
Logical Methods in Computer Science
Vol. 5 (4:1) 2009, pp. 1–25
www.lmcs-online.org

Submitted Jan. 9, 2009
Published Nov. 2, 2009
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Abstract. We present an extension of System F with call-by-name exceptions. The
type system is enriched with two syntactic constructs: a union type for programs whose
execution may raise an exception at top level, and a corruption type for programs that
may raise an exception in any evaluation context (not necessarily at top level). We present
the syntax and reduction rules of the system, as well as its typing and subtyping rules.
We then study its properties, such as confluence. Finally, we construct a realizability
model using orthogonality techniques, from which we deduce that well-typed programs
are weakly normalizing and that the ones who have the type of natural numbers really
compute a natural number, without raising exceptions.

1. Introduction

Exceptions are a convenient mechanism for handling errors in programming languages.
Most modern languages use them: Java, ML, C++, . . . . The main computational features
of exceptions are:

(1) One can raise an exception instead of any other expression (or instruction);
(2) It propagates automatically by default;
(3) One can catch it only when they need to.

Exceptions have long been confined to call-by-value languages and are usually presented
as a mechanism which “cuts through” the normal control flow of a program when raised.
This is viewing the raising of an exception as an effect of the calculus. Unfortunately, this
view makes exceptions hard to transpose to call-by-name calculi since those do not cope
well with effects.

This is a well-known problem. While in call-by-value the effect of a term t u can be
simply predicted based solely on the effects of t and u, in call-by-name it also depends on
the actual term t. Indeed, in call-by-name u may well not be evaluated thus not producing
its effect (or evaluated many times, producing the effect many times). For exceptions, this
means that in call-by-name, the fact that u raises an exception does not necessarily imply
that t u will. Hence in call-by-name, as summarized by S. Peyton Jones et al. [14], “(. . . )
the only productive way to think about an expression is to consider the value it computes,
not the way in which the value is computed”. Based on this observation, they proposed the
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idea of exceptions-as-values: a value is either a “normal” value, or an “exceptional” one. In
their framework, exceptions are not effects anymore. And while they present this idea in
the context of the Haskell programming language, this is a very general idea for exceptions
in call-by-name calculi.

From a typing perspective, exceptions are no simple beasts. Indeed, the type system
should allow the use of exceptions in any part of a program. What should then be the type
of the operation for raising an exception1? A solution, used in ML for instance, is to allow
the operation of raising an exception to have any type. In [14], S. Peyton Jones et al. chose
a similar solution, making exceptional values inhabitants of all types. While simple, this
solution comes at a price, the loss of type safety with respect to exceptions. The type of an
expression never ensures that no exceptions can be raised during evaluation.

If we want the type of an expression to reflect which exception it may raise, a more pre-
cise typing is in order. For call-by-value languages, since exceptions are effects, a convenient
and efficient solution is to add to the type system an effect system [13, 7]. Unfortunately
and unsurprisingly, this solution is unadapted to the typing of call-by-name exceptional
values. Indeed, tracking values with types is much more difficult than tracking effects.

The call-by-name evaluation is well represented amongst type theoretical calculi which
are at the core of many proof assistants (coq [4], lego [15], . . . ). We believe this reinforce
the case for studying exceptions in call-by-name and their precise typing. Indeed, the
solution of having exceptional values inhabiting all types would be inconsistent in these
settings.

This paper proposes a type system for exceptions in call-by-name calculi. By introduc-
ing the new notion of corruption, this type system is able to track which exceptions may
escape from a term during evaluation. By using subtyping, this notion is able to cope with
the automatic propagation of exceptions and to respect the modularity of typing. This type
system is presented in the context of an extension of System F with exceptions. System F
is used here as a first step towards more elaborate type theoretical frameworks.

Meta-theoretical properties of the resulting calculus are proved in particular by exhibit-
ing a realizability model. While parts of the proofs are given in this paper, more detailed
proofs of the results presented2 are available in the Ph.D thesis of the author [8].

The remaining of the paper is organized as follows. We explain our design in Section 2:
we justify the kind of exception-as-values we use and describe the three levels of corruption
our type system distinguishes. We formally present our calculus in Section 3 and state the
properties it enjoys and Section 4 provides some examples. Then in Section 5 we design
a realizability model of our calculus that gives some insight on the meaning of corruption
and we prove its soundness. Finally, we present in Section 6 some related works before
concluding in Section 7 with future works.

2. Design of the system

2.1. Which exceptions-as-values? As stressed above, exceptions in call-by-name calculi
should be values. But there are essentially two designs for exceptions as values: either we

1Remark that imperative language alleviate this problem by making the operation of raising an exception
an instruction and not an expression.

2A notable difference is the presence of lists in the language described in this document, while in [8] the
data type of lists is only presented for a first-order typed version of the language.
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encode them explicitly in the language, or we make them primitives. The first option is a
well-known one and let us first present its drawbacks in order to justify the need for the
primitive solution.

Encoding explicitly exceptions is an old idea [21, 16]: to each type A is associated a type
Maybe A which is either values of A tagged as correct values or exceptional values (this idea
is nicely explained, for the Haskell programming language, in [14]). It has later been realized
that the Maybe type constructor forms a monad [11, 22]. And P. Wadler and P. Thiemann
proposed in [23] to add effects to monads, allowing for the detection of uncaught exceptions
in such monadic encoding. However this approach has some drawbacks, namely:

• Terms using exceptions are crippled by extra clutter. For example, in Haskell, to apply a
function f :: Int -> Int to a value x :: Maybe Int we are forced to write:

do a <- x

return (f a)

Using exceptions is not as transparent for the programmer as it is in call-by-value lan-
guages;

• As remarked in [14], modularity and code re-use are compromised, especially for higher
order functions. Consider the following sorting function:

sort :: (a -> a -> Bool) -> [a] -> [a]

This function cannot be applied to a comparison function that may raise exceptions such
as:

cmp :: a -> a -> Maybe Bool

Indeed, with monads, we need to know where the sort function uses the comparison in
order to add the monad’s operations;

• Monads force the evaluation of arguments (in the example above, the evaluation of x

is forced before the application to f). One could not see that as an inconvenience, and
this is indeed desirable for most uses of monads (IO, states, . . . ). Nonetheless, this is
a constraint and it makes exceptions not usable in non monadic call-by-name code. We
think that this can be avoided for exceptions.

This leads us to the second design choice: making exceptions primitives. This has been
first proposed by S. Peyton Jones et al. [14] with imprecise exceptions. The idea is that
a value of any type is either a “normal” value, or an “exceptional” one. The resulting
mechanism allows exceptions to be used in place of any other term (as for more traditional
“call-by-value” exceptions and contrarily to monadic ones). Note that since values may
be exceptional, we can have for instance, a list, which is fully defined but for which some
elements are exceptional values (see Section 4). These exceptions are raised only when (and
if) the list is evaluated. A main difference with the call-by-value mechanism of exceptions
is for example that a term like (λx. 0) (raise ε) (where 0 is simply the constant zero and ε
some exception) will reduce to 0 and not to raise ε.

Our system, named Fx, adapts this idea to System F, adding it two new term con-
structions: raise and try. But while the exceptions of [14] are not precisely typed (the
raising operation is in all types), we propose a type system where the type of an expression
indicates which exceptions the expression may raise.
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2.2. Expected properties. The type system we will present enjoys the following proper-
ties:

• If a term can raise an exception, its type indicates it. In particular, programs of type N

are not able to raise exceptions;
• Programmers can use a term raise ε in place of any other term. In particular, raise ε

type as a function;
• Exceptions and their typing discipline do not jeopardize modularity and code re-use.

A function defined without exceptions in mind still accepts exceptional arguments and
behave in a sensible way. Moreover, this is done without knowing the actual code of the
function.

2.3. Three levels of corruption. We call corrupted, a term that may mention excep-
tions. Given a type A (say the type N of natural numbers), we distinguish three levels of
corruptions for the terms related with this type:

• Terms of A. They are not corrupted, either they do not mention exceptions or the ones
they mention are caught or erased during reduction;

• Terms of A ⋆∪{ε}. They are terms of A or terms that reduce to the exception ε, i.e. reduce
to raise ε (we then say that they raise ε).

