
Logical Methods in Computer Science
Vol. 5 (3:1) 2009, pp. 1–29
www.lmcs-online.org

Submitted Dec. 8, 2008
Published Jul. 15, 2009

A THEORY OF EXPLICIT SUBSTITUTIONS

WITH SAFE AND FULL COMPOSITION

DELIA KESNER

PPS (Université Paris-Diderot and CNRS), France
e-mail address: kesner@pps.jussieu.fr

Abstract. Many different systems with explicit substitutions have been proposed to im-
plement a large class of higher-order languages. Motivations and challenges that guided
the development of such calculi in functional frameworks are surveyed in the first part of
this paper. Then, very simple technology in named variable-style notation is used to es-
tablish a theory of explicit substitutions for the lambda-calculus which enjoys a whole set
of useful properties such as full composition, simulation of one-step beta-reduction, preser-
vation of beta-strong normalisation, strong normalisation of typed terms and confluence
on metaterms. Normalisation of related calculi is also discussed.

1. Introduction

This paper is about explicit substitutions (ES), a formalism that - by decomposing the
implicit substitution operation into more atomic steps - allows a better understanding of
the execution models of higher-order languages.

Indeed, higher-order substitution is a meta-level operation used in higher-order lan-
guages (such as functional, logic, concurrent and object-oriented programming), while ES
is an object-level notion internalised and handled by symbols and reduction rules belonging
to their own worlds. However, the two formalisms are still very close, this can be eas-
ily seen for example in the case of the λ-calculus whose solely reduction rule is given by
(λx.t) v →β t{x/v}, where the operation t{x/v} denotes the result of substituting all the

free occurrences of x in t by v, a notion that can be formally defined modulo α-conversion1

as follows:
x{x/v} := v
y{x/v} := y x 6= y
(u1u2){x/v} := u1{x/v}u2{x/v}
(λy.u){x/v} := λy.u{x/v}

The simplest way to specify a λ-calculus with ES is to incorporate substitution operators
into the language, then to transform the equalities of the previous specification into a set

1998 ACM Subject Classification: F.3.2, D.1.1, F.4.1.
Key words and phrases: operational semantics, functional languages, lambda calculus.
1Definition of substitution modulo α-conversion avoids to explicitly deal with the variable capture case.

Thus, for example (λx.y){y/x} =α (λz.y){y/x} =def λz.y{y/x} = λz.x.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-5 (3:1) 2009
c© Delia Kesner
CC© Creative Commons

http://creativecommons.org/about/licenses

2 DELIA KESNER

of reduction rules (so that one still works modulo α-conversion). The following reduction
system, known as λx [Lin86, Lin92, Ros92, BR95], is thus obtained.

(λx.t) v → t[x/v]
x[x/v] → v
y[x/v] → y x 6= y
(u1u2)[x/v] → u1[x/v]u2[x/v]
(λy.u)[x/v] → λy.u[x/v]

The λx-calculus corresponds to the minimal behaviour2 that can be found among the cal-
culi with ES appearing in the literature (equivalent minimal behaviours can be found, for
example, in [Cur91, BBLRD96, KR98]). However, when using this simple operational se-
mantics, outermost substitutions must be always delayed until the total execution of all the
innermost substitutions appearing in the same environment. Thus for example, the prop-
agation of the outermost substitution [x/v] in the term (zyx)[y/xx][x/v] must be delayed
until [y/xx] is first executed on zyx.

This restriction can be recovered by the use of more sophisticated interactions, known
as composition of substitutions, which allow in particular the propagation of substitu-
tions through other substitutions. Thus for example, (zyx)[y/xx][x/v] can be reduced
to (zyx)[x/v][y/(xx)[x/v]], which can be further reduced to (zyv)[y/vv], a term equal to
(zyx)[y/xx]{x/v}, where {x/v} is the meta/implicit substitution that the explicit substi-
tution [x/v] is supposed to implement.

In these twenty last years there has been a growing interest in λ-calculi with ES. They
can be defined either with unary [Ros92, LRD94] or n-ary [ACCL91, HL89] substitutions,
by using de Bruijn notation [dB72, dB78], or levels [LRD95], or nominal logic [GP99],
or combinators [GL99], or director strings [SFM03], or ... simply by named variables as
in the λx-calculus. Besides different notations, a calculus with ES can be also seen as a
term notation for a logical system where the reduction rules behave like cut elimination
transformations [Her94, DU01, KL08].

Composition rules for ES first appeared in λσ [ACCL91]. They turn out to be nec-
essary to get confluence on open terms [HL89] in calculi implementing higher-order unifi-
cation [DHK00] or functional abstract machines [LM99, HMP96]. They also guarantee a
simple property, called full composition, that calculi without composition do not enjoy: any
term of the form t[x/u] can be reduced to t{x/u}; in other words, explicit substitution imple-
ments the implicit one. Indeed, taking again the previous example, (zyx)[y/xx][x/v] reduces
to (zyx)[y/xx]{x/v} = (zyv)[y/vv]. Many calculi such as λσ, λσ⇑ [HL89], λsub [Mil06],
λlxr [KL05, KL07] and λes [Kes07] enjoy full composition.

In any case, all these calculi were introduced as a bridge between formal higher-order
calculi and their concrete implementations. However, implementing an atomic substitution
operation by several elementary explicit steps comes at a price. Indeed, while λ-calculus is
perfectly orthogonal (in particular does not have critical pairs), calculi with ES such as λx
suffer at least from the following well-known diverging example:

t[y/v][x/u[y/v]] ∗← ((λx.t) u)[y/v]→∗ t[x/u][y/v]

Different solutions were adopted in the literature to close this diagram. If no new
rewriting rule is added to those of the minimal λx-calculus, then reduction turns out to
be confluent on terms but not on metaterms (terms with metavariables used to represent

2Some presentations replace the rule y[x/u] → y by the more general one t[x/u] → t if x /∈ fv(t).

A THEORY OF EXPLICIT SUBSTITUTIONS WITH SAFE AND FULL COMPOSITION 3

incomplete programs and proofs). If liberal rules for composition are considered, as in
λσ, λσ⇑, or λse [KR97], then one recovers confluence on metaterms but loses preserva-
tion of β-strong normalisation (PSN) as not all the β-strongly normalising terms remain
normalising in the corresponding ES version. This phenomenon, known as Melliès’ counter-
example [Mel95] (see also [BG99] for later counterexamples in named calculi), shows a flaw
in the design of ES calculi since they are supposed to implement their underlying calculus
(in our case the λ-calculus) without losing its good properties.

There are many ways to avoid Melliès’ counter-example in order to recover the PSN
property. One can forbid the substitution operators to cross λ-abstractions or avoid com-
position of substitutions. One can also impose a simple strategy on the calculus with ES
to mimic exactly the calculus without ES. The first solution leads to weak lambda cal-
culi [LM99, For02], not able to express strong beta-equality (used for example in implemen-
tations of proof-assistants). The second solution [BBLRD96] is drastic when composition
of substitutions is needed for implementations of HO unification [DHK00] or functional ab-
stract machines [LM99, HMP96]. The last one does not take advantage of the notion of ES
because they can be neither composed nor even delayed.

Fortunately, confluence on metaterms and preservation of β-strong normalisation can
live together, this is for example the case of λws [DG99, DG01] and λlxr, which both
introduce a controlled notion of composition for substitutions. Syntax of λws is based on
terms with explicit weakening constructors. Its operational semantics reveals [DCKP00]
a natural understanding of ES in terms of Linear Logic’s proof-nets [Gir87], which are a
geometrical representation of linear logic sequent proofs that incorporate a clear mechanism
to control weakening and contraction. Weakening, viewed as erasure, and contraction,
viewed as duplication, are precisely the starting points of the λlxr-calculus whose syntax
is obtained by incorporating these new operators to the λ-terms. The reduction system of
λlxr contains 6 equations and 19 rewriting rules, thus requiring a big number of cases when
developing some combinatorial reasoning. This is notably discouraging when one needs to
check properties by cases on the reduction step; a reason why confluence on metaterms for
λlxr is just conjectured but not still proved. Also, whereas λlxr gives the evidence that
explicit weakening and contraction are sufficient to verify all the properties expected from
a calculus with ES, there is no justified reason to think that they are also necessary.

We choose here to use simple syntax in named variable notation style to define a for-
malism with full and safe composition that we call λex-calculus. Thus, we dissociate the
operational semantics of the calculus from all the renaming details that are necessary to
specify higher-order substitution on terms that are implemented by non-trivial technolo-
gies such as de Bruijn indices or nominal notation. Even if our choice implies the use of
α-equivalence, we think that this presentation is more appropriate to focus on the fundamen-
tal (operational) properties of full and safe composition. It is now perfectly well-understood
in the literature how to translate terms with named variables into other notations, so that
we expect these translations to be able to preserve all the properties of the λex-calculus.

The λex-calculus is obtained by extending λx with one rewriting rule to specify compo-
sition of dependent substitutions and one equation to specify commutation of independent
substitutions. This will turn out to be essential to obtain a safe notion of full composition
which does not need anymore the complex manipulation of explicit operators for contrac-
tion and weakening used in λlxr to guarantee PSN. The substitutions of λex are defined
by means of unary constructors but have the same expressive power as n-ary substitutions.
Indeed, while simultaneous substitutions are specified by lists (given by n-ary substitutions)

4 DELIA KESNER

in λσ, they are modelled by sets (given by commutation of independent unary substitutions)
in λex.

We thus achieve the definition of a concise language being easy to understand, and
enjoying a useful set of properties: confluence on metaterms (and thus on terms), simulation
of one-step β-reduction, full composition, preservation of β-strong normalisation and strong
normalisation of typed terms (SN).

Most of the available SN proofs for calculi with composition are not really first-hand:
either one simulates reduction by means of another well-founded relation, or SN is deduced
from a sufficient property, as for example PSN. Proofs using the first technique are for
example those for λws in [DCKP03] and λlxr [KL07], based on the well-foundedness of
the reduction relation for multiplicative exponential linear logic (MELL) proof-nets [Gir87].
An example of SN proof using the second technique is that for λes, where PSN is obtained
by two consecutive translations, one from λes into a calculus with ES and weakening, the
second one from this intermediate calculus into the Church-Klop’s ΛI -calculus [Klo80]. In
both cases the resulting proofs are long, particularly because they make use of normalisation
properties of other (related) calculi.

It is then desirable to provide more direct arguments to prove normalisation properties
of full and safe composition, thus avoiding unnecessary detours through other complex
theories. And this becomes even necessary when one realises that normalisation of a calculus
which allows duplication of void substitutions, such as λex, cannot be understood in terms
of calculi like MELL proof-nets where such behaviour is impossible.

The technical tools used in the paper to show PSN for λex are the following. We first
define a perpetual reduction strategy for λex: if t can be reduced to t′ by the strategy, and
t′ ∈ SN λex, then t ∈ SN λex. In particular, since the perpetual strategy reduces t[x/u] to
t{x/u}, one has to show that normalisation of Implicit substitution implies normalisation
of Explicit substitution. More precisely,

(IE) u ∈ SN λex & t{x/u} ∈ SN λex imply t[x/u] ∈ SN λex.

In other words, explicit substitution implements implicit substitution but nothing more
than that, otherwise one may get calculi such as λσ where t[x/u] does much more than
t{x/u}. A consequence of the IE property is that standard techniques to show SN based
on meta-substitution can also be applied to calculi with ES, thus simplifying the reasoning
considerably. Indeed, the perpetual strategy is used to give an inductive characterisation of
the set SN λex by means of just four inference rules. This inductive characterisation is then
used to show that untyped terms preserve β-strong normalisation and that typed terms are
in SN λex. At the end of the paper we also show how SN of other calculi with or without
full composition can be obtained from SN of λex.

All our proofs are developed using simple logical tools: intuitionistic reasoning, induc-
tion, reasoning by cases on decidable predicates. All this gives a constructive (no use of
classical logic) flavour to the whole development.

The proof technique used to show the IE property is mostly inspired from the PSN
proofs used for the non equational systems λx and λws in [LLD+04] and [ABR00]. Cur-
rent investigations carried out in [SvO07] show PSN for different calculi with (full or not)
composition. The approach is based on the analysis of minimal non-terminating reduction
sequences. The calculus proposed in [Sak] specifies commutation of independent substi-
tutions by a non-terminating rewriting system (instead of an equation), thus leading to
complicated notions and proofs.

