
Logical Methods in Computer Science

Vol. 8 (1:12) 2012, pp. 1–38

www.lmcs-online.org

Submitted May 26, 2011

Published Feb. 27, 2012

TYPE-ELIMINATION-BASED REASONING FOR THE DESCRIPTION LOGIC

SHIQbs USING DECISION DIAGRAMS AND DISJUNCTIVE DATALOG

SEBASTIAN RUDOLPH a, MARKUS KRÖTZSCH b, AND PASCAL HITZLER c

a Institute AIFB, Karlsruhe Institute of Technology, Germany
e-mail address: rudolph@kit.edu

b Department of Computer Science, University of Oxford, UK
e-mail address: markus.kroetzsch@cs.ox.ac.uk

c Kno.e.sis, Wright State University, Dayton, Ohio, US
e-mail address: pascal.hitzler@wright.edu

Abstract. We propose a novel, type-elimination-based method for standard reasoning in the de-
scription logic SHIQbs extended by DL-safe rules. To this end, we first establish a knowledge
compilation method converting the terminological part of an ALCIb knowledge base into an or-
dered binary decision diagram (OBDD) that represents a canonical model. This OBDD can in turn
be transformed into disjunctive Datalog and merged with the assertional part of the knowledge base
in order to perform combined reasoning. In order to leverage our technique for full SHIQbs , we
provide a stepwise reduction from SHIQbs toALCIb that preserves satisfiability and entailment of
positive and negative ground facts. The proposed technique is shown to be worst-case optimal w.r.t.
combined and data complexity.

1. Introduction

Description logics (DLs, see Baader et al., 2007) have become a major paradigm in Knowledge
Representation and Reasoning. This can in part be attributed to the fact that the DLs have been
found suitable to be the foundation for ontology modeling and reasoning for the Semantic Web. In
particular, the Web Ontology Language OWL (W3C OWL Working Group, 2009), a recommended
standard by the World Wide Web Consortium (W3C)1 for ontology modeling, is essentially a de-
scription logic (see, e.g., Hitzler et al., 2009, for an introduction to OWL and an in-depth description
of the correspondences). As such, DLs are currently gaining significant momentum in application
areas, and are being picked up as knowledge representation paradigm by both industry and applied
research.

1998 ACM Subject Classification: I.2.4, I.2.3, F.4.3, F.4.1.
Key words and phrases: description logics, type elimination, decision diagrams, Datalog.
1http://www.w3.org/

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (1:12) 2012

c© S. Rudolph, M. Krötzsch, and P. Hitzler
CC© Creative Commons

http://creativecommons.org/about/licenses

2 S. RUDOLPH, M. KRÖTZSCH, AND P. HITZLER

The DL known as SHIQ is among the most prominent DL fragments that do not feature nominals,2

and it covers most of the OWL language. Various OWL reasoners implement efficient reasoning
support for SHIQ by means of tableau methods, e.g., Pellet,3 FaCT++,4 or RacerPro,5.
However, even the most efficient implementations of reasoning algorithms to date do not scale up
to very data-intensive application scenarios. This motivates the search for alternative reasoning ap-
proaches that build upon different methods in order to address cases where tableau algorithms turn
out to have certain weaknesses. Successful examples are KAON2 (Motik and Sattler, 2006) based
on resolution, HermiT (Motik et al., 2009) based on hyper-tableaux, as well as the consequence-
based systems CB (Kazakov, 2009), ConDOR (Simančík et al., 2011), and ELK (Kazakov et al.,
2011). Moreover, especially for lightweight DLs, approaches based on rewriting queries (Calvanese et al.,
2007a) or both queries and data (Kontchakov et al., 2010) have been proposed.
In this paper, we propose the use of a variant of type elimination, a notion first introduced by
Pratt (1979), as a reasoning paradigm for DLs. To implement the necessary computations on large
type sets in a compressed way, we suggest the use of ordered binary decision diagrams (OBDDs).
OBDDs have been applied successfully in the domain of large-scale model checking and verifica-
tion, but have hitherto seen only little investigation in DLs, e.g., by Pan et al. (2006).
Most of the description logics considered in this article exhibit restricted Boolean role expressions
as a non-standard modeling feature, which is indicated by a b or (if further restricted) bs in the
name of the DL. In particular, we propose a novel method for reasoning in SHIQbs knowledge
bases featuring terminological and assertional knowledge including (in)equality statements as well
as DL-safe rules.
Our work starts by considering terminological reasoning in the DLALCIb, which is less expressive
than SHIQbs. We introduce a method that compiles an ALCIb terminology into an OBDD
representation. Thereafter, we show that the output of this algorithm can be used for generating
a disjunctive Datalog program that can in turn be combined with ABox data to obtain a correct
reasoning procedure. Finally, the results for ALCIb are lifted to full SHIQbs by providing an
appropriate translation from the latter to the former.
This article combines and consolidates our previous work about pure TBox reasoning (Rudolph et al.,
2008c), its extension to ABoxes (Rudolph et al., 2008b) and some notes on reasoning in DLs with
Boolean role expressions (Rudolph et al., 2008a) by

• providing a collection of techniques for eliminating SHIQbs modeling features that impede the
use of our type elimination approach,
• laying out the model-theoretic foundations for type-elimination-based reasoning for very expres-

sive description logics without nominals, using the domino metaphor for 2-types,
• elaborating the possibility of using OBDDs for making type elimination computationally feasible,
• providing a canonical translation of OBDDs into disjunctive Datalog to enable reasoning with

assertional information, and
• making the full proofs accessible in a published version.

Moreover, we extend our work by adding some missing aspects and completing the theoretical
investigations by

2Nominals, i.e., concepts that denote a set with exactly one element, usually cause a reasoning efficiency problem
when added to SHIQ. This is evident from the performance of existing systems, and finds its theoretical justification in
the fact that they increase worst-case complexity from ExpTime-completeness to NExpTime-completeness.

3http://clarkparsia.com/pellet/
4http://owl.man.ac.uk/factplusplus/
5http://www.racer-systems.com/

TYPE-ELIMINATION-BASED REASONING FOR SHIQbs 3

• extending the procedures for reducing SHIQbs toALCIb to ABoxes and DL-safe rules,
• establishing worst-case optimality of our algorithms,
• extending the supported language: while our previous work only covered terminological rea-

soning in SHIQ (Rudolph et al., 2008c) and combined reasoning in ALCIb (Rudolph et al.,
2008b), we now support reasoning in SHIQbs knowledge bases featuring terminological and
assertional knowledge, including (in)equality statements and DL-safe rules.

The structure of this article is as follows. Section 2 recalls relevant preliminaries. Section 3 dis-
cusses the computation of sets of dominoes that represent models of ALCIb knowledge bases.
Section 4 casts this computation into a manipulation of OBDDs as underlying data structures. Sec-
tion 5 discusses how the resulting OBDD presentation can be transformed to disjunctive Datalog
and establishes the correctness of the approach. Section 6 provides a transformation from SHIQbs

to ALCIb, thereby extending the applicability of the proposed method to SHIQbs knowledge
bases. Section 7 discusses related work and Section 8 concludes.

2. The Description Logics SHIQbs andALCIb

We first recall some basic definitions of DLs and introduce our notation. A more gentle first in-
troduction to DLs, together with pointers to further reading, is given in Rudolph (2011). Here, we
define a rather expressive description logic SHIQbs that extends SHIQ with restricted Boolean
role expressions (see, e.g., Tobies, 2001).

Definition 2.1. A SHIQbs knowledge base is based on three disjoint sets of concept names NC ,
role names NR, and individual names NI . The set of atomic roles R is defined by R ≔ NR ∪ {R

− |

R ∈ NR}. In addition, we let Inv(R) ≔ R− and Inv(R−) ≔ R, and we extend this notation also to
sets of atomic roles. In the following, we use the symbols R and S to denote atomic roles, if not
specified otherwise.
The set of Boolean role expressions B is defined as

BF R | ¬B | B ⊓ B | B ⊔ B.

We use ⊢ to denote entailment between sets of atomic roles and role expressions. Formally, given a
set R of atomic roles, we inductively define:

• for atomic roles R, R ⊢ R if R ∈ R, and R 0 R otherwise,
• R ⊢ ¬U if R 0 U, and R 0 ¬U otherwise,
• R ⊢ U ⊓ V if R ⊢ U and R ⊢ V , and R 0 U ⊓ V otherwise,
• R ⊢ U ⊔ V if R ⊢ U or R ⊢ V , and R 0 U ⊔ V otherwise.

A Boolean role expression U is restricted if ∅ 0 U. The set of all restricted role expressions is
denoted by T, and the symbols U and V will be used throughout this paper to denote restricted role
expressions. A SHIQbs RBox is a set of axioms of the form U ⊑ V (role inclusion axiom) or
Tra(R) (transitivity axiom). The set of non-simple roles (for a given RBox) is defined as the smallest
subset of R satisfying:

• If there is an axiom Tra(R), then R is non-simple.
• If there is an axiom R ⊑ S with R non-simple, then S is non-simple.
• If R is non-simple, then Inv(R) is non-simple.

An atomic role is simple if it is not non-simple. In SHIQbs, every non-atomic Boolean role
expression must contain only simple roles.
Based on a SHIQbs RBox, the set of concept expressions C is defined as

CF NC | ⊤ | ⊥ | ¬C | C ⊓ C | C ⊔ C | ∀T.C | ∃T.C | 6n R.C | >(n + 1) R.C,

4 S. RUDOLPH, M. KRÖTZSCH, AND P. HITZLER

where n ≥ 0 denotes a natural number, and the role S in expressions 6n S .C and >(n + 1) S .C

is required to be simple. Common names for the various forms of concept expressions are given
in Table 1 (lower part). Throughout this paper, the symbols C, D will be used to denote concept
expressions. A SHIQbs TBox (or terminology) is a set of general concept inclusion axioms (GCIs)
of the form C ⊑ D.

Besides the terminological components, DL knowledge bases typically include assertional knowl-
edge as well. In order to increase expressivity and to allow for a uniform presentation of our
approach we generalize this by allowing knowledge bases to contain so-called DL-safe rules as
introduced by Motik et al. (2005).

Definition 2.2. Let V be a countable set of first-order variables. A term is an element of V ∪ NI .
Given terms t and u, a concept atom/role atom/equality atom is a formula of the form C(t)/R(t, u)/t ≈
u with C ∈ NC and R ∈ NR. A DL-safe rule for SHIQbs is a formula B → H, where B and H are
possibly empty conjunctions of (role, concept, and equality) atoms. To simplify notation, we will
often use finite sets S of atoms for representing the conjunction

∧

S .
A set P of DL-safe rules is called a rule base. An extended SHIQbs knowledge base KB is a triple
〈T,R,P〉, where T is a SHIQbs TBox, R is a SHIQbs RBox, and P is a rule base.

We only consider extended knowledge bases in this work, so we will often just speak of knowledge
bases. In the literature, a DL ABox is usually allowed to contain assertions of the form A(a), R(a, b),
or a ≈ b, where a, b ∈ NI , A ∈ NC , and R ∈ NR. We assume that all roles and concepts occurring in
the ABox are atomic.6 These assertions can directly be expressed as DL-safe rules that have empty
(vacuously true) bodies and a single head atom. Conversely, the negation of these assertions can be
expressed by rules that have the assertion as body atom while having an empty (vacuously false)
head. Knowing this, we will not specifically consider assertions or negated assertions in the proofs
of this paper. For convenience we will, however, sometimes use the above notations instead of their
rule counterparts when referring to (positive or negated) ground facts.
As mentioned above, we will mostly consider fragments of SHIQbs. In particular, an (extended)
ALCIb knowledge base is an (extended) SHIQbs knowledge base that contains no RBox axioms
and no number restrictions (i.e., concept expressions 6n R.C or >n R.C). Consequently, an extended
ALCIb knowledge base only consists of a pair 〈T,P〉, where T is a TBox and P is a rule base. The
related DLALCQIb has been studied by Tobies (2001).
The semantics of SHIQbs and its sublogics is defined in the usual, model-theoretic way. An
interpretation I consists of a set ∆I called domain (the elements of it being called individuals)
together with a function ·I mapping individual names to elements of ∆I, concept names to subsets
of ∆I, and role names to subsets of ∆I × ∆I.
The function ·I is extended to role and concept expressions as shown in Table 1. An interpretation
I satisfies an axiom ϕ if we find that I |= ϕ, where

• I |= U ⊑ V if UI ⊆ VI,
• I |= Tra(R) if RI is a transitive relation,
• I |= C ⊑ D if CI ⊆ DI,

I satisfies a knowledge base KB, denoted I |= KB, if it satisfies all axioms of KB.
It remains to define the semantics of DL-safe rules. A (DL-safe) variable assignment Z for an
interpretation I is a mapping from the set of variables V to {aI | a ∈ NI}. Given a term t ∈ NI ∪ V,

6This common assumption is made without loss of generality in terms of knowledge base expressivity. It is essential
for defining the ABox-specific complexity measure of data complexity, although it might be questionable in cases where
ABox statements with complex concept expressions belong to the part of the knowledge base that is frequently changing.

TYPE-ELIMINATION-BASED REASONING FOR SHIQbs 5

Name Syntax Semantics

inverse role R− {〈x, y〉 ∈ ∆I × ∆I | 〈y, x〉 ∈ RI}

role negation ¬U {〈x, y〉 ∈ ∆I × ∆I | 〈x, y〉 < UI}

role conjunction U ⊓ V UI ∩ VI

role disjunction U ⊔ V UI ∪ VI

top ⊤ ∆I

bottom ⊥ ∅

negation ¬C ∆I \ CI

conjunction C ⊓ D CI ∩ DI

disjunction C ⊔ D CI ∪ DI

universal restriction ∀U.C {x ∈ ∆I | 〈x, y〉 ∈ UI implies y ∈ CI}

existential restriction ∃U.C {x ∈ ∆I | 〈x, y〉 ∈ UI, y ∈ CI for some y ∈ ∆I}

qualified 6n S .C {x ∈ ∆I | #{y ∈∆I|〈x, y〉 ∈ S I, y ∈CI} ≤ n}

number restriction >n S .C {x ∈ ∆I | #{y ∈∆I|〈x, y〉 ∈ S I, y ∈CI} ≥ n}

Table 1: Semantics of constructors in SHIQbs for an interpretation I with domain ∆I

we set tI,Z ≔ Z(t) if t ∈ V, and tI,Z ≔ tI otherwise. Given a concept atom C(t) / role atom
R(t, u) / equality atom t ≈ u, we write I, Z |= C(t) / I, Z |= R(t, u) / I, Z |= t ≈ u if tI,Z ∈ CI /

〈tI,Z , uI,Z〉 ∈ RI / tI,Z = uI,Z , and we say that I and Z satisfy the atom in this case.
An interpretation I satisfies a rule B → H if, for all variable assignments Z for I, either I and Z

satisfy all atoms in H, or I and Z fail to satisfy some atom in B. In this case, we write I |= B→ H

and say that I is a model for B→ H. An interpretation satisfies a rule base P (i.e., it is a model for
it) whenever it satisfies all rules in it. An extended knowledge base KB = 〈T,R,P〉 is satisfiable if it
has an interpretation I that is a model for T, R, and P, and it is unsatisfiable otherwise. Satisfiability,
equivalence, and equisatisfiability of (extended) knowledge bases are defined as usual.
For convenience of notation, we abbreviate TBox axioms of the form ⊤ ⊑ C by writing just C.
Statements such as I |= C and C ∈ KB are interpreted accordingly. Note that C ⊑ D can thus be
written as ¬C ⊔ D.
We often need to access a particular set of quantified and atomic subformulae of a DL concept
expression. These specific parts are provided by the function P : C→ 2C:

P(C) ≔

P(D) if C = ¬D,

P(D) ∪ P(E) if C = D ⊓ E or C = D ⊔ E,

{C} ∪ P(D) if C = QU.D with Q∈ {∃,∀,>n,6n},

{C} otherwise.

We generalize P to DL knowledge bases KB by defining P(KB) to be the union of the sets P(C)
for all TBox axioms C in KB, where we express TBox axioms as simple concept expressions as
explained above.
Given an extended knowledge base KB, we obtain its negation normal form NNF(KB) by keeping
all RBox statements and DL-safe rules untouched and converting every TBox concept C into its
negation normal form NNF(C) in the usual, recursively defined way:

6 S. RUDOLPH, M. KRÖTZSCH, AND P. HITZLER

NNF(¬⊤) ≔ ⊥

NNF(¬⊥) ≔ ⊤

NNF(C) ≔ C if C ∈ {A,¬A,⊤,⊥}

NNF(¬¬C) ≔ NNF(C)
NNF(C ⊓ D) ≔ NNF(C) ⊓ NNF(D)
NNF(¬(C ⊓ D)) ≔ NNF(¬C) ⊔ NNF(¬D)
NNF(C ⊔ D) ≔ NNF(C) ⊔ NNF(D)
NNF(¬(C ⊔ D)) ≔ NNF(¬C) ⊓ NNF(¬D)

NNF(∀U.C) ≔ ∀U.NNF(C)
NNF(¬∀U.C) ≔ ∃U.NNF(¬C)
NNF(∃U.C) ≔ ∃U.NNF(C)
NNF(¬∃U.C) ≔ ∀U.NNF(¬C)
NNF(6n R.C) ≔ 6n R.NNF(C)
NNF(¬6n R.C) ≔ >(n + 1) R.NNF(C)
NNF(>n R.C) ≔ >n R.NNF(C)
NNF(¬>n R.C) ≔ 6(n − 1) R.NNF(C)

It is well known that KB and NNF(KB) are semantically equivalent.
In places, we will additionally require another well-known normalization step that simplifies the
structure of KB by flattening it to a knowledge base FLAT(KB). This is achieved by transforming
KB into negation normal form and exhaustively applying the following transformation rules:

• Select an outermost occurrence of QU.D in KB, such that Q∈ {∃,∀,6n,>n} and D is a non-
atomic concept.
• Substitute this occurrence with QU.F where F is a fresh concept name (i.e., one not occurring in

the knowledge base).
• If Q∈ {∃,∀,>n}, add ¬F ⊔ D to the knowledge base.
• If Q= 6n add NNF(¬D) ⊔ F to the knowledge base.

