjunction, disjunction, implicationweell as propositional quantification — can
be performed directly on the corresponding OBDDs by fastritigms.

4.3. Translating Dominos into Boolean Functions.To apply the above machinery to DL rea-
soning, consider a flattenedLCZb TBox T = FLAT(T). A set of propositional variablegar is
defined a&/ar := RU(P(7) x{1, 2}). We thus obtain a bijection between dominoes over th®EBt
and sets/ C Var given by(A, R, B) — (A x{1}) U R U (B x {2}). Hence, any Boolean function
overVar represents a domino set as the collection of all variabfsetwhich it evaluates ttrue.
We can use this observation to rephrase the constructi@ afi Algorithm [ into an equivalent
construction of a functiofi7].

We first represent DL concep@and role expressiond by characteristic Boolean functions over
Var as follows.

-[D] if C=-D =[V] if U=-V
cy:= ) IPIAIEI fC=DnNE Uy =4 VIAIWI ifuU=vnw
) IDIVIE] fC=DUE ) viviwg ifu=vVuw
[KC, 11, ifCeP(T) [u1, if UeR

We can now define a decision procedure based on Booleanduagcts displayed in Algorithfd 2.
This algorithm is an accurate translation of Algorithm 1 emthe intermediate Boolean functions
kP, o, QUi plelex pdeluni | 3™ represent domino sets containing all dominoes satisfyiegre-
spective conditions from Algorithinl 1. By computing theimgunction with each other (and, for
the latter three, with the Boolean function representirgdbmino set from the previous iteration)
we intersect the respective domino sets which results im fuecessive pruning as described in
Algorithm[1. The algorithm is a correct procedure for chagkconsistency ofALCIb TBoxes

as unsatisfiability ofl coincides with[T] = false Note that all necessary computation steps can
indeed be implemented algorithmically: Any Boolean fuoctcan be evaluated for a fixed variable

input V, and equality of two functions can (naively) be checked byparing the results for all
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Algorithm 2 Computing the boolean representat[dr] of the canonical domino sé&ty of a TBox

Input: T anALCIbTBox, C = P(FLAT(T))
Output: the canonical domino set &f, represented as Boolean functifif]

¢ = AlC]
_ CeT
2 ¢ = A\ VUC Dl A TUT - IKC, 21,
YU.CeP(T)
3 X = /\l[(C, 21, A [U] — [(AU.C, 1],
JU.CeP(T)
4: II‘I]]O — gokb A SDuni A SDex
5 1:=0
6: repeat
7. =i+l
8 gl = A\ [(AUC, DI, - AR U Ex{2).([TTi-1 A [UT A IKC, 21,)
' JU.CeP(T)
o e = A (YU.C, DT, - ~AR U Cx{2).(1Thi-1 A [UT A =I(C, 2
YU.CeP(T)

1. ¢¥™(V) := [Thi-2({(D. 1) [ (D.2) € V} U {Inv(R) | Re V} U {(D,2) | (D. 1) € V})

sym

11: [TTi = [Ti=1 A Sngelex/\ SD?eluni A
12: until [TT; = [TDi-1

13: [[‘.T]] = H:T]]I

14: return [TJ]

possible input sets (which are finitely many singe is finite). The algorithm terminates since the
sequence is decreasing w.tY. | [TT;(V) = true}, and since there are only finitely many Boolean
functions ovear.

Proposition 4.3. For any ALCZb TBoxJ and variable set \& Var as above, we find thgT (V) =
true iff V represents a domino ity as defined in Definitiopnl 1.

Proof. It is easy to see that the Boolean operations used in cotisgud] directly correspond to
the set operations in Definition 1, such tfag(V) = trueiff V represents a domino ibg. L]

All required operations and checks are provided by stan@&DD implementations, and thus can
be realized in practice.

In the remainder of this section, we illustrate the abovertlgm by an extended example to which
we will also come back to explain the later extensions of ttierence algorithm. Therefore, con-
sider the followingALC b knowledge bas&B.

PhDStudent C 3hasDiploma
Diploma Yhas .Graduate
Diplomar Graduate 1
Diplomalaureus PhDStuder(taureus

For now, we are only interested in the terminological axipthe consistency of which we would
like to establish. As a first transformation step, all TBoioaxs are transformed into the following

c
c
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(Graduate,2)
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Newmmmmm
1
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! ((Vhas ~Graduate,1)) \
! (3has.Diploma,l)
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1
1
1
1
1
1
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I
I
1
v
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[o]

Figure 1: OBDDs arising when processing the terminolog@f; following traditional BDD no-

tation, solid arrows indicatbigh successors, dashed arrows indidate successors, and
the topmost node is the root

universally valid concepts in negation normal form:
-PhDStudentl 3hasDiploma -Diplomau Yhas .Graduate -Diplomau -Graduate

The flattening step can be skipped since all concepts aradgiréat. Now the relevant concept
expressions for describing dominoes are given by the set

P(7) = {dhasDiploma Yhas .Graduate Diploma Graduate PhDStudent

We thus obtain the following s&tar of Boolean variables (althougfar is just a set, our presentation
follows the domino intuition):

(dhasDiploma 1) has | (dhasDiploma 2)
(VYhas .Graduate 1) | has | (VYhas .Graduate 2)

(Diploma, 1) (Diploma, 2)
(Graduate 1) (Graduate 2)
(PhDStudentl) (PhDStudent?)

We are now ready to construct the OBDDs as described. Fig(eftldisplays an OBDD corre-
sponding to the following Boolean function:

¢ := (-[(PhDStudentl)], v [(IhasDiploma 1)],)

A(=[(Diploma 1)], Vv [(VYhas .Graduate 1)],)
A(=[(Diploma 1)]|, v =[{Graduate 1)],)
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and Fig[1 (right) shows the OBDD representing the funciidil, obtained fromyX? by conjunc-
tively adding

> = —[(Diploma, 2)], v —[hag], v [(IhasDiploma 1)], and

it = -[{Vhas .Graduate 1)], v —[has], v [(Graduate 2)],.

Then, after the first iteration of the algorithm, we arriveaatOBDD representin§fg], which is
displayed in FiglR2. This OBDD turns out to be the final re§tij. The input TBox is derived to
be consistent since there is a path from the root node to 1.

(3 has.Diploma,l)
(PhDStudent,1) "

v

A

; v
(PhDStudent,2) (PhDStudent,2) (PhDStudent,2)
I
1 |

1
I
1
1
!
1

A4

Figure 2: Final OBDD obtained when processik@, using notation as in Fi@l 1; arrows to the 0
node have been omitted for better readability
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5. ReasoNING wiTH ABox AND DL-SAFE RuLESs via DisyuncTive DATALOG

The above algorithm does not yet take any assertional irdgtom about individuals into account,
nor does it cover DL-safe rules. The proof of Theofem 3.7 ésngpon the fact that the constructed
domino setDs induces a model of the terminolodgy, and Lemma_3]4 states that this is indeed
the greatestmodel in a certain sense. This provides some first intuitibthe problems arising
when ABoxes are to be added to the knowledge ba&€C b knowledge bases with ABoxes do
generally not have a greatest model.

We thus employdisjunctive Datalog(see_Eiter et all, 1997) as a paradigm that allows us to incor-
porate ABoxes into the reasoning process. The basic ideafrge a Datalog program that —
depending on two given individuaisandb — describes possible dominoes that may conaectd

b in models of the knowledge base. There might be various;arreilable such dominoes inftir-
ent models, but disjunctive Datalog supports such chormeest admits multiple minimal models.
As long as the knowledge base has some model, there is ableapbssible domino for every pair
of individuals (possibly without connecting roles) — orfiytiis is not the case, the Datalog program
will infer a contradiction. Another reason for choosingjditive Datalog is that it allows for the
straightforward incorporation of DL-safe rules.

We use the OBDD computed from the terminology as a kind ofgorapiled version of the relevant
terminological information. ABox information is then cadered as an incomplete specification of
dominoes that must be accepted by the OBDD, and the Datatmgygm simulates the OBDD’s
evaluation for each of those.

Definition 5.1. Consider an extende@LC7b knowledge base KB- (T, P), and an OBDDO =
(N, Nyo0t, Ntrue» Nralse, I0W, high, Var, A1) that represents the functi@i] as defined by Algorithrnl2. A
disjunctive Datalog progradD(KB) is defined as followsDD(KB) uses the following predicates:

a unary predicat&: for every concept expressi@e P(FLAT(T)),
a binary predicaté&y for every atomic roleR € N,

a binary predicat@, for every OBDD noden € N,

the equality predicate.

