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a,b Université de Liège, Institut Montefiore, B28, B-4000 Liège, Belgium
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Abstract. This article studies the expressive power of finite automata recognizing sets
of real numbers encoded in positional notation. We consider Muller automata as well as
the restricted class of weak deterministic automata, used as symbolic set representations in
actual applications. In previous work, it has been established that the sets of numbers that
are recognizable by weak deterministic automata in two bases that do not share the same
set of prime factors are exactly those that are definable in the first order additive theory
of real and integer numbers. This result extends Cobham’s theorem, which characterizes
the sets of integer numbers that are recognizable by finite automata in multiple bases.

In this article, we first generalize this result to multiplicatively independent bases, which
brings it closer to the original statement of Cobham’s theorem. Then, we study the sets
of reals recognizable by Muller automata in two bases. We show with a counterexample
that, in this setting, Cobham’s theorem does not generalize to multiplicatively independent
bases. Finally, we prove that the sets of reals that are recognizable by Muller automata in
two bases that do not share the same set of prime factors are exactly those definable in the
first order additive theory of real and integer numbers. These sets are thus also recognizable
by weak deterministic automata. This result leads to a precise characterization of the
sets of real numbers that are recognizable in multiple bases, and provides a theoretical
justification to the use of weak automata as symbolic representations of sets.

1. Introduction

By using positional notation, real numbers can be encoded as infinite words over an al-
phabet composed of a fixed number of digits, with an additional symbol for separating their
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integer and fractional parts. This encoding scheme maps sets of numbers onto languages
that describe those sets unambiguously.

This article studies the sets of real numbers whose encodings can be accepted by finite
automata. The motivation is twofold. First, since regular languages enjoy good closure
properties under a large range of operators, automata provide powerful theoretical tools for
establishing the decidability of arithmetic theories. In particular, it is known that the sets of
numbers that are definable in the first-order additive theory of integers 〈Z,+, <〉, also called
Presburger arithmetic, are encoded by regular finite-word languages [Büc62, BHMV94].
This result translates into a simple procedure for deciding the satisfiability of Presburger
formulas. Moving to infinite-word encodings and ω-regular languages, it can be extended
to sets of real numbers definable in 〈R,Z,+, <〉, i.e., the first-order additive theory of real
and integer variables [BBR97, BRW98, BJW05].

The second motivation is practical. Since finite automata are objects that are easily
manipulated algorithmically, they can be used as actual data structures for representing
symbolically sets of values. This idea has successfully been exploited in the context of
computer-aided verification, leading to representations suited for the sets of real and integer
vectors handled during symbolic state-space exploration [WB95, Boi98, BJW05, EK06]. A
practical limitation of this approach is the high computational cost of some operations
involving infinite-word automata, in particular language complementation [Saf88, Var07].
However, it has been shown that a restricted form of automata, weak deterministic ones,
actually suffices for handling the sets definable in 〈R,Z,+, <〉 [BJW05]. Weak automata can
be manipulated with essentially the same cost as finite-word ones [Wil93], which alleviates
the problem and leads to an effective representation system.

Whether a set of numbers can be recognized by an automaton generally depends on
the chosen encoding base. For integer numbers, it is known that a set S ⊆ Z is recognizable
in a base r > 1 iff it is definable in the theory 〈Z,+, <,Vr〉, where Vr is a base-dependent
function [BHMV94] that returns the highest integer power of r dividing its argument. Fur-
thermore, the well-known Cobham’s theorem states that if a set S ⊆ N is simultaneously
recognizable in two bases r > 1 and s > 1 that are multiplicatively independent , i.e., such
that rp 6= sq for all p, q ∈ N>0, then S is ultimately periodic, i.e., it differs from a pe-
riodic subset of N only by a finite set [Cob69]. As a corollary of Cobham’s theorem, a
subset of Z that is recognizable in two multiplicatively independent bases is definable in
〈Z,+, <〉 [BHMV94], from which it follows that it is recognizable in every base. Our aim is
to generalize as completely as possible this result to automata recognizing real numbers, by
precisely characterizing the sets that are recognizable in multiple bases. We first consider
the case, relevant for practical applications, of weak deterministic automata. In previous
work, it has been established that a set of real numbers is simultaneously recognizable by
weak deterministic automata in two bases that do not share the same set of prime factors
iff this set is definable in 〈R,Z,+, <〉 [BB09]. As a first contribution, we extend this result
to pairs of multiplicatively independent bases. Since recognizability in two multiplicatively
dependent bases is equivalent to recognizability in only one of them [BRW98], this result
provides a complete characterization of the sets that are recognizable in multiple bases by
weak deterministic automata.

Then, we move to sets recognized by Muller automata. We establish that there exists
a set of real numbers recognizable in two multiplicatively independent bases that share
the same set of prime factors, but that is not definable in 〈R,Z,+, <〉. This shows that
Cobham’s theorem does not directly generalize to Muller automata recognizing sets of real
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numbers. Finally, we establish that a set S ⊆ R is simultaneously recognizable in two bases
that do not share the same set of prime factors iff S is definable in 〈R,Z,+, <〉. As a
corollary, such a set must then be recognizable by a weak deterministic automaton. Our
result thus provides a theoretical justification to the use of weak automata, by showing that
their expressive power corresponds precisely to the sets of reals recognizable by infinite-word
automata in every encoding base.

2. Basic notions

2.1. Encodings of numbers. Let r ∈ N>1 be an integer numeration base and let Σr =
{0, . . . , r − 1} be the corresponding set of digits. We encode a real number x in base r,
most significant digit first, by words of the form wI ⋆ wF , where wI ∈ Σ∗

r encodes an
integer part xI ∈ Z of x and wF ∈ Σω

r encodes a fractional part xF ∈ [0, 1]. Note that
the decomposition of x into xI and xF is not necessarily unique, e.g., x = 3 gives either
xI = 3 and xF = 0, or xI = 2 and xF = 1. Negative integer numbers are represented
by their r’s-complement, i.e., the encodings of xI ∈ Z<0 are formed by the last p digits of
the encodings of rp + xI . The length p of wI is not fixed but has to be large enough for
−rp−1 ≤ xI < rp−1 to hold; thus, the most significant digit of an encoding is equal to 0 for
positive integer parts and to r− 1 for negative ones [BBR97]. As a consequence, the set of
valid encodings of numbers in base r forms the language {0, r − 1}Σ∗

r ⋆Σ
ω
r . Some numbers

have two distinct encodings with the same integer-part length, e.g., in base 10, the number
11/2 admits the encodings 0+5 ⋆ 50ω and 0+5 ⋆ 49ω. Such encodings are called dual . For
a word w = bIp−1b

I
p−2 . . . b

I
1b

I
0 ⋆ b

F
1 b

F
2 b

F
3 . . . ∈ {0, r − 1}Σ∗

r ⋆ Σω
r , we denote by [w]r the real

number encoded by w in base r, i.e.,

[w]r =

p−2
∑

i=0

bIi r
i +

∑

i>0

bFi r
−i +

{

0 if bIp−1 = 0,

−rp−1 if bIp−1 = r − 1.