Obviously, this procedure terminates, yielding a flat knowledge base FLAT(KB) all TBox axioms
of which are ⊓,⊔-expressions over formulae of the form ⊤, ⊥, A, ¬A, or QU.A with A an atomic
concept name. Flattening is known to be a satisfiability-preserving transformation; we include the
proof for the sake of self-containedness.

Proposition 2.3. For every SHIQbs knowledge base KB, we find that KB and FLAT(KB) are

equisatisfiable.

Proof. We first prove inductively that every model of FLAT(KB) is a model of KB. Let KB′ be an
intermediate knowledge base and let KB′′ be the result of applying one single substitution step to
KB′ as described in the above procedure. We now show that any model I of KB′′ is a model of KB′.
Let QU.D be the concept expression substituted in KB′. Note that after every substitution step, the
knowledge base is still in negation normal form. Thus, we see that QU.D occurs outside the scope
of any negation or quantifier in a KB′ axiom E′, and the same is the case for QU.F in the respective
KB′′ axiom E′′ obtained after the substitution. Hence, if we show that (QU.F)I ⊆ (QU.D)I, we can
conclude that E′′I ⊆ E′I. From I being a model of KB′′ and therefore E′′I = ∆I, we would then
easily derive that E′I = ∆I and hence find that I |= KB′, as all other axioms from KB′ are trivially
satisfied due to their presence in KB′′.
It remains to show (QU.F)I ⊆ (QU.D)I. To show this, consider some arbitrary δ ∈ (QU.F)I. We
distinguish various cases:

• Q= >n

Then there are distinct individuals δ1, . . . , δn ∈ ∆
I with 〈δ, δi〉 ∈ UI and δi ∈ FI for 1 ≤ i ≤ n.

Since ¬F ⊔ D ∈ KB′′, we have I |= ¬F ⊔ D, and therefore δi ∈ DI for all the n distinct δi. Thus
δ ∈ (>n U.F)I.
• Q= 6n

Then the number of individuals δ′ ∈ ∆I with 〈δ, δ′〉 ∈ UI and δ′ ∈ FI is not greater than n.
Since NNF(¬D) ⊔ F ∈ KB′′, we know DI ⊆ FI. Thus, also the number of individuals δ′ ∈ ∆I

with 〈δ, δ′〉 ∈ UI and δ′ ∈ DI cannot be greater than n, leading to the conclusion δ ∈ (6n U.D)I.
Hence, we have (6n U.F)I ⊆ (6n U.D)I.

TYPE-ELIMINATION-BASED REASONING FOR SHIQbs 7

The arguments for Q= ∃ and Q= ∀ are very similar, since these cases can be treated like >1 U.F

and 60 U.¬F, respectively. Thus we obtain δ ∈ (QU.D)I in each case as required.
For the other direction of the claim, note that every model I of KB can be transformed into a model
J of FLAT(KB) by following the flattening process described above: Let KB′′ result from KB′ by
substituting QU.D by QU.F and adding the respective axiom. Furthermore, let I′ be a model of
KB′. Now we construct the interpretation I′′ as follows: FI

′′

≔ (QU.D)I
′

and for all other concept
and role names N we set NI

′′

≔ NI
′

. Then I′′ is a model of KB′′.

3. BuildingModels from Domino Sets

In this section, we introduce the notion of a set of dominoes for a given ALCIb TBox. Rules (and
thus ABox axioms) will be incorporated in Section 5 later on. Intuitively, a domino abstractly rep-
resents two individuals in an ALCIb interpretation, reflecting their satisfied concepts and mutual
role relationships. Thereby, dominoes are conceptually very similar to the concept of 2-types, as
used in investigations on two-variable fragments of first-order logic, e.g., by Grädel et al. (1997).
We will see that suitable sets of such two-element pieces suffice to reconstruct models of ALCIb,
which also reveals certain model-theoretic properties of this not so common DL. In particular, every
satisfiable ALCIb TBox admits tree-shaped models. This result is rather a by-product of our main
goal of decomposing models into unstructured sets of local domino components, but it explains
why our below constructions have some similarity with common approaches of showing tree-model
properties by unraveling models.
After introducing the basics of our domino representation, we present an algorithm for deciding
satisfiability of anALCIb terminology based on sets of dominoes.

3.1. From Interpretations to Dominoes. We now introduce the basic notion of a domino set, and
its relationship to interpretations. Given a DL with concepts C and roles R, a domino over C ⊆ C

is an arbitrary triple 〈A,R,B〉, where A,B ⊆ C and R ⊆ R. In the following, we will always
assume a fixed language and refer to dominoes over that language only. We now formalize the idea
of deconstructing an interpretation into a set of dominoes.

Definition 3.1. Given an interpretation I = 〈∆I, ·I〉, and a set C ⊆ C of concept expressions, the
domino projection of I w.r.t. C, denoted by πC(I) is the set that contains, for all δ, δ′ ∈ ∆I, the triple
〈A,R,B〉 with

A = {C ∈ C | δ ∈ CI}, R = {R ∈ R | 〈δ, δ′〉 ∈ RI}, B = {C ∈ C | δ′ ∈ CI}.

It is easy to see that domino projections do not faithfully represent the structure of the interpretation
that they were constructed from. But, as we will see below, domino projections capture enough
information to reconstruct models of a TBox T, as long as C is chosen to contain at least P(T). For
this purpose, we introduce the inverse construction of interpretations from arbitrary domino sets.

Definition 3.2. Given a set D of dominoes, the induced domino interpretation I(D) = 〈∆I, ·I〉 is
defined as follows:

(1) ∆I consists of all nonempty finite words over D where, for each pair of subsequent letters
〈A,R,B〉 and 〈A′,R′,B′〉 in a word, we have B = A′.

(2) For a word σ = 〈A1,R1,A2〉〈A2,R2,A3〉 . . . 〈Ai−1,Ri−1,Ai〉 and a concept name A ∈ NC , we
define tail(σ) ≔ Ai and set σ ∈ AI iff A ∈ tail(σ).

8 S. RUDOLPH, M. KRÖTZSCH, AND P. HITZLER

(3) For a role name R ∈ NR, we set 〈σ1, σ2〉 ∈ RI if
σ2 = σ1〈A,R,B〉 with R ∈ R or σ1 = σ2〈A,R,B〉 with Inv(R) ∈ R.

We can now show that certain domino projections contain enough information to reconstruct models
of a TBox.

Proposition 3.3. Consider a set C ⊆ C of concept expressions, and an interpretation J , and let

K ≔ I(πC(J)) denote the induced domino interpretation of the domino projection of J w.r.t. C.

Then, for anyALCIb concept expression C ∈ C with P(C) ⊆ C, we have that J |= C iff K |= C.

Especially, for anyALCIb TBox T, we have J |= T iff I(πP(T)(J)) |= T.

Proof. Consider some C ∈ C as in the claim. We first show the following: given any J-individual
δ and K-individual σ such that tail(σ) = {D ∈ C | δ ∈ DJ }, we find that σ ∈ CK iff δ ∈ CJ .
Clearly, the overall claim follows from that statement using the observation that a suitable δ ∈ ∆J

must exist for all σ ∈ ∆K and vice versa. We proceed by induction over the structure of C, noting
that P(C) ⊆ C implies P(D) ⊆ C for any subconcept D of C.
The base case C ∈ NC is immediately satisfied by our assumption on the relationship of δ and σ,
since C ∈ P(C). For the induction step, we first note that the case C ∈ {⊤,⊥} is also trivial. For
C = ¬D and C = D ⊓ D′ as well as C = D ⊔ D′, the claim follows immediately from the induction
hypothesis for D and D′.
Next consider the case C = ∃U.D, and assume that δ ∈ CJ . Hence there is some δ′ ∈ ∆J such
that 〈δ, δ′〉 ∈ UJ and δ′ ∈ DJ . Then the pair 〈δ, δ′〉 generates a domino 〈A,R,B〉 and ∆K contains
σ′ = σ〈A,R,B〉. 〈δ, δ′〉 ∈ UJ implies R ⊢ U (by definition of ⊢ and due to the fact that R contains
exactly those R ∈ R with 〈δ, δ′〉 ∈ RJ), and hence 〈σ,σ′〉 ∈ UK . Applying the induction hypothesis
to D, we conclude σ′ ∈ DK . Now σ ∈ CK follows from the construction of K .
For the converse, assume that σ ∈ CK . Hence there is some σ′ ∈ ∆K such that 〈σ,σ′〉 ∈ UK and
σ′ ∈ DK . By the definition of K , there are two possible cases:

• σ′ = σ〈tail(σ),R, tail(σ′)〉 and R ⊢ U: Consider the two J-individuals 〈δ′, δ′′〉 generating the
domino 〈tail(σ),R, tail(σ′)〉. From σ′ ∈ DK and the induction hypothesis, we obtain δ′′ ∈ DJ .
Together with 〈δ′, δ′′〉 ∈ UJ this implies δ′ ∈ CJ . Since C = ∃U.D ∈ C, we also have C ∈ tail(σ)
and thus δ ∈ CJ as claimed.
• σ = σ′〈tail(σ′),R, tail(σ)〉 and Inv(R) ⊢ U: This case is similar to the first case, merely exchang-

ing the order of 〈δ′, δ′′〉 and using Inv(R) instead of R.

Finally, the case C = ∀U.D is dual to the case C = ∃U.D, and we will omit the repeated argument.
Note, however, that this case does not follow from the semantic equivalence of ∀U.D and ¬∃U.¬D,
since the proof hinges upon the fact that ¬D is contained in C which is not given directly.

3.2. Constructing Domino Sets. As shown in the previous section, the domino projection of a
model of an ALCIb TBox can contain enough information for reconstructing a model. This ob-
servation can be the basis for designing an algorithm that decides TBox satisfiability. Usually (es-
pecially in tableau-based algorithms), checking satisfiability amounts to the attempt to construct a
(representation of a) model. As we have seen, in our case it suffices to try to construct just a model’s
domino projection. If this can be done, we know that there is a model, if not, there is none.
In what follows, we first describe the iterative construction of such a domino set from a given TBox,
and then show that it is indeed a decision procedure for TBox satisfiability.

TYPE-ELIMINATION-BASED REASONING FOR SHIQbs 9

Algorithm 1 Computing the canonical domino set DT of a TBox T

Input: T anALCIb TBox, C = P(FLAT(T))
Output: the canonical domino set DT of T

1: initialize D0 as the set of all dominoes 〈A,R,B〉 over C satisfying:
2: for all C ∈ FLAT(T), the GCI

�
D∈A D ⊓

�
D∈C\A ¬D ⊑ C is a tautology7 (kb)

3: for all ∃U.A ∈ C with A ∈ B and R ⊢ U, we have ∃U.A ∈ A, (ex)

4: for all ∀U.A ∈ C with ∀U.A ∈ A and R ⊢ U, we have A ∈ B. (uni)

5: i := 0
6: repeat

7: i := i+1
8: determine Di as the set of all dominoes 〈A,R,B〉 ∈ Di−1 satisfying:
9: for all ∃U.A ∈ A, there is some 〈A,R′,B′〉 ∈ Di−1 with R′ ⊢ U and A ∈ B′, (delex)

10: for all ∀U.A ∈ C \A, there is some 〈A,R′,B′〉 ∈ Di−1 with R′ ⊢ U but A < B′, (deluni)

11: 〈B, Inv(R),A〉 ∈ Di−1. (sym)

12: until Di = Di−1

13: DT := Di

14: return DT

Algorithm 1 describes the construction of the canonical domino set DT of an ALCIb TBox T.
Thereby, roughly speaking, condition kb ensures that all the concept parts A and B of the con-
structed domino set abide by the axioms of the considered TBox. The condition ex guarantees that,
in every domino 〈A,R,B〉, the concept set A must contain all the existential concepts for which
R and B serve as witnesses. Conversely, uni makes sure that every universally quantified concept
recorded in A is appropriately propagated to B, given a suitable R. Once enforced, the conditions
kb, ex, and uni remain valid even if the domino set is reduced further, hence they need to be taken
care of only at the beginning of the algorithm. In contrast, the conditions delex, deluni, and sym

may be invalidated again by removing dominoes from the set, thus they need to be applied in an
iterated way until a fixpoint is reached. Condition delex removes all dominoes with the concept
set A if A contains an existential concept for which no appropriate “witness” domino (in the above
sense) can be found in the set. Likewise, deluni removes all dominoes with the concept set A if A
does not contain a universal concept which should hold given all the remaining dominoes. Finally,
sym ensures that the domino set contains only dominoes that do have a “symmetric partner”, i.e.,
one that is created by swapping A with B and inverting all of R.
Given that every domino 〈A,R,B〉 satisfies A,B ⊆ C and R ⊆ R, and that both C and R are linearly
bounded by the size of T, D0 is exponential in the size of the TBox, hence the iterative deletion
of dominoes must terminate after at most exponentially many steps. Below we will show that this
procedure is indeed sound and complete for checking TBox satisfiability. Before that, we will show
a canonicity result for DT.

Lemma 3.4. Consider anALCIb terminology T and an arbitrary model I of T. Then the domino

projection πP(FLAT(T))(I) is contained in DT.

Proof. The claim is shown by a simple induction over the construction of DT. In the following,
we use 〈A,R,B〉 to denote an arbitrary domino of πP(FLAT(T))(I). For the base case, we must show
that πP(FLAT(T))(I) ⊆ D0. Let 〈A,R,B〉 to denote an arbitrary domino of πP(FLAT(T))(I) which was

7Please note that the formulae in FLAT(T) and in A ⊆ C are such that this can easily be checked by evaluating the
Boolean operators in C as if A was a set of true propositional variables.

10 S. RUDOLPH, M. KRÖTZSCH, AND P. HITZLER

generated from elements 〈δ, δ′〉. Then 〈A,R,B〉 satisfies condition kb, since δ ∈ CI for any C ∈

FLAT(T). The conditions ex and uni are obviously satisfied.
For the induction step, assume that πP(FLAT(T))(I) ⊆ Di, and let 〈A,R,B〉 again denote an arbitrary
domino of πP(FLAT(T))(I) which was generated from elements 〈δ, δ′〉.

• For delex, note that ∃U.A ∈ A implies δ ∈ (∃U.A)I. Thus there is an individual δ′′ such that
〈δ, δ′′〉 ∈ UI and δ′′ ∈ AI. Clearly, the domino generated by 〈δ, δ′′〉 satisfies the conditions of
delex.
• For deluni, note that ∀U.A < A implies δ < (∀U.A)I. Thus there is an individual δ′′ such that
〈δ, δ′′〉 ∈ UI and δ′′ < AI. Clearly, the domino generated by 〈δ, δ′′〉 satisfies the conditions of
deluni.
• The condition of sym for 〈A,R,B〉 is clearly satisfied by the domino generated from 〈δ′, δ〉.

Therefore, the considered domino 〈A,R,B〉 must be contained in Di+1 as well.

Note that, in contrast to tableau procedures, the presented algorithm starts with a large set of domi-
noes and successively deletes undesired dominoes. Indeed, we will soon show that the constructed
domino set is the largest such set from which a domino model can be obtained. The algorithm
thus may seem to be of little practical use. In Section 4, we therefore refine the above algorithm to
employ Boolean functions as implicit representations of domino sets, such that the efficient compu-
tational methods of OBDDs can be exploited. In the meantime, however, domino sets will serve us
well for showing the required correctness properties.
An important property of domino interpretations constructed from canonical domino sets is that
the (semantic) concept membership of an individual can typically be (syntactically) read from the
domino it has been constructed of.

Lemma 3.5. Consider an ALCIb TBox T with nonempty canonical domino set DT , and define

C ≔ P(FLAT(T)) and I = 〈∆I, ·I〉 ≔ I(DT). Then, for all C ∈ C and σ ∈ ∆I, we have that σ ∈ CI

iff C ∈ tail(σ). Moreover, I |= FLAT(T).

Proof. First note that the domain of I is nonempty whenever DT is. Now if C ∈ NC is an atomic
concept, the first claim follows directly from the definition of I. The remaining cases that may
occur in P(FLAT(T)) are C = ∃U.A and C = ∀U.A.
First consider the case C = ∃U.A, and assume that σ ∈ CI. Thus there is σ′ ∈ ∆I with 〈σ,σ′〉 ∈ UI

and σ′ ∈ AI. The construction of the domino model admits two possible cases:

• σ′ = σ〈tail(σ),R, tail(σ′)〉 with R ⊢ U and A ∈ tail(σ′). Since DT ⊆ D0, we find that
〈tail(σ),R, tail(σ′)〉 satisfies condition ex, and thus C ∈ tail(σ) as required.
• σ = σ′〈tail(σ′),R, tail(σ)〉 with Inv(R) ⊢ U and A ∈ tail(σ′). By condition sym, DT also contains

the domino 〈tail(σ), Inv(R), tail(σ′)〉, and we can again invoke ex to conclude C ∈ tail(σ).