The constants ilDD(KB) are the individual names used i The disjunctive Datalog rules of
DD(KB) are defined as follows:

(1) For every DL-safe rul® — H from RB, DD(KB) contains the rule obtained fro® — H by
replacing allC(x) by S=(X) and allR(x, y) by Sk(x, ).
(2) DD(KB) contains rules— A, (X, y) andA, .. (X y) —.
(3) If ne N with A(n) = (C, 1) thenDD(KB) contains rules
S (X) A An(XY) = Anigh(n) (% Y) andAn(X, y) — Agwn)(X,Y) V S(X).
(4) If ne N with A(n) = (C, 2) thenDD(KB) contains rules
(V) A An(X,Y) = Anighn) (%, Y) andAn(X, Y) = Aown)(X.Y) V (V)
(5) If ne N with A(n) = Rfor someR € Ng thenDD(KB) contains rules
SR Y) A An(XY) = Anighn) (X, Y) andAn(X, ) = Aown) (X%, Y) V SR(X, ).
(6) If ne N with A(n) = R~ for someR € N thenDD(KB) contains rules

SR(Y, ) A An(X,Y) = Anighn) (X, Y) @andAn(X, ) = Aown) (X%, Y) V KR(Y, X).
Note that the arity of predicates DD(KB) is bounded by 2. Hence, the number of ground atoms

is quadratic with respect to the number of constants (iddai names), whence the worst-case
complexity for satisfiability checking is NP w.r.t. the nuertof individuals (and especially w.r.t.

8Note that we use disjunctive Datalog with equality. Howeesery disjunctive Datalog program with equality can
be reduced to one without equality in linear time, as equalin be axiomatized (see, elg., Fitting, 1996).
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the number of facts), as opposed to thexiWEme complexity of disjunctive Datalog in general
(Dantsin et al., 2001). Note that, of courdaD(KB) may still be exponential in the size of KB
in the worst caseDD(KB) is linear in the size of the underlying OBDD which in tummay have
exponential size compared to the set of propositional blgaused in the represented Boolean
functions. Finally the number of these variables is line&dunded by the size of KB. It remains
to show the correctness of the Datalog translation.

Lemma 5.2. Given an extendeddLCZb knowledge baskB such that/ is a model oKB, there
is a modelJ of DD(KB) such that

e TEC@IFT E &(a),

e I ER(@Db)ifT E S(ab), and

e JEa~bifyEaxb.
forany ab e N;, C € N¢, and Re Ng.

Proof. Let KB = (7, P). We define an interpretatiofil of DD(KB). The domain ofJ contains

the named individuals fronf, i.e., A7 = {a’ | a € N,}. For individualsa, we seta’ = a’. The

interpretation of predicate symbols is now defined as falgnote thal‘Ah7 is defined inductively

on the path length fromyo; to N):

eseiffseCt

o (61,82) € Y iff (61,82) € RY

o (61,62) € A7 forall 61,6, € AT

o (61,82) € AJ for n # Ny if there is a nodeY such thakss, 62) € A, and one of the following
is the case:

A = (C, i), for somei € {1, 2}, andn = low(n’) ands; ¢ C*

A() = (C, i), for somei € {1, 2}, andn = high(r’) ands; € C*

A() = Randn = low(n’) and(d, 62) ¢ RY

A(n) = Randn = high(n’) and(1, 6,) € RY

Mark that, in the last two itemdR is any role expression froMar, i.e., a role name or its inverse.

Also note that due to the acyclicity @, the interpretation of thé\-predicates is indeed well-

defined. We now show thaf is a model ofDD(KB). To this end, first note that the extensions of

predicatess: and < in J were defined to coincide with the extensiongodnd R on the named

individuals of7. Sincer satisfiesP, all rules introduced in iteni.{1) of Definitidn 5.1 are sagsfby

J. The restriction of DL-safe rules to named individuals cerdiscarded here sin¢e’ contains

only named individuals from?.

Similarly, we find that the rules of casés (3)-(6) are satisfig.7. Consider the first rule of{3),

S(X) A An(X,Y) = Anighm (% Y), and assume thai € SZ and(d1,62) € AY. Thuss; € CZ. Using

the preconditions of {3) and the definition g%, we conclude tha{sy, 6») € Aﬁgh(n). The second

rule of case[(3) covers the analogous negative case. Alt otlees can be treated similarly.

Finally, for case[(R), we need to show tt&f,_ = 0. For that, we first explicate the correspondence

between domain elements #fand sets of variables @. Given element$y,5, € AL we define

V5.6, = {(C,n) | C € P(FLAT(T)),6n € CT} U {R| (51, 52) € RY}, the set of variables corresponding

to theZ-domino betweer; andds,.

Now A _ = 0 clearly is a consequence of the following claim: for&lls, € A7 and alln € N,

we find tha(61, 52) € A, impliesen(Vs,.s,) = true (using the notation of Definition 4.2). The proof

proceeds by induction. For the case= Ny, we find thate,,, = [T]. SinceVy, s, represents a

domino of7, the claim thus follows by combining Proposition14.3 and lneai3.4.
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For the induction step, letbe a node such théd,, 6,) € A, follows from the inductive definition of
J based on some predecessor noder which the claim has already been established. Notathat
may not be unique. The cases in the definitiogfofust be considered individually. Thus assume
n’, n, ando, satisfy the first case, and th@t, 62) € A,. By induction hypothesispy (Vs, 5,) = true,
and by Definitiori 4.R the given case yieldg(Vs, s,) = true as well. The other cases are similat.

Lemma 5.3. Given anALCIb knowledge baskB such that{J is a model oDD(KB), there is a
modelf of KB such that

e TEC@IFT E &(a),

e I ER@Db)iff T F S b), and

e ITEaxbifgJ Ea=xb,
forany ab e N;, C € N¢, and Re Ng.

Proof. Let KB = (T,P). We construct an interpretatiah whose domaim’ consists of all se-
guences starting with an individual name followed by a (fid¢sempty) sequence of dominoes
from Dy such that, for every- € AZ,

e if o begins witha({A, R, BY, then{C | C € P(FLAT(7)),a” ¢ %} = A, and

e if o contains subsequent letterd, R, B) and(A’, R’, B"), thenB = A’.

For a sequence = a{A1, Ry, Ax){( Az, Ro, Az) ... (Ai_1, Ri_1, Ai), we define tail§) := A;j, whereas
for ac = a we define tail¢) := {C | C € P(FLAT(7)),a” e %}. Now the mappings of are
defined as follows:

e forae N, we havea! = a,
e for A e N¢, we haver € AL iff A e tail(o),
e for Re Ng, we have(o1, o2) € R? if one of the following holds

— o1=aeN;andoz = be N; and(a by € 8, or

— 02 =01(A, R, BywithRe R, or

— 01 = 02(A, R, B) with Inv(R) € R.
Thus, intuitively, I is constructed by extracting the named individuals as visglirtconcept (and
mutual role) memberships froff, and appending an appropriate domino-constructed treelmod
to each of those named individuals. We proceed by showirtg/timindeed a model of KB.
First note that the definition af ensures that, for all individual namasb € N,, we indeed have
TEC@ITT ESc(@), I ER(@Db)iff 7 E Sr(a,b),ands £ a~ biff 7 £ a~ b. Therefore, the
validity of the rules introduced via cadd (1) ensures fhata model ofp.
For showing that the TBox is also satisfied, we begin with tileWing auxiliary observation: for
every two individual names, b € Ny, andRa = {R| (@7,b7) € S} U {Inv(R) | (b7, a”) € )},
the domino(tail(a), Rap, tail(b)) is contained irDs (Claim 1). Using Propositio 413, it shices to
show that the Boolean functidiv] if applied toVa, = {tail(a) x {1} U Rap U tail(b) x {2}} yields
true. Since[[T] = ¢n,,, this is obtained by showing the following: for amyb € N, we find
that(a”,b7) € A7 implies pn(Vap) = true. Indeed, f) follows since we havea”,b”) e A7
due to the first rule of[{2) in Definition 5.1. We proceed by iatilon, starting at the leafs of the
OBDD. The cas€a,b) € Aﬁtme is immediate, anda, b) € Aﬁmse is excluded by the second rule of
(@). For the induction step, consider nodes’ € N such that eithei(n) € Vap andn’ = high(n),
or A(n) ¢ Vap andn’ = low(n). We assume thae”,b”) € A7, and, by induction, that the claim
holds forry. If A, = (C, 1), then one of the rules of casé (3) appliesfoandb” . In both cases, we
can infer(a’,b7) e A}? and hencepy (Vap) = true. Together with the assumptions for this case,
Definition[4.2 impliespn(Vayp) = true, as required. The other cases are analogous. This shdws (
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Now we can proceed to show that all individualsZoére contained in the extension of each concept

expression oFLAT(T). To this end, we first show thate C’ iff C < tail(c") for all C € P(FLAT(T)).

If C € Nc is atomic, this follows directly from the definition df. The remaining cases that may

occur inP(FLAT(T)) areC = JU.AandC = YU.A.

