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ABSTRACT. Nominal Isabelle is a definitional extension of the Isabelle/HOL theorem prover. It

provides a proving infrastructure for reasoning about programming language calculi involving named

bound variables (as opposed to de-Bruijn indices). In this paper we present an extension of Nominal

Isabelle for dealing with general bindings, that means term constructors where multiple variables are

bound at once. Such general bindings are ubiquitous in programming language research and only

very poorly supported with single binders, such as lambda-abstractions. Our extension includes new

definitions of alpha-equivalence and establishes automatically the reasoning infrastructure for alpha-

equated terms. We also prove strong induction principles that have the usual variable convention

already built in.

1. INTRODUCTION

So far, Nominal Isabelle provided a mechanism for constructing alpha-equated terms, for example

lambda-terms

t ::= x | t t | λx. t

where free and bound variables have names. For such alpha-equated terms, Nominal Isabelle derives

automatically a reasoning infrastructure that has been used successfully in formalisations of an

equivalence checking algorithm for LF [27], Typed Scheme [24], several calculi for concurrency

[3] and a strong normalisation result for cut-elimination in classical logic [30]. It has also been used

by Pollack for formalisations in the locally-nameless approach to binding [20].
However, Nominal Isabelle has fared less well in a formalisation of the algorithm W [29], where

types and type-schemes are, respectively, of the form

T ::= x | T → T S ::= ∀ {x1,. . . , xn}. T (1.1)
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and the ∀ -quantification binds a finite (possibly empty) set of type-variables. While it is possible to

implement this kind of more general binders by iterating single binders, like ∀ x1.∀ x2...∀ xn.T, this

leads to a rather clumsy formalisation of W. For example, the usual definition for a type being an

instance of a type-scheme requires in the iterated version the following auxiliary unbinding relation:

T →֒ ([],T)

S →֒ (xs,T)

∀x.S →֒ (x ::xs,T)

Its purpose is to relate a type-scheme with a list of type-variables and a type. It is used to address

the following problem: Given a type-scheme, say S, how does one get access to the bound type-

variables and the type-part of S? The unbinding relation gives an answer to this problem, though in

general it will only provide a list of type-variables together with a type that are “alpha-equivalent”

to S. This is because unbinding is a relation; it cannot be a function for alpha-equated type-schemes.

With the unbinding relation in place, we can define when a type T is an instance of a type-scheme S

as follows:

T ≺ S
def
= ∃ xs T ′ σ. S →֒ (xs, T ′) ∧ dom σ = set xs ∧ σ(T ′) = T

This means there exists a list of type-variables xs and a type T ′ to which the type-scheme S unbinds,

and there exists a substitution σ whose domain is xs (seen as set) such that σ(T ′) = T. The problem

with this definition is that we cannot follow the usual proofs that are by induction on the type-part

of the type-scheme (since it is under an existential quantifier and only an alpha-variant). The imple-

mentation of type-schemes using iterations of single binders prevents us from directly “unbinding”

the bound type-variables and the type-part. Clearly, a more dignified approach for formalising al-

gorithm W is desirable. The purpose of this paper is to introduce general binders, which allow us

to represent type-schemes so that they can bind multiple variables at once and as a result solve this

problem more straightforwardly. The need of iterating single binders is also one reason why the

existing Nominal Isabelle and similar theorem provers that only provide mechanisms for binding

single variables have so far not fared very well with the more advanced tasks in the POPLmark

challenge [2], because also there one would like to bind multiple variables at once.
Binding multiple variables has interesting properties that cannot be captured easily by iterating

single binders. For example in the case of type-schemes we do not want to make a distinction about

the order of the bound variables. Therefore we would like to regard in (1.2) below the first pair of

type-schemes as alpha-equivalent, but assuming that x, y and z are distinct variables, the second pair

should not be alpha-equivalent:

∀ {x, y}. x → y ≈α ∀ {x, y}. y → x ∀ {x, y}. x → y 6≈α ∀ {z}. z → z (1.2)

Moreover, we like to regard type-schemes as alpha-equivalent, if they differ only on vacuous binders,

such as

∀ {x}. x → y ≈α ∀ {x, z}. x → y (1.3)

where z does not occur freely in the type. In this paper we will give a general binding mechanism and

associated notion of alpha-equivalence that can be used to faithfully represent this kind of binding in

Nominal Isabelle. The difficulty of finding the right notion for alpha-equivalence can be appreciated
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in this case by considering that the definition given for type-schemes by Leroy in [13, Page 18–19]

is incorrect (it omits a side-condition).
However, the notion of alpha-equivalence that is preserved by vacuous binders is not always

wanted. For example in terms like

let x = 3 and y = 2 in x − y end (1.4)

we might not care in which order the assignments x = 3 and y = 2 are given, but it would be often

unusual (particularly in strict languages) to regard (1.4) as alpha-equivalent with

let x = 3 and y = 2 and z = foo in x − y end

Therefore we will also provide a separate binding mechanism for cases in which the order of binders

does not matter, but the ‘cardinality’ of the binders has to agree.
However, we found that this is still not sufficient for dealing with language constructs frequently

occurring in programming language research. For example in lets containing patterns like

let (x, y) = (3, 2) in x − y end (1.5)

we want to bind all variables from the pattern inside the body of the let, but we also care about the

order of these variables, since we do not want to regard (1.5) as alpha-equivalent with

let (y, x) = (3, 2) in x − y end

As a result, we provide three general binding mechanisms each of which binds multiple variables at

once, and let the user choose which one is intended when formalising a term-calculus.
By providing these general binding mechanisms, however, we have to work around a problem

that has been pointed out by Pottier [19] and Cheney [7]: in let-constructs of the form

let x1 = t1 and . . . and xn = tn in s end

we care about the information that there are as many bound variables xi as there are ti. We lose this

information if we represent the let-constructor by something like

let (λx1. . . xn . s) [t1,. . . ,tn]

where the notation λ . indicates that the list of xi becomes bound in s. In this representation the

term let (λx . s) [t1, t2] is a perfectly legal instance, but the lengths of the two lists do not agree.

To exclude such terms, additional predicates about well-formed terms are needed in order to ensure

that the two lists are of equal length. This can result in very messy reasoning (see for example [3]).

To avoid this, we will allow type specifications for lets as follows

trm ::= . . .
| let as::assn s::trm binds bn(as) in s

assn ::= anil

| acons name trm assn
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where assn is an auxiliary type representing a list of assignments and bn an auxiliary function

identifying the variables to be bound by the let. This function can be defined by recursion over

assn as follows

bn(anil) = ∅ bn(acons x t as) = {x} ∪ bn(as)

The scope of the binding is indicated by labels given to the types, for example s::trm, and a binding

clause, in this case binds bn(as) in s. This binding clause states that all the names the function

bn(as) returns should be bound in s. This style of specifying terms and bindings is heavily inspired

by the syntax of the Ott-tool [22]. Our work extends Ott in several aspects: one is that we support

three binding modes—Ott has only one, namely the one where the order of binders matters. Another

is that our reasoning infrastructure, like strong induction principles and the notion of free variables,

is derived from first principles within the Isabelle/HOL theorem prover.
However, we will not be able to cope with all specifications that are allowed by Ott. One reason

is that Ott lets the user specify ‘empty’ types like t ::= t t | λx. t where no clause for variables is

given. Arguably, such specifications make some sense in the context of Coq’s type theory (which

Ott supports), but not at all in a HOL-based environment where every datatype must have a non-

empty set-theoretic model [4]. Another reason is that we establish the reasoning infrastructure for

alpha-equated terms. In contrast, Ott produces a reasoning infrastructure in Isabelle/HOL for non-

alpha-equated, or ‘raw’, terms. While our alpha-equated terms and the ‘raw’ terms produced by Ott

use names for bound variables, there is a key difference: working with alpha-equated terms means,

for example, that the two type-schemes

∀ {x}. x → y = ∀ {x, z}. x → y

are not just alpha-equal, but actually equal! As a result, we can only support specifications that

make sense on the level of alpha-equated terms (offending specifications, which for example bind a

variable according to a variable bound somewhere else, are not excluded by Ott, but we have to).
Our insistence on reasoning with alpha-equated terms comes from the wealth of experience

we gained with the older version of Nominal Isabelle: for non-trivial properties, reasoning with

alpha-equated terms is much easier than reasoning with ‘raw’ terms. The fundamental reason for

this is that the HOL-logic underlying Nominal Isabelle allows us to replace ‘equals-by-equals’. In

contrast, replacing ‘alpha-equals-by-alpha-equals’ in a representation based on ‘raw’ terms requires

a lot of extra reasoning work.
Although in informal settings a reasoning infrastructure for alpha-equated terms is nearly al-

ways taken for granted, establishing it automatically in Isabelle/HOL is a rather non-trivial task.

For every specification we will need to construct type(s) containing as elements the alpha-equated

terms. To do so, we use the standard HOL-technique of defining a new type by identifying a non-

empty subset of an existing type. The construction we perform in Isabelle/HOL can be illustrated

by the following picture:

α-
classes

α-eq.
terms

existing
type

(sets of raw terms)
non-empty
subset

new
type

isomorphism

(1.6)
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We take as the starting point a definition of raw terms (defined as a datatype in Isabelle/HOL);

then identify the alpha-equivalence classes in the type of sets of raw terms according to our alpha-

equivalence relation, and finally define the new type as these alpha-equivalence classes (the non-

emptiness requirement is always satisfied whenever the raw terms are definable as datatype in Is-

abelle/HOL and our relation for alpha-equivalence is an equivalence relation).
The fact that we obtain an isomorphism between the new type and the non-empty subset shows

that the new type is a faithful representation of alpha-equated terms. That is not the case for example

for terms using the locally nameless representation of binders [14]: in this representation there are

‘junk’ terms that need to be excluded by reasoning about a well-formedness predicate.
The problem with introducing a new type in Isabelle/HOL is that in order to be useful, a rea-

soning infrastructure needs to be ‘lifted’ from the underlying subset to the new type. This is usually

a tricky and arduous task. To ease it, we re-implemented in Isabelle/HOL [10] the quotient package

described by Homeier [8] for the HOL4 system. This package allows us to lift definitions and the-

orems involving raw terms to definitions and theorems involving alpha-equated terms. For example

if we define the free-variable function over raw lambda-terms as follows

fv(x)
def
= {x}

fv(t1 t2)
def
= fv(t1) ∪ fv(t2)

fv(λx.t)
def
= fv(t) − {x}

then with the help of the quotient package we can obtain a function fvα operating on quotients, that

is alpha-equivalence classes of lambda-terms. This lifted function is characterised by the equations

fvα(x) = {x}
fvα(t1 t2) = fvα(t1) ∪ fvα(t2)
fvα(λx.t) = fvα(t) − {x}

(Note that this means also the term-constructors for variables, applications and lambda are lifted

to the quotient level.) This construction, of course, only works if alpha-equivalence is indeed an

equivalence relation, and the ‘raw’ definitions and theorems are respectful w.r.t. alpha-equivalence.