For the other direction, assume ∃U.A ∈ tail(σ). Thus DT must contain some domino 〈A,R, tail(σ)〉,
and by sym also the domino 〈tail(σ), Inv(R),A〉. By condition delex, the latter implies that DT

contains a domino 〈tail(σ),R′,A′〉. According to delex, we find that σ′ = σ〈tail(σ),R′,A′〉 is an
I-individual such that 〈σ,σ′〉 ∈ UI and σ′ ∈ AI. Thus σ ∈ (∃U.A)I as claimed.
For the second case, consider C = ∀U.A and assume that σ ∈ CI. Then DT contains some domino
〈A,R, tail(σ)〉, and by sym also the domino 〈tail(σ), Inv(R),A〉. For a contradiction, suppose that
∀U.A < tail(σ). By condition deluni, the latter implies that DT contains a domino 〈tail(σ),R′,A′〉.
According to deluni, we find that σ′ = σ〈tail(σ),R′,A′〉 is an I-individual such that 〈σ,σ′〉 ∈ UI

and σ′ < DI. But then σ < (∀U.A)I, yielding the required contradiction.
For the other direction, assume that ∀U.A ∈ tail(σ). According to the construction of the domino
model, there are two possible cases for elements σ′ with 〈σ,σ′〉 ∈ UI:

TYPE-ELIMINATION-BASED REASONING FOR SHIQbs 11

• σ′ = σ〈tail(σ),R, tail(σ′)〉 with R ⊢ U. Since DT ⊆ D0, 〈tail(σ),R, tail(σ′)〉 must satisfy condi-
tion uni, and thus A ∈ tail(σ′).
• σ = σ′〈tail(σ′),R, tail(σ)〉 with Inv(R) ⊢ U. By condition sym, DT also contains the domino
〈tail(σ), Inv(R), tail(σ′)〉, and we can again invoke uni to conclude A ∈ tail(σ′).

Thus, A ∈ tail(σ′) for all U-successors σ′ of σ, and hence σ ∈ (∀U.A)I as claimed.

For the rest of the claim, note that any domino 〈A,R,B〉must satisfy condition kb. Using condition
sym, we conclude that for any σ ∈ ∆I, the axiom

�
D∈tail(σ) D ⊑ C is a tautology for all C ∈

FLAT(T). As shown above, σ ∈ DI for all D ∈ tail(σ), and thus σ ∈ C. Hence every individual of
I is an instance of each concept of FLAT(T) as required.

The previous lemma shows soundness of our decision algorithm. Conversely, completeness is
shown by the following lemma.

Lemma 3.6. Consider an ALCIb TBox T. If T is satisfiable, then its canonical domino set DT is

nonempty.

Proof. This is a straightforward consequence of Lemma 3.4: given a model I of T, the domino
projection πP(FLAT(T))(I) is nonempty and (by Lemma 3.4) contained in DT. Hence DT is nonempty.

We now are ready to establish our main result on checking TBox satisfiability and the complexity
of the given algorithm:

Theorem 3.7. An ALCIb TBox T is satisfiable iff its canonical domino set DT is nonempty. Al-

gorithm 1 thus describes a decision procedure for satisfiability of ALCIb TBoxes. Moreover, the

algorithm runs in exponential time and hence is worst-case optimal.

Proof. The first proposition of the theorem is a direct consequence of Lemma 3.5, Proposition 2.3
(page 6), and Lemma 3.6.
For worst-case optimality, recall that SHIQbs is ExpTime-complete (see Rudolph et al., 2008a,
where ExpTime-hardness already directly follows from the results by Schild, 1991). Now, consid-
ering the presented algorithm, we find that the set C = P(FLAT(T)) is linearly bounded by the size
of T, whence the size of the set of all dominoes is exponentially bounded by |T|. Applying the
conditions kb, ex, and uni to obtain D0 can be done by subsequently checking every domino, each
check taking at most O(|T|) time, hence the overall time for that step is exponentially bounded. Now,
consider the iterated application of the delex, deluni, and sym conditions. By the same argumenta-
tion as for kb, ex, and uni, one iteration takes exponential time. On the other hand, each iteration
step reduces the domino set by at least one domino (otherwise, the termination criterion would be
satisfied) which gives us a bound of exponentially many steps. Finally note that exponentially many
exponentially long steps still yield a procedure that is overall exponentially bounded.

4. Sets as Boolean Functions

The algorithm of the previous section may seem to be of little practical use, since it requires com-
putations on an exponentially large set of dominoes. The required computation steps, however, can
also be accomplished with an indirect representation of the possible dominoes based on Boolean
functions. Indeed, every propositional logic formula represents a set of propositional interpretations
for which the function evaluates to true. Using a suitable encoding, each propositional interpretation
can be understood as a domino, and a propositional formula can represent a domino set.

12 S. RUDOLPH, M. KRÖTZSCH, AND P. HITZLER

As a representation of propositional formulae well-proven in other contexts, we use binary decision
diagrams (BDDs). These data structures have been used to represent complex Boolean functions
in model-checking (see, e.g., Burch et al., 1990). A particular optimization of these structures are
ordered BDDs (OBDDs) that use a dynamic precedence order of propositional variables to obtain
compressed representations. We provide a first introduction to OBDDs below. A more detailed
exposition and further literature pointers are given by Huth and Ryan (2000).

4.1. Boolean Functions and Operations. We first explain how sets can be represented by means
of Boolean functions. This will enable us, given a fixed finite base set S , to represent every family
of sets S ⊆ 2S by a single Boolean function.
A Boolean function on a set Var of variables is a function ϕ : 2Var → {true, false}. The underlying
intuition is that ϕ(V) computes the truth value of a Boolean formula based on the assumption that
exactly the variables of V are set to true. A simple example are the functions ~true� and ~false�,
that map every input to true or false, respectively. Another example are so-called characteristic

functions of the form ~v�χ for some v ∈ Var, which are defined as ~v�χ(V) ≔ true iff v ∈ V .
Boolean functions over the same set of variables can be combined and modified in several ways.
Especially, there are the obvious Boolean operators for negation, conjunction, disjunction, and im-
plication. By slight abuse of notation, we will use the common (syntactic) operator symbols ¬, ∧,
∨, and → to also represent such (semantic) operators on Boolean functions. Given, e.g., Boolean
functions ϕ and ψ, we find that (ϕ ∧ ψ)(V) = true iff ϕ(V) = true and ψ(V) = true. Note that the
result of the application of ∧ results in another Boolean function, and is not to be understood as a
syntactic logical formula.
Another operation on Boolean functions is existential quantification over a set of variables V ⊆

Var, written as ∃V.ϕ for some function ϕ. Given an input set W ⊆ Var of variables, we define
(∃V.ϕ)(W) = true iff there is some V ′ ⊆ V such that ϕ(V ′ ∪ (W \ V)) = true. In other words,
there must be a way to set truth values of variables in V such that ϕ evaluates to true. Universal
quantification is defined analogously, and we thus have ∀V.ϕ ≔ ¬∃V.¬ϕ as usual. Mark that our use
of ∃ and ∀ overloads notation, and should not be confused with role restrictions in DL expressions.

4.2. Ordered Binary Decision Diagrams. Binary Decision Diagrams (BDDs), intuitively speak-
ing, are a generalization of decision trees that allows for the reuse of nodes. Structurally, BDDs are
directed acyclic graphs whose nodes are labeled by variables from some set Var. The only exception
are two terminal nodes that are labeled by true and false, respectively. Every non-terminal node has
two outgoing edges, corresponding to the two possible truth values of the variable.

Definition 4.1. A BDD is a tuple O = 〈N, nroot, n true, n false, low, high,Var, λ〉 where

• N is a finite set called nodes,
• nroot ∈ N is called the root node,
• n true, n false ∈ N are called the terminal nodes,
• low, high : N \ {n true, n false} → N are two child functions assigning to every non-terminal node

a low and a high child node. Furthermore the graph obtained by iterated application has to be
acyclic, i.e., for no node n exists a sequence of applications of low and high resulting in n again.
• Var is a finite set of variables.
• λ : N\{n true, n false} → Var is the labeling function assigning to every non-terminal node a variable

from Var.

TYPE-ELIMINATION-BASED REASONING FOR SHIQbs 13

OBDDs are a particular realization of BDDs where a certain ordering is imposed on variables to
achieve more efficient representations. We will not require to consider the background of this opti-
mization in here. Every BDD based on a variable set Var = {x1, . . . , xn} represents an n-ary Boolean
function ϕ : 2Var → {true, false}.

Definition 4.2. Given a BDDO = 〈N, nroot, n true, n false, low, high,Var, λ〉 the Boolean function ϕO :
2Var → {true, false} is defined recursively as follows:

ϕO ≔ ϕnroot
ϕn true

= ~true� ϕn false
= ~false�

ϕn =
(

¬~λ(n)�χ ∧ ϕlow(n)

)

∨
(

~λ(n)�χ ∧ ϕhigh(n)

)

for n ∈ N \ {n true, n false}

In other words, the value ϕ(V) for some V ⊆ Var is determined by traversing the BDD, starting from
the root node: at a node labeled with v ∈ Var, the evaluation proceeds with the node connected by
the high-edge if v ∈ V , and with the node connected by the low-edge otherwise. If a terminal node
is reached, its label is returned as a result.
BDDs for some Boolean formulas might be exponentially large in general (compared to |Var|),
but often there is a representation which allows for BDDs of manageable size. Finding the opti-
mal representation is NP-complete, but heuristics have shown to yield good approximate solutions
(Wegener, 2004). Hence (O)BDDs are often conceived as efficiently compressed representations
of Boolean functions. In addition, many operations on Boolean functions – such as the aforemen-
tioned negation, conjunction, disjunction, implication as well as propositional quantification – can
be performed directly on the corresponding OBDDs by fast algorithms.

4.3. Translating Dominos into Boolean Functions. To apply the above machinery to DL rea-
soning, consider a flattened ALCIb TBox T = FLAT(T). A set of propositional variables Var is
defined as Var ≔ R∪

(

P(T)×{1, 2}
)

. We thus obtain a bijection between dominoes over the set P(T)
and sets V ⊆ Var given by 〈A,R,B〉 7→ (A × {1}) ∪ R ∪ (B × {2}). Hence, any Boolean function
over Var represents a domino set as the collection of all variable sets for which it evaluates to true.
We can use this observation to rephrase the construction of DT in Algorithm 1 into an equivalent
construction of a function ~T�.
We first represent DL concepts C and role expressions U by characteristic Boolean functions over
Var as follows.

~C� ≔

¬~D� if C = ¬D

~D� ∧ ~E� if C = D ⊓ E

~D� ∨ ~E� if C = D ⊔ E

~〈C, 1〉�χ if C ∈ P(T)

~U� ≔

¬~V� if U = ¬V

~V� ∧ ~W� if U = V ⊓W

~V� ∨ ~W� if U = V ⊔W

~U�χ if U ∈ R

We can now define a decision procedure based on Boolean functions, as displayed in Algorithm 2.
This algorithm is an accurate translation of Algorithm 1, where the intermediate Boolean functions
ϕkb, ϕex, ϕuni, ϕdelex

i
, ϕdeluni

i
, ϕ

sym

i
represent domino sets containing all dominoes satisfying the re-

spective conditions from Algorithm 1. By computing their conjunction with each other (and, for
the latter three, with the Boolean function representing the domino set from the previous iteration)
we intersect the respective domino sets which results in their successive pruning as described in
Algorithm 1. The algorithm is a correct procedure for checking consistency of ALCIb TBoxes
as unsatisfiability of T coincides with ~T� ≡ false. Note that all necessary computation steps can
indeed be implemented algorithmically: Any Boolean function can be evaluated for a fixed variable
input V , and equality of two functions can (naively) be checked by comparing the results for all

14 S. RUDOLPH, M. KRÖTZSCH, AND P. HITZLER

Algorithm 2 Computing the boolean representation ~T� of the canonical domino set DT of a TBox

Input: T anALCIb TBox, C = P(FLAT(T))
Output: the canonical domino set of T, represented as Boolean function ~T�

1: ϕkb :=
∧

C∈T

~C�

2: ϕuni :=
∧

∀U.C∈P(T)

~〈∀U.C, 1〉�χ ∧ ~U�→ ~〈C, 2〉�χ

3: ϕex :=
∧

∃U.C∈P(T)

~〈C, 2〉�χ ∧ ~U�→ ~〈∃U.C, 1〉�χ

4: ~T�0 ≔ ϕkb ∧ ϕuni ∧ ϕex

5: i := 0
6: repeat

7: i := i+1

8: ϕdelex
i

:=
∧

∃U.C∈P(T)

~〈∃U.C, 1〉�χ → ∃
(

R ∪ C×{2}
)

.
(

~T�i−1 ∧ ~U� ∧ ~〈C, 2〉�χ
)

9: ϕdeluni
i

:=
∧

∀U.C∈P(T)

~〈∀U.C, 1〉�χ → ¬∃
(

R ∪ C×{2}
)

.
(

~T�i−1 ∧ ~U� ∧ ¬~〈C, 2〉�χ
)

10: ϕ
sym

i
(V) := ~T�i−1

(

{

〈D, 1〉 | 〈D, 2〉 ∈ V
}

∪
{

Inv(R) | R ∈ V
}

∪
{

〈D, 2〉 | 〈D, 1〉 ∈ V
}

)

11: ~T�i ≔ ~T�i−1 ∧ ϕ
delex
i
∧ ϕdeluni

i
∧ ϕ

sym

i

12: until ~T�i ≡ ~T�i−1

13: ~T� ≔ ~T�i
14: return ~T�

possible input sets (which are finitely many since Var is finite). The algorithm terminates since the
sequence is decreasing w.r.t. {V | ~T�i(V) = true}, and since there are only finitely many Boolean
functions over Var.

Proposition 4.3. For anyALCIb TBox T and variable set V ∈ Var as above, we find that ~T�(V) =
true iff V represents a domino in DT as defined in Definition 1.

Proof. It is easy to see that the Boolean operations used in constructing ~T� directly correspond to
the set operations in Definition 1, such that ~T�(V) = true iff V represents a domino in DKB.

All required operations and checks are provided by standard OBDD implementations, and thus can
be realized in practice.

In the remainder of this section, we illustrate the above algorithm by an extended example to which
we will also come back to explain the later extensions of the inference algorithm. Therefore, con-
sider the following ALCIb knowledge base KB.

PhDStudent ⊑ ∃has.Diploma

Diploma ⊑ ∀has−.Graduate

Diploma ⊓ Graduate ⊑ ⊥

Diploma(laureus) PhDStudent(laureus)

For now, we are only interested in the terminological axioms, the consistency of which we would
like to establish. As a first transformation step, all TBox axioms are transformed into the following

TYPE-ELIMINATION-BASED REASONING FOR SHIQbs 15

h iPhDStudent,1

h9 h9has.Diploma,1i has.Diploma,1i

h iDiploma,2

h iDiploma,1

h iGraduate,1

h iGraduate,2

has

has

h8 h8has .Graduate,1i has .Graduate,1i- -

-

1 0

h iPhDStudent,1

h9has.Diploma,1i

h iDiploma,1

h iGraduate,1

h8has .Graduate,1i-

1 0

Figure 1: OBDDs arising when processing the terminology of KB; following traditional BDD no-
tation, solid arrows indicate high successors, dashed arrows indicate low successors, and
the topmost node is the root

universally valid concepts in negation normal form:

¬PhDStudent ⊔ ∃has.Diploma ¬Diploma ⊔ ∀has−.Graduate ¬Diploma ⊔ ¬Graduate

The flattening step can be skipped since all concepts are already flat. Now the relevant concept
expressions for describing dominoes are given by the set

P(T) = {∃has.Diploma,∀has−.Graduate,Diploma,Graduate,PhDStudent}.

We thus obtain the following set Var of Boolean variables (although Var is just a set, our presentation
follows the domino intuition):

〈∃has.Diploma, 1〉 has 〈∃has.Diploma, 2〉
〈∀has−.Graduate, 1〉 has− 〈∀has−.Graduate, 2〉
〈Diploma, 1〉 〈Diploma, 2〉
〈Graduate, 1〉 〈Graduate, 2〉
〈PhDStudent, 1〉 〈PhDStudent, 2〉

We are now ready to construct the OBDDs as described. Figure 1 (left) displays an OBDD corre-
sponding to the following Boolean function:

ϕkb ≔ (¬~〈PhDStudent, 1〉�χ ∨ ~〈∃has.Diploma, 1〉�χ)
∧(¬~〈Diploma, 1〉�χ ∨ ~〈∀has−.Graduate, 1〉�χ)
∧(¬~〈Diploma, 1〉�χ ∨ ¬~〈Graduate, 1〉�χ)

16 S. RUDOLPH, M. KRÖTZSCH, AND P. HITZLER

and Fig. 1 (right) shows the OBDD representing the function ~T�0 obtained from ϕkb by conjunc-
tively adding

ϕex = ¬~〈Diploma, 2〉�χ ∨ ¬~has�χ ∨ ~〈∃has.Diploma, 1〉�χ and
ϕuni = ¬~〈∀has−.Graduate, 1〉�χ ∨ ¬~has−�χ ∨ ~〈Graduate, 2〉�χ.