First consider the cas@ = JU.A and assume that € CZ. Thus there is~’ € AL with (o, 0”) € UL

ando’ € AL, The construction of the domino model admits three possibées:

e 0,07 € Ny andR,, + U andA € tail(o’). Now by (i), the domino(tail(c), Ry, tail(c”))
satisfies conditiomx of Algorithm[d, and thu< € tail(o) as required.

e o/ = o(tail(o), R, tail(c”’)) with R + U and A € tail(o”’). SinceDy C Dg, we find that
(tail(0), R, tail(o”)) satisfies conditiorx, and thusC € tail(o) as required.

e o = ¢/(tail(c”), R, tail(o)) with Inv(R) + U andA € tail(o”). By conditionsym, Dy contains the
domino(tail(co), Inv(R), tail(c”')), and again we usex to concludeC e tail(o).

For the converse, assume thild.A € tail(o). SoDg contains a domindgA, R, tail(o)). This is

obvious if the sequence ends with a domino. I = a € Ny, then it follows by applying §) to

a with the first individual being arbitrary. Bgym Dy also contains the domingail(c-), R, A). By

conditiondelex the latter implies thaby contains a domingtail(c), R’, A’) such thatR’ + U and

Ac A'. Thuso’ = otail(c), R, A’Y is anI-individual such thato, o’y € U? ando’ € A?, and

we obtaino € (3U.A)! as claimed.

For the second case, consider= YU.A and assume that € C{. As above, we find thabs

contains some domingA, R, tail(o)), where {) is needed if- € N;. By sym we find a domino

(tail(o), R, A). For a contradiction, suppose thét.A ¢ tail(c). By conditiondeluni, the latter

implies thatDs contains a domindtail(o), R’, A’) such thatR’ + U andA ¢ A’. Thuso’ =

o(tail(c), R’, A’y is an I-individual such thato, o’y € U? ando’ ¢ AL, But theno ¢ (YU.A),

which is the required contradiction.

For the other direction, assume thét.A € tail(o). According to the construction of, for all

elementsr’ with (o, ¢’) € U7, there are three possible cases:

e 0,0’ € Ny andR,, + U. Now by (), the domingtail(o), R, tail(c”)) satisfies conditiomni,
whenceA € tail(o”).

e o’ = g(tail(o), R, tail(c”)) with R + U. SinceDy C Dy, (tail(o), R, tail(c")) must satisfy condi-
tion uni, and thusA € tail(o”).

e o = o/(tail(0”), R, tail(o)) with Inv(R) + U. By conditionsym, Dy also contains the domino
(tail(o), Inv(R), tail(c”)), and we can again usmi to concludeA e tail(c”).

Thus, A € tail(c”) for all U-successors” of o, and hencer € (YU.A)! as claimed.

To finish the proof, note that any domirdl, R, B) € Dy satisfies conditiorkb. Using sym, we

have that for anyr € A?, the axiom |peiir) D E Cis a tautology for allC € FLAT(T). As shown

above,o € DY for all D € tail(c), and thuss € C£. Hence every individual of is an instance of

each concept dfLAT(7) as required. L]

Lemmag5.R and 5.3 give rise to the following theorem whicisties the technical development of
this section by showing th&iD(KB) faithfully captures both positive and negative growuhclu-
sions of KB, and in particular th@D(KB) and KB are equisatisfiable.

Theorem 5.4. For every extendedd £LCIb knowledge baskB hold
KB andDD(KB) are equisatisfiable,

KB [ C(a) iff DD(KB) [ &(a),

KB E R(a, b) iff DD(KB) E Sk(a, b), and

KB Ea=~bifDD(KB) E a~ b,
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forany ab e N;, C € N¢, and Re Nr.

Proof. Immediate from Lemmga®%.2 and Lemimal5.3. O

Coming back to our example knowledge bas® from Sectior#, the corresponding disjunctive
Datalog progranDD(XB) contains 70 rules: two rules for each of the 33 labeled néaes the
OBDD displayed in Fid. 2, the two rules A, (X y) andA,, .. (X Y) — as well as the two rules
Siploma(laureuy and— Sphpstudertlaureus introduced by conceiving the two ABox statements as
DL-safe rules and translating them accordingly. The pnogians out to be unsatisfiable, witnessed
by the unsatisfiable subprogram displayed in Eig. 3.

- Siploma(laureuy —  Sphpstuderklaureuy
- Ao(XY)
Ao(X,y) A SHhasDipIoma(x) - As(Xy) Ao(Xy) = Au(xy) Vv SEhasDiploma(x)
A1(X,Y) A SphpstuderkX) =  Avaise(X. Y)
As(X,Y) A Syhas Graduatdy) = Ao(X,Y) As(x,y) =  As(XY) V Sihas Graduatdy)
Ag(X,Y) A Sgraduatdy) —  A13(X.Y) Ag(X.Y) = A12(XY) V Seraduatdy)
Ao(X,Y) A Sgraduatdy) —  A13(XY) Ag(X,y) = A1s(XY) V Seraduatdy)

A12(X, Y) A Spiploma(y) =  Ataise(X, )
A13(X, Y) A Spiploma(y) =  Ataise(X, )
Ags(X,Y) A SEIhasDiploma(Y) - Aaise(XY) Ags(XY) = Azo(X.Y) Vv SEIhasDiploma(Y)
A20(X,Y) A SphpstudertY) —  Avaise(X. Y)
Avaise(X, y) —

Figure 3: Unsatisfiable subprogramDb(XB) witnessing unsatisfiability akB

6. PoLyNOMIAL TRANSFORMATION FROM SH T Qb 10 ALCIb

In this section, we present a stepwise satisfiability-preisg transformation from the description
logic SHIQbs to the more restrictedALCZb. This transformation is necessary as our type-
elimination method applies directly only to the latter.

6.1. Unravelings. For our further considerations, we will use a well-known middansformation
technique which will come handy for showing equisatisfibibf knowledge base transformations
introduced later on (for an introductory account on unriaggl in a DL setting cf., e.g.. Rudolph
(2011)). Essentially, the transformation takes an amyitnaodel of aS7H 7 Qbs knowledge base and
converts it into a model that is “tree-like”. We start wittnse preliminary definitions. The first one
exploits that role subsumption on non-simple roles can lo&ddd by an easy syntactic check that
takes only role hierarchy axioms into account.

Definition 6.1. Based on a fixe@H 7 Qbs knowledge base KB, we defing as the smallest binary
relation on the non-simple atomic rolBg such that:

e RLC* Rfor every atomic roleR,

e RC* Sand InvR) C* Inv(S) for every RBox axionRLC S, and

e RC* T whenevelRC* S andS C* T for some atomic rolé.

Furthermore, we writR —* S whenevelRC* S andS Z* R.
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The next definition introduces a standard model transfaamagchnique that is often used to show
variants of the tree model property of a logic. We adopt tHenden of Glimm et al. (2007).

Definition 6.2. Let KB be a consistent extendet¥{ 7 Qbs knowledge base, and I&t= (A, 1) be

a model for KB.

The unravelingof 7 is an interpretation that is obtained frafmas follows. We define the set
S ¢ (AY)* of sequenceto be the smallest set such that

e for everya e Ny, a is a sequence;
e 51---0n - Ony1 IS @ Sequence, if

— 01---6p IS @ sequence,

— diz1 #oigforalli=2,...,n,

— (6n, Onr1) € R! for someR € Ng.
Foreachr = 61 --- 6, € S, setlast(o) := 6,. Now, we define the unraveling @fas the interpretation
J =(AJ,-Jywith A7 = S and we define the interpretation of concept and role namesllas/é
(whereo, o’ € A7 are arbitrary sequencesA¥):

(a) for eachae N, seta” = a’;

(b) for each concept name Nc, seto € A7 iff last(c) € AL;

(c) for each role namR € Ng, set(c, o) € R7 iff
e o’ = o6 for somes € AT and(last(c), last(c”)) € R or
e o = ¢’6 for somes € AT and(last(c), last(c”)) € R or
e o=al, o’ =b! forsomea, b e N, and(al,b’) e RL.

Unraveling a model of an extende¥{H 7 Qbs knowledge base results in an interpretation that still
satisfies most of the knowledge base’s axioms, except fositraity axioms. The following defini-
tion provides a “repair strategy” for unravelings such thigb the transitivity conditions are again
satisfied. The presented definition is inspired by a simifer oy Motik (2005).

Definition 6.3. Given an interpretatiod and a knowledge base KB, we define twenpletionof I

with respect to KB as the new interpretatigh= (A7, -7 as follows:

o AT = AT,

o & == al foreveryacN;,

o A7 := Al for everyA € Nc,

o for all simple rolesR, we setR” := R/,

o for all non-simple roleRR, RY is set to the transitive closure & if Tra(R) € KB, otherwise
R7 = R" U Usc R with Tra(s)eke or Tagnv(s)eka(S”)"> where 67)* denotes the transitive closure

of S7.

