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Abstract. We give an axiomatisation of strong bisimilarity on a small fragment of CCS
that does not feature the sum operator. This axiomatisation is then used to derive con-
gruence of strong bisimilarity in the finite π-calculus in absence of sum. To our knowledge,
this is the only nontrivial subcalculus of the π-calculus that includes the full output prefix
and for which strong bisimilarity is a congruence.

Introduction

In this paper, we study strong bisimilarity on two process calculi. More precisely, we
establish an axiomatisation for strong bisimilarity on a very restricted fragment of CCS,
and then use this axiomatisation to derive a new congruence result for the π-calculus.

We first focus on microCCS (µCCS), the subcalculus of CCS that only features prefix
and parallel composition. Our main result on µCCS is that adding the following distribution

law

η.(P | η.P | . . . | η.P ) = η.P | η.P | . . . | η.P

to the laws of an abelian monoid for parallel composition yields a complete axiomatisation
of strong bisimilarity (in the law above, η is a CCS prefix, of the form a or a, and P is any
CCS process – the same number of copies of P appear on both sides of the equation).

The distribution law is not new: it is mentioned – among other ‘mixed equations’ re-
lating prefixed terms and parallel compositions – in a study of bisimilarity on normed PA
processes [10]. In our setting, this equality can be oriented from left to right to rewrite pro-
cesses into normal forms, which intuitively exhibit as much concurrency as possible. Strong
bisimilarity (∼) between processes is then equivalent to equality of their normal forms.
This rewriting phase allows us to actually compute unique decompositions of processes into
prime processes, in the sense of [12]: a process P is prime if P is not bisimilar to the inactive
process 0 and if P ∼ Q |R implies Q ∼ 0 or R ∼ 0.

The distribution law is an equational schema, corresponding to an infinite family of
axioms, of the form η.(P | (η.P )k) = (η.P )k+1, for k ≥ 1 (where Qk denotes the k-fold
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parallel composition of process Q). Some of these axioms are related. For instance,
we can derive the 6-ary instance of the distribution law (corresponding to k = 5) using
the binary and the ternary instances: first rewrite (η.P )6 three times using the binary
instance, yielding (η.(P |η.P ))3 ; then use the ternary instance to rewrite the latter pro-
cess into η.

(
(P |η.P ) | η.(P |η.P ) | η.(P |η.P )

)
; finally, use the binary instance twice to get

η.(P | (η.P )5). On the other hand, instances of the distribution law where the prefixed term
occurs a prime number of times on the right hand side cannot be derived using other in-
stances. We formalise this argument to show that there exists no finite axiomatisation of
∼ on µCCS in Sect. 3.

We are also interested in this paper in the π-calculus, and, more precisely, in congruence
properties of strong bisimilarity in this formalism. Because of the presence of the input
prefix, and of the related phenomenon of name-passing, bisimilarity is more complex in the
π-calculus than in CCS. In particular, both early and late bisimilarity [15], that differ in
their treatment of name substitution, fail to be congruences in the full π-calculus.

There exist subcalculi of the π-calculus for which strong bisimilarity is a congruence
(we discuss these in Sect. 6). When this is the case, this equivalence coincides with ground

bisimilarity (∼g), which allows one to consider a single fresh name when analysing an
input transition, instead of the usual quantification involving all free names of the process.
Congruence of strong bisimilarity is hence an important property: not only is it necessary
in order to reason in a compositional way, but it also helps making bisimulation proofs
simpler, by reducing the number of cases to analyse.

In the full π-calculus, in order to get congruence, one has to work with Sangiorgi’s open
bisimilarity [14], which has a more involved definition than the early and late variants. Tools
like the Mobility Workbench [16], for instance, have adopted this equivalence on processes.

Technically, the key property which is necessary in order to derive congruence of ∼g in
the π-calculus is substitution closure: we say that a relation R between processes is closed
under substitution if whenever P R Q, then Pσ R Qσ for any substitution σ mapping
names to names. In calculi like CCS or the π-calculus, where interaction arises from the
synchronisation between an emitter and a receiver, substitution closure is a demanding
property. Indeed, applying a substitution may have the effect of identifying two names,
thus triggering new possibilities of interaction.

Before addressing substitution closure for ∼g in the π-calculus, we analyse this property
in the simpler setting of (subsets of) CCS in Sect. 4. We show in particular that strong
bisimilarity is closed under substitution in µCCS, but that it is not as soon as we add the
choice operator, although being a congruence.

At the heart of our proof of congruence in the π-calculus is a notion that we call
mutual desynchronisation, and that corresponds to the existence of processes P,P12, P21

such that P
η1

−→
η2

−→ P12 and P
η2

−→
η1

−→ P21, for two distinct actions η1 and η2, and with P12

behaviourally equivalent to P21. (We do not specify the shape of actions, nor the behavioural
equivalence we refer to, because we shall be reasoning about mutual desynchronisations both
in µCCS and in the π-calculus.) We additionally require in the two sequences of transitions
from P to P12 and P21 respectively that the second prefix being fired should occur under
the first prefix in P .

We discuss the relationship between substitution closure and mutual desynchronisations
in Sect. 4.1, and show that the latter do not arise in µCCS (which is a way to prove that
∼ is closed under substitution in this calculus). This is essentially due to the fact that our
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axiomatisation of ∼ on µCCS does not allow one to match the firing of two distinct prefixes
that are concurrent using two prefixes that occur in sequence in a process.

In relation with the latter observation, we then argue in Sect. 4.2 that noninterleaving

semantics, for which concurrency cannot be reduced to nondeterminism, are more likely
to be substitution closed: we prove that this is the case for Castellani and Hennessy’s
distributed bisimilarity [5] in µCCS extended with choice.

Coming back to the π-calculus, we exploit a transfer property that allows us to derive
from the absence of mutual desynchronisations in µCCS the same result in π0, the finite,
sum-free π-calculus. This entails that ground, early, late and open bisimilarities coincide
on π0, and are congruences. It is known [15] that bisimilarity in the π-calculus fails to be a
congruence as soon as we have prefix, parallel composition, restriction and replication. The
problem of congruence of ∼g on π0 is mentioned as an open question in [15, Chapter 5], and
is known since at least 1998 [2]. To our knowledge, this is the first congruence result for a
subcalculus of the π-calculus that includes the full output prefix (see Sect. 6 for a discussion
on this).

Paper outline. We introduce µCCS and the distribution law in Sect. 1. Section 2 is devoted
to the characterisation of ∼ on µCCS using normal forms. In Sect. 3, we prove that no
finite axiomatisation of ∼ on µCCS exists. We discuss the substitution closure property,
and establish it for distributed bisimilarity in an extension of µCCS, in Sect. 4. Section 5
presents the proof of our congruence result in the π-calculus, and we give concluding remarks
in Sect. 6.

This paper is an extended version of [9]. In particular, we provide more detailed proofs
in Sect. 3; the material in Sect. 4.2, that discusses substitution closure and noninterleaving
semantics, is new.

1. MicroCCS Processes and Normal Forms

We consider an infinite set N of names, and let a, b . . . range over names. We define
on top of N the set of processes of µCCS, the finite, public (that is, without restriction),
sum-free CCS calculus, as follows, where P,Q,R . . . range over processes:

η ::= a
∣∣ a , P ::= 0

∣∣ η.P
∣∣ P |Q .

