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Abstract. In this paper we study the behaviour at infinity of the Fourier transform of
Radon measures supported by the images of fractal sets under an algorithmically random
Brownian motion. We show that, under some computability conditions on these sets, the
Fourier transform of the associated measures have, relative to the Hausdorff dimensions
of these sets, optimal asymptotic decay at infinity. The argument relies heavily on a
direct characterisation, due to Asarin and Pokrovskii, of algorithmically random Brownian
motion in terms of the prefix-free Kolmogorov complexity of finite binary sequences. The
study also necessitates a closer look at the potential theory over fractals from a computable
point of view.

1. Introduction

It is important to add here that order is not to be identified with predictability.
Predictability is a property of a special kind of order such that a few steps
determine the whole order (...as in curves of low degree) but there can be
complex and subtle orders which are not in essence related to predictability
(...a good painting is highly ordered, and yet this order does not permit one
part to be predicted from another). (David Bohm [4] p 149.)

In 1869 Heine proposed to Cantor the problem of determining whether or not every trigono-
metric series

∑

n∈Z c(n)einx that converges to 0 at all real numbers x will have all its
coefficients c(n) necessarily equal to 0 or equivalently, whether two trigonometric series
which converge to the same limit for every real number x are (formally) equal in the sense
that their coefficients are the same. In 1870, by making extensive use of Riemann’s work

2012 ACM CCS: [Mathematics of computing]: Probability and statistics; [Theory of computa-

tion]: Models of computation.
2010 Mathematics Subject Classification: 68Q30, 60G15, 28A78, 03H05.
Key words and phrases: Kolmogorov complexity, algorithmic randomness, Brownian motion, Hausdorff

dimension, Fourier dimension, Salem sets.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-10(3:20)2014

c© W. L. Fouché, S. Mukeru, and G. Davie
CC© Creative Commons

http://creativecommons.org/about/licenses
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in his Habilitationsschrift (1854) on trigonometric series, Cantor proved that the answer
to Heine’s problem was in the affirmative. Eventually Cantor showed that the same holds
true if a trigonometric series converges everywhere with the possible exception of a closed
countable set. This is arguably the first example of a mathematical argument that is based
on a transfinite induction. For more background on this historical development, the reader
is referred to the book [22].

These works of Riemann and Cantor pioneered a very highly developed theory of so-
called sets of uniqueness in harmonic analysis with wide-ranging implications for number
theory (Diophantine approximation) and descriptive set theory. For the former, the reader
could consult the book by Meyer [33] and for the latter the book by Kechris and Louveau
[22].

A set E ⊂ [0, 1] is a set of uniqueness if every trigonometric series which converges
to 0 for x ∈ [0, 1] \ E is identically 0, or equivalently, if any two trigonometric series that
converge to the same limit for every real x ∈ [0, 1] \E are identical. Intuitively, this means
that [0, 1] \E is sufficiently “large” to ensure that if the two series already agree pointwise
on it, then they are formally the same , in the sense that they have the same coefficients. A
set which is not a set of uniqueness is called a set of multiplicity. More specifically, a subset
M ⊂ [0, 1] is a set of multiplicity if there exist two (formally) distinct trigonometric series
that converge to the same limit outside M .

It is well-known that if E is a set of uniqueness and is Lebesgue-measurable, then its
Lebesgue measure is 0. It was first conjectured by Luzin that all Lebesgue null sets should
be sets of uniqueness until Menshov (1916) [34] constructed an example of a closed null
set of multiplicity. Since then major progress has been made on this problem. Salem and
Zygmund [43] characterized Cantor type sets of fixed ratio ξ as being sets of uniqueness
solely in terms of the number theoretical structure of ξ. (The resulting Cantor set is a set
of multiplicity if and only if ξ−1 is a so-called Pisot number. For a more modern proof,
the reader is referred to the book [33].) However, the characterisation of sets of uniqueness
is very far from being complete. Indeed, as is discussed in [22], it follows from arguments
by Solovay (unpublished) and independently by Kaufman [21] that the complexity of the
problem is, from the viewpoint of descriptive set theory, of an intrinsic nature.

For the purpose of this paper, it is important to note that a compact subset E of the
unit interval is a set of multiplicity if and only if there is a distribution T (in the sense
of Schwartz) , also called a temperate distribution, supported by E such that its Fourier

transform is such that T̂ (u) → 0 as |u| → ∞. (See, for example Meyer [33], Theorem 1,
p 81.) In particular, a compact set E will be a set of multiplicity if it is supported by a
Radon probability measure µ with the property that its Fourier transform µ̂(u) approaches
zero as |u| → ∞.

The following question was posed by Beurling and solved in the affirmative by Salem
[42] in 1950:

Given a number γ ∈ (0, 1), does there exist a closed set on the line whose
Hausdorff dimension is γ and that carries a non-zero Radon measure µ whose
Fourier transform µ̂(u) =

∫

R
eiuxdµ(x) is dominated by a constant times

|u|−γ/2 as |u| → ∞?

Such sets are instances of what are now called Salem sets. It is well-known (see for example
[31, pp 162-163]) that given a compact subset E of [0, 1] with Hausdorff dimension γ ∈ (0, 1),
the number γ/2 is critical for Beurling’s question to have an affirmative answer since any
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Radon measure µ supported by E is such that the function u 7→ |u|αµ̂(u) is not bounded
for any α > γ/2. This is a direct consequence of (2.14). See also Chapter 2 in [36] for an
extensive discussion.

Note that a set meeting Beurling’s condition will necessarily be a set of multiplicity [33,
p 81] since every Radon measure is a Schwartz distribution. Salem [42] proved that the
answer to Beurling’s question is in the affirmative by constructing for every γ in the unit
interval, a random Radon measure µ (over a convenient probability space) whose support
has Hausdorff dimension γ and which satisfies his requirement with probability one. By
contrast, we should mention interesting results on the construction of non-random Salem
sets, as can be found in [3].

It follows from the results of this paper (see Theorem 3.3) that such sets can also be
constructed by looking at Cantor type ternary sets E with computable ratios ξ and then
considering the image of E under an algorithmically random Brownian motion. Along these
lines we shall be able to find, for every algorithmically random infinite binary string ω and
every computable real γ in the unit interval, a Π0

2(ω, γ) compact set Sγ(ω) which is a Salem
set of Hausdorff dimension γ. We emphasise that these sets are uniformly definable in γ
and ω.

This means that each algorithmically random binary string ω will answer Beurling’s
question in the affirmative for all γ which are computable. These sets can be uniformly
constructed from each specific algorithmically random ω in a manner which is Π0

2–definable
in ω and the dimension γ.

A Brownian motion on the unit interval is algorithmically random if it meets all effective
(Martin-Löf) statistical tests expressed in terms of the statistical events associated with
Brownian motion on the unit interval. The class of functions corresponds exactly, in the
language of Weihrauch [44, 45], Gács [17] and specialised by Hoyrup and Rojas [19], in the
context of algorithmic randomness, to the Martin-Löf random elements of the computable
measure space

R = (C0[0, 1], d,B,W ),

where C0[0, 1] is the set of the continuous functions on the unit interval that vanish at the
origin, d is the metric induced by the uniform norm, B is the countable set of piecewise
linear functions vanishing at the origin with slopes and points of non-differentiability all
rational numbers, and where W is the Wiener measure.

