
Logical Methods in Computer Science
Vol. 5 (1:4) 2009, pp. 1–21
www.lmcs-online.org

Submitted Dec. 20, 2006
Published Feb. 27, 2009

THE COMPLEXITY OF DATALOG ON LINEAR ORDERS

MARTIN GROHE a AND GOETZ SCHWANDTNER b

a Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Ger-
many
e-mail address: grohe@informatik.hu-berlin.de

b Institut für Informatik, Johannes Gutenberg-Universität, 55099 Mainz, Germany
e-mail address: schwandtner@uni-mainz.de

Abstract. We study the program complexity of datalog on both finite and infinite lin-
ear orders. Our main result states that on all linear orders with at least two elements,
the nonemptiness problem for datalog is EXPTIME-complete. While containment of the
nonemptiness problem in EXPTIME is known for finite linear orders and actually for ar-
bitrary finite structures, it is not obvious for infinite linear orders. It sharply contrasts
the situation on other infinite structures; for example, the datalog nonemptiness problem
on an infinite successor structure is undecidable. We extend our upper bound results to
infinite linear orders with constants.

As an application, we show that the datalog nonemptiness problem on Allen’s interval
algebra is EXPTIME-complete.

1. Introduction

Datalog is the language of logic programming without function symbols. Datalog has
been extensively studied in database theory (see, e.g., [2, 6, 7, 11, 12, 17, 18, 13]). In
particular, the complexity of evaluating datalog queries has been determined: The data
complexity is PTIME-complete, and the program complexity (also known as expression
complexity) and combined complexity are both EXPTIME-complete [8, 23].

While previous work on datalog was concerned with datalog over finite structures, in
this paper we are mainly interested in infinite structures. Infinite structures occur natu-
rally in spatial and temporal reasoning (and spatial and temporal databases). In temporal
reasoning, time is usually modelled as an infinite linear order, sometimes discrete and some-
times dense. This motivates our study of datalog on infinite linear orders. Let us remark
that our results also apply to an interval based temporal reasoning, carried out, for example
in Allen’s interval algebra [3] (see Sec. 3).

When studying the complexity of datalog on infinite structures, we consider the struc-
ture as fixed, that is, we are interested in program complexity. Note that the result of a
datalog query on an infinite structure may be infinite, thus we cannot hope to compute
the full query result in finite time. A reasonable version of the query evaluation problem

1998 ACM Subject Classification: F.4.1, D.3.2, H.2.3.
Key words and phrases: datalog, complexity, infinite structures, linear orders, boundedness.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-5 (1:4) 2009

c© M. Grohe and G. Schwandtner
CC© Creative Commons

http://creativecommons.org/about/licenses

2 M. GROHE AND G. SCHWANDTNER

that avoids this problem is the datalog tuple problem, which asks whether a given tuple of
elements is in the result. However, even for the tuple problem there is the technical issue
of how to represent the elements of the tuple and how to represent the structure itself.
The simpler datalog nonemptiness problem asks if the result of a query is empty. It is well
known that on finite structures, the nonemptiness problem is in EXPTIME, and as long
as the structures have two elements that can be distinguished by a datalog program, it is
EXPTIME-complete (see Sec. 4). It is easy to see that there are infinite structures where
the nonemptiness problem is undecidable. An example is the structure with one infinite
successor relation (see Sec. 4).

Our first main result (Theorem 6.4) states that on all linear orders (finite or infinite),
the datalog nonemptiness problem is decidable in EXPTIME; for all linear orders with at
least two elements it is EXPTIME-complete.

A problem that has received considerable attention in the datalog literature is the
boundedness problem (see, e.g., [1, 11, 15]). A datalog program Π is uniformly bounded on
a class C of structures if there is a number b = b(Π, C) such that for all structures A in
C, the computation of Π on A reaches a fixed point in at most b steps. The boundedness
problem asks if a given program is uniformly bounded on the class of all finite structures;
it was shown to be undecidable in [11].

Our second main result (Theorem 7.2) states that every datalog program is uniformly
bounded on the class of all linear orders. This also leads to the decidability of the dat-
alog tuple problem on linear orders, provided the linear order satisfies certain effectivity
conditions.

Technically, both results are based on an analysis of the distance types of tuples pro-
cessed in the evaluation of a datalog program. Types are a tool from model theory; the type
of a tuple of elements records “definable” information about this tuple. Our distance types
record information about the relative order of and the pairwise distances between elements
of a tuple. The crucial technical fact underlying the results is that the whole computation of
a datalog program on a linear order can be described in terms of a finite number of distance
types that is bounded in terms of the program (independently of the structure).

In the last section of this paper, we show how to incorporate constants into the distance
type concept to transfer our results to datalog over linear orderings with a finite number of
constants, which may occur in the datalog programs in question.

As related results, let us mention recent results on the complexity of constraint sat-
isfaction problems on infinite structures [4, 5, 19]. With some handwaving, the datalog
nonemptiness problem may be viewed as a “recursive version” of constraint satisfaction
problems.1

2. Preliminaries

2.1. Datalog. An atom is an expression of the form P (x1, . . . , xk), where P is k-ary relation
symbol and x1, . . . , xk are variables. We admit 0-ary relation symbols.2 In the following,

1Our actual starting point was an attempt to understand the complexity of constraint logic programming,
which combines logic programming and constraint satisfaction. It turned out, however, that this complexity
is dominated by the complexity of the “logic programming” part, which then led to our interest in datalog.

2A 0-ary relation either is empty, or it consists of the empty tuple ().

THE COMPLEXITY OF DATALOG ON LINEAR ORDERS 3

we abbreviate tuples (x1, . . . , xk) by x̄. A datalog rule is an expression ρ of the form

Px̄ ← Q1ȳ1, . . . , Qmȳm,

where Px̄, Q1ȳ1, . . . , Qmȳm are atoms. The tuples of variables x̄, ȳ1, . . . , ȳm need not be
disjoint, and variables may be occur several times in each tuple. Furthermore, the variables
in x̄ are not required to be among those in ȳ1, . . . , ȳm. The atom Px̄ is the head of the
rule and Q1ȳ1, . . . , Qmȳm is the body. A datalog program is a set of datalog rules. Relation
symbols occurring in the head of a rule of a datalog program Π are called intensional relation
symbols or IDBs; all other relation symbols are called extensional relation symbols or EDBs.

Datalog programs are interpreted over relational structures. A vocabulary is a finite set
τ of relation symbols, each with a fixed arity. A structure A of vocabulary τ consists of a
(finite or infinite) set A and a k-ary relation RA for every k-ary relation R ∈ τ . We say
that a datalog program Π is over a structure A if the vocabulary of A contains all EDBs
of Π and none of the IDBs. Π is a datalog program over a class C of structures if Π is a
program over all A ∈ C.

Let Π be a Datalog program over a structure A. The computation of Π over A is carried
out in stages, in which the interpretation of the IDBs is computed; the interpretation of the
EDBs is given by A and remains fixed. Initially, all IDBs are interpreted by the empty set.
In each stage, a rule ρ of Π is applied, and some tuples of elements of A are added to the
interpretation of the IDB occurring in in the head of rule ρ. Formally, for every k-ary IDB R

we define a sequence (RΠ,A
i)i≥0 of k-ary relations on the universe A of A. We let RΠ,A

0 = ∅

for all IDBs R. Suppose now we have defined R
Π,A
i−1 for all IDBs R. In stage i, we choose

a rule ρ, say, Px̄ ← Q1ȳ1, . . . , Qmȳm. An instantiation of ρ at stage i consists of tuples
ā, b̄1, . . . , b̄m of elements of A matching the lengths of the variable tuples x̄, ȳ1, . . . , ȳm, such
that

• If two variables of the rule are equal, then the corresponding elements of the tuples are
equal as well. For example, if xr = yst then ar = bst.

• For 1 ≤ r ≤ m: If Qr is an EDB, then b̄r ∈ QA
r . If Qr is an IDB, then b̄r ∈ Q

Π,A

r (i−1).

We let
P

Π,A
i = P

Π,A
i−1 ∪ {ā | there exist tuples b̄1, . . . , b̄m such that

ā, b̄1, . . . , b̄m is an instantiation of rule ρ at
stage i}.

For all IDBs R 6= P , we let R
Π,A
i = R

Π,A
i−1 . To turn this into a well-defined deterministic

process, we cycle through the rules ρ of Π in some fixed order. It can be shown that the
result of the computation does not depend on this order. (It will be convenient later to
apply only one rule at each stage, that is why we set up the computation this way.)