0 is the nil process. η ranges over interactions (also called visible actions), and we let η
stand for the coaction associated to η (we let η = η). For k > 0, we write P k for the
parallel composition of k copies of P , and we write

∏
i∈I Pi for the parallel composition of

all processes Pi for i ∈ I.
Structural congruence, written ≡, is defined as the smallest congruence satisfying the

following laws:

(C1) P |Q ≡ Q |P (C2) P | (Q |R) ≡ (P |Q) |R (C3) P |0 ≡ P

We introduce a labelled transition system (LTS) for µCCS. Actions labelling transitions are
either interactions, or a special silent action, written τ . We use µ to range over actions. It
can be noted that the syntax of µCCS does not include a construction of the form τ.P –
see Remark 2.8 below.
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Definition 1.1 (Operational semantics and behavioural equivalence).
The LTS for µCCS is given by the following rules:

η.P
η
−→ P

P
η
−→ P ′ Q

η
−→ Q′

P |Q
τ
−→ P ′ |Q′

P
µ
−→ P ′

P |Q
µ
−→ P ′ |Q

P
µ
−→ P ′

Q |P
µ
−→ Q |P ′

A bisimulation is a symmetrical relation R between processes such that whenever P R Q

and P
µ
−→ P ′, there exists Q′ such that Q

µ
−→ Q′ and P ′ R Q′.

Bisimilarity, written ∼, is the union of all bisimulations.

Definition 1.2 (Size). Given P , #(P ) (called the size of P ) is defined by:

#(0)
def
= 0 #(P1 |P2)

def
= #(P1) + #(P2) #(η.P )

def
= 1 + #(P ) .

Lemma 1.3. P ≡ Q implies P ∼ Q which in turn implies #(P ) = #(Q).

Proof. The first implication follows by showing that the laws of ≡ are sound for ∼, and
that ∼ is preserved by parallel composition and prefix.

Assume then by contradiction that there exist P,Q such that P ∼ Q and #(P ) < #(Q);

and choose such P with minimal size. Q has at least one prefix: Q
η
−→ Q′ and we get P

η
−→ P ′

with P ′ ∼ Q′. We deduce that #(P ′) < #(P ) and #(P ′) < #(Q′), which contradicts the
minimality hypothesis.

Definition 1.4 (Distribution law). The distribution law is given by the following equation,
where the same number of copies of P appears on both sides:

η.(P | η.P | . . . | η.P ) = η.P | η.P | . . . | η.P .

We shall use this equality, oriented from left to right, to rewrite processes. We write
P  P ′ when there exist P1, P2 such that P ≡ P1, P2 ≡ P ′ and P2 is obtained from P1

by replacing a sub-term of the form of the left-hand side process with the right-hand side
process.

Remark 1.5 (On the distribution law and PA). Among the studies about properties of
∼ in process algebras that include parallel composition (see [1] for a recent survey on
axiomatisations), some works focus on calculi where parallel composition is treated as a
primitive operator (as opposed to being expressible using sum or other constructs like
the left merge operator). As mentioned above, particularly relevant to this work is [10],
where Hirshfeld and Jerrum “develop a structure theory for PA that completely classifies the

situations in which a sequential composition of two processes can be bisimilar to a parallel

composition”. [10] establishes decidability of ∼ for normed PA processes: in that setting, the
formal analogue of the distribution law (Def. 1.4) holds with η and P being two processes
– the ‘dot’ operator is a general form of sequential composition. This equality is valid
in [10] whenever η is a ‘monomorphic process’, meaning that η can only reduce to 0 (which
corresponds to µCCS), or to η itself. [7] presents a finite axiomatisation of PA that exploits
the operators of sum and left merge.

Lemma 1.6. The relation  is strongly normalising and confluent.

Proof. If P  P ′ then the weight of P ′ (defined as sum of the depths of all prefixes occurring
in P ′) is strictly smaller than the weight of P , whence the strong normalisation. We then
remark that  is locally confluent, and conclude with Newman’s Lemma.
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Thus, for any process P ,  defines a normal form unique up to ≡, that will be denoted
by n(P ). We let A,B, . . . range over normal forms.

The following lemma states that  preserves bisimilarity:

Lemma 1.7. If P  P ′, then P ∼ P ′. For any P , P ∼ n(P ).

Proof. The relation ( ∪ ( )−1 ∪ ≡) is a bisimulation.

2. Characterisation of Bisimilarity in MicroCCS

Our characterisation of ∼ on µCCS makes use of the notion of decomposition into prime

processes, defined as follows:

Definition 2.1. A process P is prime if P 6∼ 0 and P ∼ P1 |P2 implies P1 ∼ 0 or P2 ∼ 0.
When P ∼ P1 | . . . |Pn where the Pis are prime, we shall call P1 | . . . |Pn a prime

decomposition of P .

Proposition 2.2 (Unique decomposition). Any process admits a prime decomposition

which is unique up to bisimilarity: if P1 | . . . |Pn and Q1 | . . . |Qm are two prime decompo-

sitions of the same process, then n = m and there exists a permutation f of [1..n] such that

Pi ∼ Qf(i) for all i ∈ [1..n].

Proof. Similar to the proof of [13, Theorem 4.3.1]: the case of µCCS is not explicitly treated
in that work, but the proof can be adapted rather easily.

An immediate consequence of the above result is the following property:

Corollary 2.3 (Cancellation). For all P,Q,R, P |R ∼ Q |R implies P ∼ Q.

Note that this is not true in presence of replication: a | !a ∼ 0 | !a, but a 6∼ 0.

The characterisation of ∼ using the distribution law follows from the observation that
if a normal form is a prefixed process, then it is prime. This idea is used in the proof of
Lemma 2.5. We first establish a technical result, that essentially exploits the same argument
as the proof of Theorem 4.2 in [10].

Lemma 2.4. If η.P ∼ Q |Q′, with Q,Q′ 6∼ 0, then there exist A and k > 1 such that

η.P ∼ (η.A)k and η.A is a normal form.

Proof. By Lemma 1.7, we have η.P ∼ n(Q |Q′). Furthermore, we have that n(Q |Q′) ≡∏
i≤k ηi.Ai, where k > 1 and the processes ηi.Ai are in normal form.

Since the η prefix must be triggered to answer any challenge from the right hand side,
we have ηi = η and P ∼ Ai |

∏
l 6=i η.Al for all i ≤ k. In particular, when i 6= j, we

have P ∼ Ai | η.Aj |
∏

l 6∈{i,j} η.Al ∼ η.Ai |Aj |
∏

l 6∈{i,j} η.Al and hence, by Corollary 2.3,

Ai | η.Aj ∼ η.Ai |Aj . By reasoning on the sizes of the parallel components in the prime
decompositions of these two terms, we conclude that η.Ai ∼ η.Aj for all i, j ≤ k.

Hence, we have η.P ∼ (η.A1)
k with k > 1 and η.A1 is a normal form.
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Lemma 2.5. Let A,B be two normal forms, A ∼ B implies A ≡ B.