• Terms of A{ε}. They are terms of A that may mention the exception ε but do not
necessarily reduce to it (for instance, if S is the successor function, S (raise ε) has type

N
{ε}, but not type N ⋆∪{ε} since it has not type N nor does it reduce to raise ε).

Moreover, to handle the properties of corruption, we use a subtyping relation. And in
particular we have the subtyping: A ≤ A ⋆∪{ε} ≤ A{ε}.

The following section explains why the need to distinguish at least those three levels.
But one might wonder why we do not distinguish more levels. Like the terms containing
exceptions but not at top level. Or terms having an exception at a depth of at most 2 (like
raise ε or λx. raise ε but not λx. λy. raise ε), etc. As of now, while such more precise
notion may well be sound, we have not study them. The main reason is that they would
complicate and clutter the type system while we are not convinced they would prove useful
in practice.

2.4. Why we need to distinguish these three levels. The construction A ⋆∪{ε} is really
needed because of the typing of the try operation, since for a try to catch an exception in
its body, this body has to reduce to the exception.

But because we do not want to change the typing rule of application, the construction
A ⋆∪{ε} clearly does not fulfill all our needs. Firstly, we cannot use it to type S (raise ε).
Secondly, given a function M of type A → B, we cannot apply it to a term N of type A ⋆∪{ε}.
Indeed, M N is generally not of type B ⋆∪{ε} (note however that it would be the case in a
call-by-value calculus). Consider for instance M = λx. λy. x (of type A → (C → A)) and
N = raise ε, then M N reduces to λy. raise ε which is not of type (C → A) ⋆∪{ε} (since
it is neither a function of type C → A nor the exception ε)3.

3Note that this is typically this example, of the typing of a term like (λx. λy. x) N when N may raises
an exception, that makes effect system [13] unsuited to call-by-name exceptions.
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To solve these problems, we use a second type construction, the corruption of a type
A by an exception of name ε, denoted A{ε}. The main property the corruption enjoys is a
good behavior with respect to arrow types:

(A → B){ε}
.
= A{ε} → B{ε}

This subtyping equality4 may seem paradoxical with the usual subtyping rule of arrow
(contra-variance to the left, co-variance to the right). This is however justified by the
realizability model of Section 5.

Intuitively, terms of type A{ε} should be seen as terms of type A where some sub-terms
may have been replaced by raise ε (hence, programmers can use raise ε wherever they
want, which, in turns, corrupts the resulting type). Equivalently, while terms of A ⋆∪{ε} are

terms that may reduce to raise ε at top-level, terms of A{ε} are the ones that may reduce
to raise ε in any evaluation context.

Now, with corruption, we can apply a function f : A → B to a potentially exceptional
term. Indeed, we have that

A → B ≤ (A → B) ⋆∪{ε} ≤ (A → B){ε}
.
= A{ε} → B{ε}.

Remark that since we use subtyping, there is no need to actually know the term f . This
allows for modularity: to type the application of some (external) function f to a term u,
it is enough to know the type of f , and this even when u may raise exceptions but the
exported type of f does not mention exceptions. This is in particular convenient for prim-
itive functions like the successor function S, allowing to type-check S (raise ε) with the

type N
{ε} without the need to give S a complicated type (the type of S is simply N → N).

2.5. Exceptions by the millions. While we have only used one exception names ε in the
above section, it is useful to be able to handle more than one exception at a time. To that
end, the general type constructions are A ⋆∪∆ and A∆ where ∆ is a set of exception names.

Using sets of exceptions requires some type identification using the following subtyping
rules:

(A ⋆∪∆′) ⋆∪∆
.
= A ⋆∪ (∆∪∆′)

(A∆′
)∆

.
= A(∆∪∆′)

A ⋆∪∅
.
= A

A∅
.
= A

4The subtyping equality A
.
= B is simply defined as shorthand for A ≤ B and B ≤ A.
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3. Formal presentation

We present the Fx calculus, an extension of System F with typed exceptions, natural num-
bers and lists.

3.1. Syntax, reductions and associated properties.

3.1.1. Syntax of terms. We consider a countable set E of names of exceptions and a distin-
guished set of variables V.

Definition 3.1 (Terms). A term of Fx is a term generated by the following grammar:

M,N ::= x | λx.M | M N
| raise ε | tryM with ε 7→ N
| 0 | S | rec | [ ] | cons | list rec

In this definition, variables are ranged over by x, y, . . . while exception names are ranged
over by ε, ε′, . . .. Notions of free and bound variables are defined as usual, as well as
the external operation of substitution (written M{x := N}). The set of all closed terms
is denoted T and terms are considered up to α-equivalence. Note that the construction
tryM with ε 7→ N does not bind the occurrences of ε. The term raise ε is called an
exception, ε being its name, but, as an abuse of terminology, we also call ε an exception. In
the term tryM with ε 7→ N we will sometimes call M the body and N the handler of the
try construction.

To the terms of the lambda calculus, we add the constructions to raise and catch
exceptions as well as two usual structured data types: the natural numbers and the lists.

3.1.2. Computation in Fx.

Definition 3.2 (Regular values). A regular value is a (closed) term of Fx having one of
the following form:

RV ::= λx.M | 0 | S | S N | rec | rec M | rec M N
| [ ] | cons | cons M | cons M N | list rec | list rec M | list rec M N

Note that S N is a regular value for any term N and hence S (raise ε) is a regular
value as well.

Definition 3.3 (Values). A values is a (closed) term of Fx having one of the following
form:

V ::= RV | raise ε

where RV is a regular value and ε any exception name.

For well-typed term, a value corresponds to a weak head normal form.

Definition 3.4 (Computation). The notion of reduction > for the calculus is defined by the
rules of Figure 1. Computation in Fx is defined from the notion of reduction by the relation
of reduction ≻ whose rules are given in Figure 2. We note ≻∗ the reflexive and transitive
closure of ≻ and we note = its reflexive, transitive and symmetric closure. Moreover, if
M = N , we will say that M is equivalent to N .
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(λx.M) N > M{x := N}
(raise ε) M > raise ε

try (raise ε) with ε 7→ N > N
try (raise ε′) with ε 7→ N > raise ε′ (if ε 6= ε′)

tryV with ε 7→ N > V (if V is a regular value)

rec X Y 0 > X
rec X Y (S N) > Y N (rec X Y N)

rec X Y (raise ε) > raise ε

list rec X Y [ ] > X
list rec X Y (cons E L) > Y E L (list rec X Y L)
list rec X Y (raise ε) > raise ε

Figure 1: Notion of reduction for Fx

M > M ′

M ≻ M ′
M ≻ M ′

M N ≻ M ′ N
M ≻ M ′

tryM with ε 7→ N ≻ tryM ′ with ε 7→ N

M ≻ M ′

λx.M ≻ λx.M ′
N ≻ N ′

M N ≻ M N ′
N ≻ N ′

tryM with ε 7→ N ≻ tryM with ε 7→ N ′

Figure 2: Relation of reduction for Fx

Note that, as usual, the scope of capture of the try construction is dynamic: in the
term (λx. tryx with ε 7→ 0) (raise ε), the exception is caught during reduction and the
whole term reduces to 0. We say that a term M raises the exception ε if M ≻∗ raise ε
(that is, if M reduces to the exception named ε).

Definition 3.5 (to have a value). We will say that a term M has a value if and only if it
reduces to a value, that is if there exists a value V such that M ≻∗ V .

It can be proved [8] that this notion is equivalent to the one of having a normal form
for the weak head reduction of the calculus.

We now show that adding raise and try does not break the confluence of the calculus:

Theorem 3.6 (Confluence). If M , N and N ′ are terms such that M ≻∗ N and M ≻∗ N ′,
then there exists a term P such that N ≻∗ P and N ′ ≻∗ P.

Proof. We adapt the proof originated by Tait and Martin-Löf for the confluence of pure
lambda-calculus that can be found in [1] for example. We define the notion of parallel
reduction ≫ for Fx, we show that it satisfies the diamond property and conclude since
≻∗ = ≫∗. Proofs of these properties are easy to tackle inductions we leave to the interested
reader. We however give in appendix A the definition of the parallel reduction for Fx.
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3.2. The type system. As stressed in Section 2.3, Fx uses a subtyping relation ≤. Thus,
Fx is in fact an extension of the second-order lambda calculus with subtyping introduced
by Mitchell [10, 24] (and we will call this calculus System Fη in the following). Note that
we will however use a presentation of this calculus that differs from the original one and
that can be found for example in [19].