In this paper we shall show that if E is an “effectively closed” subset of the unit
interval having Hausdorff dimension β at most 1/2, and if φ is an algorithmically random
Brownian motion, then the image φ(E) is a Salem set of Hausdorff dimension 2β. Our proof
involves a finitisation of Kahane’s arguments in Kahane [20, p 253] together with a direct
Kolmogorov complexity theoretical argument involving the incompressibility coefficient of
an algorithmically random binary string [6]. We also rely on the original characterisation
of Asarin and Pokrovskii [2] of algorithmically random Brownian motions φ in terms of
finitary zig-zag paths xn having high Kolmogorov complexity and which approximate φ in
a uniform and computable manner. We shall utilize a Fourier analytic representation (a
Franklin-Wiener series) of an algorithmically random Brownian motion [9]. For the main
theorem we develop a suitable constructivisation of Frostman’s potential theoretic approach
to the theory of Hausdorff dimension. Another approach to Frostman’s lemma in the context
of algorithmic randomness can be found in Reimann [38].

This paper could be viewed as a further contribution towards the understanding of the
sample path properties of algorithmically random Brownian motion. For similar results the
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reader may consult Fouché [8, 9, 10, 11], Kjos-Hanssen and Nerode [23, 24], Kjos-Hanssen
and Szabados [25] and Potgieter [41]. More results on the Fourier structure of sample paths
of algorithmically random Brownian motion can be found in [13].

The paper is organised as follows: In Section 2, we discuss preliminaries from Brownian
motion, fractal geometry and the theory of Kolmogorov complexity. We also introduce
ideas towards viewing Frostman’s potential theory over compact subsets of the unit interval
from the viewpoint of computable analysis. The main results are presented in Section 3. In
Section 4, we discuss some Fourier analytical properties of a finite binary string with high
Kolmogorov complexity. The proof of the main result is given in Section 5 which is based
on key estimates (a finitisation of Kahane’s work [20]) related to the even moments of the
Fourier transform of image measures of Brownian motion. These estimates are established
in Section 6.

The results of this paper enable one to to define the an anologue of Lévy local time for
algorithmically random Brownian motion. This line of thought will be discussed in a sequel
to this paper.

It would also be interesting to look at at the beautiful results of  Laba and Pramanik
[26] within the context of this paper. Some results along these lines can be found in [13].

Acknowledgements. Our research has been supported by the European Union grant
agreement Marie Curie Actions - People International Research Staff Exchange Scheme
PIRSES-GA-2011- 294962 in Computable Analysis (COMPUTAL). The first author has
also been supported by the National Research Foundation (NRF) of South Africa and the
second author is supported by the Vision Keepers’ programme of the University of South
Africa (UNISA).

The leader of the COMPUTAL-project is Dieter Spreen to whom this paper is dedicated.
We are privileged to have him as our colleague and we are in the pleasant position to look
forward to further collaboration and a fruitful exchange of ideas with him and as a natural
consequence, with colleagues involved in the project.

Many thanks are due to the members of the Mathematics Department of the Corv-
inus University, Budapest, for hosting the first author on many occasions and for their
constructive and critical discussions on the results in this paper.

The authors would like to thank Mr and Mrs de Wet for generously making available
their farm Olmuja in KwaZulu Natal for accommodating research weeks which contributed
greatly to the development of the results in this paper.

We appreciate the incisive comments from the referees of this paper.

2. Preliminaries from Brownian motion, Kolmogorov Complexity and

Geometric Measure theory

2.1. Brownian motion and complex oscillations. Suppose we are given a probability
space (Ω, P,A), and a set E. A random element of E, or random object is a mapping X
from Ω into E. The usual problem is to consider a subset B of E and to determine the
probability of the subset of Ω consisting of the ω such that X(ω) ∈ B. Of course, this only
makes sense when X−1(B) ∈ A. Then, instead of X−1(B), or {ω : X(ω) ∈ B}, we simply
write [X ∈ B], and we can speak of the event: “X belongs to B”. In a similar vein, when
X ∈ B is defined by a predicate Q (X) on E, we write [Q (X)] for [X ∈ B] and refer to it
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as the event defined by the predicate Q. If this event holds with probability one, we say
that “Q (X) holds almost surely” and write Q (X) a.s. An important case is when E is a
topological space. We say that a mapping X from Ω to E is a a random variable in E if
X−1(G) ∈ A for all open subsets G of E. This has the implication that for each B of the
σ-algebra B generated by the open set in E (the “Borel algebra” of E), the set X−1(B)
belongs to A. The mapping B 7→ P

(

X−1 (B)
)

defines a probability measure νX on (E,B),
which is called the distribution of X. Two random variables on a probability space are
said to be statistically equivalent when their distributions are the same. From the point of
view of integration theory, the measures P and νX are related as follows: Suppose f is a
real-valued function on E such that f(X) is integrable with respect to P . Then

∫

Ω
f (X (ω)) dP (ω) =

∫

E
f(x)dνX(x).

This is known as the change of variable formula. If X is a real-valued random variable on
(Ω, P,A) such that its distribution νX is absolutely continuous with respect to Lebesgue
measure λ and if f is the Radon-Nikodym derivative of νX with respect to λ, we say that
X has a density and call f the density function of X. In this case, for a Borel set A of real
numbers, we have:

P (X ∈ A) = νX(A) =

∫

A
f(t)dt.

A random variable X with mean m and non-zero variance σ2 is normal if it has a
density function of the form

1√
2π σ

e−(t−m)2/2σ2
.

A Brownian motion on the unit interval is a real-valued function (w, t) 7→ Xw(t) on
Ω × [0, 1], where Ω is the underlying space of some probability space, such that Xw(0) = 0
a.s. and for t1 < . . . < tn in the unit interval, the random variables Xw(t1),Xw(t2) −
Xw(t1), · · · ,Xw(tn)−Xw(tn−1) are statistically independent and normally distributed with
means all 0 and variances t1, t2 − t1, · · · , tn − tn−1, respectively. This means that the
probability of a finitary event of the form [X(tj) ∈ Aj for 1 ≤ j ≤ n] , where 0 < t1 < . . . <
tn ≤ 1, will be given by the integral

∫

A1

. . .

∫

An

n
∏

j=1

1
√

2π (tj − tj−1)
exp

[

− (yj − yj−1)
2

2 (tj − tj−1)

]

dyn . . . dy1,

where t0 = 0 and A1, . . . , An are Borel subsets of the reals. It is a fundamental fact that
any Brownian motion has a “continuous version”(see, for example [16]). This means the
following: Write C[0, 1] for the set of real-valued continuous functions on the unit interval
and Σ for the σ-algebra of Borel sets of C[0, 1] where the latter is topologised by the uniform
norm topology

‖x‖∞ = sup
0≤t≤1

|x(t)|.

There is a unique probability measure W on Σ such that for 0 ≤ t1 < . . . < tn ≤ 1 and for
a Borel subset B of Rn, we have

P ({w ∈ Ω : (Xw(t1), · · · ,Xw(tn)) ∈ B}) = W (A),
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where
A = {x ∈ C[0, 1] : (x(t1), · · · , x(tn)) ∈ B}.

The measure W is known as the Wiener measure. We shall usually write X(t) instead of
Xw(t).