Proof. We show by induction on n that for all A with #(A) = n, we have

(i) if A is a prefixed process, then A is prime;
(ii) for any B, A ∼ B implies A ≡ B.

The case n = 0 is immediate. Assume that the property holds for all i < n, with n ≥ 1.

(i) We write A = η.A′, and assume by contradiction A ∼ P1 |P2 with P1, P2 6∼ 0. By
Lemma 2.4, we have A ∼ (η.B)k with k > 1 and η.B in normal form. By triggering
the prefix on the left hand side, we have A′ ∼ B | (η.B)k−1. It follows by induction
that A′ ≡ B | (η.B)k−1 (using property (ii)), and hence A ≡ η.(B | (η.B)k−1, which is
in contradiction with the fact that A is in normal form.

(ii) Assume now A ∼ B.
− If A is a prefixed process, B is prime by the previous point (#(B) = #(A) by

Lemma 1.3). Necessarily, A ≡ η.A′ and B ≡ η.B′ with A′ ∼ B′. By induction, this
entails A′ ≡ B′, and A ≡ B.

− Otherwise, A = η1.A1 | . . . | ηk.Ak with k > 1, and we know by induction (property
(i)) that ηi.Ai is prime for all i ≤ k. Similarly, we have B = η′1.B1 | . . . | η′l.Bl with
η′i.Bi prime for all i ≤ l.
By Proposition 2.2, k = m and ηi.Ai ∼ η′i.Bi (up to a permutation of the indices),
which gives η′i = ηi and Ai ∼ Bi for all i ≤ k. By induction, we deduce Ai ≡ Bi for
all i, which finally implies A ≡ B.

Lemmas 1.7 and 2.5 allow us to deduce the following result.

Theorem 2.6. Let P,Q be two µCCS processes. Then P ∼ Q iff n(P ) ≡ n(Q).

Remark 2.7 (Unique decomposition of processes). Our proof relies on unique decompo-
sition of processes (Prop. 2.2), that first appeared in [12]. Unique decomposition has been
established for a variety of process algebras, and used as a way to prove decidability of be-
havioural equivalence and to give complexity bounds for the associated decision procedure
([11, 3] cite relevant references).

In the present study, beyond the existence of a unique decomposition, we are interested
in a syntactic characterisation of ∼ (which will in particular allow us to derive Lemma 4.4
below). In this sense, our work is close to [6], where the notion of maximally parallel process

in CCS (with choice) is studied. [6] defines a rewriting process through which maximally
parallel normal forms can be computed, and shows that in the case of µCCS, such normal
forms are unique. However, no syntactical characterisation of the set of normal forms is
presented, and such a characterisation cannot be directly deduced from the (rather involved)
definition of the rewriting process for full CCS.

We instead restrict ourselves to µCCS from the start, and rely explicitly on the distri-
bution law in order to ‘extract’ prime components of processes.

Remark 2.8 (τ prefix and weak bisimilarity). We do not address weak bisimilarity in the
present work. In µCCS, strong and weak bisimilarity coincide, i.e., the internal transitions of
processes are completely determined by the visible actions (interactions). This is essentially
due to the absence of restriction in the calculus. When including τ prefixes in the syntax,
it can be proved that adding the law τ.P = P is enough to characterise weak bisimilarity.
The τ prefix is usually absent in the π-calculus, to which we shall move in Sect. 5. Since
some results on CCS will be transferred to the π-calculus, we did not include this construct
in µCCS.
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3. Nonexistence of a Finite Axiomatisation

We let M,N range over µCCS terms with variables (this corresponds to the grammar
M ::= 0

∣∣ η.M
∣∣ M |M

∣∣ X, and we use X,Y . . . to range over term variables). A ground

term is a term with no occurrence of variables. Instantiations are mappings from variables
to terms, and their domain are naturally extended to terms. We use ρ to range over
instantiations. Applying ρ to M yields a term written Mρ. ρ is a ground instantiation if
for all terms M , Mρ is a ground term. Any two terms M,N define an equation, written
M = N .

Definition 3.1 (Axiomatic equality). Given a set E of equations, we shall write E ⊢ M = N
whenever M = N can be derived in equational logic using equations from E .

We let D stand for the set of equations consisting of the three axioms of structural
congruence (C1, C2, C3), and all the distribution axioms ((Di)i≥1):

(Di) : η.(P | (η.P )i) = (η.P )i+1, i ≥ 1 .

Dk stands for the finite restriction of D where only the first k distribution axioms are
included ((Di)1≤i≤k).

Equations of D are obviously sound for ∼. Ground completeness is given by the fol-
lowing proposition, which holds by Theorem 2.6.

Proposition 3.2 (Completeness). For any processes P,Q,

P ∼ Q iff D ⊢ P = Q .

We now analyse the distribution law using a rather classical approach [1]. We show
that D is ω-complete, that is, complete w.r.t. the extensional equality derived from strong
bisimilarity. Since, by Lemma 3.8 below, D is intrinsically infinite, we derive impossibility
of a finite axiomatisation of ∼ on µCCS, by using compactness arguments.

Definition 3.3 (Extensional equality). Two terms M and N are extensionally equal, writ-
ten M ∼ω N , whenever for any ground instantiation ρ, it holds that Mρ ∼ Nρ. An equation
M = N is said to be correct if M ∼ω N .

Our proof of ω-completeness essentially relies on the methodology developped in [8];
the idea is to replace variables by small terms that can easily be distinguished.

Lemma 3.4. Let M be a term whose variables all belong to {Xi}i∈I , and let {ai}i∈I be a

collection of distinct names that do not occur in M .

n(M{ai.0/Xi}) ≡ n(M){ai.0/Xi}

Proof. We proceed by well founded induction over the termination of  .

• If M is in normal form, we just have to check that M{ai.0/Xi} is in normal form. This
is true because the ai are distinct and do not appear in M .

• Otherwise, if M  N , we check that M{ai.0/Xi} N{ai.0/Xi} so that:

n(M{ai.0/Xi}) ≡ n(N{ai.0/Xi}) (by confluence)
≡ n(N){ai.0/Xi} (by induction)
≡ n(M){ai.0/Xi} (by confluence)
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Lemma 3.5. Let M,N be two terms whose variables all belong to {Xi}i∈I , and let {ai}i∈I

be a collection of distinct names that do not occur in M nor in N .

• If D ⊢ M = N then D ⊢ Mρ = Nρ for any instantiation ρ;
• if M{ai.0/Xi} ∼ N{ai.0/Xi} then D ⊢ M = N .

Proof. The first point is standard, and proved by induction over the derivation tree.
For the second property, we know by Theorem 2.6 that n(M{ai.0/Xi}) ≡ n(N{ai.0/Xi}).

By Lemma 3.4, we can deduce n(M{ai.0/Xi}) ≡ n(M){ai.0/Xi}, and n(N{ai.0/Xi}) ≡
n(N){ai.0/Xi}. Hence we have n(M) ≡ n(N), and D ⊢ M = N holds.

Theorem 3.6 (ω-completeness). For any terms M,N ,

M ∼ω N iff D ⊢ M = N .