For finite words w ∈ Σ∗
r, we denote by [w]r the natural number encoded by w, i.e., [w]r =

[0w ⋆ 0ω]r.
It is known [HW85] that a word w ∈ {0, r − 1}Σ∗

r ⋆ Σω
r is ultimately periodic, i.e., of

the form {0, r − 1}u1 ⋆ u2u
ω
3 with u1, u2 ∈ Σ∗

r and u3 ∈ Σ+
r , if and only if [w]r is rational.

The word u3 is then called a period of w.

2.2. Real Number Automata. For a set S ⊆ R, we denote by Lr(S) the language of all
the base-r encodings of the elements of S. If Lr(S) is ω-regular, then it can be accepted by
a (non-unique) infinite-word automaton, called a Real Number Automaton (RNA), recog-
nizing S. Such a set S is then said to be r-recognizable. RNA can be generalized into Real
Vector Automata (RVA), suited for subsets of Rn, with n > 0 [BBR97].

RNA have originally been defined as Büchi automata [BBR97]. In this article, we
will instead consider them to be deterministic Muller automata. This adaptation can be
made without loss of generality, since both classes of automata share the same expressive
power [McN66, PP04]. The fact that RNA have a deterministic transition relation will
simplify technical developments.

The r-recognizable sets of real numbers are precisely described by the following result.
This logical characterization will often be used in this article.
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Theorem 2.1 ([BRW98]). Let r ∈ N>1 be a base. A subset of R is r-recognizable iff it
is definable in the first-order theory 〈R,Z,+, <,Xr〉, where Xr(x, u, k) is a base-dependent
predicate that holds whenever u is an integer power of r, and there exists an encoding of x
in which the digit at the position specified by u is equal to k.

It is known that the full expressive power of infinite-word automata is not needed for
representing the subsets of R that are definable in 〈R,Z,+, <〉. The following theorem
establishes that such sets can be recognized by weak deterministic automata, i.e., deter-
ministic Büchi automata such that each strongly connected component of their transition
graph contains either only accepting or only non-accepting states. A set recognized by a
weak deterministic automaton in base r is said to be weakly r-recognizable, and such an
automaton is then called a weak RNA.

Theorem 2.2 ([BJW05]). If a subset of R is definable in the first-order theory 〈R,Z,+, <〉,
then it is weakly r-recognizable in every base r ∈ N>1.

2.3. Topology. In this section, we recall some notions about topology, which is a useful
tool for reasoning about the properties of sets of words and numbers [PP04].

2.3.1. General concepts. Given a set S, either of words or of numbers, a distance d(x, y)
defined on this set induces a metric topology on subsets of S. A neighborhood Nε(x) of a
point x ∈ S with respect to ε ∈ R>0 is the set Nε(x) = {y | d(x, y) < ε}. A set C ⊆ S is
said to be open if for all x ∈ C, there exists ε > 0 such that Nε(x) ⊆ C. A closed set is a
set whose complement with respect to S is open, or, equivalently, a set that contains the
limits of all its converging sequences of elements. The following notations will be used:

• F is the class of closed sets,
• G is the class of open sets,
• Fσ is the class of countable unions of closed sets,
• Gδ is the class of countable intersections of open sets.

Other classes can be defined from these notations: The class B(F ) = B(G) contains the
finite Boolean combinations of open and closed sets, whereas Fσ ∩ Gδ is the class of sets
that can be expressed as countable unions of closed sets as well as countable intersections
of open sets.

Those classes of sets are the first levels of the Borel hierarchy. In a metric topology,
this hierarchy states that F and G are subclasses of B(F ) = B(G), which is itself a subclass
of Fσ ∩Gδ.

2.3.2. Topology of ω-words. Given a base r ∈ N>1 and the alphabet Σr ∪{⋆}, we define the
following distance relation between infinite words over this alphabet:

d(w,w′) =

{ 1
|common(w,w′)|+1 if w 6= w′

0 if w = w′,

where |common(w,w′)| denotes the length of the longest common prefix of w and w′. This
distance induces a topology on (Σr ∪ {⋆})ω .
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We say that a ω-language L ⊆ (Σr ∪ {⋆})ω satisfies the dense oscillating sequence
property if, w1, w2, w3, . . . being ω-words and ε1, ε2, ε3, . . . being distances, one has that

∃w1∀ε1∃w2∀ε2∃w3∀ε3 · · ·

such that d(wi, wi+1) ≤ εi for all i ≥ 1, wi ∈ L for all odd i, and wi /∈ L for all even
i [BJW05].

It has been established [MS97] that weak deterministic automata accept exactly the
ω-regular languages that belong to the topological class Fσ ∩Gδ.

It is also known [BJW05] that the ω-regular languages that satisfy the dense oscillating
sequence property cannot be accepted by weak deterministic automata.

2.3.3. Topology of real numbers. We consider the topology on the sets of real numbers
induced by the distance relation defined by d(x, y) = |x− y|.

In this topology, a notion of dense oscillating sequence can be defined in the same way
as for ω-words: We say that a set S ⊆ R satisfies the dense oscillating sequence property if,
x1, x2, x3, . . . being real numbers and ε1, ε2, ε3, . . . being distances, one has that

∃x1∀ε1∃x2∀ε2∃x3∀ε3 · · ·

such that d(xi, xi+1) ≤ εi for all i ≥ 1, xi ∈ S for all odd i, and xi /∈ S for all even i.
We have the following theorem.

Theorem 2.3. Let r ∈ N>1 be a base. The r-recognizable sets S ⊆ R that satisfy the dense
oscillating sequence property are not weakly r-recognizable.

Proof. Consider a r-recognizable set S ⊆ R satisfying the dense oscillating sequence prop-
erty. It is sufficient to establish that Lr(S) satisfies the dense oscillating sequence property
as well.

Recall that each real number admits multiple encodings. First, the first digit of an
encoding can be repeated at will. Second, for a given length of the integer part (assumed
to be sufficiently large), a number admits either one encoding, or two (dual) ones.