The set of finite words over the alphabet {0, 1} is denoted by {0, 1}∗. If a ∈ {0, 1}∗, we
write |a| for the length of a. If α = α0α1 . . . is an infinite word over the alphabet {0, 1},
we write α(n) for the word

∏

j<n αj . We use the usual recursion-theoretic terminology

Σ0
r and Π0

r for the arithmetical subsets of N
k × {0, 1}N×l, k, l ∈ N. (See, for example,

[18]). We denote the Cantor space {0, 1}N by N . We write λ for the Lebesgue probability
measure on {0, 1}N. For a binary word s of length n, say, we write [s] for the “interval”
{α ∈ {0, 1}N : α(n) = s}. A sequence (an) of real numbers converges effectively to 0 as
n → ∞ if for some total recursive f : N → N, it is the case that |an| ≤ (m + 1)−1 whenever
n ≥ f(m). A real number β is said to be recursive (or computable) if there is an algorithm
which yields, for every natural number n, two integers p, q such that |β − p

q | < 1
2n .

If f, g are positive real-valued functions on {0, 1}∗, we write f <+ g to signify that there
is an absolute positive constant D such that f(x) < g(x) +D for all values of x. By a slight
but useful abuse of notation we shall sometimes write f(x) <+ g(x) instead of f <+ g.

Let (φe : e ≥ 0) be an effective enumeration of all the partial recursive functions from
from {0, 1}∗ to {0, 1}∗. Let U be the partial recursive function given by

U(0e−11σ) = φe(σ), e ≥ 1, σ ∈ {0, 1}∗.
In this case, we call 0e−11σ a program (or description) for U of the number s = φe(σ).

For s a finite binary string, the plain U -descriptive complexity of s, denoted by CU (s), is
the length of the shortest program for U which will output s.

In the sequel we write C(s) in stead of CU (s). The values of CU are independent of the
choice of the effective enumeration of the partial recursive functions (φe) up to the relation
<+. (See [37, pp 75-79] for a thorough discussion.)

A universal prefix-free machine V is just a universal Turing machine with domain a
prefix-free set. This means that for no two distinct words in the domain of V can the one
be an initial segment of the other. We call V optimal if CV <+ C ′

V for every universal
prefix-free universal Turing machine V ′. The construction of an optimal universal prefix-
free Turing machine can be found in [37, p 84], for example. Let V be an optimal universal
prefix-free Turing machine from {0, 1}∗ to {0, 1}∗. For s a finite binary string, the prefix-
free Kolmogorov complexity KV (s) of s is the length of the shortest program for V which
outputs s. In the sequel, we fix V and denote the associated Kolmogorov complexity by
K(s). For a machine-independent modulo <+ characterisation of K, see Theorem 2.2.19 in
[37, p 90].

It is well-known that C and K are related as follows:

C(x) <+ K(x) <+ C(x) + 2 log(C(x)) <+ C(x) + 2 log(|x|). (2.1)

(See, for example, p 94 in [37].)
Recall that an infinite binary string α is Kolmogorov-Chaitin complex if

∃d ∀n K(α(n)) ≥ n− d. (2.2)

In the sequel, we shall denote the set of Kolmogorov-Chaitin binary strings by KC and refer
to its elements as KC-strings. The set KC is independent of our choice of the the optimal
universal prefix-free machine V . (See, e.g., [5], [7], [30], [27] or [37] for more background.)
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For n ≥ 1, we write Cn for the class of continuous functions on the unit interval that
vanish at 0 and are linear with slopes ±√

n on the intervals [(i − 1)/n, i/n] , i = 1, . . . , n.
With every x ∈ Cn, one can associate a binary string a = a1 · · · an by setting ai = 1 or
ai = 0 according to whether x increases or decreases on the interval [(i−1)/n, i/n]. We call
the word a the code of x and denote it by c(x). Conversely, any binary string a = a1 · · · an
uniquely determines a function x ∈ Cn and it will be denoted x = c∗(a).

The following notion was introduced by Asarin and Pokrovskii in [2].

Definition 2.1. A sequence (xn) in C[0, 1] is complex if xn ∈ Cn for each n and there is a
constant d > 0 such that

K(c(xn)) ≥ n− d (2.3)

for all n. A function φ ∈ C[0, 1] is a complex oscillation if there is a complex sequence (xn)
such that ‖φ− xn‖∞ converges effectively to 0 as n → ∞.

The class of complex oscillations is denoted by C. It is well-known that the class of
complex oscillations has Wiener measure one. For another effective measure-theoretic char-
acterisation of C, the reader is referred to [8].

REMARK. If ε is a KC-string, then (c∗(ε̄(n))) is a complex sequence. One readily sees
that c∗(ε̄(n)) diverges in C [0, 1] [8]. Indeed, this result follows from the simple probabilistic
observation to the effect that for α = Παj in N , the sequence

(

(α0 + . . . + αn) /
√
n + 1

)

)
diverges almost surely. This follows, for example, from Khintchine’s law of the iterated
logarithm which, when applied to the probability space (N , λ,B) (with B the Borel-algebra
on {0, 1}N), states that

lim sup
n→∞

α0 + . . . + αn
√

2 (n + 1) log log (n + 1)
= 1,

almost surely. It then follows that all the Π0
1 sets Bn defined by

α ∈ Bn ⇐⇒ ∀k ∀ℓ [k, ℓ > n ⇒ ||c∗(ᾱ (k)) − c∗(ᾱ (ℓ))||∞ < 1]

are of λ-measure 0 and, therefore, that no set Bn can contain any KC-string.
Here we have worked with a Kurtz-test and invoked the results to be found on [37, p

127] for example. What we required is the fact that no Π0
1-set in N of λ-measure zero will

contain any KC-string. Or equivalently, if a Π0
1-event happens to contain a KC element it

is probabilistically significant to the extent that the event has non-zero probability.
In particular, for no KC-string ǫ, will the initial segments ǫ(n) define a complex oscilla-

tion via the operation c∗. Fortunately, there is a computational way of interpreting complex
oscillations in terms of KC (see Theorem 2.2 [9]), an observation which will play a central
rôle in this paper.

In the sequel, if φ is a complex oscillation (φ ∈ C), and d is a natural number such that
for some complex sequence xn satisfying (2.3) converges effectively to φ, we shall call d an
incompressibility coefficient of φ.

For recent refinements of the result of Asarin and Pokrovskii, the reader is referred to
the work of Kjos-Hanssen and Szabados [25]. They note that Brownian motion and scaled,
interpolated simple random walks can be jointly embedded in a probability space in such
a way that almost surely, the n-step walk is, with respect to the uniform norm, within a

distance O(n− 1
2 log n) of the Brownian path, for all but finitely many positive integers n.
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In the same paper, Kjos-Hanssen and Szabados show that, almost surely, their constructed
sequence (xn) of n-step walks is complex in the sense of Definition 2.1 and all Martin-Löf
random paths (= complex oscillations) have such an incompressible close approximant. This

strengthens a result of Asarin [1], who obtained instead the bound O(n− 1
6 log n).

The following result will play an important rôle in this paper:

Theorem 2.2. [9]. There is a bijection Φ : KC → C and a uniform algorithm that, relative
to any KC-string α, with input a dyadic rational number t in the unit interval and a natural
number n, will output the first n bits of the the value of the complex oscillation Φ(α) at t.

Fouché [10] proved that every complex oscillation φ has the following modulus of con-
tinuity: For any C > 1, and for all sufficiently small values of h,

sup
t∈[0,1]

|φ(t + h) − φ(t)| ≤
√

2C|h| log(1/|h|). (2.4)

As has been noted before, Kjos-Hanssen and Szabados [25] showed that for any complex
oscillation φ there exists a complex sequence (xn) in C[0, 1] and a constant C such that, for
n sufficiently large,

‖φ− xn‖∞ ≤ C log n√
n

. (2.5)

2.2. Hausdorff and Fourier dimensions. If (X, d) is a metric space, a regular Borel
measure µ on X is a Borel measure with the property that for every subset A of X, there is
a Borel set B containing A such that µ(B) = µ∗(A). Here µ∗ is the outer measure associated
with µ, in other words, writing B for the Borel algebra on X,

µ∗(A) = inf{µ(B) : A ⊂ B ∈ B}, A ⊂ X.