For example, we will not be able to lift a bound-variable function. Although this function can be

defined for raw terms, it does not respect alpha-equivalence and therefore cannot be lifted. To sum

up, every lifting of theorems to the quotient level needs proofs of some respectfulness properties (see

[8]). In the paper we show that we are able to automate these proofs and as a result can automatically

establish a reasoning infrastructure for alpha-equated terms.

The examples we have in mind where our reasoning infrastructure will be helpful include the

term language of Core-Haskell (see Figure 1). This term language involves patterns that have lists

of type-, coercion- and term-variables, all of which are bound in case-expressions. In these patterns

we do not know in advance how many variables need to be bound. Another example is the algorithm

W, which includes multiple binders in type-schemes.

Contributions: We provide three new definitions for when terms involving general binders are

alpha-equivalent. These definitions are inspired by earlier work of Pitts [18]. By means of automati-

cally-generated proofs, we establish a reasoning infrastructure for alpha-equated terms, including

properties about support, freshness and equality conditions for alpha-equated terms. We are also

able to automatically derive strong induction principles that have the variable convention already

built in. For this we simplify the earlier automated proofs by using the proving tools from the
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Type Kinds

κ ::= ⋆ | κ1 → κ2
Coercion Kinds

ι ::= σ1 ∼ σ2

Types

σ ::= a | T | σ1 σ2 | Sn σn | ∀ a:κ. σ | ι ⇒ σ

Coercion Types

γ ::= c | C | γ1 γ2 | Sn γn | ∀ c:ι. γ | ι ⇒ γ | refl σ | sym γ | γ1 ◦ γ2
| γ @ σ | left γ | right γ | γ1 ∼ γ2 | rightc γ | leftc γ | γ1 ⊲ γ2

Terms

e ::= x | K | Λa:κ. e | Λc:ι. e | e σ | e γ | λx:σ. e | e1 e2
| let x:σ = e1 in e2 | case e1 of p → e2 | e ⊲ γ

Patterns

p ::= K a:κ c:ι x:σ

Constants

C coercion constants

T value type constructors

Sn n-ary type functions (which need to be fully applied)

K data constructors

Variables

a type variables

c coercion variables

x term variables

Figure 1: The System FC [23], also often referred to as Core-Haskell. In this version of FC we

made a modification by separating the grammars for type kinds and coercion kinds, as

well as for types and coercion types. For this paper the interesting term-constructor is

case, which binds multiple type-, coercion- and term-variables (the overlines stand for

lists).

function package [11] of Isabelle/HOL. The method behind our specification of general binders

is taken from the Ott-tool, but we introduce crucial restrictions, and also extensions, so that our

specifications make sense for reasoning about alpha-equated terms. The main improvement over Ott

is that we introduce three binding modes (only one is present in Ott), provide formalised definitions

for alpha-equivalence and for free variables of our terms, and also derive a reasoning infrastructure

for our specifications from ‘first principles’ inside a theorem prover.

2. A SHORT REVIEW OF THE NOMINAL LOGIC WORK

At its core, Nominal Isabelle is an adaptation of the nominal logic work by Pitts [17]. This adapta-

tion for Isabelle/HOL is described in [9] (including proofs). We shall briefly review this work to aid

the description of what follows.
Two central notions in the nominal logic work are sorted atoms and sort-respecting permuta-

tions of atoms. We will use the letters a, b, c, . . . to stand for atoms and π, π1, . . . to stand for

permutations, which in Nominal Isabelle have type perm. The purpose of atoms is to represent
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variables, be they bound or free. The sorts of atoms can be used to represent different kinds of

variables, such as the term-, coercion- and type-variables in Core-Haskell. It is assumed that there

is an infinite supply of atoms for each sort. In the interest of brevity, we shall restrict ourselves in

what follows to only one sort of atoms.
Permutations are bijective functions from atoms to atoms that are the identity everywhere ex-

cept on a finite number of atoms. There is a two-place permutation operation written · and

having the type perm ⇒ β ⇒ β where the generic type β is the type of the object over which the

permutation acts. In Nominal Isabelle, the identity permutation is written as 0, the composition of

two permutations π1 and π2 as π1 + π2 (even if this operation is non-commutative), and the inverse

permutation of π as − π. The permutation operation is defined over Isabelle/HOL’s type-hierarchy

[9]; for example permutations acting on atoms, products, lists, permutations, sets, functions and

booleans are given by:

π ·a
def
= π a

π · (x, y)
def
= (π ·x, π ·y)

π · []
def
= []

π · (x::xs)
def
= (π ·x)::(π · xs)

π ·π ′
def
= π + π ′− π

π ·X
def
= {π ·x | x ∈ X}

π · f
def
= λx. π · (f (− π ·x))

π ·b
def
= b

(2.1)

Concrete permutations in Nominal Isabelle are built up from swappings, written as (a b), which are

permutations that behave as follows:

(a b) = λc. if a = c then b else if b = c then a else c

The most original aspect of the nominal logic work of Pitts is a general definition for the notion

of the ‘set of free variables of an object x’. This notion, written supp x, is general in the sense that

it applies not only to lambda-terms (alpha-equated or not), but also to lists, products, sets and even

functions. Its definition depends only on the permutation operation and on the notion of equality

defined for the type of x, namely:

supp x
def
= {a | infinite {b | (a b)·x 6= x}} (2.2)

There is also the derived notion for when an atom a is fresh for an x, defined as

a # x
def
= a /∈ supp x

We use for sets of atoms the abbreviation as #∗ x, defined as ∀ a∈as. a # x. A striking consequence

of these definitions is that we can prove without knowing anything about the structure of x that

swapping two fresh atoms, say a and b, leaves x unchanged, namely

Proposition 2.1. If a # x and b # x then (a b)·x = x.

While often the support of an object can be relatively easily described, for example for atoms,

products, lists, function applications, booleans and permutations as follows
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supp a = {a}
supp (x, y) = supp x ∪ supp y

supp [] = ∅

supp (x::xs) = supp x ∪ supp xs

supp (f x) ⊆ supp f ∪ supp x

supp b = ∅

supp π = {a | π ·a 6= a}
(2.3)

in some cases it can be difficult to characterise the support precisely, and only an approximation can

be established (as for function applications above). Reasoning about such approximations can be

simplified with the notion supports, defined as follows:

Definition 2.2. A set S supports x, if for all atoms a and b not in S we have (a b)·x = x.

The main point of supports is that we can establish the following two properties.

Proposition 2.3. Given a set bs of atoms.

(i) If bs supports x and finite bs then supp x ⊆ bs.

(ii) (supp x) supports x.

Another important notion in the nominal logic work is equivariance. For a function f to be

equivariant it is required that every permutation leaves f unchanged, that is

∀π. π · f = f . (2.4)

If a function is of type α⇒ β, say, this definition is equivalent to the fact that a permutation applied

to the application f x can be moved to the argument x. That means for such functions, we have for

all permutations π:

π · f = f if and only if ∀ x. π · (f x) = f (π ·x) . (2.5)

There is also a similar property for relations, which are in HOL functions of type α ⇒ β ⇒ bool.

Suppose a relation R, then for all permutations π:

π ·R = R if and only if ∀ x y. x R y implies (π ·x) R (π ·y) .

Note that from property (2.4) and the definition of supp, we can easily deduce that for a function

being equivariant is equivalent to having empty support.
Using freshness, the nominal logic work provides us with general means for renaming binders.

While in the older version of Nominal Isabelle, we used extensively Proposition 2.1 to rename single

binders, this property proved too unwieldy for dealing with multiple binders. For such binders the

following generalisations turned out to be easier to use.

Proposition 2.4. If supp x #∗ π then π ·x = x.

Proposition 2.5. For a finite set as and a finitely supported x with as #∗ x and also a finitely

supported c, there exists a permutation π such that π ·as #∗ c and supp x #∗ π.

The idea behind the second property is that given a finite set as of binders (being bound, or fresh,

in x is ensured by the assumption as #∗ x), then there exists a permutation π such that the renamed

binders π · as avoid c (which can be arbitrarily chosen as long as it is finitely supported) and also

π does not affect anything in the support of x (that is supp x #∗ π). The last fact and Property 2.4

allow us to ‘rename’ just the binders as in x, because π ·x = x.
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Note that supp x #∗ π is equivalent with supp π #∗ x, which means we could also formulate

Propositions 2.4 and 2.5 in the other ‘direction’; however the reasoning infrastructure of Nominal

Isabelle is set up so that it provides more automation for the formulation given above.
Most properties given in this section are described in detail in [9] and all are formalised in

Isabelle/HOL. In the next sections we will make use of these properties in order to define alpha-

equivalence in the presence of multiple binders.

3. ABSTRACTIONS

In Nominal Isabelle, the user is expected to write down a specification of a term-calculus and then

a reasoning infrastructure is automatically derived from this specification (remember that Nominal

Isabelle is a definitional extension of Isabelle/HOL, which does not introduce any new axioms).
In order to keep our work with deriving the reasoning infrastructure manageable, we will wher-

ever possible state definitions and perform proofs on the ‘user-level’ of Isabelle/HOL, as opposed to

writing custom ML-code that generates them anew for each specification. To that end, we will con-

sider first pairs (as, x) of type (atom set) × β. These pairs are intended to represent the abstraction,

or binding, of the set of atoms as in the body x.
The first question we have to answer is when two pairs (as, x) and (bs, y) are alpha-equivalent?

(For the moment we are interested in the notion of alpha-equivalence that is not preserved by adding

vacuous binders.) To answer this question, we identify four conditions: (i) given a free-atom func-

tion fa of type β ⇒ atom set, then (as, x) and (bs, y) need to have the same set of free atoms;

moreover there must be a permutation π such that (ii) π leaves the free atoms of (as, x) and (bs, y)
unchanged, but (iii) ‘moves’ their bound names so that we obtain modulo a relation, say R , two

equivalent terms. We also require that (iv) π makes the sets of abstracted atoms as and bs equal.

The requirements (i) to (iv) can be stated formally as:

Definition 3.1 (Alpha-Equivalence for Set-Bindings).