Let S1, S2 ⊆ R be sets of numbers such that S1∩S2 = ∅. Consider any number x1 ∈ S1

for which there exist arbitrarily close numbers in S2. Then, there exists an encoding w1

of x1 for which there exist arbitrarily close encodings w2 of numbers x2 of S. We can ask
more: There exists an encoding w1 of x1 for which there exist arbitrarily close encodings
w2 of numbers x2 of S2, including the dual encodings with the same integer part length
as w1, if any. Formally, (x1 ∈ S1 ∧ (∀ε > 0)(∃x2 ∈ S2)(d(x1, x2) < ε)) ⇒ (∃w1)([w1]r =
x1 ∧ (∀ε′ > 0)(∃x2 ∈ S2)((∃w2)([w2]r = x2 ∧ |w1|I = |w2|I) ∧ (∀w2)([w2]r = x2 ∧ |w1|I =
|w2|I ⇒ d(w1, w2) < ε′))), where |w|I denotes the integer part length of the encoding w.

By hypothesis, there exists x1 ∈ S such that ∀ε1∃x2∀ε2∃x3∀ε3 · · · , d(xi, xi+1) ≤ εi for
all i ≥ 1, xi ∈ S for all odd i, and xi /∈ S for all even i. We choose S1 = S, and define S2

as the subset of S whose elements x2 satisfy ∀ε2∃x3∀ε3∃x4∀ε4 · · · , d(xi, xi+1) ≤ εi for all
i ≥ 2, xi ∈ S for all odd i, and xi /∈ S for all even i. By the previous property, there exists
an encoding w1 of x1 such that for arbitrarily small ε′ > 0, there exists an element x2 of S2

whose all encodings w2 satisfy d(w1, w2) < ε′, provided that they share the same integer-
part length as w1. Moreover, there exists at least one such encoding w2. By applying a
similar reasoning to x2, x3, x4, . . ., one obtains ∃w1∀ε

′
1∃w2∀ε

′
2∃w3∀ε

′
3 · · · , d(wi, wi+1) ≤ ε′i

for all i ≥ 1, wi ∈ Lr(S) for all odd i, and wi /∈ Lr(S) for all even i. It follows that the
language Lr(S) satisfies the dense oscillating sequence property.
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2.3.4. Links between the topology of ω-words and the topology of real numbers. In this sec-
tion, the notations Fσ, Gδ and Fσ∩Gδ (resp. Fσ, Gδ and Fσ ∩ Gδ) will be used when dealing
with the topology of ω-words (resp. real numbers).

Lemma 2.4. Let r ∈ N>1 be a base, and let L ⊆ (Σr ∪ {⋆})ω be a language. If L belongs
to Fσ, then the set of real numbers that have an encoding in L belongs to Fσ.

Proof. Let Wj be the language {0, r − 1}{0, . . . , r − 1}j ⋆ (Σr ∪ {⋆})ω with j ∈ N. This
language is open for all j. Since L belongs to Fσ, it can be expressed as L =

⋃

i∈N Fi, where
each Fi is closed. The language

⋃

i∈N

⋃

j∈N(Fi ∩ Wj) is a sublanguage of L such that the
language of valid encodings it contains is exactly the language of valid encodings that belong
to L. When i and j are fixed, the set Fi∩Wj is the intersection of a closed and an open set;
hence, it belongs to Fσ and is thus a countable union of closed sets: Fi ∩Wj =

⋃

k∈N Li,j,k.
For each of these closed sets Li,j,k, define Si,j,k ⊆ R as the set of numbers that have

at least one encoding in Li,j,k. The set Si,j,k is closed. Indeed, suppose that Si,j,k is not
closed. Thus, there exists a converging sequence of points of Si,j,k whose limit x does
not belong to Si,j,k. If this sequence contains infinitely many points greater than x, one
extracts its subsequence composed of those points. Otherwise, one extracts the subsequence
composed of its points that are lower than x. Each of the points of Si,j,k has at least one
encoding in Fi∩Wj. Since the valid encodings in Fi∩Wj have the same integer part length,
the converging subsequence of points of Si,j,k is mapped to a converging sequence of words
encoding those points. Since Li,j,k is closed, it contains the limit of its converging sequences,
hence the limit x of the converging sequence of points of Si,j,k has an encoding in Li,j,k,
which leads to a contradiction since this limit would be in Si,j,k.

It follows that the set of real numbers that have an encoding in L is a countable union
⋃

(i,j,k)∈N3 Si,j,k of closed sets in R, and thus belongs to Fσ.

Lemma 2.5. Let S ⊆ R, and r ∈ N>1 be a base. The set S belongs to Fσ ∩ Gδ iff the
language Lr(S) belongs to Fσ ∩Gδ.

Proof. It is known [BJW05] that if a set S ⊆ R belongs to Fσ ∩ Gδ, then the language
Lr(S) belongs to Fσ ∩Gδ.

If Lr(S) belongs to Fσ ∩Gδ, then it belongs in particular to Fσ. By Lemma 2.4, S then
belongs to Fσ. On the other hand, Lr(S) belongs to Gδ. It follows that the complement of
Lr(S) belongs to Fσ. By Lemma 2.4, the set of real numbers that have an encoding in this
language belongs to Fσ, which implies that S belongs to Gδ.

In the sequel, we will need to apply transformations to sets represented by RNA (or
weak RNA), or to the chosen encoding base.

Theorem 2.6. Let S ⊆ R, r ∈ N>1, and a, b ∈ Q. If S is (resp. weakly) r-recognizable
then the sets aS + b and S ∩ [a, b] are (resp. weakly) r-recognizable as well.

Proof. If S is r-recognizable, then it is definable in 〈R,Z,+, <,Xr〉 by Theorem 2.1, and
so are the sets aS + b and S ∩ [a, b], that thus are both r-recognizable.

If S is weakly r-recognizable, then the language Lr(S) belongs to the class Fσ ∩Gδ. By
Lemma 2.5, the set S belongs to the class Fσ ∩ Gδ, and so are the sets aS + b and S ∩ [a, b].
Since these sets are r-recognizable by the first part of the proof, it follows from [MS97] that
they are also weakly r-recognizable.
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Theorem 2.7. Let S ⊆ R, r ∈ N>1, and l ∈ N>0. The set S is (resp. weakly) r-recognizable
iff it is (resp. weakly) rl-recognizable.