Then, after the first iteration of the algorithm, we arrive at an OBDD representing ~T�1 which is
displayed in Fig. 2. This OBDD turns out to be the final result ~T�. The input TBox is derived to
be consistent since there is a path from the root node to 1.

h iPhDStudent,1

h iPhDStudent,2 h iPhDStudent,2 h iPhDStudent,2 h iPhDStudent,2

h9 h9 h9 h9

h9

has.Diploma,2i has.Diploma,2i ,has.Diploma.,2,i has.Diploma,2i

has.Diploma,1i

h iDiploma,2 h iDiploma,2 h iDiploma,2 h iDiploma,2

h iDiploma,1 h iDiploma,1 h iDiploma,1

h iGraduate,1 h iGraduate,1 h iGraduate,1

h iGraduate,2h iGraduate,2 h iGraduate,2 h iGraduate,2

has has has

has

h8

h8 h8 h8

has .Graduate,1i

has .Graduate,2i has .Graduate,2i has .Graduate,2i

-

- - -

- - -

1

h8has .Graduate,1i-

Figure 2: Final OBDD obtained when processing KB, using notation as in Fig. 1; arrows to the 0
node have been omitted for better readability

TYPE-ELIMINATION-BASED REASONING FOR SHIQbs 17

5. Reasoning with ABox and DL-Safe Rules via Disjunctive Datalog

The above algorithm does not yet take any assertional information about individuals into account,
nor does it cover DL-safe rules. The proof of Theorem 3.7 hinges upon the fact that the constructed
domino set DT induces a model of the terminology T, and Lemma 3.4 states that this is indeed
the greatest model in a certain sense. This provides some first intuition of the problems arising
when ABoxes are to be added to the knowledge base: ALCIb knowledge bases with ABoxes do
generally not have a greatest model.
We thus employ disjunctive Datalog (see Eiter et al., 1997) as a paradigm that allows us to incor-
porate ABoxes into the reasoning process. The basic idea is to forge a Datalog program that –
depending on two given individuals a and b – describes possible dominoes that may connect a and
b in models of the knowledge base. There might be various, irreconcilable such dominoes in differ-
ent models, but disjunctive Datalog supports such choice since it admits multiple minimal models.
As long as the knowledge base has some model, there is at least one possible domino for every pair
of individuals (possibly without connecting roles) – only if this is not the case, the Datalog program
will infer a contradiction. Another reason for choosing disjunctive Datalog is that it allows for the
straightforward incorporation of DL-safe rules.
We use the OBDD computed from the terminology as a kind of pre-compiled version of the relevant
terminological information. ABox information is then considered as an incomplete specification of
dominoes that must be accepted by the OBDD, and the Datalog program simulates the OBDD’s
evaluation for each of those.

Definition 5.1. Consider an extended ALCIb knowledge base KB = 〈T,P〉, and an OBDD O =
〈N, nroot, n true, n false, low, high,Var, λ〉 that represents the function ~T� as defined by Algorithm 2. A
disjunctive Datalog program DD(KB) is defined as follows. DD(KB) uses the following predicates:

• a unary predicate SC for every concept expression C ∈ P(FLAT(T)),
• a binary predicate SR for every atomic role R ∈ NR,
• a binary predicate An for every OBDD node n ∈ N,
• the equality predicate ≈.

The constants in DD(KB) are the individual names used in P. The disjunctive Datalog rules of
DD(KB) are defined as follows:8

(1) For every DL-safe rule B → H from RB, DD(KB) contains the rule obtained from B → H by
replacing all C(x) by SC(x) and all R(x, y) by SR(x, y).

(2) DD(KB) contains rules→ Anroot
(x, y) and An false

(x, y)→.
(3) If n ∈ N with λ(n) = 〈C, 1〉 then DD(KB) contains rules

SC(x) ∧ An(x, y)→ Ahigh(n)(x, y) and An(x, y)→ Alow(n)(x, y) ∨ SC(x).
(4) If n ∈ N with λ(n) = 〈C, 2〉 then DD(KB) contains rules

SC(y) ∧ An(x, y)→ Ahigh(n)(x, y) and An(x, y)→ Alow(n)(x, y) ∨ SC(y).
(5) If n ∈ N with λ(n) = R for some R ∈ NR then DD(KB) contains rules

SR(x, y) ∧ An(x, y)→ Ahigh(n)(x, y) and An(x, y)→ Alow(n)(x, y) ∨ SR(x, y).
(6) If n ∈ N with λ(n) = R− for some R ∈ NR then DD(KB) contains rules

SR(y, x) ∧ An(x, y)→ Ahigh(n)(x, y) and An(x, y)→ Alow(n)(x, y) ∨ SR(y, x).

Note that the arity of predicates in DD(KB) is bounded by 2. Hence, the number of ground atoms
is quadratic with respect to the number of constants (individual names), whence the worst-case
complexity for satisfiability checking is NP w.r.t. the number of individuals (and especially w.r.t.

8Note that we use disjunctive Datalog with equality. However, every disjunctive Datalog program with equality can
be reduced to one without equality in linear time, as equality can be axiomatized (see, e.g., Fitting, 1996).

18 S. RUDOLPH, M. KRÖTZSCH, AND P. HITZLER

the number of facts), as opposed to the NExpTime complexity of disjunctive Datalog in general
(Dantsin et al., 2001). Note that, of course, DD(KB) may still be exponential in the size of KB
in the worst case: DD(KB) is linear in the size of the underlying OBDD which in turn may have
exponential size compared to the set of propositional variables used in the represented Boolean
functions. Finally the number of these variables is linearly bounded by the size of KB. It remains
to show the correctness of the Datalog translation.

Lemma 5.2. Given an extended ALCIb knowledge base KB such that I is a model of KB, there

is a model J of DD(KB) such that

• I |= C(a) iff J |= SC(a),
• I |= R(a, b) iff J |= SR(a, b), and

• I |= a ≈ b iff J |= a ≈ b.

for any a, b ∈ NI , C ∈ NC , and R ∈ NR.

Proof. Let KB = 〈T,P〉. We define an interpretation J of DD(KB). The domain of J contains
the named individuals from I, i.e., ∆J = {aI | a ∈ NI}. For individuals a, we set aJ ≔ aI. The
interpretation of predicate symbols is now defined as follows (note that A

J
n is defined inductively

on the path length from nroot to n):

• δ ∈ S
J

C
iff δ ∈ CI

• 〈δ1, δ2〉 ∈ S
J

R
iff 〈δ1, δ2〉 ∈ RI

• 〈δ1, δ2〉 ∈ A
J
nroot

for all δ1, δ2 ∈ ∆
J

• 〈δ1, δ2〉 ∈ A
J
n for n , nroot if there is a node n′ such that 〈δ1, δ2〉 ∈ A

J
n′

, and one of the following
is the case:
− λ(n′) = 〈C, i〉, for some i ∈ {1, 2}, and n = low(n′) and δi < CI

− λ(n′) = 〈C, i〉, for some i ∈ {1, 2}, and n = high(n′) and δi ∈ CI

− λ(n′) = R and n = low(n′) and 〈δ1, δ2〉 < RI

− λ(n′) = R and n = high(n′) and 〈δ1, δ2〉 ∈ RI

Mark that, in the last two items, R is any role expression from Var, i.e., a role name or its inverse.
Also note that due to the acyclicity of O, the interpretation of the A-predicates is indeed well-
defined. We now show that J is a model of DD(KB). To this end, first note that the extensions of
predicates SC and SR in J were defined to coincide with the extensions of C and R on the named
individuals of I. Since I satisfies P, all rules introduced in item (1) of Definition 5.1 are satisfied by
J . The restriction of DL-safe rules to named individuals can be discarded here since ∆J contains
only named individuals from ∆I.
Similarly, we find that the rules of cases (3)–(6) are satisfied by J . Consider the first rule of (3),
SC(x) ∧ An(x, y) → Ahigh(n)(x, y), and assume that δ1 ∈ S

J

C
and 〈δ1, δ2〉 ∈ A

J
n . Thus δ1 ∈ CI. Using

the preconditions of (3) and the definition of J , we conclude that 〈δ1, δ2〉 ∈ A
J

high(n). The second
rule of case (3) covers the analogous negative case. All other cases can be treated similarly.
Finally, for case (2), we need to show that A

J
n false
= ∅. For that, we first explicate the correspondence

between domain elements of I and sets of variables of O. Given elements δ1, δ2 ∈ ∆
I we define

Vδ1,δ2 ≔ {〈C, n〉 | C ∈ P(FLAT(T)), δn ∈ CI} ∪ {R | 〈δ1, δ2〉 ∈ RI}, the set of variables corresponding
to the I-domino between δ1 and δ2.
Now A

J
n false
= ∅ clearly is a consequence of the following claim: for all δ1, δ2 ∈ ∆

I and all n ∈ N,
we find that 〈δ1, δ2〉 ∈ An implies ϕn(Vδ1,δ2) = true (using the notation of Definition 4.2). The proof
proceeds by induction. For the case n = nroot, we find that ϕnroot

= ~T�. Since Vδ1,δ2 represents a
domino of I, the claim thus follows by combining Proposition 4.3 and Lemma 3.4.

TYPE-ELIMINATION-BASED REASONING FOR SHIQbs 19

For the induction step, let n be a node such that 〈δ1, δ2〉 ∈ An follows from the inductive definition of
J based on some predecessor node n′ for which the claim has already been established. Note that n′

may not be unique. The cases in the definition of J must be considered individually. Thus assume
n′, n, and δ1 satisfy the first case, and that 〈δ1, δ2〉 ∈ An. By induction hypothesis, ϕn′(Vδ1,δ2) = true,
and by Definition 4.2 the given case yields ϕn(Vδ1,δ2) = true as well. The other cases are similar.

Lemma 5.3. Given an ALCIb knowledge base KB such that J is a model of DD(KB), there is a

model I of KB such that

• I |= C(a) iff J |= SC(a),
• I |= R(a, b) iff J |= SR(a, b), and

• I |= a ≈ b iff J |= a ≈ b,

for any a, b ∈ NI , C ∈ NC , and R ∈ NR.

Proof. Let KB = 〈T,P〉. We construct an interpretation I whose domain ∆I consists of all se-
quences starting with an individual name followed by a (possibly empty) sequence of dominoes
from DT such that, for every σ ∈ ∆I,

• if σ begins with a〈A,R,B〉, then {C | C ∈ P(FLAT(T)), aJ ∈ S
J
C
} = A, and

• if σ contains subsequent letters 〈A,R,B〉 and 〈A′,R′,B′〉, then B = A′.

For a sequence σ = a〈A1,R1,A2〉〈A2,R2,A3〉 . . . 〈Ai−1,Ri−1,Ai〉, we define tail(σ) ≔ Ai, whereas
for a σ = a we define tail(σ) ≔ {C | C ∈ P(FLAT(T)), aJ ∈ S

J

C
}. Now the mappings of I are

defined as follows:

• for a ∈ NI , we have aI ≔ a,
• for A ∈ NC , we have σ ∈ AI iff A ∈ tail(σ),
• for R ∈ NR, we have 〈σ1, σ2〉 ∈ RI if one of the following holds
− σ1 = a ∈ NI and σ2 = b ∈ NI and 〈a, b〉 ∈ S

J

R
, or

− σ2 = σ1〈A,R,B〉 with R ∈ R, or
− σ1 = σ2〈A,R,B〉 with Inv(R) ∈ R.

Thus, intuitively, I is constructed by extracting the named individuals as well their concept (and
mutual role) memberships from J , and appending an appropriate domino-constructed tree model
to each of those named individuals. We proceed by showing that I is indeed a model of KB.
First note that the definition of I ensures that, for all individual names a, b ∈ NI , we indeed have
I |= C(a) iff J |= S C(a), I |= R(a, b) iff J |= S R(a, b), and I |= a ≈ b iff J |= a ≈ b. Therefore, the
validity of the rules introduced via case (1) ensures that I is a model of P.
For showing that the TBox is also satisfied, we begin with the following auxiliary observation: for
every two individual names a, b ∈ NI , and Rab ≔ {R | 〈a

J , bJ 〉 ∈ S
J

R
} ∪ {Inv(R) | 〈bJ , aJ 〉 ∈ S

J

R
},

the domino 〈tail(a),Rab, tail(b)〉 is contained in DT (Claim †). Using Proposition 4.3, it suffices to
show that the Boolean function ~T� if applied to Va,b ≔ {tail(a) × {1} ∪ Rab ∪ tail(b) × {2}} yields
true. Since ~T� = ϕnroot

, this is obtained by showing the following: for any a, b ∈ NI , we find
that 〈aJ , bJ 〉 ∈ A

J
n implies ϕn(Va,b) = true. Indeed, (†) follows since we have 〈aJ , bJ 〉 ∈ A

J
nroot

due to the first rule of (2) in Definition 5.1. We proceed by induction, starting at the leafs of the
OBDD. The case 〈a, b〉 ∈ AIn true

is immediate, and 〈a, b〉 ∈ AIn false
is excluded by the second rule of

(2). For the induction step, consider nodes n, n′ ∈ N such that either λ(n) ∈ Va,b and n′ = high(n),
or λ(n) < Va,b and n′ = low(n). We assume that 〈aJ , bJ 〉 ∈ A

J
n , and, by induction, that the claim

holds for n′. If λn = 〈C, 1〉, then one of the rules of case (3) applies to aJ and bJ . In both cases, we
can infer 〈aJ , bJ 〉 ∈ A

J
n′

, and hence ϕn′(Va,b) = true. Together with the assumptions for this case,
Definition 4.2 implies ϕn(Va,b) = true, as required. The other cases are analogous. This shows (†).

20 S. RUDOLPH, M. KRÖTZSCH, AND P. HITZLER

Now we can proceed to show that all individuals of I are contained in the extension of each concept
expression of FLAT(T). To this end, we first show that σ ∈ CI iffC ∈ tail(σ) for all C ∈ P(FLAT(T)).
If C ∈ NC is atomic, this follows directly from the definition of I. The remaining cases that may
occur in P(FLAT(T)) are C = ∃U.A and C = ∀U.A.
First consider the case C = ∃U.A and assume that σ ∈ CI. Thus there is σ′ ∈ ∆I with 〈σ,σ′〉 ∈ UI

and σ′ ∈ AI. The construction of the domino model admits three possible cases:

• σ,σ′ ∈ NI and Rσσ′ ⊢ U and A ∈ tail(σ′). Now by (†), the domino 〈tail(σ),Rσσ′ , tail(σ′)〉
satisfies condition ex of Algorithm 1, and thus C ∈ tail(σ) as required.
• σ′ = σ〈tail(σ),R, tail(σ′)〉 with R ⊢ U and A ∈ tail(σ′). Since DT ⊆ D0, we find that
〈tail(σ),R, tail(σ′)〉 satisfies condition ex, and thus C ∈ tail(σ) as required.
• σ = σ′〈tail(σ′),R, tail(σ)〉 with Inv(R) ⊢ U and A ∈ tail(σ′). By condition sym, DT contains the

domino 〈tail(σ), Inv(R), tail(σ′)〉, and again we use ex to conclude C ∈ tail(σ).

For the converse, assume that ∃U.A ∈ tail(σ). So DT contains a domino 〈A,R, tail(σ)〉. This is
obvious if the sequence σ ends with a domino. If σ = a ∈ NI , then it follows by applying (†) to
a with the first individual being arbitrary. By sym DT also contains the domino 〈tail(σ),R,A〉. By
condition delex, the latter implies that DT contains a domino 〈tail(σ),R′,A′〉 such that R′ ⊢ U and
A ∈ A′. Thus σ′ = σ〈tail(σ),R′,A′〉 is an I-individual such that 〈σ,σ′〉 ∈ UI and σ′ ∈ AI, and
we obtain σ ∈ (∃U.A)I as claimed.
For the second case, consider C = ∀U.A and assume that σ ∈ CI. As above, we find that DT

contains some domino 〈A,R, tail(σ)〉, where (†) is needed if σ ∈ NI . By sym we find a domino
〈tail(σ),R,A〉. For a contradiction, suppose that ∀U.A < tail(σ). By condition deluni, the latter
implies that DT contains a domino 〈tail(σ),R′,A′〉 such that R′ ⊢ U and A < A′. Thus σ′ =
σ〈tail(σ),R′,A′〉 is an I-individual such that 〈σ,σ′〉 ∈ UI and σ′ < AI. But then σ < (∀U.A)I,
which is the required contradiction.
For the other direction, assume that ∀U.A ∈ tail(σ). According to the construction of I, for all
elements σ′ with 〈σ,σ′〉 ∈ UI, there are three possible cases:

• σ,σ′ ∈ NI and Rσσ′ ⊢ U. Now by (†), the domino 〈tail(σ),Rσσ′ , tail(σ′)〉 satisfies condition uni,
whence A ∈ tail(σ′).
• σ′ = σ〈tail(σ),R, tail(σ′)〉 with R ⊢ U. Since DT ⊆ D0, 〈tail(σ),R, tail(σ′)〉 must satisfy condi-

tion uni, and thus A ∈ tail(σ′).
• σ = σ′〈tail(σ′),R, tail(σ)〉 with Inv(R) ⊢ U. By condition sym, DT also contains the domino
〈tail(σ), Inv(R), tail(σ′)〉, and we can again use uni to conclude A ∈ tail(σ′).