A measure on the Euclidean space Rd is a Radon measure if it is a regular Borel measure
and assumes finite values on compact subsets of Rd, i.e., if it is locally finite. On a general
complete separable metric space (a Polish space), a measure is Radon iff it is locally finite
and Borel regular.

If X is a Polish space, and µ is a Radon measure on X, the support of µ, denoted
by supp(µ), is the complement of the set of points of x ∈ X such that µ vanishes on some
neighbourhood of x. Hence the support of µ is the smallest closed set F such that µ(F c) = 0,
where F c denotes the complement of F in X.

If X and Y are Polish spaces, f is a Borel mapping from X to Y , and µ is a Radon
measure on X, the pushout measure f∗µ is given by

f∗µ(A) = µ(f−1(A)),

for Borel sets A in Y . It is known that if f is continuous and the Radon measure µ has
compact support then f∗µ too is a Radon measure. Moreover

suppf∗µ = f(supp(µ)).

For any Borel function g : Y → C, the change of variable formula is given by
∫

Y
g(y)df∗µ(y) =

∫

X
g(f(x))dµ(x).
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We shall frequently apply this in the following way: Let X : [0, 1] → R be a continuous
function and let µ be a non-zero Radon measure on [0, 1]. If we write ν for the pushout of
µ under X, then for all reals ξ

∫

R

eisξdν(s) =

∫ 1

0
eiX(t)ξdµ(t). (2.6)

This formula expresses the Fourier transform ν̂(ξ) in terms of X and µ.
For a compact subset E of Euclidean space Rd and real numbers α, ǫ with 0 ≤ α < d

and ǫ > 0, consider all coverings of A by balls Bn of diameter ≤ ǫ and the corresponding
sums

∑

n

|Bn|α,

where |B| denotes the diameter of B. All the metric notions here are to be understood
in terms of the standard ℓ2 norms on Euclidean space. The infimum of the sums over all
coverings of E by balls of diameter ≤ ǫ is denoted by Hǫ

α(E). When ǫ decreases to 0, the
corresponding Hǫ

α(E) increases to a limit (which may be infinite). The limit is denoted by
Hα(E) and is called the Hausdorff measure of E in dimension α or α-Hausdorff measure of
E.

If 0 < α < β ≤ d, then, for any covering (Bn) of E,
∑

n

|Bn|β ≤ sup
n

|Bn|β−α
∑

m

|Bm|α,

from which it follows that
Hǫ

β(E) ≤ ǫβ−αHǫ
α(E).

Hence if Hα(E) < ∞, then Hβ(E) = 0. Equivalently,

Hβ(E) > 0 =⇒ Hα(E) = ∞.

Therefore,
sup{α : Hα(E) = ∞} = inf{β : Hβ(E) = 0}.

This common value is called the Hausdorff dimension of E and denoted by dimhE.
If α is such that 0 < Hα(E) < ∞, then α = dimhE. However, α = dimhE does not

necessarily imply 0 < Hα(E) < ∞.

Proposition 2.3. (Frostman’s lemma) [15]. If E is a compact subset of Rd, then
Hα(E) > 0 if and only if E carries a nonzero Radon measure ν such that

ν(B) ≤ C|B|α,
for all balls B in Rd and some constant C > 0.

Let E be a non-empty closed subset of the unit interval such that dimhE ≥ α. For
β < α, let ν be a non-zero Radon measure such that for some constant C > 0,

ν(I) ≤ C|I|β (2.7)

for all subintervals of the unit interval. It is the case that ν can be chosen such that
ν(I) ≤ |I|β for all dyadic subintervals of the unit interval and C = 3 in (2.7).

With the pair (E, ν), we associate a directed tree T = T (E) and a flow f thereon as
follows: The vertex set V of T consists of all dyadic intervals I such that E∩ I 6= ∅. Denote
these intervals as Ij,n = [(j − 1)/N, j/N) for 1 ≤ j ≤ N − 1 and Ij,n = [(j − 1)/N, j/N ] for
j = N where N = 2n. The edges are of the form J1 → J2 where J1, J2 are in V and J2 is
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obtained upon dissecting J1 (that is, if J1 = Ij,n, then J2 = Ij,n+1 or J2 = Ij+1,n+1). Write
E for the set of edges of T . Define a function f : E → R+ by setting f(J1 → J2) = ν(J2).
For v ∈ V , write Bv for the set of edges emanating from v. Since ν is (finitely) additive, it
follows that f is a flow on the tree. This means that for every v ∈ V (such that v is not the
root), if we write ev for the edge ending in v, then, for all vertices v

f(ev) =
∑

e∈Bv

f(e). (2.8)

Moreover, if v is the dyadic interval of length 1
N , then

f(ev) ≤ 1

Nβ
, (2.9)

Conversely for a given compact set E, suppose that there is a flow f on T (E) satisfying
(2.8) and (2.9). Then there is a non-zero Radon measure ν supported by E such that (2.7)
holds. To see this, for a dyadic interval I, set ν(I) = f(e), when I is a vertex of the tree and
e is the edge ending in I, and set ν(I) = 0 if I is not an edge, that is, if I is disjoint from
E. The flow-condition ensures that ν is countably additive on the semi-algebra of dyadic
intervals. It can therefore be extended to the Borel σ-algebra on the unit interval. It is
quite readily seen that for an arbitrary closed interval I of the unit interval,

ν(I) ≤ 3|I|β .
(This follows the fact for any interval I ⊂ [0, 1], there exist 3 dyadic intervals K1,K2,K3 of
[0, 1] of equal length ≤ |I| such that I ⊂ K1 ∪K2 ∪K3.)

The idea of presenting Radon measures on the reals as flows on directed trees belongs
to the folklore of fractal geometry. The authors learnt these ideas from the book by Mörters
and Peres [35].

Denote by D the set of pairs (j, n), 1 ≤ j ≤ N = 2n (j, n integers). To say that the
function (j, n) 7→ ν(Ij,n) (defined on D) is computable is equivalent to requiring that the
flow v 7→ f(ev) on the vertex set of the tree T (E) associated with (E, ν) is computable. It
is an interesting problem to identify conditions on a set E of a given Hausdorff dimension
to ensure the existence of a computable flow on the tree associated with E that will provide
computable measures ν witnessing the validity of Frostman’s lemma. As shown in [35],
this problem is related to finding computable versions of the mincut-maxflow theorem on
countable trees. We shall discuss a large class of perfect sets (Cantor sets) for which such
constructive flows can be found.

For a compact set E and a measure ν satisfying the conclusion of Proposition 2.3, let

νn =

N
∑

j=1

ν(Ij,n)δj/N , (N = 2n)

where δj/N is the Dirac measure concentrated at j/N . (We also frequently invoke Riesz’s
representation theorem and thus also think of of Radon measures on a compact Hausdorff
space as positive linear functionals on the space X.) The measures νn converge weakly to
ν in the sense that for all f ∈ C(E), the Banach space of continuous functions on E with
the uniform norm, it is the case that

lim
n→∞

νn(f) = ν(f),

for all f ∈ C(E).
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The discrete measure νn will be called the n-approximation of ν. It is clear that for any
subinterval I of [0, 1], it is the case that

νn(I) ≤ 1/Nα for |I| < 1/N and νn(I) ≤ 3|I|α for |I| ≥ 1/N. (2.10)

Indeed if |I| < 1/N , then I ⊂ Ij,n for some j and hence

νn(I) ≤ νn(Ij,n) = ν(Ij,n) ≤ |Ij,n|α = 1/Nα.