Proof. Using Lemma 3.5, ω-completeness boils down to the completeness of D for ground
terms (Prop. 3.2).

Notice that the proof of Theorem 3.6 relies on the existence of an infinite number of
names. The following result is standard.

Lemma 3.7 (Compactness). For any terms M,N ,

D ⊢ M = N iff Dk ⊢ M = N for some k .

Proof. Equational proofs are finite objects.

Lemma 3.8. Let a be a name, for any number k, there exists n such that:

Dk 6⊢ a.an = an+1 .

Remember that an stands for the n-ary parallel composition of a.0, so that this equality
is an instance of axiom (Dn).

Proof. Let n be a number strictly greater than k such that n + 1 is prime, and let θ(P,Q)
denote the predicate: “P ∼ Q ∼ an+1, P ≡ a.P ′, and Q ≡ Q1|Q2 with Q1, Q2 6≡ 0”.

Assume Dk ⊢ a.an = an+1, and consider the shortest proof of Dk ⊢ P = Q for some
processes P,Q such that either θ(P,Q) or θ(Q,P ). Since θ(a.an, an+1) holds, such a minimal
proof does exist. We reason about the last rule used in the derivation of this proof in
equational logic. For syntactic reasons, this cannot be reflexivity, a contextual rule, nor
one of the structural congruence axioms. It can be neither symmetry nor transitivity, since
otherwise this would give a shorter proof satisfying θ. The only possibility is thus the use
of one of the distribution axioms, say Di with 1 ≤ i ≤ k and an+1 ∼ Q ≡ (a.Q′)i+1. By
Lemma 1.3, since #(an+1) = n + 1, i+ 1 has to divide n + 1. This is contradictory, because
we have 2 ≤ i + 1 ≤ k + 1 < n + 1, and n + 1 is prime.

We can finally prove the nonexistence of a finite axiomatisation of ∼ on µCCS. The
proof corresponds to a standard application of the Compactness Theorem [1].

Theorem 3.9 (No finite axiomatisation of ∼). For any finite set of correct equations E,

there exist processes P and Q such that P ∼ Q but E 6⊢ P = Q.

Proof. By correctness, for any equation M = N in E , M ∼ω N . Hence, by ω-completeness
we can prove any equation of E using D. By Lemma 3.7, and since E is finite, there
exists k such that Dk ⊢ E . By Lemma 3.8, there exists n such that a.an ∼ an+1 and
Dk 6⊢ a.an = an+1; and thus, E 6⊢ a.an = an+1.
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4. On Substitution Closure of Bisimilarity

We now discuss the property of substitution closure of behavioural equivalences in
(subcalculi of) CCS. In the π-calculus, because of the input prefix, substitution closure is
in general a necessary condition for bisimilarity to be a congruence. The notion of mutual
desynchronisation, which we define in Sect. 4.1, allows us to show that ∼ is closed under
substitution in µCCS. This notion will be used to establish substitution closure (and then
congruence) of ∼g in π0 in Sect. 5. We analyse substitution closure in an extension of µCCS,
both for strong bisimilarity and distributed bisimilarity, in Sect. 4.2 (the latter section is
not technically necessary to establish the result on π0, and can therefore be skipped).

4.1. Mutual Desynchronisations. In µCCS, ∼ is closed under substitution. One way
to prove that is to rely on the axiomatisation from Sect. 2: two processes related by an
instance of the distribution law remain equivalent when a substitution mapping names to
names is applied (we can show in particular that for any substitution σ, n(Pσ) ≡ n(n(P )σ)).

Here, we derive this result using an alternative general pattern, that corresponds to
the proof of substitution closure of ∼g in Sect. 5. To understand how the notion of mutual
desynchronisation arises, we sketch the proof of substitution closure of ∼. Suppose for that
P ∼ Q, and consider a substitution σ. To prove Pσ ∼ Qσ, we reason by coinduction, and

consider a transition Pσ
µ
−→ P0. The difficult case arises when µ = τ , and the synchro-

nisation follows from P
a
−→ P1, P

b
−→ P2, with σ(a) = σ(b). We observe that because we

work in µCCS, the transitions of P to P1 and P2 are necessarily offered by distinct parallel
components of P . P can therefore do a transition along a followed by a transition along b
to some P ′, to which Q can answer since P ∼ Q. If Q answers by firing two prefixes that
belong to different parallel components (‘concurrent prefixes’), we are done: we can infer
a τ transition for Qσ, and conclude using coinduction. If this is not the case (i.e., if the b
prefix fired by Q was guarded by the a prefix), we consider the sequence where P performs
the two transitions in the reversed order, first b then a, and reason similarly. Therefore, the
only case where we cannot conclude occurs when Q matches both sequences of transitions
using causally dependent prefixes. This situation is depicted below; we will show that it
cannot arise in µCCS.

P
b
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AA
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AA
a

~~}}
}}
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}}

Q

���
�
�
�
�
�
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�

��
0

0
0

0
0

0
0

0

a|b?