Thus, A ∈ tail(σ′) for all U-successors σ′ of σ, and hence σ ∈ (∀U.A)I as claimed.
To finish the proof, note that any domino 〈A,R,B〉 ∈ DT satisfies condition kb. Using sym, we
have that for any σ ∈ ∆I, the axiom

�
D∈tail(σ) D ⊑ C is a tautology for all C ∈ FLAT(T). As shown

above, σ ∈ DI for all D ∈ tail(σ), and thus σ ∈ CI. Hence every individual of I is an instance of
each concept of FLAT(T) as required.

Lemmas 5.2 and 5.3 give rise to the following theorem which finishes the technical development of
this section by showing that DD(KB) faithfully captures both positive and negative ground conclu-
sions of KB, and in particular that DD(KB) and KB are equisatisfiable.

Theorem 5.4. For every extended ALCIb knowledge base KB hold

• KB and DD(KB) are equisatisfiable,

• KB |= C(a) iff DD(KB) |= SC(a),
• KB |= R(a, b) iff DD(KB) |= SR(a, b), and

• KB |= a ≈ b iff DD(KB) |= a ≈ b,

TYPE-ELIMINATION-BASED REASONING FOR SHIQbs 21

for any a, b ∈ NI , C ∈ NC , and R ∈ NR.

Proof. Immediate from Lemma 5.2 and Lemma 5.3.

Coming back to our example knowledge base KB from Section 4, the corresponding disjunctive
Datalog program DD(KB) contains 70 rules: two rules for each of the 33 labeled nodes from the
OBDD displayed in Fig. 2, the two rules→ Anroot

(x, y) and An false
(x, y) → as well as the two rules→

SDiploma(laureus) and→ SPhDStudent(laureus) introduced by conceiving the two ABox statements as
DL-safe rules and translating them accordingly. The program turns out to be unsatisfiable, witnessed
by the unsatisfiable subprogram displayed in Fig. 3.

→ SDiploma(laureus) → SPhDStudent(laureus)
→ A0(x, y)

A0(x, y) ∧ S∃has.Diploma(x)→ A5(x, y) A0(x, y) → A1(x, y) ∨ S∃has.Diploma(x)
A1(x, y) ∧ SPhDS tudent(x)→ Afalse(x, y)

A5(x, y) ∧ S∀has−.Graduate(y)→ A9(x, y) A5(x, y) → A8(x, y) ∨ S∀has− .Graduate(y)
A8(x, y) ∧ SGraduate(y)→ A13(x, y) A8(x, y) → A12(x, y) ∨ SGraduate(y)
A9(x, y) ∧ SGraduate(y)→ A13(x, y) A9(x, y) → A16(x, y) ∨ SGraduate(y)
A12(x, y) ∧ SDiploma(y)→ Afalse(x, y)
A13(x, y) ∧ SDiploma(y)→ Afalse(x, y)

A16(x, y) ∧ S∃has.Diploma(y)→ Afalse(x, y) A16(x, y) → A20(x, y) ∨ S∃has.Diploma(y)
A20(x, y) ∧ SPhDS tudent(y)→ Afalse(x, y)

Afalse(x, y)→

Figure 3: Unsatisfiable subprogram of DD(KB) witnessing unsatisfiability of KB

6. Polynomial Transformation from SHIQbs toALCIb

In this section, we present a stepwise satisfiability-preserving transformation from the description
logic SHIQbs to the more restricted ALCIb. This transformation is necessary as our type-
elimination method applies directly only to the latter.

6.1. Unravelings. For our further considerations, we will use a well-known model transformation
technique which will come handy for showing equisatisfiability of knowledge base transformations
introduced later on (for an introductory account on unravelings in a DL setting cf., e.g., Rudolph
(2011)). Essentially, the transformation takes an arbitrary model of a SHIQbs knowledge base and
converts it into a model that is “tree-like”. We start with some preliminary definitions. The first one
exploits that role subsumption on non-simple roles can be decided by an easy syntactic check that
takes only role hierarchy axioms into account.

Definition 6.1. Based on a fixed SHIQbs knowledge base KB, we define ⊑∗ as the smallest binary
relation on the non-simple atomic roles Rn such that:

• R ⊑∗ R for every atomic role R,
• R ⊑∗ S and Inv(R) ⊑∗ Inv(S) for every RBox axiom R ⊑ S , and
• R ⊑∗ T whenever R ⊑∗ S and S ⊑∗ T for some atomic role S .

Furthermore, we write R ⊏∗ S whenever R ⊑∗ S and S 6⊑∗ R.

22 S. RUDOLPH, M. KRÖTZSCH, AND P. HITZLER

The next definition introduces a standard model transformation technique that is often used to show
variants of the tree model property of a logic. We adopt the definition of Glimm et al. (2007).

Definition 6.2. Let KB be a consistent extended SHIQbs knowledge base, and let I = 〈∆I, ·I〉 be
a model for KB.
The unraveling of I is an interpretation that is obtained from I as follows. We define the set
S ⊆ (∆I)∗ of sequences to be the smallest set such that

• for every a ∈ NI , aI is a sequence;
• δ1 · · · δn · δn+1 is a sequence, if
− δ1 · · · δn is a sequence,
− δi+1 , δi−1 for all i = 2, . . . , n,
− 〈δn, δn+1〉 ∈ RI for some R ∈ NR.

For each σ = δ1 · · · δn ∈ S , set last(σ) ≔ δn. Now, we define the unraveling of I as the interpretation
J = 〈∆J , ·J〉 with ∆J = S and we define the interpretation of concept and role names as follows
(where σ,σ′ ∈ ∆J are arbitrary sequences in ∆J):

(a) for each a ∈ NI , set aJ ≔ aI;
(b) for each concept name A ∈ NC , set σ ∈ AJ iff last(σ) ∈ AI;
(c) for each role name R ∈ NR, set 〈σ,σ′〉 ∈ RJ iff
• σ′ = σδ for some δ ∈ ∆I and 〈last(σ), last(σ′)〉 ∈ RI or
• σ = σ′δ for some δ ∈ ∆I and 〈last(σ), last(σ′)〉 ∈ RI or
• σ = aI, σ′ = bI for some a, b ∈ NI and 〈aI, bI〉 ∈ RI.

Unraveling a model of an extended SHIQbs knowledge base results in an interpretation that still
satisfies most of the knowledge base’s axioms, except for transitivity axioms. The following defini-
tion provides a “repair strategy” for unravelings such that also the transitivity conditions are again
satisfied. The presented definition is inspired by a similar one by Motik (2006).

Definition 6.3. Given an interpretation I and a knowledge base KB, we define the completion of I
with respect to KB as the new interpretation J = 〈∆J , ·J〉 as follows:

• ∆J ≔ ∆I,
• aJ ≔ aI for every a ∈ NI ,
• AJ ≔ AI for every A ∈ NC ,
• for all simple roles R, we set RJ ≔ RI,
• for all non-simple roles R, RJ is set to the transitive closure of RI if Tra(R) ∈ KB, otherwise

RJ ≔ RI ∪
⋃

S⊏∗R with Tra(S)∈KB or Tra(Inv(S))∈KB(S I)∗, where (S I)∗ denotes the transitive closure

of S I.

Having the above tools at hand, we are now ready to show that unraveling and subsequently com-
pleting a model of an extended knowledge base will result in a model. This correspondence will be
helpful for showing the completeness of the knowledge base transformation steps introduced below.

Lemma 6.4. Let KB be an extended SHIQbs knowledge base and let I be a model of KB. More-

over, let J be the unraveling of I and let K be the completion of J . Then the following hold:

(1) J satisfies all axioms of KB that are not transitivity axioms.

(2) For all sequences σ1, σ2, . . . , σn−1, σn with n > 3 and 〈σi, σi+1〉 ∈ RJ for 1 ≤ i ≤ n, and where

σ1, σn ∈ {a
J | a ∈ NI} and σ2, . . . , σn−1 < {a

J | a ∈ NI}, we have σ1 = σn and σ2 = σn−1.

(3) K is a model of KB.

TYPE-ELIMINATION-BASED REASONING FOR SHIQbs 23

Proof. For the first claim, we investigate all the possible axiom types. First, as I and J coincide
w.r.t. concept and role memberships of all named individuals (i.e., individuals σ for which σ = aI

for some a ∈ NI), they satisfy the same DL-safe rules.
For role hierarchy axioms U ⊑ V with U,V restricted, suppose for a contradiction that J does not
satisfy U ⊑ V , i.e., that there are two elements σ,σ′ ∈ ∆J such that 〈σ,σ′〉 ∈ UJ but 〈σ,σ′〉 < VJ .
As U is restricted, either both σ and σ′ are named individuals or σ′ = σδ or σ = σ′δ. Therefore
we know that 〈last(σ), last(σ′)〉 ∈ UI but 〈last(σ), last(σ′)〉 < VI which would violate U ⊑ V and
hence, gives a contradiction.
Next, we consider TBox axioms (remember that we assume them to be normalized into axioms
⊤ ⊑ C with C in negation normal form). By induction on the role depth, we will show that for
every concept D it holds that σ ∈ DJ iff last(σ) ∈ DI. The satisfaction of ⊤ ⊑ C in J then directly
follows via ∆J = {σ ∈ ∆J | last(σ) ∈ ∆I} = {σ ∈ ∆J | last(σ) ∈ CI} = CJ .
As base case, note that for D ∈ NC , the claim follows by definition, while for D = ⊤ and D = ⊥

the claim trivially holds. For the induction steps, note that (i) the claimed correspondence trans-
fers immediately from concepts to their Boolean combinations and (ii) that for every σ ∈ ∆J , the
function last(·) gives rise to an isomorphism ϕ between the neighborhood of σ in J and the neigh-
borhood of last(σ) in I. More precisely, ϕ maps {σ′ ∈ ∆J | 〈σ,σ′〉 ∈ RJ for some R ∈ R} to
{δ′ ∈ ∆I | 〈last(σ), δ′〉 ∈ RI for some R ∈ R} such that 〈σ,σ′〉 ∈ SJ iff 〈last(σ), ϕ(σ′)〉 ∈ S I for all
roles S ∈ NR as well as σ′ ∈ EJ iff ϕ(σ′) ∈ EI for concepts E that have a smaller role depth than D

(by induction hypothesis). Thereby, the claimed correspondence transfers to existential, universal,
and cardinality restrictions as well.
For the second claim, we observe that by the definition of the unraveling, no individual σ = δ1 . . . δk

can be directly connected by some role to an individual σ′ = δ′1 . . . δ
′
l

with δ1 , δ
′
1 unless k = l = 1

in which case both individuals would be named by construction. On the other hand, every role chain
starting from some named individual δ and not containing any other named individual contains only
individuals of the form δw with w ∈ (∆I)∗. Thus, we conclude that σ1 = σn. Now, suppose
σ2 , σn−1. By construction we have σ2 = σ1δ and σn−1 = σnδ

′ = σ1δ
′ with δ , δ′. However,

then by construction, every role path from σ2 to σn−1 must contain σ1 which is named and hence
contradicts the assumption. Therefore σ2 = σn−1.
Considering the third claim, we easily find that all transitivity axioms as well as role hierarchy
statements are satisfied by construction. For the TBox axioms, the argumentation is similar to
the one used to prove the first claim but it has to be extended by the following observation: By
construction, for all new role instances 〈σ,σ′〉 ∈ RK \ RJ introduced by the completion, there is
already a σ∗ with 〈σ,σ∗〉 ∈ RJ such that 〈σ,σ∗〉 ∈ SJ iff 〈σ,σ′〉 ∈ S I for all roles S ∈ NR as
well as σ∗ ∈ EJ iff σ′ ∈ EI for concepts E. Therefore (and since non-simple roles are forbidden
in cardinality constraints) the concept extensions do not change in K compared to J . Finally, the
DL-safe rules are valid: Due to the first claim they hold in J . Then, they also hold in K since, by
construction K and J coincide when restricted to named individuals. In order to see the latter, note
that J also coincides with I w.r.t. named individuals and I satisfies all transitivity axioms, thus the
completion does not introduce new role instances, as far as named individuals are concerned.

6.2. From SHIQbs to ALCHIQb. As observed by Rudolph et al. (2008a), a slight generaliza-
tion of results by Motik (2006) yields that any SHIQbs knowledge base KB can be transformed
into an equisatisfiableALCHIQb knowledge base. For the case of extended knowledge bases, this
transformation has to be adapted in order to correctly treat the entailment of ground facts R(a, b) for

24 S. RUDOLPH, M. KRÖTZSCH, AND P. HITZLER

non-simple roles R via transitivity. We start by defining this modified transformation, whereby the
ground fact entailment is taken care of by appropriate DL-safe rules.

Definition 6.5. Let cl(KB) denote the smallest set of concept expressions where

• NNF(¬C ⊔ D) ∈ cl(KB) for any TBox axiom C ⊑ D,
• D ∈ cl(KB) for every subexpression D of some concept C ∈ cl(KB),
• NNF(¬C) ∈ cl(KB) for any 6n R.C ∈ cl(KB),
• ∀S .C ∈ cl(KB) whenever Tra(S) ∈ KB and S ⊑∗ R for a role R with ∀R.C ∈ cl(KB).

Finally, let ΘS(KB) denote the extended knowledge base obtained from KB by removing all transi-
tivity axioms Tra(R) and

• adding the axiom ∀R.C ⊑ ∀R.(∀R.C) to KB whenever ∀R.C ∈ cl(KB),
• adding the axiom ∃(R ⊓ R−).⊤ ⊑ SelfR to KB, where SelfR is a fresh concept,
• adding the DL-safe rules SelfR(x)→ R(x, x) and R(x, y),R(y, z)→ R(x, z) to KB.

Note that the knowledge base translation defined by ΘS can be done in polynomial time. We now
show that the defined transformation works as expected, making use of the model transformation
techniques established in the previous section. Parts of the proof are adopted from Motik (2006).

Proposition 6.6. Let KB be an extended SHIQbs knowledge base. Then KB and ΘS(KB) are

equisatisfiable.

Proof. Obviously, every model I of KB is a model of ΘS(KB) if we additionally stipulate SelfR ≔

{δ | 〈δ, δ〉 ∈ RI}.
For the other direction, let K be a model of ΘS(KB). Let now I be the unraveling of K and let J
be the completion of I w.r.t. KB. As ΘS(KB) does not contain any transitivity statements, we know
by Lemma 6.4 (1) that I is a model of ΘS(KB) as well.
As a direct consequence of the definition of the completion, note that for all simple roles V we have
VJ = VI (fact †).
We now prove that J is a model of KB by considering all axioms, starting with the RBox. Every
transitivity axiom of KB is obviously satisfied by the definition ofJ . Moreover, every role inclusion
V ⊑ W axiom is also satisfied:
If both V and W are Boolean role expressions (which by definition contain only simple roles) this
is a trivial consequence of (†). If V is a Boolean role expression and W is a non-simple role, this
follows from (†) and the fact that, by construction ofJ , we have RI ⊆ RJ for every non-simple role
R. As a remaining case, assume that both V and W are non-simple roles. If W is not transitive, this
follows directly from the definition, otherwise we can conclude it from the fact that the transitive
closure is a monotone operation w.r.t. set inclusion.

We proceed by examining the concept expressions C ∈ cl(KB) and show via structural induction
that CI ⊆ CJ . As base case, for every concept of the form A or ¬A for A ∈ NC this claim follows
directly from the definition of J . We proceed with the induction steps for all possible forms of a
complex concept C (mark that all C ∈ cl(KB) are in negation normal form):

• Clearly, if DI1 ⊆ D
J

1 and DI2 ⊆ D
J

2 by induction hypothesis, we can directly conclude (D1 ⊓

D2)I ⊆ (D1 ⊓ D2)J as well as (D1 ⊔ D2)I ⊆ (D1 ⊔ D2)J .
• Likewise, as we have VI ⊆ VJ for all simple role expressions and non-simple roles V and again

DI ⊆ DJ due to the induction hypothesis, we can conclude (∃V.D)I ⊆ (∃V.D)J as well as
(>n V.D)I ⊆ (>n V.D)J .
• Now, consider C = ∀V.D. If V is a simple role expression, we know that VJ = VI, whence we

can derive (∀V.D)I ⊆ (∀V.D)J from the induction hypothesis.

TYPE-ELIMINATION-BASED REASONING FOR SHIQbs 25

It remains to consider the case C = ∀R.D for non-simple roles R. Assume σ ∈ (∀R.D)I. If
there is no σ′ with 〈σ,σ′〉 ∈ RJ , then σ ∈ (∀R.D)J is trivially true. Now assume there are such
σ′. For each of them, we can distinguish two cases:
− 〈σ,σ′〉 ∈ RI, implying σ′ ∈ DI and, via the induction hypothesis, σ′ ∈ DJ ,
− 〈σ,σ′〉 < RI. Yet, by construction of J , this means that there is a role S with S ⊑∗ R and

Tra(S) ∈ KB and a sequence σ = σ0, . . . , σn = σ
′ with 〈σk, σk+1〉 ∈ S I for all 0 ≤ k < n. Then

σ ∈ (∀R.D)I implies σ ∈ (∀S .D)I, and hence σ1 ∈ DI. By Definition 6.5, ΘS(KB) contains
the axiom ∀S .D ⊑ ∀S .(∀S .D), and hence σ1 ∈ (∀S .D)I. Continuing this simple induction, we
find that σk ∈ DI for all k = 1, . . . , n including σn = σ

′.
So we can conclude that for all such σ′ we have σ′ ∈ DI. Via the induction hypothesis follows
σ ∈ DJ and hence we can conclude σ ∈ (∀R.D)J .
• Finally, consider C = 6n R.D and assume σ ∈ (6n R.D)I. From the fact that R must be simple

follows RJ = RI. Moreover, since both D and NNF(¬D) are contained in cl(KB) the induction
hypothesis gives DJ = DI. Those two facts together imply σ ∈ (6n R.D)I.