A THEORY OF EXPLICIT SUBSTITUTIONS WITH SAFE AND FULL COMPOSITION 5

This paper extends some ideas summarised in [Kes07, Kes08], particularly by the use of
intersection types to characterise the set SN λex as well as the use of the Z-property of van
Oostrom [vO] to show confluence. It is organised as follows. Section 2 introduces syntax
and reduction rules for the λex-calculus. The perpetual strategy for λex is introduced in
Section 3 together with its corresponding Perpetuality Theorem. This fundamental theorem
is proved thanks to a key property whose proof is left to Sections 4 and 5. The equivalence
between intersection typed and β-strongly normalising terms is given in Section 6. In
Section 7 we explain how to infer SN for other calculi with ES. In Section 8 we prove
confluence for metaterms. Finally we conclude and give directions for further work in
Section 9.

2. Syntax

The λex-calculus can be viewed as a simple extension of the λx-calculus. The set of
terms (meta-variables s, t, u, v) is defined by the following grammar.

T ::= x | T T | λx.T | T [x/T]

Free and bound variables of t, written respectively fv(t) and bv(t), are defined by
induction as follows:

fv(x) := {x} bv(x) := ∅
fv(λx.u) := fv(u) \ {x} bv(λx.u) := bv(u) ∪ {x}
fv(uv) := fv(u) ∪ fv(v) bv(uv) := bv(u) ∪ bv(v)
fv(u[x/v]) := (fv(u) \ {x}) ∪ fv(v) bv(u[x/v]) := bv(u) ∪ {x} ∪ bv(v)

Thus, λx.t and t[x/u] bind the free occurrences of x in t.
The congruence generated by renaming of bound variables is called α-conversion. Thus

for example (λy.x)[x/y] =α (λz.x′)[x′/y]. Given a term of the form t[x/u][y/v], the two
outermost substitutions are said to be independent iff y /∈ fv(u), and dependent iff y ∈ fv(u).
Notice that in both cases we can always assume x /∈ fv(v) by α-conversion. We use the
notation tn for a list of n (n ≥ 0) terms t1, . . . , tn and utn for ut1 . . . tn, which is in turn an
abbreviation of (. . . ((ut1)t2) . . . tn).

Meta-substitution on terms is defined modulo α-conversion in such a way that capture
of variables is avoided. It is given by the following equations.

x{x/v} := v
y{x/v} := y if y 6= x
(λy.t){x/v} := λy.t{x/v}
(tu){x/v} := t{x/v}u{x/v}
t[y/u]{x/v} := t{x/v}[y/u{x/v}]

Thus for example (λy.x){x/y} = λz.y. Notice that t{x/u} = t if x /∈ fv(t).

Besides α-conversion, we consider the equations and rewriting rules in Figure 1.
Notice that α-conversion allows to assume that there is no capture of variables in the

previous equations and rules. Thus for example we can assume y 6= x and y /∈ fv(v) in the
rewriting rule Lamb. Same kind of assumptions are done for the rewriting rule Comp and the
equation C.

The rewriting relation →Bx is generated by all the rewriting rules in Figure 1 and →x

is only generated by the five last ones. The equivalence relation =e is generated by the
conversions α and C. The reduction relations →ex and →λex are respectively generated by

6 DELIA KESNER

Equations :
t[x/u][y/v] =C t[y/v][x/u] if y /∈ fv(u) & x /∈ fv(v)

Rules :
(λx.t) u →B t[x/u]
x[x/u] →Var u
t[x/u] →Gc t if x /∈ fv(t)
(tu)[x/v] →App t[x/v] u[x/v]
(λy.t)[x/v] →Lamb λy.t[x/v]
t[x/u][y/v] →Comp t[y/v][x/u[y/v]] if y ∈ fv(u)

Figure 1: The λex-calculus

the rewriting relations →x and →Bx modulo =e (thus specifying rewriting on e-equivalence
classes):

t→ex t′ iff ∃ s, s′ s.t. t =e s→x s′ =e t′

t→λex t′ iff ∃ s, s′ s.t. t =e s→Bx s′ =e t′

Given any reduction relation R, a term t is said to be in R-normal form, written
t ∈ NFR, if there is no u such that t →R u. As an example, an inductive definition of
NFλex can be given by: t1, . . . , tn ∈ NFλex imply xt1 . . . tn ∈ NFλex, and t ∈ NFλex

implies λx.t ∈ NFλex.
Again for any reduction relation R, a term t is said to be R-strongly normalising,

written t ∈ SNR, if there is no infinite R-reduction sequence starting at t, in which case
the notation ηR(t) means the maximal length of a R-reduction sequence starting at t. An
inductive definition of SNR is usually given by:

t ∈ SNR iff ∀s (t→R s implies s ∈ SNR)

The notation →∗
R (resp. →+

R) is used for the reflexive (resp. reflexive and transitive)
closure of →R. Thus in particular, if t→∗

λex t′ in 0 reduction steps, then t =e t′.
The following basic properties can be shown by a straightforward induction on the

reduction relation.

Lemma 2.1 (Basic Properties). Let R ∈ {ex, λex} and let t, t′, u be terms.

• If t→R t′, then fv(t′) ⊆ fv(t).
• If t →R t′, then u{x/t} →∗

R u{x/t′} and t{x/u} →R t′{x/u}. Thus in particular
t{x/u} ∈ SNR implies t ∈ SNR.

As explained in Section 1 the composition rule Comp and the equation C guarantee the
following property:

Lemma 2.2 (Full Composition for Terms). Let t, u be terms. Then t[x/u]→+
ex t{x/u}.

Proof. By induction on t. Consider t = s[y/v]. If x ∈ fv(v), then s[y/v][x/u] →Comp

s[x/u][y/v[x/u]] →+
ex (i.h.) s{x/u}[y/v{x/u}] = t{x/u}. If x /∈ fv(v), then s[y/v][x/u] =C

s[x/u][y/v]→+
ex (i.h.) s{x/u}[y/v] = t{x/u}. All the other cases are straightforward.

A THEORY OF EXPLICIT SUBSTITUTIONS WITH SAFE AND FULL COMPOSITION 7

Simulation of one-step β-reduction is then a direct consequence of full composition.

Lemma 2.3 (Simulating One-Step β-Reduction). Let t, t′ be λ-terms. If t →β t′, then
t→∗

λex t′.

3. Perpetuality and Preservation of Normalisation

A perpetual strategy gives an infinite reduction sequence for a term, if one exists,
otherwise, it gives a finite reduction sequence leading to some normal form. Perpetual
strategies, introduced in [BBKV76], can be seen as antonyms of normalising strategies, they
are particularly used to obtain normalisation results. We refer the reader to [vRSSX99] for
more details.

Perpetual strategies can be specified by one or many steps. In contrast to one-step
strategies for ES given for example in [Bon01a], we now define a many-step strategy giving
a reduct for any t /∈ NFλex. This is done according to the following cases. If t = xt1 . . . tn,
rewrite the left-most ti which is reducible. If t = λx.u, rewrite u. If t = (λx.s)uvn,
rewrite the head redex. If t = s[x/u]vn and u /∈ SN λex, rewrite u. If t = s[x/u]vn and
u ∈ SN λex, apply full composition to the head redex s[x/u] by using as many steps as
necessary. Formally,

Definition 3.1 (A Strategy for Terms). The strategy on terms is given by an inductive
definition.

un ∈ NFλex t t′

(p-var)
xuntvm xunt′vm

t t′

(p-abs)
λx.t λx.t′

(p-B)
(λx.t)uun t[x/u]un

u ∈ SN λex
(p-subs1)

t[x/u]vn t{x/u}vn

u /∈ SN λex u u′

(p-subs2)
t[x/u]vn t[x/u′]vn

The strategy is deterministic so that t u and t v imply u = v. Moreover, the
strategy is not necessarily leftmost-outermost or left-to-right because of the (p-subs1) rule:
substitution propagation can be performed in any order. Notice that the syntactical details
concerning the manipulation of substitutions are completely hidden in the definition of the
strategy which is only based on the full composition property. This makes the results of
this section to be abstract and modular. A basic property of the strategy is:

Lemma 3.2. Let t, t′ be terms. If t t′, then t→+
λex t′.

Proof. By induction on the definition of the strategy using Lemma 2.2.

The strategy turns out to be perpetual, that is, terminating terms are stable by anti-
reduction (also called expansion). The proof of this property is presented in a modular
way, by leaving all the details concerning the particularities of the substitution calculus to
one single statement, called the IE property (Lemma 5.9) and fully developed in the next
section.

Theorem 3.3 (Perpetuality Theorem). Let t, t′ be terms. If t t′ and t′ ∈ SN λex, then
t ∈ SN λex.

Proof. By induction on the definition of the strategy .

8 DELIA KESNER

• t = (λx.s)uun s[x/u]un = t′ by (p-B). If s[x/u]un ∈ SN λex, then s, u, un ∈ SN λex.
We show (λx.s)uun ∈ SN λex by induction on ηλex(s) + ηλex(u) + Σi∈1...n ηλex(ui). For
that, it is sufficient to show that every λex-reduct of (λx.s)uun is in SN λex. If the
reduction takes place in a subterm of (λx.s)uun, then the property holds by the i.h.
Otherwise (λx.s)uun →B s[x/u]un which is in SN λex by hypothesis. We thus conclude
(λx.s)uun ∈ SN λex.
• t = s[x/u]vn s[x/u′]vn = t′ by (p-subs2), so that u /∈ SN λex and u u′. If

s[x/u′]vn ∈ SN λex, then in particular u′ ∈ SN λex, thus u ∈ SN λex by the i.h. From
u /∈ SN ex and u ∈ SN λex we can get any proposition, so in particular t ∈ SN λex.
• t = s[x/u]vn s{x/u}vn = t′ by (p-subs1) so that u ∈ SN λex. Then the IE property

(Lemma 5.9 in Section 4) allows to conclude.

All the other cases are straightforward.

An inductive syntactic characterisation of the set SN λex can be now given using the
perpetual strategy. This kind of characterisation is usually useful when developing SN
proofs. An inductive syntactic definition of SN terms for the λ-calculus is given for example
in [vR96]. It was then extended in [LLD+04, Bon01b] for calculi with ES, but using many
different inference rules to characterise SN terms of the form t[x/u]. We just give here one
inference rule for each possible syntactical form.

Definition 3.4 (Inductive Characterisation of SN λex). The inductive set ISN is defined
as follows:

t1, . . . , tn ∈ ISN n ≥ 0
(var)

xt1 . . . tn ∈ ISN

u[x/v]t1 . . . tn ∈ ISN n ≥ 0
(app)

(λx.u)vt1 . . . tn ∈ ISN

u{x/v}t1 . . . tn ∈ ISN v ∈ ISN n ≥ 0
(subs)

u[x/v]t1 . . . tn ∈ ISN

u ∈ ISN
(abs)

λx.u ∈ ISN

Proposition 3.5. SN λex = ISN .

Proof. If t ∈ SN λex, then t ∈ ISN is proved by induction on the lexicographic pair
〈ηλex(t), t〉. If t ∈ ISN , then t ∈ SN λex is proved by induction on t ∈ ISN using
Theorem 3.3.

The PSN property received a lot of attention in calculi with explicit substitutions,
starting from an unexpected result given by Melliès [Mel95] who has shown that there are β-
strongly normalisable λ-terms that are not strongly normalisable in calculi with composition
such as λσ [ACCL91]. Since then, many formalisms with and without composition have
been shown to enjoy PSN. The proof technique used in this paper to show PSN is based on
the Perpetuality Theorem and is mostly inspired from [ABR00, LLD+04, ABR00]. However,
the use of two quite abstract concepts, namely, full composition and the IE property, makes
our proof much more modular than the existing ones.

Theorem 3.6 (PSN for λ-terms). If t ∈ SN β, then t ∈ SN λex.

Proof. By induction on the definition of SN β [vR96] using the inductive Definition 3.4 and
Proposition 3.5 (which holds by the Perpetuality Theorem 3.3).