b

  
@@

@@
@@

@@
@

a

~~~~
~~

~~
~~

~

P1

b   
AA

AA
AA

AA
P2

a
~~}}

}}
}}

}}

b
��

a

��

P ′ Q1 Q2

More precisely, we show that the situation on the right of this picture, where we notice
that Q1 ∼ Q2 (both processes are bisimilar to P ′) cannot arise; we call such a – hypothetical
– situation a mutual desynchronisation:
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Definition 4.1 (Mutual desynchronisation in µCCS). We say that there exists a mutual

desynchronisation in µCCS whenever there are two prefixes η1, η2, and five µCCS processes

S, S′, T , T ′, R such that η1 6= η2, S
η1

−→ S′, T
η2

−→ T ′ and η2.S |T ′ |R ∼ S′ | η1.T |R.

We recover the situation which is depicted above by taking Q = η2.S | η1.T |R, η1 = a,
and η2 = b. Such a notion is not specific to µCCS: the proofs of Lemmas 5.6 and 5.7 will
expose analogous situations in π0.

Definition 4.2. We define, for any µCCS process P and prefix η, the contribution of P at

η, written sη(P ), by

sη(0)
def
= 0 sη(η

′.P )
def
= 0 if η 6= η′

sη(P1 |P2)
def
= sη(P1) + sη(P2) sη(η.P )

def
= #(η.P )

Intuitively, sη(P ) is the total size of the parallel components of P that start with the
prefix η.

Lemma 4.3. P ∼ Q implies sη(P ) = sη(Q) for all η.

Proof. Follows from Theorem 2.6 and the observation that the distribution law preserves
the contribution of a process at a given interaction prefix.

Lemma 4.4 (No mutual desynchronisation). There exists no mutual desynchronisation in

µCCS.

Proof. Assume by contradiction that there are processes such that P
η1

−→ P ′, Q
η2

−→ Q′ and
η2.P |Q′ |R ∼ P ′ | η1.Q |R.

By the cancellation property (Corollary 2.3), we have η2.P |Q′ ∼ P ′ | η1.Q, hence for
all η, sη(η2.P |Q′) = sη(P

′ | η1.Q) (Lemma 4.3).
Since sη1

(η2.P |Q′) = sη1
(Q′) ≤ #(Q′) and sη1

(P ′ | η1.Q)) ≥ sη1
(η1.Q) = #(Q′) + 2, by

taking η = η1 we finally get #(Q′) ≥ #(Q′) + 2.

Lemma 4.4 will be used to show that a situation corresponding to a mutual desynchro-
nisation cannot arise in π0. Notice that the proof depends in an essential way on Lemma 4.3,
which in turn relies on the axiomatisation of ∼ in µCCS (Theorem 2.6).

As a consequence of this result, we can deduce the following

Corollary 4.5 (Substitution closure of ∼ in µCCS). In µCCS, P ∼ Q entails Pσ ∼ Qσ,

for all substitution σ.

We now introduce an extension of µCCS, called µCCS+, which is the calculus obtained
by adding a sum operator over prefixed processes. The grammar of µCCS+ is thus the
following:

S ::= 0
∣∣ η.P

∣∣ S1 + S2 , P ::= S
∣∣ P1|P2 .

If I = [1..k], we write
∑

i∈I Si for S1 + · · · + Sk. Like before, we use notation
∏

i Si for
parallel compositions; when using this notation, we shall moreover implicitly assume that
for all i ∈ I, Si 6∼d0 (this is in particular the case in the statement of Lem. 4.11). We shall
overload notations, and use ∼ to denote strong bisimilarity in µCCS+.

In µCCS+, ∼ is a congruence, but it is not closed under substitution. We have indeed

a | b ∼ a.b + b.a . (4.1)
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However, by applying the substitution that maps names a and b to p, we obtain processes
p | p and p.p + p.p respectively, which are not bisimilar: the former can do a τ transition
that cannot be matched by the latter. Actually, a.b + b.a gives a simple example of a
mutual desynchronisation in µCCS+. This standard counterexample to substitution closure
essentially explains why early and late bisimilarities are not congruences in the (full) π-
calculus.

Remark 4.6 (Restriction and replication instead of choice). As shown in [15], a related
counterexample can be constructed if, instead of adding the sum operator, we add restriction
and replication to µCCS: the equivalence

!a.b.τ.q | !b.a.τ.q ∼ !(νc) (a.c | b.c.q)

fails to hold if we replace a and b with p, because one process is liable to do two synchro-
nisations and interact on q, while the other one needs at least three synchronisations to do
so (the construction τ.P can be encoded as (νd) (d.P |d), for some fresh channel name d).

4.2. Noninterleaving Semantics. We shall work in µCCS+ in the remainder of this
section. It can be remarked that equality (4.1) – which is an instance of the expansion law

– is typical of interleaving semantics, in which the parallel composition of two processes is
equivalent to a single process, that expresses using nondeterminism all possible interleavings
of the two concurrent activities. As we have seen, equivalences that validate (4.1), as is the
case for strong bisimilarity in µCCS+, are usually not substitution closed.

On the contrary, we can expect locality-aware semantics, that are sensitive to the
parallel structure of processes (and hence more discriminating than ∼), to be closed under
substitution. There are several approaches to define such equivalences. We focus here on a
version of (strong) distributed bisimilarity [5, 4], because it is among the simplest, and this
will suffice for our purposes. The definition of distributed bisimilarity relies on distributed

transitions, which are given by judgements of the form P
µ
−→d 〈P1, P2〉. The intended

meaning is that when P performs the transition along µ, it is decomposed into two parts.
At the site where the transition has happened, the local process evolves into P1 (the local
residual). The remainder of the process, which has not taken part in the transition, evolves

into P2 (the concurrent residual). For example, we have P1 | η.Q |P2
η
−→d 〈Q,P1|P2〉 .

The inference rules for distributed transitions in µCCS+ are the following (symmetrical
versions of the rules for sum and parallel composition are omitted):

η.P
η
−→d 〈P,0〉

S
η
−→d 〈P1, P2〉

S + S′ η
−→d 〈P1, P2〉

P
η
−→d 〈P1, P2〉

P |P ′ η
−→d 〈P1, P2|P

′〉

P
η
−→d 〈P1, P2〉 Q

η
−→d 〈Q1, Q2〉

P |Q
τ
−→d 〈P1|Q1, P2|Q2〉

Definition 4.7 (Distributed bisimilarity). A symmetric relation R between processes is a

distributed bisimulation iff whenever P R Q, if P
µ
−→d 〈P1, P2〉, then there exist Q1, Q2 such

that Q
µ
−→d 〈Q1, Q2〉, P1 R Q1 and P2 R Q2.

Distributed bisimilarity, written ∼d, is the greatest distributed bisimulation.

Lemma 4.8. If P
η
−→d 〈P1, P2〉, then P ≡ (η.P1 + S1) | P2 for some S1.
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Lemma 4.9. ∼d is a congruence on µCCS+.

Proposition 4.10. ∼d is substitution closed in µCCS+.

Prop. 4.10 is established by following the reasoning we have sketched before Def. 4.1, but
things are considerably more easy due to distributed transitions, that insure that concurrent
prefixes can be fired.

Actually, ∼d coincides with structural congruence in µCCS+ (in µCCS+, in addition
to the equalities that are valid in µCCS, ≡ satisfies the laws of an abelian monoid for +,
as well as the idempotence law S + S ≡ S). To show this, we first establish the following
separation property, enjoyed by ∼d in µCCS+:

