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Abstract. This paper is concerned with the complexity analysis of constructor term
rewrite systems and its ramification in implicit computational complexity. We introduce
a path order with multiset status, the polynomial path order POP∗, that is applicable in
two related, but distinct contexts. On the one hand POP∗ induces polynomial innermost
runtime complexity and hence may serve as a syntactic, and fully automatable, method
to analyse the innermost runtime complexity of term rewrite systems. On the other hand
POP∗ provides an order-theoretic characterisation of the polytime computable functions:
the polytime computable functions are exactly the functions computable by an orthogonal
constructor TRS compatible with POP∗.

1. Introduction

In this paper we are concerned with the complexity analysis of constructor term rewrite
systems. Since term rewrite systems (TRSs for short) underlie much of declarative pro-
gramming, time complexity of functions defined by TRSs is of particular interest.

In rewriting two notions of complexity have been widely studied. Hofbauer and Laute-
mann proposed to assess the complexity of a given TRS as the maximal length of derivation
sequences. More precisely the derivational complexity function relates the maximal length
of a derivation with the size of the starting term [33]. As an alternative Hirokawa and
the second author proposed to study the runtime complexity function [30], which forms a
variation of the derivational complexity function. Instead of all possible derivations, one
studies only derivations with starting terms whose arguments are constructor terms (aka
basic terms), see also [21]. In the context of this paper, runtime complexity is the more
natural notion. We emphasise that the runtime complexity of a rewrite system forms a
polynomially invariant cost model [19], cf. Section 2.

To motivate our studies, we present a natural encoding of the well-known satisfiability
problem SAT of propositional logic as a TRS. Given a propositional formula in conjunctive
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normal form, the TRS Rsat given below computes a satisfying assignment if it exists. Note
that Rsat is not confluent, i.e., the computation is performed nondeterministically. The
rewrite system Rsat thus encodes the function problem FSAT associated with the satisfi-
ability problem. FSAT is complete for the class of function problems over NP (FNP for
short). See Section 2 where FNP is formally defined. As corollary to the polynomial invari-
ance of the runtime complexity of rewrite systems, we obtain that the runtime complexity
of Rsat is expected to be polynomial.

Example 1.1. Consider the following (non-confluent) TRS Rsat:
1

1 : negate(+x) → −x 2 : negate(−x) → +x

3 : eq(c0(x), c1(y)) → ff 4 : eq(c0(x), c0(y)) → eq(x, y)

5 : eq(c1(x), c0(y)) → ff 6 : eq(c1(x), c1(y)) → eq(x, y)

7 : eq(−x,+y) → ff 8 : eq(−x,−y) → eq(x, y)

9 : eq(+x,−y) → ff 10 : eq(+x,−y) → eq(x, y)

11 : eq(ε, ε) → tt

12 : if(tt, t, e) → t 13 : if(ff, t, e) → e

14 : consistent([ ]) → tt 15 : consistent(l : ls) → if(elem(negate(l), ls),ff, consistent(ls))

16 : elem(x, [ ]) → ff 17 : elem(x, y : ys) → if(eq(x, y), tt, elem(x, ys))

18 : guess([ ]) → [ ] 19 : guess(c : cs) → choice(c) : guess(cs)

20 : choice(a : [ ]) → a 21 : choice(a : b : bs) → choice(b : bs)

22 : choice(a : b : bs) → a

23 : sat(cs) → sat′(guess(cs))

24 : sat′(as) → if(consistent(as), as, unsat) .

Atoms are encoded as binary strings (built from the constant ε, and unary constructors
c0 and c1), the unary constructors (+) and (−) lift atoms to positive and negative literals
respectively. The rules (1)–(11) define negation and equality on this representation of
literals.

Clauses are lists of literals, clause sets are denoted by lists of clauses. Lists are con-
structed in the usual way using a constant [ ] and binary constructor (:). Call a list of
literals consistent, if an atom does not occur positively and negatively. This is formalised
by rules (14)–(17). A clause set cs is satisfiable if and only if there exists a list of literals
as, denoting a satisfying assignment, such that as is consistent and contains at least one
literal from every clause c. The rules (18)–(22) are used to generate a candidate list as
that contains for each clause one literal. Using these auxiliary rules, the algorithm is im-
plemented by rules (23) and (24). Given a clause set cs, a candidate list as is guessed and
its consistency is checked. If this check succeeds the list as is returned.

1This is a slight variant of Example TCT 12/sat.xml in the current Termination Problem Database (TPDB)
version 8.0.
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MPO prim. rec. runtime compl. PR

? polynomial runtime compl. FP

Figure 1: The Quest for “Polynomial Path Orders”

It is easy to see that Rsat is terminating, for example this can be verified by showing
compatibility with the multiset path order (MPO for short) [56]. It is a standard exer-
cise in rewriting to assess the complexity of rewrite systems via an analysis of termination
techniques and it is a well-known result that MPO induces primitive recursive derivational
and runtime complexity [23, 32, 47]. Furthermore, MPO characterises the primitive re-
cursive functions (PR for short) [24]: any function computed by an MPO-terminating
TRS is primitive recursive, vice versa, any primitive recursive function can be stated as an
MPO-terminating TRS. However, from these results we can only conclude that the runtime
complexity function of Rsat is bounded by a primitive recursive function, which is hardly
revealing. This motivates the quest for a “polynomial path order” depicted by the question
mark in Figure 1.2 Such an order should be a restriction of MPO, but miniaturises its
properties: it would be expected that this order induces polynomial runtime complexity
and provides a characterisation of the class FP of functions computable in polynomial time.

In this paper, we propose the polynomial path order (POP∗ for short) as such a miniatur-
isation of MPO: POP∗ induces polynomial runtime complexity (for innermost rewriting)
and at the same time yields a characterisation of FP. In the design of POP∗ we have
striven for a maximal miniaturisation of MPO, so that these key features of POP∗ remain
intact. Alas, some of the essential properties of MPO cannot be preserved. First, POP∗

can only analyse the runtime complexity of TRSs; the derivational complexity induced by
POP∗ is (at least) double-exponential (Example 3.13). Second, the restriction to innermost
rewriting is essential (Example 3.14) and finally, our result only holds for constructor TRS
(Example 3.15). More precisely, we establish the following results.

(1) POP∗ induces polynomial innermost runtime complexity on constructor TRSs. That
is, the innermost runtime complexity function for a constructor TRS compatible with
POP∗ is polynomially bounded (Theorem 3.11).

(2) POP∗ captures exactly the class FP on orthogonal constructor TRSs. That is, any
orthogonal constructor TRS compatible with POP∗ computes a polytime function. On
the other hand, any function in FP can be implemented by an orthogonal constructor
TRS compatible with POP∗ (Theorems 6.1 and 6.4).

(3) We extend upon POP∗ by proposing a generalisation POP∗
PS
, admitting the same prop-

erties as outlined above, but that allows to handle more general recursion schemes that
make use of parameter substitution (Theorem 7.5).

(4) We have implemented the proposed technique in the Tyrolean Complexity Tool (TCT for
short) [11]. The experimental evidence obtained indicates the viability of the method.

By a comparison with the formal definition in Section 3 it is not difficult to verify that
Rsat is compatible with POP∗ (cf. Example 3.8). This implies that the number of rewrite
steps starting from sat(cs) is polynomially bounded in the size of the CNF cs. This can be

2 Solid lines indicate a characterisation, whereas dashed lines indicate an inclusion relationship.
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automatically verified by TCT in a fraction of a second. Due to a suitable adaption of the
polynomial invariance theorem [9] (cf. Proposition 2.4) we can thus automatically conclude
that FSAT belongs to FNP.

The termination order POP∗ gives a syntactic account of the principle of predicative
recursion as proposed by Bellantoni and Cook [18]. Conclusively any TRS compatible
with POP∗ is called predicative recursive. Analogously POP∗ can be conceived as syntactic
account of Leivant’s notion of tiered recurrence [40–42], cf. Simmons [53]. We think that
POP∗ is not only of interest from the viewpoint of automated runtime complexity, but
also from the viewpoint of implicit computational complexity (ICC for short) [15, 38]. In
particular POP∗ is applicable to verify closure properties of the class of polytime computable
function. Through our extension POP∗

PS
, we reobtain Bellantoni’s result that predicative

recursion is closed under parameter substitution (cf. Section 7).
Preliminary versions of the presented results appeared in [5, 7, 12]. The order POP∗

has been introduced in [5], extended to quasi-precedences in [12] and the extension POP∗
PS

appeared in [7]. Apart from the correction of some shortcomings, we extend our earlier work
in the following way: First, the presented definition of POP∗ is more liberal and captures
the underlying idea of predicative recursion more precisely, compare [5, Definition 4] and
Definition 3.5 from Section 3. Second, our soundness result (cf. Theorem 6.1 from Section 6)
is new and more general than similar results presented earlier. In particular it does no
longer require typing of constructors nor the intermediate step of completely defined TRSs,
cf. [5]. Third, the propositional encoding used in our automation of polynomial path orders
(cf. Section 8) has been completely overhauled.

1.1. Related Work. Polynomial complexity analysis is an active research area in rewriting.
Starting from [46] interest in automated polynomial complexity analysis greatly increased
over the last years, see for example [30, 31, 45, 48, 57]. This is partly due to the incor-
poration of a dedicated category for complexity into the annual termination competition
(TERMCOMP).3

There are several accounts of predicative analysis of recursion in the (ICC) literature.
We mention Marion’s light multiset path order (LMPO for short) [43]. The path order
LMPO provides an order-theoretic characterisation of the class FP and can be also consider
as a miniaturisation of MPO of sorts: it is a restriction of MPO and yields an order-
theoretic characterisation of a complexity class. On the other hand LMPO cannot be used
to characterise the (innermost) runtime complexity of TRSs. This follows from Example 1.2
below. In particular, although Rsat is compatible with LMPO, from this we can only
conclude that FSAT is computable on a nondeterministic Turing machine in polynomial
time. However, this follows by design as FSAT is complete for FNP.

Example 1.2. The TRS Rbin is given by the following rules:

25 : bin(x, 0) → s(0) 26 : bin(0, s(y)) → 0 27 : bin(s(x), s(y)) → +(bin(x, s(y)), bin(x, y)) .

For a precedence < that fulfils bin ≻ s and bin ≻ + we obtain that Rbin is compatible with
LMPO. However it is straightforward to verify that the family of terms bin(sn(0), sm(0))
admits (innermost) derivations whose length grows exponentially in n. Still the underlying
function can be proven polynomial, essentially relying on memoisation techniques [43].

3http://termcomp.uibk.ac.at/.

http://termcomp.uibk.ac.at/
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On the other hand Arai and the second author introduced the polynomial path order
for FP (POPFP for short). In a similar way as LMPO, POPFP characterises the class FP
and in addition induces innermost polynomial runtime complexity. However in comparison
to POP∗, POPFP severely lacks applicability as it requires a specific signature of the given
rewrite system. For example POPFP is not directly applicable to Rsat: only a special
transformation of the rewrite system Rsat can be handled.

Furthermore, a strengthening of our first main theorem to runtime complexity can be
obtained if one considers polynomial interpretations, where the interpretations of construc-
tor symbols is restricted. Such restricted polynomial interpretations are called additive
in [21]. Note that additive polynomial interpretations also characterise the functions com-
putable in polytime [21]. Similarly, quasi-interpretations [22] provide an elegant way to
characterise time complexity classes through a combination of syntactic (via restrictions
of reduction orders) and semantic (via quasi-interpretations) considerations. To date it is
unknown whether quasi-interpretations can be used to assess polynomial runtime complex-
ity of TRSs. Unarguable these semantic techniques admit a better intensionality than the
syntactic characterisation provided through the path order POP∗. But semantic methods
are notoriously difficult to implement efficiently in an automated setting. In particular
we are only aware of one accessible implementation of quasi-interpretations, our own [12].
Note that these semantic methods are not tailored for innermost rewriting, in particular
Example 2.5 given below cannot be handled, while it can be easily handled by POP∗.

Although we consider here only time complexity, related work indicates that the overall
approach is general enough to reason also about space complexity. For instance, the Knuth-
Bendix order [14] can be miniaturised to characterise linear space [20]. Likewise, sup-
interpretations [44] provide a semantic technique capable of characterising polynomial space.

In [16], Beckmann and Weiermann have given a term rewriting characterisation of
the principle of predicative recursion proposed by Bellantoni and Cook. Following ideas
proposed by Cichon and Weiermann in [24], Beckmann and Weiermann thus reobtain Bel-
lantoni’s result that predicative recursion is closed under parameter recursion.

We have extended our complexity analysis tool TCT [11] with polynomial path orders.
We briefly contrast this implementation to related tools for the static resource analysis of
programs. Hoffmann et al. [34] provide an automatic multivariate amortised cost analysis
exploiting typing, which extends earlier results on amortised cost analysis [55]. To indicate
the applicability of our method we have employed a straightforward (and complexity pre-
serving) transformation of the RAML programs considered in [34, 35] into TRSs. Equipped
with POP∗ our complexity analyser TCT can handle all examples from [34]. Albert et al. [1]

present an automated complexity tool for Java
TM

Bytecode programs, Alias et al. [2] give a
complexity and termination analysis for flowchart programs, and Gulwani et al. [29] as well
as Zuleger et al. [59] provide an automated complexity tool for C programs. Very recently
Hofmann and Rodriguez proposed in [36] an automated resource analysis for object-oriented
programs via an amortised cost analysis.

1.2. Outline. The remainder of this paper is organised as follows. In the next section we
recall basic notions and starting points of this paper. In Section 3 we introduce polynomial
path orders. In the subsequent Sections 4 and 5 we show that the innermost runtime
complexity of predicative recursive TRSs is polynomially bounded. As essential tool for
this we introduce an extended version of POPFP . In Section 6 we present our ramification
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of polynomial path orders in ICC. Parameter substitution is incorporated in Section 7. Our
implementation is detailed in Section 8 and experimental evidence is provided in Section 9.
Finally, we conclude and present future work in Section 10.

2. Preliminaries

We denote by N the set of natural numbers {0, 1, 2, . . . }. Let R be a binary relation. The
transitive closure of R is denoted by R+ and its transitive and reflexive closure by R∗.
For a binary relation R, we frequently write a R b instead of (a, b) ∈ R. Composition of
binary relations R and S is denoted by R · S, and defined in the usual way. For n ∈ N we
denote by Rn the n-fold composition of R. The binary relation R is well-founded if there
exists no infinite chain a0, a1, . . . with ai R ai+1 for all i ∈ N. Moreover, we say that R is
well-founded on a set A if there exists no such infinite chain with a0 ∈ A. The relation R
is finitely branching if for all elements a, the set {b | a R b} is finite.

A proper order is an irreflexive and transitive binary relation. A preorder is a reflexive
and transitive binary relation. An equivalence relation is reflexive, symmetric and transitive.

A multiset is a collection in which elements are allowed to occur more than once. We
denote by M(A) the set of multisets over A and write {{a1, . . . , an}} to denote multisets
with elements a1, . . . , an. We use m1 ⊎m2 for the summation and m1\m2 for difference on
multisets m1 and m2. The multiset extension Rmul of a relation R on A is the relation on
M(A) such that M1 R

mul M2 if there exists multisets X,Y ∈ M(A) satisfying

(1) M2 = (M1\X) ⊎ Y ,
(2) ∅ 6= X ⊆ M1 and
(3) for all y ∈ Y there exists an element x ∈ X such that x R y.

In order to extend this definition to preorders and equivalences, we follow [28]. Let ∼
denote an equivalence relation over the set A and let < = ≻ ∪ ∼ be a binary relation over
A so that ≻ and ∼ are compatible in the following sense: ∼ · ≻ · ∼ ⊆ ≻. Let [a]∼ denote
the equivalence class of a ∈ A with respect to ∼. By the compatibility requirement, the
extension ⊐ of ≻ to equivalence classes such that [a]∼ ⊐ [b]∼ if and only if a ≻ b, is well
defined. We define the strict multiset extension ≻mul of < as M1 ≻mul M2 if and only if
[M1]∼ ⊐mul [M2]∼. Further, the weak multiset extension <mul of < is given by M1 <

mul M2

if and only if [M1]∼ ⊐mul [M2]∼ or [M1]∼ = [M2]∼ holds. Note that if < is a preorder
(on A) then ≻mul is a proper order and <mul a preorder on M(A), cf. [28]. Also ≻mul is
well-founded if ≻ is well-founded.

