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Abstract. The so-called light logics [13, 1, 2] have been introduced as logical systems
enjoying quite remarkable normalization properties. Designing a type assignment system
for pure lambda calculus from these logics, however, is problematic, as discussed in [6]. In
this paper we show that shifting from usual call-by-name to call-by-value lambda calculus
allows regaining strong connections with the underlying logic. This will be done in the
context of Elementary Affine Logic (EAL), designing a type system in natural deduction
style assigning EAL formulae to lambda terms.

1. Introduction

The so-called light logics [13, 1, 2] have been introduced as logical counterparts of com-
plexity classes, namely polynomial and elementary time functions. After their introduction,
they have been shown to be relevant for optimal reduction [10, 11], programming language
design [2, 16] and set theory [15]. However, proof languages for these logics, designed
through the Curry-Howard correspondence, are syntactically quite complex and can hardly
be proposed as programming languages. An interesting research challenge is the design
of type systems assigning light logics formulae to pure lambda-terms, forcing the class of
typable terms to enjoy the same remarkable properties which can be proved for the logical
systems. The mismatch between β-reduction in the lambda-calculus and cut-elimination
in logical systems, however, makes it difficult to both getting the subject reduction prop-
erty and inheriting the complexity properties from the logic, as discussed in [6]. Indeed,
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β-reduction is more permissive than the restrictive copying discipline governing calculi di-
rectly derived from light logics. Consider, for example, the following expression in ΛLA

(see [16]):
let M be !x in N

This rewrites to N{x/P} if M is !P , but is not a redex if M is, say, an application. It
is not possible to map this mechanism into pure lambda calculus. The solution proposed
by Baillot and Terui [6] in the context of Light Affine Logic (LAL, see [1, 2]) consists in
defining a type-system which is strictly more restrictive than the one induced by the logic.
In this way, they both achieve subject reduction and a strong notion of polynomial time
soundness.

Now, notice that mapping the above let expression to the application

(λx.N)M

is not meaningless if we shift from the usual call-by-name lambda calculus to the call-by-
value lambda calculus, where (λx.N)M is not necessarily a redex. In this paper, we make
the best of this idea, introducing a type assignment system, that we call ETAS, assigning
formulae of Elementary Affine Logic (EAL) to lambda-terms. ETAS enjoys the following
remarkable properties:

• The language of types coincides with the language of EAL formulae.
• Every proof of EAL can be mapped into a type derivation in ETAS.
• (Call-by-value) subject reduction holds.
• Elementary bounds can be given on the length of any reduction sequence involving a
typable term. A similar bound holds on the size of terms involved in the reduction.

• Type inference is decidable and the principal typings can be inferred in polynomial time.

The basic idea underlying ETAS consists in partitioning premises into three classes, de-
pending on whether they are used once, or more than once, or they are in an intermediate
status. We believe this approach can work for other light logics too, and some hints will be
given.

The proposed system is the first one satisfying the above properties for light logics. A
notion of typability for lambda calculus has been defined in [10, 11, 7] for EAL, and in [4] for
LAL. Type inference has been proved to be decidable. In both cases, however, the notion
of typability is not preserved by β-reduction.

Noticeably, the proposed approach can be extended to Light Affine Logic and Soft
Affine Logic (SAL, see [5, 14]).

A preliminary version of the present paper is [9]: here some results have been improved.
In particular a new type inference algorithm is presented, and its complexity is analyzed: it
turns out that our type inference algorithm for EAL has a complexity of the same order than
the type inference for simple types. Moreover some discussions about possible extensions
of this method have been added.

The paper is organized as follows: in Section 2 a comparison with existing work is
made, in Section 3 some preliminary notions about EAL and lambda calculus are recalled,
in Section 4 the ETAS system is introduced, and in Section 5 and 6 its main properties,
namely complexity bounds and a type inference algorithm, are explained. Section 7 presents
two possible extensions, allowing to reach completeness for elementary functions, and in
Section 8 some hints on how to apply our idea to other light logics are given. Section 9
contains a short summary of the obtained results.
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2. Comparison with Existing Work

This work is not the first contribution on type systems derived from light logics. We
should mention works on (principal) type inference for Elementary Affine Logic and Light
Affine Logic by Baillot, Coppola, Martini and Ronchi Della Rocca [10, 4, 11]. There, the goal
was basically proving decidability of type inference. The proposed type systems were the
ones directly induced from logical systems. Typable lambda terms can be efficiently reduced
using Lamping’s abstract algorithm, although basic properties like subject reduction and
complexity bounds were not necessarily verified.

Baillot and Terui [6] proposed a type system inspired by light logics and enjoying sub-
ject reduction and polynomial time normalization, called Dual Light Affine Logic (DLAL).
The underlying term system is ordinary lambda-calculus with usual, call-by-name reduc-
tion. They’ve recently proved [3] that system F terms can be decorated with light types in
polynomial time, following similar work for Elementary Affine Logic [7].

Our approach should be understood as complementary to the one proposed by Baillot
and Terui [6]: we exploit call-by-value evaluation and this allows us to stay closer to logical
systems. On the other hand, the way our type system is formulated prevents us from getting
the full power of second-order quantification. Nevertheless, second-order quantification is
not as crucial with call-by-value as with usual call-by-name, where data can be encoded in
Church-style, following Berarducci and Böhm [8].

3. Preliminaries

In this section we recall the proof calculus for Elementary Affine Logic, ΛEA. Then
relations with the lambda calculus will be discussed.

Definition 3.1 (Terms, Types, Contexts).

i) The set Λ of terms of the lambda calculus is defined by the grammar M ::= x |MM |
λx.M , where x ∈ Var , a countable set of variables.

ii) The grammar generating the set ΛEA of terms of the Elementary Lambda Calculus
(EA-terms for short) is obtained from the previous one by adding rules

M ::= ! (M)
[
M/x, . . . ,M/x

]
| [M ]M=x,y

and by constraining all variables to occur at most once. These two constructs interpret
promotion and contraction, respectively.

iii) EA-types are formulae of (Propositional) Elementary Affine Logic (hereby EAL), and
are generated by the grammar A ::= a | A ⊸ A | !A where a belongs to a countable
set of basic type constants. EA-types will be ranged over by A,B,C.

iv) EA-contexts are finite subsets of EA-type assignments to variables, where all variables
are different. Contexts are ranged over by Φ, Ψ. If Φ = {x1 : A1, . . . , xn : An},
then dom(Φ) = {x1, . . . , xn}. Two contexts are disjoint if their domains have empty
intersection.

v) The type assignment system in natural-deduction style for EA-terms (⊢NEAL for short)
assigns EA-types to EA-terms. The system is given in Table 1. With a slight abuse of
notation, we will denote by NEAL the set of typable terms in ΛEA.

Both ΛEA and Λ are ranged over by M,N,P,Q. The context should help avoiding ambigui-
ties. Symbol ≡ denotes syntactic identity on both types and terms. The identity on terms is
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Φ, x : A ⊢NEAL x : A
A

Φ ⊢NEAL M :!A Ψ, x :!A, y :!A ⊢NEAL N : B

Φ,Ψ ⊢NEAL [N ]M=x,y : B
C

Φ, x : A ⊢NEAL M : B

Φ ⊢NEAL λx.M : A⊸ B
I⊸

Φ ⊢NEAL M : A⊸ B Ψ ⊢NEAL N : A

Φ,Ψ ⊢NEAL M N : B
E⊸

Ψ1 ⊢NEAL M1 :!A1 · · · Ψn ⊢NEAL Mn :!An x1 : A1, . . . , xn : An ⊢NEAL N : B

Φ,Ψ1, . . . ,Ψn ⊢NEAL! (N)
[
M1/x1, . . . ,

Mn/xn
]
:!B

!

Table 1: Type assignment system for EA-terms. Contexts with different names are intended
to be disjoint.

(λx.M N) →β M{N/x}

[N ]!(M)[M1/x1,...,Mn/xn]=x,y →dup

[. . . [N{
!(M)

h

x′1/x1,...,x
′
n/xn

i

/x}{
!(M ′)

h

y′1/y1,...,y
′
n/yn

i

/y}]M1=x′
1,y

′
1
· · · ]Mn=x′

n,y
′
n

!(M)[M1/x1, · · · ,
!(N)[P1/y1,...,Pm/ym] /xi, · · · ,

Mn /xn] →!−!

!(M{N/xi})[
M1/x1, · · · ,

P1 /y1, · · · ,
Pm /ym, · · ·

Mn /xn]

([M ]M1=x1,x2 N) →@−c [(M{x′1/x1, x
′
2/x2} N)]M1=x′

1,x
′
2

(M [N ]N1=x1,x2) →@−c [(M N{x′1/x1, x
′
2/x2})]N1=x′

1,x
′
2

!(M)[M1/x1, · · · ,
[Mi]N=y,z /xi, · · · ,

Mn /xn] →!−c

[!(M)[M1/x1, · · · ,
Mi{y′/y,z′/z} /xi, · · · ,

Mn /xn]]N=y′,z′

[M ][N ]P=y1,y2
=x1,x2

→c−c [[M ]N{y′1/y1,y
′
2/y2}=x1,x2

]P=y′1,y
′
2

λx.[M ]N=y,z →λ−c [λx.M ]N=y,z where x /∈ FV(N)

where M ′ in the →dup-rule is obtained from M replacing all its free variables with fresh
ones (xi is replaced with yi); x

′
1 and x′2 in the →@−c-rule, y

′ and z′ in the →!−c-rule and
y′1, y

′
2 in the →c−c-rule are fresh variables.

Table 2: Normalization rules in ΛEA.

taken modulo names of bound variables and modulo permutation in the list M/x, · · · ,M/x
inside ! (M) [M/x, . . . , M/x].

On Λ, both the call-by-name and the call-by-value β-reduction will be used, according
to the following definition.
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Definition 3.2 (Reduction).

i) We refer to the contextual closure of the rule (λx.M)N→nM{N/x}, where M{N/x}
denotes the capture free substitution of N to the free occurrences of x in M , as the
call-by-name β-reduction;

ii) Values are generated by the grammar V ::= x | λx.M where x ranges over Var and
M ranges over Λ. V is the set of all values. Values are denoted by V,U,W . The
call-by-value β-reduction is the contextual closure of the rule (λx.M)V →v M{V/x}
where V ranges over values.

iii) Let t ∈ {n, v}; symbols →+
t and →∗

t denote the transitive closure and the symmetric
and transitive closure of →t, respectively.