For |I| ≥ 1/N , consider 3 dyadic intervals K1, K2, K3 of equal length r ≤ |I| and r ≥ 1/N
such that I ⊂ K1 ∪K2 ∪K3. Then

νn(I) ≤ νn(K1 ∪K2 ∪K3) =

N
∑

j=1

ν(Ij,n)δj/N (K1 ∪K2 ∪K3)

≤ νn(K1) + νn(K2) + νn(K3)

= ν(K1) + ν(K2) + ν(K3)

≤ |K1|α + |K2|α + |K3|α
≤ 3|I|α.

Definition 2.4. Let 0 < α < 1. We call a Radon (probability) measure on the unit interval
an α-Frostman measure if for some constant C > 0, we have ν(I) ≤ C|I|α for all dyadic
intervals I contained in the unit interval.

This has the implication that ν(I) ≤ 3C|I|α for any general interval I. Recall that D

the set of pairs (j, n), 1 ≤ j ≤ 2n . For any d = (j, n) ∈ D, denote Id = [(j − 1)/2n, j/2n).

Definition 2.5. An α-Frostman measure ν is called an effective α-Frostman measure if the
function

D → R, d 7→ ν(Id)

is computable.

This means that one can effectively and uniformly find, from d ∈ D,m ∈ N, some
rational r such that |ν(Id) − r| ≤ 1/2m.

Definition 2.6. Let E be a compact subset of Hausdorff dimension β > 0. We say that
the Hausdorff dimension of E is effectively witnessed, if for each rational 0 < α < β, there
is an effective α-Frostman measure which supports E.

Cantor ternary sets Cξ with a computable ratio 0 < ξ < 1/2 give examples of compact
subsets of the unit interval which effectively witness the Hausdorff dimensions

β = log 2/ log(1/ξ)

of these sets. We recall that the sets are constructed in the following way. Start from the
interval [0, 1], remove an open interval of length 1− 2ξ in the middle of the original interval
[0, 1], then from each of the two remaining intervals, remove the interval of length ξ(1− 2ξ)
in the middle. At the nth step, there are 2n closed intervals of common length ξn and each
of these generates two subintervals of length ξn+1 by removing an open interval of length
ξn(1− 2ξ) in the middle. Denote by An the set of the 2n intervals that have survived up to
stage n. Each of these intervals has length ξn. By definition,

Cξ =

∞
⋂

n=1

⋃

J∈An

J. (2.11)
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It is well-known that the β-Hausdorff measure of Cξ is 1. This has the implication that

dimhCξ = β.

One can construct a non-zero Radon measure ν supported by Cξ such that

ν(J) = 1/2n = |J |β ,
for each J ∈ An.

It is well-known that
ν(I) ≤ C|I|β,

for all intervals I and a constant C. (See, for example [31, p 62].)
Given a dyadic interval I and a natural number n ≥ 1, since ξ is computable, we can

effectively compute the number L of intervals J ∈ An which intersect I. Note that
∣

∣

∣

∣

ν(I) − L

2n

∣

∣

∣

∣

≤ 2

2n
.

We conclude that ν is an effective β-Frostman measure and that the Hausdorff dimension
β of Cξ is effectively witnessed.

For 0 < ξ < 1
4 set γ = 2β where β is the Hausdorff dimension of Cξ. Note that γ is

computable iff ξ is and will range over all the computable reals in the (open) unit interval
as ξ ranges over the computable reals in (0, 14). For ω ∈ KC and a computable ξ in the unit
interval set

Sγ(ω) = Φ(ω)(Cξ), γ = 2
log 2

log 1
ξ

, (2.12)

where Φ(ω) is the complex oscillation asssociated with ω. (See Theorem 2.2.)
Note that unfolding (2.11) yields

x ∈ Sγ(ω) ⇔ ∀n∃y∈D0∃J∈An (y ∈ J) ∧ |Φ(ω)(y) − x| < 1

2n
, (2.13)

where D0 denotes the set of dyadic numbers in the unit interval.
It follows from Theorem 2.2 and the fact that γ hence ξ is computable that the sets

Sγ(ω) are Π0
2(γ, ω) definable over (0, 1)r ×KC, where (0, 1)r denotes the set of computable

real numbers
For a Radon measure µ on Rd with compact support set

Iα(µ) =

∫

Rd

∫

Rd

dµ(x)dµ(y)

|x− y|α .

We say that µ has finite energy with respect to |x|−α when Iα(µ) < ∞. If E carries positive
measures of finite energy with respect to |x|−α we say that E has positive capacity with
respect to |x|−α and we write

Capα(E) > 0.

If E carries no positive measure of finite energy with respect to |x|−α, we say that E has
capacity zero with respect to this kernel and we write Capα(E) = 0. (See, for example
Chapter 10 in [20, pp 132-134] for more details on capacities.)

It follows from the Fourier analysis of Schwartz distributions that

Iα(µ) = C(α, d)

∫

Rd

|µ̂(u))|2|u|α du

|u|d , (2.14)



FOURIER SPECTRA OF MEASURES AND KOLMOGOROV COMPLEXITY 13

when 0 < α < d, where C(α, d) is a positive constant and where, moreover,

µ̂(u) =

∫

Rd

eisudµ(s),

the Fourier transform of the measure µ. For more on the Fourier analysis of Radon measures,
see, for example, [31, 162-163].

The following result is well-known. (See, for example [20, p 133].)

Proposition 2.7. For a compact subset E of Rd and 0 < α < β < d,

Hβ(E) > 0 ⇒ Capα(E) > 0 ⇒ Hα(E) > 0,

and
sup{α : Iα(µ) < ∞} = sup{α : Capα(E) > 0} = dimhE.

Definition 2.8. Let E be a compact subset of Rd. The Fourier dimension of E (denoted
dimf E) is the supremum of the numbers 0 ≤ α ≤ d such that E carries a non-zero Radon

measure µ such that the function R
d → R

+ : u 7→ |u|α/2|µ̂(u)|, (u ∈ R) is bounded.

It is well known that for any compact E of R
d, dimf E ≤ dimhE. If 0 < dimf E =

dimhE, then E is called a Salem set. Every Salem set (or in general every compact set with
non-zero Fourier dimension) is a set of multiplicity. Proofs of these results can be found in
[31], Chapter 12. See also [36] for a fully self-contained exposition of these results.

We also require the following result, a proof of which can be found on p 139 of [20].

Theorem 2.9. Suppose we are given a compact set E in R
d, and a mapping f from E to

R
n such that for some 0 < β < 1 and C > 0,

|f(x) − f(y)| ≤ C|x− y|β ,
for x, y ∈ E. Then

dimh(f(E)) ≤ min(
1

β
dimh(E), n).

By now taking (2.4) into account, we can infer the following:

Theorem 2.10. If φ is a complex oscillation and E is a compact subset of the unit interval,
then

dimh φ(E) ≤ min(2 dimh(E), 1).