2.1. Complexity Theory. Notations are taken from [49]. The function problem FR as-
sociated with a binary relation R is defined as follows: given x find some y such that
(x, y) ∈ R holds if y exists, otherwise return no. A binary relation R on words is called
polynomially balanced if for all (x, y) ∈ R, the size of y is polynomially bounded in the size
of x. The relation R is polytime decidable if (x, y) ∈ R is decided by a deterministic Turing
machine (TM for short) M operating in polynomial time. The class NP is the class of
languages L admitting polynomially balanced, polytime decidable relations RL [49, Chap-
ter 9]: L = {x | (x, y) ∈ RL for some y}. The class FNP is the class of function problems
associated with the polynomially balanced and polytime decidable relations RL as above.
The class of polytime computable functions FP is the subclass resulting if we only consider
function problems in FNP that can be solved in polynomial time [49, Chapter 10].
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Recall that a function problem F reduces to a function problemG if there exist functions
s and r, both computable in logarithmic space, such that for all x, y with F computing y on
input x, G computes on input s(x) the output z with r(z) = y. Note that both FNP and
FP are closed under reductions. We note that nondeterministic Turing machines running
in polynomial time compute function problems from FNP.

Proposition 2.1. Let N be a nondeterministic Turing machine that computes the function
problem F in polynomial time. Then F ∈ FNP.

Proof. Define the following relation R: (x, y) ∈ R if and only if y is the encoding of an
accepting computation of N on input x. For this encoding it is sufficient to encode a
successful sequence of configurations. Since N operates in polynomial time, the length
of any computation, and also the size of each configuration, is polynomially bounded. It
follows that R is polynomially balanced. As it can be checked in linear time that y encodes
an accepting run of N on input x, R is polytime decidable. Hence the function problem
FR that computes an accepting run y of N on input x is in FNP. Finally notice that F
reduces to FR. To see this, employ following reduction: the function s is simply the identity
function; the logspace computable function r extracts the result of N on input x from the
accepting run y computed by FR on input x. We conclude the lemma since FNP is closed
under reductions.

2.2. Term Rewriting. We assume at least nodding acquaintance with the basics of term
rewriting [14]. We fix notions and notation that are used in the paper.

Throughout the paper, we fix a countably infinite set of variables V and a finite sig-
nature F of function symbols. The signature F is partitioned into defined symbols D and
constructors C. The set of values, basic terms and terms is defined according to the grammar

(Values) T (C,V) ∋ v := x | c(v1, . . . , vn)

(Basic Terms) Tb(F ,V) ∋ s := x | f(v1, . . . , vn)

(Terms) T (F ,V) ∋ t := x | c(t1, . . . , tn) | f(t1, . . . , tn) .

where x ∈ V, c ∈ C, and f ∈ D.
The arity of a function symbol f ∈ F is denoted by ar(f). We write s D t if t is a

subterm of s, the strict part of D is denoted by ⊲. The size of a term t is denoted by
|t| and refers to the number of occurrences of variables and function symbols contained
in t. We denote by dp(t) the depth of t which is defined as dp(t) = 1 if t ∈ V and
dp(f(t1, . . . , tn)) = 1 + max{0} ∪ {dp(ti) | i = 1, . . . n}.

Let < be a preorder on the signature F , called quasi-precedence or simply precedence.
We always write ≻ for the induced proper order and ∼ for the induced equivalence on F .
We lift the equivalence ∼ to terms modulo argument permutation: s ∼ t if either s = t or
s = f(s1, . . . , sn) and t = g(t1, . . . , tn) where f ∼ g and for some permutation π, si ∼ tπ(i)
for all i ∈ {1, . . . , n}. Further we write s D/∼ t if t is a subterm of s modulo ∼, i.e., s D ·∼ t.
We denote by F≺f := {g | f ≻ g} the set of function symbols below f in the precedence <.
The rank of a function symbol is inductively defined by rk(f) = max{0}∪{1+rk(g) | f ≻ g}.

A rewrite rule is a pair (l, r) of terms, in notation l → r, such that l is not a variable
and all variables in r occur also in l. Here l is called the left-hand, and r the right-hand side
of l → r. A term rewrite system (TRS for short) R over T (F ,V) is a set of rewrite rules.
In the following, R always denotes a TRS. If not mentioned otherwise, we assume R to be
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finite. A relation on T (F ,V) is a rewrite relation if it is closed under contexts and closed
under substitutions. The smallest rewrite relation that contains R is denoted by −→R.

A term s ∈ T (F ,V) is called a normal form if there is no t ∈ T (F ,V) such that
s −→R t. With NF(R) we denote the set of all normal forms of a TRS R; if the TRS is clear

from context we simply write NF. Whenever t is a normal form of R we write s −→!
R t for

s −→∗
R t. The innermost rewrite relation, denoted as i−→R, is the restriction of −→R where

the arguments of the redex are in normal form. The TRS R is terminating if no infinite
rewrite sequence exists. The TRS R has unique normal forms if for all s, t1, t2 ∈ T (F ,V)
with s −→!

R t1 and s −→!
R t2 we have t1 = t2. The TRS R is called confluent if for all

s, t1, t2 ∈ T (F ,V) with s −→∗
R t1 and s −→∗

R t2 there exists a term u such that t1 −→
∗
R u and

t2 −→∗
R u. An orthogonal TRS is a left-linear and non-overlapping TRS. Here left-linear

means that no variable occurs more than once in each left-hand side. A TRS is overlapping,
if some pair of rules l1 → r1 and l2 → r2 in R, renamed so that variables are disjoint,
satisfies: (i) a subterm l′1 of l1 is unifiable with l2, i.e., l

′
1σ = l2σ for some substitution

σ; and (ii) if l′1 = l1 then the rules l1 → r1 and l2 → r2 are not equal up to renaming of
variables. Note that every orthogonal TRS is confluent [14]. A TRS R is a constructor
TRS if all left-hand sides are basic terms.

2.3. Rewriting as Computational Model. We fix call-by-value semantics and only con-
sider constructor TRSs R. Input and output are taken from the set of values T (C,V), and
defined symbols f ∈ D denote computed functions. More precise, a (finite) computation of
f ∈ D on input v1, . . . , vn ∈ T (C,V) is given by innermost reductions

f(v1, . . . , vn) = t0
i−→R t1

i−→R · · · i−→R tℓ = w .

If the above computation ends in a value, i.e., w ∈ T (C,V), we also say that f computes on
input v1, . . . , vn in ℓ steps the value w.

To account for nondeterministic computation, we capture the semantics of R by as-
signing to each n-ary defined symbol f ∈ D an n + 1-ary relation JfK that relates input
arguments v1, . . . , vn to computed values w. A finite set N of non-accepting patterns is
used to distinguish meaningful outputs w from outputs that should not be considered part
of the computation [20]. A value w is accepting with respect to N if no p ∈ N and no
substitution σ exists, such that pσ = w holds. A typical example of a value that should
not be accepted is the constant unsat appearing in the TRS Rsat from Example 1.1. Below
function problem are extended to n+ 1-ary relations in the obvious way.

Definition 2.2. Let R be a TRS and let N be a set of non-accepting patterns. For each
n-ary symbol f ∈ D the relation JfK ⊆ T (C,V)n+1 defined by f in R is given by

(v1, . . . , vn, w) ∈ JfK :⇔ f(v1, . . . , vn)
i−→!
R w and w is accepting with respect to N .

We say that R computes the function problems associated with JfK.

Note that if R is confluent, then JfK is in fact a (partial) function. Following [9, 30] we
adopt an unitary cost model for rewriting, where each reduction step accounts for one time
unit, cf. [25, 26]. Reductions are of course measured in the size of the input.

Definition 2.3. The innermost runtime complexity function rcR : N → N relates sizes of
basic terms f(v1, . . . , vn) ∈ Tb(F ,V) to the maximal length of computation. Formally

rcR(n) := max{ℓ | ∃s ∈ Tb(F ,V), |s| 6 n and s = t0
i−→R t1

i−→R . . . i−→R tℓ} .
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If clear from context, we sometime drop the qualifier ’innermost’ and simply speak of
runtime complexity (of the TRS R).

The restriction s ∈ Tb(F ,V) accounts for the fact that computations start only from
basic terms. We sometimes use dhR(s) := max{ℓ | ∃t. s i−→ℓ

R t} to refer to the (innermost)
derivation height of a single term s. Note that the runtime complexity function is well-
defined ifR is terminating, i.e., i−→R is well-founded. Suppose rcR is asymptotically bounded
from above by a linear, quadratic,. . . , polynomial function, we simply say that the runtime
of R is linear, quadratic,. . . , or respectively polynomial. If no confusion can arise, we drop
the reference to the TRS R and simple write rc instead of rcR.

By folklore it is known that rewriting can be implemented with only polynomial over-
head if terms grow only polynomial during reductions. This implies that the functions
computed by specific TRSs of polynomial runtime complexity can be implemented with
polynomial time complexity on a Turing machine (or an alternative computation model).
This observation can be significantly extended as it can be shown that the restriction on
polynomial growth is not necessary.

In [8, 9] it is shown that the unitary cost model is reasonable for full rewriting. The
deterministic case was established independently in [25, 26] using essentially the same ap-
proach. By Proposition 2.1 and a suitable adaption of Theorem 6.2 in [9] to innermost
rewriting we obtain the following proposition.

Proposition 2.4. Let R be a rewrite system with polynomial runtime. Then the function
problems associated with JfK defined by R are contained in FNP. If R is confluent, i.e.,
deterministic, then JfK is a (partial) function contained in FP.

Our choice of adopting call-by-value semantics rests on the observation that the unitary
cost model of unrestricted rewriting often overestimates the runtime complexity of computed
functions. This has to do with the unnecessary duplication of redexes.

Example 2.5. Consider the constructor TRS Rbtree given by the following rules:

28 : btree(0) → leaf 29 : dup(t) → node(t, t) 30 : btree(s(n)) → dup(btree(n)) .

Then for n ∈ N, btree(sn(0)) computes a binary tree of height n in a linear number of steps.
On the other hand, Rbtree gives also rise to a non-innermost reduction

btree(sn(0)) −→R dup(btree(sn−1(0))) −→R node(btree(sn−1(0)), btree(sn−1(0))) −→R . . . ,

obtained by preferring dup over btree. The length of the derivation is however exponential
in n.

By Proposition 2.4 we obtain JbtreeK ∈ FP. As indicated later, our analysis can auto-
matically classify the function JbtreeK as feasible.

3. The Polynomial Path Order

We arrive at the formal definition of the polynomial path order (POP∗ for short). Variants of
the definition presented here have been presented in earlier conference publications [5–7, 12].

As already mentioned in the introduction the multiset path order capture the prim-
itive recursive functions. Hence reduction orders can entail implicit characterisations of
complexity classes. This motivates the quest for a miniaturisation of MPO that precisely
captures the class FP. Another motivation for the design of POP∗ rests on the observation
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that term-rewriting characterisations of complexity classes may facilitate the study of (low)
complexity classes, cf. [16, 24]. Such applications imply the need to craft an order that
induces polynomial innermost runtime complexity. POP∗ meets these demands, by provid-
ing a syntactic account of the predicative analysis of recursion set forth by Bellantoni and
Cook [18]. Analogously POP∗ can be conceived as syntactic account of Leivant’s notion of
tiered recurrence [40, 42].

For each function f , the arguments to f are separated into normal and safe ones. To
highlight this separation, we write f(~x; ~y) where arguments ~x to the left of the semicolon
are normal, the arguments ~y to the right are safe. Bellantoni and Cook define a class B,
consisting of a small set of initial functions and that is closed under safe composition and
safe recursion on notation (safe recursion for brevity).

The crucial ingredient in B is that a new function f is defined via safe recursion by the
equations:

f(0, ~x; ~y) = g(~x; ~y)

f(2z + i, ~x; ~y) = hi(z, ~x; ~y, f(z, ~x; ~y)) i ∈ {1, 2} ,
(SRN)

for functions g, h1 and h2 already defined in B. This definition corresponds to a recursion on
the binary representation of numbers. Consequently the number of recursive calls is linear in
the size of the recursive input. Unlike primitive recursive functions, the stepping functions
hi cannot perform recursion on the impredicative value f(z, ~x; ~y). This is a consequence of
data tiering : recursion is performed on normal arguments only. Dual, the recursive call
f(z, ~x; ~y) is substituted into a safe argument position.

To maintain the separation, safe composition restricts the usual composition operator
so that safe arguments are not substituted into normal argument position. Precisely, for
functions h, ~r and ~s already defined in B, a function f is defined by safe composition using
the equation

f(~x; ~y) = h(~r(~x; );~s(~x; ~y)) . (SC)

Crucially, the safe arguments ~y are absent in normal arguments to h. The main result
from [18] states that the class B coincides with the class of polytime computable func-
tions FP.

As a first step to capture the notion of predicative recursion in POP∗, we introduce the
concept of safe mappings to handle the separation of argument positions.

Definition 3.1. A safe mapping safe is a function safe : F → 2N that associates with
every n-ary function symbol f the set of safe argument positions {i1, . . . , im} ⊆ {1, . . . , n}.
Argument positions included in safe(f) are called safe, those not included are called normal
and collected in nrm(f). For n-ary constructors c we require that all argument positions
are safe, i.e., safe(c) = {1, . . . , n}.

We refine term equivalence so that the safe mapping is taken into account.

Definition 3.2. Let < denote a precedence and safe a safe mapping. We define safe
equivalence s∼ for terms s, t ∈ T (F ,V) inductively as follows: s s∼ t if either s = t or
s = f(s1, . . . , sn), t = g(t1, . . . , tn), f ∼ g and there exists a permutation π such that for all
i ∈ {1, . . . , n}, si

s∼ tπ(i) and i ∈ safe(f) if and only if π(i) ∈ safe(g).

To avoid notational overhead, we fix a safe mapping safe and suppose that for each
k + l ary function symbol f , the first k argument positions are normal, and the remaining
argument positions are safe, i.e., safe(f) = {k + 1, . . . , k + l}. This allows use to write
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f(s1, . . . , sk; sk+1, . . . , sk+l) as before. We require that the precedence < adheres the parti-
tioning of F into defined symbols and constructors in the following sense.

Definition 3.3. A precedence < is admissible (for POP∗) if f ∼ g implies that either both
f and g are defined symbols, or both are constructors.

In particular s∼ preserves values, i.e., if s ∈ T (C,V) and s s∼ t then also t ∈ T (C,V).
The following definition introduces an auxiliary order >pop, the full order >pop∗ is then
presented in Definition 3.5.

Definition 3.4. Let < denote a precedence. Consider terms s, t ∈ T (F ,V) such that
s = f(s1, . . . , sk; sk+1, . . . , sk+l). Then s >pop t if one of the following alternatives holds:

(1) si >pop t for some i ∈ {1, . . . , k + l} and, if f ∈ D then i is a normal argument position
(i ∈ {1, . . . , k});

(2) f ∈ D, t = g(t1, . . . , tm; tm+1, . . . , tm+n) where f ≻ g and s >pop ti for all i = 1, . . . ,m+
n.

Here we set >pop := >pop ∪
s∼.

Consider a function f defined by safe composition from r and s, cf. scheme (SC). The
effect of this auxiliary order is to (properly) encompass safe composition in the full order
>pop∗. Note that the auxiliary order can orient f(~x; ~y) >pop r(~x; ) for defined symbols f
and r with f ≻ r. On the other hand, f(~x; ~y) and safe arguments yi are incomparable, and
thus the orientation of f(~x; ~y) and s(~x; ~y) fails, even if f ≻ s is supposed.

Definition 3.5. Let < denote a precedence. Consider terms s, t ∈ T (F ,V) such that
s = f(s1, . . . , sk; sk+1, . . . , sk+l). Then s >pop∗ t if one of the following alternatives holds:

(1) si >pop∗ t for some i ∈ {1, . . . , k + l}, or
(2) f ∈ D, t = g(t1, . . . , tm; tm+1, . . . , tm+n) where f ≻ g and the following conditions hold:

- s >pop tj for all normal argument positions j = 1, . . . ,m;
- s >pop∗ tj for all safe argument positions j = m+ 1, . . . ,m+ n;

- tj 6∈ T (F≺f ,V) for at most one safe argument position j ∈ {m+ 1, . . . ,m+ n};
(3) f ∈ D, t = g(t1, . . . , tm; tm+1, . . . , tm+n) where f ∼ g and the following conditions hold:

- {{s1, . . . , sk}} >mul
pop∗ {{t1, . . . , tm}};

- {{sk+1, . . . , sk+l}} >mul
pop∗ {{tm+1, . . . , tm+n}}.