Proof. If S is r-recognizable, then the result is a consequence of Theorem 2.1, since the
predicate Xr(x, u, k) can be expressed in terms of Xrl(x, u, k), and reciprocally. Indeed,
testing the value of the digit at a given position in an encoding in base rl can be reduced
to the test of l digits in base r, and conversely.

If S is weakly r-recognizable, then Lr(S) belongs to the class Fσ ∩Gδ . By Lemma 2.5,
S belongs to the class Fσ ∩ Gδ, and Lrl(S) belongs to the class Fσ ∩ Gδ. Since S is rl-
recognizable, S is weakly rl-recognizable. The case of a rl-recognizable set S is handled in
the same way.

3. Prior results and objectives

This article is aimed at characterizing precisely the conditions under which a set of real
numbers is recognizable, or weakly recognizable, in multiple bases. We start by summarizing
some known results.

First, the case of sets of integer numbers is handled by the following result, which is a
direct corollary of the well-known Cobham’s theorem. Note that for sets of integer numbers,
the notions of r-recognizability and weak r-recognizability coincide, and correspond to the
existence of a finite-word automaton accepting only the integer part of encodings.

Theorem 3.1 ([Cob69, BHMV94]). Let r, s ∈ N>1 be bases that are multiplicatively inde-
pendent, i.e., such that rp 6= sq for all p, q ∈ N>0. A set S ⊆ Z is both r- and s-recognizable
iff it is definable in the first-order theory 〈Z,+, <〉.

If r, s ∈ N>1 are multiplicatively dependent, then a set S ⊆ Z is r-recognizable iff
it is s-recognizable, as a consequence of Theorem 2.7. It follows that Theorem 3.1 fully
characterizes recognizability in multiple bases for sets of integer numbers.

Next, for sets of real numbers recognized by weak automata, we have the following
result.

Theorem 3.2 ([BB09]). Let r, s ∈ N>1 be bases that do not share the same set of prime
factors. A set S ⊆ R is both weakly r- and weakly s-recognizable iff it is definable in the
first-order theory 〈R,Z,+, <〉.

In this paper, we extend Theorem 3.2 in two ways. First, we will show in Section 5 that
this result also holds for multiplicatively independent bases, which weakens the hypotheses
of the theorem and brings its statement closer to Theorem 3.1. Formally, we will prove the
following theorem.

Theorem 3.3. Let r, s ∈ N>1 be two multiplicatively independent bases. A set S ⊆ R is both
weakly r- and weakly s-recognizable iff it is definable in the first-order theory 〈R,Z,+, <〉.

Second, we will establish in Section 6 that a similar result holds for recognizable (as
opposed to weakly recognizable) sets of real numbers. Formally, we will prove the following
theorem.

Theorem 3.4. Let r, s ∈ N>1 be two bases that do not share the same set of prime factors. A
set S ⊆ R is both r- and s-recognizable iff it is definable in the first-order theory 〈R,Z,+, <〉.
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In this particular case, we will also show that considering bases with different sets of
prime factors is essential, and that multiplicatively independent bases do not lead to a
similar property.

Before proving Theorems 3.3 and 3.4, we show in the next section that these problems
can be reduced to simpler ones.

4. Problem reductions

In the next sections, we will consider sets S ⊆ R that are simultaneously recognizable,
either by RNA or by weak RNA, in two bases r and s that either are multiplicatively
independent, or have different sets of prime factors. We will then tackle the problem of
proving that such sets are definable in 〈R,Z,+, <〉. In this section, we reduce this problem,
by restricting the domain to the interval [0, 1], and introducing the notion of boundary
point.

4.1. Reduction to [0, 1]. This section is adapted from [BB09]. Let S ⊆ R be a set of real
numbers. The set S can be decomposed into a countable union

⋃

i∈Z

({i} + SF
i ),

where for all i, SF
i ⊆ [0, 1] is the set of fractional parts that can be added to the integer i

to obtain an element x ∈ S.
If we decompose the set Z into equivalence classes SI

1 , S
I
2 , S

I
3 , . . . such that two integers

i and j are in the same equivalence class iff the sets SF
i and SF

j are identical, then this

union becomes a (finite or infinite) union
⋃

i

(SI
i + SF

i ).

Assume now that S is recognizable by a (resp. weak) RNA A in some base r ∈ N>1.
Recall that A has a deterministic transition relation. For each encoding of each possible
value xI ∈ Z , the path in A that reads this encoding followed by the separator ⋆ leads to
a state q accepting a language Lq. The language 0+ ⋆ Lq encodes the set of all fractional
parts xF that can be associated to xI , i.e., the set Sq = {xF ∈ [0, 1] | xI + xF ∈ S}. Note
that the dual encodings of 0 and 1 may be missing, but this is not problematic.

Such states q are in a finite number n, and can w.l.o.g. be supposed to accept languages
that are pairwise different (otherwise, it suffices to modify the destinations of the transitions
labeled by ⋆ that lead to redundant states). Assuming w.l.o.g. that the languages accepted
from every state are not empty, it follows that the languages Lq are in the same finite
number n, and so are the sets Sq. The sets Sq correspond exactly to those of the sets SF

i

that are not empty. Hence, the number n of sets Sq is independent from the representation
base.

The set S can thus be decomposed into a finite union
n
⋃

i=1

(SI
i + SF

i ),

where the sets SI
i ⊆ Z are non-empty and pairwise distinct, and the sets SF

i ⊆ [0, 1] are
non-empty and pairwise different. Furthermore, each set SI

i is recognizable by a finite-word
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automaton in every base in which S is recognizable, and each set SF
i is (resp. weakly)

recognizable in every base in which S is (resp. weakly) recognizable1.
Assume now that S ⊆ R is simultaneously (resp. weakly) r- and s- recognizable, with

respect to bases r and s that are multiplicatively independent. By Theorem 3.1, each set SI
i

is thus definable in 〈Z,+, <〉. This reduces the problem of establishing that S is definable
in 〈R,Z,+, <〉 to the same problem for each set SF

i . Since we have SF
i ⊆ [0, 1] for all i, the

problem has thus been reduced from the domain R to the interval [0, 1].

4.2. Boundary points. A point x ∈ R is a boundary point of a set S ⊆ R iff all its
neighborhoods contain at least one point from S as well as one from its complement S =
R \ S.

Lemma 4.1. Let r ∈ N>1 be a base. If a set S ⊆ R is r-recognizable, then the set BS of
boundary points of S is r-recognizable.