Lemma 4.11 (Separation Property). If P =
∏

i∈I Si, Q =
∏

j∈J S′
j, and P ∼d Q, then

there exists a bijection f from I to J such that ∀i ∈ I. Si ∼d S′
f(i).

Proof. We first observe a general property of distributed transitions: for any i0 ∈ I, when-

ever Si0

µ
−→ P0, by Def. 4.7, we have S′

j0

µ
−→ Q0 for some j0, Q0, with P0 ∼d Q0 and∏

i∈I,i6=i0
Si ∼d

∏
j∈J,j 6=j0

S′
j, where the latter equivalence involves processes that have ex-

actly one parallel component less than P and Q respectively. The symmetrical property
also holds for challenges coming from Q.

Let us now prove that I and J have the same cardinal. We assume without loss of
generality that I has strictly more elements than J . We derive a contradiction by repeatedly
using the remark above to fire challenges in the parallel components of P , until there are
no components left in Q. I and J thus have the same cardinal.

In light of this result, we can assume w.l.o.g. that I is the set of indices in P ’s and Q’s
decompositions, and moreover that 0 ∈ I. We thus show:

If P =
∏

i∈I Si, Q =
∏

j∈I S′
j, and P ∼d Q, then there exists a bijection f

from I to J such that ∀i ∈ I. Si ∼d S′
f(i).

To prove this, we reason by induction on the number of parallel components of P . The
cases where this number is 0 or 1 are immediate. Assume then that I has at least two
elements. We distinguish two cases:
First case: all components are equivalent to each other on each side, that is, ∀i ∈ I. Si ∼d S0,
and ∀j ∈ I. S′

j ∼d S′
0. It remains to show that one of the Sis is equivalent to one of S′

js:
for this, we use the remark above about distributed transitions to fire all components of P
but one, which gives us that the remaining component is bisimilar to a component of Q.
Second case: if we define C = {i. Si ∼d S0}, we have ∅ * C * I (since otherwise, we
would be in the first case). Define C ′ = I \ C, and perform a sequence of ∼d-challenges
on the side of P in order to fire all components corresponding to C ′: we are left with∏

i∈C Si ∼d
∏

i∈D S′
i for some D * I.

Since C * I, we can apply induction to derive that the Sis are one to one equivalent
to the S′

js, which yields that all processes in {Si, i ∈ C} ∪ {S′
j , j ∈ D} belong to the same

equivalence class for ∼d (and are hence all equivalent to S0).
Similarly, by firing all components in C, we obtain

∏
i∈C′ Si ∼d

∏
i∈D′ S′

i for D′ * I.
Again, as C ′ * I, we have by induction that every element in {Si, i ∈ C ′} is in one to one
correspondence with an element of {S′

j , j ∈ D′}. This implies, by definition of C ′, that none

of the S′
js for j ∈ D′ is equivalent to S0. Hence, we have that D ∩ D′ = ∅, and D ∪ D′ = I

by a cardinality argument; the announced property follows.
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Lemma 4.11 formalises the fact that in absence of restriction, distributed bisimilarity
is discriminating enough to analyse the maximum degree of parallelism in processes (in
particular, the expansion law is not valid for location sensitive equivalences).

Proposition 4.12. In µCCS+, P ∼d Q if and only if P ≡ Q.

Proof. We first remark that ≡ ⊆ ∼d on µCCS+. To show the converse, we assume P ∼d Q,
and reason by induction on the size of P , defined as the number of prefixes in P . The cases
where P is of size 0 or 1 are immediate. Assume then that the size of P is strictly greater
than 1.

First, if P has at least two parallel components that are different from 0, we can apply
the separation property (Lemma 4.11), together with the induction hypothesis, to deduce
the expected result.

Assume now P =
∑

i∈I ηi.Pi. By Lemma 4.11, Q has only one parallel component, i.e.,
Q =

∑
j∈J η′i.Qi. Using the idempotence law (S + S ≡ S), we moreover assume w.l.o.g.

that for all i1, i2, ηi1 .Pi1 ≡ ηi2 .Pi2 implies i1 = i2, and similarly for the summands of Q.
Since P ∼d Q, we observe two properties. First, ∀i ∈ I.∃j ∈ J. ηi = η′j ∧Pi ∼d Qj : this

follows by firing a challenge on ηi on P ’s side. Symmetrically, ∀j ∈ J.∃i ∈ I ηi = η′j ∧Pi ∼d

Qj. In each case, the induction hypothesis actually gives Pi ≡ Qj.
Now, for any i1 ∈ I, the first property associates some j ∈ J to i, which in turn

is associated to i2 ∈ I by the second property. In this case, we have ηi1 = ηj = ηi2 and
Pi1 ≡ Qj ≡ Pi2 , which insures i1 = i2 by the hypothesis we have made. A similar argument,
starting from Q’s side, shows that these two properties entail that the summands in P are
in one to one correspondence with the summands of Q, whence, finally, P ≡ Q.

In view of this result, ∼d is arguably not very interesting in µCCS+. The main point
here is to show a situation where ∼ is not substitution closed, while ∼d is. It can be proved
(but this requires more work) that the same holds if we move to a richer calculus, where
parallel compositions are allowed in summands. In such a calculus, ∼d satisfies nontrivial
absorption laws, such as a.b | a.c ∼d (a.b | a.c) + τ.(b|c), which is obviously not valid for ≡
(we suppose here the existence of a τ prefix; more general absorption laws can be defined –
see [4]).

One way to establish that ∼d is closed under substitution in the richer calculus is to ex-
ploit the results of [4, Sect. 4.5], which studies axiomatisations of ∼d. These axiomatisations
use a new operator, noted ∤, that satisfies the following laws:

(P + Q) ∤ R = P ∤ R + Q ∤ R (P ∤ Q) ∤ R = P ∤ (Q|R)

P ∤ 0 = P 0 ∤ P = 0

∤ is a kind of asymmetric parallel composition, that intuitively gives precedence to the tran-
sitions of its left hand side operand. Moreover, as shown in [4], if we allow communications
across ∤, then the following expansion theorem

If P =
∑

i∈I

ηi.Pi ∤ P ′
i and Q =

∑

j∈J

η′j.Qj ∤ Q′
j, then

P |Q =
∑

i∈I

ηi.Pi ∤ (P ′
i |Q) +

∑

j∈J

η′j.Qj ∤ (P |Q′
j) +

∑

ηi=η′
j

τ.(Pi|Qj) ∤ (P ′
i |Q

′
j)
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together with the laws of ∤ and of +, provides a complete axiomatisation of ∼d.
This expansion theorem closely resembles its standard counterpart in interleaving se-

mantics, where concurrency is expressed using the sum operator. However, since com-
munications are allowed between the operands of ∤, the above equality is robust w.r.t.
substitution. Indeed, if a new interaction is triggered on the left hand side of the equality
by applying a substitution, say between ηi.Pi and η′j.Qj , then this synchronisation is also

possible on the right hand side (in the first summand). We do not enter any further into
the details of this proof.

5. A New Congruence Result for the π-calculus

5.1. The Finite, Sum-free π-calculus. Processes of π0 are built from an infinite set
Nπ of names (we let a, b . . . ,m, n . . . , p, q . . . , x, y . . . range over names), according to the
following grammar:

φ ::= m(x)
∣∣ mn , P ::= 0

∣∣ φ.P
∣∣ P1 |P2

∣∣ (νp)P .