If t = xt1 . . . tn with ti ∈ SN β, then ti ∈ SN λex by the i.h. so that the (var) rule allows
to conclude. The case t = λx.u is similar. If t = (λx.u)vt1 . . . tn, with u{x/v}t1 . . . tn ∈ SN β

A THEORY OF EXPLICIT SUBSTITUTIONS WITH SAFE AND FULL COMPOSITION 9

and v ∈ SN β, then both terms are in SN λex by the i.h. so that the (subs) rule gives
u[x/v]t1 . . . tn ∈ SN λex and the (app) rule gives (λx.u)vt1 . . . tn ∈ SN λex.

Alternative Proof. By induction on the definition of SN β [vR96] using the IE property
(Lemma 5.9 in Section 4).

If t = xt1 . . . tn with ti ∈ SN β, then ti ∈ SN λex by the i.h. so that t ∈ SN λex is
straightforward. If t = λx.u with u ∈ SN β, then u ∈ SN λex by the i.h. and thus t ∈ SN λex

is also straightforward. If t = (λx.u)vt1 . . . tn, with u{x/v}t1 . . . tn ∈ SN β and v ∈ SN β,
then both terms are in SN λex by the i.h. The IE property gives t′ = u[x/v]t1 . . . tn ∈ SN λex

so that in particular u, v, t1 . . . , tn ∈ SN λex. We show t = (λx.u)vt1 . . . tn ∈ SN λex by
induction on µλex(u) + µλex(v) + Σi µλex(ti). For that, it is sufficient to show that every
λex-reduct of t is in SN λex. Now, if the λex-reduct of t comes from an internal reduction,
then conclude with the i.h. Otherwise, t→λex t′ which is already in SN λex.

4. The Labelling Technique

This section develops the key technical tools used to guarantee that the strategy
(Definition 3.1) is perpetual. More precisely, we want show that normalisation of Implicit
substitution implies normalisation of Explicit substitution:

(IE) u ∈ SN λex & t{x/u}vn ∈ SN λex imply t[x/u]vn ∈ SN λex

For that we adapt the labelling technique [DG01, ABR00, Bon01b] to the equational
case. The technique can be summarised by the following steps:

(1) Use a labelling to mark some λex-strongly normalising terms used as substitutions.
Thus for example t[[x/u]] indicates that u ∈ T & u ∈ SN λex.

(2) Enrich the original λex-reduction system with a relation ex used only to propagate
terminating labelled substitutions. Let λex be the enriched calculus.

(3) Show that u ∈ SN λex & t{x/u}vn ∈ SN λex imply t[[x/u]]vn ∈ SN λex.
(4) Show that t[[x/u]]vn ∈ SN λex implies t[x/u]vn ∈ SN λex.

We now develop the first and second points, leaving the two last ones to Section 5.

Definition 4.1 (Labelled Terms). Given a finite set of variables S, the S-labelled terms (or
simply labelled terms if S is clear from the context), are defined by the following grammar:

LS ::= x | LSLS | λx.LS | LS[x/LS] | LS[[x/v]] (v ∈ T ∩ SN λex & fv(v) ⊆ S)

Thus, labelled substitutions can only contain terms so in particular they cannot contain
other labelled substitutions. Notice that all the terms (as defined in Section 2) are labelled
terms, but some terms with arbitrary labels are not. Labelled terms need not be confused
with the decent terms of [Blo97] which do not have labels at all and are not stable by
reduction.

We can always assume that subterms λx.u, u[x/v] and u[[x/v]] inside t ∈ LS are s.t.
x /∈ S. Indeed, α-conversion allows to choose names outside S for the bound variables
of labelled terms. As a consequence, no substitution (labelled or not) can be used to
affect the bodies of other labelled substitutions (whose free variables are all in S). That
means also that given a term t having a subterm u[[x/v]], no free occurrence of y in v
can be bound in the path leading to the root of t. In other words, the bodies of labelled

10 DELIA KESNER

Equations :
t[y/u][[x/v]] =C t[[x/v]][y/u] if x /∈ fv(u) & y /∈ fv(v)
t[[y/u]][[x/v]] =C t[[x/v]][[y/u]] if x /∈ fv(u) & y /∈ fv(v)

Rules :
x[[x/v]] →Var v
t[[x/v]] →Gc t if x /∈ fv(t)
(tu)[[x/v]] →App t[[x/v]] u[[x/v]]

(λy.t)[[x/v]] →Lamb λy.t[[x/v]]
t[y/u][[x/v]] →Comp t[[x/v]][y/u[[x/v]]] if x ∈ fv(u)

Figure 2: The ex-calculus

substitutions are safe since they are already normalising and cannot loose normalisation
after reduction/substitution.

The idea behind the operational semantics of labelled terms, specified by the equa-
tions and reduction rules in Figure 2, is that labelled substitutions may commute/traverse
ordinary substitutions but these last ones cannot traverse the labelled ones.

The rewriting relation →x is generated by the rewriting rules in Figure 2 and the
equivalence relation =e is generated by the conversions α and C. The reduction relation
→ex is generated by the rewriting relation →x modulo =e. In particular, both relations →x

and →ex enjoy termination (see Lemma 4.7). An even richer reduction relation λex can
be defined on labelled terms by adding to ex the old reduction relation λex but now on
labelled terms. That is, →λex is defined as the union of the rewriting relations →Bx and →x

on labelled terms modulo α ∪ C ∪ C-equivalence classes:

t→λex t′ iff ∃ s, s′ s.t. t =e∪e s→Bx∪x s′ =e∪e t′

In order to show that u ∈ SN λex & t{x/u}vn ∈ SN λex imply t[[x/u]]vn ∈ SN λex we first
need to relate the λex-reduction relation to that of the λex-calculus. For that, the reduction
relation λex, which is defined on labelled terms, is split in two relations λexi and λexe, on
labelled terms as well, which will both be projected into λex-reduction sequences. More
precisely, λexi can be weakly projected (eventually empty steps) into λex while λexe can
be strongly projected (at least one step) into λexe (details in the forthcoming Lemma 5.2).

Definition 4.2 (Internal and External Reductions). The internal reduction relation →λexi

on labelled terms is given by adding to ex the λex-reduction relation in the bodies of
labelled substitutions. Formally, →λexi is taken as the following reduction relation →λxi on
α ∪ C ∪ C-equivalence classes:

• If u→Bx u′ and u, u′ are terms, then t[[x/u]]→λxi t[[x/u′]].

• If t→x t′, then t→λxi t′.

• If t →λxi t′, then tu →λxi t′u, ut →λxi ut′, λx.t →λxi λx.t′, t[x/u] →λxi t′[x/u],
u[x/t]→λxi u[x/t′], t[[x/u]]→λxi t′[[x/u]].

The external reduction relation →λexe on labelled terms is given by λex-reduction on
labelled terms everywhere except inside bodies of labelled substitutions. Formally, →λexe is
taken as the following reduction relation →λxe on α ∪ C ∪ C-equivalence classes:

• If t→Bx t′ occurs outside a labelled substitution, then t→λxe t′.

A THEORY OF EXPLICIT SUBSTITUTIONS WITH SAFE AND FULL COMPOSITION 11

• If t →λxe t′, then tu →λxe t′u, ut →λxe ut′, λx.t →λxe λx.t′, t[x/u] →λxe t′[x/u],
u[x/t]→λxe u[x/t′] and t[[x/u]]→λxe t′[[x/u]].

Lemma 4.3. →λex=→λexe ∪ →λexi .

Proof. Since we are working everywhere with α∪C∪C-equivalence classes, then it is sufficient
to show →Bx∪x=→λxi ∪ →λxe .

⊆: If t →Bx t′ occurs inside a labelled substitution, then t →λxi t′, otherwise t →λxe t′. If

t→x t′, then t→λxi t′.
⊇: By induction on the definitions of →λxe and →λxi .

Since λexi-reduction will only be weakly projected into λex, we need to guarantee that
there are no infinite λexi-reduction sequences starting at labelled term. This is exactly the
goal of the final part of this section. We will then use this result in Section 5 to relate
termination of λex to that of λex (Corollary 5.4).

Definition 4.4 (A Decreasing Measure for Comp). For every variable x /∈ S, the function

afx() counts the number of bodies of non-labelled substitutions having free occurrences of
x. Formally, afx() is defined on labelled terms as follows.

afx(z) := 0 afx(tu) := afx(t) + afx(u)
afx(λy.t) := afx(t) afx(t[y/u]) := afx(t) if x /∈ fv(u)
afx(t[[y/u]]) := afx(t) afx(t[y/u]) := afx(t) + 1 + afx(u) if x ∈ fv(u)

A second function dep() counts the total number of afx() in a labelled term t, and this
for all variables x which are bound by some labelled substitution of t. Formally, dep() is
defined on labelled terms as follows.

dep(x) := 0 dep(tu) := dep(t) + dep(u)
dep(λy.t) := dep(t) dep(t[x/u]) := dep(t) + dep(u)

dep(t[[x/u]]) := dep(t) + afx(t)

For example, given v = w[w/(xx)[y/x]], we have afx(v) = 2 and dep(v[y/v][[x/x1]]) = 5.
Notice that afx(t) = 0 if x /∈ fv(t) and dep(t) = 0 if t does not have labelled substi-

tutions. Notice also that dep(t[[x/u]]) is well-defined in terms of afx since we can always
assume x /∈ S by α-conversion.

Definition 4.5 (A Decreasing Measure for x \ Comp). We consider the following function

K() on terms:

K(x) := 1 K(tu) := K(t) + K(u) + 1
K(λx.t) := K(t) + 1 K(t[x/u]) := K(t) · K(u)

In order to extend K() on terms to K() on labelled terms we define a special measure for
λex-strongly normalising terms. Thus, given u ∈ SN λex, let us consider

φ(t) := 1 + ηλex(t) + maxKλex(t), where maxKλex(t) := max{K(t′) | t→∗
λex t′}

Notice that φ is well-defined since λex-strongly normalising terms have only a finite set
of reducts. Notice also that φ(t) ≥ 2 for every term t. Moreover, t →λex t′ implies
ηλex(t) > ηλex(t

′) and maxKλex(t) ≥ maxKλex(t
′) so that φ(t) > φ(t′).

We can now consider the following function K() on labelled terms.

K(x) := 1 K(tu) := K(t) + K(u) + 1
K(λx.t) := K(t) + 1 K(t[x/u]) := K(t) ·K(u)

K(t[[x/u]]) := K(t) · φ(u)

12 DELIA KESNER

Lemma 4.6. Let t, u be S-labelled terms and let z /∈ S. Then,

(1) t =α,C,C u implies afz(t) = afz(u), dep(t) = dep(u) and K(t) = K(u).
(2) t→Comp u implies afz(t) = afz(u) and dep(t) > dep(u).

(3) t→x\Comp u implies afz(t) ≥ afz(u), dep(t) ≥ dep(u) and K(t) > K(u).

Proof. By induction on reduction. Notice that afz(t) > afz(u) holds for example for t =
t1[x/u1] →Gc t1[x/u′

1] = u, where u1 →Gc u′
1, z ∈ fv(u1) and z /∈ fv(u′

1). Similarly,
dep(t) = dep(u) holds for example for t→Var u, and dep(t) > dep(u) holds for example for
t = t2[[z/u2]]→Gc t′2[[z/u2]] = u, where t2 →Gc t′2 and afz(t2) > afz(t

′
2).

Lemma 4.7. The reduction relation ex (and thus also x) is terminating.

Proof. Since t→ex u implies 〈dep(t), K(t)〉 >lex 〈dep(u), K(u)〉 by Lemma 4.6 and >lex is a
well-founded relation, then ex terminates.

Lemma 4.8. The reduction relation λexi is terminating.

Proof. Lemma 4.6(1) guarantees that t =e∪e t′ implies 〈dep(t), K(t)〉 = 〈dep(t′), K(t′)〉.
We now show that t →λxi t′ implies afz(t) ≥ afz(t

′) for z /∈ S and 〈dep(t), K(t)〉 >lex

〈dep(t′), K(t′)〉. We proceed by induction on →λxi .