(as, x) ≈ set
R, fa (bs, y)

def
= if there exists a π such that:

(i) fa x − as = fa y − bs

(ii) fa x − as #∗ π
(iii) (π ·x) R y

(iv) π ·as = bs

Note that the relation is dependent on a free-atom function fa and a relation R. The reason for this

extra generality is that we will use ≈R,fa
set for both raw terms and alpha-equated terms. In the latter

case, R will be replaced by equality = and we will prove that fa is equal to supp.
Definition 3.1 does not make any distinction between the order of abstracted atoms. If we want

this, then we can define alpha-equivalence for pairs of the form (as, x) with type (atom list) × β as

follows

Definition 3.2 (Alpha-Equivalence for List-Bindings).

(as, x) ≈ list
R, fa (bs, y)

def
= if there exists a π such that:

(i) fa x − set as = fa y − set bs

(ii) fa x − set as #∗ π
(iii) (π ·x) R y

(iv) π ·as = bs

where set is the function that coerces a list of atoms into a set of atoms. Now the last clause ensures

that the order of the binders matters (since as and bs are lists of atoms).
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If we do not want to make any difference between the order of binders and also allow vacuous

binders, that means according to Pitts [18] restrict atoms, then we keep sets of binders, but drop

condition (iv) in Definition 3.1:

Definition 3.3 (Alpha-Equivalence for Set+-Bindings).

(as, x) ≈ set+
R, fa (bs, y)

def
= if there exists a π such that:

(i) fa x − as = fa y − bs

(ii) fa x − as #∗ π
(iii) (π ·x) R y

It might be useful to consider first some examples how these definitions of alpha-equivalence

pan out in practice. For this consider the case of abstracting a set of atoms over types (as in type-

schemes). We set R to be the usual equality = and for fa(T) we define

fa(x)
def
= {x} fa(T1 → T2)

def
= fa(T1) ∪ fa(T2)

Now recall the examples shown in (1.2) and (1.3). It can be easily checked that ({x, y}, x → y) and

({x, y}, y → x) are alpha-equivalent according to ≈ set and ≈ set+ by taking π to be the swapping

(x y). In case of x 6= y, then ([x, y], x → y) 6≈ list ([y, x], x → y) since there is no permutation that

makes the lists [x, y] and [y, x] equal, and also leaves the type x → y unchanged. Another example is

({x}, x)≈ set+ ({x, y}, x) which holds by taking π to be the identity permutation. However, if x 6= y,

then ({x}, x) 6≈ set ({x, y}, x) since there is no permutation that makes the sets {x} and {x, y} equal

(similarly for ≈ list). It can also relatively easily be shown that all three notions of alpha-equivalence

coincide, if we only abstract a single atom. In this case they also agree with the alpha-equivalence

used in older versions of Nominal Isabelle [26].1

In the rest of this section we are going to show that the alpha-equivalences really lead to ab-

stractions where some atoms are bound (or more precisely removed from the support). For this we

will consider three abstraction types that are quotients of the relations

(as, x) ≈ set
=, supp (bs, y)

(as, x) ≈ set+
=, supp (bs, y)

(as, x) ≈ list
=, supp (bs, y)

(3.1)

Note that in these relations we replaced the free-atom function fa with supp and the relation R with

equality. We can show the following two properties:

Lemma 3.4. The relations ≈
=,supp
set , ≈

=,supp
set+ and ≈

=,supp
list are equivalence relations and equivariant.

Proof. Reflexivity is by taking π to be 0. For symmetry we have a permutation π and for the

proof obligation take −π. In case of transitivity, we have two permutations π1 and π2, and for the

proof obligation use π1 + π2. Equivariance means (π · as, π · x) ≈ set
=, supp (π · bs, π · y) holds

provided (as, x) ≈ set
=, supp (bs, y) holds. From the assumption we have a permutation π ′ and for the

proof obligation use π ·π ′. To show equivariance, we need to ‘pull out’ the permutations, which is

possible since all operators, namely as #∗, −, =, ·, set and supp, are equivariant (see [9]). Finally,

we apply the permutation operation on booleans.

1We omit a proof of this fact since the details are hairy and not really important for the purpose of this paper.
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Recall the picture shown in (1.6) about new types in HOL. The lemma above allows us to use our

quotient package for introducing new types β absset, β absset+ and β abslist representing alpha-

equivalence classes of pairs of type (atom set) × β (in the first two cases) and of type (atom list) ×
β (in the third case). The elements in these types will be, respectively, written as

[as]set.x [as]set+.x [as]list.x

indicating that a set (or list) of atoms as is abstracted in x. We will call the types abstraction

types and their elements abstractions. The important property we need to derive is the support of

abstractions, namely:

Theorem 3.5 (Support of Abstractions). Assuming x has finite support, then

supp [as]set.x = supp x − as

supp [as]set+.x = supp x − as

supp [as]list.x = supp x − set as

In effect, this theorem states that the atoms as are bound in the abstraction. As stated earlier, this can

be seen as a litmus test that our Definitions 3.1, 3.2 and 3.3 capture the idea of alpha-equivalence

relations. Below we will give the proof for the first equation of Theorem 3.5. The others follow by

similar arguments. By definition of the abstraction type absset we have

[as]set.x = [bs]set.y if and only if (as, x) ≈ set
=, supp (bs, y) (3.2)

and also set

π · [as]set.x
def
= [π ·as]set.(π ·x) (3.3)

With this at our disposal, we can show the following lemma about swapping two atoms in an ab-

straction.

Lemma 3.6. If a /∈ supp x − as and b /∈ supp x − as then [as]set.x = [(a b)·as]set.((a b)·x)

Proof. If a = b the lemma is immediate, since (a b) is then the identity permutation. Also in the

other case the lemma is straightforward using (3.2) and observing that the assumptions give us (a
b) · (supp x − as) = supp x − as. We therefore can use the swapping (a b) as the permutation for

the proof obligation.

This lemma together with (3.3) allows us to show

(supp x − as) supports [as]set.x (3.4)

which by Property 2.3 gives us ‘one half’ of Theorem 3.5. To establish the ‘other half’, we use a

trick from [18] and first define an auxiliary function aux, taking an abstraction as argument

aux ([as]set.x)
def
= supp x − as



12 C. URBAN AND C. KALISZYK

Using the second equation in (2.5), we can show that aux is equivariant (since π · (supp x − as) =
supp (π ·x) − π ·as) and therefore has empty support. This in turn means

supp (aux ([as]set.x)) ⊆ supp [as]set.x

using the fact about the support of function applications in (2.3). Assuming supp x − as is a finite

set, we further obtain

supp x − as ⊆ supp [as]set.x (3.5)

This is because for every finite set of atoms, say bs, we have supp bs = bs.2 Finally, taking (3.4)

and (3.5) together establishes the first equation of Theorem 3.5. The others are similar.
Recall the definition of support given in (2.2), and note the difference between the support of a

raw pair and an abstraction

supp (as, x) = supp as ∪ supp x supp [as]set.x = supp x − as

While the permutation operations behave in both cases the same (a permutation is just moved to the

arguments), the notion of equality is different for pairs and abstractions. Therefore we have different

supports. In case of abstractions, we have established in Theorem 3.5 that bound atoms are removed

from the support of the abstractions’ bodies.
The method of first considering abstractions of the form [as]set.x etc is motivated by the fact

that we can conveniently establish at the Isabelle/HOL level properties about them. It would be

extremely laborious to write custom ML-code that derives automatically such properties for every

term-constructor that binds some atoms. Also the generality of the definitions for alpha-equivalence

will help us in the next sections.

4. SPECIFYING GENERAL BINDINGS

Our choice of syntax for specifications is influenced by the existing datatype package of Isabelle/HOL

[4] and by the syntax of the Ott-tool [22]. For us a specification of a term-calculus is a collection

of (possibly mutually recursive) type declarations, say tyα1, . . . , tyαn, and an associated collection

of binding functions, say bnα1, . . . , bnαm. The syntax in Nominal Isabelle for such specifications is

schematically as follows:

type

declaration part















nominal datatype tyα1 = . . .

and tyα2 = . . .
. . .

and tyαn = . . .

binding

function part







binder bnα1 and . . . and bnαm

where
. . .

(4.1)

2Note that this is not the case for infinite sets.
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Every type declaration tyα
1..n consists of a collection of term-constructors, each of which comes with

a list of labelled types that stand for the types of the arguments of the term-constructor. For example

a term-constructor Cα might be specified with

Cα label1::ty
′

1
. . . labell::ty

′

l binding clauses

whereby some of the ty′
1..l (or their components) can be contained in the collection of tyα

1..n declared

in (4.1). In this case we will call the corresponding argument a recursive argument of Cα. The types

of such recursive arguments need to satisfy a ‘positivity’ restriction, which ensures that the type has

a set-theoretic semantics (see [4]). If the types are polymorphic, we require the type variables to

stand for types that are finitely supported and over which a permutation operation is defined. The

labels label1..l annotated on the types are optional. Their purpose is to be used in the (possibly

empty) list of binding clauses, which indicate the binders and their scope in a term-constructor.

They come in three modes:

binds binders in bodies

binds (set) binders in bodies

binds (set+) binders in bodies

The first mode is for binding lists of atoms (the order of bound atoms matters); the second is for

sets of binders (the order does not matter, but the cardinality does) and the last is for sets of binders

(with vacuous binders preserving alpha-equivalence). As indicated, the labels in the ‘in-part’ of a

binding clause will be called bodies; the ‘binds-part’ will be called binders. In contrast to Ott, we

allow multiple labels in binders and bodies. For example we allow binding clauses of the form:

Foo1 x::name y::name t::trm s::trm binds x y in t s

Foo2 x::name y::name t::trm s::trm binds x y in t, binds x y in s

Similarly for the other binding modes. Interestingly, in case of binds (set) and binds (set+) the bind-

ing clauses above will make a difference to the semantics of the specifications (the corresponding

alpha-equivalence will differ). We will show this later with an example.
There are also some restrictions we need to impose on our binding clauses in comparison to

Ott. The main idea behind these restrictions is that we obtain a notion of alpha-equivalence where it

is ensured that within a given scope an atom occurrence cannot be both bound and free at the same

time. The first restriction is that a body can only occur in one binding clause of a term constructor.

So for example

Foo x::name y::name t::trm binds x in t, binds y in t

is not allowed. This ensures that the bound atoms of a body cannot be free at the same time by

specifying an alternative binder for the same body.
For binders we distinguish between shallow and deep binders. Shallow binders are just labels.