Here >pop∗ := >pop∗ ∪
s∼.

We use the notation >
〈i〉
pop and respectively >

〈i〉
pop∗ to refer to the ith case in Definition 3.4

respectively Definition 3.5. Note that POP∗ is not a reduction order, as for example closure

under contexts fails due to the conditions put upon >
〈3〉
pop∗. However POP∗ is a restriction

of MPO and thus a termination order.

Remark. The restrictions put upon >
〈2〉
pop∗ amount to the fact that POP∗ allows at most

one recursive call per right-hand side.

Remark. The proposed constraints are weaker compared to the corresponding clause given
in [5, Definition 4]. The early definition from [5, Definition 4], used the full order >pop∗

only on one argument of the right-hand side (the one that possibly holds the recursive call),
the remaining arguments were all oriented with the auxiliary order >pop.

The case >
〈2〉
pop∗ accounts for definitions by safe composition (SC). The final restriction

put onto >
〈2〉
pop∗ is used to prevent multiple recursive calls as indicated in Example 1.2. The
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case >
〈3〉
pop∗ restricts the corresponding case in MPO by taking the separation of normal and

safe argument positions into account. Note that here normal arguments need to decrease.
This reflects that as in (SRN) recursion is performed on normal argument positions. We

emphasise that one application of >
〈2〉
pop∗ possibly followed by one application of >

〈3〉
pop∗ ori-

ents the defining equations in (SRN), using the obvious precedence (using suitable term
representation of natural numbers).

Our order-theoretic account of predicative recursion motivates following definition.

Definition 3.6. We call a constructor TRS R predicative recursive, if R is compatible with
an instance >pop∗ of POP∗ based on an admissible precedence.

Note that it can be determined in nondeterministic polynomial time that a constructor
TRS is predicative recursive: simply guess a safe mapping and a precedence and apply
the definition of POP∗. This is in contrast to semantic method (like additive polynomial
interpretations) whose synthesis is undecidable in general.

We clarify Definition 3.5 on several examples. The first of these examples shows a
typical application of predicative recursion.

Example 3.7. Consider the TRS Rmul expressing multiplication in Peano arithmetic.

31 : +(0; y) → y 32 : +(s(;x); y) → s(;+(x; y))

33 : ×(0, y; ) → 0 34 : ×(s(;x), y; ) → +(y;×(x, y; ))

The TRS Rmul is predicative recursive, using the precedence × ≻ + ≻ s and the safe

mapping as indicated in the rules: The rules (31) and (33) are oriented by >
〈1〉
pop∗. The

rule (32) is oriented by >
〈2〉
pop∗ using + ≻ s and +(s(;x); y) >

〈3〉
pop∗ +(x; y). Note that the

latter inequality only holds as the first argument position of addition is normal. Similar,

the final rule (34) is oriented by >〈2〉
pop∗, employing × ≻ + together with ×(s(;x), y; ) >〈1〉

pop y

and ×(s(;x), y; ) >
〈3〉
pop∗ ×(x, y; ). Note that the latter two inequalities require that the both

argument positions of × are normal, i.e., are used for recursion.

We re-consider the motivation Example 1.1 from the introduction.

Example 3.8 (Example 1.1 continued). Consider the TRS Rsat from the motivating Ex-
ample 1.1, where the separation into normal and safe arguments for the defined func-
tion symbols is defined as follows: nrm(if) = nrm(negate) = ∅, nrm(eq) = {1}. We set
nrm(elem) = {2}, and for all remaining defined function symbols, we make all arguments
normal, i.e., nrm(consistent) = nrm(sat) = nrm(sat′) = nrm(guess) = nrm(choice) = {1}.

Then Rsat ⊆ >pop∗ for any admissible precedence satisfying the following constraints:
guess ≻ choice, consistent ≻ if, elem, negate, sat ≻ sat′, guess, and sat′ ≻ if, consistent, unsat.

The next example is negative, in the sense that the considered TRSs admits polynomial
runtime complexity, but fails to be compatible with POP∗.

Example 3.9 (Example 3.7 continued). Consider the TRS Rmul where the rule (34) is
replaced by the rule

34a : × (s(;x), y; ) → +(×(x, y; ); y) .

The resulting system has polynomial runtime complexity, which can be automatically veri-
fied with TCT. However, the TRS does not follow the rigid scheme of predicative recursion.
For this reason, it cannot be handled by POP∗. Technically, the terms ×(s(;x), y; ) and
×(x, y; ) are incomparable with respect to >pop independent on the precedence, and conse-

quently also orientation of left- and right-hand side with >
〈2〉
pop∗ fails.
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Figure 2: Predicative Embedding

The following examples clarifies the need for data tiering.

Example 3.10 (Example 3.7 continued). Consider the extension of Rmul by the two rules

35 : exp(0, y) → s(; 0) 36 : exp(s(;x), y) → ×(y, exp(x, y); ) ,

that express exponentiation yx in an exponential number of steps. The definition of exp
disregards data tiering as imposed by predicative recursion. In particular, since × admits
no safe argument positions it cannot serve as a stepping function. Independent on the safe
mapping for exp, rule (36) cannot be oriented using polynomial path orders.

The following theorem constitutes the first main result of this paper.

Theorem 3.11. Let R be a predicative recursive (constructor) TRS. Then the innermost
derivation height of any basic term f(~u;~v) is bounded by a polynomial in the maximal
depth of normal arguments ~u. The polynomial depends only on R and the signature F . In
particular, the innermost runtime complexity of R is polynomial.

The proof of Theorem 3.11 is involved and requires a variety of ingredients. We give
a short outline. In Section 4, we define predicative interpretations S that flatten terms to
sequences of terms, essentially separating safe from normal arguments. This allows us to
analyse terms independent from safe arguments. Then we introduce an order ◮ on sequences
of terms, that is simpler compared to >pop∗ and does not rely on the separation of argument
positions. This polynomial path order on sequences extends the polynomial path order for
FP, introduced in [4]. In Section 5 we establish a predicative embedding of derivations into
◮ as depicted in Figure 2.

In Theorem 4.17 we show that the length of ◮ descending sequences starting from
basic terms can be bound appropriately. One may wonder whether a precise degree on the
provided polynomial bound can be obtained by reasoning based on the depth of recursion
and formation of composition rules. This is not the case as Lemma 3.12 clarifies, where we
provide a family of TRS (Rk)k>1, all with depth of recursion one and without the use of
composition, such that rcRk

(n) = Ω(nk). However, it is possible to design a restriction of
POP∗, dubbed small polynomial path order in [13], which induces a precise degree on the
provided polynomial bound.

Lemma 3.12. For every k > 1 there exists a TRS Rk over constructors s, 0 defining a
single defined symbol fk such that Rk ⊆ >pop∗ and rcRk

(n) = Ω(nk).

Proof. Consider the following TRS Rk that is compatible with >pop∗:

fk(s(x1), x2, x3, . . . , xk; ) → fk(x1, x2, x3, . . . , xk; )

fk(0, s(x2), x3, . . . , xk; ) → fk(x2, x2, x3, . . . , xk; )

...

fk(0, . . . , 0, s(xk); ) → fk(xk, . . . , xk, xk; )
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We show the stronger claim that for all n > 1 there exist constants ck ∈ Q such that

fk(s
n(0), . . . , sn(0)) −→>ck·n

k

Rk
fk(0, . . . , 0)

by induction on k. The base case is trivial, we consider the inductive step. Applying the
induction hypothesis, by definition of Rk and Rk+1 it is easy to see that for all n > 1

fk+1(s
n(0), . . . , sn(0), sn(0)) −→>ck·n

k

Rk+1
fk+1(0, . . . , 0, s

n(0))

−→Rk+1
fk+1(s

n−1(0), . . . , sn−1(0), sn−1(0)) .

Using this observation, a simple side induction on n reveals

fk+1(s
n(0), . . . , sn(0), sn(0)) −→

>f(n)
Rk+1

fk+1(0, . . . , 0, 0)

where f(n) =
∑n

i=1 ck · i
k ∈ Ω(nk+1). The exact overhead due to multiset comparisons is

further investigated in Example 4.13.

The next three examples stress that the restrictions to runtime complexity (Exam-
ple 3.13), innermost reductions (Example 3.14), as well as constructor TRSs (Example 3.15),
are all essential for the correctness of Theorem 3.11.

Example 3.13. Consider the TRS Rdc given by the following rules, cf. [33, Example 1].

37 : +(0; y) → y 38 : +(s(;x); y) → s(;+(x; y))

39 : d(0; ) → 0 40 : d(s(;x); ) → s(; s(; d(x; )))

41 : q(0; ) → 0 42 : q(s(;x); ) → +(s(; d(x; )); q(x; )) ,

where we suppose that 0 and s are the only constructors. As shown by Hofbauer and
Lautemann, Rdc admits at least double-exponentially derivational complexity ; in particular

it is easy to find a family of terms tn such that dh(tn) = 22
Ω(n)

.
On the other hand Rdc is compatible with a polynomial path order >pop∗ as induced by

a precedence < satisfying q ≻ d ≻ s ≻ 0 and the safe mapping as indicated in the rules. As
a side-remark we emphasise that the orientability of rule (42) induces that POP∗ properly
extends the safe composition scheme (SC).

Example 3.14 (Example 2.5 continued). Observe that Rbtree ⊆ >pop∗ with any admissible
precedence satisfying btree ≻ dup for the TRS Rbtree depicted in Example 2.5. We use
nrm(btree) = {1} and nrm(dup) = ∅ for the defined function symbols. Theorem 3.11 thus
implies that the (innermost) runtime complexity of Rbtree is polynomial. On the other hand,
we already observed that Rbtree admits exponentially long outermost reductions.

Example 3.15. Consider the TRS Rnc given by the rules

43 : f(n; ) → h(; gs(n; )) 44 : gs(0; ) → 0

45 : h(; g(;n)) → c(; h(;n), h(;n)) 46 : gs(s(;n); ) → g(; gs(n; ))

47 : g(;⊥) → c(; h(;⊥), h(;⊥)) ,

where we suppose that the only constructors are ⊥, 0 and s. The rule (47) is used to define
the symbol g, and to properly set up the precedence. The rules (44) and (46) are used to
translate a tower sn(; 0) to gn(; 0), using rule (43) we thus obtain a family of reductions

f(sn(; 0); ) −→Rnc
h(; gs(sn(; 0); )) −→∗

Rnc
h(; gn(; 0)) ,
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for n ∈ N. It is not difficult to see that the derivation height of the final term h(; gn(; 0))
grows exponentially in n due to rule (45), and so the innermost runtime complexity of Rnc

is bounded by an exponential from below.
On the other hand, Rnc is compatible with a polynomial path order >pop∗ as induced

by a precedence < satisfying f ≻ gs ≻ g ≻ h ≻ c and the safe mapping as indicated
in the rules. Observe that for rule (45) we exploit that g is defined, conclusively one can

show g(;m) >pop∗ c(; h(;m), h(;m)) and therefore h(; g(;m)) >
〈1〉
pop∗ c(; h(;m), h(;m)) holds.

However, due to rule (47) Rnc is not a constructor TRS, as demanded by Theorem 3.11.

Bellantoni and Cook’s characterisation, as well as Leivant’s work on tiered recurrence,
was originally stated on word algebras. In quite recent work by Dal Lago et al., [39] the
result by Leivant [40, 42] has been extended to arbitrary free algebras. In particular, in [39]
a function f is defined by general ramified recursion as

f(c(x1, . . . , xn), ~y) = hc(x1, . . . , xn, ~y, f(x1, ~y), . . . , f(xn, ~y)) ,

for every n-ary constructor c, provided a data tiering principle is satisfied. Due to the linear-

ity condition imposed on >
〈2〉
pop∗, such a recursion principle cannot be expressed in predicative

recursive TRSs. Indeed, allowing this form of recursion would invalidate Theorem 3.11.

Example 3.16 (Example 2.5 continued). Let Rgr denote the extension of Rbtree from
Example 2.5 by the rules

48 : f(n; ) → traverse(btree(n; ); )

49 : traverse(leaf; ) → leaf

50 : traverse(node(;x, y); ) → node(; traverse(x; ), traverse(y; )) .

The above definition of f is expressible in the system of [39], by simply conceiving the
rewrite rules as defining equations. In particular it follows that JfK is polytime computable.
On the other hand, the runtime complexity of Rgr is at least exponential as a derivation of
f(sn(0)), Rgr traverses every node of a binary tree of height n.

Finally we note that the order >pop∗ is blind on constructors, in particular >pop∗ col-
lapses to the subterm relation (modulo equivalence) on values.

Lemma 3.17. Suppose the precedence underlying >pop∗ is admissible. If s >pop∗ t and
s ∈ T (C,V) then t is a safe subterm of s (modulo s∼), in particular t ∈ T (C,V) holds.

4. The Polynomial Path Order on Sequences

Fix again a safe mapping safe on the signature F . We now define the notion of predicative
interpretation of a term t. Guided by the safe mapping, predicative interpretations map
terms to sequences of terms. We then introduce the polynomial path order on sequences,
intended to orient images of the predicative interpretation as outlined before.

To formalise sequences, we use an auxiliary variadic function symbol ◦. Here variadic
means that the arity of ◦ is finite but arbitrary. We always write [ t1 · · · tn ] for ◦(t1, . . . , tn),
in particular if we write f(t1, . . . , tn) then f 6= ◦. Define the normalised signature Fn as
follows:

Fn :=
{

fn | f ∈ F , nrm(f) = {i1, . . . , ik} and ar(fn) = k}
}

.
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The predicative interpretation of a term f(s1, . . . , sk; sk+1, . . . , sk+l) results in a sequence
[ fn(a1, . . . , ak) ] ++ ak+1 ++ · · · ++ ak+l, where ++ denotes concatenation of sequences and
the sequences ai are predicative interpretations of the corresponding arguments si (i =
1, . . . , k + l). Note that in the interpretations, terms have sequences as arguments.

Definition 4.1. The set of terms with sequence arguments S(F ,V) ⊆ T (Fn ⊎ {◦},V) and
the set of sequences S∗(F ,V) ⊆ T (Fn ⊎ {◦},V) is inductively defined as follows:

(1) V ⊆ S(F ,V), and
(2) if a1, . . . , an ∈ S∗(F ,V) and f ∈ Fn then f(a1, . . . , an) ∈ S(F ,V), and
(3) if t1, . . . , tn ∈ S(F ,V) then [ t1 · · · tn ] ∈ S∗(F ,V).

We always write a, b, . . . , possibly extended by subscripts, for elements from S(F ,V)
and S∗(F ,V). The restriction of S(F ,V) and S∗(F ,V) to ground terms is denoted by
S(F) and S∗(F) respectively. When no confusion can arise from this we call terms with
sequence arguments simply terms. Further, we sometimes abuse set notation and write
b ∈ [ a1 · · · an ] if b = ai for some i ∈ {1, . . . , n}. We denote by a ++ b the concatenation of
a ∈ S(F ,V)∪S∗(F ,V) and b ∈ S(F ,V)∪S∗(F ,V). To avoid notational overhead we overload
concatenation to both terms and sequences. Let lift(a) := [ a ] if a ∈ S(F ,V) and lift(a) := a
if a ∈ S∗(F ,V). We set a ++ b := [ a1 · · · an b1 · · · bm ] where lift(a) = [ a1 · · · an ] and
lift(b) = [ b1 · · · bm ]. As concatenation is associative we drop parenthesis at will. We define
the length over S(F ,V)∪S∗(F ,V) as len(a) := n where lift(a) = [ a1 · · · an ]. The sequence
width wd (or width for short) of an element a ∈ S(F ,V) ∪ S∗(F ,V) is given recursively by

wd(a) :=











1 if a is a variable,

max{1,wd(a1), . . . ,wd(an)} if a = f(a1, . . . , an) with f ∈ Fn, and
∑n

i=1 wd(ai) if a = [ a1 · · · an ] .