Having the above tools at hand, we are now ready to show thaveling and subsequently com-
pleting a model of an extended knowledge base will resultritodel. This correspondence will be
helpful for showing the completeness of the knowledge hasestormation steps introduced below.

Lemma 6.4. LetKB be an extende@H 7 Qbs knowledge base and I¢tbe a model oKB. More-

over, letJ be the unraveling of and letX be the completion Qf. Then the following hold:

(1) g satisfies all axioms dfB that are not transitivity axioms.

(2) For all sequences 1,0, ...,0n-1,0n With n> 3and{ci, oi;1) € RY for 1 <i < n, and where
01,0 € {a7 |lae N}andoy,...,on-1 ¢ {aj | a€ N}, we haver; = o andos = op_1.

(3) K is amodel oKB.
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Proof. For the first claim, we investigate all the possible axiomeg/pFirst, ag and.J coincide
w.r.t. concept and role memberships of all named indivislia¢., individualss for which o = a

for somea € N)), they satisfy the same DL-safe rules.

For role hierarchy axiomb C V with U,V restricted, suppose for a contradiction tjyatloes not
satisfyU C V, i.e., that there are two elementss’ € A7 such thato, o) € U7 but{o, o’y ¢ V7.

As U is restricted, either both- ando”’ are named individuals ar’ = o6 or o = ¢’6. Therefore
we know that(last(c"), last(c”")) € U but (last(c), last(c”)) ¢ VZ which would violateU C V and
hence, gives a contradiction.

Next, we consider TBox axioms (remember that we assume tbdme hormalized into axioms
T C C with C in negation normal form). By induction on the role depth, wi# show that for
every concepD it holds thato € D7 iff last(c") € D. The satisfaction of" C C in J then directly
follows viaA7 = {0 € AT | last(c) € AT} = {0 € AT | last(o) € CT} = CT.

As base case, note that fBr € N¢, the claim follows by definition, while fob = T andD = L
the claim trivially holds. For the induction steps, notettfinthe claimed correspondence trans-
fers immediately from concepts to their Boolean combinetiand (i) that for everyr € A7, the
functionlast(-) gives rise to an isomorphisgnbetween the neighborhood @fin 7 and the neigh-
borhood oflast(c) in 7. More preciselyy maps{c’ € AT | {(o,0’) € R7 for someR € R} to
{6 € AT | {last(c), &) € R for someR € R} such thato, o) € ST iff (last(c), p(c)) € S for all
rolesS € Ngr as well asr’ € EJ iff p(0”) € EZ for conceptsE that have a smaller role depth thBn
(by induction hypothesis). Thereby, the claimed corredpoie transfers to existential, universal,
and cardinality restrictions as well.

For the second claim, we observe that by the definition of thraueling, no individuat- = 61 . .. 6k
can be directly connected by some role to an individtda o7 ... 6] with 61 # 67 unlessk=1=1

in which case both individuals would be named by constractdn the other hand, every role chain
starting from some named individuabnd not containing any other named individual contains only
individuals of the forméw with w € (A?)*. Thus, we conclude that; = o,. Now, suppose
oo # on_1. By construction we have, = 016 ando_1 = ond’ = 016’ with § # ¢’. However,
then by construction, every role path fram to o,_; must containr-; which is named and hence
contradicts the assumption. Thereforge= o_1.

Considering the third claim, we easily find that all trangiyi axioms as well as role hierarchy
statements are satisfied by construction. For the TBox axidhe argumentation is similar to
the one used to prove the first claim but it has to be extendetthdyollowing observation: By
construction, for all new role instancés, o’y € RX \ R7 introduced by the completion, there is
already ao* with (o, c*) € RY such that(c, c*) € ST iff (o, 0’y € S’ for all rolesS € Ng as
well aso* € EY iff o € E7 for conceptsE. Therefore (and since non-simple roles are forbidden
in cardinality constraints) the concept extensions do hange iK' compared tQ7. Finally, the
DL-safe rules are valid: Due to the first claim they holdjn Then, they also hold ifK since, by
constructionX andJ coincide when restricted to named individuals. In ordee® the latter, note
thatJ also coincides witll w.r.t. named individuals and satisfies all transitivity axioms, thus the
completion does not introduce new role instances, as faa@®d individuals are concerned. [ ]

6.2. From SHIQbsto ALCHIQDb. As observed by Rudolph etlal. (2008a), a slight generaliza-
tion of results by Motik [(2006) yields that arfy/H 7 Qbs knowledge base KB can be transformed
into an equisatisfiablA LCH 7 Qb knowledge base. For the case of extended knowledge baises, th
transformation has to be adapted in order to correctly treagntailment of ground faci(a, b) for
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non-simple roleR via transitivity. We start by defining this modified transfation, whereby the
ground fact entailment is taken care of by appropriate Dfie-sales.

Definition 6.5. Let cl(KB) denote the smallest set of concept expressions where

NNF(=C u D) € cl(KB) for any TBox axiomC C D,

D e cl(KB) for every subexpressiob of some concepf € cl(KB),

NNF(-C) e cl(KB) for any<n RC € cl(KB),

¥S.C e cl(KB) wheneverTra(S) € KB andS C=* Rfor a roleRwith YR.C € cl(KB).

Finally, let®s(KB) denote the extended knowledge base obtained from KEimowing all transi-
tivity axioms Tra(R) and

¢ adding the axion¥R.C C YR.(VYRC) to KB wheneveivR.C € cl(KB),

¢ adding the axiomnd(RM R™).T E Selk to KB, whereSelf, is a fresh concept,

¢ adding the DL-safe ruleSelk(x) — R(x, X) andR(x, y), R(y, 2) — R(X, 2) to KB.

Note that the knowledge base translation define®gycan be done in polynomial time. We now
show that the defined transformation works as expected,ngalse of the model transformation
techniques established in the previous section. Parteqgiribof are adopted from Motik (2006).

Proposition 6.6. Let KB be an extended&H 7 Qbs knowledge base. ThefB and ®s(KB) are
equisatisfiable.

Proof. Obviously, every model” of KB is a model of®s(KB) if we additionally stipulateSelf, :=
{6146,6) € RE).

For the other direction, |eK be a model o®s(KB). Let now I be the unraveling oK and lety
be the completion of w.r.t. KB. As®g(KB) does not contain any transitivity statements, we know
by Lemmd6.4 (1) thaf is a model of®s(KB) as well.

As a direct consequence of the definition of the completiote that for all simple role¥ we have
VI = V7 (fact¥).

We now prove thaty is a model of KB by considering all axioms, starting with thBdx. Every
transitivity axiom of KB is obviously satisfied by the defioit of 7. Moreover, every role inclusion
V C W axiom is also satisfied:

If both V andW are Boolean role expressions (which by definition contaily simple roles) this
is a trivial consequence of). If V is a Boolean role expression akdis a non-simple role, this
follows from (f) and the fact that, by construction Gt we haveR! ¢ R7 for every non-simple role
R. As a remaining case, assume that bétandW are non-simple roles. W is not transitive, this
follows directly from the definition, otherwise we can camb it from the fact that the transitive
closure is a monotone operation w.r.t. set inclusion.

We proceed by examining the concept expressions cl(KB) and show via structural induction
thatC? c CJ. As base case, for every concept of the fokmor —A for A € Nc this claim follows
directly from the definition ofy. We proceed with the induction steps for all possible forrha o
complex concep€ (mark that allC € cl(KB) are in negation normal form):

o Clearly, if D! c DY andDZ c Dy by induction hypothesis, we can directly conclud® €1
D,)! c (D11 Dy)Y as well as D1 L D2)! € (D1 L Dy)Y.

e Likewise, as we have'’ c V7 for all simple role expressions and non-simple rofeand again
D! ¢ DY due to the induction hypothesis, we can conclugd¥.p)! c (3V.D)’ as well as
(>nV.D)! c (>nV.D)J.

o Now, consideiC = YV.D. If V is a simple role expression, we know thaf = VZ, whence we
can derive {V.D)? c (VV.D)7 from the induction hypothesis.
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It remains to consider the ca§e= VR.D for non-simple roleR. Assumeo ¢ (YR.D)’. If
there is nao’ with (o, 0’y € R7, theno e (YR.D)7 is trivially true. Now assume there are such
o”’. For each of them, we can distinguish two cases:

— (o, 0’y € RY, implying o € D and, via the induction hypothesis, € D7,
— (o, 0’) ¢ RL. Yet, by construction off, this means that there is a rdewith S C* R and

Tra(S) € KB and a sequence = o, . .., o = o’ With (o, oke1) € S forall 0 < k < n. Then

o € (YRD)! implieso € (¥S.D)?, and hencer; € DY. By Definition[6.5,05(KB) contains

the axiomvS.D C VS.(VS.D), and hencer; € (¥S.D)!. Continuing this simple induction, we

find thato € DY forallk=1,...,n includingop, = o”'.