The restriction we need to impose on them is that in case of binds (set) and binds (set+) the labels

must either refer to atom types or to sets of atom types; in case of binds the labels must refer to atom

types or to lists of atom types. Two examples for the use of shallow binders are the specification

of lambda-terms, where a single name is bound, and type-schemes, where a finite set of names is

bound:
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nominal datatype lam =
Var name

| App lam lam

| Lam x::name t::lam binds x in t

nominal datatype ty =
TVar name

| TFun ty ty

and tsc =
TAll xs::(name fset) T::ty binds (set+) xs in T

In these specifications name refers to a (concrete) atom type, and fset to the type of finite sets. Note

that for Lam it does not matter which binding mode we use. The reason is that we bind only a single

name, in which case all three binding modes coincide. However, having binds (set) or just binds

in the second case makes a difference to the semantics of the specification (which we will define in

the next section).
A deep binder uses an auxiliary binding function that ‘picks’ out the atoms in one argument of

the term-constructor, which can be bound in other arguments and also in the same argument (we

will call such binders recursive, see below). The binding functions are expected to return either a set

of atoms (for binds (set) and binds (set+)) or a list of atoms (for binds). They need to be defined

by recursion over the corresponding type; the equations must be given in the binding function part

of the scheme shown in (4.1). For example a term-calculus containing Lets with tuple patterns may

be specified as:

nominal datatype trm =
Var name

| App trm trm

| Lam x::name t::trm binds x in t

| Let pat p::pat trm t::trm binds bn(p) in t

and pat =
PVar name

| PTup pat pat

binder bn::pat ⇒ atom list

where bn(PVar x) = [atom x]
| bn(PTup p1 p2) = bn(p1) @ bn(p2)

(4.2)

In this specification the function bn determines which atoms of the pattern p (fifth line) are bound

in the argument t. Note that in the second-last bn-clause the function atom coerces a name into the

generic atom type of Nominal Isabelle [9]. This allows us to treat binders of different atom type

uniformly.
For deep binders we allow binding clauses such as

Bar p::pat t::trm binds bn(p) in p t

where the argument of the deep binder also occurs in the body. We call such binders recursive.

To see the purpose of such recursive binders, compare ‘plain’ Lets and Let recs in the following

specification:
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nominal datatype trm =
. . .

| Let as::assn t::trm binds bn(as) in t

| Let rec as::assn t::trm binds bn(as) in as t

and assn =
ANil

| ACons name trm assn

binder bn::assn ⇒ atom list

where bn(ANil) = []
| bn(ACons a t as) = [atom a] @ bn(as)

(4.3)

The difference is that with Let we only want to bind the atoms bn(as) in the term t, but with Let rec

we also want to bind the atoms inside the assignment. This difference has consequences for the

associated notions of free-atoms and alpha-equivalence.
To make sure that atoms bound by deep binders cannot be free at the same time, we cannot have

more than one binding function for a deep binder. Consequently we exclude specifications such as

Baz1 p::pat t::trm binds bn1(p) bn2(p) in p t

Baz2 p::pat t1::trm t2::trm binds bn1(p) in p t1, binds bn2(p) in p t2

Otherwise it is possible that bn1 and bn2 pick out different atoms to become bound, respectively be

free, in p.3

We also need to restrict the form of the binding functions in order to ensure the bn-functions

can be defined for alpha-equated terms. The main restriction is that we cannot return an atom in

a binding function that is also bound in the corresponding term-constructor. Consider again the

specification for trm and a contrived version for assignments assn:

nominal datatype trm = . . .

and assn =
ANil ′

| ACons ′ x::name y::name t::trm assn binds y in t

binder bn::assn ⇒ atom list

where bn(ANil ′) = []
| bn(ACons ′ x y t as) = [atom x] @ bn(as)

(4.4)

In this example the term constructor ACons ′ has four arguments with a binding clause involving

two of them. This constructor is also used in the definition of the binding function. The restriction

we have to impose is that the binding function can only return free atoms, that is the ones that are

not mentioned in a binding clause. Therefore y cannot be used in the binding function bn (since

it is bound in ACons ′ by the binding clause), but x can (since it is a free atom). This restriction is

sufficient for lifting the binding function to alpha-equated terms. If we would permit bn to return y,

then it would not be respectful and therefore cannot be lifted to alpha-equated lambda-terms.
In the version of Nominal Isabelle described here, we also adopted the restriction from the Ott-

tool that binding functions can only return: the empty set or empty list (as in case ANil ′), a singleton

set or singleton list containing an atom (case PVar in (4.2)), or unions of atom sets or appended

3Since the Ott-tool does not derive a reasoning infrastructure for alpha-equated terms with deep binders, it can permit

such specifications.
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atom lists (case ACons ′). This restriction will simplify some automatic definitions and proofs later

on.
To sum up this section, we introduced nominal datatype specifications, which are like standard

datatype specifications in Isabelle/HOL but extended with binding clauses and specifications for

binding functions. Each constructor argument in our specification can also have an optional label.

These labels are used in the binding clauses of a constructor; there can be several binding clauses

for each constructor, but bodies of binding clauses can only occur in a single one. Binding clauses

come in three modes: binds, binds (set) and binds (set+). Binders fall into two categories: shallow

binders and deep binders. Shallow binders can occur in more than one binding clause and only have

to respect the binding mode (i.e. be of the right type). Deep binders can also occur in more than

one binding clause, unless they are recursive in which case they can only occur once. Each of the

deep binders can only have a single binding function. Binding functions are defined by recursion

over a nominal datatype. They can return the empty set, singleton atoms and unions of sets of atoms

(for binding modes binds (set) and binds (set+)), and the empty list, singleton atoms and appended

lists of atoms (for mode bind). However, they can only return atoms that are not mentioned in any

binding clause.
In order to simplify our definitions of free atoms and alpha-equivalence we define next, we

shall assume specifications of term-calculi are implicitly completed. By this we mean that for every

argument of a term-constructor that is not already part of a binding clause given by the user, we add

implicitly a special empty binding clause, written binds ∅ in labels. In case of the lambda-terms,

the completion produces

nominal datatype lam =

Var x::name binds ∅ in x

| App t1::lam t2::lam binds ∅ in t1 t2
| Lam x::name t::lam binds x in t

The point of completion is that we can make definitions over the binding clauses and be sure to have

captured all arguments of a term constructor.

5. ALPHA-EQUIVALENCE AND FREE ATOMS

Having dealt with all syntax matters, the problem now is how we can turn specifications into actual

type definitions in Isabelle/HOL and then establish a reasoning infrastructure for them. As Pot-

tier and Cheney pointed out [7, 19], just re-arranging the arguments of term-constructors so that

binders and their bodies are next to each other will result in inadequate representations in cases

like Let x1 = t1. . . xn = tn in s. Therefore we will first extract ‘raw’ datatype definitions from the

specification and then define explicitly an alpha-equivalence relation over them. We subsequently

construct the quotient of the datatypes according to our alpha-equivalence.
The ‘raw’ datatype definition can be obtained by stripping off the binding clauses and the labels

from the types given by the user. We also have to invent new names for the types tyα and the term-

constructors Cα. In our implementation we just use the affix “ raw”. But for the purpose of this

paper, we use the superscript α to indicate that a notion is given for alpha-equivalence classes and

leave it out for the corresponding notion given on the raw level. So for example we have tyα / ty and

Cα / C where ty is the type used in the quotient construction for tyα and C is the term-constructor

of the raw type ty, respectively Cα is the corresponding term-constructor of tyα.
The resulting datatype definition is legal in Isabelle/HOL provided the datatypes are non-empty

and the types in the constructors only occur in positive position (see [4] for an in-depth description of



GENRAL BINDINGS 17

the datatype package in Isabelle/HOL). We subsequently define each of the user-specified binding

functions bn1..m by recursion over the corresponding raw datatype. We also define permutation

operations by recursion so that for each term constructor C we have that

π · (C z1 . . . zn) = C (π · z1) . . . (π · zn) (5.1)

We will need this operation later when we define the notion of alpha-equivalence.
The first non-trivial step we have to perform is the generation of free-atom functions from the

specifications.4 For the raw types ty1..n we define the free-atom functions

fa ty1..n (5.2)

by recursion. We define these functions together with auxiliary free-atom functions for the binding

functions. Given raw binding functions bn1..m we define

fa bn1..m.

The reason for this setup is that in a deep binder not all atoms have to be bound, as we saw in (4.3)

with the example of ‘plain’ Lets. We need therefore functions that calculate those free atoms in deep

binders.
While the idea behind these free-atom functions is simple (they just collect all atoms that are

not bound), because of our rather complicated binding mechanisms their definitions are somewhat

involved. Given a raw term-constructor C of type ty and some associated binding clauses bc1. . . bck,

the result of fa ty (C z1 . . . zn) will be the union fa(bc1) ∪ . . . ∪ fa(bck) where we will define below

what fa for a binding clause means. We only show the details for the mode binds (set) (the other

modes are similar). Suppose a binding clause bci is of the form

binds (set) b1. . . bp in d1. . . dq

in which the body-labels d1..q refer to types ty1..q, and the binders b1..p either refer to labels of atom

types (in case of shallow binders) or to binding functions taking a single label as argument (in case

of deep binders). Assuming D stands for the set of free atoms of the bodies, B for the set of binding

atoms in the binders and B ′ for the set of free atoms in non-recursive deep binders, then the free

atoms of the binding clause bci are

fa(bci)
def
= (D − B) ∪ B ′. (5.3)

The set D is formally defined as

D
def
= fa ty1 d1 ∪ ... ∪ fa tyq dq

4Admittedly, the details of our definitions will be somewhat involved. However they are still conceptually simple in

comparison with the ‘positional’ approach taken in Ott [22, Pages 88–95], which uses the notions of occurrences and

partial equivalence relations over sets of occurrences.
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where in case di refers to one of the raw types ty1..n from the specification, the function fa tyi is the

corresponding free-atom function we are defining by recursion; otherwise we set fa tyi
def
= supp.

The reason for the latter is that tyi is not a type that is part of the specification, and we assume

supp is the generic function that characterises the free variables of a type (in fact in the next section

we will show that the free-variable functions we define here, are equal to the support once lifted to

alpha-equivalence classes).
In order to formally define the set B we use the following auxiliary bn-functions for atom types

to which shallow binders may refer

bnatom a
def
= {atom a}

bnatom set as
def
= atoms as

bnatom list as
def
= atoms (set as)

(5.4)

Like the function atom, the function atoms coerces a set of atoms to a set of the generic atom type.