3. Main Results

We shall prove the following:

Theorem 3.1. Let 0 < α ≤ 1. Suppose φ is a complex oscillation and θ is an effective
α-Frostman measure on [0, 1] and ǫ > 0. Then for all reals u such that |u| is sufficiently
large (depending on ǫ),

∣

∣

∣

∣

∫ 1

0
eiuφ(t)dθ(t)

∣

∣

∣

∣

≤ 2

|u|α−ǫ
. (3.1)
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In other words, if ν is the pushout measure of θ under the complex oscillation φ, its
Fourier transform satisfies

|ν̂(u)| ≤ C
1

|u|α−ǫ

for a constant C (depending only on ǫ) and |u| ≥ 1. Now write E for the support of θ and
F for the support of ν. Then F = φ(E). It follows that

dimf F ≥ min(1, 2α).

This theorem has the following consequence:

Theorem 3.2. Suppose E is a compact subset of the unit interval whose Hausdorff dimen-
sion β is effectively witnessed and such that 0 < β ≤ 1. If φ is a complex oscillation, then
the image, φ(E), is a Salem set of dimension min{1, 2β}.
Proof. By Theorem 3.1, the Fourier dimension of φ(E) is ≥ min{1, 2α} for any α such that
0 ≤ α < β. Hence dimf φ(E) ≥ min{1, 2β}.

Since dimh φ(E) ≤ min{1, 2β} (Theorem 2.10), it follows that dimf φ(E) = dimh φ(E) =
min{1, 2β} (using the fact that dimfφ(E) ≤ dimhφ(E)).

It follows that all the sets Sγ(ω) (see (2.11), (2.12) and (2.13)) with γ ∈ (0, 1)r and
ω ∈ KC, are Salem sets. Moreover

dimh Sγ(ω) = dimf Sγ(ω) = γ.

We can therefore infer:

Theorem 3.3. Write (0, 1)r for the set of real computable numbers in the unit interval and
KC for the set of infinite binary numbers which are random in the sense of Kolmogorov-
Chaitin-Levin-Martin-Löf. There is a Π0

2 predicate over R × (0, 1)r × KC which for each
(γ, ω) ∈ (0, 1)r ×KC, defines a Salem set Sγ(ω) of Fourier dimension γ.

4. Fourier analytical properties of finite sequences of high Kolmogorov

complexity

In this section, we fix an integer n and set N = 2n. We assume that the set {0, 1}N is
endowed with the canonical probability measure (the product µ1 ∗ µ2 ∗ . . . ∗ µN where µk is
the Bernoulli fair-coin toss measure on {0, 1}).

For any finite binary string ω ∈ {0, 1}N , denote by Sn(ω) the continuous function on
the unit interval that vanishes at 0 and is linear on each interval Ij,n = [(j − 1)/N, j/N),

j = 1, . . . , N with slope ±
√
N according to whether ωj = 1 or ωj = 0. Here ω = ω0ω1 . . ..

For any t ∈ [0, 1], we denote by Sn(t), the random variable ω 7→ Sn(ω, t) = Sn(ω)(t) on
{0, 1}N . Recall that δa is the Dirac measure concentrated at a. We have the following
result:

Theorem 4.1. Let θ be an effective α-Frostman measure on [0, 1] and θn its n-step approx-
imation, that is,

θn =

N
∑

j=1

c(j)δj/N , (4.1)
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where c(j) = θ(Ij,n), N = 2n and Ij,n = [(j − 1)/N, j/N)) , for j = 1, 2, . . . , N . Then for
any positive integer q ≤ log n, and any real number u such that n ≤ u ≤ n + 1,

E

(

∣

∣

∣

∣

∫ 1

0
eiuSn(ω,t)dθn(t)

∣

∣

∣

∣

2q
)

≤ (22 q u−2α)q, (4.2)

for all large values of n.

The proof of Theorem 4.1 is given in Section 6. We now deduce from Theorem 4.1 the
following Theorem which will be used in the following section to prove Theorem 3.1.

Theorem 4.2. Let θ be an effective α-Frostman measure on [0, 1] and θn its n-step approx-
imation (4.1). Let ǫ > 0 be any fixed rational number. For any natural number d, there is
a number Ld such that for n ≥ Ld we have for all ω ∈ {0, 1}N , N = 2n, whose Kolmogorov
complexity satisfies

K(ω) > N − d,

that
∣

∣

∣

∣

∫ 1

0
eiuSn(ω,t)dθn(t)

∣

∣

∣

∣

2

≤ 1

u2α−ǫ
, (4.3)

for all rational numbers u = n, n + 1
n , n + 2

n , . . . , n + 1.

Proof. For a given n and u ∈ {n, n + 1
n , n + 2

n , . . . , n + 1}, we define

F (ω, u) =

∣

∣

∣

∣

∫ 1

0
eiuSn(ω,t)dθn(t)

∣

∣

∣

∣

2

,

when ω ∈ {0, 1}N .
Then for any ǫ > 0, and sufficiently large integers n, we have that

P
{

F (ω, u) > u−2α+ǫ
}

≤ 1

u5
. (4.4)

Indeed, by the Chebyshev’s inequality and Theorem 4.1, we obtain, for q ≤ log n, that

P
{

F (ω, u) > u−2α+ǫ
}

≤ E [(F (ω, u))q ]

(u−2α+ǫ)q

≤ (22 q u−2α)q

(u−2α+ǫ)q
.

Taking q = ⌈6/ǫ⌉ (the smallest integer ≥ 6/ǫ) and u such that u ≥ (22q)q yields relation
(4.4).

Let us denote by Au the event F (ω, u) > u−2α+ǫ in {0, 1}N . By relation (4.4), for large
u,

P{Au} ≤ 1

u5
(4.5)

We want to show that a finite binary ω ∈ Au has low Kolmogorov-Chaitin complexity,
since the cardinality of Au is “small”. Consider the following algorithm φ1 which on self-
delimiting inputs for the integers n and r with 0 ≤ r ≤ n enumerates the elements of
Au. Firstly φ1 computes N = 2n and u = n + r

n . It then computes from N , increasingly
accurate approximations to the coefficients c(1), c(2), . . . , c(N). Since F (ω, u) is computable
in c(1), c(2), . . . , c(N) we get that every string in Au will eventually be enumerated.
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We can thus specify any string in Au by giving its index j in this enumeration. For
this we need only self-delimiting codes for n, r and a code for j. Since we know that
|Au| ≤ 2N−5 logn we know that |j| ≤ N − 5 log n. By padding j with initial zeroes if
necessary, we can assume that

|j| = ⌊N − 5 log n⌋
making j’s length computable from input n. Using the standard upper bound of 2 log k for
a self-delimiting code for k, a program to generate ω will thus have length bounded by

2 log n + 2 log r + (N − 5 log n) + C,

where C covers our programming overheads. Clearly, for large enough n, this drops below
N − d for any pre-given d ∈ N. Hence, if K(ω) ≥ N − d, then for large enough n, ω /∈ Au,
or equivalently, relation (4.3) holds.