Definition 3.7 (Types). The syntax of types for Fx is built upon the one of System F.
Type of Fx are generated by the following grammar:

A,B ::= α | N | A list | A → B | ∀α.A | A ⋆∪∆ | A∆

In A ⋆∪∆ and A∆, ∆ is a finite set of exceptions names (∆ ⊆ E). Moreover, α stands
for a type variable taken from the set of type variables A. Notions of free and bound
type variable are defined as usual, as well as the external operation of substitution (written
A{α := B}). We denote by FV (A) the set of all the free type variables of the type A.
Types are considered up to α-equivalence. Precedences for the arrow construction and the
universal quantifier are the usual ones; the precedences of A ⋆∪∆ and A∆ being higher.
Moreover, we will often write A list∆ for (A list)∆.

3.2.1. Typing.

Definition 3.8 (Typing context). A typing context Γ is a finite set of declarations having
the form Γ ≡ x1 : A1, . . . , xn : An where x1, . . . , xn are pairwise distinct term variables and
where A1, . . . , An are arbitrary types.

The set FV (Γ) of free variables of Γ denotes the union of the sets of free type variables
for the types used in Γ, that is to say:

FV (x1 : A1, . . . , xn : An) =
⋃

i∈ {1...n}

FV (Ai)

Definition 3.9 (Typing). The type system of Fx is defined from the typing judgment

Γ ⊢ M : A

that reads ‘in the typing context Γ, the term M has type A’. This judgment is inductively
defined by the rules of Figure 3.

Remark that the typing rules from System Fη are unchanged, we simply add rules.
Also note that the usual typing rules for the recursion operators can be retrieved from (rec)
and (fold) by taking ∆ = ∅ (theses rules are in fact typing schemes).

3.2.2. Subtyping.

Definition 3.10 (Subtyping). The subtyping relation between two types A and B, written
A ≤ B, is inductively defined by the rules of Figure 4.

The equality A
.
= B is defined as short for “A ≤ B and A ≥ B”. In the inference rules,

when the equality A
.
= B appears as a premise, it figures for the two premises A ≤ B and

A ≥ B. And when it appears as a conclusion, it figures for two inference rules, one having
A ≤ B as a conclusion, the other one having A ≥ B.

The subtyping rules from Fη are unchanged. The rules (ex-noexc), (eq-uu) and (eq-
cc) dealt with sets of exceptions. The hierarchy of corruption (see 2.3) is implemented by
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System Fη typing rules:

(x : A)∈Γ

Γ ⊢ x : A
(ax)

Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A → B
(abs)

Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ M N : B
(app)

Γ ⊢ M : A α /∈ FV (Γ)

Γ ⊢ M : ∀α.A
(gen)

Γ ⊢ M : A A ≤ B

Γ ⊢ M : B
(subs)

Natural numbers typing rules:

Γ ⊢ 0 : N
(zero)

Γ ⊢ S : N → N
(succ)

Γ ⊢ rec : ∀α.α ⋆∪∆ → (N∆ → α ⋆∪∆ → α ⋆∪∆) → N
∆ ⋆∪∆′ → α ⋆∪ (∆∪∆′)

(rec)

List typing rules:

Γ ⊢ [ ] : ∀α.α list
(nil)

Γ ⊢ cons : ∀α.α → α list → α list
(cons)

Γ ⊢ list rec : ∀α.∀β. α ⋆∪∆ → (β∆ → β list∆ → α ⋆∪∆ → α ⋆∪∆)
→ β list∆ ⋆∪∆′ → α ⋆∪ (∆∪∆′)

(fold)

Exceptions handling typing rules:

Γ ⊢ raise ε : ∀α.α ⋆∪{ε}
(raise)

Γ ⊢ M : A ⋆∪{ε} Γ ⊢ N : A

Γ ⊢ tryM with ε 7→ N : A
(try)

Figure 3: Typing judgments

(ex-uni) and (ex-corrupt). The rules (ex-fallc) and (ex-fallu) are justified by the absence
of computational content of the universal quantification. Moreover, corruption and union
commutes (eq-uc).

The subtyping is stable by union (ex-ctx), but also by corruption (this is proved by
Theorem 3.11). Rule (ex-arru) simply says that, since a term M of type (A → B) ⋆∪∆ is
either a term of type A → B or an exception of ∆, it can always be applied to a term of
type A, resulting in a term of type B (if M is a true function) or an exception of ∆ (if so
is M).

As discussed in Section 2.4, the rule (eq-arrc) is the main rule of corruption and allows
exceptions to be used anywhere. Note that we really need an equality here on pain of losing
the subject-reduction property.

Finally, the list construction is monotonic (rule (ex-lcor)) and a list of corrupted ele-
ments is in particular a corrupted list (rule ex-lctx ).

The subtyping associated to the notion of corruption is a quite flexible one, especially
with respect to arrows. As noted in Section 2.4, it allows to derive

A1 → A2 → . . . → An ≤ A∆
1 → A∆

2 → . . . → A∆
n
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System Fη rules :

A ≤ A
(st-id)

A ≤ B B ≤ C

A ≤ C
(st-trans)

A′ ≤ A B ≤ B′

A → B ≤ A′ → B′
(st-arrow)

A ≤ B α /∈ FV (A)

A ≤ ∀α.B
(f-gen)

∀α.A ≤ A{α := B}
(f-inst)

α /∈ FV (A)

∀α. (A → B) ≤ A → ∀α.B
(f-distr)

Exception related rules :

A ≤ A ⋆∪∆
(ex-uni)

A ⋆∪∆ ≤ A∆
(ex-corrupt)

A∅ ≤ A
(ex-noexc)

A ≤ B

A ⋆∪∆ ≤ B ⋆∪∆
(ex-ctx)

(A → B) ⋆∪∆ ≤ A → B ⋆∪∆
(ex-arru)

∀α.A∆ ≤ (∀α.A)∆
(ex-fallc)

∀α. (A ⋆∪∆) ≤ (∀α.A) ⋆∪∆
(ex-fallu)

A∆ list ≤ A list∆
(ex-lcor)

A ≤ B

A list ≤ B list
(ex-lctx)

Exception related equality rules :

(A ⋆∪∆) ⋆∪∆′
.
= A ⋆∪ (∆∪∆′)

(eq-uu)
(A∆)∆

′ .
= A(∆∪∆′)

(eq-cc)

(A ⋆∪∆)∆
′ .

= A∆′
⋆∪∆

(eq-uc)
(A → B)∆

.
= A∆ → B∆

(eq-arrc)

Figure 4: The subtyping relation

but also that A∆ → B ≤ A∆ → B∆ or that A → B∆ ≤ A∆ → B∆ for instance5. How-
ever, what the subtyping of corruption forbids is the removable of corruption in covariant
position. That is, corruption allows the use of functions with exceptions they do not handle
themselves, but it then always ensure that the return type mentions those exceptions.

3.2.3. Typing the recursion operations. Fx uses natural numbers and lists. To work with
these data types, we have equipped the calculus with recursion operators (rec and list rec)
of Gdel’s System T[6]. However, in the presence of exceptions, the usual typing of these

5Proofs for all those relations follow the same pattern. Corruption is introduced on the right with (ex-
uni) and (ex-corrupt) and is then distributed over the operands of the arrow with (eq-arrc). Lastly, double
corruption ((A∆)∆) is eliminated with (eq-cc) if needed.
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operators is not precise enough. Indeed, consider the case of the natural numbers. The
usual typing rule of the recursion operator rec is

∀α.α → (N → α → α) → α → α,

and hence, using the corruption type and its associated subtyping rules, it also has the type

∀α.α∆ → (N∆ → α∆ → α∆) → α∆ → α∆

for any set of exception names ∆. However, this last type is not precise enough and for
instance, it does not precisely account for the reduction rule

rec X Y (raise ε) ≻ raise ε.