Note that for all IDBs R and for all i ≥ 0 we have R
Π,A
i ⊆ R

Π,A
i+1 . The process either

reaches a fixed point after finitely many stages, that is, there is an i0 such that RΠ,A
i0

= R
Π,A
i

for all i ≥ i0, or it continues forever (recall that A may be infinite). In both cases, we let

R
Π,A
∞ =

⋃

i≥0 R
Π,A
i . Then the R

Π,A
∞ form a fixed point of the computation, that is, further

applications of the rules do not increase the relations. This is obvious if a fixed-point is
reached in finitely many stages, but also easy to see if not. The result of the computation
is the interpretation of the IDBs in this fixed point.

We usually write RΠ
i and RΠ

∞ instead of RΠ,A
i and R

Π,A
∞ if A is clear from the context.

For an easier reference, we define the following set of parameters for a datalog program Π:

4 M. GROHE AND G. SCHWANDTNER

By mL we denote the maximal IDB arity (i.e. variables on the left hand side, head part
of program rules), by mR the maximal number of different variables occurring in a rule.
By nR we denote the number of rules of Π and by nI the number of IDB symbols, by mI

the maximal number of IDB occurrences in a rule body. All these parameters are bounded
from above by the length n := |Π| of Π in some standard encoding.

For a more detailed introduction to datalog, we refer the reader to [2].

2.2. Linear orders. A linearly ordered set is a structure A = (A,<A) of vocabulary {<},
where the binary relation <A is a linear order of the universe A. For brevity, we refer to
linearly ordered sets just as linear orders. Moreover, we usually omit the superscript in <A

and use the symbol < to denote both the relation <A and the relation symbol <. We write
a ≤ b instead of (a < b or a = b). The distance d(a, b) between two elements a < b ∈ A is the
maximum d ≥ 0 such that there are elements c0, . . . , cd ∈ A with a = c0 < c1 < · · · < cd = b

if this maximum exists, and∞ otherwise. The linear order (A,<) is dense without endpoints,
if for all a ∈ A there are b, c ∈ A such that b < a < c, and for all a, b ∈ A with a < b there
is a c ∈ A such that a < c < b.

We consider linear orders in the strict sense, that is, a linear order is always antireflexive.
For orders in the sense of “less-than-or-equal-to”, the datalog nonemptiness problem is
trivial,3 because we can always satisfy all atoms by interpreting all variables by the same
element of the universe.

2.3. Algorithmic problems. We shall study the complexity of the following two decision
problems for fixed structures A:

Datalog nonemptiness problem over A

Instance: Datalog program Π over A, IDB P of Π.

Question: Is PΠ,A
∞ 6= ∅?

Datalog tuple problem over A

Instance: Datalog program Π over A, k-ary IDB P of Π, k-tuple ā of
elements of A (for some k ≥ 1).

Question: Is ā ∈ P
Π,A
∞ ?

For an infinite structure (with finite vocabulary and finite EDB and IDB arities, but infinite
universe), the tuple problem bears some difficulties with regards to the representation of the
input tuple and the accessibility of the structure. To deal with the first difficulty, whenever
we consider the tuple problem we assume that the universe of the structure A is a decidable
set of strings over some finite alphabet. Furthermore, for linear orders A = (A,<A) we
assume that it is decidable whether for elements a, b ∈ A and a nonnegative integer k there
exist a1, . . . , ak ∈ A with a <A a1 <A · · · <A ak <A b. Note that if this is undecidable,
then the datalog tuple problem over A is also undecidable. Thus our assumption is just a
restriction to the interesting cases of the problem.

Let us emphasise that these effectivity assumptions on the representation are only
required when we study the datalog tuple problem. For the nonemptiness problem, we do
not need to make any assumptions on the representation or decidability of A whatsoever.

3Actually, the problem is still PTIME-complete; it is equivalent to the datalog nonemptiness problem
over a structure with one element, which is equivalent to the satisfiability problem for propositional Horn
clauses.

THE COMPLEXITY OF DATALOG ON LINEAR ORDERS 5

3. Datalog on Allen’s interval algebra

Allen’s interval algebra, introduced in [3], is an algebra of relations over open intervals
on the real line. These interval relations are built as unions from the 13 basic relations
describing the pairwise relative end points of two intervals (x−, x+) and (y−, y+) as Table
1 (taken from [19]). The algebra of these 213 relations is equipped with the operations
converse (denoted by ·−1), intersection ∩ and composition ◦.

The complexity of constraint satisfaction problems over Allen’s interval algebra and
variants has been extensively studied (see, e.g., [19, 20, 21]). Constraint satisfaction prob-
lems may be viewed as datalog nonemptiness problems for programs with a single non-
recursive rule. Here, we are interested in the complexity of full datalog over the interval
algebra.

Table 1: The 13 basic relations of Allen’s interval algebra. The obvious inequalities x− < x+

and y− < y+ of each case have been omitted.

Basic relation Converse relation Example Endpoints

x precedes y p y preceded by x p−1 xxx

yyy
x+ < y−

x meets y m y met by x m−1 xxxx

yyyy
x+ = y−

x overlaps y o y overlapped by x o−1 xxxx

yyyy
x− < y− < x+ < y+

x during y d y includes x d−1 xxx

yyyyyyy
y− < x−, x+ < y+

x starts y s y started by x s−1 xxx

yyyyyyyy
x− = y−, x+ < y+

x finishes y f y finished by x f−1 xxx

yyyyyyyy
y− < x−, x+ = y+

x equals y ≡ xxxxx

yyyyy
x− = y−, x+ = y+

Let I denote the structure whose universe consists of all open intervals on the real
line, and whose relations are the relations of the interval algebra. We observe that datalog
programs over I can easily be translated into programs over the linear order (R, <) and
vice versa:

Lemma 3.1. The datalog nonemptiness problem over I is LOGSPACE-equivalent to the
datalog nonemptiness problem over (R, <).

Proof. The reduction from the nonemptiness problem over I to the one over (R, <) is
straightforward by replacing the interval variables by endpoint variables. Since we do not
allow any equality relation to be used, we simulate equality by identifying variables.

For the other direction, we transform the program Π over (R, <) to Π′ by replacing all
atoms x < y by p(x, y). Then Π′ is satisfiable if and only if Π is satisfiable: If p(x, y) holds,
then x− < y− is satisfied. If on the other hand x < y holds, then there are elements x+

and y+ such that p((x, x+), (y, y+)) is satisfied, because the order (R, <) is dense.
Both reductions can clearly be carried out in logarithmic space.

4. Lower Bounds

The hardness results in this section are either from [8], or they can fairly easily be
proved by the techniques used in [8]. It is easy to see that for every finite structure A,
the datalog nonemptiness problem over A is in EXPTIME. For every structure A whose

6 M. GROHE AND G. SCHWANDTNER

universe contains at most one element, the nonemptiness problem is in PTIME. Conversely,
for every structure A, the datalog nonemptiness problem over A is PTIME-hard, because
the satisfiability problem for propositional Horn clauses is equivalent to the nonemptiness
problem for datalog programs with only 0-ary relation symbols. As soon as a structure
contains two distinguishable elements, the nonemptiness problem becomes EXPTIME-hard.
This will be made precise in Lemma 4.1 below. For the reader’s convenience, we sketch the
proof. It requires some preparation.

A successor structure is a structure B = (B,SB, NB), where B is either finite or count-
ably infinite, and for some enumeration b0, b1, . . . of B, the binary relation SB consists of
all pairs (bi, bi+1), and the unary relation NB only contains the element b0.

Assume, that in some structure A with universe A, we can define a successor structure.
This means that there exists a datalog program Π with an m-ary IDB U , a 2m-ary IDB S,

and an m-ary IDB N such that the structure B = (B,SB, NB) with B = U
Π,A
∞ , SB = S

Π,A
∞ ,

and NB = N
Π,A
∞ is a successor structure. Then a given Turing machine transition function

can be translated to a datalog program defining the following IDB relations:

symbolσ(x̄, ȳ): In step x̄ of the computation the tape cell ȳ contains the symbol σ.
cursor(x̄, ȳ): At instant x̄ the cursor points to cell ȳ.
states(x̄): In step x̄ the Turing machine is in state s.
accept: The computation has reached an accepting state.

Here x̄ and ȳ range over elements of the defined successor structure B and hence can be
viewed as encoding natural numbers, which are used to address time steps and tape cells. We
may define auxiliary IDB relations ensuring the consistency of the simulation and encoding
the input on the tape of the machine. Then we have a program, computable in logarithmic
space from the machine encoding, whose IDB accept is derivable (and hence nonempty) if
and only if a machine run accepts in a number of steps bounded by the size of the successor
structure.