A term in ΛEA can be transformed naturally to a term in Λ by performing the substitutions
which are explicit in it, and forgetting the modality !. Formally, the translation function
(·)∗ : ΛEA → Λ is defined by induction on the structure of EA-terms as follows:

(x)∗ = x

(λx.M)∗ = λx.(M)∗

(MN)∗ = (M)∗(N)∗

([M ]N=x1,x2)
∗ = (M)∗{(N)∗/x1, (N)∗/x2}

(! (N)
[
M1/x1, . . . ,

Mn/xn
]
)∗ = (N)∗{(M1)

∗/x1, . . . , (Mn)
∗/xn}

where M{M1/x1, · · · ,
Mn/xn} denotes the simultaneous substitution of all free occurrences

of xi by Mi (1 ≤ i ≤ n).
The map (·)∗ easily induces a type-assignment system NEAL∗ for pure lambda-calculus:

take NEAL and replace every occurrence of a termM byM∗ in every rule. Normalization in
NEAL(see Table 2), however, is different from normalization in lambda-calculus — NEAL∗

does not even satisfy subject-reduction. Moreover, lambda calculus does not provide any
mechanism for sharing: the argument is duplicated as soon as β-reduction fires. This,
in turn, prevents from analyzing normalization in the lambda calculus using the same
techniques used in logical systems. This phenomenon has catastrophic consequences in the
context of Light Affine Logic, where polynomial time bounds cannot be transferred from
the logic to pure lambda-calculus [6].

Consider now a different translation (·)# : ΛEA → Λ:

(x)# = x

(λx.M)# = λx.(M)#

(MN)# = (M)# (N)#

([N ]M=x,y)
# =

{
(N)#{M/x,M/y} if M is a variable
(λz.(N)#{z/x, z/y})(M)# otherwise

(! (N)
[
M1/x1, . . . ,

Mn/xn
]
)# =







(N)# if n = 0
(! (N)

[
M2/x2, . . . ,

Mn/xn
]
)#{M1/x1}

if n ≥ 1 and M1 is a variable
(λx1.(! (N)

[
M2/x2, . . . ,

Mn/xn
]
)#)(M1)

#

if n ≥ 1 and M1 is not a variable
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Please observe that while (·)# maps [N ]M=x,y and ! (N)
[
M1/x1, . . . ,

Mn/xn
]
to applications

(except when the arguments are variables), (·)∗ maps them to terms obtained by substitu-
tion. Indeed, if lambda calculus is endowed with ordinary β-reduction, the two translations
are almost equivalent:

Lemma 3.3. For every EA-term M , (M)# →∗
n (M)∗.

Proof. By induction on M .

However, it is certainly not true that (M)# →∗
v (M)∗. The map (·)#, differently from

(·)∗, does not cause an exponential blowup on the length of terms. The length L(M) of a
term M is defined inductively as follows:

L(x) = 1

L(λx.M) = 1 + L(M)

L(M N) = 1 + L(M) + L(N)

The same definition can be extended to EA-terms by way of the following equations:

L(! (M)) = L(M) + 1

L(! (M)
[
M1/x1, . . . ,

Mn/xn
]
) = L(! (M)

[
M1/x1, . . . ,

Mn−1/xn−1

]
) + L(Mn) + 1

L([M ]N=x,y) = L(M) + L(N) + 1

Proposition 3.4. For every N ∈ ΛEA, L(N#) ≤ 2L(N).

Proof. By induction on N . The cases for variables, abstractions and applications are trivial.
Let us now consider the other two inductive cases. Suppose N = [P ]Q=x,y. If Q is a

variable, then L(N#) = L(P#) ≤ 2L(P ) ≤ 2L(N). If Q is not a variable, then L(N#) =
L(P#) +L(Q#) + 2 ≤ 2L(P ) + 2L(Q) + 2 = 2(L(P ) +L(Q) + 1) = 2L(N). If, on the other
hand, N =! (M)

[
M1/x1, . . . ,

Mn/xn
]
, then we can proceed by induction on n. If n = 0, then

the inequality is trivially verified. If, on the other hand, n > 0, then we must distinguish
two different cases: if Mn is a variable, then the inequality is trivially satisfied; if Mn is not

a variable, then N# is (λxn.(! (M)
[
M1/x1, . . . ,

Mn−1/xn−1

]
)#))M#

n and, by the induction
hypothesis on n and Mn, we get

L(N#) = 2 + L((! (M)
[
M1/x1, . . . ,

Mn−1/xn−1

]
)#) + L(M#

n )

≤ 2 + 2L(! (M)
[
M1/x1, . . . ,

Mn−1/xn−1

]
) + 2L(M#

n )

= 2L(N)

This concludes the proof.

4. The Elementary Type Assignment System

In this section we will define a type assignment system typing lambda-terms with EAL
formulae. We want the system to be almost syntax directed, the difficulty being the handling
of C and ! rules. This is solved by splitting the context into three parts, the linear context,
the modal context, and the parking context. In particular the parking context is used to
keep track of premises which must become modal in the future.

Definition 4.1.

i) An EAL formula A is modal if A ≡!B for some B, it is linear otherwise.
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Γ, x : A | ∆ | Θ ⊢ x : A AL
Γ | ∆ | x : A,Θ ⊢ x : A AP

Γ, x : A | ∆ | Θ ⊢M : B

Γ | ∆ | Θ ⊢ λx.M : A⊸ B
IL
⊸

Γ | ∆, x : A | Θ ⊢M : B

Γ | ∆ | Θ ⊢ λx.M : A⊸ B
II
⊸

Γ1 | ∆ | Θ ⊢M : A⊸ B Γ2 | ∆ | Θ ⊢ N : A

Γ1,Γ2 | ∆ | Θ ⊢M N : B
E⊸

Γ1 | ∆1 | Θ1 ⊢M : A

Γ2 |!Γ1, !∆1, !Θ1,∆2 | Θ2 ⊢M :!A
!

Table 3: The Elementary Type Assignment System (ETAS). Contexts with different names
are intended to be disjoint.

ii) A context is a set of pairs x : A where x is a variable and A is an EA-type, where
all variables are disjoint. A context is linear if it assigns linear EA-types to variables,
while it is modal if it assigns modal EA-types to variables. If Φ is a context, ΦL and
ΦI denote the linear and modal sub-contexts of Φ, respectively.

iii) The Elementary Type Assignment System (ETAS) proves statements like Γ | ∆ | Θ ⊢
M : A where Γ and Θ are linear contexts and ∆ is a modal context. The contexts have
disjoint variables. The rules of the system are shown in Table 3. In what follows, Γ, ∆
and Θ will range over linear, modal and parking contexts respectively.

iv) A typing judgement for M is a statement of the kind Γ | ∆ | ∅ ⊢M : A. A term M ∈ Λ
is EA-typable if there is a typing for it. Type derivations built according to rules in
Table 3 will be denoted with greek letters like π, ρ and σ. If π is a type derivation with
conclusion Γ | ∆ | Θ ⊢M : A, we write π : Γ | ∆ | Θ ⊢M : A.

Rules AL and AP (see Table 3) are two variations on the classical axiom rule. Notice that
a third axiom rule

Γ | x :!A,∆ | Θ ⊢ x :!A
AI

is derivable. Abstractions cannot be performed on variables in the parking context. The rule
E⊸ is the standard rule for application. Rule ! is derived from the one traditionally found
in sequent calculi and is weaker than the rule induced by NEAL via (·)∗. Nevertheless, it is
sufficient for our purposes and (almost) syntax-directed. The definition of an EA-typable
term takes into account the auxiliary role of the parking context.

Example 4.2. Let us illustrate the rôles of the various ETAS rules by way of an example.
Consider the Church’s numeral 2 ≡ λx.λy.x(xy), let B be !(A ⊸ A) and C be B ⊸ B. A
type derivation for 2 is the following:

∅ | y : B | x : C ⊢ x : C
AP

y : A ⊸A | ∅ | ∅ ⊢ y : A ⊸A
AL

∅ | y : B | x : C ⊢ y : B
!

∅ | y : B | x : C ⊢ xy : B
E⊸

∅ | y : B | x : C ⊢ x : C
AP

∅ | y : B | x : C ⊢ x(xy) : B
E⊸

∅ | ∅ | x : C ⊢ λy.x(xy) : B ⊸ B
II
⊸

∅ | x :!C | ∅ ⊢ λy.x(xy) :!(B ⊸ B)
!

∅ | ∅ | ∅ ⊢ λx.λy.x(xy) :!C ⊸!C
II
⊸
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Call this type derivation π(2, B). But Church numerals can be typed slightly differently.
Consider the term 3 ≡ λx.λy.x(x(xy)) and the following type derivation (where D stands
for A⊸ A):

∅ | ∅ | x : D ⊢ x : D
AP

y : A | ∅ | x : D ⊢ y : A
AL

y : A | ∅ | x : D ⊢ xy : A
E⊸

∅ | ∅ | x : D ⊢ x : D
AP

y : A | ∅ | x : D ⊢ x(xy) : A
E⊸

∅ | ∅ | x : D ⊢ x : D
AP

y : A | ∅ | x : D ⊢ x(x(xy)) : A
E⊸

∅ | ∅ | x : D ⊢ λy.x(x(xy)) : D
II
⊸

∅ | x : B | ∅ ⊢ λy.x(x(xy)) : B
!

∅ | ∅ | ∅ ⊢ λx.λy.x(x(xy)) : C
II
⊸

This is π(3, A) This way we can give the application 2 3 the type !C.

This system does not satisfy call-by-name subject-reduction. Consider, for example,
the lambda term M ≡ (λx.yxx)(wz). A typing for it is the following:

y :!A⊸!A⊸ A,w : A⊸!A, z : A | ∅ | ∅ ⊢M : A

M →n N , where N ≡ y(wz)(wz) and y :!A ⊸!A ⊸ A,w : A ⊸!A, z : A | ∅ | ∅ 6⊢ N : A,
because rule E⊸ requires the two linear contexts to be disjoint. Note that both ∅ | ∅ | y :
!A ⊸!A ⊸ A,w : A ⊸!A, z : A ⊢ M : A and ∅ | ∅ | y :!A ⊸!A ⊸ A,w : A ⊸!A, z : A ⊢
N : A, but these are not EA-typings.

The subject reduction problem, however, disappears when switching from call-by-name
to call-by-value reduction.

Lemma 4.3 (Weakening Lemma). If π : Γ1 | ∆1 | Θ1 ⊢ M : A, then there is σ : Γ1,Γ2 |
∆1,∆2 | Θ1,Θ2 ⊢M : A, for every Γ2,∆2,Θ2 disjoint from each other and from Γ1,∆1,Θ1.
Moreover, the number of rule instances in σ is identical to the number of rule instances in
π.

Lemma 4.4 (Shifting Lemma). If π : Γ, x : A | ∆ | Θ ⊢ M : B, then there is σ : Γ | ∆ |
x : A,Θ ⊢ M : B. Moreover, the number of rule instances in σ is identical to the number
of rule instances in π.