Proof. Since S is r-recognizable, it is definable in 〈R,Z,+, <,Xr〉 by Theorem 2.1. It is
sufficient to show that BS is definable in 〈R,Z,+, <,Xr〉. A formula defining BS in this
theory is

{x ∈ R | (∀ε ∈ R>0)(∃y, z ∈ R)(y ∈ S ∧ z /∈ S ∧ |x− y| < ε ∧ |x− z| < ε}.

Lemma 4.2. Let r ∈ N>1 be a base. If a r-recognizable set S ⊆ R has only finitely many
boundary points, then it is definable in the first-order theory 〈R,Z,+, <〉.

Proof. If S ⊆ R has only finitely many boundary points, then it can be decomposed into a
finite union of intervals such that the extremities of these intervals are the boundary points
of S.

In order to prove that S is definable in 〈R,Z,+, <〉, it is sufficient to show that the
boundary points of S are rational numbers. Since S is r-recognizable, the finite set BS of its
boundary points is r-recognizable by Lemma 4.1. It follows that its elements are encoded
by words accepted by a finite automaton, and that share a finite number of fractional parts.
These are necessarily ultimately periodic, from which the elements of BS are rational.

5. Multiplicatively independent bases

Let r, s ∈ N>1 be two multiplicatively independent bases. The first aim of this section
is to prove Theorem 3.3, i.e., to establish that the subsets of R that are both weakly r- and
weakly s-recognizable are exactly those that are definable in 〈R,Z,+, <〉. Then, a second
goal will be to show that the subsets of R that are both r- and s-recognizable do not enjoy
the same property.

Thanks to the reduction discussed in Section 4.1, it is sufficient to prove these results
for sets restricted to the interval [0, 1]. Besides, Lemma 4.2 implies that, in order to show
that a recognizable set is definable in 〈R,Z,+, <〉, it suffices to prove that it admits only a
finite number of boundary points.

1Indeed, in any (resp. weak) RNA recognizing the set S, there exists a state q accepting a language Lq

such that the language encoding SF
i is 0+ ⋆ Lq . In order for such a language to contain all encodings of

the numbers it encodes, it should also contain the words (r − 1)+ ⋆ (r − 1)ω if 0ω ∈ Lq , and 0+1 ⋆ 0ω if
(r − 1)ω ∈ Lq .
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We thus proceed as follows. We consider a set S ⊆ [0, 1] that is both (resp. weakly) r-
and s-recognizable, and assume by contradiction that S has infinitely many boundary points.
In Section 5.1, we derive some useful properties under this assumption. In Section 5.2, we
then show that our assumption leads to a contradiction in the case of weak recognizability,
proving that the sets that are both weakly r- and weakly s-recognizable are necessarily
definable in 〈R,Z,+, <〉, hence Theorem 3.3. Finally, in Section 5.3, we show with the
help of a counterexample that this result does not generalize to sets that are both r- and
s-recognizable.

5.1. Product stability. By hypothesis, the set S ⊆ [0, 1] is (resp. weakly) r-recognizable.
Let Ar be a (resp. weak) RNA recognizing S in base r. We assume w.l.o.g. that the
transition relation of Ar is complete.

Since S is r-recognizable, the set BS of boundary points of S is r-recognizable by
Lemma 4.1. Let AB

r be a RNA recognizing BS .
By assumption, S has infinitely many boundary points, hence there exist infinitely

many distinct paths of AB
r that end up cycling in the same set of accepting states. One can

thus extract from AB
r an infinite language L = 0 ⋆ uv∗twω, where t, u, v, w ∈ Σ∗

r, |v| > 0,
|w| > 0, and L encodes an infinite subset of the boundary points of S. We then define
y = [0 ⋆ uvω]r and, for each k ∈ N>0, yk = [0 ⋆ uvktwω]r. The sequence y1, y2, y3, . . . ∈ Qω

forms an infinite sequence of distinct boundary points of S, converging to y ∈ Q. If we
have yk > y for infinitely many k, then we define S1 = (S − y) ∩ [0, 1]. Otherwise, we
define S1 = (−S + y) ∩ [0, 1]. From Theorem 2.6, the set S1 is both (resp. weakly) r- and
s-recognizable. Moreover, this set admits an infinite sequence of distinct boundary points
that converges to 0.

Let A1
r and A1

s be (resp. weak) RNA recognizing S1 in the respective bases r and s.
The path π0 of A1

r that reads 0 ⋆ 0ω is composed of a prefix labeled by 0⋆, followed by an
acyclic path of length p ≥ 0, and finally by a cycle of length q > 0. It follows that a word
of the form 0 ⋆ 0pt, with t ∈ Σω

r , is accepted by A1
r iff the word 0 ⋆ 0p+qt is accepted as well.

Remark that the set S1 admits infinitely many boundary points with a base-r encoding
beginning with 0 ⋆ 0p. Similar properties hold for A1

s. In this automaton, the path π′
0

recognizing 0⋆0ω reads the symbols 0 and ⋆, and then follows an acyclic sequence of length
p′ before reaching a cycle of length q′.

We now define S2 = rpS1 ∩ [0, 1]. Like S1, the set S2 admits an infinite sequence of
boundary points that converges to 0. Moreover, by Theorem 2.6, S2 is both (resp. weakly)
r- and s-recognizable. Let A2

r be a (resp. weak) RNA recognizing S2 in base r. For every
t ∈ Σω

r , the word 0 ⋆ t is accepted by A2
r iff the word 0 ⋆ 0qt is accepted as well. In other

words, the fact that a number x ∈ [0, 1] belongs or not to S2 is not influenced by the
insertion of q zero digits in its encodings, immediately after the symbol ⋆. This amounts to
dividing the value of x by rq, which leads to the following definition.

Definition 5.1. Let D ⊆ R be a domain, and let f ∈ R>0. A set S ⊆ D is f -product-stable
in the domain D iff for all x ∈ D such that fx ∈ D, we have x ∈ S ⇔ fx ∈ S.

From the previous discussion, we have that S2 is rq-product-stable in [0, 1]. We then

define S3 = sp
′
S2 ∩ [0, 1]. The set S3 is rq-product-stable in [0, 1] as well. By Theorem 2.6,

S3 is also both (resp. weakly) r- and s-recognizable. Besides, since S3 = rpsp
′
S1 ∩ [0, 1],

the set S3 can alternatively be obtained by first defining S4 = sp
′
S1 ∩ [0, 1], which is both

(resp. weakly) r- and s-recognizable by Theorem 2.6. Then, one has S3 = rpS4 ∩ [0, 1]. By
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a similar reasoning in base s, we get that S3 is sq
′
-product-stable in [0, 1]. Like S2, the set

S3 admits an infinite sequence of distinct boundary points that converges to 0.
Finally, we replace the bases r and s by r′ = rq and s′ = sq

′
, thanks to Theorem 2.7.