The input prefix m(x) binds name x in the continuation process, and so does name restric-
tion (νn) in the restricted process. A name that is not bound is said to be free, and we
let fn(P ) stand for the free names of P . We assume that any process that we manipulate
satisfies a Barendregt convention: every bound name is distinct from the other bound and
free names of the process. We shall use a, b, c to range over free names of processes, p, q, r
(resp. x, y) to range over names bound by restriction (resp. by input), and m,n to range
over any name, free or bound (note that these naming conventions are used in the above
grammar). Structural congruence on π0, written ≡, is the smallest congruence that is an
equivalence relation, contains α-equivalence, and satisfies the following laws:

P |0 ≡ P P | (Q |R) ≡ (P |Q) |R P |Q ≡ Q |P (νp)0 ≡ 0

(νp)(νq)P ≡ (νq)(νp)P P | (νp)Q ≡ (νp)(P |Q) if p /∈ fn(P )

We let P [n/x] stand for the capture avoiding substitution of name x with name n in P . We
use σ to range over substitutions in π0 (that simultaneously replace several names).

Definition 5.1 (Late operational semantics and ground bisimilarity). The late operational
semantics of π0 is given by a transition relation whose set of labels is defined by:

µ ::= a(x)
∣∣ ab

∣∣ a(p)
∣∣ τ .

Names x and p are said to be bound in actions a(x) and a(p) respectively, and other names
are free. We use bn(µ) (resp. fn(µ)) to denote the set of bound (resp. free) names of action
µ.
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The late transition relation, written −→π, is given by the following rules (symmetrical
versions of the rules involving parallel composition are omitted):

φ.P
φ
−→π P

P
a(x)
−−→π P ′ Q

ab
−→π Q′

P |Q
τ
−→π P ′[b/x] |Q′

P
ab
−→π P ′

(νb)P
a(b)
−−→π P ′

a 6= b P
a(x)
−−→π P ′ Q

a(p)
−−→π Q′

P |Q
τ
−→π (νp)(P ′[p/x] |Q′)

P
µ
−→π P ′

P |Q
µ
−→π P ′ |Q

bn(µ) ∩ fn(Q)=∅
P

µ
−→π P ′

(νp)P
µ
−→π (νp)P ′

p /∈ fn(µ)

A ground bisimulation is a symmetric relation R between processes such that whenever

P R Q and P
µ
−→π P ′, there exists Q′ s.t. Q

µ
−→π Q′ and P ′ R Q′.

Ground bisimilarity, written ∼g, is the union of all ground bisimulations.

Note that we do not respect the convention on names in the rule to infer a bound
output, precisely because we are transforming a free name (b) into a bound name.

Lemma 5.2. Assume that Pσ
µ
−→π P ′.

(1) If µ is ab, a(p) or a(x), then P
µ′

−→π P ′′ with µ′σ = µ and P ′′σ = P ′.

(2) If µ = τ then one of the three following properties hold, where the input and output

actions are offered concurrently by P in the last two cases.

(a) P
τ
−→π P ′′ and P ′′σ = P ′,

(b) P
bc
−→π

a(x)
−−→π P ′′ where σ(a) = σ(b) and P ′′[c/x]σ ∼ P ′,

(c) P
b(p)
−−→π

a(x)
−−→π P ′′ where σ(a) = σ(b) and ((νp)P ′′[p/x])σ ∼ P ′.

Proof. Similar to the proof of Lemma 1.4.13 in [15], where the early transition semantics is
treated.

5.2. Mutual Desynchronisations in π0. In what follows, we fix two distinct names a
and b, that will occur free in the processes we shall consider. The definitions and results
below will depend on a and b, but we avoid making this dependency explicit, in order to
ease readability. Names a and b will be fixed in the proof of Theorem 5.8.

Definition 5.3 (Erasing a π0 process). Given a π0 process P , we define the erasing of P ,
written E(P ), as follows:

E(P1 |P2)
def
= E(P1) | E(P2) E((νp)P )

def
= E(P ) E(0)

def
= 0

E(a(x).P )
def
= a.E(P ) E(m(x).P )

def
= 0 if m 6= a

E(bn.P )
def
= b.E(P ) E(mn.P )

def
= 0 if m 6= b
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Note that a and b play different roles in the definition of E(·).
It is immediate from the definition that E(P ) is a µCCS process whose only prefixes

are a and b. Intuitively, E(P ) only exhibits the interactions of P at a (in input) and b (in
output) that are not guarded by interactions on other names.

Lemma 5.4 (Transitions of E(P )). Consider a π0 process P . We have:

• If P
a(x)
−−→π P ′, then E(P )

a
−→ E(P ′).

• If P
bc
−→π P ′ or P

b(p)
−−→π P ′, then E(P )

b
−→ E(P ′).

• Conversely, if E(P )
a
−→ P0, then there exist x and P ′ such that P0 = E(P ′) and P

a(x)
−−→π P ′.

Similarly, if E(P )
b
−→ P0, there exist c, p, P ′ such that P0 = E(P ′) and either P

bc
−→π P ′ or

P
b(p)
−−→π P ′.

Proof. Simple reasoning on the LTSs of µCCS and π0.

Proposition 5.5 (Transfer). If P ∼g Q in π0, then E(P ) ∼ E(Q) in µCCS.

Proof. We reason by induction on the size of P (defined as the number of prefixes in P ).
Consider a transition of E(P ); as observed above, it can only be a transition along a or a
transition along b.

Assume E(P )
a
−→ P0. By Lemma 5.4, P

a(x)
−−→π P ′ and P0 = E(P ′). Since P ∼g Q,

Q
a(x)
−−→π Q′ for some Q′ such that P ′ ∼g Q′. By induction, the latter relation gives

E(P ′) ∼ E(Q′), and Q
a(x)
−−→π Q′ gives by Lemma 5.4 E(Q)

a
−→ E(Q′).

The case E(P )
b
−→ P0 is treated similarly: by Lemma 5.4, there are two cases, according

to whether P does a free output or a bound output. Reasoning like above allows us to
conclude in both cases.

We can now present our central technical result about π0, which comes in two lemmas.

Lemma 5.6. If Q ∼g (νp̃)(a(x).P1 | bc.P2 |P3), then there exist some Q1, Q2, Q3, q̃, such

that Q ≡ (νq̃)(a(x).Q1 | bc.Q2 |Q3) and

(νp̃)(P1 |P2 |P3) ∼g (νq̃)(Q1 |Q2 |Q3).

Proof. Let P = (νp̃)(a(x).P1 | bc.P2 |P3) and P ′ = (νp̃)(P1 |P2 |P3).
Note that by our conventions on notations, c /∈ p̃.
Since Q ∼g P and P can perform two transitions along a(x) and bc respectively, Q can

also perform these transitions, which gives
Q ≡ (νq̃)(a(x).Q1 | bc.Q2 |Q3) for some q̃, Q1, Q2, Q3,

the first (resp. second) component exhibiting the prefix that is triggered to answer the
challenge on a(x) (resp. bc).

Consider now the challenge P
bc
−→π

a(x)
−−→π P ′, to which Q answers by performing the

transition Q
bc
−→π

a(x)
−−→π Qba, with P ′ ∼g Qba. If Qba = (νq̃)(Q1 |Q2 |Q3), that is, if Q

triggers the prefixes on top of its first and second components, then we are done. Similarly,
if Q triggers a prefix in Q3 to answer the second challenge, say Q3 = a(x).Q4 |Q5, we can
set Q′

1 = a(x).Q4 and Q′
3 = Q1 |Q5, and the lemma is proved.
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The case that remains to be analysed is when Q2
a(x)
−−→π Q′

2 and we have Qba =
(νq̃)(a(x).Q1 |Q

′
2 |Q3) ∼g (νp̃)(P1 |P2 |P3).

We then consider the challenge where P fires its two topmost prefixes a(x) and bc in

the other sequence, namely P
a(x)
−−→π

bc
−→π P ′. By hypothesis, Q triggers the prefix of its first

component for the first transition. To perform the second transition, Q can fire the prefix
bc either in its second or third component, in which case, as above, we are done, or, and this
is the last possibility, the prefix bc occurs in Q1. This means Qab = (νq̃)(Q′

1 | bc.Q2 |Q3) ∼g