It is defined as atoms as
def
= {atom a | a ∈ as}. The set B in (5.3) is then formally defined as

B
def
= bn ty1 b1 ∪ ... ∪ bn typ bp (5.5)

where we use the auxiliary binding functions from (5.4) for shallow binders (that means when tyi is

of type atom, atom set or atom list).
The set B ′ in (5.3) collects all free atoms in non-recursive deep binders. Let us assume these

binders in the binding clause bci are

bn1 l1, . . . , bnr lr

with l1..r ⊆ b1..p and none of the l1..r being among the bodies d1..q. The set B ′ is defined as

B ′
def
= fa bn1 l1 ∪ ... ∪ fa bnr lr (5.6)

This completes all clauses for the free-atom functions fa ty1..n.
Note that for non-recursive deep binders, we have to add in (5.3) the set of atoms that are left un-

bound by the binding functions bn1..m. We used for the definition of this set the functions fa bn1..m.

The definition for those functions needs to be extracted from the clauses the user provided for bn1..m
Assume the user specified a bn-clause of the form

bn (C z1 . . . zs) = rhs

where the z1..s are of types ty1..s. For each of the arguments we calculate the free atoms as follows:

• fa tyi zi provided zi does not occur in rhs

(that means nothing is bound in zi by the binding function),

• fa bni zi provided zi occurs in rhs with the recursive call bni zi
(that means whatever is ‘left over’ from the bn-function is free)

• ∅ provided zi occurs in rhs, but without a recursive call

(that means zi is supposed to become bound by the binding function)
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For defining fa bn (C z1 . . . zn) we just union up all these sets.
To see how these definitions work in practice, let us reconsider the term-constructors Let and

Let rec shown in (4.3) together with the term-constructors for assignments ANil and ACons. Since

there is a binding function defined for assignments, we have three free-atom functions, namely fatrm,

faassn and fabn as follows:

fatrm (Let as t)
def
= (fatrm t − set (bn as)) ∪ fabn as

fatrm (Let rec as t)
def
= (faassn as ∪ fatrm t) − set (bn as)

faassn (ANil)
def
= ∅

faassn (ACons a t as)
def
= (supp a) ∪ (fatrm t) ∪ (faassn as)

fabn (ANil)
def
= ∅

fabn (ACons a t as)
def
= (fatrm t) ∪ (fabn as)

Recall that ANil and ACons have no binding clause in the specification. The corresponding free-

atom function faassn therefore returns all free atoms of an assignment (in case of ACons, they are

given in terms of supp, fatrm and faassn). The binding only takes place in Let and Let rec. In case of

Let, the binding clause specifies that all atoms given by set (bn as) have to be bound in t. Therefore

we have to subtract set (bn as) from fatrm t. However, we also need to add all atoms that are free

in as. This is in contrast with Let rec where we have a recursive binder to bind all occurrences of

the atoms in set (bn as) also inside as. Therefore we have to subtract set (bn as) from both fatrm t

and faassn as. Like the function bn, the function fabn traverses the list of assignments, but instead

returns the free atoms, which means in this example the free atoms in the argument t.
An interesting point in this example is that a ‘naked’ assignment (ANil or ACons) does not bind

any atoms, even if the binding function is specified over assignments. Only in the context of a Let

or Let rec, where the binding clauses are given, will some atoms actually become bound. This is a

phenomenon that has also been pointed out in [22]. For us this observation is crucial, because we

would not be able to lift the bn-functions to alpha-equated terms if they act on atoms that are bound.

In that case, these functions would not respect alpha-equivalence.
Having the free-atom functions at our disposal, we can next define the alpha-equivalence rela-

tions for the raw types ty1..n. We write them as

≈ty1..n.

Like with the free-atom functions, we also need to define auxiliary alpha-equivalence relations

≈bn1..m

for the binding functions bn1..m, To simplify our definitions we will use the following abbreviations

for compound equivalence relations and compound free-atom functions acting on tuples.

(x1,. . . , xn) (R1,. . . , Rn) (y1,. . . , yn)
def
= x1 R1 y1 ∧ . . . ∧ xn Rn yn

(fa1,. . . , fan) (x1,. . . , xn)
def
= fa1 x1 ∪ . . . ∪ fan xn
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The alpha-equivalence relations are defined as inductive predicates having a single clause for

each term-constructor. Assuming a term-constructor C is of type ty and has the binding clauses

bc1..k, then the alpha-equivalence clause has the form

prems(bc1) . . . prems(bck)

C z1 . . . zn ≈ty C z′1 . . . z′n (5.7)

The task below is to specify what the premises corresponding to a binding clause are. To understand

better what the general pattern is, let us first treat the special instance where bci is the empty binding

clause of the form

binds (set) ∅ in d1. . . dq .

In this binding clause no atom is bound and we only have to ‘alpha-relate’ the bodies. For this we

build first the tuples D
def
= (d1,. . . , dq) and D ′

def
= (d′1,. . . , d′q) whereby the labels d1..q refer to some

of the arguments z1..n and respectively d′1..q to some of the z′1..n in (5.7). In order to relate two such

tuples we define the compound alpha-equivalence relation R as follows

R
def
= (R1,. . . , Rq) (5.8)

with Ri being ≈tyi if the corresponding labels di and d′i refer to a recursive argument of C and

have type tyi; otherwise we take Ri to be the equality =. Again the latter is because tyi is then

not part of the specified types and alpha-equivalence of any previously defined type is supposed to

coincide with equality. This lets us now define the premise for an empty binding clause succinctly

as prems(bci)
def
= D R D ′, which can be unfolded to the series of premises

d1 R1 d′1 . . . dq Rq d′q.

We will use the unfolded version in the examples below.
Now suppose the binding clause bci is of the general form

binds (set) b1. . . bp in d1. . . dq . (5.9)

In this case we define a premise P using the relation ≈R,fa
set given in Section 3 (similarly ≈R,fa

set+ and

≈R,fa
list for the other binding modes). As above, we first build the tuples D and D ′ for the bodies

d1..q, and the corresponding compound alpha-relation R (shown in (5.8)). For ≈R,fa
set we also need a

compound free-atom function for the bodies defined as

fa
def
= (fa ty1,. . . , fa tyq)

with the assumption that the d1..q refer to arguments of types ty1..q. The last ingredient we need are

the sets of atoms bound in the bodies. For this we take

B
def
= bn ty1 b1 ∪ . . . ∪ bn typ bp .
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Similarly for B ′ using the labels b′1..p. This lets us formally define the premise P for a non-empty

binding clause as:

P
def
= (B, D) ≈ set

R, fa (B ′, D ′) .

This premise accounts for alpha-equivalence of the bodies of the binding clause. However, in case

the binders have non-recursive deep binders, this premise is not enough: we also have to ‘propagate’

alpha-equivalence inside the structure of these binders. An example is Let where we have to make

sure the right-hand sides of assignments are alpha-equivalent. For this we use relations ≈bn1..m
(which we will define shortly). Let us assume the non-recursive deep binders in bci are

bn1 l1, . . . , bnr lr.

The tuple L consists then of all these binders (l1,. . . ,lr) (similarly L ′) and the compound equivalence

relation R ′ is (≈bn1,. . . ,≈bnr). All premises for bci are then given by

prems(bci)
def
= P ∧ L R ′ L ′

The auxiliary alpha-equivalence relations ≈bn1..m in R ′are defined as follows: assuming a bn-clause

is of the form

bn (C z1 . . . zs) = rhs

where the z1..s are of types ty1..s, then the corresponding alpha-equivalence clause for ≈bn has the

form

z1 R1 z′1 . . . zs Rs z′s

C z1 . . . zs ≈bn C z′1 . . . z′s

In this clause the relations R1..s are given by

• zi ≈ty z′i provided zi does not occur in rhs and is a recursive argument of C,

• zi = z′i provided zi does not occur in rhs and is a non-recursive argument of C,

• zi ≈bni z′i provided zi occurs in rhs with the recursive call bni xi and

• True provided zi occurs in rhs but without a recursive call.

This completes the definition of alpha-equivalence. As a sanity check, we can show that the premises

of empty binding clauses are a special case of the clauses for non-empty ones (we just have to unfold

the definition of ≈R,fa
set and take 0 for the existentially quantified permutation).

Again let us take a look at a concrete example for these definitions. For the specification shown

in (4.3) we have three relations ≈trm, ≈assn and ≈bn with the following rules:
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(bn as, t) ≈ list
≈trm, fatrm (bn as ′, t ′) as ≈bn as ′

Let as t ≈trm Let as ′ t ′

(bn as, (as, t)) ≈ list
(≈assn, ≈trm), (faassn, fatrm) (bn as ′, (as, t′))

Let rec as t ≈trm Let rec as ′ t ′

ANil ≈assn ANil

a = a ′ t ≈trm t ′ as ≈assn as ′

ACons a t as ≈assn ACons a ′ t ′ as

ANil ≈bn ANil

t ≈trm t ′ as ≈bn as ′

ACons a t as ≈bn ACons a ′ t ′ as

(5.10)

Notice the difference between ≈assn and ≈bn: the latter only ‘tracks’ alpha-equivalence of the com-

ponents in an assignment that are not bound. This is needed in the clause for Let (which has a

non-recursive binder). The underlying reason is that the terms inside an assignment are not meant

to be ‘under’ the binder. Such a premise is not needed in Let rec, because there all components of

an assignment are ‘under’ the binder. Note also that in case of more than one body (that is in the

Let rec-case above) we need to parametrise the relation ≈list with a compound equivalence relation

and a compound free-atom function. This is because the corresponding binding clause specifies a

binder with two bodies, namely as and t.

6. ESTABLISHING THE REASONING INFRASTRUCTURE

Having made all necessary definitions for raw terms, we can start with establishing the reasoning

infrastructure for the alpha-equated types tyα1..n, that is the types the user originally specified. We

give in this section and the next the proofs we need for establishing this infrastructure. One point of

our work is that we have completely automated these proofs in Isabelle/HOL.
First we establish that the free-variable functions, the binding functions and the alpha-equiva-

lences are equivariant.

Lemma 6.1.

(i) The functions fa ty1..n, fa bn1..m and bn1..m are equivariant.

(ii) The relations ≈ty1..n and ≈bn1..m are equivariant.

Proof. The function package of Isabelle/HOL allows us to prove the first part by mutual induction

over the definitions of the functions.5 The second is by a straightforward induction over the rules of

≈ty1..n and ≈bn1..m using the first part.