5. Proof of Theorem 3.1

We are now ready to prove Theorem 3.1. Assume that (xn) is a complex sequence which
converges to φ as in (2.5). For n ≥ 1 set φn = xN where N = 2n. We also assume that
K(ωn) ≥ N − d for all n and for a fixed constant d where ωn is the code of φn. Note that
‖φn − φ‖ ≤ C n√

N
for a constant C and all large n. Then Sn(ωn, t) = φn(t) and Theorem 4.2

implies that
∣

∣

∣

∣

∫ 1

0
eiuφn(t)dθn(t)

∣

∣

∣

∣

2

≤ 1

u2α−ǫ
(5.1)

for large n and all u = n, n + 1
n , n + 2

n , . . . , n + 1.
Note that from relation (5.1), one can deduce that, there exists a constant C, such that,

for any real number ξ with n ≤ ξ ≤ n + 1, it is the case that,
∣

∣

∣

∣

∫ 1

0
eiξφn(t)dθn(t)

∣

∣

∣

∣

≤ 1

ξα−ǫ
+

C

n
. (5.2)

Indeed, for n sufficiently large
∣

∣

∣

∣

∫ 1

0
(eiuφn(t) − eiξφn(t))dθn(t)

∣

∣

∣

∣

≤ |u− ξ|
∫ 1

0
|φn(t)|dθn(t)

≤ C|u− ξ|
where C = supj≥1 ‖φj‖∞ + 1. (Here we have used the inequality |eix − eiy| ≤ |x− y|.)

Taking u such that |u− ξ| < 1/n together with (5.1) yields (5.2).
Now for any real number ξ such that n ≤ ξ ≤ n + 1, we have that

∣

∣

∣

∣

∫ 1

0
(eiξφn(t) − eiξφ(t))dθn(t)

∣

∣

∣

∣

≤
∫ 1

0
ξ|φn(t) − φ(t)|dθn(t)

≤ ξ‖φn − φ‖ (since θ([0, 1]) ≤ 1)

≤ C1 n(n + 1)√
N
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(by relation (2.5)) and the choice of ξ.) In addition,

∣

∣

∣

∣

∫ 1

0
eiξφdθn −

∫ 1

0
eiξφdθ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

N
∑

j=1

∫
j

N

j−1
N

eiξφ(j/N)dθ(t) −
∫

j

N

j−1
N

eiξφ(t)dθ(t)

∣

∣

∣

∣

∣

∣

≤
N
∑

j=1

∫
j

N

j−1
N

∣

∣

∣
eiξφ(t) − eiξφ(t)

∣

∣

∣
dθ(t)

≤ ξ(C2(1/N) log N)1/2
N
∑

j=1

θ([(j − 1)/N, j/N ]) (by (2.4))

≤ (n + 1)
√
C2 n√

N
.

To summarise, for n sufficiently large and all real ξ in the interval (n, n + 1)

∣

∣

∣

∣

∫ 1

0
eiξφ(t)dθ(t)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ 1

0
eiξφn(t)dθn(t)

∣

∣

∣

∣

+
C1 n(n + 1)√

N
+

(n + 1)
√
C2 n√

N
.

It follows that for all n large and all ξ ∈ (n, n + 1)
∣

∣

∣

∣

∫ 1

0
eiξφ(t)dθ(t)

∣

∣

∣

∣

=
1

ξα−ǫ
+ O(

1

n
)

=
1

ξα−ǫ
+ O(

1

ξ
).

In conclusion, for sufficiently large real number ξ,
∣

∣

∣

∣

∫ 1

0
eiξφ(t)dθ(t)

∣

∣

∣

∣

≤ 2

|ξ|α−ǫ
.

This extends obviously to negative ξ with |ξ| large.

6. Proof of Theorem 4.1

We will need the following lemma, which is like an integration by parts for singular measures.

Lemma 6.1. Let µ be the measure
∑n

j=1 cjδtj where cj are positive constants and 0 ≤ t1 <

t2 . . . tn ≤ 1. Then for any differentiable function f defined on [0, 1],
∫ 1

0
f(t)dµ(t) = µ[0, 1]f(1) −

∫ 1

0
f ′(t)µ[0, t]dt. (6.1)

Proof. This can be proven by a direct calculation. Clearly,
∫ 1

0
f(t)dµ(t) =

n
∑

j=1

cjf(tj) and µ[0, 1]f(1) =

n
∑

j=1

cjf(1).



18 W. L. FOUCHÉ, S. MUKERU, AND G. DAVIE

Also
∫ 1

0
f ′(t)µ[0, t]dt = c1

∫ t2

t1

f ′(t)dt + (c1 + c2)

∫ t3

t2

f ′(t)dt + . . .

+(c1 + c2 + . . . + cn)

∫ 1

tn

f ′(t)dt

=
n
∑

j=1

cj(f(1) − f(tj)).

The lemma follows immediately.

We are now ready to prove Theorem 4.1.

Proof. Since θn =
∑N

j=1 c(j)δj/N , one has that

∫ 1

0
eiuSn(t)dθn(t) =

N
∑

j=1

c(j)einSn(j/N).

Therefore
∣

∣

∣

∣

∫ 1

0
eiuSn(t)dθn(t)

∣

∣

∣

∣

2q

=
∑

1≤j1,j2,...,j2q≤N

c(j1)c(j2) . . . c(j2q)

×eiu(Sn(j1/N)+...+Sn(jq/N))e−iu((Sn(jq+1/N)+...+Xn(j2q/N)).

By symmetry, this implies that
∣

∣

∣

∣

∫ 1

0
eiuSn(t)dθn(t)

∣

∣

∣

∣

2q

= (q!)2
∑

ǫ∈T

∑

1≤j1≤...≤j2q≤2n

c(j1)c(j2) . . . c(j2q)

×eiu(ǫ1Sn(j1/N)+...+ǫ2qSn(j2q/N))

where
T = {ǫ = (ǫ1, . . . , ǫ2q) : ǫj = ±1 and ǫ1 + . . . + ǫ2q = 0}.

We rewrite the sum
2q
∑

k=1

ǫkSn(jk/N)

as
2q
∑

k=1

αk[Sn(jk/N) − Sn(jk−1/N)]

where αk = ǫk + . . . + ǫ2q and j0 = 0.
Now note that, by definition, the random variables

Bk = Sn(jk/N) − Sn(jk−1/N), 0 ≤ k ≤ 2q,

are independent and each Bk has the same distribution as Sn((jk−jk−1)/N). Since Sn(h/N)
is the sum of h independent and identically distributed variables V1, V2, . . . , Vh with P{V1 =
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1/
√
N} = P{V1 = −1/

√
N} = 1/2, we have that

E[eiuSn(h/N)] = E[eiu(V1+V2+...+Vh)]

=

h
∏

j=1

E[eiuVj ] (by independence of the Vj)

=
(

(1/2)eiu/
√
N + (1/2)e−iu/

√
N
)h

(by definition of Vj)

=
(

cos(u/
√
N)
)h

.

Consequently

E[eiuαkSn((jk−jk−1)/N)] = [cos(uαk/
√
N)]jk−jk−1 .

Therefore

E

(

∣

∣

∣

∣

∫ 1

0
eiuSn(t)dθn(t)

∣

∣

∣

∣

2q
)

= (q!)2
∑

ǫ∈T

∑

1≤j1≤...≤j2q≤2n

c(j1)c(j2) . . . c(j2q) ×

2q
∏

k=1

[cos(uαk/
√
N)]jk−jk−1 . (6.2)

Since αj is the sum of 2q − j + 1 numbers each equal to ±1, it follows that αj 6= 0 for all
even j. Clearly, for any ǫ = (ǫ1, . . . , ǫ2q) ∈ T , we have that |αk| ≤ q for all 1 ≤ k ≤ 2q.