• If t = u[[x/v]] →λxi u[[x/v′]] = t′ comes from v →Bx v′, then afz(t) = afz(u) = afz(t
′),

dep(t) = dep(u) + afx(u) = dep(t′) and K(t) = K(u) · φ(v) > K(u) · φ(v′) = K(t′).
• If t→λxi t′ comes from t→x t′, then conclude using Lemma 4.6.

• If t = u[[x/v]] →λxi u′[[x/v]] = t′ or t = u[x/v] →λxi u′[x/v] = t′ or t = v[x/u] →λxi

v[x/u′] = t′ or t = uv →λxi u′v = t′ or t = vu →λxi vu′ = t′ or t = λx.u →λxi λx.u′ = t′

comes from u→λxi u′, then the property trivially holds by the i.h.

5. The IE Property

This section is devoted to show the IE Property, this is done by using the labelled terms
introduced in Section 4 as an intermediate formalism between t{x/u}vn and t[x/u]vn. More
precisely, we split the IE Property in two different steps:

• Show that u ∈ SN λex & t{x/u}vn ∈ SN λex imply t[[x/u]]vn ∈ SN λex.
• Show that t[[x/u]]vn ∈ SN λex implies t[x/u]vn ∈ SN λex.

In order to relate reduction steps in λex to reduction steps in λex we use a function xc

from labelled terms to terms which computes all the labelled substitutions as follows:

xc(x) := x
xc(tu) := xc(t)xc(u)
xc(λy.t) := λy.xc(t)
xc(t[x/u]) := xc(t)[x/xc(u)]
xc(t[[x/v]]) := xc(t){x/v}

Notice that xc(t) = t if t is a term.

Lemma 5.1. Let t, t′ be labelled terms. If t→ex t′, then xc(t) = xc(t′).

Proof. By induction on t →ex t′. The interesting case is t = s[x/u][[y/v]] =C s[[y/v]][x/u] =
t′, with y /∈ fv(u) & x /∈ fv(v). The term xc(t) is equal to xc(s)[x/xc(u)]{y/v} =
xc(s){y/v}[x/xc(u)] = xc(t′).

A THEORY OF EXPLICIT SUBSTITUTIONS WITH SAFE AND FULL COMPOSITION 13

Lemma 5.2 (Projecting λex). Let t, t′ be labelled terms. Then,

(1) t =α,C,C t′ implies xc(t) = xc(t′).
(2) t→λxi t′ implies xc(t)→∗

λex xc(t
′).

(3) t→λxe t′ implies xc(t)→+
λex xc(t

′).

Proof.

(1) By induction on the conversion relation.
(2) Internal reduction:
• If u[[x/v]]→λxi u[[x/v′]] comes from v →Bx v′, then

xc(u[[x/v]]) = xc(u){x/v} →∗
λex (L. 2.1)

xc(u){x/v′} = xc(u[[x/v′]]).

• If t →λxi t′ comes from t →x t′ (so that also t →ex t′), then Lemma 5.1 gives
xc(t) = xc(t′).
• If uv →λxi u′v where u→λxi u′, then

xc(uv) = xc(u)xc(v)→∗
λex (i.h.) xc(u

′)xc(v) = xc(u′v).

• If u[[x/v]]→λxi u′[[x/v]] where u→λxi u′, then

xc(u[[x/v]]) = xc(u){x/v} →∗
λex (i.h. & L. 2.1)

xc(u′){x/v} = xc(u′[[x/v]]).

• The other cases are similar since xc does not alter application, lambda and substitu-
tion.

(3) External reduction:
• If t→λxe t′ comes from a reduction t→Bx t′ which occurs outside a labelled substitu-

tion, then xc(t)→+
λex xc(t

′) can be shown by induction on t→Bx t′ using Lemma 2.1.
• If tu→λxe t′u, ut→λxe ut′, λx.t→λxe λx.t′, t[x/u]→λxe t′[x/u] or u[x/t]→λxe u[x/t′]

comes from t →λxe t′, then xc(t) →+
λex xc(t′) by the i.h. and thus the property

holds by definition of xc and the fact that xc does not alter application, lambda and
substitution.
• If t[[x/u]]→λxe t′[[x/u]] comes from t→λxe t′, then

xc(t[[x/u]]) = xc(t){x/u} →+
λex (i.h. & L. 2.1)

xc(t′){x/u} = xc(t′[[x/u]]).

Lemma 5.3. Let t be a labelled term. If xc(t) ∈ SN λex, then t ∈ SN λex.

Proof. We apply the Abstract Theorem A.2 in the Appendix A by taking A1 = λexi,
A2 = λexe, A = λex and u R U iff xc(u) = U . Lemma 5.2 guarantees properties P1

and P2 and Lemma 4.8 guarantees property P3. We then get that xc(t) ∈ SN λex implies
t ∈ SN λexi∪λexe , which is exactly SN λex by Lemma 4.3. We thus conclude.

Corollary 5.4. Let t, u, vn be terms. If u ∈ SN λex & t{x/u}vn ∈ SN λex, then t[[x/u]]vn ∈
SN λex.

Proof. Take S = fv(u). The hypothesis u ∈ SN λex allows us to construct the S-labelled
term t[[x/u]]vn. Moreover, xc(t) = t so that xc(t[[x/u]]vn) = t{x/u}vn and we thus conclude
by Lemma 5.3.

Labelled terms can be unlabelled in such a way that λex-reduction on unlabelled la-
belled terms can be simulated by λex-reduction.

Definition 5.5 (Unlabelling). Unlabelling of labelled terms is defined by induction.

14 DELIA KESNER

U(x) := x
U(tu) := U(t)U(u)
U(λx.t) := λx.U(t)
U(t[x/u]) := U(t)[x/U(u)]
U(t[[x/u]]) := U(t)[x/u]

Notice that fv(t) = fv(U(t)).

Lemma 5.6. Let t ∈ LS s.t. U(t)→λex t′1. Then ∃ t1 ∈ LS s.t. t→λex t1 and U(t1) = t′1.

Proof. By induction on →λex and case analysis. The interesting cases are the following.

• t = u[x/v][[y/w]] where y ∈ fv(v), and

U(u[x/v][[y/w]]) =
U(u)[x/U(v)][y/w] →Comp U(u)[y/w][x/U(v)[y/w]] = t′1

We then let t1 = u[[y/w]][x/v[[y/w]]] so that U(t1) = t′1 and t→Comp t1.

• t = u[x/v][[y/w]] where y /∈ fv(v), and

U(u[x/v][[y/w]]) =
U(u)[x/U(v)][y/w] =C U(u)[y/w][x/U(v)] = t′1

We then let t1 = u[[y/w]][x/v] so that U(t1) = t′1 and t =C t1.
• t = u[[y/w]][x/v]. By α-conversion we can always choose x /∈ S, which is a fixed set of

variables, so that we necessarily have x /∈ fv(w) since fv(w) ⊆ S by construction. Now,
consider

U(u[[y/w]][x/v]) =
U(u)[y/w][x/U(v)] =C U(u)[x/U(v)][y/w] = t′1

We then let t1 = u[x/v][[y/w]] so that U(t1) = t′1 and t =C t1.
• t = u[[x1/v1]][[x2/v2]]. Again, by α-conversion we can assume xi /∈ S so that xi /∈ fv(vj)

since fv(vi) ⊆ S by construction. Now, consider

U(u[[x1/v1]][[x2/v2]]) =
U(u)[x1/v1][x2/v2] =C U(u)[x2/v2][x1/v1] =

U(u[[x2/v2]][[x1/v1]]) = t′1
We then let t1 = u[[x2/v2]][[x1/v1]] so that U(t1) = t′1 and t =C t1.

All the other cases are straightforward.

Lemma 5.7. Let t ∈ LS. If t ∈ SN λex, then U(t) ∈ SN λex.

Proof. We prove U(t) ∈ SN λex by induction on ηλex(t). This is done by considering all the
λex-reducts of U(t) and using Lemma 5.6.

Taking S = fv(u) and transforming the term s[x/u]un into the S-labelled term s[[x/u]]un

we have the following special case.

Corollary 5.8. If t[[x/u]]vn ∈ SN λex, then t[x/u]vn ∈ SN λex.

We can now conclude with the main property required in the proof of the Perpetuality
Theorem:

Lemma 5.9 (IE Property). Let t, u, vn be terms. If u ∈ SN λex & t{x/u}vn ∈ SN λex, then
t[x/u]vn ∈ SN λex.

Proof. By Corollaries 5.4 and 5.8.

A THEORY OF EXPLICIT SUBSTITUTIONS WITH SAFE AND FULL COMPOSITION 15

6. Intersection Types

The simply typed calculus is a typed lambda calculus whose only type connective is the
function type. This makes it canonical, simple, and decidable [Tai67]. The simply typed
lambda calculus enjoys the β-strong normalisation property stating that every β-reduction
sequence starting with a typed λ-term terminates.

However, some intersection type disciplines [CDC78, CDC80] are more expressive and
flexible than simple type systems in the sense that not only are typed λ-terms β-strongly
normalising, but the converse also holds, thus giving a characterisation of the set of β-
strongly normalising λ-terms.

Intersection types for calculi with explicit substitutions have been studied in [LLD+04,
Kik07, KC]. Here, we apply this technique to the λex-calculus, and obtain a characterisation
of the set of λex-strongly normalising terms by means of an intersection type system.

Types are built over a countable set of atomic symbols as follows:

A ::= σ (atomic) | A→ A | A ∩A

An environment is a finite set of pairs of the form x : A. Typing judgements have the
form Γ ⊢ t : A where t is a term, A is a type and Γ is an environment. The intersection
type system, called System ∩, is defined by means of the set of typing rules in Figure 3.

Γ, x : A ⊢ x : A
(ax)

Γ ⊢ t : A→ B Γ ⊢ u : A

Γ ⊢ tu : B
(app)

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A→ B
(abs)

Γ ⊢ u : B Γ, x : B ⊢ t : A

Γ ⊢ t[x/u] : A
(subs)

Γ ⊢ t : A Γ ⊢ t : B

Γ ⊢ t : A ∩B
(∩ I)

Γ ⊢ t : A1 ∩A2

Γ ⊢ t : Ai

(∩ E)

Figure 3: System ∩: an intersection type discipline for terms

A derivation of a typing judgement Γ ⊢ t : A, written Γ ⊢∩ t : A, is a tree obtained by
successive applications of the typing rules of the system ∩. A term t is said to be ∩-typable,
iff there is an environment Γ and a type A s.t. Γ ⊢∩ t : A. Notice that every λ-term is
∩-typable iff there is an environment Γ and a type A s.t. Γ ⊢∩ t : A holds in the system
which only contains the typing rules {ax, abs, app,∩ I,∩ E} in Figure 3.

The well-known characterisation of the set of β-strongly normalising λ-terms reads now
as follows:

Theorem 6.1 ([Pot80]). Let t be a λ-term. Then t is ∩-typable iff t ∈ SN β .

A subtyping relation on intersection types is now specified by means of a preorder.
This will be used to establish a Generation Lemma transforming any type derivation into
a specific derivation depending only on the form of the term (and not on the type). Thus,
the Generation Lemma turns out to be extremely useful to reason by induction on type
derivations.

16 DELIA KESNER

Definition 6.2. The relation ≪ on types is defined by the following axioms and rules

(1) A≪ A
(2) A ∩B ≪ A and A ∩B ≪ B
(3) A≪ B & B ≪ C implies A≪ C
(4) A≪ B & A≪ C implies A≪ B ∩ C

Lemma 6.3. If Γ ⊢∩ t : B and B ≪ A, then Γ ⊢∩ t : A.

Proof. Let Γ ⊢∩ t : B. We reason by induction on the definition of B ≪ A.

Case B = A≪ A: Trivial.
Case B = A ∩C ≪ A and B = C ∩A≪ A: Use ∩ E.
Case B ≪ C,C ≪ A: Use (twice) the i.h. to get successively Γ ⊢∩ t : C and then

Γ ⊢∩ t : A.
Case B ≪ B1, B ≪ B2, A = B1 ∩B2: Use (twice) the i.h. to get Γ ⊢∩ t : B1 and

Γ ⊢∩ t : B2, then apply ∩ I.

We use the notation n for {1 . . . n} and ∩nAi for A1 ∩ . . . ∩An.