Dealing with this imprecision is the reason of the addition of the set ∆′ in the typing rule
of rec (rule (rec) of Figure 3). Moreover, the function eval which will be introduced in
section 4 reveals another imprecision. Given a corrupted natural number, this function
returns either a well formed natural number or an exception at top-level. But to give this
function the type we want, that is to say the type N

∆ → N ⋆∪∆, we need the addition of
the set ∆ in the typing rule of the recursion operator (rule (rec) of Figure 3). The typing
rule of the recursion operator list rec follows the same modifications.

3.3. Properties of typing. The subtyping relation is stable by corruption:

Theorem 3.11. If A and B are two types such that A ≤ B, then for any set of exception
names ∆, A∆ ≤ B∆.

Proof. We proceed by induction on the derivation of A ≤ B. All the cases are easily
resolved since corruption commutes with all type constructions. For example, taking the
case of rule (ex-arru), we have to show that ((A → B) ⋆∪∆′)∆ ≤ (A → B ⋆∪∆′)∆. But
using rule (ex-arru), (A∆ → B∆) ⋆∪∆′ ≤ A∆ → B∆ ⋆∪∆′ and we conclude using the fact
that (A∆ → B∆) ⋆∪∆′

.
= ((A → B) ⋆∪∆′)∆ and A∆ → B∆ ⋆∪∆′

.
= (A → B ⋆∪∆′)∆.

A few remarkable subtyping rules are also easily derivable from the ones of Figure 4:

Theorem 3.12. The following subtyping relations hold:

A ⋆∪∅ ≤ A
(∀α.A) ⋆∪∆ ≤ ∀α. (A ⋆∪∆)

(∀α.A)∆ ≤ ∀α. (A∆)

Proof. Proof of A ⋆∪∅ ≤ A comes from rules (ex-corrupt) and (ex-noexc). The proofs for
(∀α.A) ⋆∪∆ ≤ ∀α. (A ⋆∪∆) and (∀α.A)∆ ≤ ∀α. (A∆) are similar. For instance, for the
former one, we use (f-inst) and (ex-uni) to show that ∀α.A ≤ A ⋆∪∆. Then, using (ex-ctx)
and (eq-uu), we show that (∀α.A) ⋆∪∆ ≤ A ⋆∪∆. And we conclude with (f-gen).
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M ⊑∆ M
(c-id)

ε∈∆
M ⊑∆ raise ε

(c-rai)
M ⊑∆ M ′

λx.M ⊑∆ λx. t′
(c-lam)

M ⊑∆ M ′ N ⊑∆ N ′

M N ⊑∆ M ′ N ′
(c-app)

M ⊑∆ M ′ N ⊑∆ N ′

tryM with ε 7→ N ⊑∆ tryM ′ with ε 7→ N ′
(c-try)

Figure 5: Corruption relation

Definition 3.13. The corruption relation ⊑∆ between terms is inductively defined Figure 5.
To have M ⊑∆ N means that N is obtained from M by replacing some sub-terms in any
position by raise ε, ε belonging to ∆.

Thus, Theorem 3.14 formally states that, in term of programming, exceptions can be
used in any place, but with the added cost of corrupting the type.

Theorem 3.14 (corruption). If M and N are two terms, A a type and ∆ a set of exceptions
such that Γ ⊢ M : A and M ⊑∆ N , then Γ ⊢ N : A∆.

Proof. This theorem is proved by induction on the statement M ⊑∆ N . The proof presents
no major difficulty as long as we first prove the three following “inversion” results :

(1) If M is a term, A a type and Γ a typing context such that

Γ ⊢ λx.M : A,

then there exists a set of type variable −→α /∈ FV (Γ) and two terms B and C such that
∀−→α . (B → C) ≤ A and Γ, x : B ⊢ M : C.

(2) If M and N are two terms, A a type and Γ a typing context such that

Γ ⊢ M N : A ,

then there exists a term C such that Γ ⊢ M : C → A and Γ ⊢ N : C.
(3) If M and N are two terms, A is a type and Γ is a typing context such that

Γ ⊢ tryM with ε 7→ N : A,

then Γ ⊢ M : A ⋆∪{ε} and Γ ⊢ N : A.

Proofs of these three results are straightforward inductions on the derivation of the initial
typing judgment.

4. Examples

A simple yet classical function on natural numbers which can raise an exception is the
predecessor function. In Fx, we can define:

pred ≡ rec (raise ε) (λx. λy. x) : N → N ⋆∪{pred err}

It has the expected reductions, i.e. pred 0 ≻∗ raise ε and pred (S N) ≻∗ N . We can then
define a “safe” predecessor pred′ from pred which returns 0 when applied to 0:

pred′ ≡ λn. try (pred n) with pred err 7→ 0 : N → N
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Having exceptions, it is possible to define the functions that return the head and the
tail of a list:

hd : A list → A ⋆∪{hd fail}
≡ list rec (raise hd fail) (λe. λl. λ . e)

tl : A list → A list ⋆∪{tl fail}
≡ list rec (raise tl fail) (λe. λl. λ . l)

We can also define the Euclidean division (div : N → N → N ⋆∪{div by 0}) and the
mapping of a function to a list (map : ∀α.∀β. (α → β) → α list → β list). The type
system being modular, we can (and will) use these two functions without having to exhibit
a particular implementation. But using them allows us to define the following function that
maps the function n 7→ 2

n−1 to a list:

f : N list → (N{pred err} ⋆∪{div by 0}) list
≡ map (λn. div 10 (pred n))

Remark that the result is always a list but that can contain exceptional values. For instance,
f [2; 1; 5] computes the list [5; raise div by 0 ; 2] which does not reduces to raise div by 0 .
Again, exceptions are values that propagate only when used. Now we can get the first
element of the result of this function with:

g : N list → N
{pred err ,div by 0} ⋆∪{hd fail}

≡ λl. hd (f l)

We can apply g to some argument and catch the exception hd fail with a try, but we cannot
catch the two other exceptions since these ones are not necessarily at top-level. If we want
to catch them, we need a function that evaluates a natural number potentially corrupted
and returns either a well formed natural number or an exception. It is the purpose of the
following function:

eval : N
∆ → N ⋆∪∆

≡ λn. (rec (λa. a) (λm.λr. λa. r (S a)) n) 0

With this function, we can now capture the exceptions that can appear in the result of the
function g above. That is what the following function does (where we use a straightforward
shortcut allowing the try to catch all the exceptions):

h : N list → N

≡ λl. try (eval (g l))
with pred err , div by 0 , hd fail 7→ 0

Note that for instance h [2; 1; 5] will return 5 in our system since the part of the list that
would yield an exception (the second element after the mapping) is never used (we only use
the head of the list). In contrast, a similar function in say Caml would have yielded 0.

5. Realizability model

We will define a realizability model for Fx using techniques of orthogonality (see [12, 20] for
examples of use of such techniques). The choice of those orthogonality techniques is mainly
motivated by two reasons: we believe that it offers a nice way to handle second order and
it will come in handy for the definition of the interpretation of corruption, allowing a much
more simple definition than a “direct” model would allow. We start by introducing a few
definitions necessary to the construction of the model.
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5.1. Daimon and contexts. We add a new and distinguished term, the daimon (de-
noted z) similar to the one of [5]. This term computationally behaves like an uncatchable
exception. We also introduce the new term construction M ;N . This construction tests
if M is the daimon and if so, return N . Otherwise, it does not reduce. The reduction
rules for these two additions are given Figure 6. Moreover, z is added to the definition of
value. Note that none of these constructs have typing rules and as such, they cannot be
used in well-typed terms. It can also easily be proved that they do not break the confluence
property of the language. In those respects, they are only convenient technical addition for
the model and should not be considered as inherent part of the language.

z N > z

tryz with ε 7→ N > z

rec X Y z > z

list rec X Y z > z

z;N > N

Figure 6: Reduction rules for z and ;.