So we can conclude that for all suct we haves”’ € DZ. Via the induction hypothesis follows
o € DJ and hence we can conclugec (YR.D)7.

e Finally, consideiC = <nRD and assume- € (<nRD)?. From the fact thaR must be simple
follows R = RY. Moreover, since botld andNNF(-D) are contained irl(KB) the induction
hypothesis give®7 = D. Those two facts together impty € (sn RD)?.

Now considering an arbitrary KB TBox axio®C D, we findNNF(-CuD)? = Af asT is a model
of KB. Moreover — by the correspondence just shown —we NNE(-C LI D) ¢ NNF(-C L D)7
and hence alsBNF(-C L D)7 = AT makingC C D an axiom satisfied iy

For showing that all DL-safe rules from KB are satisfied, wdl miove thatZ and.J coincide
on the satisfaction of all ground atoms — satisfaction of KByi then follows from satisfaction of
KB in I. By construction, this is obviously the case for all atomsh& shapea ~ b, C(a) and
R(a, b) for a,b € Nj, C € Nc andR € Ng simple. Moreover we have thgf  R(a, b) whenever
I E R(a,b). To settle the other direction, suppd3@on-simple and/ = R(a, b) but I £ R(a, b).
But then, there must be a role C* R that is declared transitive and satisfigs= S(a, b) but
I} S(a,b). Let us assume th& is a minimal such role w.r..*. Then, by construction, there
must be a sequen@ = o1, 09,...,0x 1,0k = b! with (oi,0i,1) € S?. This sequence can be
split into subsequences at elemeni{sfor which there is ao; € Ny, i.e., at named individuals,
leaving us with subsequences (i) of subsequent named dhuilso’, o, , or (ii) of the shapes/ =
Oi1,002s > Tin-1,Tin = OiZ+1 with i 2, ..., 0in-1 unnamed individuals. For case (ii), Lemmal6.4
(2) guarantees! = o', andoi, = opn1, which implieso/ € (3(Rn R).T)?. Then, due to
the according axionl(RM R).T C Self in ©5(KB), we obtaino! € Selff and by the DL-safe
rule Sel(X) — R(x, X) we have(o/,0/) € R’. Hence, we know thaR(q;, 0;+1) holds in I for
all our subsequence{...oﬂl. But then, a (possibly iterated) application of the DL-safk
R(x,¥) A R(y, 2 — R(X,2) also yields thaR(a, b) is valid in 7, contradicting our assumption. This
finishes the proof. ]

6.3. From ALCHIQbto ALCHIbS. We now show how any extended LCH I Qb knowledge
base KB can be transformed into an extende@CH 7b< knowledge bas® (KB). The diference
between the two DLs is that the latter does not allewiumber restrictions. This transformation
(as well as the one presented in Secftion 6.5) makes use obtbledh role constructors andiirs
conceptually and technically from another method for remgwualified number restrictions from
DLs described by DeGiacomo and Lenzerini (1994).

Given anALCH I Qb knowledge base KB, th&l LCH I'bs knowledge bas®. (KB) is obtained by
first flattening KB and then iteratively applying the follavg procedure t&LAT(KB), terminating

if no > restrictions are left:

e Choose an occurrence gh U.A in the knowledge base.
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e Substitute this occurrence BfR;. A ... M AR,.A, whereRy, ..., R, are fresh role names.
e Foreveryi € {1,...,n}, addR; C U to the knowledge base’s RBox.
e Forevery I<i < k < n, addvY(R; 1 Ry).L to the knowledge base.

Observe that this transformation can be done in polynorimad, tassuming a unary encoding of the
numbers. It remains to show that KB anél., (KB) are indeed equisatisfiable.

Lemma 6.7. LetKB be an extendetH LCH Qb knowledge base. Then we have that the extended
ALCHIbLS knowledge bas®.(KB) andKB are equisatisfiable.

Proof. First we prove that every model @ (KB) is a model of KB. We do so by an inductive
argument, showing that no additional models can be intredlirc any substitution step of the above
conversion procedure. Hence, assume’K8 an intermediate knowledge base that has a model
I, and that is obtained from KBby eliminating the occurrence @fn U.A as described above.
Considering KB, we find due to the KB axiomsY(R; 1 Ry).L that no two individualsy, ¢’ € A?

can be connected by more than one of the rélgs.., R,. In particular, this enforce§” # ¢,
whenever(s,6’) € Rf and(5,6”) € Rf for distinct R and R;. Now consider an arbitrary €

(ARi.AM...M3R,.A). This ensures the existence of individuais. . ., 5, with (6,6;) € R” and

5 € Al for 1 < i < n. By the above observation, all sushare pairwise distinct. Moreover,

the axiomsR, C U ensure(s, ;) € UZ for all i, hence we find tha € (>nU.A)Y. So we know

(AR1.ArM ... M 3R,.A)Y C (>nU.C)!. From the fact that both of those concept expressions occur

outside any negation or quantifier scope (as the transfaymatarts with a flattened knowledge

base and does not itself introduce such nestings) in axBfhge KB” andD’ € KB’ which are

equal up to the substituted occurrence, we can deriveDHatc DY, Then, fromD"”? = A

follows DY = AZ makingD’ valid in 7. Apart fromD’, all other axioms from KBcoincide with

those from KB and hence are naturally satisfied/inSo we find thatl is a model of KB.

At the end of our inductive chain, we finally arrive RitAT(KB) which is equisatisfiable to KB by

Propositior 2.8.

Second, we show th&t. (KB) has a model if KB has. By Propositién 2.3, satisfiabibfyKB entails

the existence of a model 6LAT(KB). Moreover, every model dfFLAT(KB) can be transformed to

a model of®.(KB), as we will show using the same inductive strategy avaliy doing iterated

model transformations following the syntactic knowledgesdo conversions. Again, assume’KB

is an intermediate knowledge base obtained from K§Beliminating the occurrence ofn U.A as
described above, and suppages a model of KB. Based onZ, we now (nondeterministically)
construct an interpretatiqff as follows:

o AT = AL,

e forallC e N¢, letCJ =<,

o foralSeNg\{R|1<i<n}letST =57,

o for everys € (>nU.A)!, choose pairwise distinet, . .., e with (5,¢’) € U7 ande’ € A? (their
existence being ensured b aforementioned concept membership) andiq%t:: {(6, ef) |6 €
(=nU.A)}.

Now, it is easy to see thdf satisfies all newly introduced axioms of the sha&e; m Ry).L, as the

ei‘s have been chosen to be distinct for evéryvioreover the axiom& C U are obviously satisfied

by construction. Finally, for ab € (>=n U.A)? the construction ensurése (AR AM ... M IR,.AY

witnessed by the respecti\eé. So we have¥nU.A)Y c (AR.AM ... JR,.AY. Now, again
exploiting the fact that both of those concept expressiamtzinin negation normalized universal
concept axiomd’ € KB’ andD” € KB” that are equal up to the substituted occurrence, we

can derive thaD’? c D””J. Then, fromD’? = Af follows D7 = AJ making D" valid in 7.
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Apart from D’ (and the newly introduced axioms considered above), adragltioms from KB
coincide with those from KBand hence are satisfied.if, as they do not depend on tRewhose
interpretations are the only ones changedysitompared tal. So we find thaty is a model of
KB”. ]

6.4. From ALCHIbS to ALCIbS. In the presence of restricted role expressions, role supsum
tion axioms can be easily transformed into TBox axioms, asstibsequent lemma shows. This
allows to dispense with role hierarchies#.CH b= thereby restricting it tcALCIbS.

Lemma 6.8. For any two restricted role expressions U and V, the RBoxraxibC V and the TBox
axiomVY(U n -V).L are equivalent.

Proof. By the semantics’ definitionl) T V holds in an interpretatiod” exactly if for every two
individualss, & with (5, 8”)y € U7 it also holds thats, 8’y € V2. This in turn is the case if and only if
there are n@, & with (,8’) € UZ but(s,8") ¢ V7 (the latter being expressible &55") € (=V)?).
This condition can be formulated ad (1 -V)? = 0, which is equivalent t&/(U r=V).L. []

Note thatU rm =V is restricted (hence an admissible role expression) wheghévs — this can be
seen from the fact thdt ¥ U implies® ¥ U n =V due to the definition of and the Boolean role
operatorm1. Consequently, for any extendelLCH 7bs knowledge base KB, leéd4 (KB) denote

the ALCIbS knowledge base obtained by substituting every RBox axibrz V by the TBox

axiomV¥(U 1 =V).L. The above lemma assures equivalence of KB @pdKB) (and hence also
their equisatisfiability). Obviously, this reduction camdone in linear time.