In the following we tacitly employ len(a) 6 wd(a) and wd(a ++ b) = wd(a) + wd(b) for all
a, b ∈ S(F ,V) ∪ S∗(F ,V). We define the norm of t ∈ T (F ,V) in correspondence to the
depth of t, but disregard normal argument positions.

nm(t) :=

{

1 t is a variable,

1 + max{0} ∪ {nm(tj) | j = k + 1, . . . , k + l} t = f(t1, . . . , tk; tk+1, . . . , tk+l).
.

Note that since all argument positions of constructors are safe, the norm nm(·) and depth
dp(·) coincide on values.

Predicative interpretations are given by two mappings S and N: the interpretation S

is applied on safe arguments and removes normal forms; the interpretation N is applied to
normal arguments and additionally encodes the norm of the given term as tally sequence.
The latter allows us to track the maximal depth of normal forms erased by S. Let • 6∈ Fn be
a fresh constant. To encode natural numbers n ∈ N, define its tally sequence representation
n as the sequence containing n occurrences of this fresh constant: 0 = [ ] and n+ 1 = • ++ n.

Definition 4.2. A predicative interpretation for a TRS R is a pair (SR,NR) of mappings
SR,NR : T (F ,V) → S∗(F ∪ {•}) defined as follows:

SR(t) :=

{

[ ] if t ∈ NF(R),

[ fn(NR(t1), . . . ,NR(tk)) ] ++ S(tk+1) ++ · · · ++ S(tk+l) otherwise where (⋆),

NR(t) := SR(t) ++ nm(t) .
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Here (⋆) stands for t = f(t1, . . . , tk; tk+1, . . . , tk+l).
As the rewrite system R is usually clear from the context, we drop the references to R

when unambiguous.

Below we introduce the order ◮ on sequences S(F)∪S∗(F). In the next section we then
embed innermost R-steps into this order, and use ◮ to estimate the length of reductions
accordingly. For basic terms s = f(u1, . . . , uk;uk+1, . . . , uk+l) we obtain

S(s) = [ fn(N(u1), . . . ,N(uk)) ] ++ S(uk+1) ++ · · · ++ S(uk+l) = [ fn(dp(u1), . . . , dp(uk)) ] .

Hence the obtained bound depends on depths of normal arguments only. To get the reader
prepared for the definition of ◮, we exemplify Definition 4.2 on a predicative recursive TRS.

Example 4.3. Consider following TRS Rf , where we suppose that besides f, also g and h

are defined symbols:

51 : f(0; y) → y 52 : f(s(x); y) → g(h(x; ); f(x; y))

Consider a substitution σ : V → NF. Using that S(v) = [ ] and N(v) = dp(v) for all normal
forms v, the embedding S(lσ) ◮ S(rσ) of root steps (l → r ∈ Rf ) results in the following
order constraints.

[ fn(1) ] ◮ [ ] from rule 1

[ fn(dp(xσ) + 1) ] ◮ [ gn(N(h(xσ; ))) fn(dp(xσ)) ] from rule 2,

where N(h(xσ; )) = [ hn(N(xσ)) ] ++ nm(h(xσ; )) = [ hn(dp(xσ)) • ]. Consider now a step

s = f(s1, . . . , si, . . . , sk+l)
i−→Rf

f(s1, . . . , ti, . . . , sk+l) = t ,

below the root, where si
i−→Rf

ti. Depending on the rewrite position i, which is either normal

(i ∈ {1, . . . , k}) or safe (i ∈ {k + 1, . . . , k + l}), the predicative embedding introduces one
of the following two constraints:

S(s) = [ fn(N(s1), . . . ,N(si), . . . ,N(sk)) ] ++ S(sk+1) ++ · · · ++ S(sk+l) (a)

◮ [ fn(N(s1), . . . ,N(ti), . . . ,N(sk)) ] ++ S(sk+1) ++ · · · ++ S(sk+l) = N(t), or

S(s) = [ fn(N(s1), . . . ,N(sk)) ] ++ S(sk+1) ++ · · · ++ S(si) ++ · · · ++ S(sk+l) (b)

◮ [ fn(N(s1), . . . ,N(sk)) ] ++ S(sk+1) ++ · · · ++ S(ti) ++ · · · ++ S(sk+l) = S(t) .

To be able to deal with steps below normal argument positions as in (a), we also orient
images of N. This results additionally in following constraints:

S(f(0; yσ)) ++ dp(yσ) + 1 ◮ S(yσ) ++ dp(yσ) from rule 1

S(f(s(xσ); yσ)) ++ dp(yσ) + 1 ◮ S(g(h(xσ; ); f(xσ; yσ))) ++ dp(yσ) + 2 from rule 2.

The polynomial path order on sequences (POP for short), denoted by ◮, constitutes a
generalisation of the path order for FP as put forward in [4]. Whereas we previously used
the notion of safe mapping to dictate predicative recursion on compatible TRSs, the order
on sequences relies on the explicit separation of safe arguments as given by predicative
interpretations. Following Buchholz [23], it suffices to present finite approximations ◮k,l

of ◮. The parameters k ∈ N and l ∈ N are used to controls the width and depth of right-
hand sides. Fix a precedence < on the normalised signature Fn. We extend term equivalence
with respect to < to sequences by disregarding the order on elements.
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Definition 4.4. We define a ∼ b if a = b or there exists a permutation π such that
ai ∼ bπ(i) for all i = 1, . . . , n, where either (i) a = [ a1 · · · an ], b = [ b1 · · · bn ], or (ii)
a = f(a1, . . . , an), b = g(b1, . . . , bn) and f ∼ g.

In correspondence to >pop∗, the order ◮k,l is based on an auxiliary order ·>k,l.

Definition 4.5. Let k, l > 1. We define ·>k,l with respect to the precedence < inductively
as follows:

(1) f(a1, . . . , an) ·>k,l b if ai ·>k,l b for some i ∈ {1, . . . , n};
(2) f(a1, . . . , an) ·>k,l g(b1, . . . , bm) if f ≻ g and the following conditions are satisfied:

- f(a1, . . . , an) ·>k,l−1 bj for all j = 1, . . . ,m;
- m 6 k;

(3) f(a1, . . . , an) ·>k,l [ b1 · · · bm ] if the following conditions are satisfied:
- f(a1, . . . , an) ·>k,l−1 bj for all j = 1, . . . ,m;
- m 6 wd(f(a1, . . . , an)) + k;

(4) [ a1 · · · an ] ·>k,l [ b1 · · · bm ] if the following conditions are satisfied:
- [ b1 · · · bm ] ∼ c1 ++ · · · ++ cn;
- ai ·>k,l ci for all i = 1, . . . , n;
- ai0 ·>k,l ci0 for at least one i0 ∈ {1, . . . , n};
- m 6 wd([ a1 · · · an ]) + k;

Here ·>k,l denotes ·>k,l ∪ ∼. We write ·>k to abbreviate ·>k,k.

We stress that the definition lacks a case f(a1, . . . , an) ·>k,l g(b1, . . . , bm) where f ∼ g.
Still the order is sufficient to account for terms oriented by the auxiliary order >pop.

Example 4.6 (Example 4.3 continued). Reconsider rule (52) from the TRS Rf given in

Example 4.3, where in particular f(s(x); y) >pop h(x; ). We show below fn(dp(xσ) + 1) ·>1,4

N(h(s(xσ); )) for all substitutions σ : V → NF. First recall that by the overloading of
concatenation, we can write

n = [ • · · · • ] = • ++ · · · ++ • ++ [ ] ++ · · · ++ [ ]

with n occurrences of •, appending m-times the empty sequence [ ] for all n,m ∈ N. Using

that • ∼ • and • ·>〈3〉

k,l−1 [ ] for l > 2, we can thus prove n+m ·>〈4〉

k,l n whenever m > 1.
Moreover we have

1 : dp(xσ) + 1 ·>〈4〉
1,2 dp(xσ) as dp(xσ) + 1 > dp(xσ)

2 : fn(dp(xσ) + 1) ·>〈2〉
1,3 hn(dp(xσ)) using fn ≻ hn and 1

3 : fn(dp(xσ) + 1) ·>〈3〉
1,4 [ hn(dp(xσ)) • ] by 2 and fn(. . . ) ·>〈2〉

1,3 •

= N(h(xσ; )) .

We arrive at the definition of the full order ◮k,l.

Definition 4.7. Let k, l > 1. We define ◮k,l inductively as the least extension of ·>k,l such
that:

(1) f(a1, . . . , an) ◮k,l b if ai ◮k,l b for some i ∈ {1, . . . , n};
(2) f(a1, . . . , an) ◮k,l g(b1, . . . , bm) if f ∼ g and following conditions are satisfied:

- {{a1, . . . , an}} ◮mul
k,l {{b1, . . . , bm}};

- m 6 k;
(3) f(a1, . . . , an) ◮k,l [ b1 · · · bm ] and following conditions are satisfied:



POLYNOMIAL PATH ORDERS 19

- f(a1, . . . , an) ◮k,l−1 bj0 for at most one j0 ∈ {1, . . . ,m};
- f(a1, . . . , an) ·>k,l−1 bj for all j 6= j0;
- m 6 wd(f(a1, . . . , an)) + k;

(4) [ a1 · · · an ] ◮k,l [ b1 · · · bm ] and following conditions are satisfied:
- [ b1 · · · bm ] ∼ c1 ++ · · · ++ cn;
- ai ◮k,l ci for all i = 1, . . . , n;
- ai0 ◮k,l ci0 for at least one i0 ∈ {1, . . . , n};
- m 6 wd([ a1 · · · an ]) + k;

Here ◮k,l denotes ◮k,l ∪∼. We write ◮k to abbreviate ◮k,k.

The polynomial path order on sequences forms a restriction of the recursive path or-
der with multiset status, where the variadic symbol ◦ is implicitly ranked lowest in the
precedence. As a consequence the order it is well-founded [28]. The use of the auxiliary

order in ◮
〈3〉

k,l accounts for our restriction that predicative recursive TRSs admit at most

one recursive call per right-hand side. Observe t ◮
〈3〉

k [ ] for all terms t 6∈ V, consequently

[ t1 · · · tn ] ◮
〈4〉

k [ ] if at least one term ti is ground.

Example 4.8 (Example 4.6 continued). We continue with the orientation of root steps
from the TRS Rf depicted in Example 4.3 for substitutions σ : V → NF. Consider the
more involved case f(s(xσ); yσ) i−→Rf

g(h(xσ; ); f(xσ; yσ)) due to rule (52). Note that in

the orientation below we use ◮
〈2〉

k to orient the recursive call (proof step 5), and ·>〈2〉

k for the
remaining elements (proof step 6).

4 : dp(xσ) + 1 ◮
〈4〉
1,2 dp(xσ) as in Example 4.6

5 : fn(dp(xσ) + 1) ◮〈2〉
1,3 fn(dp(xσ)) using 4

6 : fn(dp(xσ) + 1) ·>〈2〉
1,5 gn(N(h(xσ; ))) using fn ≻ gn and 3

7 : fn(dp(xσ) + 1) ◮
〈3〉
1,6 [ gn(N(h(xσ; ))) fn(dp(xσ)) ] using 5 and 6

= S(g(h(xσ; ); f(xσ; yσ)))

8 : S(f(s(xσ); yσ)) = [ fn(dp(xσ) + 1) ]

◮
〈3〉
1,6 S(g(h(xσ; ); f(xσ; yσ))) using 7

9 : fn(dp(xσ) + 1) ◮
〈3〉
2,6 [ gn(N(h(xσ; ))) fn(dp(xσ)) • ] by 5, 6 and fn(. . . ) ◮1,1 •

10 : N(f(s(xσ); yσ)) = [ fn(dp(xσ) + 1) ] ++ dp(yσ) + 1

◮
〈3〉
2,6 S(g(h(xσ; ); f(xσ; yσ))) ++ dp(yσ) + 2 using 9 and • ∼ •

= N(g(h(xσ; ); f(xσ; yσ))) .

For the last orientation we employ that the width of the left-hand side is at least dp(yσ)+2,
and the length of the right hand side is dp(yσ) + 4, as required we have

len(N(g(h(xσ; ); f(xσ; yσ)))) 6 wd(N(f(s(xσ); yσ))) + 2 .

Observe that as in the above example, the parameter l in ◮k,l controls the depth of

the proof tree of a ◮k,l b. Since leafs of such proof trees hold either due to case ◮
〈1〉

k or
the absence of arguments in the right-hand side, it follows that the depth of b is bounded
linearly in l and the depth of a. From the example it should also be clear how the parameter
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k controls the length of right-hand sides, compare steps 9 and 10 where we had to increase
the parameter k.

In the example we obtained that the predicative embedding of root steps lσ i−→Rf
rσ

of predicative recursive TRS Rf is possible for k = 2, independent on the considered
substitution σ. The next lemma clarifies that such a global k can always be found, and
depends on the right-hand sides only.

Lemma 4.9. Let s = f(s1, . . . , sk; sk+1, . . . , sk+l) ∈ Tb, t ∈ T (F ,V), and σ be a normalising
substitution. Then

(1) len(S(tσ)) 6 |t|; and
(2) if s >pop t then len(N(tσ)) 6 max{nm(s1σ), . . . , nm(skσ)}+ 2 · |t|; and
(3) if s >pop∗ t then len(N(tσ)) 6 max{nm(s1σ), . . . , nm(sk+lσ)}+ 2 · |t|.

As a consequence of the above lemma we obtain: if lσ i−→R rσ is a root step of a
predicative TRS R, then len(Q(rσ)) 6 wd(Q(lσ)) + 2 · |r| for Q ∈ {S,N}. In the predicative
embedding we instantiate k by twice the maximum size of right-hand sides of R. The side-
conditions imposed on ◮k,l allow us to estimate the length of right-hand sides based on the
width of left-hand sides and the parameter k. This and other frequently used properties
are collected in the next lemma, whose proof is not difficult.

Lemma 4.10. The following properties hold for all k > 1 and a, b, c1, c2 ∈ S(F ,V) ∪
S∗(F ,V).

(1) ·>l ⊆ ◮l ⊆ ◮k for all l 6 k;
(2) ∼ · ◮k · ∼ ⊆ ◮k;
(3) a ◮k b implies len(b) 6 wd(a) + k;
(4) a ◮k b implies c1 ++ a ++ c2 ◮k c1 ++ b ++ c2.

Following [4] we define a function Gk that measures the ◮k-descending lengths on se-
quences. To simplify matters, we restrict the definition of Gk to ground sequences. As
images of predicative interpretations are always ground, this suffices for our purposes.

Definition 4.11. We define Gk : S(F) ∪ S∗(F) → N as

Gk(a) := 1 + max{Gk(b) | b ∈ S(F) ∪ S∗(F) and a ◮k b} .

Note that due to Lemma 4.10 (2), Gk(a) = Gk(b) whenever a ∼ b. The next lemma
confirms that sequences act purely as containers.

Lemma 4.12. For [ a1 · · · an ] ∈ S∗(F) it holds that Gk([ a1 · · · an ]) =
∑n

i=1 Gk(ai).

Proof. Let a = [ a1 · · · an ] ∈ S∗(F). We first show Gk(a) >
∑n

i=1 Gk(ai). Let b, c ∈
S(F)∪S∗(F) and consider maximal sequences b ◮k b1 ◮k · · · ◮k bo and c ◮k c1 ◮k · · · ◮k cp.
Using Lemma 4.10 (4) repeatedly we get

b ++ c ◮k b1 ++ c ◮k · · · ◮k bo ++ c ◮k bo ++ c1 ◮k · · · ◮k bo ++ cp ,

and thus Gk(b ++ c) > Gk(b) + Gk(c) holds for all b, c ∈ S(F) ∪ S∗(F). We conclude
Gk(a) = Gk(a1 ++ · · · ++ an) >

∑n
i=1 Gk(ai) with a straight forward induction on n.

It remains to verify Gk(a) 6
∑n

i=1 Gk(ai). For this we show that a ◮k b implies
Gk(b) <

∑n
i=1 Gk(ai) by induction on Gk(a). Consider the base case Gk(a) = 0. Since

a is ground it follows that a = [ ], the claim is trivially satisfied. For the inductive step

Gk(a) > 1, let a ◮k b. Since a is a sequence, a ◮
〈4〉

k b. Hence b ∼ b1 ++ · · · ++ bn where
ai ◮k bi and thus Gk(bi) 6 Gk(ai) for all i = 1, . . . , n. Additionally ai0 ◮k bi0 and hence
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Gk(bi0) < Gk(ai0) for at least one i0 ∈ {1, . . . , n}. As in the first half of the proof, one
verifies Gk(bi) 6 Gk(b) for all i = 1, . . . , n. Note Gk(b) < Gk(a) as a ◮k b, hence induction
hypothesis is applicable to b and all bi (i = 1, . . . , n). It follows that

Gk(b) 6
∑

c∈b

Gk(c) 6

n
∑

i=1

∑

c∈bi

Gk(c) =

n
∑

i=1

Gk(bi) <

n
∑

i=1

Gk(ai) .