Lemma 4.5 (Substitution Lemma). Suppose Γ1 and Γ2 are disjoint contexts. Then:

i) If π : Γ1, x : A | ∆ | Θ ⊢ M : B and σ : Γ2 | ∆ | Θ ⊢ N : A, then there is
ρ : Γ1,Γ2 | ∆ | Θ ⊢M{N/x} : B.

ii) If π : Γ | ∆ | x : A,Θ ⊢ M : B and σ : ∅ | ∆ | Θ ⊢ N : A, then there is ρ : Γ | ∆ | Θ ⊢
M{N/x} : B.

iii) If π : Γ1 | ∆, x : A | Θ ⊢ M : B, σ : Γ2 | ∆ | Θ ⊢ N : A and N ∈ V, then there is
ρ : Γ1,Γ2 | ∆ | Θ ⊢M{N/x} : B.

Proof. The first point can be easily proved by induction on the derivation for Γ1, x : A | ∆ |
Θ ⊢M : B using, in particular, the Weakening Lemma.

Let us prove the second point (by the same induction). The case for AP can be proved
by way of the previous lemmas. IL

⊸
and II

⊸
are trivial. E⊸ comes directly from the

induction hypothesis and Lemma 4.3. ! is trivial since x cannot appear free in M and so
M{N/x} is just M .

The third point can be proved by induction, too, but it is a bit more difficult. First of
all, observe that A must be in the form !...!

︸︷︷︸

n

C, with n ≥ 1. Let us focus on rules E⊸ and !
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(the other ones can be handled easily). Since N ∈ V, the derivation for Γ2 | ∆ | Θ ⊢ N : A
must end with AL, AP , IL

⊸
or II

⊸
(depending on the shape of N), followed by exactly n

instances of the ! rule, being it the only non-syntax-directed rule. If the last rule used in π
is E⊸, then π has the following shape:

φ : Γ3 | x : A,∆ | Θ ⊢ L : D ⊸ B ψ : Γ4 | x : A,∆ | Θ ⊢ P : D

Γ1 | x : A,∆ | Θ ⊢M : B

where Γ1 ≡ Γ3,Γ4 and M ≡ LP . σ can be written as follows:

ξ : Γ5 | ∆1 | Θ1 ⊢ N : C

Γ2 | ∆ | Θ ⊢ N : A

where ∆ ≡!Γ5, !∆1, !Θ1,∆2 and A ≡!C. From ξ we can obtain a derivation χ : ∅ | ∆ | Θ ⊢
N : A and applying (two times) the induction hypothesis, we get µ : Γ3 | ∆ | Θ ⊢ L{N/x} :
D ⊸ B and ν : Γ4 | ∆ | Θ ⊢ P{N/x} : D from which we get the desired ρ by applying rule
E⊸ and Lemma 4.3. If the last rule used in π is !, then π has the following shape:

φ : Γ3 | ∆1 | Θ1 ⊢M : C

Γ1 | x : A,∆ | Θ ⊢M : B

where x : A,∆ ≡!Γ3, !∆1, !Θ1,∆3 and B ≡!C. σ can be written as follows:

ψ : Γ4 | ∆2 | Θ2 ⊢ N : D

Γ2 | ∆ | Θ ⊢ N : A

where ∆ ≡!Γ4, !∆2, !Θ2,∆4 and A ≡!D. We now distinguish some cases:

• If x ∈ dom(∆3), then x /∈ FV (M) and ρ is obtained easily from φ.
• If x ∈ dom(∆1), then let ∆1 ≡ x : D,∆5. By applying several times Lemma 4.3 and
Lemma 4.4 we can obtain type derivations

ξ : ∅ | x : D,∆2 ∪∆5 | Γ3 ∪ Γ4 ∪Θ1 ∪Θ2 ⊢M : C

χ : ∅ | ∆2 ∪∆5 | Γ3 ∪ Γ4 ∪Θ1 ∪Θ2 ⊢ N : D

which have the same number of rule instances as φ and ψ, respectively. By applying point
ii) of this Lemma, we obtain

µ : ∅ | ∆2 ∪∆5 | Γ3 ∪ Γ4 ∪Θ1 ∪Θ2 ⊢M{N/x} : C

from which ρ can be easily obtained.
• If x ∈ dom(Θ1), then let Θ1 ≡ x : D,Θ3. By applying several times Lemma 4.3 and
Lemma 4.4 we can obtain type derivations

ξ : ∅ | ∆1 ∪∆2 | x : D,Γ3 ∪ Γ4 ∪Θ2 ∪Θ5 ⊢M : C

χ : ∅ | ∆1 ∪∆2 | Γ3 ∪ Γ4 ∪Θ2 ∪Θ5 ⊢ N : D

which have the same number of rule instances as φ and ψ, respectively. By applying the
inductive hypothesis, we obtain

µ : ∅ | ∆1 ∪∆2 | Γ3 ∪ Γ4 ∪Θ2 ∪Θ5 ⊢M{N/x} : C

from which ρ can be easily obtained.
• If x ∈ dom(Γ3), then let Γ3 ≡ x : D,Γ5. By applying several times Lemma 4.3 and
Lemma 4.4 we can obtain type derivations

ξ : ∅ | ∆1 ∪∆2 | x : D,Γ4 ∪ Γ5 ∪Θ1 ∪Θ2 ⊢M : C

χ : ∅ | ∆1 ∪∆2 | Γ4 ∪ Γ5 ∪Θ1 ∪Θ2 ⊢ N : D
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which have the same number of rule instances as φ and ψ, respectively. By applying the
inductive hypothesis, we obtain

µ : ∅ | ∆1 ∪∆2 | Γ4 ∪ Γ5 ∪Θ1 ∪Θ2 ⊢M{N/x} : C

from which ρ can be easily obtained.

This concludes the proof.

Theorem 4.6 (Call-by-Value Subject Reduction). Γ | ∆ | Θ ⊢M : A and M →v N implies
Γ | ∆ | Θ ⊢ N : A.

Proof. A redex is a term of the shape (λx.M ′)N ′, where N ′ ∈ V. Then it can be the subject
of a subderivation ending by an application of the rule (E⊸) immediately preceded by an
application of rule (I⊸). So the result follows by the Substitution Lemma.

We are now going to prove that the set of typable λ-terms coincides with (NEAL)#. To
do this we need the following lemma.

Lemma 4.7 (Contraction Lemma).

i) If Γ | ∆ | x : A, y : A,Θ ⊢M : B, then Γ | ∆ | z : A,Θ ⊢M{z/x, z/y} : B
ii) If Γ | x : A, y : A,∆ | Θ ⊢M : B, then Γ | z : A,∆ | Θ ⊢M{z/x, z/y} : B

Theorem 4.8.

i) If Φ ⊢NEAL M : A then ΦL | ΦI | ∅ ⊢ (M)# : A.
ii) If Γ | ∆ | ∅ ⊢M : A, there is N ∈ ΛEA such that (N)# =M and Γ,∆ ⊢NEAL N : A.

Proof.

i) By induction on the structure of the derivation for Φ ⊢NEAL M : A. Let us focus on
nontrivial cases.

If the last used rule is E⊸, the two premises are Φ ⊢NEAL N : B ⊸ C and Φ2 ⊢NEAL

P : B, and M ≡ NP . By induction hypothesis, ΦL
1 | ΦI

1 | ∅ ⊢ (N)# : B ⊸ C, and
ΦL
2 | ΦI

2 | ∅ ⊢ (P )# : B and, by Weakening Lemma, ΦL
1 | ΦI

1,Φ
I
2 | ∅ ⊢ (N)# : B ⊸ C,

ΦL
2 | ΦI

1,Φ
I
2 | ∅ ⊢ (P )# : B Rule E⊸ leads to the thesis.

If the last used rule is C, the two premises are Φ1 ⊢NEAL N :!A and Φ2, x :!A, y :
!A ⊢NEAL P : B. By induction hypothesis, ΦL

1 | ΦI
1 | ∅ ⊢ (N)# :!A, ΦL

2 | ΦI
2, x :!A, y :

!A | ∅ ⊢ (P )# : B. By Contraction Lemma, ΦL
2 | ΦI

2, z :!A | ∅ ⊢ (P )#{z/x, z/y} : B and
so ΦL

2 | ΦI
2 | ∅ ⊢ λz.(P )#{z/x, z/y} :!A ⊸ B By rule E⊸ and Weakening Lemma, we

finally get ΦL
1 ,Φ

L
2 | ΦL

1 ,Φ
I
2 | ∅ ⊢ (λz.(P )#{z/x, z/y})(N)# : B.

ii) The following, stronger, statement can be proved by induction on π: if π : Γ | ∆ | x1 :
A1, . . . , xn : An ⊢M : A, then there is N ∈ ΛEA such that

M = (N)#{x11/y1, . . . , x
m1
1 /y1, . . . , x

1
n/yn, . . . , x

mn
n /yn}

and Γ,∆, y11 : A1, . . . , y
m1
1 : A1, . . . , y

1
n : An, . . . , y

mn
n : An ⊢NEAL N : A.

We have just established a deep static correspondence between NEAL and the class of ty-
pable lambda terms. But what about dynamics? Unfortunately, the two systems are not
bisimilar. Nevertheless, every call-by-value reduction-step in the lambda calculus corre-
sponds to at least one normalization step in ΛEA. A normalization step in ΛEA is denoted
by →; →+ denotes the transitive closure of →.

An expansion is a term in ΛEA that can be written either as ! (M) [x1/y1, . . . ,
xn/yn] or

as [N ]z=x,y, where N is itself an expansion.
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Lemma 4.9. If M is an expansion, then

• [L]M=x,y →∗ P , where P# ≡ L{M#/x,M#/y};
• If M ≡ Pi, then ! (L)

[
P1/x1, . . . ,

Pn/xn
]
→∗ Q where

Q# ≡ (! (L)
[
P1/x1, . . . ,

Pi−1/xi−1,
Pi+1/xi+1, . . . ,

Pn/xn
]
)#{M#/xi}.

Proposition 4.10. For every M ∈ ΛEA, if Γ ⊢NEAL M : A and (M)# →v N , then there is
L ∈ ΛEA such that (L)# = N and M →+ L.

Proof. We can proceed by induction on the structure of M . If M is a variable, then M#

is a variable, too, and so the premise is false. If M is an abstraction, then the thesis
follows from the inductive hypothesis. If M is an application P Q, then we can assume
P to be an abstraction λx.R and N to be R#{Q#/x} (in all the other cases the thesis
easily follows by induction hypothesis). It is easy to see that R#{Q#/x} ≡ (R{Q/x})#

and so we can take R{Q/x} as our L. If M is [P ]Q=x,y and Q is not a variable (otherwise

the thesis easily follows by inductive hypothesis), then M# = (λz.P#{z/x, z/y})Q# and
we can restrict to the case where N is P#{Q#/x,Q#/y}. First of all, we can observe
that Q# must be an abstraction. This means that Q is an abstraction itself enclosed in
one or more ! (·) [x1/y1, . . . ,

xn/yn] contexts and zero or more [·]z=x,y otherwise M cannot
be typed in EAL. This means Q is an expansion and so, by Lemma 4.9, we know there
must be a term R such that R# ≡ P#{Q#/x,Q#/y}, and M →∗ R, that is the thesis.
! (P )

[
Q1/x1, . . . ,

Qn/xn
]
can be managed in a similar way.