Next we establish that the alpha-equivalence relations defined in the previous section are indeed

equivalence relations.

Lemma 6.2. The relations ≈ty1..n and ≈bn1..m are equivalence relations.

Proof. The proofs are by induction. The non-trivial cases involve premises built up by ≈set, ≈set+

and ≈list. They can be dealt with as in Lemma 3.4. However, the transitivity case needs in addition

the fact that the relations are equivariant.

5We have that the free-atom functions are terminating. From this the function package derives an induction principle [11].
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We can feed the last lemma into our quotient package and obtain new types tyα
1..n representing

alpha-equated terms of types ty1..n. We also obtain definitions for the term-constructors Cα
1..k from

the raw term-constructors C1..k, and similar definitions for the free-atom functions fa tyα
1..n and

fa bnα
1..m as well as the binding functions bnα

1..m. However, these definitions are not really useful

to the user, since they are given in terms of the isomorphisms we obtained by creating new types in

Isabelle/HOL (recall the picture shown in the Introduction).
The first useful property for the user is the fact that distinct term-constructors are not equal, that

is the property

Cα x1 . . . xr 6= Dα y1 . . . ys (6.1)

whenever Cα 6= Dα. In order to derive this property, we use the definition of alpha-equivalence and

establish that

C x1 . . . xr 6≈ty D y1 . . . ys (6.2)

holds for the corresponding raw term-constructors. In order to deduce (6.1) from (6.2), our quo-

tient package needs to know that the raw term-constructors C and D are respectful w.r.t. the alpha-

equivalence relations (see [8]). Given, for example, C is of type ty with argument types ty1..r,

respectfulness amounts to showing that

C x1 . . . xr ≈ty C x′1 . . . x′r

holds under the assumptions xi ≈tyi x′i whenever xi and x′i are recursive arguments of C, and xi = x′i
whenever they are non-recursive arguments (similarly for D). For this we have to show by induction

over the definitions of alpha-equivalences the following auxiliary implications

x ≈tyi x ′ implies fa tyi x = fa tyi x ′

x ≈tyl x ′ implies fa bnj x = fa bnj x ′

x ≈tyl x ′ implies bnj x = bnj x ′

x ≈tyl x ′ implies x ≈bnj x ′

(6.3)

whereby tyl is the type over which bnj is defined. Whereas the first, second and last implication are

true by how we stated our definitions, the third only holds because of our restriction imposed on the

form of the binding functions—namely not to return any bound atoms. In Ott, in contrast, the user

may define bn1..m so that they return bound atoms and in this case the third implication is not true.

A result is that in general the lifting of the corresponding binding functions in Ott to alpha-equated

terms is impossible. Having established respectfulness for the raw term-constructors, the quotient

package is able to automatically deduce (6.1) from (6.2).
Next we can lift the permutation operations defined in (5.1). In order to make this lifting to go

through, we have to show that the permutation operations are respectful. This amounts to showing

that the alpha-equivalence relations are equivariant, which we already established in Lemma 6.2.

As a result we can add the equations

π · (C
α x1 . . . xr) = Cα (π ·x1) . . . (π ·xr) (6.4)
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to our infrastructure. In a similar fashion we can lift the defining equations of the free-atom functions

fa tyα1..n and fa bnα1..m as well as of the binding functions bnα1..m and size functions size tyα1..n. The

latter are defined automatically for the raw types ty1..n by the datatype package of Isabelle/HOL.
We also need to lift the properties that characterise when two raw terms of the form

C x1 . . . xr ≈ty C x′1 . . . x′r

are alpha-equivalent. This gives us conditions when the corresponding alpha-equated terms are

equal, namely

Cα x1 . . . xr = Cα x′1 . . . x′r.

We call these conditions quasi-injectivity. They correspond to the premises in our alpha-equivalence

relations, except that the relations ≈ty1..n are all replaced by equality (and similarly the free-atom

and binding functions are replaced by their lifted counterparts). Recall the alpha-equivalence rules

for Let and Let rec shown in (5.10). For Letα and Let recα we have

(bnα as, t) ≈ list
=, faα

trm (bn as ′, t ′) as ≈α
bn as ′

Letα as t = Letα as ′ t ′

(bnα as, (as, t)) ≈ list
(=, =), (faα

assn, faα

trm) (bnα as ′, (as, t′))

Let recα as t = Let recα as ′ t ′

(6.5)

We can also add to our infrastructure cases lemmas and a (mutual) induction principle for the

types tyα1..n. The cases lemmas allow the user to deduce a property P by exhaustively analysing

how an element of a type, say tyαi, can be constructed (that means one case for each of the term-

constructors in tyαi ). The lifted cases lemma for a type tyαi looks as follows

∀ x1. . . xk. y = Cα
1 x1 . . . xk ⇒ P

...

∀ x1. . . xl. y = Cα
m x1 . . . xl ⇒ P

P (6.6)

where y is a variable of type tyαi and P is the property that is established by the case analysis.

Similarly, we have a (mutual) induction principle for the types tyα1..n, which is of the form

∀ x1. . . xk. Pi xi ∧ . . . ∧ Pj xj ⇒ P (Cα
1 x1 . . . xk)

...

∀ x1. . . xl. Pr xr ∧ . . . ∧ Ps xs ⇒ P (Cα
m x1 . . . xl)

P1 y1 ∧ . . . ∧ Pn yn (6.7)

whereby the P1..n are the properties established by the induction, and the y1..n are of type tyα1..n.

Note that for the term constructor Cα
1

the induction principle has a hypothesis of the form

∀ x1. . . xk. Pi xi ∧ . . . ∧ Pj xj ⇒ P (Cα
1 x1 . . . xk)
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in which the xi..j ⊆ x1..k are the recursive arguments of this term constructor (similarly for the other

term-constructors).
Recall the lambda-calculus with Let-patterns shown in (4.2). The cases lemmas and the induc-

tion principle shown in (6.6) and (6.7) boil down in that example to the following three inference

rules:

cases lemmas:

∀ x. y = Varα x ⇒ Ptrm

∀ x1 x2. y = Appα x1 x2 ⇒ Ptrm

∀ x1 x2. y = Lamα x1 x2 ⇒ Ptrm

∀ x1 x2 x3. y = Let patα x1 x2 x3 ⇒ Ptrm

Ptrm

∀ x. y = PVarα x ⇒ Ppat

∀ x1 x2. y = PTupα x1 x2 ⇒ Ppat

Ppat

induction principle:

∀ x. Ptrm (Varα x)
∀ x1 x2. Ptrm x1 ∧ Ptrm x2 ⇒ Ptrm (Appα x1 x2)
∀ x1 x2. Ptrm x2 ⇒ Ptrm (Lamα x1 x2)
∀ x1 x2 x3. Ppat x1 ∧ Ptrm x2 ∧ Ptrm x3 ⇒ Ptrm (Let patα x1 x2 x3)
∀ x. Ppat (PVarα x)
∀ x1 x2. Ppat x1 ∧ Ppat x2 ⇒ Ppat (PTupα x1 x2)

Ptrm y1 ∧ Ppat y2

(6.8)

By working now completely on the alpha-equated level, we can first show using (6.4) and

Property 2.1 that the support of each term constructor is included in the support of its arguments,

namely

(supp x1 ∪ . . . ∪ supp xr) supports (Cα x1 . . . xr)

This allows us to prove using the induction principle for tyα1..n that every element of type tyα1..n
is finitely supported (using Proposition 2.3(i)). Similarly, we can establish by induction that the

free-atom functions and binding functions are equivariant, namely

π · (fa tyαi x) = fa tyαi (π ·x)
π · (fa bnαj x) = fa bnαj (π ·x)

π · (bnαj x) = bnαj (π ·x)

Lastly, we can show that the support of elements in tyα1..n is the same as the free-atom functions

fa tyα1..n. This fact is important in the nominal setting where the general theory is formulated in

terms of support and freshness, but also provides evidence that our notions of free-atoms and alpha-

equivalence ‘match up’ correctly.

Theorem 6.3. For x1..n with type tyα1..n, we have supp xi = fa tyαi xi.

Proof. The proof is by induction on x1..n. In each case we unfold the definition of supp, move

the swapping inside the term-constructors and then use the quasi-injectivity lemmas in order to

complete the proof. For the abstraction cases we use then the facts derived in Theorem 3.5, for

which we have to know that every body of an abstraction is finitely supported. This, we have proved

earlier.
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Consequently, we can replace the free-atom functions by supp in our quasi-injection lemmas. In the

examples shown in (6.5), for instance, we obtain for Letα and Let recα

(bnα as, t) ≈ list
=, supp (bnα as ′, t ′) as ≈α

bn as ′

Letα as t = Letα as ′ t ′

(bnα as, (as, t)) ≈ list
(=, =), (supp, supp) (bnα as ′, (as, t′))

Let recα as t = Let recα as ′ t ′

Taking into account that the compound equivalence relation (=, =) and the compound free-atom

function (supp, supp) are by definition equal to = and supp, respectively, the above rules simplify

further to

[bnα as]list.t = [bnα as ′]list.t
′ as ≈α

bn as ′

Letα as t = Letα as ′ t ′

[bnα as]list.(as, t) = [bnα as ′]list.(as, t′)

Let recα as t = Let recα as ′ t ′

which means we can characterise equality between term-constructors (on the alpha-equated level)

in terms of equality between the abstractions defined in Section 3. From this we can deduce the

support for Letα and Let recα, namely

supp (Letα as t) = (supp t − set (bnα as)) ∪ faαbn as

supp (Let recα as t) = (supp t ∪ supp as) − set (bnα as)

using the support of abstractions derived in Theorem 3.5.
To sum up this section, we have established a reasoning infrastructure for the types tyα1..n by

first lifting definitions from the ‘raw’ level to the quotient level and then by proving facts about

these lifted definitions. All necessary proofs are generated automatically by custom ML-code.

7. STRONG INDUCTION PRINCIPLES

In the previous section we derived induction principles for alpha-equated terms (see (6.7) for the

general form and (6.8) for an example). This was done by lifting the corresponding inductions

principles for ‘raw’ terms. We already employed these induction principles for deriving several facts

about alpha-equated terms, including the property that the free-atom functions and the notion of

support coincide. Still, we call these induction principles weak, because for a term-constructor, say

Cα x1. . . xr , the induction hypothesis requires us to establish (under some assumptions) a property

P (Cα x1. . . xr) for all x1..r. The problem with this is that in the presence of binders we cannot make

any assumptions about the atoms that are bound—for example assuming the variable convention.