This concludes the second part of the proof.

The central theorem of this section, Theorem 4.17, states that Gk(f(a1, . . . , an)) is poly-
nomial in

∑n
i Gk(ai), where the polynomial bound depends only on k and the rank p of f .

The proof of this is involved. To cope with the multiset comparison underlying ◮
〈2〉

k , we intro-
duce as a first step an order-preserving extension Gn

k of Gk to multisets of sequences, in the
sense that Gn

k(a1, . . . , an) > Gm
k (b1, . . . , bm) holds whenever {{a1, . . . , an}} ◮mul

k {{b1, . . . , bm}}
(provided k > m,n, cf. Lemma 4.15). As the next step toward our goal, we estimate
Gk(f(a1, . . . , an)) in terms of Gn

k(a1, . . . , an) whenever n 6 k and rk(f) 6 k. Technically
we bind following functions by polynomials qk,p. For all k, p ∈ N with k > 1 we define
Fk,p : N → N as

Fk,p(m) := max{Gk(f(a1, . . . , an)) |

f(a1, . . . , an) ∈ S(F), rk(f) 6 p, n 6 k and Gn
k(a1, . . . , an) 6 m} .

The definition of Gn
k is defined in terms of an order-preserving homomorphism from

M(N) to N. To illustrate the construction carried out below, consider the following example.

Example 4.13. Consider multisets M(N) of size k. Conceive such multisets{{m1, . . . ,mk}}
as natural numbers written in base-c (with c > mi for all i = 1, . . . , k), where digits
m1, . . . ,mk are sorted from left to right in decreasing order. Then one can formulate chains
M1 >mul M2 >mul . . . that can be understood as decreasing counters which however wrap
from {m1, . . . ,mi + 1, 0, . . . , 0} to {m1, . . . ,mi,mi, . . . ,mi}. Compare the TRS Rk defined
in Lemma 3.12 that models such counters. Using the correspondence, it is easy to prove
that the length of a chain of this form starting from {{c− 1, . . . , c− 1}} is given by

c−1
∑

m1=0

m1
∑

m2=0

· · ·

mk−1
∑

mk=0

mk = Ω(ck+1).

The inclusion follows by k-times application of the Faulhaber’s formula [37], which states
that for all n, l ∈ N,

∑n
i=1 i

l = pl+1(n) for some polynomial pl+1 of degree l + 1.

The above example gives a polynomial lower bound on the number of >mul descending
sequences on multisets M(N) of size k. We now prove that this lower bound also serves
as an asymptotic upper bound, for all multisets of natural number of length up to k. For
k > n ∈ N and c ∈ N we define the family of functions hnk,c : Nl → N such that

hnk,c(m1, . . . ,mn) =

n
∑

i=1

sortn(m1, . . . ,mn, i) · c
(k−i) .

Here sortn(m1, . . . ,mn, i) denote the ith element of m1, . . . ,mn sorted in descending order,
i.e., sortn(m1, . . . ,mn, i) := mπ(i) for i = 1, . . . , n and some permutation π such thatmπ(i) >

mπ(i+1) (i ∈ {1, . . . , n− 1}).
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Lemma 4.14. Let k, n, n′ ∈ N such that k > n, n′. Then for all m1, . . . ,mn ∈ N and
c > m1, . . . ,mn we obtain:

(1) {{m1, . . . ,mn}} >mul {{m′
1, . . . ,m

′
n′}} implies hnk,c(m1, . . . ,mn) > hn

′

k,c(m
′
1, . . . ,m

′
n′), and

(2) ck > hnk,c(m1, . . . ,mn).

Let k ∈ N be fixed and let M ⊆ M(N) collect all multisets of size up to k. By

Lemma 4.14 the functions hlk,· gives an order preserving homomorphism from (M,>mul) to
(N, >). Furthermore this homomorphism is polynomially bounded in its elements. We ex-
tend this homomorphism to multisets{{a1, . . . , an}} over S(F)∪S∗(F). Let k, n ∈ N such that
k > n. We define Gn

k : S∗(F)n → N as follows: Gn
k(a1, . . . , an) := hnk,c(Gk(a1), . . . ,Gk(an)),

where c = 1 +max{Gk(ai) | i ∈ {1, . . . , n}}. We obtain:

Lemma 4.15. Let a1, . . . , an, b1, . . . , bm ∈ S(F) ∪ S∗(F) and let k > m,n. Then

{{a1, . . . , an}} ◮mul
k {{b1, . . . , bm}} =⇒ Gn

k(a1, . . . , an) > Gm
k (b1, . . . , bm) .

In Theorem 4.17 below we prove Fk,p(m) 6 c · (m+ 2)d for some constants c, d ∈ N

depending only on k and p. Inevitably the proof of Theorem 4.17 is technical, the reader
may to skip the formal proof on the first read. In the proof of Theorem 4.17, we instantiate
the constants c, d by parameters ck,p, dk,p ∈ N, which are defined by recursion on p as
follows:

dk,p :=

{

k + 1 if p = 0,

(dk,p−1 · k)
k+1 + 1 otherwise;

ck,p :=

{

kk if p = 0,

(ck,p−1 · k)
∑k

i=1 (k·dk,p−1)
i

otherwise.

The theorem is then proven by induction on p and m. Consider term f(a1, . . . , an) with

k > n and Gn
k(a1, . . . , an) 6 m. At the heart of the proof, we show that ck,p · (m+ 2)dk,p >

Gk(b) for arbitrary b with f(a1, . . . , an) ◮k b. The most involved case is f(a1, . . . , an) ◮
〈3〉

k,l

[ b1 · · · bo ] where for all but one j ∈ {1, . . . , o} we have f(a1, . . . , an) ·>k,l−1 bj. Here it is
important to give a precise analysis of the order ·>k,l, exploiting the parameters k and l. To
this avail we define for l, k > 1 and p ∈ N a family of auxiliary functions gl,k,p : N → N by

gk,l,p(m) :=











kl ·ml if p = 0,

m if p > 0 and l = 1,

ck,p−1 · (m · gk,l−1,p(m))k·dk,p−1 otherwise.

Having as premise the induction hypothesis of the main proof, the next lemma explains the
rôle of ·>k,l.

Lemma 4.16. Let f(a1, . . . , an) ∈ S(F). Let k > n and m > Gn
k(a1, . . . , an). Suppose

Fk,p(m
′) 6 ck,p(m

′ + 2)dk,p for all p < rk(f) and m′. Then for all b ∈ S(F) ∪ S∗(F),

f(a1, . . . , an) ·>k,l b =⇒ Gk(b) 6 gk,l,rk(f)(m+ 2) .

Proof. We prove lemma by induction on l. The base case l = 1 is easy to show, hence
assume l > 1. Suppose f(a1, . . . , an) ·>k,l b, we continue by case analysis:

Case f(a1, . . . , an) ·>〈1〉

k,l b : Then ai ·>k,l b for some i ∈ {1, . . . , n}, and consequently Gk(b) 6

Gk(ai). Then by definition and assumption we even have Gk(ai) 6 Gn
k(a1, . . . , an) 6 m.



POLYNOMIAL PATH ORDERS 23

Case f(a1, . . . , an) ·>〈2〉

k,l b where b = g(b1, . . . , bo) : Then f(a1, . . . , an) ·>k,l−1 bj for all

j = 1, . . . , o. Set m′ := Go
k(b1, . . . , bo). We have

m′ < max{Gk(bj) + 1 | j ∈ {1, . . . , o}}k by definition and Lemma 4.14 (2)

6 (gk,l−1,rk(f)(m+ 2) + 1)k applying induction hypothesis.

As in the considered case rk(g) < rk(f) holds, we have Gk(b) 6 Fk,rk(g)(m
′) and so by

assumption and arithmetical reasoning we conclude

Gk(b) 6 ck,rk(g) · (m
′ + 2)

dk,rk(f)−1

< ck,rk(f)−1 · ((gk,l−1,rk(f)(m+ 2) + 1)k + 2)
dk,rk(f)−1

substituting bound for m′

6 ck,rk(f)−1 · ((m+ 2) · gk,l−1,rk(f)(m+ 2))k·dk,rk(f)−1

= gk,l,rk(f)(m+ 2) using rk(f) > 0 .

Case f(a1, . . . , an) ·>〈3〉

k,l b where b = [ b1 · · · bo ] : Order constraints give o 6 wd(a) + k

and f(a1, . . . , an) ·>k,l−1 bj (j = 1, . . . , o). Exploiting that ai is ground, a standard
argument shows that wd(ai) 6 Gk(ai), and consequently wd(ai) 6 m. Thus

o 6 wd(a) + k = max{1,wd(a1), . . . ,wd(an)}+ k 6 m+ k 6 k · (m+ 1) . (4.1)

Since by Lemma 4.12 we have Gk(b) =
∑o

i=1 Gk(bi), using (4.1) we see

Gk(b) 6 k · (m+ 1) · gk,l−1,rk(f)(m+ 2) by induction hypothesis

< gk,l,rk(f)(m+ 2) by case analysis.

Theorem 4.17. Let k > 1 and p ∈ N. There exists constants c, d ∈ N (depending only on
k and p) such that for all m ∈ N we have

Fk,p(m) 6 c · (m+ 2)d .

Proof. Fix f(a1, . . . , an) ∈ S(F) such that rk(f) = p, k > n and Gn
k(a1, . . . , an) 6 m.

To show the theorem, we prove that for all b with f(a1, . . . , an) ◮k b we have Gk(b) <

ck,p · (m+ 2)dk,p for constants ck,p and dk,p as defined on page 22. The proof is by induction
on the lexicographic combination of p and m. The base case where p = 0 and m = 0 is
easy to proof, we consider the inductive step. Consider the inductive step. By induction
hypothesis we have

Fk,p′(m
′) 6 ck,p · (m

′ + 2)
dk,p′ if p′ < p, or p′ = p and m′ < m.

For p′ < p we will use the induction hypothesis as a premise to Lemma 4.16, for p′ = p we
use below the consequence

Gk(g(b1, . . . , bo)) < ck,p · (m+ 1)dk,p if f ∼ g, o 6 k and Go
k(b1, . . . , bo) < m . (4.2)

We analyse the cases p = 0 and p > 0 separately. In both cases we perform a side induction
on l.

Case p = 0 : By side induction on l we prove that Gk(b) < kk · (m+ 1)k+1 + kl · (m+ 2)l

for all b with f(a1, . . . , an) ◮k,l b.

Note that if f(a1, . . . , an) ◮
〈1〉

k,l b holds, as in the proof of Lemma 4.16, we even have

Gk(b) 6 Gn
k(a1, . . . , an) 6 m.
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Consider now f(a1, . . . , an) ◮
〈2〉

k,l b where g(b1, . . . , bo). The ordering constraints give

o 6 k and {{a1, . . . , an}} ◮mul
k,l {{b1, . . . , bo}}, from Lemma 4.15 we thus get Go

k(b1, . . . , bo) <

Gn
k(a1, . . . , an) 6 m. Since also f ∼ g in this case we conclude as we even have

Gk(g(b1, . . . , bo)) < ck,0 · (m+ 1)dk,0 by main induction hypothesis

= kk · (m+ 1)k+1 by definition of ck,0 and dk,0.

Next consider f(a1, . . . , an) ◮
〈3〉

k,l where [ b1 · · · bo ]. The order constraints give (i)

a ◮k,l−1 bj0 for some j0 ∈ {1, . . . , o}, (ii) a ·>k,l−1 bj for all j 6= j0, and (iii) o 6 wd(a)+ k.
We have

Gk(bj0) < kk · (m+ 1)k+1 + kl−1 · (m+ 2)l−1 from (i), using SIH on l

Gk(bj) 6 kl−1 · (m+ 2)l−1 for j 6= jo from (ii), using Lemma 4.16

o 6 k · (m+ 1) from (iii).

For the last inequality, compare Equation (4.1) from Lemma 4.16. As Gk(b) =
∑o

j=1Gk(bj)
by Lemma 4.12, substituting the above inequalities we get

Gk(b) < kk · (m+ 1)k+1 + kl−1 · (m+ 2)l−1 bound on Gk(bj0)

+ (k · (m+ 1)− 1) · kl−1 · (m+ 2)l−1 bound on o and Gk(bj), j 6= j0

< kk · (m+ 1)k+1 + kl · (m+ 2)l .

This concludes the final case of the side induction. Since ◮k = ◮k,k this preparatory step
gives

Gk(b) < kk · (m+ 1)k+1 + kk · (m+ 2)k 6 kk · (m+ 2)k+1 ,

we conclude the case p = 0.

Case p > 0 : We show first that for all k > l, if f(a1, . . . , an) ◮k,l b then

Gk(b) 6 ck,p · (m+ 1)dk,p + ck,p · (m+ 2)(k·dk,p−1)
l+1

. (4.3)

The proof is by induction on l. Suppose f(a1, . . . , an) ◮k,l b. The base case l = 1 is trivial,

so consider the inductive step l > 1. As in the case p = 0, if f(a1, . . . , an) ◮
〈1〉

k,l b then

even Gk(b) 6 m, and if f(a1, . . . , an) ◮
〈2〉

k,l b then even Gk(b) 6 ck,p · (m+ 1)dk,p . Consider

f(a1, . . . , an) ◮
〈3〉

k,l b. Then b = [ b1 · · · bo ] with (i) a ◮k,l−1 bj0 for some j0 ∈ {1, . . . , o},

(ii) a ·>k,l−1 bj for all j 6= j0, and (iii) o 6 wd(a) + k. A standard argument gives

gk,l,p(n) 6 c
∑l−1

i=1 (k·dk,p−1)
i

k,p−1 · n
∑l

i=1 (k·dk,p−1)
i

,

for all n ∈ N, thus

Gk(bj0) < ck,p · (m+ 1)dk,p + ck,p · (m+ 2)(k·dk,p−1)
l

from (i), using SIH on l

Gk(bj) 6 c
∑l−2

i=1 (k·dk,p−1)
i

k,p−1 · (m+ 2)
∑l−1

i=1 (k·dk,p−1)
i

for j 6= jo from (ii), using Lemma 4.16

o 6 k · (m+ 1) from (iii).
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Using Lemma 4.12 and substituting the above inequalities we get

Gk(b) 6 ck,p · (m+ 1)dk,p + ck,p · (m+ 2)(k·dk,p−1)
l

bound on Gk(bj0)

+ k · (m+ 1) · c
∑l−2

i=1 (k·dk,p−1)
i

k,p−1 · (m+ 2)
∑l−1

i=1 (k·dk,p−1)
i

bound on Gk(bj), j 6= j0

< ck,p · (m+ 1)dk,p + ck,p · (m+ 2)(k·dk,p−1)
l

+ ck,p · (m+ 1) · (m+ 2)
∑l−1

i=1 (k·dk,p−1)
i

as k · c
∑l−2

i=1 (k·dk,p−1)
i

k,p−1 < ck,p

6 ck,p · (m+ 1)dk,p + ck,p · (m+ 2)
∑l

i=0 (k·dk,p−1)
i

6 ck,p · (m+ 1)dk,p + ck,p · (m+ 2)(k·dk,p−1)
l+1

,

as desired, we conclude Equation (4.3). From this preparatory step, ◮k = ◮k,k and

(k · dk,p−1)
k+1 < (k · dk,p−1)

k+1 + 1 = dk,p we finally get

Gk(b) 6 ck,p+1 · (m+ 1)dk,p + ck,p · (m+ 2)(k·dk,p−1)
k+1

= ck,p · ((m+ 1)dk,p + (m+ 2)(k·dk,p−1)
k+1

) < ck,p · (m+ 2)dk,p ,

and conclude also this case.

As a consequence, the number of ◮k-descents on basic terms interpreted with predicative
interpretation S is polynomial in sum of depths of normal arguments.

Corollary 4.18. Let k > 1 and consider f ∈ D with m 6 k normal arguments. There
exists a constant d ∈ N depending only on k and the rank of f such that:

Gk(S(f(u1, . . . , um;um+1, . . . , um+n))) = O
(

(maxmi=1 dp(ui))
d
)

for all u1, . . . , um+n ∈ T (C,V).