Lemma 6.4. Let ∩nAi ≪ ∩mBj , where none of the Ai and Bj is an intersection. Then
for each Bj there is Ai s.t. Bj = Ai.

Proof. By induction on the definition of ∩nAi ≪ ∩mBj . Let ∩pCk be some type where none
of the Ck is an intersection type.

Case ∩nAi ≪ ∩nAi: Trivial.
Case ∩mBj ∩ ∩pCk ≪ ∩mBj and ∩pCk ∩ ∩mBj ≪ ∩mBj: Trivial.
Case ∩nAi ≪ ∩pCk,∩pCk ≪ ∩mBj: Applying the i.h. a first time we have for each Bj

a Ck s.t. Bj = Ck. Applying the i.h. again we have for each Ck a Ai s.t. Ck = Ai.
Thus we can conclude.

Case ∩nAi ≪ B1 ∩ . . . ∩Bk,∩nAi ≪ Bk+1 ∩ . . . ∩Bm: By the i.h. we have for each
Bj, 1 ≤ j ≤ k a type Ai s.t. Bj = Ai and for each Bj, k + 1 ≤ j ≤ m a type Ai s.t.
Bj = Ai. Thus we can conclude.

Lemma 6.5 (Generation Lemma).

(1) Γ ⊢∩ x : A iff there is x : B ∈ Γ and B ≪ A.
(2) Γ ⊢∩ t[x/u] : A iff there exist Ai, Bi (i ∈ n) s.t. ∩nAi ≪ A and ∀i ∈ n,Γ ⊢∩ u : Bi and

Γ, x : Bi ⊢∩ t : Ai.
(3) Γ ⊢∩ tu : A iff there exist Ai, Bi (i ∈ n) s.t. ∩nAi ≪ A and ∀i ∈ n,Γ ⊢∩ t : Bi → Ai

and Γ ⊢∩ u : Bi.
(4) Γ ⊢∩ λx.t : A iff there exist Ai, Bi (i ∈ n) s.t. ∩n(Ai → Bi) ≪ A and ∀i ∈ n,Γ, x :

Ai ⊢∩ t : Bi.
(5) Γ ⊢∩ λx.t : B → C iff Γ, x : B ⊢∩ t : C.

Proof. The right to left implications follow from the typing rules of the intersection type
system ∩ and Lemma 6.3.

The left to right implication of the first four points are shown by induction on the
typing derivation of the left part. We only show the two first points as the other ones are
similar.

(1) Consider Γ ⊢∩ x : A.
• Suppose the derivation is (ax) so that x : A ∈ Γ, then B = A.

A THEORY OF EXPLICIT SUBSTITUTIONS WITH SAFE AND FULL COMPOSITION 17

• Suppose A = C1 ∩ C2 and the root of the derivation is

Γ ⊢ x : C1 Γ ⊢ x : C2
(∩ I)

Γ ⊢ x : C1 ∩ C2

By the i.h. there is B1 ≪ C1 and B2 ≪ C2 s.t. x : B1, x : B2 ∈ Γ, thus B1 = B2 and
B1 ≪ C1 ∩ C2 concludes the proof of this case.
• Suppose the root of the derivation is

Γ ⊢ x : A ∩A′

(∩ E)
Γ ⊢ x : A

By the i.h. there is B ≪ A∩A′ s.t. x : B ∈ Γ. By transitivity B ≪ A which concludes
the proof of this case.
• There is no other possible case.

(2) Consider Γ ⊢∩ t[x/u] : A.
• Suppose the root of the derivation is

Γ ⊢ u : B Γ, x : B ⊢ t : A
(subs)

Γ ⊢ t[x/u] : A

then the property immediately holds by taking n = 1, B1 = B and A1 = A.
• Suppose A = C1 ∩ C2 and the root of the derivation is

Γ ⊢ t[x/u] : C1 Γ ⊢ t[x/u] : C2
(∩ I)

Γ ⊢ t[x/u] : C1 ∩C2

By the i.h. there are Ai, Bi (i ∈ n) s.t. ∩nAi ≪ C1 and Γ ⊢∩ u : Bi and Γ, x : Bi ⊢∩
t : Ai for all i ∈ n. Also there are A′

i, B
′
i (i ∈ n′) s.t. ∩n′A′

i ≪ C2 and Γ ⊢∩ u : B′
i

and Γ, x : B′
i ⊢∩ t : A′

i for all i ∈ n′. Since ∩nAi ∩ ∩n′A′
i ≪ C1 ∩ C2, this concludes

this case.
• Suppose the root of the derivation is

Γ ⊢ t[x/u] : A ∩B
(∩ E)

Γ ⊢ t[x/u] : A

By the i.h. there are Ai, Bi (i ∈ n) s.t. ∩nAi ≪ A ∩B and Γ ⊢ u : Bi and Γ, x : Bi ⊢
t : Ai for all i ∈ n. Since ∩nAi ≪ A, this concludes this case.

The left to right implication of point 5 follows from point 4 and Lemma 6.4. Indeed, if
Γ ⊢∩ λx.t : B → C, then point 4 gives Γ, x : Bi ⊢∩ t : Ci for ∩n(Bi → Ci) ≪ B → C.
Lemma 6.4 gives B → C = Bj → Cj for some j ∈ n, thus Γ, x : B ⊢∩ t : C.

The rest of the section is now devoted to establish some connections between typable
and strongly normalisable terms in the λex-calculus.

Definition 6.6. The function V() from terms to λ-terms is defined by induction as follows:

V(x) := x V(tu) := V(t)V(u)
V(λx.t) := λx.V(t) V(t[x/u]) := (λx.V(t))V(u)

This function is compositional with respect to substitution:

Lemma 6.7. Let t, u be terms. Then V(t){x/V(u)} = V(t{x/u}).

Proof. By induction on t.

18 DELIA KESNER

The function V() does not modify typability.

Lemma 6.8. Let t be a term. Then Γ ⊢∩ V(t) : A iff Γ ⊢∩ t : A.

Proof. By induction on t using the Generation Lemma 6.5.

Theorem 6.9 (Typable Terms are SN). If t is ∩-typable, then t ∈ SN λex.

Proof. By Lemma 6.8 the λ-term V(t) is also ∩-typable so that the left to right implication
of Theorem 6.1 gives V(t) ∈ SN β and then the PSN Property (Theorem 3.6) gives V(t) ∈
SN λex. Since V(t)→+

B t (a straightforward induction on t), then t is necessarily in SN λex.

We now complete the picture by showing that the intersection type discipline for terms
gives a characterisation of λex-strongly normalising terms.

Lemma 6.10. Let t be a term s.t. V(t)→β t′1. Then, ∃ t1 s.t. t→+
λex t1 and t′1 = V(t1).

Proof. By induction on the reduction step V(t)→β t′1.

• If V((λx.u) v) = (λx.V(u))V(v) →β V(u){x/V(v)}, then let t1 = u{x/v}. We have

(λx.u) v →B u[x/v]→+
λex (L. 2.2)

u{x/v} and we conclude by Lemma 6.7.

• If V(u[x/v]) = (λx.V(u))V(v) →β V(u){x/V(v)}, then again we conclude by letting t1 =
u{x/v}.
• If V(u[x/v]) = (λx.V(u))V(v) →β (λx.u′

1)V(v), where V(u) →β u′
1 then the i.h. gives u1

s.t. u′
1 = V(u1) and u →+

λex u1. Let t1 = u1[x/v]. We have u[x/v] →+
λex u1[x/v] and

(λx.u′
1) V(v) = V(u1[x/v]).

• If V(u[x/v]) = (λx.V(u))V(v) →β (λx.V(u))v′1, where V(v) →β v′1, then proceed as in the
previous one.
• All the other cases are straightforward.

Theorem 6.11 (SN Terms are Typable). If t ∈ SN λex, then t is ∩-typable.

Proof. Let t ∈ SN λex. One first shows that V(t) ∈ SN β by induction on ηλex(t). This is
done by considering all the β-reducts of V(t) and using Lemma 6.10.

Now, V(t) ∈ SN β implies that V(t) is ∩-typable by the right to left implication of
Theorem 6.1. Finally, Lemma 6.8 allows to conclude that t is ∩-typable.

Corollary 6.12. Let t be a term. Then t is ∩-typable iff t ∈ SN λex.

We conclude this section by focusing on the particular case of the simply typed λex-
calculus : types are only built over atomic symbols and functional types so that the type
system only contains the typing rules {ax, abs, app, subs} in Figure 3. Since every simply
typed λ-term is β-strongly normalising (this is the restriction of the left to right implication
of Theorem 6.1 to simple types), then in particular:

Corollary 6.13 (Simply Typed Terms are SN - First Proof). Simply typed λex-calculus is
λex-strongly normalising.

This proof depends however on previous results by [Pot80]. Another self-contained
argument can be given by means of the arithmetical technique [vD77], and is extremely
short.

Lemma 6.14. If tA, uB ∈ SN λex, then t{xB/uB} ∈ SN λex.

Proof. By induction on the lexicographic triple 〈B, ηλex(t), t〉.

A THEORY OF EXPLICIT SUBSTITUTIONS WITH SAFE AND FULL COMPOSITION 19

• t = x. Then x{x/u} = u ∈ SN λex by the hypothesis.
• t = yvn with x 6= y and n ≥ 0. The i.h. gives vi{x/u} ∈ SN λex since ηλex(vi) decreases

and vi is strictly smaller than t. Then we conclude by Definition 3.4 and Proposition 3.5.
• t = xvvn. The i.h. gives V = v{x/u} and Vi = vi{x/u} in SN λex. We show t{x/u} =

uV Vn ∈ SN λex by induction on ηλex(u) + ηλex(V) + Σi∈1...n ηλex(Vi). For that, it is
sufficient to show that all its reducts are in SN λex. If the reduction takes place in a
subterm of u, V, Vn, then we conclude by the i.h. Otherwise, suppose u = λy.U and
(λy.U)V Vn → U [y/V]Vn. Then type(V) = type(v) < type(u) = type(x) so that
U{y/V } ∈ SN λex by the i.h. Let us write U{y/V }Vn = (zVn){z/U{y/V }}. We have
type(U{y/V }) = type(U) < type(u) so that again by the i.h. we get U{y/V }Vn ∈
SN λex. We conclude U [y/V]Vn ∈ SN λex by Definition 3.4 and Proposition 3.5.
• t = λy.v. Then v{x/u} ∈ SN λex by the i.h. and thus t{x/u} = λx.v{x/u} ∈ SN λex

follows from Definition 3.4 and Proposition 3.5.
• t = (λy.s)vvn. The i.h. gives S = s{x/u}, V = v{x/u} and Vi = vi{x/u} in SN λex.

To show t{x/u} = (λy.S)V Vn ∈ SN λex we reason by induction on ηλex(S) + ηλex(V) +
Σi∈1...n ηλex(Vi). For that, it is sufficient to show that all its reducts are in SN λex. If
the reduction takes place in a subterm of (λy.S), V, Vn, we conclude by the i.h. Otherwise
suppose (λy.S)V Vn → S[y/V]Vn. Take T = s[y/v]vn. Since ηλex(T) < ηλex(t), then the
i.h. gives T{x/u} ∈ SN λex. But S[y/V]Vn = T{x/u} so that S[y/V]Vn ∈ SN λex.
• t = s[y/v]vn. The i.h. gives S = s{x/u} and V = v{x/u} and Vi = vi{x/u} are in SN λex.

They are also typed. We claim t{x/u} = S[y/V]Vn ∈ SN λex. The perpetual strategy
gives

t{x/u} = S[y/V]Vn S{y/V }Vn

This last term can be written as T{x/u} where T = s{y/v} vn. Since ηλex(T) < ηλex(t),
then the i.h. gives T{x/u} ∈ SN λex and thus Theorem 3.3 gives S[y/V]Vn in SN λex.

Corollary 6.15 (Simply Typed Terms are SN - Second Proof). Simply typed λex-calculus
is λex-strongly normalising.

Proof. Let t be a simply typed term. We reason by induction on the structure of t. The
cases t = x and t = λx.u are straightforward. If t = uv, then u, v are typed so that
u, v ∈ SN λex by the i.h. We write t = (zv){z/u}, where zv is SN λex by Definition 3.4. The
term zv is also appropriately typed. Lemma 6.14 then gives t ∈ SN λex. If t = u[x/v], then
u, v are typed and by the i.h. u, v ∈ SN λex so that Lemma 6.14 gives u{x/v} ∈ SN λex.
Definition 3.4 and Proposition 3.5 allow us to conclude u[x/v] ∈ SN λex.