One obvious way around this problem is to rename bound atoms. Unfortunately, this leads to very

clunky proofs and makes formalisations grievous experiences (especially in the context of multiple

bound atoms).
For the older versions of Nominal Isabelle we described in [26] a method for automatically

strengthening weak induction principles. These stronger induction principles allow the user to make

additional assumptions about bound atoms. The advantage of these assumptions is that they make in

most cases any renaming of bound atoms unnecessary. To explain how the strengthening works, we
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use as running example the lambda-calculus with Let-patterns shown in (4.2). Its weak induction

principle is given in (6.8). The stronger induction principle is as follows:

∀ x c. Ptrm c (Varα x)
∀ x1 x2 c. (∀ d. Ptrm d x1) ∧ (∀ d. Ptrm d x2) ⇒ Ptrm c (Appα x1 x2)
∀ x1 x2 c. atom x1 # c ∧ (∀ d. Ptrm d x2) ⇒ Ptrm c (Lamα x1 x2)
∀ x1 x2 x3 c. (set (bnα x1)) #

∗ c ∧
(∀ d. Ppat d x1) ∧ (∀ d. Ptrm d x2) ∧ (∀ d. Ptrm d x3) ⇒ Ptrm c (Let patα x1 x2 x3)

∀ x c. Ppat c (PVarα x)
∀ x1 x2 c. (∀ d. Ppat d x1) ∧ (∀ d. Ppat d x2) ⇒ Ppat c (PTupα x1 x2)

Ptrm c y1 ∧ Ppat c y2
(7.1)

Notice that instead of establishing two properties of the form Ptrm y1 ∧ Ppat y2, as the weak one

does, the stronger induction principle establishes the properties of the form Ptrm c y1 ∧ Ppat c y2 in

which the additional parameter c is assumed to be of finite support. The purpose of c is to ‘control’

which freshness assumptions the binders should satisfy in the Lamα and Let patα cases: for Lamα

we can assume the bound atom x1 is fresh for c (third line); for Let patα we can assume all bound

atoms from an assignment are fresh for c (fourth line). In order to see how an instantiation for c

in the conclusion ‘controls’ the premises, one has to take into account that Isabelle/HOL is a typed

logic. That means if c is instantiated with, for example, a pair, then this type-constraint will be

propagated to the premises. The main point is that if c is instantiated appropriately, then the user

can mimic the usual convenient ‘pencil-and-paper’ reasoning employing the variable convention

about bound and free variables being distinct [26].
In what follows we will show that the weak induction principle in (6.8) implies the strong

one (7.1). This fact was established for single binders in [26] by some quite involved, nevertheless

automated, induction proof. In this paper we simplify the proof by leveraging the automated proving

tools from the function package of Isabelle/HOL [11]. The reasoning principle behind these tools is

well-founded induction. To use them in our setting, we have to discharge two proof obligations: one

is that we have well-founded measures (one for each type tyα
1..n) that decrease in every induction

step and the other is that we have covered all cases in the induction principle. Once these two proof

obligations are discharged, the reasoning infrastructure of the function package will automatically

derive the stronger induction principle. This way of establishing the stronger induction principle is

considerably simpler than the earlier work presented in [26].
As measures we can use the size functions size tyα

1..n, which we lifted in the previous section

and which are all well-founded. It is straightforward to establish that the sizes decrease in every

induction step. What is left to show is that we covered all cases. To do so, we have to derive

stronger cases lemmas, which look in our running example as follows:

∀ x. y = Varα x ⇒ Ptrm

∀ x1 x2. y = Appα x1 x2 ⇒ Ptrm

∀ x1 x2. atom x1 # c ∧ y = Lamα x1 x2 ⇒ Ptrm

∀ x1 x2 x3. set (bnα x1) #
∗ c ∧ y = Let patα x1 x2 x3 ⇒ Ptrm

Ptrm

∀ x. y = PVarα x ⇒ Ppat

∀ x1 x2. y = PTupα x1 x2 ⇒ Ppat

Ppat

They are stronger in the sense that they allow us to assume in the Lamα and Let patα cases that the

bound atoms avoid, or are fresh for, a context c (which is assumed to be finitely supported).
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These stronger cases lemmas can be derived from the ‘weak’ cases lemmas given in (6.8). This

is trivial in case of patterns (the one on the right-hand side) since the weak and strong cases lemma

coincide (there is no binding in patterns). Interesting are only the cases for Lamα and Let patα,

where we have some binders and therefore have an additional assumption about avoiding c. Let us

first establish the case for Lamα. By the weak cases lemma (6.8) we can assume that

y = Lamα x1 x2 (7.2)

holds, and need to establish Ptrm. The stronger cases lemma has the corresponding implication

∀ x1 x2. atom x1 # c ∧ y = Lamα x1 x2 ⇒ Ptrm (7.3)

which we must use in order to infer Ptrm. Clearly, we cannot use this implication directly, because

we have no information whether or not x1 is fresh for c. However, we can use Properties 2.4 and 2.5

to rename x1. We know by Theorem 6.3 that {atom x1}#
∗ Lamα x1 x2 (since its support is supp x2

− {atom x1}). Property 2.5 provides us then with a permutation π, such that {atom (π · x1)} #∗ c

and supp (Lamα x1 x2) #
∗ π hold. By using Property 2.4, we can infer from the latter that

Lamα (π ·x1) (π ·x2) = Lamα x1 x2

holds. We can use this equation in the assumption (7.2), and hence use the implication (7.3) with

the renamed π ·x1 and π ·x2 for concluding this case.
The Let patα-case involving a deep binder is slightly more complicated. We have the assump-

tion

y = Let patα x1 x2 x3 (7.4)

and the implication from the stronger cases lemma

∀ x1 x2 x3. set (bnα x1) #
∗ c ∧ y = Let patα x1 x2 x3 ⇒ Ptrm (7.5)

The reason that this case is more complicated is that we cannot directly apply Property 2.5 for

obtaining a renaming permutation. Property 2.5 requires that the binders are fresh for the term in

which we want to perform the renaming. But this is not true in terms such as (using an informal

notation)

Let (x, y) := (x, y) in (x, y)

where x and y are bound in the term, but are also free in the right-hand side of the assignment. We

can, however, obtain such a renaming permutation, say π, for the abstraction [bnα x1]list.x3. As a

result we have set (bnα (π ·x1)) #
∗ c and [bnα (π · x1)]list.(π · x3) = [bnα x1]list.x3 (remember set

and bnα are equivariant). Now the quasi-injective property for Let patα states that

[bnα p]list. t2 = [bnα p ′]list. t′2 p ≈α
bn p′ t1 = t′1

Let patα p t1 t2 = Let patα p′t′1 t′2
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Since all atoms in a pattern are bound by Let patα, we can infer that (π ·x1) ≈
α
bn x1 holds for every

π. Therefore we have that

Let patα (π ·x1) x2 (π ·x3) = Let patα x1 x2 x3

Taking the left-hand side in the assumption shown in (7.4), we can use the implication (7.5) from

the stronger cases lemma to infer Ptrm, as needed.
The remaining difficulty is when a deep binder contains some atoms that are bound and some

that are free. An example is Letα in (4.3). In such cases (π·x1)≈
α
bn x1 does not hold in general. The

idea however is that π only renames atoms that become bound. In this way π does not affect ≈α
bn

(which only tracks alpha-equivalence of terms that are not under the binder). However, the problem

is that the permutation operation π · x1 applies to all atoms in x1. To avoid this we introduce an

auxiliary permutation operations, written ·bn , for deep binders that only permutes bound atoms

(or more precisely the atoms specified by the bn-functions) and leaves the other atoms unchanged.

Like the functions fa bn1..m, we can define these permutation operations over raw terms analysing

how the functions bn1..m are defined. Assuming the user specified a clause

bn (C x1 . . . xr) = rhs

we define π ·bn (C x1 . . . xr)
def
= C y1 . . . yr with yi determined as follows:

• yi
def
= xi provided xi does not occur in rhs

• yi
def
= π ·bn xi provided bn xi is in rhs

• yi
def
= π ·xi otherwise

Using again the quotient package we can lift the auxiliary permutation operations ·bn to alpha-

equated terms. Moreover we can prove the following two properties:

Lemma 7.1. Given a binding function bnα and auxiliary equivalence ≈α
bn then for all π

(i) π · (bnα x) = bnα (π ·αbn x) and

(ii) (π ·
α
bn x) ≈α

bn x.

Proof. By induction on x. The properties follow by unfolding of the definitions.

The first property states that a permutation applied to a binding function is equivalent to first per-

muting the binders and then calculating the bound atoms. The second states that ·
α
bn preserves

≈α
bn. The main point of the auxiliary permutation functions is that they allow us to rename just the

bound atoms in a term, without changing anything else.
Having the auxiliary permutation function in place, we can now solve all remaining cases. For

the Letα term-constructor, for example, we can by Property 2.5 obtain a π such that

(π · (set (bnα x1)) #
∗ c π · [bnα x1]list. x2 = [bnα x1]list. x2

hold. Using the first part of Lemma 7.1, we can simplify this to set (bnα (π ·αbn x1)) #
∗ c and

[bnα (π ·αbn x1)]list. (π ·x2) = [bnα x1]list. x2. Since (π ·
α
bn x1) ≈

α
bn x1 holds by the second part, we

can infer that
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Letα (π ·
α
bn x1) (π ·x2) = Letα x1 x2

holds. This allows us to use the implication from the strong cases lemma, and we are done.
Consequently, we can discharge all proof-obligations about having ‘covered all cases’. This

completes the proof establishing that the weak induction principles imply the strong induction prin-

ciples. These strong induction principles have already proved being very useful in practice, partic-

ularly for proving properties about capture-avoiding substitution [26].