Now considering an arbitrary KB TBox axiom C ⊑ D, we find NNF(¬C⊔D)I = ∆I as I is a model
of KB. Moreover – by the correspondence just shown – we have NNF(¬C ⊔D)I ⊆ NNF(¬C ⊔D)J

and hence also NNF(¬C ⊔ D)J = ∆J making C ⊑ D an axiom satisfied in J .
For showing that all DL-safe rules from KB are satisfied, we will prove that I and J coincide
on the satisfaction of all ground atoms – satisfaction of KB in J then follows from satisfaction of
KB in I. By construction, this is obviously the case for all atoms of the shape a ≈ b, C(a) and
R(a, b) for a, b ∈ NI , C ∈ NC and R ∈ NR simple. Moreover we have that J |= R(a, b) whenever
I |= R(a, b). To settle the other direction, suppose R non-simple and J |= R(a, b) but I 6|= R(a, b).
But then, there must be a role S ⊑∗ R that is declared transitive and satisfies J |= S (a, b) but
I 6|= S (a, b). Let us assume that S is a minimal such role w.r.t. ⊑∗. Then, by construction, there
must be a sequence aI = σ1, σ2, . . . , σk−1, σk = bI with 〈σi, σi+1〉 ∈ S I. This sequence can be
split into subsequences at elements oI

i
for which there is a oi ∈ NI , i.e., at named individuals,

leaving us with subsequences (i) of subsequent named individuals oI
i
, oI

i+1 or (ii) of the shape oI
i
=

σi,1, σi,2, . . . , σi,n−1, σi,n = oI
i+1 with σi,2, . . . , σi,n−1 unnamed individuals. For case (ii), Lemma 6.4

(2) guarantees oI
i
= oI

i+1 and σi,2 = σi,n−1, which implies oI
i
∈ (∃(R ⊓ R−).⊤)I. Then, due to

the according axiom ∃(R ⊓ R−).⊤ ⊑ SelfR in ΘS(KB), we obtain oI
i
∈ SelfI

R
and by the DL-safe

rule SelfR(x) → R(x, x) we have 〈oI
i
, oI

i
〉 ∈ RI. Hence, we know that R(oi, oi+1) holds in I for

all our subsequences oI
i
. . . oI

i+1. But then, a (possibly iterated) application of the DL-safe rule
R(x, y) ∧ R(y, z) → R(x, z) also yields that R(a, b) is valid in I, contradicting our assumption. This
finishes the proof.

6.3. FromALCHIQb toALCHIb6. We now show how any extended ALCHIQb knowledge
base KB can be transformed into an extendedALCHIb6 knowledge base Θ>(KB). The difference
between the two DLs is that the latter does not allow > number restrictions. This transformation
(as well as the one presented in Section 6.5) makes use of the Boolean role constructors and differs
conceptually and technically from another method for removing qualified number restrictions from
DLs described by DeGiacomo and Lenzerini (1994).
Given anALCHIQb knowledge base KB, theALCHIb6 knowledge baseΘ>(KB) is obtained by
first flattening KB and then iteratively applying the following procedure to FLAT(KB), terminating
if no > restrictions are left:

• Choose an occurrence of >n U.A in the knowledge base.

26 S. RUDOLPH, M. KRÖTZSCH, AND P. HITZLER

• Substitute this occurrence by ∃R1.A ⊓ . . . ⊓ ∃Rn.A, where R1, . . . ,Rn are fresh role names.
• For every i ∈ {1, . . . , n}, add Ri ⊑ U to the knowledge base’s RBox.
• For every 1 ≤ i < k ≤ n, add ∀(Ri ⊓ Rk).⊥ to the knowledge base.

Observe that this transformation can be done in polynomial time, assuming a unary encoding of the
numbers n. It remains to show that KB and Θ>(KB) are indeed equisatisfiable.

Lemma 6.7. Let KB be an extended ALCHIQb knowledge base. Then we have that the extended

ALCHIb6 knowledge base Θ>(KB) and KB are equisatisfiable.

Proof. First we prove that every model of Θ>(KB) is a model of KB. We do so by an inductive
argument, showing that no additional models can be introduced in any substitution step of the above
conversion procedure. Hence, assume KB′′ is an intermediate knowledge base that has a model
I, and that is obtained from KB′ by eliminating the occurrence of >n U.A as described above.
Considering KB′′, we find due to the KB′′ axioms ∀(Ri ⊓ Rk).⊥ that no two individuals δ, δ′ ∈ ∆I

can be connected by more than one of the roles R1, . . . ,Rn. In particular, this enforces δ′ , δ′′,
whenever 〈δ, δ′〉 ∈ RI

i
and 〈δ, δ′′〉 ∈ RI

j
for distinct Ri and R j. Now consider an arbitrary δ ∈

(∃R1.A ⊓ . . . ⊓ ∃Rn.A)I. This ensures the existence of individuals δ1, . . . , δn with 〈δ, δi〉 ∈ RI
i

and
δi ∈ AI for 1 ≤ i ≤ n. By the above observation, all such δi are pairwise distinct. Moreover,
the axioms Ri ⊑ U ensure 〈δ, δi〉 ∈ UI for all i, hence we find that δ ∈ (>n U.A)I. So we know
(∃R1.A ⊓ . . . ⊓ ∃Rn.A)I ⊆ (>n U.C)I. From the fact that both of those concept expressions occur
outside any negation or quantifier scope (as the transformation starts with a flattened knowledge
base and does not itself introduce such nestings) in axioms D′′ ∈ KB′′ and D′ ∈ KB′ which are
equal up to the substituted occurrence, we can derive that D′′I ⊆ D′I. Then, from D′′I = ∆I

follows D′I = ∆I making D′ valid in I. Apart from D′, all other axioms from KB′ coincide with
those from KB′′ and hence are naturally satisfied in I. So we find that I is a model of KB′.
At the end of our inductive chain, we finally arrive at FLAT(KB) which is equisatisfiable to KB by
Proposition 2.3.
Second, we show that Θ>(KB) has a model if KB has. By Proposition 2.3, satisfiability of KB entails
the existence of a model of FLAT(KB). Moreover, every model of FLAT(KB) can be transformed to
a model of Θ>(KB), as we will show using the same inductive strategy as above by doing iterated
model transformations following the syntactic knowledge base conversions. Again, assume KB′′

is an intermediate knowledge base obtained from KB′ by eliminating the occurrence of >n U.A as
described above, and suppose I is a model of KB′. Based on I, we now (nondeterministically)
construct an interpretation J as follows:

• ∆J ≔ ∆I,
• for all C ∈ NC , let CJ ≔ CI,
• for all S ∈ NR \ {Ri | 1 ≤ i ≤ n}, let SJ ≔ S I,
• for every δ ∈ (>n U.A)I, choose pairwise distinct ǫδ1 , . . . , ǫ

δ
n with 〈δ, ǫδ

i
〉 ∈ UI and ǫδ

i
∈ AI (their

existence being ensured by δ’s aforementioned concept membership) and let R
J

i
≔ {〈δ, ǫδ

i
〉 | δ ∈

(>n U.A)I}.

Now, it is easy to see that J satisfies all newly introduced axioms of the shape ∀(Ri ⊓ Rk).⊥, as the
ǫδ

i
have been chosen to be distinct for every δ. Moreover the axioms Ri ⊑ U are obviously satisfied

by construction. Finally, for all δ ∈ (>n U.A)I the construction ensures δ ∈ (∃R1.A ⊓ . . . ⊓ ∃Rn.A)J

witnessed by the respective ǫδ
i
. So we have (>n U.A)I ⊆ (∃R1.A ⊓ . . . ⊓ ∃Rn.A)J . Now, again

exploiting the fact that both of those concept expressions occur in negation normalized universal
concept axioms D′ ∈ KB′ and D′′ ∈ KB′′ that are equal up to the substituted occurrence, we
can derive that D′I ⊆ D′′J . Then, from D′I = ∆I follows D′′J = ∆J making D′′ valid in J .

TYPE-ELIMINATION-BASED REASONING FOR SHIQbs 27

Apart from D′ (and the newly introduced axioms considered above), all other axioms from KB′′

coincide with those from KB′ and hence are satisfied in J , as they do not depend on the Ri whose
interpretations are the only ones changed in J compared to I. So we find that J is a model of
KB′′.

6.4. From ALCHIb6 toALCIb6. In the presence of restricted role expressions, role subsump-
tion axioms can be easily transformed into TBox axioms, as the subsequent lemma shows. This
allows to dispense with role hierarchies inALCHIb6 thereby restricting it toALCIb6.

Lemma 6.8. For any two restricted role expressions U and V, the RBox axiom U ⊑ V and the TBox

axiom ∀(U ⊓ ¬V).⊥ are equivalent.

Proof. By the semantics’ definition, U ⊑ V holds in an interpretation I exactly if for every two
individuals δ, δ′ with 〈δ, δ′〉 ∈ UI it also holds that 〈δ, δ′〉 ∈ VI. This in turn is the case if and only if
there are no δ, δ′ with 〈δ, δ′〉 ∈ UI but 〈δ, δ′〉 < VI (the latter being expressible as 〈δ, δ′〉 ∈ (¬V)I).
This condition can be formulated as (U ⊓ ¬V)I = ∅, which is equivalent to ∀(U ⊓ ¬V).⊥.

Note that U ⊓ ¬V is restricted (hence an admissible role expression) whenever U is – this can be
seen from the fact that ∅ 0 U implies ∅ 0 U ⊓ ¬V due to the definition of ⊢ and the Boolean role
operator ⊓. Consequently, for any extended ALCHIb6 knowledge base KB, let ΘH (KB) denote
the ALCIb6 knowledge base obtained by substituting every RBox axiom U ⊑ V by the TBox
axiom ∀(U ⊓ ¬V).⊥. The above lemma assures equivalence of KB and ΘH (KB) (and hence also
their equisatisfiability). Obviously, this reduction can be done in linear time.

6.5. From ALCIb6 to ALCIF b. The elimination of the 6 concept descriptions from an ex-
tended ALCIb6 knowledge base is more intricate than the previously described transformations.
Thus, to simplify our subsequent presentation, we assume that all Boolean role expressions U oc-
curring in concept expressions of the shape 6n U.C are atomic, i.e. U ∈ R. This can be easily
achieved by introducing a new role name RU and substituting 6n U.C by 6n RU .C as well as adding
the two TBox axioms ∀(U ⊓ ¬RU).⊥ and ∀(¬U ⊓ RU).⊥ (this ensures that the interpretations of U

and RU always coincide).
To further make the presentation more conceivable, we subdivide it into two steps: first we eliminate
concept expressions of the shape 6n R.C merely leaving axioms of the form 61 R.⊤ (also known
as role functionality statements) as the only occurrences of number restrictions, hence obtaining an
ALCIF b knowledge base.9 Then, in a second step discussed in the next section, we eliminate all
occurrences of axioms of the shape 61 R.⊤.
Let KB an ALCIb6 knowledge base. We obtain the ALCIF b knowledge base Θ6(KB) by first
flattening KB and then successively applying the following steps (stopping when no further such
occurrence is left):

• Choose an occurrence of the shape 6n R.A which is not a functionality axiom 61 R.⊤,
• substitute this occurrence by ∀(R ⊓ ¬R1 ⊓ . . . ⊓ ¬Rn).¬A where R1, . . . ,Rn are fresh role names,
• for every i ∈ {1, . . . , n}, add ∀Ri.A as well as 61 Ri.⊤ to the knowledge base.

This transformation can clearly be done in polynomial time, again assuming a unary encoding of
the number n. We now show that this conversion yields an equisatisfiable extended knowledge base.
Structurally, the proof is similar to that of Lemma 6.7.

9Following the notational convention, we use F to indicate the modeling feature of role functionality.

28 S. RUDOLPH, M. KRÖTZSCH, AND P. HITZLER

Lemma 6.9. Given an extendedALCIb6 knowledge base KB, the extendedALCIF b knowledge

base Θ6(KB) and KB are equisatisfiable.

Proof. KB and FLAT(KB) are equisatisfiable by Proposition 2.3, so it remains to show equisatisfia-
bility of FLAT(KB) and Θ6(KB).
First, we prove that every model of Θ6(KB) is a model of FLAT(KB). We do so in an inductive
way by showing that no additional models can be introduced in any substitution step of the above
conversion procedure. Hence, assume KB′′ is an intermediate knowledge base with model I, and
that is obtained from KB′ by eliminating the occurrence of 6n R.A as described above. Now consider
an arbitrary δ ∈ (∀(R ⊓ ¬R1 ⊓ . . . ⊓ ¬Rn).¬A)I. This ensures that whenever an individual δ′ ∈ ∆I

satisfies 〈δ, δ′〉 ∈ RI and δ′ ∈ A, it must additionally satisfy 〈δ, δ′〉 ∈ RI
i

for one i ∈ {1, . . . , n}.
However, it follows from the KB′′-axioms 61 Ri.⊤ that there is at most one such δ′ for each Ri.
Thus, there can be at most n individuals δ′ with 〈δ, δ′〉 ∈ RI and δ′ ∈ A. This implies δ ∈ (6n R.A)I.
So we have (∀(R ⊓ ¬R1 ⊓ . . . ⊓ ¬Rn).¬A)I ⊆ (6n R.A)I. Due to the flattened knowledge base
structure, both of those concept expressions occur outside the scope of any negation or quantifier
within axioms D′′ ∈ KB′′ and D′ ∈ KB′ that are equal up to the substituted occurrence. Hence, we
can derive that D′′I ⊆ D′I. Then, from D′′I = ∆I follows D′I = ∆I making D′ valid in I. Apart
from D′, all other axioms from KB′ are contained in KB′′ and hence are naturally satisfied in I. So
we find that I is a model of KB′ as well.
Second, we show that every model of FLAT(KB) can be transformed to a model of Θ6(KB). We use
the same induction strategy as above by doing iterated model transformations following the syntactic
knowledge base conversions. Again, assume KB′′ is an intermediate knowledge base obtained from
KB′ by eliminating the occurrence of a 6n R.C as described above, and suppose I is a model of
KB′. Based on I, we now (nondeterministically) construct an interpretation J as follows:

• ∆J ≔ ∆I,
• for all C ∈ NC , let CJ ≔ CI,
• for all S ∈ NR \ {Ri | 1 ≤ i ≤ n}, let SJ ≔ S I,
• for every δ ∈ (6n R.A)I, let ǫδ1 , . . . , ǫ

δ
k

be an exhaustive enumeration (with arbitrary but fixed
order) of all those ǫ ∈ ∆I with 〈δ, ǫ〉 ∈ RI and ǫ ∈ AI. Thereby δ’s aforementioned concept
membership ensures k ≤ n. Now, let R

J
i
≔ {〈δ, ǫδ

i
〉 | δ ∈ (6n R.A)I}.

Now, it is easy to see that J satisfies all newly introduced axioms of the shape 61 Ri.⊤ as every
δ has at most one Ri-successor (namely ǫδ

i
, if δ ∈ (6n R.A)I, and none otherwise). Moreover, the

axioms ∀Ri.A are satisfied, as the ǫδ
i

have been chosen accordingly.
Finally for all δ ∈ (6n R.A)I the construction ensures δ ∈ (∀(R ⊓ ¬R1 ⊓ . . . ⊓ ¬Rn).¬A)J as by
construction, each R-successor of δ that lies within the extension of A is contained in ǫδ1 , . . . , ǫ

δ
k

and therefore also Ri-successor of δ for some i. Now, again exploiting the fact that both of those
concept expressions occur in negation normalized universal concept axioms D′ ∈ KB′ and D′′ ∈

KB′′ that are equal up to the substituted occurrence, we can derive that D′I ⊆ D′′J . Then, from
D′I = ∆I follows D′′J = ∆J making D′′ valid in J . Apart from D′′ (and the newly introduced
axioms considered above), all other axioms from KB′′ coincide with those from KB′ and hence are
satisfied in J , as they do not depend on the Ri whose interpretations are the only ones changed in
J compared to I. So we find that J is a model of KB′′.

TYPE-ELIMINATION-BASED REASONING FOR SHIQbs 29

6.6. FromALCIF b toALCIb. In the sequel, we show how the role functionality axioms of the
shape 61 R.⊤ can be eliminated from an ALCIF b knowledge base while still preserving equisat-
isfiability. Partially, the employed rewriting is the same as the one proposed for ALCIF TBoxes
by Calvanese et al. (1998), however, in the presence of ABoxes more needs to be done.
Essentially, the idea is to add axioms that enforce that for every functional role R, any two R-
successors coincide with respect to their properties expressible in “relevant” DL role and concept
expressions. To this end, we consider the parts of a knowledge base as defined in Section 2 on page
5. While it is not hard to see that the introduced axioms follow from R’s functionality, the other
direction (a Leibniz-style “identitas indiscernibilium” argument) needs a closer look.
Taking an extended ALCIF b knowledge base KB, let ΘF (KB) denote the extended ALCIb

knowledge base obtained from KB by removing every role functionality axiom 61 R.⊤ and instead
adding

• ∀R.¬D ⊔ ∀R.D for every D ∈ P(KB \ {α ∈ KB | α = 61 R.⊤ for some R ∈ R}),
• ∀(R ⊓ S).⊥ ⊔ ∀(R ⊓ ¬S).⊥ for every atomic role S from KB, as well as
• the DL-safe rule R(x, y),R(x, z)→ y ≈ z.