The daimon has two purposes in the model. First, it will inhabit all type interpretation,
property that will be used to show that all the terms of the interpretation are weakly
normalizing (see Lemma 5.13). Secondly, our model is a realizability one, types will be
interpreted by sets of terms. But the principle of our orthogonality model is to not define
those sets directly, but instead to first define the interpretation of types as sets of evaluation
contexts. Then, to each such set S of evaluation contexts is associated the set of all the
terms that “behave correctly” for all the contexts of S. This notion of a term M “behaving
correctly” in a context C is the orthogonality relation. For our model we chose it to be that
M put in the context C reduces to this distinguished term z. But to define formally this
orthogonality relation, let us first define formally the evaluation contexts we will use:

Definition 5.1 (Context). A context is a term with a hole (denoted by [ ]) defined by:

C ::= [ ] | C N | tryC with ε 7→ z | rec M N C | list rec X Y C

The set of all contexts is noted C and the term obtained by filling the hole of a context C
with the term M is noted C[M ].

Note that our definition of context is more restrictive than the usual one (where a
context is any term with a hole). Actually, save the restriction in the handler of try to z

(which will allow for a simpler interpretation of corruption), our contexts are the evaluation
contexts of call-by-name evaluation.

Moreover, we will not care about the order of two adjacent try in a context. Since the
set of all exception names E is countable, we can fix a priori a bijection φ : E → N and
we define the following notation:

Notation 5.2. If ∆ is a (finite) set of exception names, then try [ ] with ∆ is a notation
for

• the context try (. . . (try [ ] with ε1 7→ z) . . .) with εn 7→ z if ∆ 6= ∅ and if ε1, . . . εn are
the elements of ∆ arranged according to φ (that is, φ(ε1) < . . . < φ(εn)).
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• the empty context otherwise (if ∆ = ∅).

Contexts have the following property :

Lemma 5.3. If C is a context and M is a term such that C[M ] has a value, then M has
a value.

Proof. By case on the form of the context C and by induction on the length of the reduction
of C[M ] to the value. No case raises specific difficulties.

5.2. Orthogonality relation.

Definition 5.4 (Orthogonality relation). If M is a term and C a context, then M ⊥ C
(and we say that M and C are orthogonal) if and only if C[M ] ≻∗ z.

Moreover, if S is a set of contexts, we define the set of terms S⊥ by

S⊥ = { M | ∀C ∈ S, M ⊥ C }

Note that as with any orthogonality relation, we can easily check that ⊥ verifies the following
properties:

Lemma 5.5. If S and T are two context sets such that S ⊆ T , then T⊥ ⊆ S⊥.

Lemma 5.6. If I is any set and (Si)i∈ I is a family of set of contexts indexed by i, then

(
⋃

i∈ I Si)
⊥ =

⋂

i∈ I Si
⊥.

5.3. Operations on sets. We recall the two standard definition of concatenation · (of a
set of terms and a set of contexts) and composition ◦ (of two sets of contexts):

A · S = { C
[

[ ] N
]

| C ∈ S, N ∈ A }

S ◦ T = { C[D[ ]] | C ∈ S, D ∈ T }

For instance,

{0, 1} · {try [ ] with ε 7→ z} = {try ([ ] 0) with ε 7→ z, try ([ ] 1) with ε 7→ z}

{try [ ] with ε 7→ z, [ ] (λx. x)} ◦ {[ ] 1} = {try ([ ] 1) with ε 7→ z, ([ ] 1) (λx. x)}

We then define two operations on sets of contexts:

↓∆ S = S ◦ { try [ ] with ∆ }

↑∆ S = { try [ ] with ∆ } ◦ S

and thus, for instance,

C1 ≡ ↓∆ (rec 0 (λx. λy. y) [ ]) = { rec 0 (λx. λy. y) (try [ ] with∆) }

C2 ≡ ↑∆ (rec 0 (λx. λy. y) [ ]) = { try (rec 0 (λx. λy. y) [ ]) with∆ }

and if ε∈ ∆,

C1[raise ε] = rec 0 (λx. λy. y) (try raise ε with∆) ≻∗ z

C1[S (raise ε)] = rec 0 (λx. λy. y) (tryS (raise ε) with ∆) ≻∗ raise ε

C2[raise ε] = try (rec 0 (λx. λy. y) (raise ε)) with ∆ ≻∗ z

C2[S (raise ε)] = try (rec 0 (λx. λy. y) (S (raise ε))) with ∆ ≻∗ z
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It can be checked that by definition we have the following equalities:

↑∆ (A · S) = A · ↑∆ S
↑∆ (↓∆′ S) = ↓∆′ (↑∆ S)

Moreover, we have the following lemma:

Lemma 5.7. If S is a set of contexts and ∆ and ∆′ are sets of exception names, then

(↑∆ (↑∆′ S))⊥ = (↑∆∪∆′ S)⊥

(↓∆ (↓∆′ S))⊥ = (↓∆∪∆′ S)⊥

Proof. We only give the proof for (↑∆ (↑∆′ S))⊥ = (↑∆∪∆′ S)⊥ since the other one is similar.
We show two inclusions:

• We show that (↑∆ (↑∆′ S))⊥⊆ (↑∆∪∆′ S)⊥:

Let t∈ (↑∆ (↑∆′ S))⊥ and C ∈ ↑∆∪∆′ S, by definition C = tryD with (∆∪∆′) where
D∈ S. Hence try (tryD[t] with∆′) with ∆ ≻∗ z and
− either D[t] ≻∗ z, but then C[t] ≻∗ z.
− or D[t] ≻∗ raise ε when ε∈ ∆′ or ε∈ ∆. But then again, C[t] ≻∗ z.

• We show (↑∆∪∆′ S)⊥⊆ (↑∆ (↑∆′ S))⊥:

Let t∈ (↑∆∪∆′ S)⊥ and C ∈ ↑∆ (↑∆′ S), by definition, C = try (tryD with ∆′) with ∆
where D∈ S. Hence tryD[t] with (∆∪∆′) ≻∗ z and
− either D[t] ≻∗ z, but then C[t] ≻∗ z.
− or D[t] ≻∗ raise ε when ε∈ ∆∪∆′. But then again, C[t] ≻∗ z.

Along with the definition of ↑∆ , this lemma implies (A · ↑∆ (↑∆′ S))⊥ = (A · ↑∆∪∆′ S)⊥.

5.4. Model definition. We call valuation function any function ρ from type variables to
the power set of C minus the empty set (ρ : A → (P(C))+). To each type A we associate
two sets:

A set of contexts |A |ρ ⊆ C
A set of terms J A Kρ ⊆ T

The set J A Kρ is uniformly defined from |A |ρ by

J A Kρ = |A |ρ
⊥ = { M | ∀C ∈ |A |ρ, M ⊥ C }.

The set |A |ρ is defined by induction on A. Its definition is given Figure 7.
Note that the interpretation in the model of the construction A ⋆∪∆ and A∆ follows, to

some extends, the idea that terms of type A ⋆∪∆ are terms that may raise an exception only
at top level, where terms of A∆ are those that may raise an exception in any evaluation
context. This is emphasized by the “opposition” of the operations ↓∆ and ↑∆ . Remark
that it is only the restriction to z in the handlers of try contexts that allows for such a
simple definition of the interpretation of corruption. Indeed, thanks to this restriction we
ensure that for any context C, C[raise ε] will always reduce to raise ε or z.

The other interesting point of the model is the interpretation of arrow types. In Fx, a
function f which has type A → B has also all the types A∆ → B∆ for any ∆. Our arrow
type is thus smaller than the usual realizability one and so, functions of Fx are in particular
realizability functions. More formally,
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|α |ρ = ρ(α)

|N |ρ = { rec z (λy. λx. x) [ ] }

|A list |ρ = { list rec z (λe. λl. λr. (|A |ρ)[e]; r) [ ] }

|A ⋆∪∆ |ρ = ↓∆ |A |ρ
|A∆ |ρ = ↑∆ |A |ρ

|A → B |ρ =
⋃

∆⊆E

|A∆ |ρ
⊥

· |B∆ |ρ

| ∀α.A |ρ =
⋃

S⊆C+

|A |ρ; α←S

Figure 7: Definition of the |A |ρ set of contexts

Lemma 5.8. If A and B are two types and ρ a valuation function, then

J A → B Kρ =
⋂

∆⊆E

{ M | ∀N ∈ J A∆ Kρ, M N ∈ J B∆ Kρ }.

Proof. We prove the two inclusions forming the equality separately, both being simple con-
sequences of definitions.