Lemma 4.1. Given a structure A such that two relations U0, U1 ⊂ A
k, k ∈ N, can be

defined by a datalog program on A, such that

U0 ∩ U1 = ∅, U0 6= ∅, U1 6= ∅.

Then the datalog nonemptiness problem over A is EXPTIME-hard.

Proof. Without loss of generality we may assume that A actually contains two k-ary rela-
tions U0, U1 which are nonempty and disjoint. Hence we can use these relations as EDB
predicates in a datalog program. We prove that any deterministic Turing machine compu-
tation on input x, with |x| = n and time bound t(x) = 2m (m = m(n) being a function
with variable n) can be simulated by a datalog program with IDBs having at most 2 · k ·m
free variables.

The elements in U0 are used as 0 and the elements in U1 as 1 to build a successor
structure of binary vectors of arity m, leading to a successor substructure with values in
[0..2m]. The details can be found in [8] with slight modifications.

The maximal arity of any IDB relations involved is 2 · k · m, defining the successor
between two m-tuples of entries that have arity k.

By the construction of the Turing machine simulation, any machine computation run-
ning at most 2m steps can be simulated using datalog programs with maximal arity 2 ·k ·m,
which concludes the proof.

THE COMPLEXITY OF DATALOG ON LINEAR ORDERS 7

Corollary 4.2. For every linear order A = (A,<) with at least two elements, the datalog
nonemptiness problem over A is EXPTIME-hard.

Proof. Let U0 be the binary relation x < y and U1 the converse x > y.

Note that over infinite structures, the datalog nonemptiness problem can easily become
undecidable. One of the simplest examples of an infinite structure where this happens is an
infinite successor structure:

Proposition 4.3. Let B be an infinite successor structure. Then the datalog nonemptiness
problem over B is undecidable.

The proof is another straightforward Turing machine simulation.

5. Distance types

Types are a model theoretic tool that we shall use for dealing with datalog programs
on infinite orders. We define an appropriate notion of type and prove a lemma that links
them with the evaluation of datalog programs.

Definition 5.1.

(1) A distance atom is an expression of the form x ≤d y, −∞ ≤d x, or x ≤d ∞, where x, y

are variables and d is a nonnegative integer. We may write <d instead of ≤d for d > 0.
A distance type is a finite set of distance atoms.

We write δ(x1, . . . , xk) to indicate that the variables of the distance type δ are among
x1, . . . , xk. The set of all distance types with variables among x1, . . . , xk is denoted by
∆(x1, . . . , xk).

(2) Let A = (A,<) be a linear order, ā = (a1, . . . , ak) ∈ Ak, and let δ = δ(x1, . . . , xk) be a
distance type. Then (A, ā) satisfies δ (we write: A |= δ(ā)),4 if
− for all atoms xi ≤d xj ∈ δ, there are b0, . . . , bd ∈ A such that ai ≤ b0 < b1 < . . . <

bd ≤ aj (that is, xi ≤d xj is interpreted as xi ≤ xj and d(xi, xj) ≥ d);
− for all atoms −∞ ≤d xj ∈ δ, there are b0, . . . , bd ∈ A such that b0 < b1 < . . . < bd ≤

aj;
− for all atoms xi ≤d ∞ ∈ δ, there are b0, . . . , bd ∈ A such that ai ≤ b0 < b1 < . . . < bd.
A distance type δ is satisfiable if there is a linear order A and a tuple ā such that (A, ā)
satisfies δ.

(3) The rank of a distance atom t ≤d u is d, and the rank of a distance type δ is the maxi-
mum of the ranks of all atoms it contains. The set of all distance types in ∆(x1, . . . , xk)
of rank at most d is denoted by ∆d(x1, . . . , xk).

(4) Let A = (A,<) be a linear order, ā = (a1, . . . , ak) ∈ Ak, and d ≥ 0. The distance-d type
of ā in A, denoted by tpd(A, ā), is the distance type that contains:
• for 1 ≤ i, j ≤ k with ai ≤ aj the distance atom xi ≤c xj , where c = min{d, d(ai, aj)};
• for 1 ≤ j ≤ k the distance atom −∞ ≤c xj, where c ≤ d is maximum such that there
exists b0, . . . , bc ∈ A with b0 < . . . < bc ≤ aj ;
• for 1 ≤ i ≤ k the distance atom xi ≤c ∞, where c ≤ d is maximum such that there
exists b0, . . . , bc ∈ A with ai ≤ b0 < . . . < bc.

4Another common terminology is to say that a type is “realised” instead of “satisfied”.

8 M. GROHE AND G. SCHWANDTNER

(5) A distance type δ is complete if there exists a linear order A, a tuple ā with A � δ(ā),
and d ≥ 0 such that for each pair (ai, aj) of entries of ā satisfying ai < aj there is
precisely one distance atom ai ≤c aj in δ with 0 < c ≤ d, and for each pair (ai, aj) with
ai = aj there are distance atoms ai ≤0 aj and aj ≤0 ai in δ.

The set of all complete distance types with variables among x1, . . . , xk is denoted by
Γ(x1, . . . , xk), and the set of all types in Γ(x1, . . . , xk) of rank at most d is denoted by
Γd(x1, . . . , xk).

Example 5.2. An example for a distance type from ∆(x, y, z) is:

δ = x <3 y, y <2 z

This type δ is satisfied for some elements a1, a2, a3 ∈ A, which we assign to the variables
x = a1, y = a2 and z = a3, if there exist b1, b2, b3 ∈ A with

a1 < b1 < b2 < a2 to satisfy x <3 y

a2 < b3 < a3 to satisfy y <2 z .

The occurring ranks of the atoms in delta show δ ∈ ∆3(x, y, z). δ is not complete, since
there is no distance atom containing x and z and no distance atom containing −∞ or ∞.

Let us point out some subtleties of these definitions that may be confusing. A distance
type need not be satisfiable, but a complete distance type must be satisfiable.5 Even
though the “constants” −∞ and ∞ appear in distance atoms, they are not part of the
datalog language, and we do not require linear orders to have a minimum or maximum.
The semantics of the atoms −∞ ≤d x, or x ≤d ∞ is well-defined in all linear orders.

Note that x ≤1 y is equivalent to x < y and that x ≤0 y ∧ y ≤0 x is equivalent to
x = y. A distance type of rank 1 only contains information about the relative order of the
variables and about equalities between the variables, and not about their distances. Hence
we call distance types of rank 1 order types.

It it is easy to see that it can be decided in polynomial time in the number of variables
whether a distance type is satisfiable and whether it is complete.

Definition 5.3. Let γ, δ be distance types. Then γ implies δ if for all distance atoms
x ≤d x′ in δ there is a distance atom x ≤d′ x

′ with d ≤ d′ in γ.

Lemma 5.4.

(1) Let γ(x̄), δ(ȳ) be distance types such that γ implies δ. Then all variables in ȳ also
appear in x̄, and for every linear order A and every tuple ā such that A |= γ(ā), for the
projection b̄ of ā to the variables in ȳ we have A |= δ(b̄).

(2) Let δ ∈ ∆d(x̄). Then for all linear orders A and all tuples ā ∈ Ak,

A |= δ(ā) ⇐⇒ there exists a γ ∈ Γd(x̄) such that γ implies δ and A |= γ(ā). (5.1)

We omit the straightforward proof. Note that statement (2) of the lemma implies that
every type can be written as a disjunction of complete types.

Recall that for each IDB P of a datalog program Π over some fixed structure A, by
PΠ
i we denote the interpretation of P after the ith stage of the computation of Π. In the

following lemma we will show how to describe the stages by finite sets of distance types,
but first we will have a look at a simple example.

5In model theory, it is common to define types as being satisfiable sets of formulas.

THE COMPLEXITY OF DATALOG ON LINEAR ORDERS 9

Example 5.5. Let Π be the following two-rule program defining IDBs P and Q:

P (x, y) ← x < z1, z1 < z2, z2 < y.

Q(x, y, z) ← P (x, y), y < w, w < z.

Applying the first rule to the empty IDB relations at the beginning, the resulting relation
PΠ
1 contains all tuples satisfying the distance type x <3 y, since there have to be three

distance atoms satisfied between the elements assigned to x and y.
Applying the second rule to this stage 1, this distance type is copied to the type de-

scribing the tuples in QΠ
2 and on y and z the type y <2 z is imposed, leading to the following

type describing QΠ
2 :

δ = x <3 y, y <2 z

For programs using recursion and more rules leading to some form of disjunction, a
single distance type is not enough to describe a relation, but sets of types are needed.