7. Deriving Strong Normalisation for Other Related Calculi

We now informally discuss how strong normalisation of other calculi with ES (having
or not safe composition) can be derived from strong normalisation of λex.

• The λx-calculus [Lin86, Lin92, Ros92] is just a sub-calculus of λex, with no equation and
no composition rule. Thus, the fact that t →λx t′ implies t →+

λex t′ is straightforward.
Since simply typed terms in both calculi are the same, we thus deduce that typed terms
are λx-strongly normalising.
• The λes-calculus [Kes07] can be seen as a refinement of λex, where propagation of substi-

tution with respect to application and substitution is done in a controlled way. We refer
the reader to [Kes07] for details on the rules. The fact that t→λes t′ implies t→+

λex t′ is

20 DELIA KESNER

straightforward. Simply typed terms in both calculi are the same, we thus deduce that
typed terms are λes-strongly normalising.
• Milner’s calculus with explicit partial substitution [Mil06], called λsub, is able to encode

λ-calculus in terms of a bigraphical reactive system. The operational semantics of λsub

is given by reduction rules which only propagate a substitution of the form [x/u] on one
occurrence of the variable x at a time (see for example [Mil06] for details). In [KC] it is
shown that there exists a translation T from terms to terms such that t→λsub

t′ implies
T(t)→+

λes T(t
′). Since simply typed terms in both calculi are the same, we conclude that

typed terms are λsub-strongly normalising from the previous point.
• A λ-calculus with implicit partial β-reduction, written here λβp

, appears in [dB87]. Its
syntax is the one of the pure λ-calculus (so that there is no explicit substitution operator)
and its semantics is similar to that of λsub since arguments are consumed on only one
occurrence at a time. Similarly to [KC] one can define a translation T from λ-terms to
terms such that one-step reduction in λβp

is projected into at least one-step reduction in
λsub. Since simply typed λ-terms translate to simply typed terms, then typed λ-terms
are λβp

-strongly normalising from the previous point.
• David and Guillaume [DG01] defined a calculus with labels, called λws, which allows

controlled composition of ES without losing PSN. The calculus λws has a strong form of
composition which is safe but not full. Its simply typed named notation can be translated
into simply typed terms in such a way that one-step reduction in λws implies at least one-
step reduction in λex. Thus, SN for typed terms in λws is a consequence of SN for typed
λex.
• A calculus with a safe notion of composition in director string notation is defined in [SFM03].

The named version of this calculus can be understood as the λx-calculus together with a
composition rule of the form:

t[x/u][y/v]→ t[x/u[y/v]] if y ∈ fv(u) & y /∈ fv(t)

This composition rule can be easily simulated by the rules Comp and Gc of the λex-
calculus so that the whole calculus can be simulated by λex. As a consequence, simply
typed terms turn out to be strongly normalising.
• The λesw-calculus [Kes07] was used as a technical tool to show that λes enjoys PSN.

The syntax extends terms with weakening constructors so that it is straightforward to
define a translation T from λesw-terms to terms which forgets these weakening operators.
The reduction relation λesw can be split into an equational system E and two rewriting
relations L1 and L2 s.t.
(1) If t =E t′ or t→L1

t′ then T(t) =C T(t
′)

(2) If t→L2
t′ then T(t)→+

λex T(t
′)

The reduction relation generated by the rules L1 modulo the equations E can be easily
shown to be terminating. Also, simply typed λesw-terms trivially translate via T to
simply typed terms. Thus, the Abstract Theorem given in the Appendix A allows us to
conclude that typed λesw-terms are λesw-strongly normalising.

8. Confluence

In this section we study confluence of the λex-calculus. More precisely, we show conflu-
ence of the relation →λex on metaterms, which are terms containing metavariables denoting
incomplete programs/proofs in a higher-order framework [Hue76]. Metavariables should

A THEORY OF EXPLICIT SUBSTITUTIONS WITH SAFE AND FULL COMPOSITION 21

come with a minimal amount of information to guarantee that some basic operations such
as instantiation (replacement of metavariables by metaterms) are sound in a typing context.
We thus specify metavariables as follows. We consider a countable set of raw metavariables,
denoted X, Y, To each raw metariable X, we associate a set of variables ∆, thus yielding
a decorated metavariable denoted by X∆. Thus for example Xx,y,z and Yx,z are decorated
metavariables. This decoration says nothing about the structure of the incomplete proof
itself but is sufficient to guarantee that different occurrences of the same metavariable are
never instantiated by different metaterms.

The set of metaterms is defined by the following grammar.

M ::= x | X∆ | M M | λx.M |M[x/M]

Notice that terms are in particular metaterms.
We extend the notion of free variables to metaterms by fv(X∆) := ∆. Thus, α-

conversion turns out to be perfectly well-defined on metaterms by extending the renaming
of bound variables to the decoration sets. Thus for example λx.YxXx,y =α λz.YzXz,y.

Meta-substitution on metaterms extends that on terms by adding two new cases:

X∆{x/v} := X∆ if x /∈ ∆
X∆{x/v} := X∆[x/v] if x ∈ ∆

Lemma 8.1. Let t, u be metaterms. Then t{x/u} = t if x /∈ fv(t).

Proof. By induction on t.

The following property holds for metaterms.

Lemma 8.2 (Composition Lemma). Let t, u, v be metaterms and let x, y s.t. x 6= y and
x /∈ fv(v). Then t{x/u}{y/v} =e t{y/v}{x/u{y/v}}.

Proof. By induction on metaterms using Lemma8.1. Notice that =e is needed for the case
where t is a metavariable.

Reduction on metaterms must be understood in the same way reduction on terms:
the λex-relation is generated by the →Bx-reduction relation on e-equivalence classes of
metaterms.

Reduction on terms and metaterms enjoys stability by substitution and full composition.

Lemma 8.3 (Stability of Reduction of Metaterms by Substitution). Let t, u be metaterms.
For R ∈ {x, ex, λx, λex}, if t →R t′, then u{x/t} →∗

R u{x/t′} and t{x/u} →R t′{x/u}.
Thus in particular t{x/u} ∈ SNR implies t ∈ SNR.

Proof. By induction on t→ t′.

Lemma 8.4 (Full Composition for Metaterms). Let t, u be metaterms. Then t[x/u] →∗
ex

t{x/u}.

Proof. The proof can be done by induction on t using Lemma 8.1. In contrast to full
composition on terms (Lemma 2.2), the property holds with an equality for the base case
t = X∆ with x ∈ ∆ since X∆[x/u] = X∆{x/u}.

22 DELIA KESNER

It is well-known that confluence on metaterms fails for calculi without composition for
ES as for example the following critical pair in the λx-calculus shows

s = t[x/u][y/v] ∗← ((λx.t) u)[y/v]→∗ t[y/v][x/u[y/v]] = s′

Indeed, while this diagram can be closed in λx for terms without metavariables [BR95],
there is no way to find a common reduct between s and s′ whenever t is (or contains)
metavariables: no λx-reduction rule is able to mimic composition on raw/decorated metavari-
ables. Fortunately, this diagram can be closed in the λex-calculus as follows. If y ∈ fv(u),
then s→Comp s′, otherwise s′ →∗

ex (L. 8.4)
t[y/v][x/u{y/v}] =(L. 8.1) t[y/v][x/u] =C s′.

We now develop a confluence proof for metaterms which is based on the existence of a
mapping allowing to verify the Z-property as stated by van Oostrom [vO].

Definition 8.5 (Z-Property). A map ◦ from terms to terms satisfies the Z-property for a
reduction relation →R iff t→R u implies u→∗

R t◦ and t◦ →∗
R u◦. A reduction relation →R

has the Z-property if there is a map which satisfies the Z-property for →R.

It turns out [vO] that →R is confluent if it has the Z-property (see Theorem A.1 in the
Appendix A), so to show confluence of λex it is then sufficient to define a map on metaterms
satisfaying the Z-property. Such a map can be defined in terms of the superdevelopment
function for the λ-calculus [Acz78, vR93].

Definition 8.6 (Superdevelopment Function). The function ◦ on metaterms is defined by
induction as follows:

X
◦
∆ := X∆ (tu)◦ := t◦u◦ if t◦ is not an abstraction

x◦ := x (tu)◦ := v{x/u◦} if t◦ = λx.v
(λx.t)◦ := λx.t◦ t[x/u]◦ := t◦{x/u◦}

Notice that fv(t◦) ⊆ fv(t).

Lemma 8.7. Let t, u be metaterms. Then t◦u◦ →∗
λex (tu)◦.

Proof. If t◦ is not an abstraction, then t◦u◦ = (tu)◦. If t◦ = λy.s, then t◦u◦ = (λy.s)u◦ →B

s[y/u◦]→∗
ex (L.8.4)

s{y/u◦} = (tu)◦.

Lemma 8.8. Let t, u be metaterms. Then t◦{x/u◦} →∗
λex t{x/u}◦.

Proof. The proof is by induction on t. Suppose t = vw.

• If v◦ is not an abstraction, then

(vw)◦{x/u◦} =
v◦{x/u◦}w◦{x/u◦} →∗

λex (i.h.) v{x/u}◦w{x/u}◦ →∗
λex (L.8.7)

(vw){x/u}◦

• If v◦ = λz.r, then the i.h. gives v◦{x/u◦} = (λz.r){x/u◦} →∗
λex v{x/u}◦ so that

v{x/u}◦ = λz.s where r{x/u◦} →∗
λex s. As a consequence,

(vw)◦{x/u◦} =
r{z/w◦}{x/u◦} =e (L.8.2)

r{x/u◦}{z/w◦{x/u◦}} →∗
λex s{z/w◦{x/u◦}}

→∗
λex (i.h. & L.8.3)

s{z/w{x/u}◦}

= (v{x/u}w{x/u})◦

= (vw){x/u}◦

A THEORY OF EXPLICIT SUBSTITUTIONS WITH SAFE AND FULL COMPOSITION 23

The case t = v[y/w] also uses the i.h. and Lemma 8.2. All the other cases are straightfor-
ward.

Lemma 8.9. Let t be a metaterm. Then t→∗
λex t◦.

Proof. By induction on t. The interesting cases are the following ones.

• t = uv: Then uv →∗
λex (i.h.) u◦v◦ →∗

λex (L.8.7)
(uv)◦ = t◦.

• t = u[x/v]: Then u[x/v]→∗
λex (i.h.) u◦[x/v◦]→∗

ex (L.8.4)
u◦{x/v◦} →∗

λex (L.8.8)
u{x/v}◦.

All the other cases are straightforward.

Lemma 8.10 (Towards the Z-Property). Let t, u be metaterms. If t →Bx u, then u →∗
λex

t◦ →∗
λex u◦.

Proof. By induction on t→Bx u.

• If t = λx.r →Bx λx.s = u, where r →Bx s, then the property holds by the i.h.
• If t = r[x/v]→Bx s[x/v] = u, where r →Bx s, then

u = s[x/v] →∗
λex (i.h.) r◦[x/v]

→∗
λex (L.8.9)

r◦[x/v◦]

→∗
ex (L.8.4)

r◦{x/v◦} = t◦ →∗
λex (i.h. & L8.3)

s◦{x/v◦} =

s[x/v]◦ = u◦

• If t = v[x/r]→Bx v[x/s] = u, where r →Bx s, then proceed as in the previous case.
• If t = rv →Bx sv = u, where r →Bx s, then sv →∗

λex (i.h.) r◦v →∗
λex (L.8.9)

r◦v◦ →∗
λex (L.8.7)

(rv)◦. For the second part of the statement there are two cases:
− If r◦ is not an abstraction, then (rv)◦ = r◦v◦ →∗

λex (i.h.) s◦v◦ →∗
λex (L.8.7)

(sv)◦.

− If r◦ = λz.w, then the i.h. r◦ →∗
λex s◦ implies s◦ = λz.q, where w →∗

λex q. We conclude
with (rv)◦ = w{z/v◦} →∗

λex (L.8.3)
q{z/v◦} = (sv)◦.