We can moreover show that the interpretation of A ⋆∪∆ is a union and that the inter-
pretations of the natural numbers and the lists are standards:

Lemma 5.9. If A is a type, ∆ a set of exception names and ρ a valuation function, then

J A ⋆∪∆ Kρ = J A Kρ ∪ { M | M ≻∗ raise ε, ε∈ ∆ }.

Proof. By definition,

J A ⋆∪∆ Kρ = (↓∆ |A |ρ)
⊥ = { M | ∀C ∈ |A |ρ, C[tryM with ∆] ≻∗ z } .

We show each side of the inclusion separately:

• For M ∈ { t | ∀C ∈ |A |ρ, C[tryM with ∆] ≻∗ z } we have tryM with ∆∈ J A Kρ.
Hence tryM with∆ has a value (Lemma 5.13) and M as well (Lemma 5.3) :
− Either M ≻∗ raise ε for ε∈ ∆ and we conclude directly.
− Or M ≻∗ V where V is a regular value and then tryM with ∆ ≻∗ V . But the

interpretation being closed by equivalence (Lemma 5.12), V ∈ J A Kρ and M ∈ J A Kρ.
• Let M ∈ J A Kρ ∪ { M | M ≻∗ raise ε, ε∈ ∆ } and let C ∈ |A |ρ. We have to show

C[tryM with∆] ≻∗ z:
− If M ≻∗ raise ε for ε∈ ∆, then tryM with∆ ≻∗ z and C[tryM with∆] ≻∗ z.
− Otherwise, M ∈ J A Kρ and then tryM with ∆∈ J A Kρ (because, M having a value

(Lemma 5.13), there exists V such that M ≻∗ V . But then tryM with ∆ ≻∗ V and
we use the closure by equivalence of the interpretation (Lemma 5.12)). Finally, using
the definition of orthogonality, C[tryM with∆] ≻∗ z.
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Lemma 5.10. If ρ is a valuation function, ∆ a set of exception names and if Φ represents
one of 0, z or raise ε for some ε∈ ∆, then

J N
∆ Kρ = { M | M ≻∗ Sn Φ, n∈ N }.

Proof. In the following, Φ will always represent one of 0, z or raise ε for some ε∈ ∆.

• If for some integer n, M ≻∗ Sn Φ, then by induction on n it is easy to show that
try (rec z (λy. λx. x) M) with ∆ ≻∗ z.

• If M ∈ J N
∆ Kρ, then there exists k such that try (rec z (λy. λx. x) M) with∆ ≻k z.

Hence, we show by induction on k that for any k′ ≤ k and for any term M :

if try (rec z (λy. λx. x) M) with ∆ ≻k′

z then M ≻∗ Sn Φ

− We cannot have k = 0 since try (rec z (λy. λx. x) M) with ∆ is not z.
− We have try (rec z (λy. λx. x) M) with ∆ ≻ N ≻k z. But the first reduction can

only occurs either if M is 0, z or raise ε (and in the last case we have ε∈ ∆), or if
M is S M ′. In this last case, we easily conclude using the reduction of rec and the
induction hypothesis.

Lemma 5.11. If ρ is a valuation function, A a type, ∆ a set of exception names and if Φ
represents one of 0, z or raise ε for some ε∈ ∆, then

J (A list)∆ Kρ

= { M | M ≻∗ cons a0 (. . . (cons an Φ) . . .), n∈ N,∀ 0≤i≤n, ai ∈ J A∆ Kρ } .

Proof. The proof follows the same structure as the one of Lemma 5.10.

5.5. Model properties.

Lemma 5.12 (closure by equivalence). If M and N are two terms, A is a type and ρ is a
valuation function such that M ∈ J A Kρ and M = N , then

N ∈ J A Kρ.

Proof. Let M ∈ J A Kρ and M = N . Let C ∈ |A |ρ, by definition C[M ] ≻∗ z. But since
M = N , C[M ] = C[N ]. Thus, by confluence of the reduction (theorem 3.6), C[N ] ≻∗ z

and N ∈ J A Kρ.

In particular, the interpretation is closed by reduction and anti-reduction.

Lemma 5.13. If M is a term, A a type and ρ a valuation function such that M ∈ J A Kρ,
then M has a value.

Proof. By definition M ∈ J A Kρ yields M ∈ { M | ∀C ∈ |A |ρ, C[M ] ≻∗ z }. Thus, if
C ∈ |A |ρ, C[M ] has a value and, using Lemma 5.3, we have that M has a value too. We
simply have to make sure that there always exists such a context C, that is |A |ρ is never
empty. But for any type A, it can be easily proved by induction on A that |A |ρ 6= ∅
and z∈ J A Kρ (remark that both properties have to be proved simultaneously since the
non-emptiness of |A → B |ρ depends upon the non-emptiness of J A Kρ which comes (by
induction hypothesis) of the non-emptiness of |A |ρ).
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Lemma 5.14. If A is a type, ρ a valuation function and ∆ a set of exception names, then
for all ε∈ ∆, raise ε∈ J A∆ Kρ.

Proof. Let C ∈ |A∆ |ρ, by definition C = {try [ ] with∆}◦D where D∈ |A |ρ. We can easily
show that either D[raise ε] ≻∗ z or D[raise ε] ≻∗ raise ε. In any case, C[raise ε] ≻∗ z.

An important and essential property of the model is that it validates the subtyping rule
(eq-arrc):

Lemma 5.15. If A and B are two types, ρ is valuation function and ∆ is a set of exception
names, then

J (A → B)∆ Kρ = J A∆ → B∆ Kρ

Proof. Using Lemmas 5.6 and 5.7, we have that

J (A → B)∆ Kρ =
⋂

∆′⊆E

((↑∆′ |A |ρ)
⊥ · ↑∆∪∆′ |B |ρ)

⊥

J A∆ → B∆ Kρ =
⋂

∆′⊆E

((↑∆∪∆′ |A |ρ)
⊥ · ↑∆∪∆′ |B |ρ)

⊥

It directly follows that J (A → B)∆ Kρ ⊆ J A∆ → B∆ Kρ.
For the other inclusion, let M ∈ J A∆ → B∆ Kρ. If ∆′ is a set of exception names and

if C ∈ (↑∆′ |A |ρ)
⊥ · ↑∆∪∆′ |B |ρ, since we can show that (↑∆′ |A |ρ)

⊥ ⊆ (↑∆∪∆′ |A |ρ)
⊥ we

have C ∈ (↑∆∪∆′ |A |ρ)
⊥ · ↑∆∪∆′ |B |ρ and we conclude.

Lemma 5.16. The interpretations validate the following equalities:

| (∀α.A)∆ |ρ = | ∀α.A∆ |ρ
| (∀α.A) ⋆∪∆ |ρ = | ∀α.A ⋆∪∆ |ρ
| (A ⋆∪∆)∆

′
|ρ = | (A∆′

) ⋆∪∆ |ρ
J (A∆)∆

′
Kρ = J A∆∪∆′

Kρ

J (A ⋆∪∆) ⋆∪∆′ Kρ = J A ⋆∪ (∆∪∆′) Kρ

Proof. The three first equalities are direct consequence of the definitions, the two last are
direct consequence of Lemma 5.7.

5.6. Model soundness. We first show that subtyping is sound with respect to the inter-
pretation we have defined.

Lemma 5.17 (Subtyping soudness). If A and B are two types and ρ a valuation function
such that A ≤ B, then for any set of exception names ∆,

J A∆ Kρ ⊆ J B∆ Kρ

Proof. We reason by induction on the derivation of A ≤ B. Many cases are either trivial
((st-id) and (st-trans)) or direct consequences of the lemmas we have defined so far. We
only give in the following the cases that do not belong to one of these categories:

(st-arrow): Consider ∆⊆ E and M ∈ J (A → B)∆ Kρ = J A∆ → B∆ Kρ. We now have

to show that M ∈ J (A′ → B′)∆ Kρ = J A′∆ → B′∆ Kρ. For C ∈ |A′∆ → B′∆ |ρ we will es-

tablish C[M ] ≻∗ z. By definition of |A′∆ → B′∆ |ρ, there exist ∆′, N ∈ J A′∆∪∆
′
Kρ and

D∈ |B′∆∪∆
′
|ρ such that C = D[[ ] N ]. By induction hypothesis, J A′∆∪∆

′
Kρ ⊆ J A∆∪∆′

Kρ.
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But since M ∈ J A∆ → B∆ Kρ, using Lemma 5.8, we have M N ∈ J B∆∪∆′
Kρ. Then by

induction hypothesis, J B∆∪∆′
Kρ ⊆ J B′∆∪∆

′
Kρ and finally, C[M ] = D[M N ] ≻∗ z.