Proof. Let s = f(u1, . . . , um;um+1, . . . , um+n) be as given by the corollary. Recall that since
arguments of s are values, we have nm(ui) = dp(ui) as indicated on page 16, and further
S(ui) = [ ] holds for all i = 1, . . . ,m+ n. Thus

S(s) = [ fn(dp(u1), . . . , dp(um)) ] .

As Gk(•) is constant, say Gk(•) = c, by Lemma 4.12 we see that Gk(dp(ui)) = c · dp(ui).
We conclude as

Gk(S(s)) =Gk(fn(dp(u1), . . . , dp(um))) by Lemma 4.12

6 Fk,rk(f)
(

Gl
k(dp(u1), . . . , dp(um))

)

by assumption m 6 k

6 Fk,rk(f)

(

(

1 + maxmi=1 Gk(dp(ui))
)k
)

by Lemma 4.14 (2)

6 Fk,rk(f)

(

(

c · (1 + maxmi=1 dp(ui))
)k
)

using Gk(dp(ui)) 6 c · dp(ui)

∈ O
(

(

c · (1 +maxmi=1 dp(ui))
)k+dk,rk(f)

)

by Theorem 4.17

= O
(

(maxmi=1 dp(ui))
k+dk,rk(f)

)

.
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5. Predicative Embedding

Fix a predicative recursive TRS R and signature F , and let >pop∗ be the polynomial path
order underlying R based on the (admissible) precedence <. We denote by < also the
induced precedence on Fn given by: fn ∼ gn if f ∼ g and fn ≻ gn if f ≻ g. Further, we set
f ≻ • for all fn ∈ Fn. We denote by ◮ℓ (and respectively ·>ℓ) the approximation given in
Definition 4.7 (respectively Definition 4.5) with underlying precedence <.

In this section, we establish the embedding of i−→R into ◮ℓ as outlined in the proof
plan on page 13; in the sequel ℓ is set to twice the maximum size of right-hand sides of R.
Lemma 5.2 below proves the embedding of root steps for the case l >pop∗ r. In Lemma 5.3
we then show that the embedding is closed under contexts. The next auxiliary lemma
connects the auxiliary orders >pop and ·>k,l (compare Example 4.6).

Lemma 5.1. Suppose s = f(s1, . . . , sk; sk+1, . . . , sk+l) ∈ Tb(F ,V), t ∈ T (F ,V) and
σ : V → NF. Then for predicative interpretation Q ∈ {S,N} we have

s >pop t =⇒ fn(N(s1σ), . . . ,N(skσ)) ·>2·|t| Q(tσ) .

Proof. The proof proceeds by induction on the definition of >pop and makes use of Lem-
mas 3.17, 4.9 and 4.10.

Lemma 5.2. Suppose s = f(s1, . . . , sk; sk+1, . . . , sk+l) ∈ Tb(F ,V), t ∈ T (F ,V) and
σ : V → NF. Then for predicative interpretation Q ∈ {S,N} we have

s >pop∗ t =⇒ Q(sσ) ◮2·|t| Q(tσ) .

Proof. Let s, t, σ be as given in the lemma. We prove the stronger assertions

(1) fn(N(s1σ), . . . ,N(skσ)) ◮2·|t| S(tσ),

(2) fn(N(s1σ), . . . ,N(skσ)) ·>2·|t| S(tσ) if t ∈ T (F≺f ,V), and

(3) fn(N(s1σ), . . . ,N(skσ)) ++ nm(sσ) ◮2·|t| N(tσ).

As S(s) = [ fn(N(s1σ), . . . ,N(skσ) ], Property 1 and Lemma 4.10 (3) yield S(sσ) ◮2·|t| S(sσ).

Furthermore N(s) = S(fn(N(s1σ), . . . ,N(skσ)) ++ nm(sσ). Hence Property 3 immediately
yields N(sσ) ◮2·|t| N(sσ).

We continue with the proof of the assertions by induction on >pop∗ and set u :=
fn(N(s1σ), . . . ,N(skσ)).

Case s >
〈1〉
pop∗ t : Due to Lemma 3.17 (employing >pop ⊆ >pop∗) we obtain that tσ is a safe

subterm of siσ and tσ ∈ NF. The latter implies S(tσ) = [ ] and thus Properties 1 and 2

follow. For Property 3, observe that len(nm(tσ)) = nm(tσ) 6 nm(siσ) 6 wd(u ++ nm(sσ)).

Here the last inequality follows by a simple case distinction on i. From this and u ·>〈2〉

2·|t|−1 •
we get

u ++ nm(sσ) ◮
〈4〉

2·|t| nm(tσ) = N(tσ) .

Case s >〈2〉
pop∗ t : The assumption gives t = g(t1, . . . , tm; tm+1, . . . , tm+n) where f ≻ g and

further s >pop ti for all normal argument positions i = 1, . . . ,m, and s >pop∗ ti for all safe

argument positions i = m+ 1, . . . ,m+ n, of g. Additionally ti0 6∈ T (F≺f ,V) for at most
one argument position i0. Set v := gn(N(t1σ), . . . ,N(tmσ)) and let S(tiσ) = [ vi,1 · · · vi,ji ]
for all safe argument positions i = m+ 1, . . . ,m+ n. Hence, we obtain:

S(tσ) = [ gn(N(t1σ), . . . ,N(tmσ)) vm+1,1 · · · vm+1,jm+1 · · · vm+n,1 · · · vm+n,jm+n
] .
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Applying Lemma 5.1 on all normal arguments of t, we see

u ·>2·|t|−1 gn(N(t1σ), . . . ,N(tmσ)) = v , (5.1)

from the assumptions fn ≻ gn and s >pop ti for all i = 1, . . . ,m. Since s >pop∗ ti0 by
assumption, induction hypothesis on i0 gives u ◮2·|ti0 |

S(ti0σ) = [ vi0,1, . . . , vi0,ji0 ]. We

obtain:

u ◮2·|t|−1 vi0,j0 for some j0 ∈ {1, . . . , ji0} (5.2)

v ·>2·|t|−1 vi0,j for all j = 1, . . . , ji0 , j 6= j0. (5.3)

Induction hypothesis on safe argument positions i gives:

u ·>2·|t|−1 vi,j for all i = m+ 1, . . . ,m+ n, i 6= i0 and j = 1, . . . , ji. (5.4)

Due to Lemma 4.9 (1), len(S(tσ)) 6 |t|. Hence property 1 follows by ◮
〈3〉

2·|t| using equations

(5.1)–(5.4). Likewise, Property 3 follows by an additional use of u ·>〈2〉

2·|t|−1 • and

len(N(tσ)) 6 2 · |t|+max{nm(s1σ), . . . , nm(sk+lσ)}

6 2 · |t|+ wd(fn(N(s1σ), . . . ,N(skσ)) ++ nm(sσ)) .

Here the first inequality follows by Lemma 4.9 (3). For Property 2 we proceed as above,
but strengthen inequality (5.2) to u ·>2·|t|−1 vi0,j0 .

Case s >
〈3〉
pop∗ t : Then t = g(t1, . . . , tm; tm+1, . . . , tm+n) where f ∼ g. Further, the assump-

tion gives {{s1, . . . , sk}} >mul
pop∗ {{t1, . . . , tm}} and {{sk+1, . . . , sk+l}} >mul

pop∗ {{tm+1, . . . , tm+n}}.

Hence t 6∈ T (F≺f ,V) and Property 2 is vacuously satisfied. We prove Properties 1
and 3. Using si ∈ T (C,V) for all normal argument positions i = 1, . . . ,m and employing
Lemma 3.17 we see that {{s1, . . . , sk}} >mul

pop∗ {{t1, . . . , tm}} implies

{{N(s1σ), . . . ,N(skσ)}} ◮mul
2·|t|−1{{N(t1σ), . . . ,N(tmσ)}} .

Hence due to fn ∼ gn and m 6 |t| 6 2 · |t| − 1 we obtain:

fn(N(s1σ), . . . ,N(skσ)) ◮
〈2〉

2·|t|−1
gn(N(t1σ), . . . ,N(tmσ)) . (5.5)

Assumption {{sk+1, . . . , sk+l}} >mul
pop∗ {{tm+1, . . . , tm+n}} together with si ∈ T (C,V) for all

i = k + 1, . . . , k + l gives tj ∈ T (C,V). As a consequence we have S(tjσ) = [ ] for all
j = m+ 1, . . . ,m+ n and we obtain:

fn(N(s1σ), . . . ,N(skσ)) ◮
〈3〉

2·|t| [ gn(N(t1σ), . . . ,N(tmσ)) ] = S(tσ)

which concludes the argument for property 1. For property 3, we see that the order
constraints on safe arguments imply nm(sσ) > nm(tσ). Thus nm(sσ) ◮2·|t| nm(tσ), using
this and Equation (5.5) we obtain

fn(N(s1σ), . . . ,N(skσ)) ++ nm(sσ) ◮
〈4〉

2·|t| gn(N(t1σ), . . . ,N(tmσ)) ++ nm(tσ) = N(tσ) ,

by Lemma 4.10 (1) and Lemma 4.10 (4).
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Lemma 5.3. Let ℓ > max{ar(fn) | fn ∈ Fn} and s, t ∈ T (F ,V). Then for Q ∈ {N,S},

Q(s) ◮ℓ Q(t) =⇒ Q(C[s]) ◮ℓ Q(C[t]) .

Proof. We proceed by induction on the context C. It suffices to consider the inductive
step. Consider terms s = f(s1, . . . , si, . . . , sk+l) and t = f(s1, . . . , ti, . . . , sk+l). We re-
strict our attention the predicative interpretation N and show N(f(s1, . . . , si, . . . , sk+l)) ◮ℓ

N(f(s1, . . . , ti, . . . , sk+l)), whenever N(si) ◮ℓ N(ti).

Recall that N(s) = S(s) ++ nm(s) and N(t) = S(t) ++ nm(t). If nm(s) > nm(t) then
N(s) ◮l N(t) follows from S(s) ◮l S(t) and Lemma 4.10 (4). Hence suppose nm(s) < nm(t).
We consider only the case where t 6∈ NF. The assumption nm(s) < nm(t) implies that i is
a safe argument position of f . Hence we obtain:

N(s) = [ fn(N(s1), . . . ,N(sk)) ] ++ S(sk+1) ++ · · · ++ S(si) ++ · · · ++ S(sk+l) ++ nm(s)

and

N(t) = [ fn(N(s1), . . . ,N(sk)) ] ++ S(sk+1) ++ · · · ++ S(ti) ++ · · · ++ S(sk+l) ++ nm(t) .

By definition we have nm(si) < nm(s). This together with nm(s) < nm(t) yields nm(t) =
nm(ti)+1 by the shape of s and t. Using Lemma 4.10 (4) and the assumption N(si) ◮ℓ N(ti)
we obtain:

S(si) ++ nm(si) ++ • ◮ℓ S(ti) ++ nm(ti) ++ • .

From this we have S(si) ++ nm(s) ◮ℓ S(ti) ++ nm(t) and thus due to Lemma 4.10 (2) and
Lemma 4.10 (4) we obtain N(s) ◮ℓ N(t).

We have established our first main result.

Proof of Theorem 3.11. Let R be a predicative recursive TRS and fix an arbitrary basic
term s = f(u1, . . . , um;um+1, . . . , um+n). Set the parameter ℓ as follows:

ℓ := max{ar(fn) | fn ∈ Fn} ∪ {2 · |r| | l → r ∈ R} .

As Fn and R are finite, ℓ is well-defined. Consider a maximal R-derivation

s i−→R s1
i−→R s2

i−→R · · · i−→R sk ,

starting from an arbitrary term s, that is, k = dhR(s). Using Lemma 5.2 together with
Lemma 5.3 k-times we get

S(s) ◮ℓ S(s1) ◮ℓ S(s2) ◮ℓ · · · ◮ℓ S(sk) .

As a consequence, we have k 6 Gℓ(S(s)) by definition of Gℓ and thus:

dh(s, i−→R) 6 Gℓ(S(s)) = O
(

(
m

max
i=1

dp(ui))
d
)

,

where the asymptotic estimation follows by Corollary 4.18. Note that the degree d depends
only on ℓ.
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6. An Order-Theoretic Characterisation of the Polytime Functions

We now present the application of polynomial path orders in the context of implicit com-
putational complexity. As by-product of Proposition 2.4 and Theorem 3.11 we immediately
obtain that POP∗ is sound for FNP respectively FP.

Theorem 6.1. Let R be a predicative recursive (constructor) TRS. For every relation JfK
defined by R, the function problem Ff associated with JfK is in FNP. Moreover, if R is
confluent then JfK ∈ FP.

Although it is decidable whether a TRS R is predicative recursive (we present a sound
and complete automation in Section 9), confluence is undecidable in general. To get a
decidable result for FP, one can replace confluence by an decidable criteria, for instance
orthogonality.

We will now also establish that POP∗ is complete for FP, that is, every function f ∈ FP
is computed by some confluent (even orthogonal) predicative recursive TRS. For this we
employ Beckmann and Weiermann’s term rewriting characterisation of the Bellantoni and
Cook’s class B.

Definition 6.2. [16, Definition 2.2] For each k, l ∈ N the set of function symbols Fk,l
B with

k normal and l safe argument positions is the least set of function symbols such that

(1) ǫ ∈ F0,0
B , S1,S2 ∈ F0,1

B , P ∈ F0,1
B , C ∈ F0,4

B and I
k,l
j ,Ok,l ∈ Fk,l

B , where j = 1, . . . , k + l;

(2) if ~r = r1, . . . , rm ∈ Fk,0
B , ~s = s1, . . . , sn ∈ Fk,l

B and h ∈ Fm,n
B then SC[h,~r,~s] ∈ Fk,l

B ;

(3) if g ∈ Fk,l
B and h1, h2 ∈ Fk+1,l+1

B then SRN[g, h1, h2] ∈ Fk+1,l
B ;

The predicative signature is given by FB :=
⋃

k,l∈NFk,l
B . Only the constant ǫ and dyadic

successors S1,S2, which serve the purpose of encoding natural numbers in binary, are con-
structors. The remaining symbols from FB are defined symbols.

In Figure 3 we recall from [16, Definition 2.7] the (infinite) schema of rewrite rules RB

that form a term rewriting characterisation of the class B. Here we let k, l range over N

and set ~x := x1, . . . , xk and ~y := y1, . . . , yl for k respectively l distinct variables.

Remark. We emphasise that the system RB is called infeasible in [16]. Indeed RB admits
an exponential lower bound on the derivation height if one considers full rewriting. This is
induced by duplicating redexes as explained already in Example 2.5 on page 9. However,
this should rather be understood as a miss-configuration of the evaluation strategy, rather
than a defect of the rewrite system. Indeed, in our completeness argument below, we exploit
that RB is predicative recursive, thus the innermost runtime complexity is polynomial, as
expected.

We emphasise that the above rules are all orthogonal and the following proposition
verifies that RB generates only polytime computable functions.

Proposition 6.3. [16, Lemma 5.2] Let f ∈ FP. There exists a finite restriction Rf ( RB

such that Rf computes f .

We arrive at our completeness result.

Theorem 6.4. For every f ∈ FP there exists a finite, orthogonal, and predicative recursive
(constructor) TRS Rf that computes f .
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Initial Functions

P(; ǫ) → ǫ

P(;Si(;x)) → x for i = 1, 2

I
k,l
j (~x; ~y) → xj for all j = 1, . . . , k

I
k,l
j (~x; ~y) → yj−k for all j = k + 1, . . . , l + k

C(; ǫ, y, z1, z2) → y

C(;Si(;x), y, z1, z2) → zi for i = 1, 2

O(~x; ~y) → ǫ

Safe Composition (SC)

SC[h,~r,~s](~x; ~y) → h(~r(~x; );~s(~x; ~y))

Safe Recursion on Notation (SRN)

SRN[g, h1, h2](ǫ, ~x; ~y) → g(~x; ~y)

SRN[g, h1, h2](Si(; z), ~x; ~y) → hi(z, ~x; ~y,SRN[g, h1, h2](z, ~x; ~y)) for i = 1, 2

Figure 3: Term Rewriting Characterisation of the Class B

Proof. Take the finite TRS Rf ( RB from Proposition 6.3 that computes f . Obviously Rf

is orthogonal hence confluent.
It remains to verify that Rf is compatible with some instance >pop∗. To define >pop∗

we use the separation of normal from safe argument positions as indicated in the rules. To
define the precedence underlying >pop∗, we define a mapping lh from the signature of FB

into the natural numbers as follows:

- lh(f) := 0 if f is one of ǫ, S0, S1, C, P, I
k,l
j or Ok,l;

- lh(SC[h,~r,~s]) := 1 + lh(h) +
∑

r∈~r lh(r) +
∑

s∈~s lh(s);
- lh(SRN[g, h1, h2]) := 1 + lh(g) + lh(h1) + lh(h2).