6.5. From ALCIbS to ALCIFb. The elimination of the< concept descriptions from an ex-
tendedALCIbs knowledge base is more intricate than the previously desdrtransformations.
Thus, to simplify our subsequent presentation, we assuateathBoolean role expressiots oc-
curring in concept expressions of the shapgeU.C are atomic, i.e.U € R. This can be easily
achieved by introducing a new role naiRg and substitutingsn U.C by <n Ry.C as well as adding
the two TBox axiom#/(U n -Ry).L and¥(=U n Ry).L (this ensures that the interpretationsbf
andRy always coincide).

To further make the presentation more conceivable, we sidadit into two steps: first we eliminate
concept expressions of the shapeRC merely leaving axioms of the forrdl R.T (also known
as role functionality statements) as the only occurren€esimber restrictions, hence obtaining an
ALCITF b knowledge basB.Then, in a second step discussed in the next section, wenelienall
occurrences of axioms of the shapeR.T.

Let KB an ALCIbs knowledge base. We obtain ttLCZF b knowledge bas® (KB) by first
flattening KB and then successively applying the followitgps (stopping when no further such
occurrence is left):

e Choose an occurrence of the shapeR A which is not a functionality axiork1R. T,

e substitute this occurrence YR M =Ry M ... M =Ry).~AwhereRy, ..., R, are fresh role names,
e foreveryi € {1,...,n}, addvVR;.A as well as<1R,.T to the knowledge base.

This transformation can clearly be done in polynomial timgain assuming a unary encoding of
the numben. We now show that this conversion yields an equisatisfiakieneled knowledge base.
Structurally, the proof is similar to that of Lemia.7.

9FoIIowing the notational convention, we ugeto indicate the modeling feature of role functionality.
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Lemma 6.9. Given an extended£CZb< knowledge baskB, the extendeddLCZF b knowledge
base®(KB) andKB are equisatisfiable.

Proof. KB andFLAT(KB) are equisatisfiable by Propositibn 2.3, so it remainsttow equisatisfia-

bility of FLAT(KB) and ®<(KB).

First, we prove that every model @f(KB) is a model of FLAT(KB). We do so in an inductive

way by showing that no additional models can be introduceahinsubstitution step of the above

conversion procedure. Hence, assume’K8an intermediate knowledge base with maflebnd
that is obtained from KBby eliminating the occurrence &h RA as described above. Now consider

an arbitrarys € (Y(Rm =Ry ... M1 =R,).=A)!. This ensures that whenever an individsak A’

satisfies(s, ¢’y € R and¢’ e A, it must additionally satisfys,d”) e R[ for onei € {1,...,n}.

However, it follows from the KB-axioms<1R,.T that there is at most one suéhfor eachR.

Thus, there can be at masindividualsé’ with (5,8’ € R andé’ € A. This impliess € (<snRA)..

So we have (R =Ry M ... 1M =R,).=A)Y ¢ (<nRA)’. Due to the flattened knowledge base

structure, both of those concept expressions occur outiselscope of any negation or quantifier

within axiomsD” € KB” andD’ € KB’ that are equal up to the substituted occurrence. Hence, we
can derive thaD””? ¢ D’Z. Then, fromD”? = A’ follows D’/ = AY makingD’ valid in 7. Apart

from D’, all other axioms from KBare contained in KB and hence are naturally satisfiedZinSo

we find that? is a model of KB as well.

Second, we show that every modelFafAT(KB) can be transformed to a model ®£ (KB). We use

the same induction strategy as above by doing iterated nr@ahsiformations following the syntactic

knowledge base conversions. Again, assumé iBan intermediate knowledge base obtained from

KB’ by eliminating the occurrence ofen RC as described above, and suppdse a model of

KB’. Based on/, we now (nondeterministically) construct an interpretatiy” as follows:

o AT = AL,

e forall C € Ng, letCY = CZ,

e forallSeNg\{R|1<i<n}letSy =57,

o for everys € (<NRA), let 6‘15 . elf be an exhaustive enumeration (with arbitrary but fixed
order) of all thoses € A with (6,¢) € Rf ande € AL. Therebys’s aforementioned concept
membership ensurds< n. Now, Iet&T = {{6, ef) | 6 € (SNRAY).

Now, it is easy to see tha satisfies all newly introduced axioms of the shafdeR,. T as every

6 has at most on&-successor (namelgf, if & € (<nRA), and none otherwise). Moreover, the

axiomsYR;.A are satisfied, as tlé have been chosen accordingly.

Finally for all § € (snRA)! the construction ensurese (Y(RM =Ry ... M =R,).~A)}J as by

construction, eaclr-successor ob that lies within the extension oA is contained ine‘{, .. .,elf

and therefore als&-successor of for somei. Now, again exploiting the fact that both of those
concept expressions occur in negation normalized univesaept axiomd’ € KB’ andD” €

KB” that are equal up to the substituted occurrence, we canedévatD’? ¢ D”J. Then, from

DY = Af follows D7 = AJ makingD” valid in J. Apart fromD” (and the newly introduced

axioms considered above), all other axioms from’Kdincide with those from KBand hence are

satisfied in7, as they do not depend on tRewhose interpretations are the only ones changed in

g compared tdf. So we find thaty is a model of KB'. O
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6.6. From ALCIFbto ALCIDh. Inthe sequel, we show how the role functionality axioms ef th
shape<1R. T can be eliminated from afi.LCI ¥ b knowledge base while still preserving equisat-
isfiability. Partially, the employed rewriting is the san®the one proposed fofiLCIF TBoxes
by[Calvanese et al. (1998), however, in the presence of ABmae needs to be done.
Essentially, the idea is to add axioms that enforce that veryefunctional roleR, any two R-
successors coincide with respect to their properties sspe in “relevant” DL role and concept
expressions. To this end, we consider the parts of a knowlbdge as defined in Sectidn 2 on page
[B. While it is not hard to see that the introduced axioms folfoom R's functionality, the other
direction (a Leibniz-style “identitas indiscernibiliungrgument) needs a closer look.

Taking an extendedALCI¥ b knowledge base KB, le®#(KB) denote the extendetHLCIb
knowledge base obtained from KB by removing every role fianetity axiom<1R.T and instead
adding

e YR-D LIVYRD for everyD € P(KB \ {« € KB | @ = <1R.T for someR € R}),

e Y(RMS).L UVY(RM=S).L for every atomic roles from KB, as well as

e the DL-safe ruleR(x,y),R(x,2) -y~ z

Clearly, this transformation can also be done in polynottimaé and space w.r.t. the size of KB.
Our goal is now to prove equisatisfiability of KB atl-(KB). The following lemma establishes
the easier direction of this correspondence.

Lemma 6.10. Any ALCIF b knowledge bas&B entails all axioms of theALC7b knowledge
base®#(KB), i.e. KB = O#(KB).

Proof. Let 4 be a model of KB. We need to show thét also satisfies the additional rules and
axioms introduced i®#(KB).

First letD be an arbitrary concept. Note théR.—D LI VR.D is equivalent to the GGIR.D C YR.D.
This is satisfied if, for any € A7, if § has anR-successor iD7, then allR-successors af are
in DJ. This is trivially satisfied ifs has at most onB-successor, which holds singe satisfies the
functionality axiom<1R. T € KB. Since we have shown the satisfaction for arbitrary cotsb,
this holds in particular for those fro(KB \ {a € KB | @ = <1R.T for someR € R}).

Second, letS be an atomic role. Mark that(Rm1 S).L 1 Y(RM =S).L is equivalent to the GCI
A(RMS).T C V(RN —S).L. This means that for anye A7, all R-successors are al§3successors
of it, whenever one of them is. Again, this is trivially séigsl asé has at most onB-successor.
Finally all newly introduced rules of the foriR(x,y),R(x,Z) — y =~ z are satisfied inJ as a
consequence of the functionality statements in KB. L]

The other direction for showing equisatisfiability, whicdmaunts to finding a model of KB given
one for®«(KB), is somewhat more intricate and requires some intefateadonsiderations.

Lemma 6.11. If KB is an:ALCI¥ b knowledge base withil R. T € KB then in every modeJ of
04 (KB) we find that(s, 61) € R7 and(d, 62) € R7 imply

e forallC e P(KB \ {a € KB | @ = <1R T for some Re R}), we haves; € C7 iff 5, € C7,

e forall S € Ng, we have(s, 61) € ST iff (6,62) € S7.

Proof. For the first proposition, assunde € C7. From(s,51) € R7 follows § € (AR.C)7. Due to
the®#(KB) axiom YR.-CUVR.C (being equivalent to the GAR.C C YR.C) follows § € (VR.C)7.
Since(s, 62) € R7, this impliess, € C7. The other direction follows by symmetry.