(νp̃)(P1 |P2 |P3), with Q1
bc
−→π Q′

1.

To sum up, we have Qab = (νq̃)(Q′
1 | bc.Q2 |Q3) ∼g (νq̃)(a(x).Q1 |Q

′
2 |Q3) = Qba, with

Q1
bc
−→π Q′

1 and Q2
a(x)
−−→π Q′

2: this resembles the mutual desynchronisation of Definition 4.1,
translated into the π-calculus.

Indeed, we can construct a mutual desynchronisation in µCCS: Qab ∼g Qba implies

E(Qab) ∼ E(Qba) by Prop. 5.5, and Q1
bc
−→π Q′

1 (resp. Q2
a(x)
−−→π Q′

2) implies by Lemma 5.4

E(Q1)
b
−→ E(Q′

1) (resp. E(Q2)
a
−→ E(Q′

2)). Finally, using Lemma 4.4, we obtain a contradic-
tion, which concludes our proof.

Lemma 5.7. If Q ∼g (νp, p̃)(a(x).P1 | bp.P2 |P3), then there exist some Q1, Q2, Q3, such

that Q ≡ (νp, q̃)(a(x).Q1 | bp.Q2 |Q3) and

(νp̃)(P1 |P2 |P3) ∼g (νq̃)(Q1 |Q2 |Q3).

Hint. The proof follows the same lines as for the previous lemma. The only difference
is when analysing the transitions that lead to Qab: to perform the second transition, Q
can either extrude the name called p in the equality Q ≡ (νp, q̃)(a(x).Q1 | bp.Q2 |Q3), or
otherwise Q can be α-converted in order to extrude another name. In the case where Q
chooses to extrude a different name, we can assume without loss of generality that the
necessary α-conversion is a swapping between name p and a name q1 ∈ q̃, which brings us
back to the case where name p is the one being extruded.

The presence of a bound output introduces some notational complications when express-
ing Qab, but basically it does not affect the proof w.r.t. the proof of Lemma 5.6, because
the function E(·) is not sensitive to name permutations that do not involve a or b.

5.3. Congruence.

Theorem 5.8 (Closure of ∼g under substitution). If P ∼g Q then for any substitution σ,

Pσ ∼g Qσ.

Proof. We prove that the relation R
def
= {(Pσ,Qσ) | P ∼g Q} is a ground bisimulation. We

consider P , Q such that P ∼g Q and assume Pσ
µ
−→π P0. We examine the transitions of P

that make it possible for Pσ to do a µ-transition to P0.

According to Lemma 5.2, there are two possibilities. The first possibility corresponds

to the situation where µ comes from an action that P can perform, i.e., P
µ′

−→π P ′ for some

µ′, with P ′σ = P0 and µ′σ = µ (cases 1 and 2a in Lemma 5.2). Since P ∼g Q, Q
µ′

−→π Q′
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and P ′ ∼g Q′ for some Q′. We can prove that Qσ
µ
−→ Q′σ, and since P ′ ∼g Q′ we have

(P ′σ,Q′σ) ∈ R.

The second possibility (which corresponds to the difficult case) is given by µ = τ ,
where the synchronisation in P ′ has been made possible by the application of σ. There are
in turn two cases, corresponding to whether the synchronisation involves a free or a bound

name. In the former case, P
a(x)
−−→π P ′ and P

bc
−→π P ′′ for some a, x, b, c, P ′, P ′′. This entails

P ≡ (νp̃)(a(x).P1 | bc.P2 |P3) for some p̃, P1, P2, P3, and, since P ∼g Q, we conclude by

Lemma 5.6 that Q ≡ (νq̃)(a(x).Q1 | bc.Q2 |Q3) and

(νp̃)(P1 |P2 |P3) ∼g (νq̃)(Q1 |Q2 |Q3) .

By definition of R, this equivalence implies that we can apply any substitution to these two
processes to yield processes related by R, and in particular [c/x]σ, which gives:

((νp̃)(P1 |P2 |P3))[c/x]σ R ((νq̃)(Q1 |Q2 |Q3))[c/x]σ .

Using the Barendregt convention hypothesis, this amounts to

P0 ≡ ((νp̃)(P1[c/x] |P2 |P3))σ R ((νq̃)(Q1[c/x] |Q2 |Q3))σ
def
= Q0 .

We can then conclude by checking that Qσ
τ
−→π Q0.

We reason similarly for the case where the synchronisation involves the transmission of
a bound name, using Lemma 5.7 instead of Lemma 5.6. We remark that Lemma 5.7 gives

(νp̃)(P1 |P2 |P3) ∼g (νq̃)(Q1 |Q2 |Q3), and in this case Pσ
τ
−→π (νp, p̃)(P1[p/x] |P2 |P3)σ

(resp. Qσ
τ
−→π (νp, q̃)(Q1[p/x] |Q2 |Q3)σ). In order to be able to add the restriction on p

to the terms given by Lemma 5.7, we rely on the fact that ∼g is preserved by restriction:
P ∼g Q implies (νp)P ∼g (νp)Q for any P,Q, p. We can then reason as above to conclude.

Corollary 5.9 (Congruence of bisimilarity in π0). In π0, ground, early and late bisimilarity

coincide and are congruences.

Proof. By a standard argument (see [15]): since ∼g is closed under substitution, ∼g is an
open bisimulation.

It is known (see [15]) that adding either replication or sum to π0 yields a calculus where
strong bisimilarity fails to be a congruence.

6. Conclusion

We have presented an axiomatisation of strong bisimilarity on a small subcalculus of
CCS, and a new congruence result for the π-calculus.

Technically, the notion of mutual desynchronisation is related to substitution closure of
strong bisimilarity, as soon as substitutions can create new interactions by identifying two
names.

We have shown in Sect. 5 that there exists no mutual desynchronisation in π0, and that
∼g is a congruence. It appears that in finite calculi, mutual desynchronisations give rise
to counterexamples to substitution closure of strong bisimilarity (cf. Sect. 4.1). The situa-
tion is less clear when infinite behaviours can be expressed. For instance, in the extension

of µCCS with replication, the process P
def
= !a | !b is bisimilar to process Q

def
= !a.b | !b.a,
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which leads to a mutual desynchronisation: we have Q
a
−→

b
−→ ≡ Q

b
−→

a
−→ ≡ Q. This mutual

desynchronisation is however ‘benign’: by firing concurrently the two prefixes that iniate
the mutual desynchronisation, we obtain a | b |P which is bisimilar to P , so that this situ-
ation is not problematic w.r.t. substitution closure (we may moreover remark that the two
aforementioned processes remain bisimilar when b is replaced with a). We do not know at
present whether ∼ is substitution-closed in this extension of µCCS.

Some subcalculi of the π-calculus where strong bisimilarity is a congruence are ob-
tained by restricting the output prefix [15]. In the asynchronous π-calculus (Aπ), mutual
desynchronisations do not appear, basically because the output action is not a prefix. Strong
bisimilarity is a congruence on Aπ. In the private π-calculus (Pπ), since only private names
are emitted, no substitution generated by a synchronisation can identify two previously dis-
tinct names. Hence, although mutual desynchronisations exist in Pπ (due to the presence
of the sum operator), strong bisimilarity is not substitution closed, but is a congruence.
Indeed, to obtain the latter property, we only need to consider the particular substitutions
at work in Pπ, which cannot identify two names.

Regarding future extensions of this work, we would like to study whether our approach
can be adapted to analyse weak bisimilarity in π0 (as mentioned in Remark 2.8, strong
and weak bisimilarity coincide in µCCS). Another interesting direction, as hinted above,
would be to study strong bisimilarity on infinite, restriction-free calculi (in CCS and the
π-calculus).
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