Lemma 5.6. Let A = (A,<) be an infinite linear order and Π a datalog program over A.
Then for each k-ary IDB P of Π and each i ≥ 0 there is a finite set Θ(P, i) ⊆

Γ(x1, . . . , xk) such that for all ā ∈ Ak it holds that

ā ∈ PΠ
i ⇐⇒ there is a θ ∈ Θ(P, i) such that A |= θ(ā).

Furthermore, the rank of all types in Θ(P, i) is bounded by (mR)
i, where mR denotes the

maximal number of variables in a rule of Π as usual.

Proof. For i ≥ 0, let di := (mR)
i.

We prove the claim by induction on i. The induction base for i = 0 is obvious: We let
Θ(P, 0) = ∅ for all IDBs P .

For the induction step (i→ i+ 1), we consider the application of a rule

ρ : P (x̄) ← P 1(ȳ1), . . . , P
ℓ(ȳℓ), ǫ(ȳ),

where P 1, . . . , P ℓ are IDBs and ǫ(ȳ) is a list of EDB atoms with variables in ȳ. We view ǫ

as a distance type of rank 1; this will enable us to unify some of the arguments below. Let
Z = {z1, . . . , zm} be the set of all variables occurring in ρ, and let z̄ = (z1, . . . , zm). Note
that m ≤ mR and hence m · di ≤ di+1.

For 1 ≤ j ≤ ℓ, let θj ∈ Θ(P j, i). Assume that there is a γ ∈ Γdi(z1, . . . , zm) which
implies θ1, . . . , θℓ and ǫ. Suppose w1, . . . , wm is an enumeration of Z in the order imposed
by γ, and let e0, . . . , em ≥ 0 such that γ contains the distance atoms

−∞ ≤e0 w1, wp ≤ep wp+1 for p = 1, . . . ,m− 1, wm ≤em ∞.

We define a new type γ|x̄ in the variables x̄ as follows:

• Let x be a variable in x̄, say, x = wp. Then γ|x̄ contains the distance atom −∞ ≤d x for

d =
∑i−1

q=0 eq.

• Let x, x′ be variables in x̄, say, x = wi and x′ = wj . Suppose that i ≤ j. Then γ|x̄
contains the distance atom x ≤d x

′ for d =
∑q−1

r=p er.

• Let x be a variable in x̄, say, x = wp. Then γ|x̄ contains the distance atom x ≤d ∞ for
d =

∑m
q=p eq.

It is easy to see that γ|x̄ is a complete distance type in the variables x̄. The rank of γ|x̄ is at
most m times the rank of γ and hence bounded by m ·di ≤ di+1. Therefore, γ|x̄ ∈ Γdi+1

(x̄).

10 M. GROHE AND G. SCHWANDTNER

Furthermore, it is easy to verify that every tuple ā that satisfies γ|x̄ has an extension to an
m-tuple c̄ that satisfies γ.

We let Θ(P, i+1) be the union of Θ(P, i) with all types γ|x̄, where γ ∈ Γdi(z̄) such that
γ implies ǫ and there exist θj ∈ Θ(P j, i), for 1 ≤ j ≤ ℓ, implied by γ. We claim that for all
tuples ā it holds that ā ∈ PΠ

i+1 if and only if there is a θ ∈ Θ(P, i+ 1) such that A |= θ(ā).

To prove the forward direction of this claim, let ā ∈ PΠ
i+1. If ā ∈ PΠ

i , then by the
induction hypothesis there is a θ ∈ Θ(P, i) ⊆ Θ(P, i+1) such that A |= θ(ā). Suppose that
ā ∈ PΠ

i+1 \ P
Π
i . Then there is a tuple c̄ interpreting the variables z̄, with projections ā on

the coordinates of the variables in x̄, b̄j on the coordinates of the variables in ȳj , and b̄ on

the coordinates of the variables in ȳ, such that b̄j ∈ (P j)Πi for 1 ≤ j ≤ ℓ and A |= ǫ(b̄). By
the induction hypothesis, for 1 ≤ j ≤ ℓ there is a type θj ∈ Θ(Pj , i) such that A |= θj(b̄j).
Let γ be the complete distance-di type of c̄. Then γ|x̄ ∈ Θ(P, i+ 1), and A |= γ|x̄(ā).

For the backward direction, suppose that a tuple ā satisfies a type γ′(x̄) ∈ Θ(P, i+ 1).
If γ′(x̄) ∈ Θ(P, i), then ā ∈ PΠ

i ⊆ PΠ
i+1 by the induction hypothesis. Otherwise, there is

a complete type γ ∈ Γdi(z̄) and types θj ∈ Θ(P j, i) for 1 ≤ j ≤ ℓ such that γ′ = γ|x̄ and
γ implies θ1, . . . , θℓ, ǫ. Let c̄ be an m-tuple satisfying γ such that the projection of c̄ on
the coordinates of the variables in x̄ is ā. For 1 ≤ j ≤ ℓ, let b̄j be the projection of c̄ on
the the coordinates of the variables in ȳj. Then A |= θj(b̄j). By the induction hypothesis,
b̄j ∈ (P j)Πi . Let b̄ be the projection of c̄ on the coordinates of the variables in ȳ. Then

A |= ǫ(b̄). Putting everything together, we obtain ā ∈ PΠ
i+1.

Remark 5.7. Note that actually we have proved a slightly stronger bound on the ranks of
the types in Θ(P, i): Letting di be the maximum rank of all types in Θ(P, i), we have

di+1 ≤ mR · di (5.2)

for all i ≥ 0. Furthermore, whereas the numbers di may depend on the order in which we
apply the rules of the program, the bound (5.2) holds for all orders.

The following example shows that the ranks of the types can increase during a compu-
tation in a way that can get quite complicated:

Example 5.8. Consider the following program consisting of rules ρ1, ρ2 and ρ3, with
x̄ = (x1, . . . , x5). We use the abbreviation xi <2 xj for xi < y, y < xj omitting some body
variable y in the definition of Π, which does not appear elsewhere in the rules.

ρ1 : Px̄ ← x1 <2 x2, x2 <2 x3, x4 <2 x5.

ρ2 : Px̄ ← x1 < x2, x4 < z2, z3 < y4, y5 < x5,

P (x2, x3, z1, z2, z3), P (y1, y2, y3, y4, y5).

ρ3 : Px̄ ← P (x1, x2, x3, z1, z2), P (y1, x4, x5, y2, y3).

The rule ρ1 is an initialization rule which initializes all given types to <2.
The rule ρ2 introduces x1 <1 x2, reuses existing types by copying and sums up some

existing atoms from possibly different existing types.
This rule uses two recursive occurrences of the IDB P , which in our description of the

application of this rule by types leads to the use of two (possibly different) types from the
type set describing earlier stages of PΠ

∞. We denote the ranks of the distance atoms from
these two types occuring in our computation, using ā = (a1, . . . , a5) for tuples from such
stages, by:

THE COMPLEXITY OF DATALOG ON LINEAR ORDERS 11

Ranks in distance types of the earlier stages of PΠ
∞

first occurrence of P a1 <c1 a2 a4 <c2 a5
second occurrence of P a1 <c′

1
a2 a4 <c′

2
a5

The rule application of ρ2 using these distance atoms will then impose the following
type on the body variables, where the distance atoms are given in the order of the variable
appearance in the rule, ommiting the atoms containing the variables z1, y1, y2 and y3, not
part of the result:

x1 <1 x2, x4 < z2, z3 <1 y4, y5 <1 x5, x2 <c1 x3, z2 <c2 z3, y4 <c′
2
y5

To combine these types by eliminating non-head variables, we rearrange these atoms:

x1 <1 x2, x2 <c1 x3, x4 <1 z2, z2 <c2 z3, z3 <1 y4, y4 <c′
2
y5, y5 <1 x5

After the elimination of non-head variables, the following type is added to the type set
of P :

x1 <1 x2, x2 <c1 x3, x4 <c2+c′
2
+3 x5

Rule ρ3 copies some distance atoms for x1, x2, x3 and transfers some x2 <c x3 to x4 <c

x5 in the result. We conclude the example with the shortest program run leading to a
fixed point, described by the ranks of the types x1 <d1 x2, x2 <d2 x3 and x4 <d3 x5. We
assume, that always the smallest ranks are chosen. Longer runs could lead to even bigger
intermediate results, but will have the same final result.

step rule d1 d2 d3 remarks

1 ρ1 2 2 2
2 ρ2 1 2 7
3 ρ2 1 1 12 using tuples in line 2 and 1
4 ρ3 1 1 1 using tuple in line 3 twice

6. Upper Bounds for datalog programs on orders

Now that we have a formal description of the IDB relations in this case, we will use
the concept of discrete order types to show an upper bound for the datalog nonemptiness
problem. But before, we transform the program into some normal form which integrates the
possible order types into the program by creating disjoint copies of each IDB, each having
a different order type and hence leading to disjoint relations.