Clearly, this transformation can also be done in polynomial time and space w.r.t. the size of KB.
Our goal is now to prove equisatisfiability of KB and ΘF (KB). The following lemma establishes
the easier direction of this correspondence.

Lemma 6.10. Any ALCIF b knowledge base KB entails all axioms of the ALCIb knowledge

base ΘF (KB), i.e. KB |= ΘF (KB).

Proof. Let J be a model of KB. We need to show that J also satisfies the additional rules and
axioms introduced in ΘF (KB).
First let D be an arbitrary concept. Note that ∀R.¬D⊔∀R.D is equivalent to the GCI ∃R.D ⊑ ∀R.D.
This is satisfied if, for any δ ∈ ∆J , if δ has an R-successor in DJ , then all R-successors of δ are
in DJ . This is trivially satisfied if δ has at most one R-successor, which holds since J satisfies the
functionality axiom 61 R.⊤ ∈ KB. Since we have shown the satisfaction for arbitrary concepts D,
this holds in particular for those from P(KB \ {α ∈ KB | α = 61 R.⊤ for some R ∈ R}).
Second, let S be an atomic role. Mark that ∀(R ⊓ S).⊥ ⊔ ∀(R ⊓ ¬S).⊥ is equivalent to the GCI
∃(R⊓ S).⊤ ⊑ ∀(R⊓¬S).⊥. This means that for any δ ∈ ∆J , all R-successors are also S -successors
of it, whenever one of them is. Again, this is trivially satisfied as δ has at most one R-successor.
Finally all newly introduced rules of the form R(x, y),R(x, z) → y ≈ z are satisfied in J as a
consequence of the functionality statements in KB.

The other direction for showing equisatisfiability, which amounts to finding a model of KB given
one for ΘF (KB), is somewhat more intricate and requires some intermediate considerations.

Lemma 6.11. If KB is an ALCIF b knowledge base with 61 R.⊤ ∈ KB then in every model J of

ΘF (KB) we find that 〈δ, δ1〉 ∈ RJ and 〈δ, δ2〉 ∈ RJ imply

• for all C ∈ P(KB \ {α ∈ KB | α = 61 R.⊤ for some R ∈ R}), we have δ1 ∈ CJ iff δ2 ∈ CJ ,

• for all S ∈ NR, we have 〈δ, δ1〉 ∈ SJ iff 〈δ, δ2〉 ∈ SJ .

Proof. For the first proposition, assume δ1 ∈ CJ . From 〈δ, δ1〉 ∈ RJ follows δ ∈ (∃R.C)J . Due to
theΘF (KB) axiom ∀R.¬C⊔∀R.C (being equivalent to the GCI ∃R.C ⊑ ∀R.C) follows δ ∈ (∀R.C)J .
Since 〈δ, δ2〉 ∈ RJ , this implies δ2 ∈ CJ . The other direction follows by symmetry.
To show the second proposition, assume 〈δ, δ1〉 ∈ SJ . Since also 〈δ, δ1〉 ∈ RJ , we have 〈δ, δ1〉 ∈

R⊓ SJ and hence δ ∈ (∃(R⊓ S).⊤)J . From the ΘF (KB) axiom ∀(R⊓ S).⊥⊔∀(R⊓¬S).⊥ (which
is equivalent to the GCI ∃(R ⊓ S).⊤ ⊑ ¬∃(R ⊓ ¬S).⊤) we conclude δ ∈ (¬∃(R ⊓ ¬S).⊤)J , in

30 S. RUDOLPH, M. KRÖTZSCH, AND P. HITZLER

words: δ has no R-successor that is not its S -successor. Thus, as 〈δ, δ2〉 ∈ RJ , it must also hold that
〈δ, δ2〉 ∈ SJ . Again, the other direction follows by symmetry.

In order to convert a model of ΘF (KB) into one of KB, we will have to enforce role functional-
ity where needed by cautiously deleting individuals from the original model. Definition 6.13 will
provide a method for this. To this end, some auxiliary notions defined beforehand will come in
handy.

Definition 6.12. Let J be an interpretation, and let I be the unraveling of J .10 For a domain ele-
ment σ ∈ ∆I and an R ∈ R, we define the set of R-neighbors of σ in I by nbR

I
(σ) ≔ {σ′ | 〈σ,σ′〉 ∈

RI}. Among the R-neighbors, we distinguish between subordinate R-neighbors subR
I

(σ) ≔ {σδ |
〈σ,σδ〉 ∈ RI} and the non-subordinate R-neighbors nonsubR

I
(σ) ≔ nbR

I
(σ) \ subR

I
(σ).

Definition 6.13. Let J be an interpretation, and let I be the unraveling of J . Given an extended
ALCIF b knowledge base KB, let KB∗ ≔ KB \ {α ∈ KB | α = 61 R.⊤ for some R ∈ R}, let
D ≔ P(KB) and let S ≔ {R | 61 R.⊤ ∈ KB}.
Then, an interpretation K will be called KB-pruning of I, if K can be constructed from I in the
following way: Let first ∆0 = ∆

I. Next, iteratively determine ∆i+1 from ∆i as follows:

• Select a word-length minimal σ from ∆i where there is an S ∈ S for which nbS
I

(σ) > 1 and
subS
I

(σ) > 0.
• If nonsubS

I
(σ) > 0, let ∆′ = subS

I
(σ), otherwise let ∆′ = subS

I
(σ) \ {σ′} for an arbitrarily chosen

σ′ ∈ subS
I

(σ).
Delete ∆′ from ∆i as well as all σ∗∗ having some σ∗ ∈ ∆′ as prefix.

Finally, let K be the limit of this process: ∆K ≔
⋂

i∈N ∆i and ·K is the function ·I restricted to ∆K .

Roughly speaking, any KB-pruning of I is (nondeterministically) constructed by deleting surplus
functional-role-successors. Mark that the tree-like structure of non-named individuals of the unrav-
eling is crucial in order to make the process well-defined.

Lemma 6.14. Let KB be an extendedALCIF b knowledge base, let J be a model of ΘF (KB) and

let I be an unraveling of J . Then, any KB-pruning K of I is a model of KB.

Proof. By construction, we know that I is a model of ΘF (KB). Now, let K be a KB-pruning of
I. For showing K |= KB, we divide KB into two sets, namely the set of role functionality axioms
{α ∈ KB | α = 61 R.⊤ for some R ∈ R} and all the remaining axioms, denoted by KB∗, and show
K |= KB∗ and K |= {α ∈ KB | α = 61 R.⊤ for some R ∈ R} separately.

We start by showing K |= KB∗. To this end, we prove that, for each C ∈ P(KB∗) and for every
individual σ from K , we have σ ∈ CK exactly if σ ∈ CI. Clearly, this statement extends to
concepts that are Boolean combinations of elements from P(KB∗), i.e., to all axioms in KB∗. We
omit this easy structural induction.
The claim for C ∈ P(KB∗) is shown by induction over the depth of role restrictions in C, and we
assume that is has already been shown for concepts of smaller role depth. We consider three cases:

• C ∈ NC ∪ {⊤,⊥}

Then the coincidence follows directly from the construction of K .
• C = ∃U.D

“⇒” σ ∈ (∃U.D)K means that there is a K-individual σ′ with 〈σ,σ′〉 ∈ UK and σ′ ∈ DK .

10Remember that by construction, the individuals of I are sequences of individuals of J . For better readability, we
will strictly use σ – with possible subscripts – for I-individuals and δ for J-individuals.

TYPE-ELIMINATION-BASED REASONING FOR SHIQbs 31

Because of the construction of K by pruning I, this means also 〈σ,σ′〉 ∈ UI and by induction
hypothesis, we have σ′ ∈ DI, ergo σ ∈ (∃U.D)I.
“⇐” If σ ∈ (∃U.D)I, there is an I-individual σ′ with 〈σ,σ′〉 ∈ UI and σ′ ∈ DI. In case
σ′ is not deleted during the construction of K , it proves (by using the induction hypothesis on
D) that σ ∈ (∃U.D)K . Otherwise, it must have been deleted due to the existence of another I-
individual σ′′ for with Lemma 6.11 ensures {R ∈ R | 〈σ,σ′′〉 ∈ RI} = {R ∈ R | 〈σ,σ′〉 ∈ RI} and
{E ∈ P(KB∗) | σ′′ ∈ EI} = {E ∈ P(KB∗) | σ′ ∈ EI}. W.l.o.g., σ′′ does not get deleted in the
whole construction procedure. Yet, then the K-individual σ′′ obviously proves σ ∈ (∃U.D)K .
• C = ∀R.D

“⇒” Assume the contrary, i.e., σ ∈ (∀U.D)K but σ < (∀U.D)I which means that there is an
I-individual σ′ with 〈σ,σ′〉 ∈ UI but σ′ < DI. In case σ′ has not been deleted during the
construction ofK , it disproves σ ∈ (∀U.D)K (by invoking the induction hypothesis on D) leading
to a contradiction. Otherwise, σ′ is deleted because of the existence of another I-individual
σ′′ for with Lemma 6.11 ensures {R ∈ R | 〈σ,σ′′〉 ∈ RI} = {R ∈ R | 〈σ,σ′〉 ∈ RI} and
{E ∈ P(KB∗) | σ′′ ∈ EI} = {E ∈ P(KB∗) | σ′ ∈ EI}. W.l.o.g., σ′′ does not get deleted in the
whole construction procedure. Yet, then theK-individual σ′′ obviously contradicts σ ∈ (∃U.D)K .
“⇐” Assume the contrary, i.e., σ ∈ (∀U.D)I but σ < (∀U.D)K . The latter means that there is a
K-individual σ′ with 〈σ,σ′〉 ∈ UK and σ′ < DK . Because of the construction of K by pruning
I, this means also 〈σ,σ′〉 ∈ UI and σ′ < DI, ergo σ < (∀U.D)I, contradicting the assumption.

We proceed by showing that every role R with 61 R.⊤ ∈ KB is functional in K . Let σ ∈ ∆K

and let σ1, σ2 be two R-successors of σ. We consider two cases: First, assume that σ1 = aK1 and
σ2 = aK2 for a1, a2 ∈ NI . Then, by construction of the unraveling we can derive that there must be
an a3 ∈ NI with σ = aK3 . However, then, the DL-safe rule R(x, y),R(x, z) → y ≈ z from ΘF (KB)
ensures σ1 = σ2. Next we consider the case that at least one of σ1, σ2 is unnamed. By Lemma
6.11 and the point-wise correspondence between I and K shown in the previous part of the proof,
two statements hold: First, for all C ∈ P(KB∗), we have that σ1 ∈ CK iff σ2 ∈ CK . Second, for all
S ∈ NR we have that 〈σ,σ1〉 ∈ SK iff 〈σ,σ2〉 ∈ SK . However, in the pruning process generating
K , exactly such duplicate occurrences are erased, leaving at most one R-successor per σ. Thus we
conclude σ1 = σ2. This completes the proof that all axioms from KB are satisfied in K .

Finally, we are ready to establish the equisatisfiability result also for this last transformation step.

Theorem 6.15. For any extended ALCIF b knowledge base KB, the ALCIb knowledge base

ΘF (KB) and KB are equisatisfiable.

Proof. Lemma 6.10 ensures that every model of KB is also a model of ΘF (KB). Moreover, by
Lemma 6.14, given a model J for of ΘF (KB), any KB-pruning of J’s unraveling (the existence of
which is ensured by constructive definition) is a model of KB. This finishes the proof.

Eventually, the results of this section can be composed to show how to transform an extended
SHIQbs knowledge base KB into an equisatisfiable extended ALCIb knowledge base by com-
puting ΘSHQ(KB) ≔ ΘFΘ6ΘHΘ>ΘS(KB). Moreover, as each of the single transformation steps
is time polynomial, so is the overall procedure. Therefore, we are able to check the satisfiability of
any extended SHIQ knowledge base using the method presented in the previous sections, by first
transforming it intoALCIb and then checking.
This result is recorded in the below theorem, where we also exploit it to show an even stronger result
about the correspondence between KB and ΘSHQ(KB).

Theorem 6.16. Let KB be an extended SHIQbs knowledge base. Then the following hold:

32 S. RUDOLPH, M. KRÖTZSCH, AND P. HITZLER

• KB and ΘSHQ(KB) are equisatisfiable,

• KB |= C(a) iff ΘSHQ(KB) |= C(a),
• KB |= R(a, b) iff ΘSHQ(KB) |= R(a, b), and

• KB |= a ≈ b iff ΘSHQ(KB) |= a ≈ b,

for any a, b ∈ NI , C ∈ NC , and R ∈ NR.

Proof. Equisatisfiability follows from the fact that each of the transformations ΘF ,Θ6,ΘH ,Θ>,ΘS
preserves satisfiability. We then use the established equisatisfiability of KB and ΘSHQ(KB) to
prove the other claims. Assume KB |= C(a). This means that the knowledge base KB′ obtained by
extending KB with the DL-safe rule C(a) → is unsatisfiable. Now we observe that ΘSHQ(KB′) is
obtained by extending ΘSHQ(KB) with C(a)→. SinceΘSHQ(KB′) is unsatisfiable, so isΘSHQ(KB)
extended with C(a) →, and hence ΘSHQ(KB) |= C(a) as required. The other direction of the claim
follows via a similar argumentation. The remaining cases are shown analogously.

Consolidating all our results, we now can formulate our main theorem for checking satisfiability as
well as entailment of positive and negative ground facts for extended SHIQbs knowledge bases.

Theorem 6.17. Let KB be an extended SHIQbs knowledge base and let

P ≔ DD(ΘSHQ(KB)).

Then the following hold:

• KB is satisfiable iff P is,

• KB |= C(a) iff P |= S C(a),
• KB |= R(a, b) iff P |= S R(a, b), and

• KB |= a ≈ b iff P |= a ≈ b,

for any a, b ∈ NI , C ∈ NC , and R ∈ NR.

Proof. Combine Theorem 6.16 with Theorem 5.4.

Note also that the above observation immediately allows us to add reasoning support for DL-safe

conjunctive queries, i.e. conjunctive queries that assume all variables to range only over named
individuals. It is easy to see that, as a minor extension, one could generally allow for concept
expressions ∀R.A and ∃R.A in queries and rules, simply because DD(KB) represents these elements
of P(FLAT(T)) as atomic symbols in disjunctive Datalog.

7. RelatedWork

Boolean constructors on roles have been investigated in the context of both description and modal
logics. Borgida (1996) used them extensively for the definition of a DL that is equivalent to the
two-variable fragment of FOL.
It was shown by Hustadt and Schmidt (2000) that the DL obtained by augmenting ALC with full
Boolean role constructors (ALB) is decidable. Lutz and Sattler (2001) established NExpTime-
completeness of the standard reasoning tasks in this logic. Restricting to only role negation (Lutz and Sattler,
2001) or only role conjunction (Tobies, 2001) retains ExpTime-completeness. On the other hand,
complexity does not increase beyond NExpTime even when allowing for inverses, qualified num-
ber restrictions, and nominals. This was shown by Tobies (2001) via a polynomial translation of
ALCOIQB into C2, the two variable fragment of first order logic with counting quantifiers, which
in turn was proven to be NExpTime-complete by Pratt-Hartmann (2005). Also the description logic
ALBO (Schmidt and Tishkovsky, 2007) falls in that range of NExpTime-complete DLs.

TYPE-ELIMINATION-BASED REASONING FOR SHIQbs 33

On the contrary, it was also shown by Tobies (2001) that restricting to safe Boolean role constructors
keeps ALC’s reasoning complexity in ExpTime, even when adding inverses and qualified number
restrictions (ALCQIb).
For logics including modeling constructs that deal with role composition like transitivity or –
more general – complex role inclusion axioms, results on complexities in the presence of Boolean
role constructors are more sparse. Lutz and Walther (2005) show that ALC can be extended by
negation and regular expressions on roles while keeping reasoning within ExpTime. Furthermore,
Calvanese et al. (2007b) provided ExpTime complexity for a similar logic that includes inverses and
qualified number restriction but reverts to safe negation on roles. The present work showed that rea-
soning remains in ExpTime for extended SHIQbs knowledge bases. Regarding DLs that combine
nominals and role composition, it was shown that unsafe Boolean role constructors can be added to
SHOIQ and SROIQ (resulting in DLsSHOIQBs and SROIQBs) without affecting their respec-
tive worst-case complexities of NExpTime and N2ExpTime (Rudolph et al., 2008a). The restriction
to simple roles, on the other hand, is essential to retain decidability. Furthermore, conjunctions of
simple roles (which are trivially safe in the absence of role negation) can be added to tractable DLs
of the EL and DLP families without increasing their worst-case complexity (Rudolph et al., 2008a).