Remark 4.11. Notice that Proposition 4.10 is not a bisimulation result. In particular,
there are normalization steps in NEAL that do not correspond to anything in ETAS. An
example is the term (λx.x)(yz), which rewrites to yz in NEAL but is a (call-by-value) normal
form as a pure lambda-term.

5. Bounds on Normalization Time

In order to prove elementary bounds on reduction sequences, we need to define a refined
measure on lambda terms. We can look at a type derivation π : Γ | ∆ | Θ ⊢ M : A as a
labelled tree, where every node is labelled by a rule instance. We can give the following
definition:

Definition 5.1. Let π : Γ | ∆ | Θ ⊢M : A.

i) An occurrence of a subderivation ρ of π has level i if there are i applications of the rule
! in the path from the root of ρ to the root of π.

ii) An occurrence of a subterm N of M has level i in π if i is the maximum level of a
subderivation of π corresponding to the particular occurrence of N under consideration
(and thus having N as subject).

iii) The level ∂(π) of π is the maximum level of subderivations of π.

Notice that the so defined level corresponds to the notion of box-nesting depth in proof-
nets [1].

Example 5.2. Consider the derivation π(2, B) from Example 4.2. All the occurrences of
rules AP inside π(2, B) have level 1, since there is one instance of ! in the path joining the
root of π(2, B) to them. The occurrence of rule AL, on the other hand, has level 2. As a
consequence all occurrence of variables in 2 have either level 1 or level 2 in π(2, B). Now,
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consider the (unique) occurrence of λy.x(xy) in 2. There are two distinct subderivations
corresponding to it, one with level 0, the other with level 1. As a consequence, the level
of λy.x(xy) in π(2, B) is 1. Since the maximum level of subderivations of π(2, B) is 2,
∂(π(2, B)) = 2.

The length L(M) of a typable lambda term M does not take into account levels as
we have just defined them. The following definitions reconcile them, allowing L(M) to be
“split” on different levels.

Definition 5.3. Let π : Γ | ∆ | Θ ⊢M : A.

i) S(π, i) is defined by induction on π as follows:
• If π consists of an axiom, then S(π, 0) = 1 and S(π, i) = 0 for every i ≥ 1;
• If the last rule in π is II

⊸
or IL

⊸
, then S(π, 0) = S(ρ, 0) + 1 and S(π, i) = S(ρ, i) for

every i ≥ 1, where ρ is the immediate subderivation of π;
• If the last rule in π is E⊸ then S(π, 0) = S(ρ, 0)+S(σ, 0)+ 1 and S(π, i) = S(ρ, i)+
S(σ, i) for every i ≥ 1, where ρ and σ are the immediate subderivations of π;

• If the last rule in π is !, then S(π, 0) = 0 and S(π, i) = S(ρ, i − 1) for every i ≥ 1,
where ρ is the immediate subderivation of π.

ii) Let n be the level of π. The size of π is S(π) =
∑

i≤n S(π, i).

Example 5.4. Consider again π(2, B). By definition, S(π(2, B), 2) = 1, S(π(2, B), 1) = 5
and S(π(2, B), 0) = 1.

The following relates S(π) to the size of the term π types:

Lemma 5.5. Let π : Γ | ∆ | Θ ⊢M : A. Then, S(π) = L(M).

Substitution Lemma can be restated in the following way:

Lemma 5.6 (Weakening Lemma, revisited). If π : Γ1 | ∆1 | Θ1 ⊢ M : A, then there is
ρ : Γ1,Γ2 | ∆1,∆2 | Θ1,Θ2 ⊢M : A. such that S(π, i) = S(ρ, i) for every i.

Lemma 5.7 (Shifting Lemma,revisited). If π : Γ, x : A | ∆ | Θ ⊢ M : B, then there is
ρ : Γ | ∆ | x : A,Θ ⊢M : B such that S(π, i) = S(ρ, i) for every i.

Lemma 5.8 (Substitution Lemma, revisited).

i) If π : Γ1, x : A | ∆ | Θ ⊢ M : B, ρ : Γ2 | ∆ | Θ ⊢ N : A and N ∈ V, then there is
σ : Γ1,Γ2 | ∆ | Θ ⊢M{N/x} : B such that S(σ, i) ≤ S(ρ, i) + S(π, i) for every i.

ii) If π : Γ | ∆ | x : A,Θ ⊢ M : B, ρ : ∅ | ∆ | Θ ⊢ N : A and N ∈ V, then there is
σ : Γ | ∆ | Θ ⊢M{N/x} : B such that S(σ, i) ≤ S(π, 0)S(ρ, i) + S(π, i) for every i.

iii) If π : Γ1 | ∆, x : A | Θ ⊢ M : B, ρ : Γ2 | ∆ | Θ ⊢ N : A and N ∈ V, then
there is σ : Γ1,Γ2 | ∆ | Θ ⊢ M{N/x} : B such that S(σ, 0) ≤ S(π, 0) and S(σ, i) ≤
(
∑

j≤i S(π, j))S(ρ, i) + S(π, i) for every i ≥ 1.

Proof. For each of the three claims, we can go by induction on the structure of π. Here, we
do not concentrate on proving the existence of σ (it follows from lemma 4.5) but on proving
that σ satisfies the given bounds. We implicitly use Lemma 5.6 and Lemma 5.7 without
explicitly citing them. Let us first analyze the claim i). We will prove by induction on π that
S(σ, i) ≤ S(ρ, i)min{1, S(π, 0)} + S(π, i) for every i (observe that S(ρ, i)min{1, S(π, 0)} +
S(π, i) ≤ S(ρ, i)+S(π, i). If π is just an axiom, then σ is obtained from ρ by the weakening
lemma and the bound holds. If the last rule in π is IL

⊸
(II

⊸
), then σ is obtained by using
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the inductive hypothesis on the immediate premise φ of π obtaining ψ and then applying
IL
⊸

(II
⊸
) to ψ. In both cases

S(σ, 0) = S(ψ, 0) + 1 ≤ S(ρ, 0)min{1, S(φ, 0)} + S(φ, 0) + 1

≤ S(ρ, 0)min{1, S(π, 0)} + S(π, 0)

∀i ≥ 1.S(σ, i) = S(ψ, i) ≤ S(ρ, i)min{1, S(φ, i)} + S(φ, i)

≤ S(ρ, 0)min{1, S(π, i)} + S(π, i)

If the last rule in π is E⊸, then σ is obtained by using the inductive hypothesis on one of
the immediate premises φ of π obtaining ψ, applying E⊸ to ψ and the other premise ξ of
π. We have:

S(σ, 0) = S(ψ, 0) + S(ξ, 0) + 1

≤ S(ρ, 0)min{1, S(φ, 0)} + S(φ, 0) + S(ξ, 0) + 1

≤ S(ρ, 0)min{1, S(π, 0)} + S(π, 0)

∀i ≥ 1.S(σ, i) = S(ψ, i) + S(ξ, i)

≤ S(ρ, i)min{1, S(φ, i)} + S(φ, i) + S(ξ, i)

≤ S(ρ, i)min{1, S(π, i)} + S(π, i)

If the last rule in π is !, then σ is just obtained from π by weakening lemma, because x
cannot appear free in M . The inequality easily follows.

Let us now prove point ii). If π is just an axiom, we can proceed as previously. If the
last rule in π is IL

⊸
(II

⊸
), then ρ is obtained as in point i) and, in both cases:

S(σ, 0) = S(ψ, 0) + 1 ≤ S(ρ, 0)S(φ, 0) + S(φ, 0) + 1

≤ S(ρ, 0)S(π, 0) + S(π, 0)

∀i ≥ 1.S(σ, i) = S(ψ, i) ≤ S(ρ, i)S(φ, 0) + S(φ, i)

≤ S(ρ, i)S(π, 0) + S(π, i)

If the last rule in π is E⊸, then σ is obtained by using the inductive hypothesis on both the
immediate premises φ and ψ of π obtaining ξ and χ and applying E⊸ to them. We obtain:

S(σ, 0) = S(ξ, 0) + S(χ, 0) + 1

≤ (S(ρ, 0)S(φ, 0) + S(φ, 0)) + (S(ρ, 0)S(ψ, 0) + S(ψ, 0)) + 1

≤ S(ρ, 0)(S(φ, 0) + S(ψ, 0) + 1) + (S(φ, 0) + S(ψ, 0) + 1)

= S(ρ, 0)S(π, 0) + S(π, 0)

∀i ≥ 1.S(σ, i) = S(ξ, i) + S(χ, i)

≤ (S(ρ, i)S(φ, 0) + S(φ, i)) + (S(ρ, i)S(ψ, 0) + S(ψ, i))

= S(ρ, i)(S(φ, 0) + S(ψ, 0) + 1) + (S(φ, i) + S(ψ, i))

= S(ρ, i)S(π, 0) + S(π, i)

If the last rule in π is !, the σ is again obtained by π and the inequality follows.
Let us now prove claim iii). Notice that the last rule in ρ must be ! rule, because A is

modal and N is a value. If the last rule in π is IL
⊸

(II
⊸
), then σ is obtained in the usual

way and:
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S(σ, 0) = S(ψ, 0) + 1 ≤ S(φ, 0) + 1 = S(π, 0)

∀i ≥ 1.S(σ, i) = S(ψ, i) ≤ S(ρ, i)(
∑

j≤i

S(φ, j)) + S(φ, i)

= S(φ, i)(
∑

j≤i

S(π, j)) + S(π, i) ∀i ≥ 1

If the last rule in π is E⊸, then we apply the inductive hypothesis to the immediate premises
φ and ψ of π and to a type derivation which is structurally equivalent to ρ. We obtain ξ
and χ and apply E⊸ to them, obtaining a type derivation which is structurally equivalent
to the desired σ. Now we have:

S(σ, 0) = S(ξ, 0) + S(χ, 0) + 1 ≤ S(φ, 0) + S(ψ, 0) + 1 = S(π, 0)

∀i ≥ 1.S(σ, i) = S(ξ, i) + S(χ, i)

≤ S(ρ, i)(
∑

j≤i

S(φ, j)) + S(φ, i) + S(ρ, i)(
∑

j≤i

S(ψ, j)) + S(ψ, i)

= S(ρ, i)(
∑

j≤i

(S(φ, j) + S(ψ, j))) + S(φ, i) + S(ψ, i)

= S(ρ, i)(
∑

j≤i

S(π, j)) + S(π, i)

If the last rule in π is !, then we can suppose the last rule in ρ to be a ! and let ψ be the
immediate premise of ρ. We first apply the induction hypothesis (or one of the other two
claims) to the immediate premise φ of π and to ψ obtaining ξ; then, we apply rule ! to ξ
and we get σ. Clearly, S(σ, 0) = 0 by definition. For every i ≥ 0, we have that

S(ξ, i) ≤ (
∑

j≤i

S(φ, j))S(ψ, i) + S(φ, i)

independently on the way we get ξ. Indeed,

min{1, §(φ, i)}S(ψ, i) + S(φ, i) ≤ (
∑

j≤i

S(φ, j))S(ψ, i) + S(φ, i);

S(φ, 0)S(ψ, i) + S(φ, i) ≤ (
∑

j≤i

S(φ, j))S(ψ, i) + S(φ, i).