From the condition imposed on the numbers n, q, and u (q ≤ log n, n ≤ u ≤ n+1, N =

2n) it is clear that u/
√
N is small enough to ensure that 0 < cos(uh/

√
N) ≤ cos(u/

√
N)

for any 1 < h ≤ q. In particular

cos
(

uαk/
√
N
)

≤ cos
(

u/
√
N
)

for all even k.

For k odd, we use the obvious inequality cos(uαk/
√
N) ≤ 1. Consequently

E

(

∣

∣

∣

∣

∫ 1

0
einSn(t)dθn(t)

∣

∣

∣

∣

2q
)

≤ (q!)2
∑

ǫ∈T

∑

1≤j1≤...≤j2q≤2n

c(j1)c(j2) . . . c(j2q) ×

[cos(u/
√
N)]j2−j1 [cos(u/

√
N)]j4−j3 ×

× . . . [cos(u/
√
N)]j2q−j2q−1 .
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Since the cardinality of T is (2q)!/(q!2), and all the terms are positive,

E

(

∣

∣

∣

∣

∫ 1

0
einXn(t)dθn(t)

∣

∣

∣

∣

2q
)

≤ (2q)!
N
∑

j1=1

N
∑

j2=j1

N
∑

j3=j2

. . .
N
∑

j2q=j2q−1

c(j1)c(j2) . . . c(j2q) ×

[cos(u/
√
N)]j2−j1 [cos(u/

√
N)]j4−j3 ×

. . . [cos(u/
√
N)]j2q−j2q−1

≤ (2q)!
∑

1≤j1≤j3≤...≤j2q−1≤N

j3
∑

j2=j1

j5
∑

j4=j3

. . .

N
∑

j2q=j2q−1

c(j1)c(j2) . . . c(j2q) ×
[cos(u/

√
N)]j2−j1 [cos(u/

√
N)]j4−j3 ×

. . .× [cos(u/
√
N)]j2q−j2q−1 .

By setting hk = jk − jk−1 for k even, and by taking c(t) = 0 for t > 2n, we obtain

E

(

∣

∣

∣

∣

∫ 1

0
eiuSn(t)dθn(t)

∣

∣

∣

∣

2q
)

≤ (2q)!
∑

1≤j1≤j3≤...≤j2q−1≤N

N
∑

h2=0

N
∑

j4=0

. . .
N
∑

h2q=0

c(j1)c(j3) . . . c(j2q−1) ×
c(j1 + h2)c(j3 + h4) . . . c(j2q−1 + h2q)

[cos(u/
√
N)]h2 [cos(u/

√
N)]h4 ×

. . .× [cos(u/
√
N)]h2q .

We now estimate the sum

M =
N
∑

h=0

c(r + h)[cos(u/
√
N)]h, r ≤ N.

Clearly,

M =

∫ 1

0

[

cos
(

u/
√
N
)]Nt

dµ(t) where µ =

N
∑

j=1

c(j + r)δj/N

and c(h) = 0 for h /∈ {1, 2, . . . , N}.
By Lemma 6.1, we obtain that

N
∑

h=0

c(r + h)
[

cos
(

u/
√
N
)]h

= µ[0, 1] aN −N log a

∫ 1

0
atNµ[0, t]dt

where
a = cos

(

u/
√
N
)

.

Since θ is an α-Frostman measure and θn is its n-step approximation, it follows from relation
(2.10) that,

µ[0, t] = θn[r/N, t + r/N ] ≤ Ctα for t ≥ 1/N (6.3)

and

θn(I) ≤ 1/Nα (6.4)
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for every interval I such that |I| ≤ 1/N . We also have that 0 < a < 1. Then,

N
∑

h=0

c(r + h)
[

cos
(

u/
√
N
)]h

≤ θn[0, 1]aN

−N log a

(

∫ 1/N

0
at Nθn[r, r + t]dt + C

∫ 1

1/N
atN tαdt

)

.

By (6.4), we have that

N log a

∫ 1/N

0
atNθn[r, r + t]dt ≤ N log a

∫ 1/N

0
at N (1/Nα) dt

= (a− 1)/Nα

and

CN log a

∫ 1

1/N
atN tαdt =

C

(−N log a)α
Γ(α + 1).

Therefore (using θn[0, 1] = θ[0, 1] ≤ 1),

N
∑

h=0

c(r + h)
[

cos
(

u/
√
N
)]h

≤ aN +
1 − a

Nα
+

C

(N log(1/a))α
Γ(α + 1). (6.5)

We next estimate each term in (6.5).

1. Clearly, (1 − a)/Nα ≤ 1/u4α.

2. For the quantity aN with a = cos
(

u/
√
N
)

, we use the following estimates (“Taylor

expension”):

cos(x) ≤ 1 − x2/2 + x4/4!

log(1 − x) ≤ −x for x ≥ 0

log(cos(x)) ≤ −x2

2
+

x4

4!

Therefore,

log aN = N log cos
(

u/
√
N
)

≤ N

(

− u2

2 ×N
+

u4

4! ×N2

)

= −u2

2
+

u4

4! ×N
.

Now since (for large n), u is such that u2 ≤
√
N , it follows that

log aN ≤ −u2

2
+ 1 ≤ −u2

3

for large u. Therefore, aN ≤ e−
u2

3 . This quantity converges to zero for u → ∞.
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3. For the quantity
C

(N log(1/a))α
,

we have that

N log(1/a) = −N log cos
(

u/
√
N
)

≥ −N(− u2

2 ×N
+

u4

4! ×N2
)

≥ u2

2
− 1

≥ u2

3
(for large n),

Therefore
C

(N log(1/a))α
≤ 3C/u2α

and
N
∑

h=0

c(r + h)
[

cos
(

u/
√
N
)]h

≤ e−u2/3 +
1

u4α
+

3CΓ(α + 1)

u2α

≤ 11

u2α

by taking C = 3 and α ∈ [0, 1] and using the fact that the quantities e−u2/3 and 1/u4α

are dominated by 1/u2α for relatively large u. Hence

E

(

∣

∣

∣

∣

∫ 1

0
eiuSn(t)dθn(t)

∣

∣

∣

∣

2q
)

≤ (2q)!(11u−2α)q ×
∑

1≤j1≤j3≤...≤j2q−1≤N

c(j1)c(j3) . . . c(j2q−1).

Finally,
∑

1≤j1≤j3≤...≤j2q−1≤2n

c(j1)c(j3) . . . c(j2q−1) =

∫

0≤t1≤t2...tq≤1
dθ(t1)dθ(t2) . . . dθ(tq),

and we observe that, the integral
∫

0≤tσ(1)≤tσ(2)...tσ(q)≤1
dθ(t1)dθ(t2) . . . dθ(tq)

is the same for all permutations σ of {1, 2, . . . , q}. Therefore,
∫

0≤t1≤t2...tq≤1
dθ(t1)dθ(t2) . . . dθ(tq) =

1

q!

∫ 1

0

∫ 1

0
. . .

∫ 1

0
dθ(t1)dθ(t2) . . . dθ(tq)

≤ 1

q!

since θ[0, 1] ≤ 1.
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It follows that

E

(

∣

∣

∣

∣

∫ 1

0
eiuSn(t)dθn(t)

∣

∣

∣

∣

2q
)

≤ (2q)!

q!
(11u−2α)q ≤ (22 q u−2α)q.
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[9] Fouché, W. L. The descriptive complexity of Brownian motion, Advances in Mathematics, 155: 317-343,

2000.
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[12] Fouché, W. L. Kolmogorov complexity and the geometry of Brownian motion. To appear in Mathemat-

ical Structures in Computer Science.
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