Type-based reasoning techniques have been described sporadically in the area of DLs but never
been practically adopted.
Lutz et al. (2005) use a particular kind of types, called mosaics for finite model reasoning. Eiter et al.
(2009) use similar structures, called knots for query answering in the description logic SHIQ. Both
notions show a similarity to the notion of (counting) star types used for reasoning in fragments of
first order logic (Pratt-Hartmann, 2005), in that they do not only store information about single
domain individuals but also about all their direct neighbors. As opposed to this, our notion of domi-
noes exhibits more similarity to the notion of (non-counting) two-types used in first-order logic,
e.g., by Grädel et al. (1997); both notions encode information related to pairs of domain individuals
(rather than whole neighborhoods).
The approach of constructing a canonical model (resp. a sufficient representation of it) in a down-
ward manner (i.e., by pruning a larger structure) shows some similarity to Pratt’s type elimination
technique (Pratt, 1979), originally used to decide satisfiability of modal formulae.
Canonical models themselves have been a widely used notion in modal logic (Popkorn, 1994;
Blackburn et al., 2001), however, due to the additional expressive power of ALCIb compared to
standard modal logics like K (being the modal logic counterpart of the description logic ALC),
we had to substantially modify the notion of a canonical model used there: in order to cope with
number restrictions, we use infinite tree models based on unravelings whereas the canonical models
in the mentioned approaches are normally finite and obtained via filtrations.
Related in spirit (namely to use BDD-based reasoning for DL reasoning tasks and to use a type
elimination-like technique for doing so) is the work presented by Pan et al. (2006). However, the
established results as well as the approaches differ greatly from ours: the authors establish a proce-
dure for deciding the satisfiability of ALC concepts in a setting not allowing for general TBoxes,
while our approach can check satisfiability of SHIQ (resp. ALCIb) knowledge bases supporting
general TBoxes, thereby generalizing the results by Pan et al. (2006) significantly.

The presented method for reasoning with DL-safe rules and assertional data exhibits similarities
to the algorithm underlying the KAON2 reasoner (Motik, 2006; Hustadt et al., 2007, 2008). In
particular, pre-transformations are first applied to SHIQ knowledge bases, before a saturation
procedure is applied to the TBox part that results in a disjunctive Datalog program that can be

34 S. RUDOLPH, M. KRÖTZSCH, AND P. HITZLER

combined with the assertional part of the knowledge base. As in our case, extensions with DL-
safe rules and ground conjunctive queries are possible. The processing presented here, however,
is very different from KAON2. Besides using OBDDs, it also employs Boolean role constructors
that admit an indirect encoding of number restrictions. Moreover, as opposed to our approach, the
transformation in Motik (2006) does not preserve all ground consequences: SHIQ consequences
of the form R(a, b) with R being non-simple may not be entailed by the created Datalog program.
This shortcoming could, however, be easily corrected along the lines of our approach. On the other
hand, the KAON2 transformation avoids the use of disjunctions in Datalog for knowledge bases
that are Horn (i.e., free of disjunctive information). Reasoning for Horn-SHIQ can thus be done
in ExpTime, which is worst-case optimal (Krötzsch et al., 2012). In contrast, our OBDD encoding
requires disjunctive Datalog in all cases, leading to a NExpTime procedure even for Horn-SHIQ.

8. Discussion

We have presented a new worst-case optimal reasoning algorithm for standard reasoning tasks for
extended SHIQbs knowledge bases. The algorithm compiles SHIQbs terminologies into disjunc-
tive Datalog programs, which are then combined with assertional information and DL-safe rules for
satisfiability checking and (ground) query answering. To this end, OBDDs are used as a conve-
nient intermediate data structure to process terminologies and are subsequently transformed into
disjunctive Datalog programs that can naturally account for ABox data and DL-safe rules. The
generation of disjunctive Datalog may require exponentially many computation steps, the cost of
which depends on the concrete OBDD implementation at hand – finding optimal OBDD encodings

is NP-complete but heuristic approximations are often used in practice. Querying the disjunctive
Datalog program then is co-NP-complete w.r.t. the size of the ABox, so that the data complexity
of the algorithm is worst-case optimal (Motik, 2006). Concerning combined complexity of testing
the satisfiability of extended knowledge bases, the ExpTime OBDD construction step dominates the
subsequent disjunctive Datalog reasoning part, so the overall combined complexity of the algorithm
is ExpTime resulting in worst-case optimality for this case as well, given the ExpTime-hardness of
satisfiability checking in SHIQbs.
It is also worthwhile to briefly discuss the applicability of our method to knowledge bases featuring
so-called complex role inclusion axioms (RIAs). By means of techniques described by Kazakov
(2008), any (pure, that is, non-extended) SRIQbs knowledge base can be transformed into an eq-
uisatsfiable ALCHIQb knowledge base, however, like Motik’s original transitivity elimination,
this transformation does not preserve all ground consequences. Consequently, it is not satisfiability-
preserving for extended SRIQbs knowledge bases. Still, capitalizing on these RIA-removal tech-
niques, our method provides a way for satisfiability checking for SRIQbs knowledge bases without
DL-safe rules that is worst-case optimal w.r.t. both combined and data complexity. We believe,
however, that it would be not to hard a task to modify the transformation to even preserve ground
consequences.
For future work, the algorithm needs to be evaluated in practice. A crude prototype implementa-
tion was used to generate the examples within this paper, and has shown to outperform tableaux
reasoners in certain handcrafted cases, but more extensive evaluations with an optimized implemen-
tation on real-world ontologies are needed for a conclusive statement on the practical potential of
this new reasoning strategy. It is also evident that redundancy elimination techniques are required
to reduce the number of generated Datalog rules, which is also an important aspect of the KAON2
implementation.

TYPE-ELIMINATION-BASED REASONING FOR SHIQbs 35

Another avenue for future research is the extension of the approach to more modeling features such
as role chain axioms and nominals – significant revisions of the model-theoretic considerations are
needed for these cases.

Acknowledgements

This work was supported by the DFG project ExpresST: Expressive Querying for Semantic Tech-
nologies and by the EPSRC grant HermiT: Reasoning with Large Ontologies.
We thank Boris Motik and Uli Sattler for useful discussions on related approaches as well as
Giuseppe DeGiacomo and Birte Glimm for hints on the origins of some techniques employed by
us. We also thank the anonymous reviewers for their very thorough scrutiny of an earlier version
of this article as well as for their comments and questions which helped to make the article more
comprehensible and accurate.

References

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P., editors (2007). The

Description Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press, 2nd edition.

Blackburn, P., de Rijke, M., and Venema, Y. (2001). Modal Logic. Cambridge University Press.
Borgida, A. (1996). On the relative expressiveness of description logics and predicate logics. Artif.

Intell., 82(1–2):353–367.
Burch, J., Clarke, E., McMillan, K., Dill, D., and Hwang, L. (1990). Symbolic model checking:

1020 states and beyond. In Proceedings of the 5th Annual IEEE Symposium on Logic in Computer

Science, pages 1–33. IEEE Computer Society Press.
Calvanese, D., DeGiacomo, G., Lembo, D., Lenzerini, M., and Rosati, R. (2007a). Tractable reason-

ing and efficient query answering in description logics: The DL-lite family. J. Autom. Reasoning,
39(3):385–429.

Calvanese, D., DeGiacomo, G., and Rosati, R. (1998). A note on encoding inverse roles and func-
tional restrictions in ALC knowledge bases. In Proceedings of the 11th International Workshop

on Description Logic (DL’98), pages 69–71. CEUR.
Calvanese, D., Eiter, T., and Ortiz, M. (2007b). Answering regular path queries in expressive

description logics: An automata-theoretic approach. In Proceedings of the Twenty-Second AAAI

Conference on Artificial Intelligence (AAAI’07), pages 391–396. AAAI Press.
Dantsin, E., Eiter, T., Gottlob, G., and Voronkov, A. (2001). Complexity and expressive power of

logic programming. ACM Comput. Surv., 33(3):374–425.
DeGiacomo, G. and Lenzerini, M. (1994). Boosting the correspondence between description logics

and propositional dynamic logics. In In Proceedings of the Twelfth National Conference on

Artificial Intelligence (AAAI’94), pages 205–212. AAAI Press.
Eiter, T., Gottlob, G., and Mannila, H. (1997). Disjunctive datalog. ACM Trans. Database Syst.,

22(3):364–418.
Eiter, T., Lutz, C., Ortiz, M., and Šimkus, M. (2009). Query answering in description logics: The

knots approach. In Ono, H., Kanazawa, M., and de Queiroz, R. J. G. B., editors, Proceedings

of the 16th International Workshop on Logic, Language, Information and Computation (WoL-

LIC’09), volume 5514 of Lecture Notes in Computer Science, pages 26–36. Springer.
Fitting, M. (1996). First-Order Logic and Automated Theorem Proving. Springer, 2nd edition.

36 S. RUDOLPH, M. KRÖTZSCH, AND P. HITZLER

Glimm, B., Horrocks, I., Lutz, C., and Sattler, U. (2007). Conjunctive query answering for the
description logic SHIQ. In Veloso, M. M., editor, Proceedings of the 20th International Joint

Conference on Artificial Intelligence (IJCAI’07), pages 399–404.
Grädel, E., Otto, M., and Rosen, E. (1997). Two-variable logic with counting is decidable. In

Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science (LICS’97), pages
306–317. IEEE Computer Society.

Hitzler, P., Krötzsch, M., and Rudolph, S. (2009). Foundations of Semantic Web Technologies.
Chapman & Hall/CRC.

Hustadt, U., Motik, B., and Sattler, U. (2007). Reasoning in description logics by a reduction to
disjunctive datalog. J. Autom. Reasoning, 39(3):351–384.

Hustadt, U., Motik, B., and Sattler, U. (2008). Deciding expressive description logics in the frame-
work of resolution. Inf. Comput., 206(5):579–601.

Hustadt, U. and Schmidt, R. A. (2000). Issues of decidability for description logics in the framework
of resolution. In Caferra, R. and Salzer, G., editors, Automated Deduction in Classical and Non-

Classical Logics, Selected Papers, volume 1761 of Lecture Notes in Computer Science, pages
191–205. Springer.

Huth, M. R. A. and Ryan, M. D. (2000). Logic in Computer Science: Modelling and reasoning

about systems. Cambridge University Press.
Kazakov, Y. (2008). RIQ and SROIQ are harder than SHOIQ. In Brewka, G. and Lang, J.,

editors, Proceedings of the 11th International Conference on Principles of Knowledge Represen-

tation and Reasoning (KR’08), pages 274–284. AAAI Press.
Kazakov, Y. (2009). Consequence-driven reasoning for Horn SHIQ ontologies. In Boutilier, C.,

editor, Proceedings of the 21st International Conference on Artificial Intelligence (IJCAI’09),
pages 2040–2045. IJCAI.

Kazakov, Y., Krötzsch, M., and Simančík, F. (2011). Concurrent classification of EL ontologies.
In Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., and Blomqvist,
E., editors, Proceedings of the 10th International Semantic Web Conference (ISWC’11), volume
7032 of LNCS. Springer.

Kontchakov, R., Lutz, C., Toman, D., Wolter, F., and Zakharyaschev, M. (2010). The combined
approach to query answering in DL-lite. In Lin, F., Sattler, U., and Truszczynski, M., editors,
Proceedings of the Twelfth International Conference on Principles of Knowledge Representation

and Reasoning (KR’10). AAAI Press.
Krötzsch, M., Rudolph, S., and Hitzler, P. (2012). Complexities of Horn description logics. ACM

Trans. Comp. Log. To appear; preprint available at http://tocl.acm.org/accepted.html.
Lutz, C. and Sattler, U. (2001). The complexity of reasoning with boolean modal logics. In Wolter,

F., Wansing, H., de Rijke, M., and Zakharyaschev, M., editors, Advances in Modal Logics Volume

3. CSLI Publications, Stanford.
Lutz, C., Sattler, U., and Tendera, L. (2005). The complexity of finite model reasoning in description

logics. Information and Computation, 199:132–171.
Lutz, C. and Walther, D. (2005). PDL with negation of atomic programs. Journal of Applied

Non-Classical Logics, 15(2):189–213.
Motik, B. (2006). Reasoning in Description Logics using Resolution and Deductive Databases.

PhD thesis, Universität Karlsruhe (TH), Germany.
Motik, B. and Sattler, U. (2006). A comparison of reasoning techniques for querying large descrip-

tion logic ABoxes. In Hermann, M. and Voronkov, A., editors, Proceedings of the 13th Interna-

tional Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’06),
volume 4246 of Lecture Notes in Computer Science, pages 227–241. Springer.

http://tocl.acm.org/accepted.html

TYPE-ELIMINATION-BASED REASONING FOR SHIQbs 37

Motik, B., Sattler, U., and Studer, R. (2005). Query answering for OWL-DL with rules. Journal of

Web Semantics, 3(1):41–60.
Motik, B., Shearer, R., and Horrocks, I. (2009). Hypertableau Reasoning for Description Logics.

Journal of Artificial Intelligence Research, 36:165–228.
Pan, G., Sattler, U., and Vardi, M. Y. (2006). BDD-based decision procedures for the modal logic

K. Journal of Applied Non-Classical Logics, 16(1-2):169–208.
Popkorn, S. (1994). First steps in modal logic. Cambridge University Press.
Pratt, V. R. (1979). Models of program logics. In 20th Annual Symposium on Foundations of

Computer Science, pages 115–122. IEEE.
Pratt-Hartmann, I. (2005). Complexity of the two-variable fragment with counting quantifiers. Jour-

nal of Logic, Language and Information, 14:369–395.
Rudolph, S. (2011). Foundations of description logics. In Polleres, A., d’Amato, C., Arenas, M.,

Handschuh, S., Kroner, P., Ossowski, S., and Patel-Schneider, P. F., editors, Reasoning Web.

Semantic Technologies for the Web of Data - 7th International Summer School 2011, Tutorial

Lectures, volume 6848 of Lecture Notes in Computer Science, pages 76–136. Springer.
Rudolph, S., Krötzsch, M., and Hitzler, P. (2008a). Cheap Boolean role constructors for description

logics. In Hölldobler, S., Lutz, C., and Wansing, H., editors, Proceedings of the 11th European

Conference on Logics in Artificial Intelligence (JELIA’08), volume 5293 of Lecture Notes in

Computer Science, pages 362–374. Springer.
Rudolph, S., Krötzsch, M., and Hitzler, P. (2008b). Description logic reasoning with decision

diagrams: Compiling SHIQ to disjunctive datalog. In Sheth, A., Staab, S., Dean, M., Paolucci,
M., Maynard, D., Finin, T., and Thirunarayan, K., editors, Proceedings of the 7th International

Semantic Web Conference (ISWC’08), volume 5318 of Lecture Notes in Computer Science, pages
435–450. Springer.

Rudolph, S., Krötzsch, M., and Hitzler, P. (2008c). Terminological reasoning in SHIQ with or-
dered binary decision diagrams. In Proceedings of the 23rd National Conference on Artificial

Intelligence (AAAI 2008), pages 529–534. AAAI Press.
Schild, K. (1991). A correspondence theory for terminological logics: Preliminary report. In

Mylopoulos, J. and Reiter, R., editors, Proceedings of the 12th International Joint Conference on

Artificial Intelligence (IJCAI’91), pages 466–471. Morgan Kaufmann.
Schmidt, R. A. and Tishkovsky, D. (2007). Using tableau to decide expressive description logics

with role negation. In Aberer, K., Choi, K.-S., Noy, N. F., Allemang, D., Lee, K.-I., Nixon, L.
J. B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., and Cudré-Mauroux, P.,
editors, The Semantic Web, 6th International Semantic Web Conference, 2nd Asian Semantic Web

Conference (ISWC’07 + ASWC’07), volume 4825 of Lecture Notes in Computer Science, pages
438–451. Springer.

Simančík, F., Kazakov, Y., and Horrocks, I. (2011). Consequence-based reasoning beyond Horn
ontologies. In Walsh, T., editor, Proceedings of the 22nd International Conference on Artificial

Intelligence (IJCAI’11), pages 1093–1098. AAAI Press/IJCAI.
Tobies, S. (2001). Complexity Results and Practical Algorithms for Logics in Knowledge Represen-

tation. PhD thesis, RWTH Aachen, Germany.
W3C OWL Working Group (27 October 2009). OWL 2 Web Ontology Language: Document

Overview. W3C Recommendation. Available at http://www.w3.org/TR/owl2-overview/.
Wegener, I. (2004). BDDs–design, analysis, complexity, and applications. Discrete Applied Math-

ematics, 138(1-2):229–251.

http://www.w3.org/TR/owl2-overview/

	1. Introduction
	2. The Description Logics SHIQbs and ALCIb
	3. Building Models from Domino Sets
	3.1. From Interpretations to Dominoes
	3.2. Constructing Domino Sets

	4. Sets as Boolean Functions
	4.1. Boolean Functions and Operations
	4.2. Ordered Binary Decision Diagrams
	4.3. Translating Dominos into Boolean Functions

	5. Reasoning with ABox and DL-Safe Rules via Disjunctive Datalog
	6. Polynomial Transformation from SHIQbs to ALCIb
	6.1. Unravelings
	6.2. From SHIQbs to ALCHIQb
	6.3. From ALCHIQb to ALCHIb
	6.4. From ALCHIb to ALCIb
	6.5. From ALCIb to ALCIFb
	6.6. From ALCIFb to ALCIb

	7. Related Work
	8. Discussion
	Acknowledgements
	References