Finally for each pair of function symbol f and g occurring in Rf , we set f ≻ g if lh(f) >
lh(g). Then ≻ defines an admissible precedence.

It is straight forward to verify that Rf ⊆ >pop∗ where >pop∗ is based on the prece-
dence ≻ and the safe mapping as indicated in Definition 6.2.

Observe that compatibility of RB with POP∗ together with Theorem 3.11 yields a
strengthened version of Theorem 4.3 in [16], as due to our result the innermost derivation
height is polynomially bounded in the depth of the normal arguments only. The latter
result can be obtained directly, by a simplification of the semantic argument given in [16,
Section 4], see [3].

By Theorem 6.1 and Theorem 6.4 we obtain a precise characterisation of the class of
polytime computable functions and thus arrive at the second main result of the paper.

Corollary 6.5. The following class of functions are equivalent:

(1) The class of functions computed by confluent predicative recursive (constructor) TRSs.
(2) The class of polytime computable functions FP.
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We note that it is not decidable whether a rewrite system is confluent. However,
to get a decidable characterisation we could replace confluence by orthogonality, compare
Theorem 6.4.

7. A Non-Trivial Closure Property of the Polytime Computable Functions

Bellantoni [17] already observed that the class B is closed under predicative recursion on
notation with parameter substitution (scheme (SRNPS)). Essentially this recursion scheme
allows substitution on safe argument positions. More precise, a new function f is defined
by the equations

f(0, ~x; ~y) = g(~x; ~y)

f(2z + i, ~x; ~y) = hi(z, ~x; ~y, f(z, ~x; ~p(~x; ~y))) i ∈ {1, 2} .
(SRNPS)

Bellantoni’s result has been reobtained by Beckmann and Weiermann [16, Corollary 5.4]
employing a similar term rewriting characterisation. In this section, we introduce the poly-
nomial path order with parameter substitution (POP∗

PS
for short). POP∗

PS
provides an

order-theoretic characterisation of predicative recursion with parameter substitution, that
again precisely captures the class FP. Furthermore POP∗

PS
induces polynomial innermost

runtime complexity. As a consequence, we obtain yet another proof of Bellantoni’s result.

The next definition introduces POP∗
PS
. It is a variant of POP∗, where clause >

〈3〉
pop∗ has

been modified and allows computation at safe argument positions.

Definition 7.1. Let < denote a precedence. Consider terms s, t ∈ T (F ,V) such that
s = f(s1, . . . , sk; sk+1, . . . , sk+l). Then s >pop∗ps t if one of the following alternatives holds:

(1) si >pop∗ps
t for some i ∈ {1, . . . , k + l}, or

(2) f ∈ D, t = g(t1, . . . , tm; tm+1, . . . , tm+n) where f ≻ g and the following conditions hold:
- s >pop tj for all normal argument positions j = 1, . . . ,m;
- s >pop∗ps tj for all safe argument positions j = m+ 1, . . . ,m+ n;

- tj 6∈ T (F≺f ,V) for at most one safe argument position j ∈ {m+ 1, . . . ,m+ n};
(3) f ∈ D, t = g(t1, . . . , tm; tm+1, . . . , tm+n) where f ∼ g and the following conditions hold:

- {{s1, . . . , sk}} >mul
pop∗ps

{{t1, . . . , tm}};

- s >pop∗ps tj and tj ∈ T (F≺f ,V) for all safe argument positions j = m+ 1, . . . ,m+ n.

Here >pop∗ps
:= >pop∗ps

∪ s∼.

The next lemma shows that POP∗
PS

extends the analytic power of POP∗.

Lemma 7.2. For any underlying admissible precedence <, >pop∗ ⊆ >pop∗ps .

Note that POP∗
PS

is strictly more powerful than POP∗, as witnessed by the following
example.

Example 7.3. Consider the constructor TRS Rrev defining the reversal of lists in a tail
recursive fashion:

53 : revtl([ ]; ys) → ys 54 : revtl(cons(x, xs); ys) → revtl(xs; cons(x, ys))

55 : rev(xs; ) → revtl(xs; nil) .

It is not difficult to see that Rrev is compatible with POP∗
PS
, if we use the precedence rev ≻

revtl ≻ nil ∼ cons. Note that orientation of rule (54) breaks down to cons(x, xs) >pop∗ps xs
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and revtl(cons(x, xs); ys) >pop∗ps cons(x, ys). On the other hand, >pop∗ fails as the corre-

sponding clause >
〈3〉
pop∗ requires ys >pop∗ cons(x, ys).

Due to Lemma 7.2, POP∗
PS

is complete for the class of polytime computable functions.
To show that it is sound, we prove that POP∗

PS
induces polynomially bounded runtime

complexity in the sense of Theorem 3.11. The crucial observation is that the embedding of
i−→R into ◮k does not break if we relax compatibility constraints to R ⊆ >pop∗ps .

Lemma 7.4. Suppose s = f(s1, . . . , sk; sk+1, . . . , sk+l) ∈ Tb, t ∈ T (F ,V) and σ : V →
T (C,V). Then for predicative interpretation Q ∈ {S,N} we have

s >pop∗ps t =⇒ Q(sσ) ◮2·|t| Q(tσ) .

Proof. First one verifies that Lemma 4.9 holds even if we replace >pop∗ by >pop∗ps . In
particular, the assumptions give

len(N(tσ)) 6 2 · |t|+max{nm(s1σ), . . . , nm(sk+lσ)} . (7.1)

The proof follows the pattern of the proof of Lemma 5.2, i.e., we proceed by induction on
>pop∗ps .

We cover only the new case s >
〈3〉
pop∗ps

t. Let s, t, and σ be as given in the lemma. Then t =

g(t1, . . . , tm; tm+1, . . . , tm+n) where f ∼ g. Further, the assumption gives{{s1, . . . , sk}} >mul
pop∗

{{t1, . . . , tm}}. As t 6∈ T (F≺f ,V) it suffices to verify Property 1 and Property 3 from
Lemma 5.2. As before, we obtain:

fn(N(s1σ), . . . ,N(skσ)) ◮
〈2〉

2·|t|−1 gn(N(t1σ), . . . ,N(tmσ)) . (7.2)

By assumption s >pop∗ps
tj and tj ∈ T (F≺f ,V), induction hypothesis gives

fn(N(s1σ), . . . ,N(skσ)) ·>2·|t|−1 S(tjσ) . (7.3)

As len(S(tσ)) 6 |t| by Lemma 4.9 (1), we obtain fn(N(s1σ), . . . ,N(skσ)) ◮
〈3〉

2·|t| S(tσ) from

equations (7.2) and (7.3). Likewise, from this assertion 3 follows by ◮
〈4〉

k using additionally

fn(N(s1σ), . . . ,N(skσ)) ·>〈2〉

2·|t|−1 • and

len(N(tσ)) 6 2 · |t|+max{nm(s1σ), . . . , nm(sk+lσ)} by Equation (7.1)

6 2 · |t|+ wd(fn(N(s1σ), . . . ,N(skσ)) ++ nm(sσ)) .

Following the pattern of the proof of Theorem 3.11, replacing the use of Lemma 5.2 by
Lemma 7.4 we obtain:

Theorem 7.5. Let R be a constructor TRS compatible with an instance of POP∗
PS
. Then

the innermost derivation height of any basic term f(~u;~v) is bounded by a polynomial in
the maximal depth of normal arguments ~u. The polynomial depends only on R and the
signature F .

As a corollary we get the following variant of Theorem 5.3 in [16].

Corollary 7.6. Let R be the rewrite system based on the defining equations from Figure 3
and the Schema (SRNPS). Then the innermost derivation height of any basic term f(~u;~v)
is bounded by a polynomial in the maximal depth of normal arguments ~u.

Proof. By construction there exists an instance >pop∗ps such that R ⊆>pop∗ps . Thus by the
theorem, the result follows.
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Applying Proposition 2.4 yields that predicative recursion is closed under parameter
substitution. We can even show a stronger result from Theorem 7.5.

Corollary 7.7. Let R be a constructor TRS compatible with an instance of POP∗
PS
. For

every relation JfK defined by R, the function problem Ff associated with JfK is in FNP.
Moreover, if R is confluent than JfK ∈ FP.

By Lemma 7.2, parameter substitution extends the power of POP∗, together with
Theorem 6.4 that shows completeness of POP∗, this shows completeness of POP∗

PS
. We

obtain our third result.4

Corollary 7.8. The following class of functions are equivalent:

(1) The class of functions computed by confluent constructor TRS compatible with an
instance of POP∗

PS
.

(2) The class of polytime computable functions FP.

8. Automation of Polynomial Path Orders

In this section we present an automation of polynomial path orders, for brevity we restrict
our efforts to the order >pop∗. Consider a constructor TRS R. Checking whether R is
predicative recursive is equivalent to guessing a precedence < and partitioning of argument
positions so that R ⊆ >pop∗ holds for the induces order >pop∗. As standard for recursive
path orders [51, 58], this search can be automated by encoding the constraints imposed by
Definition 3.5 into propositional logic. To simplify the presentation, we extend the language
of propositional logic with truth-constants ⊤ and ⊥ in the obvious way. In the constraint
presented below we employ the following atoms.

8.1. Propositional Atoms. To encode the separation of normal from safe arguments, we
introduce for f ∈ D and i = 1, . . . , ar(f) the atoms safef,i so that safef,i represents the

assertion that the ith argument position of f is safe. Further we set safef,i := ⊤ for n-ary
f ∈ C and i = 1, . . . , n, reflecting that argument positions of constructors are always safe.

Since POP∗ is blind on constructors, predicative recursive TRSs are even compatible
with >pop∗ as induced by an admissible precedence where constructors are equivalent and
minimal. For each pair of symbols f, g ∈ D, we introduce propositional atoms ≻f,g and
∼f,g so that ≻f,g represents the assertion f ≻ g, and likewise ∼f,g represents the assertion
f ∼ g. Overall we define for function symbols f and g the propositional formulas

pf ≻ gq :=











⊤ if f ∈ D and g ∈ C,

⊥ if f ∈ C and g ∈ C,

≻f,g otherwise.

pf ∼ gq :=











⊤ if f ∈ C and g ∈ C,

⊥ if f ∈ D and g ∈ D,

∼f,g otherwise.

To ensure that the variables ≻f,g and respectively ∼f,g encode a preorder on D we
encode an order preserving homomorphism into the natural order > on N. To this extent,
to each f ∈ D we associate a natural number rkf encoded as binary string with ⌈log2(|D|)⌉
bits. It is straight forward to define Boolean formulas prkf > rkgq (respectively prkf = rkgq)

4Again confluence can be replaced by orthogonality, as in Corollary 6.5.
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that are satisfiable iff the binary numbers rkf and rkg are decreasing (respectively equal) in
the natural order. Using these we set

valid-precedence(D) :=
∧

f,g∈D

(pf ≻ gq → prkf > rkgq) ∧
∧

f,g∈D

(pf ∼ gq → prkf = rkgq) .

We say that a propositional assignment µ induces the precedence < if µ satisfies pf ≻ gq
when f ≻ g and pf ∼ gq when f ∼ g. The next lemma verifies that valid-precedence serves
our needs.

Lemma 8.1. For any assignment µ that satisfies valid-precedence(D), µ induces an ad-
missible precedence on F . Vice versa, for any admissible precedence < on F , any valuation
µ, satisfying µ(pf ≻ gq) iff f ≻ g and µ(pf ≻ gq) iff f ∼ g, also satisfies the formula
valid-precedence(D).

8.2. Order Constraints. For concrete pairs of terms s = f(s1, . . . , sn) and t, we define

ps >pop∗ tq := ps >〈1〉
pop∗ tq ∨ ps >〈2〉

pop∗ tq ∨ ps >〈3〉
pop∗ tq

which enforces the orientation f(s1, . . . , sn) >pop∗ t using propositional formulations of the
three clauses in Definition 3.5. To complete the definition for arbitrary left-hand sides, we
set px >pop∗ tq := ⊥ for all x ∈ V. Further, weak orientation is given by

ps >pop∗ tq := ps >pop∗ tq ∨ ps s∼ tq ,

where the constraint ps s∼ tq refers to a formulation of Definition 3.2 in propositional logic,
defined as follows. For s = t we simply set ps s∼ tq := ⊤. Consider the case s = f(s1, . . . , sn)
and t = g(t1, . . . , tn). Then s s∼ t if f ∼ g and moreover si

s∼ tπ(i) for all i = 1, . . . , n and
some permutation π on argument positions that takes the separation of normal and safe
positions into account. To encode π(i) = j, we use fresh atoms πi,j for i, j = 1, . . . , n. The
propositional formula permutation(π, n) :=

∧n
i=1 one(πi,1, . . . , πi,n) is used to assert that

the atoms πi,j reflect a permutation on {1, . . . , n}. Here one(πi,1, . . . , πi,n) expresses that
exactly one of its arguments evaluates to ⊤. We set

ps s∼ tq := pf ∼ gq ∧ permutation(π, n) ∧
(

n
∧

j=1

πi,j → psi
s∼ tjq ∧ (safef,i ↔ safeg,j)

)

.

To complete the definition, we set ps s∼ tq = ⊥ for the remaining cases.

Lemma 8.2. Suppose the assignment µ induces an admissible precedence < and µ satisfies
ps s∼ tq. Then s s∼ t with respect to the precedence <. Vice versa, if s s∼ t then ps s∼ tq is
satisfiable by assignments µ that induce the precedence underlying s∼.

We now define the encoding for the different cases underlying the definition of >pop∗.

Assuming that psi >pop∗ tq enforces si >pop∗ t clause >
〈1〉
pop∗ is expressible as

pf(s1, . . . , sn) >
〈1〉
pop∗ tq :=

n
∨

i=1

psi >pop∗ tq .

in propositional logic. For clause >
〈2〉
pop∗ we use propositional atoms αi (i = 1, . . . ,m) to

mark the unique argument position of t = g(t1, . . . , tm) that allows ti 6∈ T (F≺f ,V). The
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propositional formula zero-or-one(α1, . . . , αm) expresses that zero or one αi valuates to ⊤.
Further, we introduce the auxiliary constraint

pg(t1, . . . , tm) ∈ T (F≺f ,V)q := pf ≻ gq ∧
m
∧

j=1

ptj ∈ T (F≺f ,V)q .

and px ∈ T (F≺f ,V)q := ⊤ for x ∈ V. Using these, clause >
〈2〉
pop∗ becomes expressible as

pf(s1, . . . , sn) >
〈2〉
pop∗ g(t1, . . . , tm)q := pf ∈ Dq ∧ pf ≻ gq

∧
m
∧

j=1

(safeg,j → ps >pop∗ tjq) ∧
m
∧

j=1

(¬ safeg,j → ps >pop tjq)

∧ zero-or-one(α1, . . . , αm) ∧
m
∧

j=1

(¬αj → ptj ∈ T (F≺f ,V)q) .

Here pf ∈ Dq = ⊤ if f ∈ D and otherwise pf ∈ Dq = ⊥. The propositional formula
ps >pop tq expresses the orientation with the >pop and is given by

pf(s1, . . . , sn) >pop tq := pf(s1, . . . , sn) >
〈1〉
pop tq ∨ pf(s1, . . . , sn) >

〈2〉
pop tq

and otherwise px >pop tq = ⊥, where

pf(s1, . . . , sn) >
〈1〉
pop tq :=

n
∨

i=1

((psi >pop tq ∨ psi
s∼ tq) ∧ (pf ∈ Dq → ¬ safef,i))

pf(s1, . . . , sn) >
〈2〉
pop tq :=











pf ∈ Dq ∧ pf ≻ gq if t = g(t1, . . . , tm)

∧
∧m

j=1pf(s1, . . . , sn) >pop tjq

⊥ if t ∈ V.