Definition 6.1. A datalog program over linear orders A is type-disjoint, if for every k-ary
IDB P there is a complete order type γP ∈ Γ1(x1, . . . , xk) such that for all linear orders
A = (A,<) and all tuples ā ∈ PΠ

∞ it holds that tp1(A, ā) = γP .
The order type of an IDB P in a type-disjoint program Π is the order type γP .

Lemma 6.2. For every datalog program Π over linear orders there is a type-disjoint datalog
program Π′ over linear orders with the following properties:

(1) For every IDB P of Π there are IDBs P1, . . . , PnP
of Π′ of pairwise distinct order types,

such that for every linear order A,

PΠ
∞ =

nP
⋃

j=1

(Pj)
Π′

∞ .

12 M. GROHE AND G. SCHWANDTNER

(2) n′
I ≤ nI · 3

m2
L , n′

R ≤ 3m
2
L·(m′

I+1) · nR, m
′
R = mR and m′

L = mL, m
′
I = mI , where n′

I ,
m′

R, m
′
L, m

′
I are the parameters of Π′.

Furthermore, the program Π′ can be computed from Π in exponential time.

Proof. From each IDB P of arity r, we create nP = 3r
2

distinct copies P0, . . . , PnP−1, each
having a different order type. For i ∈ {0, . . . , nP − 1}, let (i0, . . . , ir2−1) be the ternary

representation of the number i, i =
∑r2−1

j=0 ij · 3
j with 0 ≤ ij < 3 for all j = 1, . . . , nP − 1.

Then we link to each new IDB Pi a distance-1-type γPi
, which consists of the following

distance atoms:

xj1 = xj2 , if ij1+j2·r = 0

xj1 <1 xj2 , if ij1+j2·r = 1

xj2 <1 xj1 , if ij1+j2·r = 2

So each combination of distance atoms for all pairs of variables will be present in some
γPi

. After computing these distance types, we transform the program in two stages. First,
we change the head IDBs to the new IDB set consisting of the distinct copies created as
above for each IDB of Π: Each rule ρ with head atom Px̄, is replaced by copies ρ′0, . . . , ρ

′
nP−1

with head Pj x̄ with j ∈ {0, . . . , nP −1}, and the body copied from ρ and extended by EDBs
xj1 < xj2 for each (xj1 <1 xj2) ∈ γPj

. In case of (xj1 = xj2) ∈ γPj
, we replace all occurrences

of xj2 by xj1 afterwards. This simulates the equality relation, which is not available as EDB
or IDB relation.

Each of the rules ρ′0, . . . , ρ
′
nP−1 is then itself replaced by copies which instead of the

body IDBs from Π, use the IDBs of Π′:
In each rule ρr, say, Plx̄ ← Q1ȳ1, . . . , Qmȳm, ǫ(x̄, ȳ1, . . . , ȳm), with ǫ being a sequence

of EDBs, each IDB Qj of Π has been converted to a set of IDBs {Qjℓ}. From these sets
we generate all possible combinations (Q1ℓ1 , . . . , Qmℓm) and create from each combination
a rule of Π′:

Plx̄ ← Q1ℓ1 ȳ1, . . . , Qmℓm ȳm, ǫ(x̄, ȳ1, . . . , ȳm) ,

where the sequence E of EDB atoms is left untouched.
After that, we directly eliminate a rule with an inconsistent order type. This can

be done by viewing the rule as graph with the variables being the nodes and the order
atoms being directed edges. A check for a directed cycle, which can be carried out in time
polynomial in the rule length, shows if the order type is inconsistent.

Each tuple added to a stage in the evaluation of Π introduced by some rule ρ of Π has
a complete distance 1 type, so there will be one of the copies of ρ, which can be applied to
add this tuple. Conversely, the newly created rules of Π′ may only add tuples, for which a
rule in Π exists adding this tuple.

Each IDB of arity r is converted to not more than 3r
2

copies and hence n′
I ≤ nI · 3

m2
L .

For each rule, we need all combinations of copies of the newly created IDBs, adding up to

at most n′
R ≤

(

3m
2
L

)(mI+1)
· nR = 3m

2
L·(mI+1) · nR.

For type-disjoint datalog programs, the nonemptiness problem can be solved in a simple
fashion, essentially disregarding any recursion in rules. In the following lemma, we construct
an execution sequence s that will suffice to decide the datalog nonemptiness problem.

Lemma 6.3. Let Π be a type-disjoint datalog program over an infinite linear order A =
(A,<). Then there exist an is ≤ nI and a sequence s = (ρ0, ρ1, . . . , ρis−1) of rules, such

THE COMPLEXITY OF DATALOG ON LINEAR ORDERS 13

that after applying ρi to stage i for i = 0, . . . , is − 1, the emptiness is determined, i.e. for
all IDBs P it holds that

PΠ
is

= ∅ ⇒ PΠ
∞ = ∅ . (6.1)

Such a sequence s can be computed in time nR · nI .

Proof. We create the sequence s by cycling through the rules nI times, adding those rules
to s, which change an empty IDB to nonempty, formally: s = (ρ0, ρ1, . . . , ρis−1) such that
there exist IDBs P1, . . . , Pis with (Pi)

Π
i = ∅, and after applying ρi to (Pi)

Π
i , (Pi)

Π
i+1 6= ∅ for

i = 0, . . . , is − 1.
We continue this process until no more rules can be applied to make an empty IDB

nonempty, but this can happen at most nI times, immediately leading to the time bound
for the computation. Note that nonempty IDBs are never modified by s.

The crucial observation is that, in a type-disjoint program, it only depends on the
nonemptiness of the IDBs in the body if a rule adds new tuples to the head IDB, and not
on the actual content of the body IDBs. This follows from the fact that at each stage
the content of the IDBs is a union of disjoint complete types by Lemma 5.6, and that the
distance types are monotone by Corollary 7.3. Thus in an infinite order, we can always add
all tuples of sufficiently large finite distances.

We now show property (6.1) by contradiction:
Let U =

{

R
∣

∣ RΠ
is
= ∅ ∧ RΠ

∞ 6= ∅
}

be the set of IDBs changing to nonempty after s

and assume U 6= ∅. Then for each R ∈ U there exist an iR ∈ N and a rule ρR with:

RΠ
iR

= ∅, and applying ρR to RΠ
iR

: RΠ
iR+1 6= ∅ .

Let P ∈ U be the IDB with iP = min {iR | R ∈ U }. By the definition of U and by the
choice of i, all Q ∈ U \{P} have to satisfy QΠ

iR
= ∅. Since a rule can be applied if and only if

all body IDBs are nonempty, the rule ρR cannot depend on them and can be applied in stage
is leading to a sequence of rule applications making more IDBs nonempty, a contradiction
to the construction of s.

Theorem 6.4. The datalog nonemptiness problem over linear orders A = (A,<) is EXP-
TIME-complete

Proof. The proof is a combination of several earlier results. A datalog program Π can by
Lemma 6.2 be converted to a type-disjoint program Π′. For this kind of program Lemma 6.3
gives us a method to check which IDB relations of Π′ will be empty after an evaluation of
Π′. Since Π′ is type-disjoint, each IDB relation of the original program Π will occur here as
a collection of IDBs of Π′, which can easily be determined. Thus, the question “PΠ

∞ = ∅?”
can be answered by checking the type sets of all corresponding IDBs of Π′. Beside the time
for this check and the time for the conversion of the programs, the time for determining
the empty IDB relations of Π′ is part of the running time. Using Lemma 6.2 and 6.3 the

time of this step can be bounded from above by O(nR · 9
m2

L
·(mI+1)), altogether clearly in

EXPTIME and with the earlier shown EXPTIME-hardness the claim follows.

7. Boundedness

A datalog program Π is bounded on a structure A if there is computation of Π on A,
that reaches a fixed point after finitely many stages. Of course, this concept of boundedness
is nontrivial only on infinite structures. The main result of this section is that datalog

14 M. GROHE AND G. SCHWANDTNER

programs are bounded on linear orders. Actually, we prove a stronger result giving a
uniform bound on the number of evaluation steps that computable from the size of the
program and does not depend on the structure. This stronger result is even meaningful for
finite linear orders.