The results of this section are then summarized by the following lemma.

Lemma 5.2. Let r, s ∈ N>1 be two multiplicatively independent bases, and let S ⊆ [0, 1]
be a set that is both (resp. weakly) r- and s-recognizable, and that admits infinitely many
boundary points. There exist powers r′ = ri and s′ = sj of r and s, with i, j ∈ N>0, and a set
S′ ⊆ [0, 1] that is both (resp. weakly) r′- and s′-recognizable, both r′- and s′-product-stable
in [0, 1], and that admits infinitely many boundary points.

5.2. Recognizability by weak RNA. We are now ready to prove that our initial assump-
tion that the set S ⊆ [0, 1] has infinitely many boundary points leads to a contradiction,
under the hypothesis that S is both weakly r- and weakly s-recognizable.

By Lemma 5.2, we can assume w.l.o.g. that S is r- and s-product-stable in [0, 1].
Hence, there exist α, β ∈ (0, 1] such that α ∈ S and β 6∈ S. For every i, j ∈ Z such that
risjα ∈ (0, 1], we thus have risjα ∈ S. Similarly, for every i, j ∈ Z such that risjβ ∈ (0, 1],
we have risjβ 6∈ S.

Let γ be an arbitrary point in the open interval (0, 1). Since r and s are multiplicatively
independent, it follows from Kronecker’s approximation theorem [HW85] that any open
interval of R>0 contains some number of the form ri/sj with i, j ∈ N>0 [Per90]. Hence, for
every sufficiently small ε > 0 and δ ∈ {α, β}, there exist i, j ∈ N>0 such that

0 < γ − ε < (ri/sj)δ < γ + ε < 1

showing that every neighborhood Nε(γ) of γ contains one point from S as well as one from
S. The latter property leads to a contradiction, since it implies that S satisfies the dense
oscillating sequence property, and therefore, by Theorem 2.3, cannot be recognized by a
weak RNA.

Taking into account the problem reductions introduced in Sections 4.1 and 4.2, we thus
have proven Theorem 3.3.

Thanks to the above mentioned reductions, Theorem 3.3 has the following corollary. A
set S ⊆ R is weakly r- and weakly s-recognizable in two multiplicatively independent bases
iff it can be expressed as a finite union

⋃

i(S
I
i + SF

i ), where each SI
i ⊆ Z is of the form

SI
i = {ai + kbi | k ∈ N} with ai, bi ∈ Z, and each SF

i ⊆ [0, 1] is a finite union of intervals
with rational extremities. It has already been observed in [Wei99] that such a structural
description of subsets of R is equivalent to definability in 〈R,Z,+, <〉.

5.3. Recognizability by RNA. We now show that Theorem 3.3 does not directly gen-
eralize to non-weak recognizability. Indeed, a set can then be recognizable in two mul-
tiplicatively independent bases without being definable in 〈R,Z,+, <〉. This property is
established by the following theorem.

Theorem 5.3. For every pair of bases r, s ∈ N>1 that share the same set of prime factors,
there exists a set S that is both r- and s-recognizable, and that is not definable in the first-
order theory 〈R,Z,+, <〉.
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Proof. A counterexample is provided by the set

S =

{

n

f i1
1 f i2

2 · · · f ik
k

| n ∈ Z, i1, i2, . . . , ik ∈ N

}

,

where f1, f2, . . . fk are the prime factors of r and s.
In either base t ∈ {r, s}, this set is encoded by the language Lt = {0, t− 1}Σ∗

t ⋆Σ
∗
t (0

ω ∪
(t−1)ω), i.e., the set S contains the numbers that admit dual encodings. Indeed, each word
of Lt represents a number x = n/tk (n ∈ Z, k ∈ N) that belongs to S. Reciprocally, let x
be an element of S. One can assume w.l.o.g. that the denominator of x is a power of t.
Hence, x admits an encoding that ends with 0ω.

The language Lt is clearly ω-regular, hence S is both r- and s-recognizable. Suppose
that S is definable in 〈R,Z,+, <〉. Then, it is weakly t-recognizable in any base t thanks to
Theorem 2.2. By Theorem 2.3 and since S satisfies the dense oscillating sequence property,
this leads to a contradiction.

Note that the set S (resp. R\S) defined in the previous proof is recognizable by de-
terministic co-Büchi automata (resp. deterministic Büchi automata) in both bases r and
s. It follows that Theorem 3.3 does not generalize to sets recognizable by those classes of
automata either.

The case of bases that do not share the same set of prime factors is investigated in the
next section.

6. Bases with different sets of prime factors

We now consider two bases r, s ∈ N>1 that do not share the same set of prime factors.
Since this property implies that r and s are multiplicatively independent, we know by
Theorem 3.3 that any subset of R that is simultaneously weakly r- and weakly s-recognizable
must be definable in 〈R,Z,+, <〉.

The goal of this section is now to prove Theorem 3.4, i.e., that a subset of R that is
both r- and s-recognizable is necessarily definable in 〈R,Z,+, <〉. Recall that, as shown in
Section 5.3, this result does not extend to pairs of bases that are multiplicatively independent
but share the same prime factors.

We proceed like in Section 5 and start from an arbitrary set S that is both r- and
s-recognizable. Thanks to the reduction discussed in Section 4.1, it suffices to consider S ⊆
[0, 1]. Moreover, according to Lemma 4.2, one can prove that S is definable in 〈R,Z,+, <〉 by
showing that it admits only finitely many boundary points. We thus assume that S admits
infinitely many boundary points. From this assumption, we will derive in Sections 6.1
and 6.2 additional properties that will eventually lead to a contradiction.

It is possible to reuse part of the reasoning made in Section 5. By Lemma 5.2, there
exist bases r′ and s′ with different sets of prime factors, and a set S′ ⊆ [0, 1] that is both
r′- and s′-recognizable, both r′- and s′-product-stable in [0, 1], and that has infinitely many
boundary points. Replacing the set S by S′, and the bases r, s by r′, s′, we can thus assume
w.l.o.g. that the set S that we consider is both r- and s-product-stable in [0, 1]. Finally, we
also impose w.l.o.g. that there exists a prime factor of s that does not divide r.
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6.1. Sum stability. Our first strategy consists in exploiting Cobham’s theorem so as to
derive additional properties of S. The initial step is to build from S a set S′ ⊆ R≥0 that
coincides with S over [0, 1], shares the same recognizability and product-stability properties,
and contains numbers with non-trivial integer parts.