This concludes the propositional formulation of clause >
〈2〉
pop∗.

The main challenge in formulating clause >
〈3〉
pop∗ is to deal with the encoding of multiset-

comparisons. We proceed as in [52] and encode the underlying multiset cover.

Definition 8.3. Let ≻mul denote the multiset extension of a binary relation < = ≻ ⊎ ∼.
Then a pair of mapping (γ, ε) where γ : {1, . . . ,m} → {1, . . . , n} and ε : {1, . . . , n} →
{⊤,⊥} is a multiset cover on multisets{{a1, . . . , an}} and{{b1, . . . , bm}} if the following holds
for all j ∈ {1, . . . ,m}:

(1) if γ(j) = i then ai < bj, in this case we say that ai covers bj;
(2) if ε(j) = ⊤ then sτ(j) ∼ tj and τ is invective on {j}, i.e., aτ(j) covers only bj .

The multiset cover (γ, ε) is said to be strict if at least one cover is strict, i.e., ε(j) = ⊥ for
some j ∈ {1, . . . ,m}.

It is straight forward to verify that multiset covers characterise the multiset extension
of ≻ in the following sense.

Lemma 8.4. We have{{a1, . . . , an}} <mul{{b1, . . . , bm}} if and only if there exists a multiset
cover (γ, ε) on {{a1, . . . , an}} and {{b1, . . . , bm}}. Moreover, {{a1, . . . , an}} ≻mul {{b1, . . . , bm}} if
and only if the cover is strict.
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Consider the orientation f(s1, . . . , sn) >
〈3〉
pop∗ g(t1, . . . , tm). Then normal arguments are

strictly, and safe arguments weakly decreasing with respect to the multiset-extension of
>pop∗. Since the partitioning of normal and safe argument is not fixed, in the encoding of

>
〈3〉
pop∗ we formalise a multiset-comparison on all arguments, where the underlying multiset-

cover (γ, ε) will be restricted so that if si covers tj, i.e., γ(i) = j, then both si and tj are
safe or respectively normal. To this extend, for a specific multiset cover (γ, ε) we introduce
variables γi,j and εi, where γi,j = ⊤ represents γ(j) = i and εi = ⊤ denotes ε(i) = ⊤
(1 6 i 6 n, 1 6 j 6 m). We set

pf(s1, . . . , sn) >
〈3〉
pop∗ g(t1, . . . , tm)q := pf ∈ Dq ∧ pf ≻ gq

∧
n
∧

i=1

m
∧

j=1

(

γi,j →
(

εi → psi
s∼ tjq

)

∧
(

¬εi → psi >pop∗ tjq
)

∧
(

safef,i ↔ safeg,j
)

)

∧
m
∧

j=1

one(γ1,j , . . . , γn,j) ∧
n
∧

i=1

(

εi → one(γi,1, . . . , γi,m)
)

∧
n
∨

i=1

(

¬ safef,i ∧¬εi
)

.

Here the first line establishes the Condition 8.3 (1), where safef,i ↔ safeg,j additionally
enforces the separation of normal from safe arguments. The final line formalises that γ
maps {1, . . . ,m} to {1, . . . , n}, Condition 8.3 (2) as well as the strictness condition on normal
arguments. This completes the encoding of >pop∗.

Lemma 8.5. Suppose µ induces an admissible precedence < and satisfies ps >pop∗ tq.
Then s >pop∗ t with respect to the precedence <. Vice versa, if s >pop∗ t then ps >pop∗ tq
is satisfiable assignments µ that induce the precedence underlying >pop∗.

Putting the constraints together we get the following theorem, which witnesses the
fourth main result of this paper.

Theorem 8.6. Let R be a constructor TRS. The propositional formula

predicative-recursive(R) := valid-precedence(D) ∧
∧

l→r∈R

pl >pop∗ rq ,

is satisfiable if and only if R is predicative recursive.

We have implemented this reduction to SAT in our complexity analyser TCT. As under-
lying SAT-solver we employ the open source solver MiniSat [27].

8.3. Efficiency Considerations. The SAT-solver MiniSat requires its input in CNF. For a
concise translation of predicative-recursive(R) to CNF we use the approach of Plaisted and
Greenbaum [50] that gives an equisatisfiable CNF linear in size. Our implementation also
eliminates redundancies resulting from multiple comparisons of the same pair of term s, t by
replacing subformulas ps >pop∗ tq with unique propositional atoms δs,t. Since ps >pop∗ tq
occurs only in positive contexts, it suffices to add δs,t → ps >pop∗ tq, resulting in an equisat-
isfiable formula. Also during construction of predicative-recursive(R) our implementation
performs immediate simplifications under Boolean laws.
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9. Experimental Assessment

In this section we present an empirical evaluation of polynomial path orders. We selected two
testbeds: Testbed TC constitutes of 597 terminating constructor TRSs, obtained by restrict-
ing the innermost runtime complexity problemset from the Termination Problem Database5

(TPDB for short), version 8.0, to known to be terminating constructor TRSs. Termina-
tion is checked against the data available from the termination competition. Testbed TCO,
containing 290 examples, results from restricting Testbed TC to orthogonal systems. Unar-
guably the TPDB is an imperfect choice as examples were collected primarily to assess the
strength of termination provers, but it is at the moment the only extensive source of TRSs.

Experiments were conducted with TCT version 1.9.1,6 on a laptop with 4Gb of RAM and

IntelR© Core
TM

i7–2620M CPU (2.7GHz, quad-core). We assess the strength of POP∗ and
POP∗

PS
in comparison to its predecessors MPO and LMPO. The implementation of MPO,

LMPO and POP∗
PS

follows the line of polynomial path orders as explained in Section 8.7

We contrast these syntactic techniques to interpretations as implemented in our complexity
tool TCT. The last column show result of constructor restricted matrix interpretations [45]
(dimension 1 and 3) as well as polynomial interpretations [21] (degree 2 and 3), run in par-
allel on the quad-core processor. We employ interpretations in their default configuration of
TCT, noteworthy coefficients (respectively entries in coefficients) range between 0 and 7, and
we also make use of the usable argument positions criterion [31] that weakens monotonicity
constraints. Table 1 shows totals on systems that can respectively cannot be handled.8 To
the right of each entry we annotate the average execution time, in seconds.

MPO LMPO POP∗ POP∗
PS

interpretations

TC compatible 76\0.33 57\0.20 43\0.18 56\0.19 139\2.77

incompatible 521\0.58 540\0.47 554\0.42 541\0.43 272\6.47

timeout — — — — 186\25.0

TCO compatible 40\0.29 29\0.16 24\0.14 29\0.15 75\2.81

incompatible 250\0.33 261\0.27 266\0.26 261\0.27 133\6.12

timeout — — — — 82\25.0

Table 1: Empirical Evaluation, comparing syntactic to semantic techniques.

It is immediate that syntactic techniques cannot compete with the expressive power of
interpretations. In Testbed TC there are in fact only three examples compatible with POP∗

PS

where TCT could not find interpretations. There are additionally four examples compatible
with LMPO but not so with interpretations, including the TRS Rbin from Example 1.2. All
but one (noteworthy the merge-sort algorithm from Steinbach and Kühlers collection [54,
Example 2.43]) of these do in fact admit exponential runtime complexity, thus a priori they
are not compatible to the restricted interpretations.

5The TPDB is available online http://termcomp.uibk.ac.at/.
6Available from http://cl-informatik.uibk.ac.at/software/tct/.
7As far as we know our implementation of LMPO in TCT is the only implementation currently available.
8Full evidence available at http://cl-informatik.uibk.ac.at/software/tct/experiments/popstar.

http://termcomp.uibk.ac.at/
http://cl-informatik.uibk.ac.at/software/tct/
http://cl-informatik.uibk.ac.at/software/tct/experiments/popstar
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We emphasise that parameter substitution significantly increases the strength of POP∗,
13 examples are provable by POP∗

PS
but neither by POP∗ nor LMPO. LMPO could benefit

from parameter substitution, we conjecture that the resulting order is still sound for FP.
In sum on Testbed TCO, containing only orthogonal TRSs, in total 75 systems (26%

of the testbed) can be verified to encode polytime computable functions, 35 (12% of the
testbed) can be verified polytime computable by only syntactic techniques. It should be
noted that not all examples appearing in our collection encode polytime computable func-
tions, the total amount of such systems is unknown.

It seems that Table 1 clearly shows the weakness of polynomial path orders (even
with parameter substitution) for automated polynomial runtime complexity. However, re-
mark the average execution times provided. POP∗

PS
succeeds on average 14 times faster

than polynomial and matrix interpretations. Here the difficulty of implementing interpre-
tations efficiently is also reflected in the total number of timeouts. Furthermore note that a
competitive complexity analyser cannot be based on direct techniques alone. Instead, our
complexity analyser TCT recursively decomposes complexity problems using various com-
plexity preserving transformation techniques [10], discarding those problems that can be
handled by basic techniques as contrasted in Table 1. Certificates are only obtained if
finally all subproblems can be discarded, above all it is crucial that subproblems can be
discarded quickly. Due to the efficiency of syntactic methods, these can be safely preposed
to semantic techniques, thus speeding up the overall procedure.

10. Conclusion and Future Work

This paper is concerned with the complexity analysis of constructor term rewrite systems
and its ramification in implicit computational complexity.

We have proposed a path order with multiset status, the polynomial path order POP∗.
The order POP∗ is a syntactical restriction of multiset path orders, with the distinctive
feature that the innermost runtime complexity of compatible TRSs lies in O(nd) for some
d. Based on POP∗, we delineate a class of rewrite systems, dubbed systems of predicative
recursion, so that the class of functions computed by these systems corresponds to FP, the
class of polytime computable functions. We have shown that an extension of POP∗, the
order POP∗

PS
that also accounts for parameter substitution, increases the intensionality of

POP∗.
From the viewpoint of implicit computational complexity we have provided new implicit

characterisations of the class of polytime functions. More precisely, POP∗ and POP∗
PS

are
sound for the class of function problems FNP and are readily applicable to obtain exact
characterisations of the polytime computable functions. As an easy corollary, we have given
an alternative proof of Bellantoni’s result that the polytime computable functions are closed
under parameter substitution.

From the viewpoint of (automated) runtime complexity analysis we have proposed
two new syntactic techniques to establish polynomial innermost runtime complexity. In
contrast to semantic techniques polynomial path orders are partly lacking in intensionality
but greatly surpluses in verification time. Note that in our complexity prover TCT, we do
not intend to replace semantic techniques, but rather prepose them by POP∗

PS
, in order to

improve TCT both in analytic power and speed.
In runtime complexity analysis one is in particular interested in obtaining asymptot-

ically tight bounds. Although we could estimate the degree of the witnessing bounding
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function for POP∗ and POP∗
PS
, such a bound would be a gross overestimation. This is

partly due to the underlying multiset extension.
Very recently, together with Eguchi we have proposed a simplification of the polyno-

mial path orders studied here: the small polynomial path orders (sPOP∗ for short). This
termination order entails a finer control on the runtime complexity: for any rewrite system
compatible with sPOP∗ that employs recursion upto depth d, the innermost runtime com-
plexity is polynomially bounded of degree d. This bound is tight, see [13]. This becomes
possible, as the underlying scheme of safe composition is restricted to so-called weak safe
composition.
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G. Román, and D. Zanardini. Termination and Cost Analysis with COSTA and its
User Interfaces. Electronic Notes in Theoretical Computer Science, 258(1):109–121,
2009.

[2] C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-dimensional Rankings, Pro-
gram Termination, and Complexity Bounds of Flowchart Programs. In Proc. of 17th

SAS, volume 6337 of Lecture Notes in Computer Science, pages 117–133, 2010.
[3] T. Arai and G. Moser. A Note on a Term Rewriting Characterization of PTIME. In

Proc. of 7th WST, pages 10–13. number AIB-2004-07 of Aachener Informatik-Berichte,
2004. Extended abstract.

[4] T. Arai and G. Moser. Proofs of Termination of Rewrite Systems for Polytime Func-
tions. In Proc. of 25th FSTTCS, volume 3821 of Lecture Notes in Computer Science,
pages 529–540. Springer Verlag, 2005.

[5] M. Avanzini and G. Moser. Complexity Analysis by Rewriting. In Proc. of 9th FLOPS,
volume 4989 of Lecture Notes in Computer Science, pages 130–146. Springer Verlag,
2008.

[6] M. Avanzini and G. Moser. Dependency Pairs and Polynomial Path Orders. In Proc.
of 20th RTA, volume 5595 of Lecture Notes in Computer Science, pages 48–62. Springer
Verlag, 2009.

[7] M. Avanzini and G. Moser. Polynomial Path Orders and the Rules of Predicative
Recursion with Parameter Substitution. In Proc. of 10th WST, pages 16–20, 2009.

[8] M. Avanzini and G. Moser. Complexity Analysis by Graph Rewriting. In Proc. of 10th

FLOPS, volume 6009 of Lecture Notes in Computer Science, pages 257–271. Springer
Verlag, 2010.

[9] M. Avanzini and G. Moser. Closing the Gap Between Runtime Complexity and Poly-
time Computability. In Proc. of 21st RTA, volume 6 of Leibniz International Proceedings
in Informatics, pages 33–48, 2010.



40 M. AVANZINI AND G. MOSER

[10] M. Avanzini and G. Moser. A Combination Framework for Complexity. In Proc. 24th
RTA, volume 21, pages 55–70. Leibniz International Proceedings in Informatics, 2013.

[11] M. Avanzini and G. Moser. Tyrolean Complexity Tool: Features and usage. In Proc.
24th RTA, Leibniz International Proceedings in Informatics, pages 71–80, 2013. 21.

[12] M. Avanzini, G. Moser, and A. Schnabl. Automated Implicit Computational Com-
plexity Analysis (System Description). In Proc. of 4th IJCAR, volume 5195 of Lecture
Notes in Computer Science, pages 132–139. Springer Verlag, 2008.

[13] M. Avanzini, N. Eguchi, and G. Moser. A New Order-theoretic Characterisation of
the Polytime Computable Functions. In Proc. of 10th APLAS, volume 7705 of Lecture
Notes in Computer Science, pages 280–295, 2012.

[14] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

[15] P. Baillot, J.-Y. Marion, and S. Ronchi Della Rocca. Guest Editorial: Special Issue on
Implicit Computational Complexity. ACM Transactions on Computational Logic, 10
(4), 2009.

[16] A. Beckmann and A. Weiermann. A Term Rewriting Characterization Of the Polytime
Functions and Related Complexity Classes. Archive for Mathematical Logic, 36:11–30,
1996.

[17] S. Bellantoni. Predicative Recursion and Computational Complexity. PhD thesis, Uni-
versity of Torronto, Faculty for Computer Science, 1992.

[18] S. Bellantoni and S. Cook. A new Recursion-Theoretic Characterization of the Polytime
Functions. Computational Complexity, 2(2):97–110, 1992.

[19] P. Van Emde Boas. Machine Models and Simulation. In Handbook of Theoretical
Computer Science, Volume A: Algorithms and Complexity (A), pages 1–66. The MIT
Press, 1990.

[20] G. Bonfante and G. Moser. Characterising Space Complexity Classes via Knuth-Bendix
Orders. In Proc. of 17th LPAR, volume 6397 of Lecture Notes in Computer Science,
pages 142–156, 2010.

[21] G. Bonfante, A. Cichon, J.-Y. Marion, and H. Touzet. Algorithms with Polynomial
Interpretation Termination Proof. Journal of Functional Programming, 11(1):33–53,
2001.

[22] G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. Quasi-interpretations: A Way to Control
Resources. Theoretical Computer Science, 412(25), 2011.

[23] W. Buchholz. Proof-theoretical Analysis of Termination Proofs. Annals of Pure and
Applied Logic, 75:57–65, 1995.

[24] E. A. Cichon and A. Weiermann. Term Rewriting Theory for the Primitive Recursive
Functions. Annals of Pure and Applied Logic, 83(3):199–223, 1997.

[25] U. Dal Lago and S. Martini. On Constructor Rewrite Systems and the Lambda-
Calculus. In Proc. of 36th ICALP, volume 5556 of Lecture Notes in Computer Science,
pages 163–174. Springer Verlag, 2009.

[26] U. Dal Lago and S. Martini. Derivational Complexity is an Invariant Cost Model. In
Proc. of 1st FOPARA, 2009.
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