8. RELATED WORK

To our knowledge the earliest usage of general binders in a theorem prover is described by Nara-

schewski and Nipkow [15] with a formalisation of the algorithm W. This formalisation implements

binding in type-schemes using a de-Bruijn indices representation. Since type-schemes in W contain

only a single place where variables are bound, different indices do not refer to different binders

(as in the usual de-Bruijn representation), but to different bound variables. A similar idea has

been recently explored for general binders by Charguéraud [5] in the locally nameless approach

to binding. There, de-Bruijn indices consist of two numbers, one referring to the place where a

variable is bound, and the other to which variable is bound. The reasoning infrastructure for both

representations of bindings comes for free in theorem provers like Isabelle/HOL and Coq, since the

corresponding term-calculi can be implemented as ‘normal’ datatypes. However, in both approaches

it seems difficult to achieve our fine-grained control over the ‘semantics’ of bindings (i.e. whether

the order of binders should matter, or vacuous binders should be taken into account). To do so, one

would require additional predicates that filter out unwanted terms. Our guess is that such predicates

result in rather intricate formal reasoning. We are not aware of any formalisation of a non-trivial

language that uses Charguéraud’s idea.
Another technique for representing binding is higher-order abstract syntax (HOAS), which for

example is implemented in the Twelf system [16]. This representation technique supports very

elegantly many aspects of single binding, and impressive work by Lee et al [12] has been done

that uses HOAS for mechanising the metatheory of SML. We are, however, not aware how multiple

binders of SML are represented in this work. Judging from the submitted Twelf-solution for the

POPLmark challenge, HOAS cannot easily deal with binding constructs where the number of bound

variables is not fixed. For example, in the second part of this challenge, Lets involve patterns that

bind multiple variables at once. In such situations, HOAS seems to have to resort to the iterated-

single-binders-approach with all the unwanted consequences when reasoning about the resulting

terms.
Two formalisations involving general binders have been performed in older versions of Nomi-

nal Isabelle (one about Psi-calculi and one about algorithm W [3, 29]). Both use the approach based

on iterated single binders. Our experience with the latter formalisation has been disappointing.

The major pain arose from the need to ‘unbind’ bound variables and the resulting formal reasoning

turned out to be rather unpleasant. In contrast, the unbinding can be done in one step with our

general binders described in this paper.
The most closely related work to the one presented here is the Ott-tool by Sewell et al [22]

and the Cαml language by Pottier [19]. Ott is a nifty front-end for creating LATEX documents from

specifications of term-calculi involving general binders. For a subset of the specifications Ott can

also generate theorem prover code using a ‘raw’ representation of terms, and in Coq also a locally

nameless representation. The developers of this tool have also put forward (on paper) a definition
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for alpha-equivalence and free variables for terms that can be specified in Ott. This definition is

rather different from ours, not using any nominal techniques. To our knowledge there is no concrete

mathematical result concerning this notion of alpha-equivalence and free variables. We have proved

that our definitions lead to alpha-equated terms, whose support is as expected (that means bound

atoms are removed from the support). We also showed that our specifications lift from ‘raw’ terms to

alpha-equivalence classes. For this we have established (automatically) that every term-constructor

and function defined for ‘raw’ terms is respectful w.r.t. alpha-equivalence.
Although we were heavily inspired by the syntax of Ott, its definition of alpha-equivalence

is unsuitable for our extension of Nominal Isabelle. First, it is far too complicated to be a basis

for automated proofs implemented on the ML-level of Isabelle/HOL. Second, it covers cases of

binders depending on other binders, which just do not make sense for our alpha-equated terms (the

corresponding fa-functions would not lift). Third, it allows empty types that have no meaning in

a HOL-based theorem prover. We also had to generalise slightly Ott’s binding clauses. In Ott one

specifies binding clauses with a single body; we allow more than one. We have to do this, because

this makes a difference for our notion of alpha-equivalence in case of binds (set) and binds (set+).

Consider the examples

Foo1 xs::name fset t::trm s::trm binds (set) xs in t s

Foo2 xs::name fset t::trm s::trm binds (set) xs in t, binds (set) xs in s

In the first term-constructor we have a single body that happens to be ‘spread’ over two arguments;

in the second term-constructor we have two independent bodies in which the same variables are

bound. As a result we have6

Foo1 {a, b} (a, b) (a, b) 6= Foo1 {a, b} (a, b) (b, a)

but

Foo2 {a, b} (a, b) (a, b) = Foo2 {a, b} (a, b) (b, a)

and therefore need the extra generality to be able to distinguish between both specifications. Because

of how we set up our definitions, we also had to impose some restrictions (like a single binding

function for a deep binder) that are not present in Ott. Our expectation is that we can still cover

many interesting term-calculi from programming language research, for example the Core-Haskell

language from the Introduction. With the work presented in this paper we can define it formally

as shown in Figure 2 and then Nominal Isabelle derives automatically a corresponding reasoning

infrastructure. However we have found out that telescopes seem to not easily be representable in

our framework. The reason is that we need to be able to lift our bn-functions to alpha-equated

lambda-terms and therefore need to restrict what these bn-functions can return. Telescopes can be

represented in the framework described in [31] using an extension of the usual locally-nameless

representation.
Pottier presents a programming language, called Cαml, for representing terms with general

binders inside OCaml [19]. This language is implemented as a front-end that can be translated to

OCaml with the help of a library. He presents a type-system in which the scope of general binders

can be specified using special markers, written inner and outer. It seems our and his specifications

6Assuming a 6= b, there is no permutation that can make (a, b) equal with both (a, b) and (b, a), but there are two

permutations so that we can make (a, b) and (a, b) equal with one permutation, and (a, b) and (b, a) with the other.
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atom decl var cvar tvar

nominal datatype tkind = KStar | KFun tkind tkind

and ckind = CKSim ty ty

and ty = TVar tvar | T string | TApp ty ty

| TFun string ty list | TAll tv::tvar tkind ty::ty binds tv in ty

| TArr ckind ty

and ty lst = TNil | TCons ty ty lst

and cty = CVar cvar | C string | CApp cty cty | CFun string co lst

| CAll cv::cvar ckind cty::cty binds cv in cty

| CArr ckind cty | CRefl ty | CSym cty | CCirc cty cty

| CAt cty ty | CLeft cty | CRight cty | CSim cty cty

| CRightc cty | CLeftc cty | Coerce cty cty

and co lst = CNil | CCons cty co lst

and trm = Var var | K string

| LAM ty tv::tvar tkind t::trm binds tv in t

| LAM cty cv::cvar ckind t::trm binds cv in t

| App ty trm ty | App cty trm cty | App trm trm

| Lam v::var ty t::trm binds v in t

| Let x::var ty trm t::trm binds x in t

| Case trm assoc lst | Cast trm co

and assoc lst = ANil | ACons p::pat t::trm assoc lst binds bv p in t

and pat = Kpat string tvtk lst tvck lst vt lst

and vt lst = VTNil | VTCons var ty vt lst

and tvtk lst = TVTKNil | TVTKCons tvar tkind tvtk lst

and tvck lst = TVCKNil | TVCKCons cvar ckind tvck lst

binder

bv :: pat ⇒ atom list and

bv1 :: vt lst ⇒ atom list and

bv2 :: tvtk lst ⇒ atom list and

bv3 :: tvck lst ⇒ atom list

where

bv (K s tvts tvcs vs) = (bv3 tvts) @ (bv2 tvcs) @ (bv1 vs)
| bv1 VTNil = []
| bv1 (VTCons x ty tl) = (atom x)::(bv1 tl)
| bv2 TVTKNil = []
| bv2 (TVTKCons a ty tl) = (atom a)::(bv2 tl)
| bv3 TVCKNil = []
| bv3 (TVCKCons c cty tl) = (atom c)::(bv3 tl)

Figure 2: A definition for Core-Haskell in Nominal Isabelle. For the moment we do not support

nested types; therefore we explicitly have to unfold the lists co lst, assoc lst and so on.

Apart from that limitation, the definition follows closely the original shown in Figure 1.

The point of our work is that having made such a definition in Nominal Isabelle, one

obtains automatically a reasoning infrastructure for Core-Haskell.
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can be inter-translated as long as ours use the binding mode binds only. However, we have not

proved this. Pottier gives a definition for alpha-equivalence, which also uses a permutation operation

(like ours). Still, this definition is rather different from ours and he only proves that it defines

an equivalence relation. A complete reasoning infrastructure is well beyond the purposes of his

language. Similar work for Haskell with similar results was reported by Cheney [6] and more

recently by Weirich et al [31].
In a slightly different domain (programming with dependent types), Altenkirch et al [1] present

a calculus with a notion of alpha-equivalence related to our binding mode binds (set+). Their

definition is similar to the one by Pottier, except that it has a more operational flavour and calculates

a partial (renaming) map. In this way, the definition can deal with vacuous binders. However, to our

best knowledge, no concrete mathematical result concerning this definition of alpha-equivalence has

been proved.

9. CONCLUSION

We have presented an extension of Nominal Isabelle for dealing with general binders, that is where

term-constructors have multiple bound atoms. For this extension we introduced new definitions of

alpha-equivalence and automated all necessary proofs in Isabelle/HOL. To specify general binders

we used the syntax from Ott, but extended it in some places and restricted it in others so that the

definitions make sense in the context of alpha-equated terms. We also introduced two binding modes

(set and set+) that do not exist in Ott. We have tried out the extension with calculi such as Core-

Haskell, type-schemes and approximately a dozen of other typical examples from programming

language research [21]. The code will eventually become part of the Isabelle distribution.7

We have left out a discussion about how functions can be defined over alpha-equated terms

involving general binders. In earlier versions of Nominal Isabelle this turned out to be a thorny

issue. We hope to do better this time by using the function package [11] that has recently been

implemented in Isabelle/HOL and also by restricting function definitions to equivariant functions

(for them we can provide more automation).
There are some restrictions we had to impose in this paper that can be lifted using a recent

reimplementation [25] of the datatype package for Isabelle/HOL, which however is not yet part of

the stable distribution. This reimplementation allows nested datatype definitions and would allow

one to specify, for instance, the function kinds in Core-Haskell as TFun string (ty list) instead of

the unfolded version TFun string ty list (see Figure 2). We can also use it to represent the Let-

terms from the Introduction where the order of let-assignments does not matter. This means we can

represent Lets such that the following two terms are equal

Let x1 = t1 and x2 = t2 in s = Let x2 = t2 and x1 = t1 in s

For this we have to represent the Let-assignments as finite sets of pair and a binding function that

picks out the left components to be bound in s.
One line of future investigation is whether we can go beyond the simple-minded form of binding

functions that we adopted from Ott. At the moment, binding functions can only return the empty

set, a singleton atom set or unions of atom sets (similarly for lists). It remains to be seen whether

properties like

7It can be downloaded already from http://isabelle.in.tum.de/nominal/download.

http://isabelle.in.tum.de/nominal/download
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fa ty x = bn x ∪ fa bn x

allow us to support more interesting binding functions.
We have also not yet played with other binding modes. For example we can imagine that there

is need for a binding mode where instead of usual lists, we abstract lists of distinct elements (the

corresponding type dlist already exists in the library of Isabelle/HOL). We expect the presented

work can be extended to accommodate such binding modes.
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