As a consequence, for every i ≥ 1,

S(σ, i) = S(ξ, i− 1) ≤ (
∑

j≤i−1

S(φ, j))S(ψ, i − 1) + S(φ, i− 1)

≤ (
∑

j≤i

S(π, j))S(ρ, i) + S(π, i)

This concludes the proof.
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The following can be thought of as a strengthening of subject reduction and is a corollary
of Lemma 5.8.

Proposition 5.9. If π : Γ | ∆ | Θ ⊢ M : A, and M →v N by reducing a redex at level i in
π, then there is ρ : Γ | ∆ | Θ ⊢ N : A such that

∀j < i.S(ρ, j) = S(π, j)

S(ρ, i) < S(π, i)

∀j > i.S(ρ, j) ≤ S(π, j)(
∑

k≤j

S(π, k))

Proof. Type derivation ρ is identical to π up to level i, so the equality S(ρ, j) = S(π, j)
holds for all levels j < i. At levels j ≥ i, the only differences between ρ and π are due to the
replacement of a type derivation φ for (λx.L)P with another type derivation ψ for L{P/x}.
ψ is obtained by Lemma 5.8. The needed inequalities follow from the ones in Lemma 5.8.

If π is obtained from ρ by reducing a redex at level i as in Proposition 5.9, then we
will write π →i

v ρ. Consider now a term M and a derivation π : Γ | ∆ | Θ ⊢ M :
A. By Proposition 5.9, every reduction sequence M →v N →v L →v . . . can be put in

correspondence with a sequence π →i
v ρ →j

v σ →k
v . . . (where ρ types N , σ types L, etc.).

The following result give bounds on the lengths of these sequences and on the possible
growth during normalization.

Proposition 5.10. For every d ∈ N, there are elementary functions fd, gd : N → N such
that, for every sequence

π0 →
i0
v π1 →

i1
v π2 →

i2
v . . .

it holds that

• For every i ∈ N,
∑

e≤d S(πi, e) ≤ fd(S(π0));

• There are at most gd(S(π0)) reduction steps with indices e ≤ d.

Proof. We go by induction on d and define fd and gd such that the given inequalities hold
and, additionally, fd(n) ≥ n for each n ∈ N. f0 and g0 are both the identity on natural
numbers, because S(π0, 0) can only decrease during reduction and it can do that at most
S(π0, 0) times. Consider now d ≥ 1. Each time S(πi, d) grows, its value goes from S(πi, d)
to at most S(πi, d)(S(πi, d) + fd−1(S(π0))), because by Proposition 5.9 it can grow to, at
most S(πi, d)(

∑

k≤d S(πi, k)) and, by inductive hypothesis
∑

k≤d

S(πi, k) = S(πi, d) +
∑

k≤d−1

S(πi, k) ≤ S(πi, d) + fd−1(S(π0)).

We claim that after having increased n times, S(πi, d) is at most (fd−1(S(π0)) + n)2
n+1

.
Indeed, initially

S(πi, d) ≤ S(π0, d) ≤ S(π0) ≤ (fd−1(S(π0)))
2

And, after n ≥ 1 increases,

S(πi, d) ≤ (fd−1(S(π0)) + n− 1)2
n

((fd−1(S(π0)) + n− 1)2
n

+ fd−1(S(π0)))

≤ (fd−1(S(π0)) + n)2
n

((fd−1(S(π0)) + n− 1)2
n

+ (fd−1(S(π0)) + n− 1)2
n−1

)

≤ (fd−1(S(π0)) + n)2
n

((fd−1(S(π0)) + n− 1 + 1)2
n−1

)2

= (fd−1(S(π0)) + n)2
n+1
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From the above discussion, it follows that the functions

fd(n) = fd−1(n) + (fd−1(S(π0)) + gd−1(n))
2gd−1(n)+1

gd(n) = gd−1(n) +

gd−1(n)∑

i=0

(fd−1(S(π0)) + i)2
i+1

are elementary and satisfy the conditions above. This concludes the proof.

Theorem 5.11. For every d ∈ N there are elementary functions pd, qd : N → N such that
whenever π : Γ | ∆ | Θ ⊢ M : A, the length of call-by-value reduction sequences starting
from M is at most p∂(π)(L(M)) and the length of any reduct of M is at most q∂(π)(L(M)).

Proof. This is immediate from Proposition 5.10.

6. Type Inference

We prove, in a constructive way, that the type inference problem for ETAS is decidable.
Namely a type inference algorithm is designed such that, for every lambda term M it
produces a principal typing from which all and only its typings can be obtained by a
suitable substitution. The substitution is a partial function, defined if it satisfies a set of
linear constraints. If there is not a substitution defined on its principal typing, then M is
not typable. We will also prove that the computational complexity of the type inference
procedure is of the same order as the type inference for simple type assignment system.

The design of the algorithm is based on the following Generation Lemma.

Lemma 6.1 (Generation Lemma). Let Γ | ∆ | Θ ⊢M : A.

i) Let M ≡ x. If A is linear, then either {x : A} ⊆ Γ or {x : A} ⊆ Θ. Otherwise,
{x : A} ∈ ∆.

ii) Let M ≡ λx.N . Then A is of the shape !...!
︸︷︷︸

n

(B ⊸ C) (n ≥ 0).

• Let n = 0. If B is linear then Γ, x : B | ∆ | Θ ⊢ N : C, else Γ | ∆, x : B | Θ ⊢ N : C.
• Let n > 0. Then ∅ | ∆ | ∅ ⊢ M : A and Γ′ | ∆′ | Θ′ ⊢ N : C, where ∆ =

!...!
︸︷︷︸

n

((Γ′ ∪∆′ ∪Θ′)− {x : B}).

iii) Let M ≡ PQ. Then A is of the shape !...!
︸︷︷︸

n

B (n ≥ 0), Γ1 | ∆′ | Θ′ ⊢ P : C ⊸ !...!
︸︷︷︸

m

B

and Γ2 | ∆
′ | Θ′ ⊢ Q : C, for some m ≤ n.

(a) If n−m = 0, then Γ = Γ1 ∪ Γ2, ∆ = ∆′ and Θ = Θ′.
(b) If n−m > 0, then ∅ | ∆ | ∅ ⊢M : A, where ∆ = !...!

︸︷︷︸

n−m

(Γ1 ∪ Γ2 ∪∆′ ∪Θ′).

The principal typing is described through the notion of a type scheme, which is an extension
of that one used in [11] in the context of ΛEA and NEAL. Roughly speaking, a type scheme
describes a class of types, i.e. it can be transformed into a type through a suitable notion
of a substitution.

Definition 6.2.
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i) Linear schemes and schemes are respectively defined by the grammars

µ ::= α | σ ⊸ σ

σ ::= µ |!pµ.

where α belongs to a countable set of scheme variables and the exponential p is defined
by the grammar

p ::= a | p+ p

where a ranges over a countable set of literals. Linear schemes are ranged over by µ, ν,
schemes are ranged over by σ, τ, ρ, exponentials are ranged over by p, q, r and literals
are ranged over by a, b.

Note that the grammar does not generate nesting exponentials, i.e., !p!qα is not a
correct scheme, while !p+qα is correct.

ii) A modality set is a set of linear constraints in the form either p = q or p > 0 or p = 0,
where p and q are exponentials. Modality sets are ranged over by C.

iii) A type scheme is denoted by σ ↾C , where σ is a scheme and C is a modality set. Type
schemes will be ranged over by ζ, θ. Let T denote the set of type schemes.

iv) σ ↾C denotes the simple type skeleton underlying the type scheme σ ↾C , and it is defined
as follows:

α ↾C = α;

σ ⊸ τ ↾C = σ ↾C ⊸ τ ↾C

!pσ ↾C = σ ↾C

v) A scheme substitution S is a partial function from type schemes to types, replacing
scheme variables by types and literals by natural numbers, in such a way that con-
straints in C are satisfied. If p is an exponential, let S(p) be the result of applying
the scheme substitution S on all the literals in p, e.g. if p coincides with a1 + ...+ an,
then S(p) is S(a1) + ... + S(an). C is satisfied by S if, for every constraint p = q
(p > 0, p = 0) in C, S(p) = S(q) (S(p) > 0, S(p) = 0) Clearly the solvability of a set of
linear constraints is a decidable problem. The application of a substitution S satisfying
C to a type scheme σ ↾C is defined inductively as follows:

S(α ↾C) = A if [α 7→ A] ∈ S;

S(σ ⊸ τ ↾C) = S(σ ↾C) ⊸ S(τ ↾C) ;

S(!pµ ↾C) = !...!
︸︷︷︸

n

S(µ ↾C) if p = a1 + ...+ am

n = S(a1) + ...+ S(am).

If C is not satisfied by S, then S(σ ↾C) is undefined.

Binary relation ≡ is extended to denote the syntactical identity between both types,
schemes and type schemes. Making clear what we said before, a type scheme can be seen
as a description of the set of all types that can be obtained from it through a scheme
substitution defined on it.

A substitution is a total function from type schemes to type schemes mapping scheme
variables to schemes, and generating some constraints. A substitution is denoted by a pair
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U(α ↾C , α ↾C′) = 〈[], ∅〉
(U1)

α does not occur in σ
U(α ↾C , σ ↾C′) = 〈[α 7→ σ], ∅〉

(U2)

α does not occur in σ
U(σ ↾C , α ↾C′) = 〈[α 7→ σ], ∅〉

(U3)

U(σ ⊸ τ ↾C , ν ↾C′) = 〈s, C ′′〉

U(σ ⊸ τ ↾C , !
qν ↾C′) = 〈s, C ′′ ∪ {q = 0}, 〉

(U4)

U(µ ↾C , σ ⊸ τ ↾C′) = 〈s, C ′′〉

U(!pµ ↾C , σ ⊸ τ ↾C′) = 〈s, C ′′ ∪ {p = 0}〉
(U5)

U(µ ↾C , ν ↾C′) = 〈s, C ′′〉

U(!pµ ↾C , !
qν ↾C′) = 〈s, C ′′ ∪ {p = q}〉

(U6)

U(σ1 ↾C , τ1 ↾C′) = 〈s1, C1〉
U(〈s1, C1〉(σ2 ↾C), 〈s1, C1〉(τ2 ↾C′)) = 〈s2, C2〉

U(σ1 ⊸ σ2 ↾C , τ1 ⊸ τ2 ↾C′) = 〈s1, C1〉 ◦ 〈s2, C2〉
(U7)

〈s1, C1〉 ◦ 〈s2, C2〉 is the substitution such that
〈s1, C1〉 ◦ 〈s2, C2〉(σ ↾C) = 〈s2, C2〉(〈s1, C1〉(σ ↾C)).