Lemma 6.1. Let r, s ∈ N>1 be two bases with different sets of prime factors, and let
S ⊆ [0, 1] be a set that is r- and s-recognizable, r- and s-product-stable in [0, 1], and that has
infinitely many boundary points. There exists a set S′ ⊆ R≥0 that is r- and s-recognizable,
r- and s-product-stable in R≥0, and that has infinitely many boundary points.

Proof. Let S′ = {rkx | x ∈ S ∧ k ∈ N}. This set is clearly r-product-stable in R≥0.
Since S is r-product-stable in [0, 1], we have S′ ∩ [0, 1] = S showing that S′ has infinitely
many boundary points. A RNA A′

r recognizing S′ in base r is built from an automaton Ar

recognizing S by delaying arbitrarily the reading of the symbol ⋆. In other words, a word
uv ⋆ w is accepted by A′

r, with u ∈ {0, r − 1}Σ∗
r , v ∈ Σ∗

r, and w ∈ Σω
r , whenever the word

u ⋆ vw is accepted by Ar.
In order to prove that S′ is s-recognizable, notice that, since S is both r- and s-product-

stable in [0, 1], we have S′ = {risjx | x ∈ S∧i, j ∈ Z}. The set S′ can therefore be expressed
as S′ = {skx | x ∈ S∧k ∈ N}. By the same reasoning as in base r, this set is s-recognizable,
as well as s-product-stable in R≥0.

Consider now a set S′ obtained from S by Lemma 6.1. As discussed in Section 4.1,
this set can be expressed as a finite union S′ =

⋃

i(S
I
i + SF

i ), where for each i, we have
SI
i ⊆ N and SF

i ⊆ [0, 1]. Moreover, for each i, the set SI
i is both r- and s-recognizable, and it

follows from Theorem 3.1 that this set is definable in 〈N,+, <〉. Since such a set is ultimately
periodic [Cob69, BHMV94], there exists ni ∈ N>0 for which ∀x ∈ N, x ≥ ni : x ∈ SI

i ⇔
x+ ni ∈ SI

i . By defining n = lcm i(ni), we obtain ∀x ∈ R≥0, x ≥ n : x ∈ S′ ⇔ x+ n ∈ S′.
This prompts the following definition.

Definition 6.2. Let D ⊆ R be a domain, and let t ∈ R. A set S ⊆ D is t-sum-stable in D
iff for all x ∈ D such that x+ t ∈ D, we have x ∈ S ⇔ x+ t ∈ S.

Let us show that the set S′′ = (1/n)S′\{0} is 1-sum-stable in R>0. For every x ≥ 1, we
have x ∈ S′′ ⇔ x+ 1 ∈ S′′. For x < 1, we choose k ∈ N such that rkx ≥ 1. Exploiting the
properties of S′ (transposed to S′′), we get x ∈ S′′ ⇔ rkx ∈ S′′ ⇔ rkx+ rk ∈ S′′ ⇔ x+ 1 ∈
S′′. Lemma 6.1 can thus be refined as follows.

Lemma 6.3. Let r, s ∈ N>1 be two bases with different sets of prime factors, and let
S ⊆ [0, 1] be a set that is r- and s-recognizable, r- and s-product-stable in [0, 1], and that has
infinitely many boundary points. There exists a set S′ ⊆ R>0 that is r- and s-recognizable,
has infinitely many boundary points, and is r-product-, s-product- and 1-sum-stable in R>0.

Note that Lemmas 6.1 and 6.3 still hold if the bases r and s are multiplicatively inde-
pendent.

6.2. Exploiting sum-stability properties. Consider a set S′ ⊆ R>0 that satisfies the
properties expressed by Lemma 6.3. It remains to show that these properties lead to a
contradiction. The hypothesis on the prime factors of r and s is explicitly used in this
section.

We proceed by characterizing the numbers t ∈ R for which S′ is t-sum-stable in R>0.
These form the set TS′ = {t ∈ R | ∀x ∈ R>0 : x+ t ∈ R>0 ⇒ (x ∈ S′ ⇔ x+ t ∈ S′)}. Since
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S′ is r-recognizable, it is definable in 〈R,Z,+, <,Xr〉 by Theorem 2.1, and so is TS′ , that is
therefore r-recognizable as well.

The set TS′ enjoys interesting closure properties:

Property 6.4. For every t, u ∈ TS′ and a, b ∈ Z, we have at+ bu ∈ TS′ .

The set TS′ is also r- and s-product stable in R. Since 1 ∈ TS′ , this yields the following
property.

Property 6.5. For every k ∈ Z, we have rk ∈ TS′ and sk ∈ TS′ .

Intuitively, being able to add or subtract rk from a number, for any k, makes it possible
to change in an arbitrary way finitely many digits in its base-r encodings, without influencing
the fact that this number belongs or not to S′. Our next step will be to show that this
property can be extended to all digits of base-r encodings, implying either S′ = ∅ or
S′ = R>0. This would then contradict our assumption that S′ has infinitely many boundary
points.

Lemma 6.6. Let r, s ∈ N>1 be two bases such that s has a prime factor that does not divide
r. The lengths of the smallest periods of the base-r encodings of 1/sk are unbounded w.r.t.
k.

Proof. The base-r encodings of 1/sk are of the form 0+ ⋆ vku
ω
k , with vk ∈ Σ∗

r and uk ∈ Σ+
r .

We have
r|vk|

sk
= [0vk ⋆ u

ω
k ]r,

r|vk|+|uk|

sk
= [0vkuk ⋆ u

ω
k ]r.

Hence,
1

sk
=

ak
r|vk|(r|uk| − 1)

,

with ak = [vkuk]r − [vk]r ∈ N>0.
It follows that the lengths |uk| and |vk| are the smallest naturals such that sk divides

r|vk|(r|uk| − 1). By hypothesis, there exists a prime factor f of s that does not divide r.
This implies that the lengths of the periods uk must be unbounded w.r.t. k.

Property 6.7. There exist l,m ∈ N>0 such that, for every k ∈ N>0, we have
m

rlk − 1
∈ TS′ .

Proof. By Property 6.5, we have 1/sk ∈ TS′ for all k ∈ N. From Lemma 6.6, the lengths of
the smallest periods uk of the base-r encodings of 1/sk are unbounded w.r.k. k.