• If t = vr →Bx vs = u, where r →Bx s, then vs→∗
λex (i.h.) vr◦ →∗

λex (L.8.9)
v◦r◦ →∗

λex (L.8.7)

(vr)◦. For the second part of the statement there are two cases:
− If v◦ is not an abstraction, then (vr)◦ = v◦r◦ →∗

λex (i.h.) v◦s◦ = (vs)◦.

− If v◦ = λy.w, then (vr)◦ = w{y/r◦} →∗
λex (i.h. & L.8.3)

w{y/s◦} = (vs)◦.

• If t = x[x/v] →Var v = u, then x[x/v]◦ = x{x/v◦} = v◦. We conclude since v →∗
λex v◦

holds by Lemma8.9.
• If t = r[x/v] →Gc r = u, then r[x/v]◦ = r◦{x/v◦} =(L.8.1) r◦. We conclude since

r →∗
λex r◦ holds by Lemma 8.9.

• If t = (rs)[x/v]→App r[x/v]s[x/v] = u, then

u →∗
λex (L.8.9)

r◦[x/v◦]s◦[x/v◦]

→∗
ex (L.8.4)

r◦{x/v◦}s◦{x/v◦} =

(r◦s◦){x/v◦} →∗
λex (L.8.3&8.7)

(rs)◦{x/v◦} =

(rs)[x/v]◦ = t◦

For the second part there are two cases.
− If r◦ is not an abstraction, then

t◦ = r◦{x/v◦}s◦{x/v◦} = r[x/v]◦s[x/v]◦ →∗
λex (L.8.7)

(r[x/v]s[x/v])◦ = u◦

24 DELIA KESNER

− If r◦ = λy.q, then r[x/v]◦ = λy.q{x/v◦}, so that

t◦ = (rs)[x/v]◦

= (rs)◦{x/v◦}
= q{y/s◦}{x/v◦} =e (L.8.2) q{x/v◦}{y/s◦{x/v◦}} =

q{x/v◦}{y/s[x/v]◦} =
(r[x/v]s[x/v])◦ = u◦

• If t = (λy.r)[x/v]→Lamb λy.r[x/v] = u, then (λy.r)[x/v]◦ = λy.r◦{x/v◦}. We have

u = λy.r[x/v]→∗
λex (L.8.9)

λy.r◦[x/v◦]→∗
ex (L.8.4)

λy.r◦{x/v◦} = t◦ = u◦

• If t = r[x/v][y/w]→Comp r[y/w][x/v[y/w]] = u, then

u = r[y/w][x/v[y/w]] →∗
λex (L.8.9)

r◦[y/w◦][x/v◦[y/w◦]] →∗
λex (L.8.4 & 8.3)

r◦{y/w◦}{x/v◦{y/w◦}} =e (L.8.2) r◦{x/v◦}{y/w◦} = t◦

Since u◦ = r◦{y/w◦}{x/v◦{y/w◦}}, then we have t◦ →∗
λex u◦ as well.

Lemma 8.11. Let t, u be metaterms s.t. t =e u. Then,

• If r =e s, then t{x/r} =e u{x/s}.
• t◦ =e u◦.

Proof. Suppose t =e u holds in n steps. Both properties can be simultaneously proved by
induction on the lexicographic pair 〈n, t〉.

Corollary 8.12 (Z-Property). Let t, u be metaterms. If t→λex u, then u→∗
λex t◦ →∗

λex u◦.

Proof. Let t =e r →Bx s =e u. By Lemma8.10 r →∗
λex s◦ →∗

λex r◦ and by Lemma. 8.11
t◦ =e r◦ and s◦ =e u◦. We thus conclude t→∗

λex u◦ →∗
λex t◦.

Corollary 8.13 (Confluence). The reduction relation →λex is confluent on metaterms.

Proof. Corollary 8.12 guarantees the Z-property. We conclude by Theorem A.1 in the
Appendix A.

9. Conclusion

We propose simple syntax in named variable notation to model a calculus with explicit
substitutions enjoying good properties, specially confluence on metaterms, preservation of
β-strong normalisation, strong normalisation of typed terms and implementation of full
composition.

A simple perpetual strategy is defined for calculi with ES enjoying full composition
in a modular way. This strategy is used to provide an inductive definition of SN terms
which is then used to prove that untyped terms enjoy PSN. The inductive characterisation
of SN terms and the PSN theorem are really modular with respect to other proofs in the
literature [LLD+04, Bon01b], especially because we make an intensive use of two abstract
properties: full composition and the IE property. Last but not least, our development
is direct, since it is not based on similar properties for other related calculi, and has a
constructive style, since no classical axiom seems to be needed.

A THEORY OF EXPLICIT SUBSTITUTIONS WITH SAFE AND FULL COMPOSITION 25

Some remarks about the application of this modular method to other calculi with ES
might be interesting. On one hand, the technology presented in this paper has been success-
fully applied to other calculi with explicit substitutions enjoying full composition [KR09,
AG09]. On the other hand, full composition alone is not sufficient to achieve the SN
proof, otherwise the λσ-calculus [ACCL91], which is known to not being strongly normal-
ising [Mel95], could be treated. Indeed, our strategy is not perpetual for λσ: Melliès’
counter-example is based on an infinite λσ-reduction sequence starting from a simply typed
term which is not reached by our perpetual strategy. In other words, is incomplete for
λσ. The definition of a perpetual strategy for λσ remains open.

We believe that a de Bruijn or nominal version of λex could be useful in real imple-
mentations. In the first case, this could be achieved by using for example λσ⇑ technology
(so that equation C can be eliminated) together with some control of composition needed
to guarantee strong normalisation.

Another interesting issue is the extension of Pure Type Systems (PTS) with ES in
order to improve the understanding of logical systems used in theorem-provers. Work done
in this direction is based on sequent calculi [LDM06] or natural deduction [Muñ01]. The
main contribution of λex with respect to the formalisms previously mentioned would be the
safe notion of full composition.

References

[ABR00] Ariel Arbiser, Eduardo Bonelli, and Alejandro Ŕıos. Perpetuality in a lambda calculus with
explicit substitutions and composition. Workshop Argentino de Informática Teórica (WAIT),
JAIIO, 2000.

[ACCL91] Mart́ın Abadi, Luca Cardelli, Pierre Louis Curien, and Jean-Jacques Lévy. Explicit substitu-
tions. Journal of Functional Programming, 4(1):375–416, 1991.

[Acz78] Peter Aczel. A general church-rosser theorem, 1978. Unpublished note, University of Manch-
ester.

[AG09] Beniamino Accattoli and Stefano Guerrini. Jumping Boxes. Representing lambda-calculus boxes
by jumps. In 18th EACSL Annual Conference on Computer Science Logic (CSL), Lecture Notes
in Computer Science, September 2009.

[BBKV76] Henk Barendregt, Jan Bergstra, Jan-Willem Klop, and Henri Volken. Degress, reductions and
representability in the lambda calculus. Technical Report 22, Utrecht University, 1976.

[BBLRD96] Zine-El-Abidine Benaissa, Daniel Briaud, Pierre Lescanne, and Jocelyne Rouyer-Degli. λυ, a
calculus of explicit substitutions which preserves strong normalisation. Journal of Functional
Programming, 6(5):699–722, 1996.

[BG99] Roel Bloo and Herman Geuvers. Explicit substitution: on the edge of strong normalization.
Theoretical Computer Science, 211(1-2):375–395, 1999.

[Blo97] Roel Bloo. Preservation of Termination for Explicit Substitution. PhD thesis, Eindhoven Uni-
versity of Technology, 1997.

[Bon01a] Eduardo Bonelli. Perpetuality in a named lambda calculus with explicit substitutions. Mathe-
matical Structures in Computer Science, 11(1):47–90, 2001.

[Bon01b] Eduardo Bonelli. Substitutions explicites et réécriture de termes. Thèse de doctorat, Université
Paris XI, Orsay, November 2001.

[BR95] Roel Bloo and Kristoffer Rose. Preservation of strong normalization in named lambda cal-
culi with explicit substitution and garbage collection. In Computer Science in the Netherlands
(CSN), pages 62–72, 1995.

[CDC78] Mario Coppo and Mariangiola Dezani-Ciancaglini. A new type assignment for lambda-terms.
Archive for Mathematical Logic, 19:139–156, 1978.

[CDC80] Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic functionality the-
ory for the λ-calculus. Notre Dame Journal of Formal Logic, 4:685–693, 1980.

26 DELIA KESNER

[Cur91] Pierre-Louis Curien. An abstract frame work for environment machines. Theoretical Computer
Science, 82(2):389–402, 1991.

[dB72] Nicolaas G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the church-rosser theorem. Indag. Mathematicae,
5(35):381–392, 1972.

[dB78] Nicolaas G. de Bruijn. A namefree lambda calculus with facilities for internal definition of
expressions and segments. Technical Report 78-WSK-03, Eindhoven University of Technology,
1978.

[dB87] Nicolaas G. de Bruijn. Generalizing Automath by Means of a Lambda-Typed Lambda Calculus.
In Mathematical Logic and Theoretical Computer Science, number 106 in Lecture Notes in Pure
and Applied Mathematics, 1987.

[DCKP00] Roberto Di Cosmo, Delia Kesner, and Emmanuel Polonovski. Proof nets and explicit substi-
tutions. In Jerzy Tiuryn, editor, Foundations of Software Science and Computation Structures
(FOSSACS), volume 1784 of Lecture Notes in Computer Science, pages 63–81. Springer-Verlag,
March 2000.

[DCKP03] Roberto Di Cosmo, Delia Kesner, and Emmanuel Polonovski. Proof nets and explicit substitu-
tions. Mathematical Structures in Computer Science, 13(3):409–450, 2003.

[DG99] René David and Bruno Guillaume. The λl-calculus. In Delia Kesner, editor, Proceedings of
the 2nd Workshop on Explicit Substitutions: Theory and Applications to Programs and Proofs,
pages 2–13, July 1999.

[DG01] René David and Bruno Guillaume. A λ-calculus with explicit weakening and explicit substitu-
tion. Mathematical Structures in Computer Science, 11:169–206, 2001.

[DHK00] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Higher-order unification via explicit sub-
stitutions. Information and Computation, 157:183–235, 2000.

[DU01] Roy Dyckhoff and Christian Urban. Strong normalisation of Herbelin’s explicit substitution cal-
culus with substitution propagation. In Pierre Lescanne, editor, Proceedings of the 3rd Workshop
on Explicit Substitutions: Theory and Applications to Programs and Proofs, pages 26–45, June
2001.

[For02] Julien Forest. A weak calculus with explicit operators for pattern matching and substitution. In
Sophie Tison, editor, 13th International Conference on Rewriting Techniques and Applications
(RTA), volume 2378 of Lecture Notes in Computer Science, pages 174–191. Springer-Verlag,
July 2002.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.
[GL99] Jean Goubault-Larrecq. Conjunctive types and SKInT. In Thorsten Altenkirch, Wolfgang

Naraschewski, and Bernhard Reus, editors, Proceedings of the International Workshop Types
for Proofs and Programs, volume 1657 of Lecture Notes in Computer Science, pages 106–120.
Springer-Verlag, March 1999.

[GP99] Murdoch Gabbay and Andrew Pitts. A new approach to abstract syntax involving binders. In
Giuseppe Longo, editor, 14th Annual IEEE Symposium on Logic in Computer Science (LICS),
pages 214–224. IEEE Computer Society Press, July 1999.

[Her94] Hugo Herbelin. A λ-calculus structure isomorphic to sequent calculus structure. In Leszek Pa-
cholski and Jerzy Tiuryn, editors, Proceedings of the 8th Annual Conference of the European
Association for Computer Science Logic (CSL), volume 933 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, September 1994.

[HL89] Thérèse Hardin and Jean-Jacques Lévy. A confluent calculus of substitutions. In France-Japan
Artificial Intelligence and Computer Science Symposium, 1989.

[HMP96] Thérèse Hardin, Luc Maranget, and Bruno Pagano. Functional back-ends within the lambda-
sigma calculus. In R. Kent Dybvig, editor, Proceedings of the ACM International Conference
on Functional Programming, pages 25–33. ACM Press, May 1996.