Table 4: The unification algorithm U

〈s, C〉, where s is a function from scheme variables to schemes and C is a modality set.
Substitutions will be ranged over by t. The behaviour of 〈s, C〉 is defined as follows.

〈s, C〉(α ↾C′) = σ ↾C∪C′ if [α 7→ σ] ∈ s;

〈s, C〉(σ ⊸ τ ↾C′) = σ′ ⊸ τ ′ ↾C′′ if 〈s, C〉(σ ↾C′) = σ′ ↾C′′′

and 〈s, C ′′′〉(τ ↾C′) = τ ′ ↾C′′ ;

〈s, C〉(!pµ ↾C′) =!pν ↾C′′ if 〈s, C〉(µ ↾C′) = ν ↾C′′ ;

〈s, C〉(!pµ ↾C′) =!rν ↾C′′∪{r=p+q} if 〈s, C〉(µ ↾C′) =!qν ↾C′′ .

Note that the last rule is necessary in order to preserve the correct syntax of schemes, where
the nesting of exponentials is not allowed.

In order to define the principal typing, we will use a unification algorithm for type
schemes, which is a variant of that defined in [11]. Let =e be the relation between type
schemes such that σ ↾C=e τ ↾C′ if σ ↾C ≡ τ ↾C .

The unification algorithm, which we will present in Table 4, in Structured Operational
Semantics style, is a function U from T × T to substitutions.

The following lemma proves that the function U supplies a more general unifier for
two type schemes, in two steps: the substitution it generates is the most general unifier
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with respect to the relation =e, and moreover there is a most general scheme substitution
unifying the two type schemes modulo the syntactic equivalence ≡.

Lemma 6.3.

i) (correctness) U(σ ↾C , τ ↾C′) = 〈s, C ′′〉 implies 〈s, C ′′〉(σ ↾C) = σ′ ↾C′′′ , 〈s, C ′′〉(τ ↾C′) =
τ ′ ↾C′′′′ where σ′ ↾C′′′=e τ

′ ↾C′′′′ . Moreover for every scheme substitution S, defined on
both the type schemes, S(σ′ ↾C′′′) ≡ S(τ ′ ↾C′′′′).

ii) (completeness) S(σ ↾C) ≡ S(τ ↾C′) implies U(σ ↾C , τ ↾C′) = 〈s, C ′′〉 and there is S′

such that, for every type scheme ζ, S(ζ) = S′(〈s, C ′′〉(ζ)), for some S′.

Proof.

i) Easy, by induction on the rules defining U(σ ↾C , τ ↾C′).
ii) By induction on the pair (n,m), where n and m are respectively the number of scheme

variables occurring in both σ and τ and the total number of symbols of σ and τ .
Let σ ≡ α, and let S(σ ↾C) ≡ S(τ ↾C′) ≡ A; clearly either τ ≡ α or α cannot occur
as proper subterm of τ . In the first case U(α ↾C , α ↾C′) = 〈[], ∅〉, and S = S′. In the
second case U(σ ↾C , τ ↾C′) = 〈[α 7→ τ ], ∅〉. Then every scheme substitution S′, solving
both C and C ′ and acting as S on all the scheme variables occurring in σ and τ but α
does the desired job.
Let σ ≡ σ1 ⊸ σ2 and τ ≡ τ1 ⊸ τ2. So S(σ1 ⊸ σ2 ↾C) ≡ S(σ1 ↾C) ⊸ S(σ2 ↾C), and
S(τ1 ⊸ τ2 ↾C′) ≡ S(τ1 ↾C′) ⊸ S(τ2 ↾C′). So by induction U(σ1 ↾C , τ1 ↾C′) = 〈s1, C1〉,
〈s1, C1〉(σ1 ↾C) = σ′ ↾C′

1
and 〈s1, C1〉(τ1 ↾C′) = τ ′ ↾C′′

1
where σ′ ↾C′

1
=e τ

′ ↾C′′
1
. Moreover

there is S1 such that S(σ2 ↾C) ≡ S1(〈s1, C1〉(σ2 ↾C)) and S(τ2 ↾C′) ≡ S1(〈s1, C1〉(τ2 ↾C′

)). In case s1 is not empty, the number of scheme variables in both the type schemes
is less than in σ and τ ; otherwise their total number of symbols is less than the one in
σ and τ . In both cases we can apply the induction hypothesis and conclude the proof.
All the other cases follow directly from the induction hypothesis.

The principal type scheme of a term is a pair in the form 〈Σ; ζ〉, where Σ is a scheme
context (i.e., a set of assignments of the shape x : θ, where no variable is repeated), and ζ
is a type scheme.

In order to simplify the text of the algorithm, we will use the following conventions:

• Let σ be a scheme. !pσ denotes !pµ in case σ ≡ µ, !rµ, where r = p+ q in case σ ≡!qµ; if
ζ ≡ σ ↾C , then !pζ denotes !pσ ↾C ;

• Let Σ be a scheme context. !pΣ denotes the scheme context {x :!pζ | x : ζ ∈ Σ}.

The principal type scheme algorithm is defined in Table 5.

Theorem 6.4 (Type Inference).

i) (correctness) If PT (M) = 〈Σ, ζ〉 then for every scheme substitution S defined on all
the type schemes occurring in PT (M), ∃Γ,∆,Θ partitioning S(Σ) s.t. Γ | ∆ | Θ ⊢M :
S(ζ).

ii) (completeness) If Γ | ∆ | Θ ⊢ M : A then PT (M) = 〈Σ, ζ〉 and there exists a scheme
substitution S defined on all the type schemes occurring in PT (M) such that S(Σ) ⊆
Γ ∪∆ ∪Θ and A = S(ζ).

Proof.

i) By induction on M .
• M ≡ x. Then PT (M) = 〈{x :!aα ↾∅}; !

aα ↾∅〉. Every scheme substitution S satisfies
the empty set of constraints.
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• PT (x) = 〈{x :!aα ↾∅}, !
aα ↾∅〉

• PT (λx.M) = let PT (M) = 〈Σ, σ ↾C〉 in
if x doesn’t occur free in M
〈!bΣ, !b(!aα⊸ σ) ↾C〉
else

let Σ = {x : τ ↾C′} ∪ Σ′ in

if x occurs multiple times in M
let U(τ ↾C′ , !aα ↾{a>0}) = 〈s1, C1〉 in

let 〈s1, C1〉(τ ↾C′) = τ ′ ↾C′′ and

〈s1, C1〉(σ ↾C) = σ′ ↾C′′′ in

〈〈s1, C1〉(!
bΣ′), !b(τ ′ ⊸ σ′) ↾C′′∪C′′′〉

else

〈!aΣ′, !a(τ ⊸ σ) ↾C∪C′〉
• PT (M1 M2) = let PT (M1) = 〈Σ1, σ1 ↾C1〉 , PT (M2) = 〈Σ2, σ2 ↾C2〉

and let they are disjoint in

let {x1, . . . , xk} = dom(Σ1) ∩ dom(Σ2) and
∀1 ≤ i ≤ k ∀1 ≤ j ≤ 2 xi : ζ

i
j ∈ Σj and

U(σ1 ↾C1 , (σ2 ⊸!aα) ↾C2) = 〈s′, C ′〉 and
U(ζ11 , ζ

1
2 ) = t1 and

U(ti−1(ζ
i
1), ti−1(ζ

i
2)) = ti and

let t = t1 ◦ t2 ◦ ... ◦ tk in

〈!b(t(Σ1) ∪ t(Σ2)), !
b(t(!aα) ↾C′)〉

α, a, b are fresh variables.

Table 5: The type inference algorithm PT .

If S(!aα ↾∅) is linear, then take ∆ = ∅ and either Γ = {x : S(!aα ↾∅)} and Θ = ∅ or
Θ = {x : S(!aα ↾∅)} and Γ = ∅. Otherwise choose Γ = Θ = ∅, and ∆ = {x : S(!aα ↾∅
)}.

• M ≡ λx.P . This case follows directly by induction.
• M ≡ M1M2. Then PT (M1) = 〈Σ1, θ1〉, PT (M2) = 〈Σ2, θ2〉, and PT (M) = 〈Σ′, θ′〉,
where θ′ is defined as in Table 5.
Let S be a scheme substitution defined on all the type schemes occurring in PT (M):
note that, by the definition of the function U this implies that S is defined on both
PT (M1) and PT (M2). Moreover, by construction of PT , x : ζi ∈ Σi (1 ≤ i ≤ 2)
implies U(ζ1, ζ2) is defined, and S(ζ1) ≡ S(ζ2), by Lemma 6.3.
By induction Γi | ∆i | Θi ⊢ Mi : S(θi) (1 ≤ i ≤ 2). Note that every type derivation
for M ends with an application of the rule (E⊸), followed by a sequence, may be
be empty, of rule (!). Since in rule (E⊸) the two linear contexts are disjoint, we can
build the partition of the contexts in the following way:
Γ1 = {x : S(ζ) | ({x : S(ζ)} ⊆ S(Σ1)) ∧ (x ∈ FV (M1) ∧ x 6∈ FV (M2)) ∧
(S(ζ) is linear )},
Γ2 = {x : S(ζ) | {x : S(ζ)} ⊆ S(Σ2)∧(x ∈ FV (M2)∧x 6∈ FV (M1))∧(S(ζ) is linear )},
∆i = {x : S(ζ) | ({x : S(ζ)} ⊆ S(Σi)) ∧ (S(ζ) is modal )} and
Θi = Σi − (Γi ∪∆i) (1 ≤ i ≤ 2).
By the weakening Lemma, we have that Γi | ∆1,∆2 | Θ1,Θ2 ⊢Mi : S(θi) (1 ≤ i ≤ 2).
Since S(θ1) ≡ S(θ2) ⊸ S(!aα ↾C2)) (by Lemma 6.3.i), the proof follows by rule (E⊸).

ii) By induction on the derivation proving Γ | ∆ | Θ ⊢M : A.
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Let the last used rule be (AL). Then M ≡ x, and {x : A} ⊆ Γ. By definition,
PT (x) = 〈{x :!aα ↾∅}; !

aα ↾∅〉, and the proof follows easily.
The case (AP ) is similar.
The cases (IL

⊸
) and (II

⊸
) both follow by induction and weakening lemma.