(f-gen): For ∆⊆ E and M ∈ J A∆ Kρ we will show that M ∈ J (∀α.B)∆ Kρ = J ∀α.B∆ Kρ.
Let C ∈ | ∀α.B∆ |ρ, there exists S such that C ∈ |B∆ |ρ;α←S . Moreover, since α /∈ FV(A),

we have J A∆ Kρ = J A∆ Kρ;α←S . And since J A∆ Kρ;α←S ⊆ J B∆ Kρ; α←S by induction hy-
pothesis, M ∈ J B∆ Kρ;α←S and finally, C[M ] ≻∗ z.

(f-inst): Given ∆⊆ E , we will show that | (A{α := B})∆ |ρ ⊆ | (∀α.A)∆ |ρ and then con-
clude by orthogonality (Lemma 5.5). Let C ∈ | (A{α := B})∆ |ρ, we show by a straight-
forward induction on A that | (A{α := B})∆ |ρ = |A∆ |ρ; α←|B |ρ . Moreover, by defi-

nition of | ∀α.A∆ |ρ, we have |A∆ |ρ; α←|B |ρ ⊆ |∀α.A∆ |ρ, from which if follows that

C ∈ | ∀α.A∆ |ρ = | (∀α.A)∆ |ρ.
(f-distr): Consider ∆⊆ E and t∈ J (∀α. (A → B))∆ Kρ = J ∀α. (A∆ → B∆) Kρ, we will

show that t∈ J (A → ∀α.B)∆ Kρ = J A∆ → ∀α.B∆ Kρ. Let C ∈ |A∆ → ∀α.B∆ |ρ, by def-

inition there exists ∆′, u∈ J A∆∪∆′
Kρ and D∈ | (∀α.B∆)∆

′
|ρ = | ∀α.B∆∪∆′

|ρ such that

C = D[[ ] u]. Then there exists S such that D∈ |B∆∪∆′
|ρ; α←S and since α /∈ FV(A),

u∈ J A∆∪∆′
Kρ;α←S . Thus by definition of J ∀α. (A∆ → B∆) Kρ and using Lemma 5.8, we

have t u∈ J B∆∪∆′
Kρ;α←S and finally C[t] = D[t u] ≻∗ z.

(ex-arru): Consider ∆⊆ E and t∈ J ((A → B) ⋆∪∆′)∆ Kρ = J (A∆ → B∆) ⋆∪∆′ Kρ, we
have to show that t∈ J (A → B ⋆∪∆′)∆ Kρ = J A∆ → B∆ ⋆∪∆′ Kρ. Consider ∆′′⊆ E and

u∈ J A∆∪∆′′
Kρ, using Lemma 5.8, we must show that t u∈ J B∆∪∆′′

⋆∪∆′ Kρ. But using
Lemma 5.9 we have:
• Either t ≻∗ raise ε for ε∈ ∆′, but then t u ≻∗ raise ε and hence using Lemma 5.9,

t u∈ J B∆∪∆′′
⋆∪∆′ Kρ.

• Or t∈ J A∆ → B∆ Kρ and using Lemma 5.8, t u∈ J B∆∪∆′′
Kρ which in turn gives

t u∈ J B∆∪∆′′
⋆∪∆′ Kρ (Lemma 5.9).

(ex-ctx): This case is trivial with the use of Lemma 5.9.
(ex-uni): This case is trivial with the use of Lemma 5.9.

(ex-corrupt): We need to show J (A ⋆∪∆′)∆ Kρ = J A∆ ⋆∪∆′ Kρ ⊆ J (A∆′
)∆ Kρ = J A∆∪∆′

Kρ.
But J A∆ ⋆∪∆′ Kρ = J A∆ Kρ ∪ { t | t ≻∗ raise ε, ε∈ ∆′ } and it can be easily shown that

if ∆⊆∆′, then J A∆ Kρ ⊆ J A∆′
Kρ and that if ε∈ ∆, then raise ε∈ J A∆ Kρ (Lemma 5.14).

We define the interpretation corrupted by some set of exception names ∆ (eventually empty)
of a typing context Γ by:

J Γ∆ Kρ = { σ | ∀ (x : A) ∈ Γ, σ(x) ∈ J A∆ Kρ }

Moreover, if σ is a substitution of term variables and M is a term, we use the notation M [σ]
for the parallel substitution of M by σ, which consists in applying σ to all free variables of
M in parallel. We can now show that our interpretation is sound with respect to typing:

Theorem 5.18 (Model soundness). If M is a term, A a type and Γ a typing context such
that Γ ⊢ M : A, then for all valuation function ρ, for all set of exception names ∆ and for
all substitution σ ∈ J Γ∆ Kρ, we have M [σ] ∈ J A∆ Kρ.

Proof. We use induction on the derivation of Γ ⊢ t : A. Note that since J A Kρ ⊆ J A∆ Kρ

(Lemma 5.17), we will only show that t[σ]∈ J A Kρ when possible. We give here only the
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interesting cases. The other cases are either simple ((ax), (subs), (zero), (succ), (nil),
(cons)) or, for (fold), follows closely the structure of the proof for (rec).

(abs): Let C ∈ | (A → B)∆ |ρ = |A∆ → B∆ |ρ, we need to show that C[λx. t[σ]] ≻∗ z.

By definition, there exists ∆′, u∈ J A∆′
Kρ and D∈ |B(∆∪∆′) |ρ such that C = D[[ ] u].

Then, if δ = σ + {x→ u}, we have δ ∈ J (Γ, x : A)(∆∪∆′) Kρ (σ∈ J Γ∆′
Kρ ⊆ J Γ(∆∪∆′) Kρ and

u∈ J A∆′
Kρ ⊆J A∆∪∆′

Kρ), and also by induction hypothesis, t[δ]∈ J B(∆∪∆′) Kρ. However,

(λx. t[σ]) u ≻ t[δ] and J B(∆∪∆′) Kρ is closed by anti-reduction (Lemma 5.12), and thus

(λx.M [σ]) u∈ J B(∆∪∆′) Kρ and finally C[λx.M [σ]] = D[(λx.M [σ]) u] ≻∗ z.
(app): We easily conclude using Lemma 5.8.
(gen): Let C ∈ | (∀α.A)∆ |ρ = | ∀α.A∆ |ρ, by definition there exists S non empty such that

C ∈ |A∆ |ρ; α←S . Moreover, since α /∈ FV(Γ), J Γ∆ Kρ = J Γ∆ Kρ; α←S . It follows that by

induction hypothesis, t[σ]∈ J A∆ Kρ;α←S . Finally, C[t[σ]] ≻∗ z and t[σ]∈ J (∀α.A)∆ Kρ.
(rec): We have to show that

rec∈ J ∀α.α ⋆∪∆ → (N∆ → α ⋆∪∆ → α ⋆∪∆) → N
∆ ⋆∪∆′ → α ⋆∪ (∆∪∆′) Kρ.