[Hue76] Gérad Huet. Résolution d’équations dans les langages d’ordre 1, 2, . . . , ω. Thèse de doctorat
d’état, Université Paris VII, 1976.

[KC] Delia Kesner and Shane Ó Conchúir. Milner’s lambda calculus with partial substitutions. Avail-
able on http://www.pps.jussieu.fr/∼kesner/papers/.

[Kes07] Delia Kesner. The theory of calculi with explicit substitutions revisited. In Jacques Duparc
and Thomas Henzinger, editors, Proceedings of the 16th Annual Conference of the European

http://www.pps.jussieu.fr/~kesner/papers/

A THEORY OF EXPLICIT SUBSTITUTIONS WITH SAFE AND FULL COMPOSITION 27

Association for Computer Science Logic (CSL), volume 4646 of Lecture Notes in Computer
Science, pages 238–252. Springer-Verlag, September 2007.

[Kes08] Delia Kesner. Perpetuality for full and safe composition (in a constructive setting). In Luca
Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and
Igor Walukiewicz, editors, Proceedings of the 35th International Colloquium on Automata, Lan-
guages and Programming (ICALP), volume 5126 of Lecture Notes in Computer Science, pages
311–322. Springer-Verlag, July 2008.

[Kik07] Kentaro Kikuchi. Simple proofs of characterizing strong normalization for explicit substitu-
tion calculi. In Franz Baader, editor, 18th International Conference on Rewriting Techniques
and Applications (RTA), volume 4533 of Lecture Notes in Computer Science, pages 257–272.
Springer-Verlag, September 2007.

[KL05] Delia Kesner and Stéphane Lengrand. Extending the explicit substitution paradigm. In Jürgen
Giesl, editor, 16th International Conference on Rewriting Techniques and Applications (RTA),
volume 3467 of Lecture Notes in Computer Science, pages 407–422. Springer-Verlag, April 2005.

[KL07] Delia Kesner and Stéphane Lengrand. Resource operators for lambda-calculus. Information and
Computation, 205(4):419–473, 2007.

[KL08] Kentaro Kikuchi and Stéphane Lengrand. Strong normalisation of cut-elimination that simu-
lates β-reduction. In Roberto Amadio, editor, Foundations of Software Science and Computa-
tion Structures, volume 4962 of Lecture Notes in Computer Science, pages 380–394. Springer-
Verlag, March 2008.

[KR09] Delia Kesner and Fabien Renaud. The prismoid of resources. In 34st International Symposium
on Mathematical Foundations of Computer Science (MFCS), Lecture Notes in Computer Sci-
ence, Springer-Verlag, August 2009.

[Klo80] Jan-Willem Klop. Combinatory Reduction Systems. PhD thesis, Mathematical Centre Tracts
127, CWI, Amsterdam, 1980.

[KR97] Fairouz Kamareddine and Alejandro Ŕıos. Extending a λ-calculus with explicit substitution
which preserves strong normalisation into a confluent calculus on open terms. Journal of Func-
tional Programming, 7(4):395–420, 1997.

[KR98] Fairouz Kamareddine and Alejandro Ŕıos. Bridging de Bruijn indices and variable names in
explicit substitutions calculi. Logic Journal of the Interest Group of Pure and Applied Logic,
6(6):843–874, 1998.

[LDM06] Stéphane Lengrand, Roy Dyckhoff, and James McKinna. A sequent calculus for type theory. In
Zoltan Esik, editor, Proceedings of the 15th Annual Conference of the European Association for
Computer Science Logic (CSL), volume 4207 of Lecture Notes in Computer Science. Springer-
Verlag, September 2006.

[Len06] Stéphane Lengrand. Normalisation and Equivalence in Proof Theory and Type Theory. PhD
thesis, University Paris 7 and University of St Andrews, November 2006.

[Lin86] Raphael Lins. A new formula for the execution of categorical combinators. In 8th Conference
on Automated Deduction (CADE), volume 230 of Lecture Notes in Computer Science, pages
89–98. Springer-Verlag, August 1986.

[Lin92] Raphael Lins. Partial categorical multi-combinators and Church Rosser theorems. Technical
Report 7/92, Computing Laboratory, University of Kent at Canterbury, May 1992.

[LLD+04] Stéphane Lengrand, Pierre Lescanne, Dan Dougherty, Mariangiola Dezani-Ciancaglini, and
Steffen van Bakel. Intersection types for explicit substitutions. Information and Computation,
189(1):17–42, 2004.

[LM99] Jean-Jacques Lévy and Luc Maranget. Explicit substitutions and programming languages. In
R. Ramanujam C. Pandu Rangan, Venkatesh Raman, editor, Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS), volume 1738 of Lecture Notes in Computer
Science, pages 181–200. Springer-Verlag, December 1999.

[LRD94] Pierre Lescanne and Jocelyne Rouyer-Degli. The calculus of explicit substitutions λυ. Technical
report, INRIA, Lorraine, 1994.

[LRD95] Pierre Lescanne and Jocelyne Rouyer-Degli. Explicit substitutions with de Bruijn levels. In Jieh
Hsiang, editor, 6th International Conference on Rewriting Techniques and Applications (RTA),
volume 914 of Lecture Notes in Computer Science, pages 294–308. Springer-Verlag, April 1995.

28 DELIA KESNER

[Mel95] Paul-André Melliès. Typed λ-calculi with explicit substitutions may not terminate. In Mari-
angiola Dezani-Ciancaglini and Gordon Plotkin, editors, Proceedings of the 2nd International
Conference on Typed Lambda Calculus and Applications (TLCA), volume 902 of Lecture Notes
in Computer Science, pages 328–334. Springer-Verlag, April 1995.

[Mil06] Robin Milner. Local bigraphs and confluence: two conjectures. In Roberto Amadio and Iain
Phillips, editors, Proceedings of the 13th International Workshop on Expressiveness in Concur-
rency (EXPRESS), volume 175. Electronic Notes in Theoretical Computer Science, 2006.

[Muñ01] César Muñoz. Dependent types and explicit substitutions: a meta-theoretical development.
Mathematical Structures in Computer Science, 11(1), 2001.

[Pot80] Garrell Pottinger. A type assignment for the strongly normalizable λ-terms. In Roger Hind-
ley and Jonathan P. Seldin, editors, To Haskell Brooks Curry: Essays in Combinatory Logic,
Lambda Calculus and formalism, pages 561–577. Academic Press, 1980.

[Ros92] Kristoffer Rose. Explicit cyclic substitutions. In Michaël Rusinowitch and Jean-Luc Rémy, ed-
itors, Proceedings of the 3rd International Workshop on Conditional Term Rewriting Systems
(CTRS), volume 656 of Lecture Notes in Computer Science, pages 36–50. Springer-Verlag, July
1992.

[Sak] Takafumi Sakurai. Strong normalizability of calculus of explicit substitutions with composition.
Available on http://www.math.s.chiba-u.ac.jp/∼sakurai/papers.html.

[SFM03] Francois-Régis Sinot, Maribel Fernández, and Ian Mackie. Efficient reductions with director
strings. In Robert Nieuwenhuis, editor, 14th International Conference on Rewriting Techniques
and Applications (RTA), volume 2706 of Lecture Notes in Computer Science, pages 46–60.
Springer-Verlag, June 2003.

[SvO07] François-Régis Sinot and Vincent van Oostrom. Preserving termination of the λ-calculus or not,
2007. Unpublished note.

[Tai67] William Tait. Intensional interpretation of functionals of finite type I. Journal of Symbolic Logic,
32, 1967.

[vD77] Diederik Ton van Daalen. The language theory of automath. PhD thesis, Technische Hogeschool
Eindhoven, 1977.

[vO] Vincent van Oostrom. Z. See http://www.phil.uu.nl/∼oostrom/publication/rewriting.html
for slides.

[vR93] Femke van Raamsdonk. Confluence and superdevelopments. In Claude Kirchner, editor, 5th In-
ternational Conference on Rewriting Techniques and Applications (RTA), volume 690 of Lecture
Notes in Computer Science, pages 168–182. Springer-Verlag, June 1993.

[vR96] Femke van Raamsdonk. Confluence and Normalization for Higher-Order Rewriting. PhD thesis,
Amsterdam University, Netherlands, 1996.

[vRSSX99] Femke van Raamsdonk, Paula Severi, Morten Heine Sorensen, and Hongwei Xi. Perpetual
reductions in λ-calculus. Information and Computation, 149(2), 1999.

http://www.math.s.chiba-u.ac.jp/~sakurai/papers.html
http://www.phil.uu.nl/~oostrom/publication/rewriting.html

A THEORY OF EXPLICIT SUBSTITUTIONS WITH SAFE AND FULL COMPOSITION 29

Appendix A. Abstract Reduction Results

Theorem A.1 (Z implies Confluence). If →R has the Z-property, then →R is confluent.

Proof. We give a proof following the picture appearing in [vO] which proceeds in many
steps. Suppose that ◦ is some map satisfying the Z-property for R.

(1) Define a• := a if a is in R-normal form, a• := a◦ otherwise.
(2) Prove that • also satisfies the Z-property for →R.

Proof. If a →R b, then b →∗
R a◦ →∗

R b◦ by the hypothesis and a• = a◦ by Point (1)
so that b→∗

R a•. If b is an R-normal form, then b• = b = a◦ = a• so that a• →∗
R b•. If

b is not an R-normal form, then b• = b◦ so that also a• = a◦ →∗
R b◦ = b•.

(3) Prove that a→∗
R a•.

Proof. If a is an R-normal form, then a• = a so we are done. Otherwise, there is b
such that a→R b, so that Point (2) gives b→∗

R a• and thus a→∗
R a•.

(4) Prove that a→∗
R b implies a• →∗

R b•.
Proof. By induction on the number n of steps from a to b. If n = 0, then a = b and

a• = b•. If n > 0, then a→R c→∗
R b, where c→∗

R b holds in n− 1 steps. Point (2) and
the i.h. give a• →∗

R c• →∗
R b•.

(5) Conclude confluence of →R.
Proof. Let t→∗

R t1 and t→∗
R t2. We want to show that there is t3 such that t1 →

∗
R t3

and t2 →
∗
R t3. We proceed by induction on the number n of steps from t to t2. If n = 0,

then t = t2 and we take t3 = t1 so we are done. If n > 0, then t →R u →∗
R t2, with

n − 1 steps from u to t2. By Point (2) u →∗
R t• and by Point (4) t• →∗

R t•1 so that
u →∗

R t•1. By Point (3) t1 →
∗
R t•1. Now, u →∗

R t•1 and u →∗
R t2 holds in n − 1 steps so

we close the diagram by the i.h..

Theorem A.2 (Modular Strong Normalisation). Let A1 and A2 be two reduction relations
on s and let A be a reduction relation on S. Let R ⊆ s× S. Suppose

P1: For every u, v, U (u R U & u A1 v imply ∃V s.t. v R V and U A∗ V).
P1: For every u, v, U (u R U & u A2 v imply ∃V s.t. v R V and U A+ V).
P1: The relation A1 is well-founded.

Then, t R T & T ∈ SNA imply t ∈ SNA1∪A2
.

Proof. A constructive proof of this theorem can be found as Corollary 26 of [Len06]. A
proof by contradiction can be easily done as follows. Suppose t /∈ SNA1∪A2

. Then, there is
an infinite A1∪A2-reduction sequence starting at t, and since A1 is a well-founded relation
by P3, this reduction sequence has necessarily the form

t→∗
A1

t1 →
+
A2

t2 →
∗
A1

t3 →
+
A2

. . .∞

and can be projected by P1 and P2 into an infinite A-reduction sequence as follows:

t →∗
A1

t1 →+
A2

t2 →∗
A1

t3 →+
A2

. . .∞
R R R R
T →∗

A T1 →+
A T2 →∗

A T3 →+
A . . .∞

We thus get a contradiction with the fact the T ∈ SNA.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://reativeommons.org/lienses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Syntax
	3. Perpetuality and Preservation of Normalisation
	4. The Labelling Technique
	5. The IE Property
	6. Intersection Types
	7. Deriving Strong Normalisation for Other Related Calculi
	8. Confluence
	9. Conclusion
	References
	Appendix A. Abstract Reduction Results