Definition 7.1. Let Π be a datalog program over a structure A.

(1) A computation sequence for Π is a sequence s of rules of Π to compute all IDB relations,
i.e. a sequence of rules satisfying the following conditions:
• If s is finite, then after applying s, no further rule application adds a tuple to the
IDB relations.
• If s is infinite, then each rule of Π will occur infinitely often.

(2) The closure ordinal of Π on A, denoted by cl(Π,A), is the length of the shortest compu-
tation sequence for Π on A (cl(Π,A) = ∞, if all computation sequences are of infinite
length).

(3) Π is bounded on A if cl(Π,A) <∞.

Now let C be a class of structures such that Π is a program over C.

(4) The uniform closure ordinal of Π on C, denoted by ucl(Π, C), is the maximum of the
closure ordinals cl(Π,A) for A ∈ C, if this maximum exists, and ∞ otherwise.

(5) Π is uniformly bounded on C if ucl(Π, C) <∞.

Note that if Π is uniformly bounded on C, then it is bounded on all A ∈ C, but that
the converse does not necessarily hold.

Theorem 7.2. Let Π be a datalog program over the class LO of linear orders. Then Π is
uniformly bounded on LO. More precisely, there is a computable function b : N 7→ N such
that for n = |Π| it holds that

ucl(Π,LO) ≤ b(n).

Our proof of Theorem 7.2 is based on a simplification of the distance type concept
which we will discuss before the presentation of the main proof. The proof presented here
is an extension of the proof of Theorem 6.4, first transforming the program Π in question
to a type-disjoint version Π′ by Lemma 6.2 and then creating the initialization sequence s

as in Lemma 6.3. After this process, we may eliminate all then empty IDB relations. Each
remaining IDB P may only contain tuples of one complete order type ϑP .

Let γ ∈ Γ(x1, . . . , xn) be a complete distance type. Observe that γ is completely
determined by its underlying order type and the distances d imposed by the distance atoms
−∞ ≤d x, x ≤d x′, x ≤d ∞. We can describe the distances by a tuple d̄γ = (dγ1 , . . . , d

γ
k) of

length k = 2n+
(

n
2

)

with nonnegative integer entries. We call d̄γ the rank vector of γ. We
define a partial order � on the complete distance types in Γ(x1, . . . , xn) by letting γ � γ′

if γ and γ′ imply the same order type and d
γ
i ≤ d

γ′

i for 1 ≤ i ≤ k. Observe that γ � γ′

if and only if γ′ implies γ. The following corollary is hence an immediate consequence of
Lemma 5.4(1):

Corollary 7.3. Let A = (A,<) be a linear order, ā ∈ Ak, and γ, γ′ ∈ Γ(x1, . . . , xk) such
that γ � γ′. Then

A |= γ′(ā) =⇒ A |= γ(ā).

The crucial observation that we will exploit in the following is that the computation
of a type-disjoint datalog program can be described entirely in terms of sequences of rank

THE COMPLEXITY OF DATALOG ON LINEAR ORDERS 15

vectors for the IDBs. This follows from Lemma 5.6 stating that the computation can be
described in terms of complete types and the observation that for type-disjoint programs it
suffices to consider the rank vectors, because the order types of the IDBs are fixed.

After applying the sequence s and after eliminating empty IDBs, for each IDB P , the set
Θ(P, is) is described by exactly one such vector, since |Θ(P, is)| = 1 after the initialization
sequence which adds at most one type to the type set of each IDB. By Corollary 7.3, all
tuples realizing a type γ′ with γ � γ′, also realize the weaker type γ. Hence increasing the
size of an IDB relation P by adding new tuples (which realize a newly added type γ′) is
only possible if in all present types γ ∈ Θ(P, i) some atom rank of γ is greater than the
corresponding rank in γ′, i.e. γ 6� γ′.

In terms of rank vectors, a type γ defines a set Hγ containing the vectors of all types
γ′ that are at least as restrictive as γ, i.e. γ � γ′:

Hγ =
{

(x1, . . . , xkP)
∣

∣ xℓ ≥ d
γ
ℓ for ℓ = 1, . . . , kP

}

Speaking of rank vectors, γ � γ′ if the rank vector d̄γ is dominated by the rank vector

d̄γ
′
, i.e. for all i = 1, . . . , kP , d

γ
i ≤ d

γ′

i . Then Hγ is the set of all types with a rank vector
dominating the rank vector of γ.

Then creating a sequence of new types added to Θ(P, i) is equivalent to the search
for a non-dominating sequence of rank vectors, where we call a (finite or infinite) sequence
x1, x2, . . . non-dominating if for all i and j with i < j, xj does not dominate xi.

Figure 1 shows a graphical representation for kP = 2. Figure 1 (c) shows a case where
a new vector is added containing a coordinate greater than the maximum of all existing
entries. But this growth can only occur in a limited manner, as we will show. Before, we
introduce some notation.

✲

✻

t�����������������������
���

(a)

✲

✻

�������������
���

�������������������
���
���
�

t

(b)

✲

✻
���������
�

�������������
�

�������������������
���
���
�

t

(c)

Example of the description of an IDB relation with rank vectors of length 2 (x and y coordinate).

Figure (a) shows a description with one rank vector, automatically including all types with rank

vectors in the hatched area. Figure (b) shows the situation after a second rank vector was added,

automatically including more types. In Figure (c), another vector is added.

Figure 1: Geometric Representation of a Type Set

Definition 7.4. Let k ∈ N and x̄ = (x1, . . . , xk) ∈ N
k. Then ||x̄||∞ := max{x1, . . . , xk}.

For S ⊂ N
k, let ||S||∞ := maxx̄∈S ||x̄||∞. Let s1, . . . , sℓ be finite sequences, each sequence

consisting of tuples of some arity, and let C = (s1, . . . , sℓ) be a tuple of these sequences.
Then ||C||∞ := maxℓi=1 ||si||∞, where the sequences are considered as sets.

To model the rank vectors occurring in the stages of the IDB relations, we introduce a
corresponding sequence concept:

16 M. GROHE AND G. SCHWANDTNER

Definition 7.5 (c-Bounded Run). Let t ∈ N, let k1, . . . , kt ∈ N and for i = 1, . . . , t let
x̄i ∈ N

ki . Let c ∈ N. Then X is a c-bounded run of (x̄1, . . . , x̄t), if

• s01, . . . , s
0
t are sequences of tuples, where for each i, s0i consists of the tuple x̄i only.

• The stage X0 of X is the tuple X0 = (s01, . . . , s
0
t).

• Inductively, the j-th stage Xj = (sj1, . . . , s
j
t) of X is created from the stage Xj−1 by

choosing an ℓ ∈ {1, . . . , t}, a µj ∈ N, and {x̄1, . . . , x̄µj
} ⊂ N

kℓ such that

− µj ≤ (||X0||∞ · c
j−1)c

2

− for n 6= ℓ: sjn = s
j−1
n

− s
j
ℓ = s

j−1
ℓ ◦ (x̄1, . . . , x̄µj

) (◦ meaning sequence concatenation)

− s
j
ℓ is non-dominating

− ||x̄i||∞ ≤ c · ||Xj−1||∞ for all i = 1, . . . , µj

The condition on µj ensures that the sequence added in each stage is finite and bounded
from above by some function of ||X0||∞, c and j, which will be needed for the computation
of a uniform bound. The connection between the setting of datalog programs on orders and
the c-bounded runs is given by the following lemma:

Lemma 7.6. Let t be the number of nonempty IDB relations of the type-disjoint program
Π′ after the initialization sequence s of length is from Lemma 6.3. Then for each nonempty
IDB relation P , the set Θ(P, is) contains exactly one rank vector. Let d̄1, . . . , d̄t be these
rank vectors. Let m = max{m′

R,m
′
I ,m

′
L}.

(1) For all j = 1, . . . , t: ||d̄i||∞ ≤ (m′
R)

is ≤ (m′
R)

n′
R
n′
I .

(2) For each computation of Π′ continuing the initialization sequence, the rank vectors added
during this computation form an m-bounded run X of (d̄1, . . . , d̄t).

Proof. To prove (1), note that ||d̄i||∞ ≤ (m′
R)

is follows from Lemma 5.6 and (m′
R)

is ≤

(m′
R)

n′
Rn′

I follows from Lemma 6.3.
(2) is proved by induction on the steps of the computation. Suppose at stage i of the

computation of Π, a rule ρ with IDB P in its head is applied. Let γ′1, . . . , γ
′
µ′ be the types

in Θ(P, i+ 1) \Θ(P, i). It may be that some of the γ′i dominate γ′j for j < i or γ ∈ Θ(P, i).