Using Lemma 5.8, we have to show that for any non empty set of contexts S, for any
∆1, ∆2 and ∆3 and for

z ∈ J α∆1 ⋆∪∆ Kρ;α←S

f ∈ J N
∆1∪∆2∪∆ → α∆1∪∆2 ⋆∪∆ → α∆1∪∆2 ⋆∪∆ Kρ;α←S

n ∈ J N
∆1∪∆2∪∆3 ⋆∪∆′ Kρ;α←S

we have rec z f n∈ J α∆1∪∆2∪∆3 ⋆∪ (∆∪∆′) Kρ;α←S. With Lemma 5.9, we have either
n ≻∗ raise ε for ε∈ ∆′ (and we easily conclude), or n∈ J N

∆1∪∆2∪∆3∪∆ Kρ; α←S . In

this last case, there exists some k such that n ≻∗ Sk Φ where Φ is one of 0, z or
raise ε for ε∈ ∆1∪∆2∪∆3∪∆ (Lemma 5.10). We then proceed by induction on k.
If k = 0 (n ≻∗ Φ), we easily conclude in each case of Φ. Otherwise, we must show
that rec z f (S (Sk Φ))∈ J α∆1∪∆2∪∆3 ⋆∪ (∆∪∆′) Kρ;α←S . But rec z f (S (Sk Φ)) ≻
f (Sk Φ) (rec z f (Sk Φ)). We then conclude using Lemma 5.8 with f , the fact that
Sk Φ∈ J N

∆1∪∆2∪∆3∪∆ Kρ (Lemma 5.10) and the induction hypothesis.
(raise): It is a direct using Lemma 5.9.
(try): By induction hypothesis, t[σ]∈ J (A ⋆∪∆)∆ Kρ = J A∆ ⋆∪∆ Kρ and u[σ]∈ J A∆ Kρ. Us-

ing Lemma 5.9, we have either that t[σ]∈ J A∆ Kρ or that t[σ] ≻∗ raise ε. Since terms
inhabiting the interpretation have values (Lemma 5.13), in both case we can show that
either try t[σ] with ε 7→ u[σ] reduces to u[σ] or, if t[σ]∈ J A∆ Kρ, it reduces to some t′

such that t[σ] ≻∗ t′. In both case, we can conclude.

Note that in this model, we only consider closed terms by construction. For this very reason,
we cannot establish a strong normalization theorem using this model. But, from the model,
we obtain a form a weak head normalization theorem (let us recall that values corresponds
to weak head normal form):

Theorem 5.19 (Weak head normalization). If M is a closed term, A a type and Γ a typing
context such that Γ ⊢ M : A, then M has a value.

Proof. This comes directly from the model soundness theorem and Lemma 5.13.
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The model allows us to prove for instance that our typing of exceptions is safe for the
primitive data types of the natural numbers:

Lemma 5.20 (type safety for natural numbers). If M is a term such that ⊢ M : N, then
M ≻∗ Sn 0 for some n≥0.

Proof. If ⊢ M : N, then with Theorem 5.18, M ∈ J N Kρ. We conclude using Lemma 5.10
and the fact that M is well typed and there is no typing rule for z.

Hence, if a program is of the type of the natural numbers, we assure that it will compute
a true natural number without producing errors.

6. Related Works

The static detection of uncaught exceptions has been studied in many works, based on
typing or not. For instance, for the OCaml languages, J.C. Guzmn and A. Surez [7] have
proposed an extension of the type system where arrows are annotated by the exceptions a
function can raise. Later, X. Leroy and F. Pessaux [13] have proposed a similar system but
have added polymorphism over these annotations. Their solution is efficient and covers all
the Ocaml language, including modularity. However, all these works consider exceptions in
call-by-value languages and rely heavily on the exceptions-as-control-flow paradigm.

In call-by-name, it is standard to use monads to encode exceptions [21, 16]. We have
however already explained in section 2.1 the drawbacks of such approach. As already
stressed, from a computational point of view, the exception mechanism described in this
paper is very similar to the imprecise exceptions of S. Peyton Jones et al. [14] who are
implemented in the ghc Haskell compiler [17]. The novelty of this paper is to provide a
precise type system for this exception mechanism while in [14] exceptional values inhabit
all types. The “imprecision” of imprecise exceptions comes from the willingness to not force
a particular reduction strategy for primitive binary operators. For instance, with imprecise
exception the term (raise ε) + (raise ε′) evaluates to the set {raise ε, raise ε′} (hence
exceptional values are sets). Since in Fx we do not have binary primitive operators, we
have no need for such so-called imprecision. However, in Fx, the addition should be coded
using the rec operator, such coding being bound to be non commutative for exceptions (the
coding have to choose on which operand of the addition the recursion should be performed).
We however believe that if needed, the typing of exceptions presented in this paper could be
adapted with almost no changes to the case of imprecise exceptions since our type notions
already deal with sets of exceptions.

In the literature, exceptions are often considered as control operators. Note however
that exceptions have a dynamic semantic, and as such, cannot be compared to static control
operators like first-class continuations [18]. In particular, the typing of exceptions does not
necessarily lift the logic to a classical one. Besides, in this paper, we address the problem of
the static detection of uncaught exceptions. We do not know of previous works on control
operators dealing with this particular problem.

Exceptions in type theoretical settings have been less studied. However, R. David
and G. Mounier [3] have designed a typed mechanism of exceptions for the language AF2.
However, as with monads, the propagation of exceptions in their system has to be forced by
means of Krivine’s storage operators. Besides, their exceptions are restricted in the sense
that only data types can carry exceptions and for example, exceptions cannot be used as
functions.
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7. Conclusion and future works

We have presented the Fx calculus, an extension of System F with typed exceptions. We
have presented a mechanism of exceptions that does not force a particular β-reduction
strategy for the calculus. We have also provided a type system for this mechanism that
performs static detection of uncaught exceptions. This type system is modular and allows
the use and propagation of exceptions to be transparent for the programmer. Finally, we
have justified the semantic of our calculus by exhibiting a realizability model.

This calculus can be improved in a certain number of ways. First, by proving more meta-
theoretical properties. Our realizability model only allows to prove weak head normalization
but it could probably be modified in order to prove strong normalization. In fact, we believe
that the simple change of the definition of the orthogonality relation (definition 5.4) to
“M ⊥ C if and only if C[M ] ≻∗ z and C[M ] is strongly normalizing”, would yield a strong
normalization model (but with this new notion the interpretation will not be closed by anti-
reduction anymore and proofs will have to be adapted). Moreover, we have not completed
yet the proof of subject-reduction for Fx. However, a detailed proof of subject-reduction
for the restriction of the calculus to first-order can be found in [8] (showing that corruption
does not break intrinsically the subject-reduction property). Adapting this proof to second
order (and thus to Fx) is however not trivial, not because of corruption, but because of the
subtyping rules of quantification. Besides, the realizability model already proves a form a
type safety for the calculus.

Type inference for Fx is obviously undecidable [25]. But type inference for restrictions
of Fx, to first-order for instance, remains to be studied, and we have good hopes since we
know that in such a restriction, the subtyping relation is decidable.

Exceptions in Fx are simple names. We would like to extend the calculus so that they
carry arguments. However, we will then need to account in the type system for the types
of these arguments, which will complicates notably the type system.

As mentioned in the introduction, we think that corruption is a promising notion for the
addition of exceptions to proof assistants based on type theoretical calculi. To that end, we
think that a natural extension would be to add dependent product to our calculus. As our
type system is heavily based on subtyping, we would build on previous works on subtyping
in dependent calculus [2, 9]. Moreover, we already know how to extend our realizability
model to handle the dependent product: if T is a type and Ux a type family indexed by x,
we can take

|Πx : T.U |ρ =
⋃

∆⊆E

{ M · C | M ∈ J T∆ Kρ ∧ C ∈ |U∆
M |ρ }
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Appendix A. Parallel reduction for Fx

M ≫ M
M ≫ M ′

λx.M ≫ λx.M ′
M ≫ M ′ N ≫ N ′

M N ≫ M ′ N ′

M ≫ M ′ N ≫ N ′

(λx.M) N ≫ M ′{x := N ′} (raise ε) M ≫ raise ε

N ≫ N ′

try (raise ε) with ε 7→ N ≫ N ′ try (raise ε′) with ε 7→ N ≫ raise ε′

M ≫ M ′ N ≫ N ′

tryM with ε 7→ N ≫ tryM ′ with ε 7→ N ′

http://www.haskell.org/ghc/docs/latest/html/libraries/base/Control-Exception.html
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V ≫ V ′ V is a regular value

tryV with ε 7→ N ≫ V ′

X ≫ X ′

rec X Y 0 ≫ X ′
X ≫ X ′ Y ≫ Y ′ N ≫ N ′

rec X Y (S N) ≫ Y ′ N ′ (rec X ′ Y ′ N ′)

rec X Y (raise ε) ≫ raise ε

X ≫ X ′

list rec X Y [ ] ≫ X ′
X ≫ X ′ Y ≫ Y ′ E ≫ E′ L ≫ L′

list rec X Y (cons E L) ≫ Y ′ E′ L′ (list rec X ′ Y ′ L′)

list rec X Y (raise ε) ≫ raise ε
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