Let us consider the case when the last used rule is (E⊸). Then M ≡ M1M2, and
Γ1 | ∆ | Θ ⊢ M1 : B ⊸ A and Γ2 | ∆ | Θ ⊢ M2 : B, for some B, where Γ1 and Γ2 are
disjoint. By induction PT (Mi) = 〈Σi, ζi〉 and there is Si defined on all type schemes
in PT (Mi) such that S1(ζ1) ≡ B ⊸ A, and S2(ζ2) ≡ B.
Moreover Si(Σi) ⊆ Γi∪∆∪Θ (1 ≤ i ≤ 2). Since by construction PT (M1) and PT (M2)
are disjoint, there is a well defined scheme substitution S acting as both S1 and S2
and such that S(!aα ↾∅) ≡ A, for α, a fresh. So if ζ2 ≡ σ ↾C , S(ζ1) ≡ S(σ ⊸!p1α ↾C),
and S is defined on all the type schemes in PT (Mi) (1 ≤ i ≤ 2). Then by Lemma
6.3.ii), U(ζ1, σ ⊸!p1α ↾C) = 〈s′, C ′〉. Since S satisfies all the constraints in PT (Mi)
(1 ≤ i ≤ 2), if x : θ1 and x : θ2 belong to Σ1 and Σ2 respectively, then S(θ1) ≡ S(θ2),
and so, by Lemma 6.3.ii), they can be unified. So PT (M1M2) is defined, and by
induction it enjoys the desired properties.

Let the last used rule be (!). Then A ≡!A′ and the premise of the rule is Γ′ | ∆′ |
Θ′ ⊢ M : A′, where !Γ′∪!∆′∪!Θ′ ⊆ ∆. By induction PT (M) = 〈Σ, ζ〉 and there is a
scheme substitution S′ such that S′(Σ) ⊆ Γ′ ∪∆′ ∪Θ′. Let S be such that S is defined
on all the type schemes in PT (M), and such that S(ζ) ≡!S′(ζ), for all type scheme ζ:
it is easy to check that, if S′ is defined, i.e., it satisfies all the constraints in PT (M),
than S is well defined too, and so it does the right job.

The complexity of the type inference algorithm PT is of the same order as the type inference
algorithm for simple types. In order to prove this, we need some notations. If A(n) is
an algorithm running on a datum n, let us denote by |A(n)| its asymptotic complexity.
Moreover, if σ is a scheme, let |σ| be the number of symbols in it. Let TA(M) be the type
inference algorithm for simple types running on a termM . By abuse of notation, we assume
that, for every type scheme σ, σ denotes a simple type: in fact the syntax of type schemes,
when erasing exponentials and constraints, coincides with that of simple types.

Theorem 6.5 (Complexity). PT (M) ∈ O(L(M) + |TA(M)|).

Proof. First of all, let us observe that the the unification algorithm U coincide with the
Robinson unification, when it is applied to two type schemes whose set of constraints is
empty, so, if RU denotes the Robinson’s unification, |U(σ ↾∅, τ ↾∅)| = |RU(σ, τ)|. Then
|U(σ ↾C , τ ↾C′)| ≤ |RU(σ, τ )|+|σ|+|τ |. Remember that Robinson unification is equivalent to
the principal simple type assignment. Moreover it is easy to see that, if PT (M) = 〈Σ, σ ↾C〉,
then TA(M) = 〈Σ, σ〉, when Σ denotes the context obtained from Σ by applying the function

[.] to all types in it.
The proof is by induction on M . If M is a constant the proof is trivial. If M ≡ λx.N ,

then |PT (M)| = |PT (N)|+ |U(τ ↾C , !
aα ↾a>0)| = |PT (N)|+ k, for a constant k, since α is

a scheme variable. Then the result follows by induction. Let M ≡ PQ. Then |PT (PQ)| =
|PT (P )| + |PT (Q)| + |U(σ ↾C , (τ ⊸!aα) ↾C′)| + |U(Σ1,Σ2)| if PT (P ) = 〈Σ1, σ ↾C〉 and
PT (Q) = 〈Σ2, τ ↾C′〉. U(Σ1,Σ2) is an abbreviation for the unification of the two scheme
contexts Σ1 and Σ2, as specified in the algorithm. By induction PT (PQ) = |TA(P )| +
k1 + |TA(Q)|+ k2 + |RU(σ, τ )|+ |σ|+ |τ |+ |RU(Σ1,Σ2) + |Σ1|+ |Σ2|. Remembering that
|TA(PQ)| = |TA(P )|+ |TA(Q)|+ |RU(σ, τ )|+ |RU(Σ1,Σ2)|, the result follows.
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Example 6.6. Let us illustrate the application of the type inference algorithm to the term:

2 3 ≡ (λxy.x(xy))λxy.x(x(xy)).

Let a, b, c, d, e, f, g, h, k, i,m, n, p, q, r be literals and α, β, γ, δ, ǫ be scheme variables. First
we will build PT(2). Starting from

PT (x) = 〈{x :!aα ↾∅}, !
aα ↾∅〉 and PT (y) = 〈{y :!bβ ↾∅}, !

bβ ↾∅〉,

due to U(!aα ↾∅, !
bβ ⊸!cγ ↾∅) = 〈[α 7→!bβ ⊸!cγ], {a = 0}〉, we obtain:

PT (xy) = 〈{x :!d+a(!bβ ⊸!cγ) ↾C0 , y :!d+bβ ↾C0}, !
c+dγ ↾C0〉

where C0 = {a = 0}.
Now a fresh version of PT (x) is needed, so consider 〈{x :!a1α1 ↾∅}, !

a1α1 ↾∅〉. The rule
for application allows us to perform certain unifications. First we obtain

U(!a1α1 ↾∅, (!
c+dγ ⊸!eδ) ↾C0) = 〈[α1 7→!c+dγ ⊸!eδ], C1〉

where C1 = {a1 = 0}. A second unification is necessary for unifying the two premises on x
in the first component of PT (xy) and PT (x), respectively:

U(!a1α1 ↾∅, !
d+a(!bβ ⊸!cγ) ↾C0) = 〈[α1 7→!bβ ⊸!cγ], C2〉

where C2 = {a1 = a + d}. By composing the two substitutions, we have 〈[γ 7→ β, γ 7→
δ], {c + d = b, e = c}〉. So

PT (x(xy)) = 〈{x :!h+a1(!bβ ⊸!eβ) ↾C3 , y :!h+b+dβ ↾C3}, !
h+eβ ↾C3〉

where C3 = C0 ∪C1 ∪ C2 ∪ {c+ d = b, c = e}. By applying the rule for the abstraction, we
obtain:

PT (λy.x(xy)) = 〈{x :!f (!bβ ⊸!eβ) ↾C3}, !
k(!h+b+dβ ⊸!h+eβ) ↾C3〉

and
PT (λxy.x(xy)) = 〈∅; !i(!f (!bβ ⊸!eβ) ⊸!k(!h+b+dβ ⊸!h+eβ)) ↾C4〉

where C4 = C3 ∪ {f = k + h+ a1, f > 0}.
Due to the particular form of PT (λxy.x(xy)), we can deduce that the term λxy.x(xy)

can be assigned, among others, the following types

!(A⊸ A) ⊸!(A⊸ A), !(A ⊸ A) ⊸!A⊸!A, !!(A ⊸ A) ⊸!(!A ⊸!A).

In particular, the scheme substitution that replaces β by !(A ⊸ A), furthermore b, e, h,
d and a1 by 0, and both k and f by 1, satisfies the constraints and generates the typing
∅ | ∅ | ∅ ⊢ 2 :!(A⊸ A) ⊸!(A⊸ A), whose derivation is shown in Example 4.2.

In order to build the principal type scheme of 3, we need to start from two fresh copies
of PT (x) and PT (x(xy)), let

〈{x :!nǫ ↾∅}, !
nǫ ↾∅〉 and 〈{x :!h

′+a′1(!b
′

α⊸!e
′

α) ↾C′
3
, y :!h

′+b′+d′α ↾C′
3
}, !h

′+e′α ↾C′
3
〉

where C ′
3 = {a′ = 0, a′1 = 0, a′1 = d′ + a′, b′ = c′ + d′, e′ = c′}.

By applying the rule for application, we obtain, for the first unification:

U(!nǫ ↾∅, !
h′+e′α⊸!pη ↾C′

3
) = 〈[ǫ 7→!h

′+e′α⊸!pη], C5〉

where C5 = {n = 0}. By unifying the two premises on x, we have

U(!nǫ ↾∅, !
h′+a′1(!b

′

α⊸!e
′

α) ↾C′
3
) = 〈[ǫ 7→!b

′

α⊸!e
′

α], C6〉
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where C6 = {n = h′ + a′1}. So, composing the two substitutions:

PT (x(x(xy))) = 〈{x :!q+h′+a′1(!b
′

α⊸!e
′

α) ↾C7 , y :!q+h′+b′+d′α ↾C7}, !
p+qα ↾C7〉

where C7 = C ′
3 ∪C5 ∪C6 ∪ {b′ = h′ + e′, e′ = p}. So, by applying the rules for abstraction,

we have:

PT (λy.x(x(xy))) = 〈{x :!r+q+h′+a′1(!b
′

α⊸!e
′

α) ↾C7}, !
r(!q+h′+b′+d′α⊸!p+qα) ↾C7〉

and
PT (λxy.x(x(xy))) = 〈∅, !s(!g(!b

′

α⊸!e
′

α) ⊸!r(!q+h′+b′+d′α⊸!p+qα)) ↾C8〉

where C8 = C7 ∪ {g = r + q + h′ + a′1, g > 0}.
It is easy, but boring, to check that the typings for 3 are the same that the ones for 2,

by inspecting the modality set. Now, in order to build PT (2 3), we need to unify the two
type schemes:

σ ≡!i(!k+h+a1(!bβ ⊸!eβ) ⊸!k(!h+b+dβ ⊸!h+eβ)) ↾C4

and
τ ≡!s(!g(!b

′

α⊸!e
′

α) ⊸!r(!q+h′+b′+d′α⊸!p+qα)) ⊸!tγ) ↾C8

obtaining:

U(σ, τ) = 〈[β 7→!b
′

α⊸!e
′

α, γ 7→!h+b+dβ ⊸!h+eβ], C9〉

where C9 = {i = 0, k+h+a1 = s, t = k, s = k+h+a1, b = g, e = r, b′ = q+h′+ b′+ d′, e =
p+ q}. So

PT (2 3) = 〈∅, !t(!h+b+d(!b
′

α⊸!e
′

α) ⊸!h+e(!b
′

α⊸!e
′

α)) ↾C10〉

where C10 = C8 ∪ C9.
Finally, the scheme substitution that replaces α by A, furthermore b, e, b′ and e′ by 0,

and both t and h by 1, satisfies the constraints and generates the typing ∅ | ∅ | ∅ ⊢ 2 3 :
!(!(A ⊸ A) ⊸!(A⊸ A)), whose derivation is shown in Example 4.2.