We omit all these γ′i and obtain a sequence γ1, . . . , γµ. Adding their rank vectors to the
run obtained so far, we obtain a non-dominating sequence. The m-boundedness of the run
follows from Remark 5.7.

To show a computable uniform bound on c-bounded runs, we need two well known
lemmas which we state here without proof:

Lemma 7.7 (König’s Tree Lemma (see, e.g., [16, 10])). Let T be an infinite rooted
directed tree with finite branching (i.e. each vertex has a finite number of children). Then
T contains an infinite path starting at the root node.

Lemma 7.8 (Dickson’s Lemma (see, e.g., [14, 9])). All non-dominating sequences of
tuples of natural numbers are finite.

These finiteness (or infiniteness) properties allow us to compute a bound on the number
of stages of c-bounded runs:

Lemma 7.9. There is a nondecreasing computable function f : N × N × N × N → N with
the following property:

For all m ∈ N, c ∈ N, t ∈ N, r ∈ N, k1, . . . , kt ∈ {1, . . . , r} and x̄i ∈ N
ki with

||x̄i||∞ ≤ m, each c-bounded run of (x̄1, . . . , x̄t) has at most f(m, c, t, r) stages.

THE COMPLEXITY OF DATALOG ON LINEAR ORDERS 17

Proof. First, we have a look at an arbitrary choice of m, c, t, r, k1, . . . , kt and x̄i (for
i = 1, . . . , t).

We create a labeled tree T containing all c-bounded runs of these values: The root node
is labeled with X0. Inductively, for each node labeled with a stage Xi, we create a child
node for each stage Xi+1 created from Xi and label it with the corresponding stage.

To create a stage Xi+1 from Xi, we may choose each of the t sequences to extend it.
Each sequence sij has an arity kj and by the last condition of a c-bounded run, the element

added to this sequence may only have coordinates that are at most c||Xi||∞. Because of
this and since the length of µi+1 of the extension of the sequence in stage i+ 1 is bounded

from above by (||X0||∞ ·c
j−1)c

2

, there are only finitely many choices for a finite extension of
a sequence and hence finitely many children for each node in this tree T (each for a different
extension of some sequence).

A path in T (starting at the root node) corresponds to one c-bounded run. We now
show that each path is finite: Assume, we have an infinite path p in T . This path p is
labeled with the stages of a c-bounded run X. In each stage one of the sequences of X is
extended by finitely many elements and since there are only t sequences there has to be
one sequence that is extended in infinitely many stages. Each extension of this sequence is
non-dominating, so we get an infinite non-dominating sequence. But by Dickson’s Lemma
each non-dominating sequence of tuples of natural numbers is finite, a contradiction. Hence
all paths in T are finite.

Hence T has finite branching (only finitely many children to each node) and no infinite
path. By König’s Lemma T must be finite.

The height of T is the greatest number of stages that can occur in a c-bounded run of
x̄1, . . . , x̄k. Since T is finite, we can compute the whole tree and determine its height.

We discuss how to compute the value f(m, c, t, r) for given values m, c, t and r:
For each fixed choice k1, . . . , kt of arities, the entries of all choices of the corresponding

tuples x̄1, . . . , x̄t are bounded by m and thus for each tuple there are only finitely many
choices. By computing the height of the tree (by creating the tree) to each choice of tuples
one after the other and determining the maximum h(k1, . . . , kt), we have computed a bound
on the number of stages for the c-bounded runs with sequence arities k1, . . . , kt.

The parameter t determines the number of sequences in the runs considered and the
parameter r limits the arities of these sequences. The maximum of the values h(k1, . . . , kt)
over all possible rt sequence arity tuples (k1, . . . , kt) is then the maximal number of stages
in a c-bounded run with t sequences and sequence arities at most r and it can be computed
by computing h(k1, . . . , kt) for all finitely many choices.

This maximum satisfies the properties of f(m, c, t, r), and that f is nondecreasing is
immediate: Increasing some parameter, all runs remain valid, but also longer runs may
appear.

This function will directly lead to the function b of Theorem 7.2:

Proof. (of Theorem 7.2) The program Π over a linear ordering A = (A,<) is first converted
to an equivalent type-disjoint version Π′ as in Lemma 6.2, which also gives the bounds

n′
I ≤ nI ·3

m2
L , n′

R ≤ 3m
2
L
·(mI+1) ·nR, m

′
R = mR and m′

L = mL for the parameters of the new
program Π′. Then the initialization sequence s as in Lemma 6.3 is determined, resulting in

the first is ≤ n′
I ≤ nI · 3

m2
L stages.

While the empty relations of Π′ can be neglected, each nonempty relation P of Π′

has a type description Θ(P, i) with one rank vector each, and by Lemma 7.6 these rank

18 M. GROHE AND G. SCHWANDTNER

vectors satisfy the properties of an mR-bounded run X. By Lemma 7.9, X has at most
f((m′

R)
n′
Rn′

I ,m′
R, n

′
I ,m

′
L) stages.

We let b(n) := f(n3n4

, n, n·3n
2

, n) and by the above bounds on the parameters and since
each program parameter is bounded from above by the program length n,

f((m′
R)

n′
Rn′

I ,m′
R, n

′
I ,m

′
L) ≤ f(n3n4

, n, n · 3n
2

, n) ≤ b(n) and the claim follows.
Since A was chosen as arbitrary linear order, this bound also holds for ucl(Π,LO).

It now follows easily that the datalog tuple problem is decidable on all linear orders,
provided that the orders satisfy the effectivity conditions described in Section 2.3, which
say that the elements of a structure are effectively represented, and that the distance-d type
of a tuple can be computed.

Theorem 7.10. The datalog tuple problem on linear orders is decidable.

Proof. Using Lemma 5.6 and and Theorem 7.2, for each IDB we can compute the set of all
complete types of tuples that are contained in an IDB-relation after the computation of the
dalog program has been carried out. Then to decide whether a given tuple is contained in
an IDB relation, we only have to check if it satisfies one of these types.

The uniform closure ordinal of a datalog program can be also be used to decide the
nonemptiness problem. By the EXPTIME-hardness of nonemptiness, it follows that the
uniform closure ordinal of a datalog program over linear orders has to be at least singly
exponential. We suspect that this lower bound is closer to the actual closure ordinal than
our computable upper bound.

On dense linear orders without endpoints, we can match the singly exponential lower
bound. Let DLO denote the class of dense linear orders without endpoints.

Theorem 7.11. Let Π be a datalog program over the class of linear orders and n = |Π|.
Then

ucl(Π,DLO) ≤ 3n
2

.

Proof. Observe that on dense linear orders, distance types collapse to order types, because
for all a, b and for all d ≥ 1 we have a < b ⇐⇒ a ≤d b. So the only types to consider are
distance-1-types (including equality atoms, when we consider complete distance-1-types)
and the as type-disjoint version of a program as introduced in Lemma 6.2 contains all
complete distance-1-types, it contains all types of interest for this case. After evaluating the
initialization sequence as computed in Lemma 6.3, all complete distance-1-types describing
the IDB relations are computed and hence no rule can be applied after that to add new
types.

Since there at most 3n
2

different distance-1-types for a program of length n, the claim
follows.

8. Relational structures with constants

We may also consider datalog programs over linear orders A = (A,<, c1, . . . , cr) with
finitely many constants c1, . . . , cr, each of them being interpreted as a fixed element of A,
which may be used in the datalog programs in question.

To solve the datalog nonemptiness or tuple problem for such a program Π with constant
symbols, we transform the program to a constant free version Π′ by replacing each constant

THE COMPLEXITY OF DATALOG ON LINEAR ORDERS 19

ci by a fresh variable and adding rule parts to transfer the values of all constants to all rules
which are used during program execution. Using this technique, we show:

Theorem 8.1. The datalog tuple problem on linear orders A = (A,<, c1, . . . , cr) with
finitely many constants (which may be used by the datalog programs) is decidable.