To show the second proposition, assu@ie) € S7. Since alsas, 1) € RY, we have(s, 61) €
R ST and hence € (A(RM'S).T)Y . From the®#(KB) axiom V(R S)..L U V(RM =S).L (which
is equivalent to the GCH(RM S).T = —=3(Rr =S).T) we concludes € (-3(Rm =S).T)7, in
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words: § has noR-successor that is not i&-successor. Thus, @8 5-) € R7, it must also hold that
(6,62) € ST. Again, the other direction follows by symmetry. []

In order to convert a model &#(KB) into one of KB, we will have to enforce role functional-
ity where needed by cautiously deleting individuals frora tiriginal model. Definitiofl 6.13 will
provide a method for this. To this end, some auxiliary ndioefined beforehand will come in
handy.

Definition 6.12. Let J be an interpretation, and I¢tbe the unraveling QfT For a domain ele-
mento € A’ and arR € R, we define the set d®-neighborof o in 7 by nb¥(0) := {¢” | (o, 0") €

R’}). Among theR-neighborswe distinguish betweesubordinate R—neighbormbsf(o-) = {00 |
(o,o6) € R} and thenon-subordinate R-neighborensub%(c) := nb%(o) \ sub(c).

Definition 6.13. Let J be an interpretation, and I¢tbe the unraveling off. Given an extended
ALCIFb knowledge base KB, let KB:= KB \ {# € KB | @ = <1R T forsomeR € R}, let
D := P(KB) and letS := {R| <1R T € KB}.

Then, an interpretatiofk” will be called KB-pruning of 7, if K can be constructed frod in the
following way: Let firstAg = AZ. Next, iteratively determing;,, from A; as follows:

e Select a word-length minimat from A; where there is ais € 8 for which nb?(o-) > 1and
sub?(c) > 0.

e If nonsub3(c) > 0, letA” = sub%(c), otherwise let\’ = sub%(c) \ {0} for an arbitrarily chosen
o’ € sub?(o-).
DeleteA’ from A; as well as alb™* having somer* € A’ as prefix.

Finally, let% be the limit of this processA¥ := My Ai and-X is the function? restricted toA .

Roughly speaking, any Kruning of 7 is (nondeterministically) constructed by deleting susplu
functional-role-successors. Mark that the tree-likecttrte of non-named individuals of the unrav-
eling is crucial in order to make the process well-defined.

Lemma 6.14. LetKB be an extendedHLCZ F b knowledge base, Igf be a model 06+ (KB) and
let 7 be an unraveling off. Then, anyKB-pruning K of 7 is a model oKB.

Proof. By construction, we know thaf is a model of®#(KB). Now, let K be a KB-pruning of
I. For showingK E KB, we divide KB into two sets, namely the set of role functiity axioms
{a € KB | « = <1R.T for someR € R} and all the remaining axioms, denoted by ‘KBnd show
K E KB*andK E {@ € KB | @ = <1R T for someR € R} separately.

We start by showingK £ KB*. To this end, we prove that, for ea€he P(KB*) and for every
individual o from %, we haves € CX exactly if o € C. Clearly, this statement extends to
concepts that are Boolean combinations of elements f@{B*), i.e., to all axioms in KB. We
omit this easy structural induction.
The claim forC € P(KB*) is shown by induction over the depth of role restriction<inand we
assume that is has already been shown for concepts of smadatepth. We consider three cases:
e CeNcU{T, L}

Then the coincidence follows directly from the constructad .
e C=3dUD

“=” ¢ e (AU.D)X means that there is &-individual o’ with (o, 0’y € UX ando’ € DX.

10Remember that by construction, the individualsZ/odire sequences of individuals gf. For better readability, we
will strictly use o — with possible subscripts — far-individuals and for J-individuals.
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Because of the construction & by pruning7, this means als¢o, o’y € U and by induction
hypothesis, we have’ € DY, ergoo € (3U.D)?.
“<” If o e (AU.D)?, there is anZ-individual o with (o, ¢’) € Uf ando’ € D’. In case
o’ is not deleted during the construction 4f, it proves (by using the induction hypothesis on
D) thato € (AU.D)X. Otherwise, it must have been deleted due to the existenaaather’-
individual o’ for with Lemmd®6.11l ensurdR e R | (0,0’ e R’} = {Re R | (o, 0”) € R'} and
(E € P(KB*) | 0" € Ef} = {E € P(KB*) | o’ € ET}. W.l.o.g.,0” does not get deleted in the
whole construction procedure. Yet, then tifeindividual o”” obviously provesr € (3U.D)X.,

e C=VYRD
“=" Assume the contrary, i.eq € (YU.D)X buto ¢ (YU.D)! which means that there is an
I-individual o with (o, 0’) € U buto’ ¢ D?. In cases’ has not been deleted during the
construction ofK, it disprovess € (YU.D)X (by invoking the induction hypothesis @) leading
to a contradiction. Otherwisey’ is deleted because of the existence of anothéndividual
o’ for with Lemmal6.1ll ensureR € R | (o,0”) € RI} = {(Re R | {0,0’) € R'} and
(E € P(KB*) | 0" € Ef} = {E € P(KB*) | o’ € ET}. W.l.o.g.,0” does not get deleted in the
whole construction procedure. Yet, then fieéndividual o’ obviously contradicts- € (3U.D)%.
“<” Assume the contrary, i.eq € (YU.D)! buto ¢ (YU.D)X. The latter means that there is a
K-individual o with (o, o’y € UK ando’ ¢ DX. Because of the construction @ by pruning
7, this means als¢r, o) € U? ando”’ ¢ D7, ergoo ¢ (YU.D)?, contradicting the assumption.

We proceed by showing that every rdRewith <1IRT € KB is functional in’K. Leto € AX
and leto1, o2 be twoR-successors af. We consider two cases: First, assume that az( and
oo = ag( for a;,ap € N;. Then, by construction of the unraveling we can derive thatg must be
anag € N; with o = ag‘ However, then, the DL-safe rul(x,y), R(X,2) — y =~ z from ©+(KB)
ensuresr; = 0. Next we consider the case that at least oneQbr-, is unnamed. By Lemma
[6.11 and the point-wise correspondence betwand¥X shown in the previous part of the proof,
two statements hold: First, for &l € P(KB*), we have thatr; € CX iff o € CX. Second, for all

S e Ng we have thato, o1) € S iff (o, o0) € SX. However, in the pruning process generating
K, exactly such duplicate occurrences are erased, leavimpsitoneR-successor par. Thus we
concludes; = 0. This completes the proof that all axioms from KB are satisiek. []

Finally, we are ready to establish the equisatisfiabiligutealso for this last transformation step.

Theorem 6.15. For any extendedALCI¥b knowledge bas&B, the ALCIb knowledge base
0#(KB) andKB are equisatisfiable.

Proof. Lemmal6.1ID ensures that every model of KB is also a modé&sfKB). Moreover, by
Lemmd6.14, given a modgf for of ®#(KB), any KB-pruning ofJ’s unraveling (the existence of
which is ensured by constructive definition) is a model of Riis finishes the proof. L]

Eventually, the results of this section can be composed ¢w diow to transform an extended
SHIQbs knowledge base KB into an equisatisfiable extendefiC7b knowledge base by com-
puting ©s#q(KB) = 0-0.040.05(KB). Moreover, as each of the single transformation steps
is time polynomial, so is the overall procedure. Therefare are able to check the satisfiability of
any extended®7H7Q knowledge base using the method presented in the previgtiersg by first
transforming it intaALCZb and then checking.

This result is recorded in the below theorem, where we alptoéit to show an even stronger result
about the correspondence between KB @nglo(KB).

Theorem 6.16. LetKB be an extended@H 7 Qbs knowledge base. Then the following hold:
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KB and®sq(KB) are equisatisfiable,
KB E C(a) iff Osuq(KB) E C(a),

KB E R(a,b) iff ®s#a(KB) F R(a, b), and
KB Ea=bif0suq(KB) E a= b,
forany ab e N;, C € N¢, and Re Nr.

Proof. Equisatisfiability follows from the fact that each of thertsformation®#, O, @4, O, Og
preserves satisfiability. We then use the established aigfiability of KB and ®g4q(KB) to
prove the other claims. Assume KBC(a). This means that the knowledge base’KBtained by
extending KB with the DL-safe rul€(a) — is unsatisfiable. Now we observe th@tso(KB’) is
obtained by extendin@® s#q(KB) with C(a) —. Since®sxq(KB’) is unsatisfiable, so ®s4q(KB)
extended withC(a) —, and henc® s4o(KB) E C(a) as required. The other direction of the claim
follows via a similar argumentation. The remaining casessaown analogously. L]

Consolidating all our results, we now can formulate our nth@orem for checking satisfiability as
well as entailment of positive and negative ground factektendedSH 7 Qbs knowledge bases.

Theorem 6.17. LetKB be an extended7 7 Qbs knowledge base and let
P := DD(®gsxq(KB)).

Then the following hold:

KB is satisfiable f P is,

KB = C(a) iff P Sc(a),

KB E R(a,b) iff P = Sr(a, b), and

KBEaxbifPEa=xDb,

forany ab e N;, C € N¢, and Re Nr.