7. Achieving completeness

The type-system we introduced in this paper is not complete for the class of elementary
time functions, at least if we restrict to uniform encodings. Indeed, simply typed lambda-
calculus without constants is itself incomplete with respect to any reasonable complexity
class (see, for example, [12]). In order to achieve completeness, two different extensions of
the system can be built, one adjoining basic types and constants, and the other adjoining
second order types. In this section we will briefly discuss these two solutions.

7.1. Basic Types and Constants. Let us fix a finite set of free algebrasA = {A1, . . . ,An}.

The constructors of Ai will be denoted as c1
Ai
, . . . , c

k(Ai)
Ai

. The arity of constructor cj
Ai

will

be denoted as Rj
Ai
. The algebra U of unary integers has two constructors c1

U
, c2

U
, where

R1
U
= 1 and R2

U
= 0. The languages of types, terms and values are extended by the the

following productions

A ::= Aj

M ::= iterAj
| condAj

| ciAj

V ::= iterAj
V . . . V
︸ ︷︷ ︸

k times

| condAj
V . . . V
︸ ︷︷ ︸

k times

| ciAj
V . . . V
︸ ︷︷ ︸

l times
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where Aj ranges over A, i ranges over {1, . . . , k(Aj)} and k ranges over {0, . . . , k(Aj)} and
l ranges over {0, . . . ,Ri

Aj
}. If t is a term of the free algebra A and M1, . . . ,Mk(A) are terms,

then t{M1, . . . ,Mk(A)} is defined by induction on t: (ci
A
t1 . . . tRi

A

){M1, . . . ,Mk(A)} will be

Mi(t1{M1, . . . ,Mk(A)}) . . . (tRi
A

{M1, . . . ,Mk(A)}).

The new constants receive the following types in any context:

iterA : A ⊸!(A⊸ . . . ⊸ A
︸ ︷︷ ︸

R1
A
times

⊸ A) ⊸ . . .⊸!(A⊸ . . . ⊸ A
︸ ︷︷ ︸

R
k(A)
A

times

⊸ A) ⊸!A

condA : A ⊸ (A ⊸ . . .⊸ A
︸ ︷︷ ︸

R1
A
times

⊸ A) ⊸ . . .⊸ (A ⊸ . . .⊸ A
︸ ︷︷ ︸

R
k(A)
A

times

⊸ A) ⊸ A

ciA : A ⊸ . . . ⊸ A
︸ ︷︷ ︸

Ri
A
times

⊸ A

New (call-by-value) reduction rules are the following ones:

iterAtV1 . . . Vk(A) →v t{V1 . . . Vk(A)}

condAc
i
A(t1 . . . tRi

A

)V1 . . . Vk(A) →v Vit1 . . . tRi
A

It is easy to check that Lemma 5.8 holds in the presence of the new constants. Moreover:

Proposition 7.1. Every typable closed normal form is a value.

Proof. By induction on the structure of a normal form M :

• A variable is not closed.
• If M is an abstraction, then it is a value by definition.
• If M is a constant, then it is a value by definition.
• If M is an application NL, then ⊢ N : A ⊸ B and ⊢ L : A. By induction, N and L
are both values and, as a consequence, N cannot be a variable nor an abstraction. So,
N must be obtained from one of the new productions for values; let us distinguish some
cases:
− If N ≡ iterAj

V1 . . . Vk with k < k(Aj), then M is a value itself.
− If N ≡ iterAj

V1 . . . Vk(Aj), then M is a redex, because V1 is a closed value with type
Aj.

− If N ≡ condAj
V1 . . . Vk with k < k(Aj), then M is a value itself.

− If N ≡ condAj
V1 . . . Vk(Aj), then M is a redex, because V1 is a closed value with type

Aj.
− If N ≡ ci

Aj
V1 . . . Vk, then k < Ri

Aj
because N has an arrow type. As a consequence,

M is a value.

This concludes the proof.

We can prove the following theorem:

Theorem 7.2. There is a finite set of free algebras A including the algebra U of unary
integers such that for every elementary function f : N → N, there is a term Mf : U →!kU
such thatMf ⌈u⌉ →

∗
v ⌈f(u)⌉ (where ⌈n⌉ is the term in U corresponding to the natural number

n).
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Proof. We will show that if f : N → N is computable by a Turing Machine M running
in elementary time, then there is a term Mf representing that same function. First of
all, A will contain a free algebra C with four constructors c1

C
, c2

C
, c3

C
, c4

C
having arities

R1
C
= 4,R2

C
= 1,R3

C
= 1,R4

C
= 0. Constructors , c2

C
, c3

C
, c4

C
can be used to build binary

strings and a configuration will correspond to a term c1
C
t1t2t3t4 where t1 represent the

current state, t2 represents the current symbol, t3 represents the left-hand side of the tape
and t4 represents the right-hand side of the tape. A closed term trans : C ⊸ C encoding
the transition function can be built using, in particular, the new constant condC. Iteration,
on the other hand, helps when writing init : U ⊸!C (whose purpose is to translate a unary
integer t into the initial configuration of M for t) and final : C ⊸!U (which extracts a
unary integer from the final configuration of M ). In this way, the so-called qualitative part
of the encoding can be done. The quantitative part, on the other hand, can be encoded as
follows. We will show there are terms towern : U ⊸!2nU such that towern⌈m⌉ →∗

v ⌈2n(m)⌉
where 20(m) = m and 2n+1(m) = 22n(m) for every n ≥ 0. We will prove the existence of
such terms by induction on n. tower 0 : U → U is simply the identity λx.x. Consider now
the term

exp ≡ λx.iterUx(λyλz.y(yz))(λy.c
1
Uy) : U →!!(U → U)

We now prove that for every m ∈ N, exp⌈m⌉ →∗
v Vm where Vm is a value such that

Vm⌈p⌉ →∗
v ⌈2m + p⌉ for every p ∈ N. We go by induction on m. If m = 0, then

exp⌈m⌉ →∗
v (λx.c1Ux)

and (λx.c1
U
x)⌈p⌉ →∗

v ⌈1 + p⌉ ≡ ⌈2m + p⌉. If m > 0, then

exp⌈m⌉ →∗
v (λx.λy.x(xy))Vm−1 →v λy.Vm−1(Vm−1y)

and

λy.Vm−1(Vm−1y)⌈p⌉ →
∗
v Vm−1⌈2

m−1 + p⌉ →∗
v ⌈2m−1 + 2m−1 + p⌉ ≡ ⌈2m + p⌉

towern is
λx.(λy.towern−1y)((λz.z⌈0⌉)(exp x))

Finally, we need terms coercn : U →!nU such that coercn⌈m⌉ →∗
v ⌈m⌉. coerc0 is simply the

identity, while coercn is λx.iterUxc
1
U
(λx.c2

U
x) for every n ≥ 1. We can suppose there is d

such that M performs at most 2d(n) steps processing any input of length n. The term Mf

encoding f will then be:

λx.(λy.final y)((λz.λv.iterU z trans (init v))(coerc2d x)(tower d x))

This concludes the proof.

For the extended system a principal type property can be proved, extending the algo-
rithm defined in Table 5 in order to take into account the new constants. Clearly, the system
can further be extended with other constants without losing its nice properties, provided
Lemma 5.8 is satisfied.
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7.2. Restricted Second Order Quantification. If we had the full power of second-order
quantification in ETAS, we would easily found a counterexample to Substitution Lemma
and, as a consequence, to Subject Reduction. Consider the following type derivation:

x : ∀α.α | ∅ | ∅ ⊢ x : ∀α.α

x : ∀α.α | ∅ | ∅ ⊢ x :!β

This shows we would be able to give type !β to the variable x, but without using any
instance of rule !. This undermines any hope to prove subject reduction in presence of
types like ∀α.α. The same holds when we have types in the form ∀α.!A. Restricting second
order quantification to arrow types (and, recursively, to second-order types) allows us to
preserve all results we proved in sections 4 and 5.

Formally, a subclass of formulae can be defined by the following two productions

S ::= A⊸ A | ∀α.S

and the following rules are added to the type system:

Γ | ∆ | Θ ⊢M : S α /∈ FV (Γ) ∪ FV (∆) ∪ FV (Θ)

Γ | ∆ | Θ ⊢M : ∀α.S
I∀

Γ | ∆ | Θ ⊢M : ∀α.S

Γ | ∆ | Θ ⊢M : S{A/α}
E∀

As can be easily checked, Theorem 4.6 and Theorem 5.11 still hold.
Type inference in presence of second order is at least problematic [17]. We conjecture that,
even if second order quantification is the restricted one described here, decidability of the
type inference is lost.

8. Extensions to other Logics

We believe the approach described in this paper to be applicable to other logics besides
Elementary Affine Logic. Two examples are Light Affine Logic [1] and Soft Affine Logic [5].
Light Affine Logic needs an additional modality, denoted with §. So, there will be two
modal rules:

Γ1 | ∆1 | ∅ ⊢M : A |Γ1|+ |∆1| ≤ 1

Γ2 |!Γ1, !∆1,∆2 | Θ2 ⊢M :!A
!

Γ1,Γ2 | ∆1,∆2∆3 | Θ1Θ2 ⊢M : A

§Γ1, §∆1,Γ4 |!Γ2, !∆2, !Θ1,∆4 | §Θ2, §∆3,Θ4 ⊢M : §A
§

Notice that we do not need an additional context for the new paragraph modality, since
contraction on formulae like §A is not allowed.

Soft Affine Logic is even simpler than elementary affine logic: there is just one modality
and the context is split into just two sub-contexts. The ! rule becomes:

Γ1 | ∆1 ⊢M : A

!Γ1,Γ2 |!∆1,∆2 ⊢M :!A
!

However, the contraction in SAL is deeply different from the one in EAL and LAL. In
particular the formula !A⊸!A⊗!A is not provable anymore and is “replaced” by

!A⊸ A⊗ · · · ⊗A
︸ ︷︷ ︸

n times

.
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In the type system the axiom above is reflected by the following two rules:

Γ | ∆, x : A ⊢M : B

Γ | ∆, x :!A ⊢M : B
ǫ1

Γ | x : A,∆ ⊢M : B

Γ, x :!A | ∆ ⊢M : B
ǫ2

Notice that the analogous of Shifting Lemma (Lemma 4.4 of Section 4) stating that every
formula in left context can be shifted to the right one holds in this case too.

9. Conclusions

We presented a type system for the call-by-value lambda-calculus, called ETAS, de-
signed from Elementary Affine Logic and enjoying subject reduction and elementary time
normalization. Inference of principal types can be done in polynomial time thanks to the
fact that the type system is almost syntax directed. We believe the approach to be ex-
tendible to other systems besides EAL, in particular to Light Affine Logic and Soft Affine
Logic (as sketched in Section 8). Moreover, we show that adding constants for iteration
makes the system (extensionally) complete for elementary time, without altering its good
properties. We briefly discuss also the problem of extending the system with second order.
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