Proof. We first transform the program Π over A = (A,<, c1, . . . , cr) to a program Π′ over
the structure A′ = (A,<) increasing the arity of each IDB symbol by r, such that for each
IDB P of Π with arity s and its corresponding IDB P ′ of Π′, and each ā = (a1, . . . , as) ∈ As

the following holds:

ā ∈ PΠ,A
∞ ⇐⇒ c̄ā = (cA1 , . . . , c

A
r , a1, . . . , as) ∈ (P ′)

Π′,A′

∞ (8.1)

This is established by replacing all occurrences of the constant ci by a fresh variable
Ci, for i = 1, . . . , r. To ensure, that all rule applications share the same values for the
constants, we augment each IDB P of Π by the additional variables C̄ = (C1, . . . , Cr) and
replace all occurrences of P (x̄) by P ′(C̄, x̄) — in the rule bodies and the rule heads. This
forces the values of the variables C1, . . . , Cr to be identical in the body and head of each
rule and hence in the whole pogram. For example, if φ(c1, . . . , cr, x1, . . . , xm, y1, . . . , yn) is
the formula appearing in the body of the rule

P (x1, . . . , xm) ← φ(c1, . . . , cr, x1, . . . , xm, y1, . . . , yn).

we translate this rule to:

P ′(C1, . . . , Cr, x1, . . . , xm) ← φ(C1, . . . , Cr, x1, . . . , xm, y1, . . . , yn).

Now the original program Π and the modified version Π′ satisfy condition (8.1).
This transformation can be carried out in logarithmic space, since the number r of

constants does only depend on the structure A, not the input (Π, P, ā) of the tuple problem.
The above construction is a logspace reduction from the tuple problem over linear orders
with constants to the tuple problem over linear orders without constants, mapping the input
(Π, P, ā) to the instance (Π′, P ′, c̄ā), increasing mL and mR by r and the total program size
by a linear factor. For this constant free version of the tuple problem, Theorem 7.10 shows
us how to solve it, calculating the type sets introduced in Lemma 5.6.

We can also use these type sets computed in the above proof for solving the nonempti-
ness problem on A = (A,<, c1, . . . , cr):

Corollary 8.2. The datalog nonemptiness problem on linear orders A = (A,<, c1, . . . , cr)
with finitely many constants is decidable.

Proof. On input (Π, P), we first calculate the type sets for the modified version Π′, in which
the constants have been replaced by the variables C1, . . . , Cr as above. Then we instantiate
the variables C1, . . . , Cr by the constants of A in all types in Θ(P ′,∞) for the IDB P ′ of Π′

corresponding to IDB P of Π, each Ci by cAi . Types which are then no longer satisfiable are

deleted from the set. If and only if there are satisfiable types remaining, PΠ,A
∞ is nonempty.

20 M. GROHE AND G. SCHWANDTNER

An intuitive argument, why the upper bound for the datalog nonemptiness problem
on orders with constants is much higher than the complexity of the case without constants
is, that as soon as constants are involved, the solution process has to consider distances
between constants. A solution may for some two constants ci < cj require a number of
elements to be present in A between ci and cj , which is higher than the actual number
of elements between ci and cj in A. This case is only handled correctly by using distance
types, order types alone do not suffice.

However, on dense linear orderings we may do better and match the EXPTIME lower
bound:

Corollary 8.3. The datalog nonemptiness problem on dense linear orders
A = (A,<, c1, . . . , cr) with finitely many constants can be decided in exponential time.

Proof. This result is a straightforward combination of the preceeding proof and Theo-
rem 7.11.

Note that even though we use the decidability of the datalog tuple problem to prove
the decidability of the datalog nonemptiness problem for linear orders with constants, we
do not need to make any effectivity assumptions on the linear order A (cf. Sec. 2.3) here.
The reason is that the constants are fixed in advance as part of the structure and thus all
information about them can be hardwired into the algorithm.

9. Concluding remarks

We studied the complexity of datalog on linear orders. We precisely determined the
complexity of the datalog nonemptiness problem: It is EXPTIME-complete on all linear
orders with at least two elements. We also obtained a computable uniform upper bound on
the closure ordinal of datalog programs on linear orders. Then best lower bound we know
for the uniform closure ordinals is singly exponential.

The upper bound on the closure ordinals can be used to prove that the datalog tuple
problem is decidable on computable orders leading to the same complexity bound for the
nonemptiness and tuple problems on orders with constants. Based on these results, an
implementation of the distance type concept for calculations seems feasible for applications,
e.g. in temporal and spatial reasoning.

In his forthcoming PhD-thesis [22], the second author showed that most of the results
obtained here can be extended to colored linear orders, that is, linear orders with additional
unary predicates, and, at least partially, to colored trees, where trees are viewed as partial
orders.

10. Acknowledgements

The authors thank Mark Weyer for proposing an elegant idea leading to the proof of
Theorem 7.2.

THE COMPLEXITY OF DATALOG ON LINEAR ORDERS 21

References

[1] S. Abiteboul. Boundedness is undecidable for datalog programs with a single recursive rule. Information

Processing Letters, 32:281–287, 1989.
[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
[3] James F. Allen. Maintaining knowledge about temporal intervals. Comm. ACM, 26:832–843, 1982.
[4] M. Bodirsky and V. Dalmau. Datalog and constraint satisfaction with infinite templates. In B. Durand

and W. Thomas, editors, Proceedings of the 23rd Annual Symposium on Theoretical Aspects of Computer

Science, volume 3884 of Lecture Notes in Computer Science, pages 646–659. Springer-Verlag, 2006.
[5] M. Bodirsky and J. Nešetřil. Constraint satisfaction with countable homogeneous templates. Journal of

Logic and Computation, 16:359–373, 2006.
[6] S. Chaudhuri and M.Y. Vardi. On the equivalence of recursive and nonrecursive datalog programs. In

Proceedings of the 11th ACM Symposium on Principles of Database Systems, pages 55–66, 1992.
[7] S. S. Cosmadakis, H. Gaifman, P. C. Kanellakis, and M. Y. Vardi. Decidable optimization problems for

database logic programs (preliminary report). In Proceedings of the 20th ACM Symposium on Theory

of Computing, pages 477–490, 1988.
[8] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and expressive power

of logic programming. In IEEE Conference on Computational Complexity, pages 82–101, 1997.
[9] L.E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with discitnct factors.

American Journal of Mathematics, 3:413–422, 1913.
[10] R. Diestel. Graphentheorie. Springer, Berlin, second edition, 2000.
[11] H. Gaifman, H. Mairson, Y. Sagiv, and M.Y. Vardi. Undecidable optimization problems for database

logic programs. Journal of the ACM, 40(3):683–713, 1993.
[12] G. Gottlob and Ch. Koch. Monadic datalog and the expressive power of web information extraction

languages. Journal of the ACM, 51(1):74–113, 2004.
[13] G. Gottlob and C. H. Papadimitriou. On the complexity of single-rule datalog queries. Inf. Comput.,

183(1):104–122, 2003.
[14] W. Harwood, F. Moller, and A. Setzer. Weak bisimulation approximants. In Proceedings of CSL’06,

LNCS, pages 365–379, Szeged, Hungary, 2006.
[15] Gerd G. Hillebrand, Paris C. Kanellakis, Harry G. Mairson, and Moshe Y. Vardi. Undecidable bound-

edness problems for datalog programs. Journal of Logic Programming, 25(2):163–190, 1995.
[16] Wilfrid Hodges. A shorter model theory. Cambridge University Press, New York, NY, USA, 1997.
[17] P.C. Kanellakis. Elements of relational database theory. In J. van Leeuwen, editor, Handbook of Theo-

retical Computer Science. Elsevier Science Publishers B.v., 1990.
[18] Ph.G. Kolaitis and M.Y. Vardi. On the expressive power of datalog: tools and a case study. Journal of

Computer and System Sciences, 51(1):110–134, 1995.
[19] Andrei Krokhin, Peter Jeavons, and Peter Jonsson. Constraint satisfaction problems on intervals and

lengths. Siam J. Discrete Math., 17(3):453–477, 2004.
[20] I. Meiri. Combining qualitative and quantitative constraints in temporal reasoning. Artificial Intelli-

gence, 87:343–385, 1996.
[21] B. Nebel and Hans-Jürgen Bürckert. Reasoning about temporal relations: a maximal tractable subclass

of allen’s interval algebra. Journal of the ACM, 42, 1995.
[22] G. Schwandtner. Datalog on Infinite Structures. PhD thesis, Humboldt-Universität zu Berlin, 2008.
[23] M.Y. Vardi. The complexity of relational query languages. In Proceedings of the 14th ACM Symposium

on Theory of Computing, pages 137–146, 1982.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://reativeommons.org/lienses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

	1. Introduction
	2. Preliminaries
	2.1. Datalog
	2.2. Linear orders
	2.3. Algorithmic problems

	3. Datalog on Allen's interval algebra
	4. Lower Bounds
	5. Distance types
	6. Upper Bounds for datalog programs on orders
	7. Boundedness
	8. Relational structures with constants
	9. Concluding remarks
	10. Acknowledgements
	References