Proof. Combine Theorem 6.16 with Theorém15.4. O

Note also that the above observation immediately allowswslt reasoning support f@L-safe
conjunctive queries, i.e. conjunctive queries that assalheariables to range only over named
individuals. It is easy to see that, as a minor extension, amgd generally allow for concept
expression¥R A anddR Ain queries and rules, simply becau3B(KB) represents these elements
of P(FLAT(7)) as atomic symbols in disjunctive Datalog.

7. ReLateEp WORK

Boolean constructors on roles have been investigated indhtext of both description and modal
logics. |Borgida [(1996) used them extensively for the dedinibf a DL that is equivalent to the
two-variable fragment of FOL.

It was shown by Hustadt and Schmidt (2000) that the DL obthime augmentingALC with full
Boolean role constructorsALB) is decidable. | Lutz and Sattler (2001) establishedxiNkvE-
completeness of the standard reasoning tasks in this IRgistricting to only role negation (Lutz and Sattler,
2001) or only role conjunction_(Tobies, 2001) retaine@Eme-completeness. On the other hand,
complexity does not increase beyond MtEme even when allowing for inverses, qualified num-
ber restrictions, and nominals. This was showr_by Tohie®1P®ia a polynomial translation of
ALCOIQSB into C?, the two variable fragment of first order logic with countigigantifiers, which

in turn was proven to be NEeTime-complete by Pratt-Hartmann (2005). Also the descriptamd
ALBO (Schmidt and Tishkovsky, 2007) falls in that range of¥NEme-complete DLs.
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On the contrary, it was also shownlby Tobies (2001) thatiotisiy to safeBoolean role constructors
keepsALC’s reasoning complexity in 2Tme, even when adding inverses and qualified number
restrictions ALCQID).

For logics including modeling constructs that deal witheraglomposition like transitivity or —
more general — complex role inclusion axioms, results onatexities in the presence of Boolean
role constructors are more sparse. Lutz and Walther (200&) shatALC can be extended by
negation and regular expressions on roles while keepingpréag within pTimMe. Furthermore,
Calvanese et al. (2007b) providedEE e complexity for a similar logic that includes inverses and
qualified number restriction but reverts to safe negatiorotes. The present work showed that rea-
soning remains in & Tve for extendedSH 7 Qbs knowledge bases. Regarding DLs that combine
nominals and role composition, it was shown thasafeBoolean role constructors can be added to
SHOIQandSROIQ (resulting in DLSSHOIQBs andSROIQBs) without dtecting their respec-
tive worst-case complexities of NETme and N2E&pTive (Rudolph et al., 2008a). The restriction
to simple roles, on the other hand, is essential to retairddbiity. Furthermore, conjunctions of
simple roles (which are trivially safe in the absence of rigation) can be added to tractable DLs
of the&EL and DLP families without increasing their worst-case camity (Rudolph et al., 2003a).

Type-based reasoning techniques have been describedlispdiyain the area of DLs but never
been practically adopted.

Lutz et al. (2005) use a particular kind of types, calieasaicgor finite model reasoning._Eiter etlal.
(2009) use similar structures, callkdotsfor query answering in the description logsd{7Q. Both
notions show a similarity to the notion ¢ounting) star typesised for reasoning in fragments of
first order logic |(Pratt-Hartmann, 2005), in that they do anly store information about single
domain individuals but also about all their direct neigtshdks opposed to this, our notion of domi-
noes exhibits more similarity to the notion of (non-cougjitwo-typesused in first-order logic,
e.g., by Gradel et al. (1997); both notions encode inforomatélated to pairs of domain individuals
(rather than whole neighborhoods).

The approach of constructing a canonical model (respfiecsunt representation of it) in a down-
ward manner (i.e., by pruning a larger structure) shows seiméarity to Pratt’s type elimination
techniquel(Pratt, 19179), originally used to decide sabgitg of modal formulae.

Canonical models themselves have been a widely used natiomodal logic ((Popkorn, 1994;
Blackburn et al., 2001), however, due to the additional esgive power ofALCIb compared to
standard modal logics like K (being the modal logic couraerpf the description logicALC),

we had to substantially modify the notion of a canonical niegded there: in order to cope with
number restrictions, we use infinite tree models based aavalings whereas the canonical models
in the mentioned approaches are normally finite and obtairrzfiltrations.

Related in spirit (namely to use BDD-based reasoning for Bhsoning tasks and to use a type
elimination-like technique for doing so) is the work presehbyl Pan et al! (2006). However, the
established results as well as the approach@srdjreatly from ours: the authors establish a proce-
dure for deciding the satisfiability gfl.LC concepts in a setting not allowing for general TBoxes,
while our approach can check satisfiability®$H 7Q (resp.ALCIb) knowledge bases supporting
general TBoxes, thereby generalizing the results by Pan 006) significantly.

The presented method for reasoning with DL-safe rules aadrtisnal data exhibits similarities
to the algorithm underlying the KAON2 reasoner_(Motik, 20B6istadt et al., 2007, 2008). In
particular, pre-transformations are first appliedS®{7Q knowledge bases, before a saturation
procedure is applied to the TBox part that results in a didjua Datalog program that can be
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combined with the assertional part of the knowledge baseinAsir case, extensions with DL-
safe rules and ground conjunctive queries are possible. pfdwessing presented here, however,
is very diferent from KAONZ2. Besides using OBDDs, it also employs Banleole constructors
that admit an indirect encoding of number restrictions. d&bwer, as opposed to our approach, the
transformation in_Motik|(2006) does not presemleground consequence$H I Q consequences
of the formR(a, b) with R being non-simple may not be entailed by the created Datalogram.
This shortcoming could, however, be easily corrected atbrdines of our approach. On the other
hand, the KAON2 transformation avoids the use of disjumgtion Datalog for knowledge bases
that are Horn (i.e., free of disjunctive information). Rewing for HornSHZQ can thus be done
in ExpTive, which is worst-case optimal (Krotzsch et al., 2012). Intcast, our OBDD encoding
requires disjunctive Datalog in all cases, leading to aiNkve procedure even for HorH I Q.

8. DiscussioN

We have presented a new worst-case optimal reasoning thlgofor standard reasoning tasks for
extendedSH 7 Qbs knowledge bases. The algorithm compiltsl 7Qbs terminologies into disjunc-
tive Datalog programs, which are then combined with assstiinformation and DL-safe rules for
satisfiability checking and (ground) query answering. Tis tnd, OBDDs are used as a conve-
nient intermediate data structure to process termincdogiel are subsequently transformed into
disjunctive Datalog programs that can naturally accountAiBox data and DL-safe rules. The
generation of disjunctive Datalog may require exponegtiadany computation steps, the cost of
which depends on the concrete OBDD implementation at hanttinf optimal OBDD encodings
is NP-complete but heuristic approximations are often usqatactice. Querying the disjunctive
Datalog program then is co-NP-complete w.r.t. the size efABox, so that the data complexity
of the algorithm is worst-case optimal (Motik, 2006). Comteg combined complexity of testing
the satisfiability of extended knowledge bases, tkelle OBDD construction step dominates the
subsequent disjunctive Datalog reasoning part, so thetbeembined complexity of the algorithm
is ExpTmvE resulting in worst-case optimality for this case as weNegi the kpTmve-hardness of
satisfiability checking irfSH I Qbs.

It is also worthwhile to briefly discuss the applicability amir method to knowledge bases featuring
so-calledcomplex role inclusion axiom@&IAs). By means of techniques described by Kazakov
(2008), any (pure, that is, non-extendesi® 7 Qbs knowledge base can be transformed into an eg-
uisatsfiableALCH IQb knowledge base, however, like Motik's original transityvelimination,
this transformation does not preserve all ground consemgserConsequently, it is not satisfiability-
preserving for extende8R7 Qbs knowledge bases. Still, capitalizing on these RIA-remagah-
nigues, our method provides a way for satisfiability chegKor SR7Qbs knowledge bases without
DL-safe rules that is worst-case optimal w.r.t. both corellimnd data complexity. We believe,
however, that it would be not to hard a task to modify the ti@msation to even preserve ground
consequences.

For future work, the algorithm needs to be evaluated in actA crude prototype implementa-
tion was used to generate the examples within this paperhasdhown to outperform tableaux
reasoners in certain handcrafted cases, but more extevsilteations with an optimized implemen-
tation on real-world ontologies are needed for a conclustaéement on the practical potential of
this new reasoning strategy. It is also evident that redocyalimination techniques are required
to reduce the number of generated Datalog rules, which essalsmportant aspect of the KAON2
implementation.
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Another avenue for future research is the extension of theoajgh to more modeling features such
as role chain axioms and nominals — significant revisionfi®@ihodel-theoretic considerations are
needed for these cases.
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