Consider a RNA AT
r recognizing TS′ in base r. We study the rational numbers accepted

by AT
r , which have base-r encodings of the form v ⋆ wuω. We assume w.l.o.g. that the

considered periods u are the shortest possible ones. It follows from the unboundedness
of uk that TS′ contains rational numbers with infinitely many distinct periods. RNA are
deterministic Muller automata; hence, their accepting conditions are finite unions of subsets
of their set of states. An infinite number of encodings of rationals with distinct periods thus
end in exactly the same subset of accepting states. In particular, there exist u, u′, v, v′, w,w′

such that uω is not a suffix of (u′)ω, the words v ⋆wuω and v′ ⋆w′(u′)ω are both accepted by
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AT
r , and the paths π and π′ of AT

r reading them end up cycling in exactly the same subset
of accepting states.

Let q be one of these states, and u1, u2 ∈ Σ+
r be periods of the (respective) words read

by π and π′ after reaching q in their final cycle. These periods can be repeated arbitrarily,
hence we can assume w.l.o.g. that |u1| = |u2|. Moreover we can assume w.l.o.g. that
[u2]r > [u1]r, otherwise uω would be a suffix of (u′)ω. Besides, there exist v,w ∈ Σ∗

r such
that v ⋆ w reaches q. From the structure of AT

r , it follows that for every k ≥ 0, the word
v ⋆ w(uk1u2)

ω is accepted by AT
r .

For each k ≥ 0, we thus have [v ⋆ w(uk1u2)
ω]r ∈ TS′ . Developing, we get

dk + [vw ⋆ 0ω]r

r|w|
∈ TS′ ,

with dk = [⋆(uk1u2)
ω]r. Thanks to Properties 6.4 and 6.5, and the r-product-stability

property of TS′ , this implies dk ∈ TS′ . We now express dk in terms of [u1]r, [u2]r, and k:

dk =
[uk1u2]r

rl(k+1) − 1
=

[u2]r − [u1]r
rl(k+1) − 1

+
[u1]r
rl − 1

, where l = |u1| = |u2|.

The next step will consist in getting rid of the second term of this expression. By
Properties 6.4 and 6.5, we have for all k ∈ N,

(rl − 1)dk − [u1]r =
m

rl(k+1) − 1
∈ TS′ ,

where m = (rl − 1)([u2]r − [u1]r) is such that m ∈ N>0. For all k > 0, we thus have
m

rlk − 1
∈ TS′ .

We are now ready to conclude. Given l andm by Property 6.7, we define S′′ = (1/m)S′.
Like S′, this set has infinitely many boundary points. The set TS′′ of the values t for which
S′′ is t-sum-stable in R>0 is given by TS′′ = (1/m)TS′ . This set is thus r-recognizable. From
Properties 6.4 and 6.5, we have for every k ∈ N, 1/rk ∈ TS′′ . Finally, from Property 6.7,
we have for every k > 0,

1

rlk − 1
∈ TS′′ .

Property 6.8. The set TS′′ is equal to R.

Proof. Since TS′′ and R are both r-recognizable, and two ω-regular languages are equal iff
they share the same subset of ultimately periodic words [PP04], it is actually sufficient to
show that TS′′ ∩ Q = Q. Every rational t admits a base-r encoding of the form v ⋆ wuω,
where |u| = lk for some k ∈ N>0. We have

t =
[vw ⋆ 0ω]r

r|w|
+

[u]r
r|w|(rlk − 1)

.

Since 1/r|w| ∈ TS′′ and 1/(rlk − 1) ∈ TS′′ , the closure and product-stability properties of
TS′′ imply t ∈ TS′′ .
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As a consequence, we either have S′′ = ∅ or S′′ = R>0, which contradicts our initial
assumption that this set has infinitely many boundary points. As a consequence, our original
set S is definable in 〈R,Z,+, <〉, and we have proven Theorem 3.4.

7. Conclusions

In this article, we have established that the sets of real numbers that can be recognized
by finite automata in two sufficiently different bases are exactly those that are definable
in the first-order additive theory of real and integer variables 〈R,Z,+, <〉. In the case of
weak deterministic automata, used in actual implementations of symbolic representation
systems [LASH, FAST, LIRA], the condition on the bases turns out to be multiplicative
independence. It is worth mentioning that recognizability in multiplicatively dependent
bases is equivalent to recognizability in one of them, and that definability in 〈R,Z,+, <〉
implies recognizability in every base. We have thus obtained a complete characterization of
the sets of numbers recognizable in multiple bases, similar to the one known for the integer
domain [Cob69].

For Muller, deterministic Büchi, and co-Büchi automata, we have demonstrated that
multiplicative independence of the bases is not a strong enough condition, and that the bases
must have different sets of prime factors in order to force definability of the represented sets
in 〈R,Z,+, <〉. Recall that the sets definable in that theory can all be recognized by weak
deterministic automata. We have thus established that the sets of real numbers that can
be recognized by infinite-word automata in all encoding bases are exactly those that are
recognizable by weak deterministic automata.

It is worth mentioning that, prior to this result, weak deterministic automata were
already been used as actual data structures for representing sets of real numbers in state-
space exploration tools [BJW05, LASH]. The motivation behind their use was at this time
essentially practical: The algorithmic manipulation of these automata was considerably
simpler than that of unrestricted infinite-word ones. Moreover, their expressive power was
known to be sufficient for handling the sets definable in 〈R,Z,+, <〉, which matched the
application requirements. The results developed in this article now bring an additional
theoretical justification to the choice of weak deterministic automata for representing sets
of real and integer numbers: If recognizability by automata has to be achieved regardless of
the representation base, then the representable sets are exactly those that can be recognized
by weak deterministic automata.

References

[BB09] B. Boigelot and J. Brusten. A generalization of Cobham’s theorem to automata over real num-
bers. Theoretical Computer Science, 410(18):1694 – 1703, 2009.

[BBR97] B. Boigelot, L. Bronne, and S. Rassart. An improved reachability analysis method for strongly
linear hybrid systems. In Proc. 9th CAV, volume 1254 of Lecture Notes in Computer Science,
pages 167–177, Haifa, June 1997. Springer.

[BHMV94] V. Bruyère, G. Hansel, C. Michaux, and R. Villemaire. Logic and p-recognizable sets of integers.
Bulletin of the Belgian Mathematical Society, 1(2):191–238, March 1994.

[BJW05] B. Boigelot, S. Jodogne, and P. Wolper. An effective decision procedure for linear arithmetic
over the integers and reals. ACM Transactions on Computational Logic, 6(3):614–633, 2005.

[Boi98] B. Boigelot. Symbolic methods for exploring infinite state Sspaces. PhD thesis, Université de
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