
Logical Methods in Computer Science
Vol. 4 (2:5) 2008, pp. 1–14
www.lmcs-online.org

Submitted Sep. 21, 2007
Published May 15, 2008

A LOWER BOUND ON WEB SERVICES COMPOSITION

ANCA MUSCHOLL a AND IGOR WALUKIEWICZ b

a LaBRI, Université Bordeaux, 351, Cours de la Libération, F-33 405, Talence cedex, France
e-mail address: anca@labri.fr

b CNRS LaBRI, 351, Cours de la Libération, F-33 405, Talence cedex, France
e-mail address: igw@labri.fr

Abstract. A web service is modeled here as a finite state machine. A composition
problem for web services is to decide if a given web service can be constructed from a given
set of web services; where the construction is understood as a simulation of the specification
by a fully asynchronous product of the given services. We show an EXPTIME-lower bound
for this problem, thus matching the known upper bound. Our result also applies to richer
models of web services, such as the Roman model.

1. Introduction

Inherently distributed applications such as web services [1] increasingly get into the
focus of automated verification techniques. Often, some basic e-services are already imple-
mented, but no such simple service can answer to a more complex query. For instance, a user
interested in hiking Mt. Everest will ask a travel agency for information concerning weather
forecast, group travels, guides etc. The travel agency will contact different e-services, ask-
ing for such information and making appropriate reservations, if places are available. In
general, single services such as weather forecast or group reservations, are already available
and it is important to be able to reuse them without any change. The task of the travel
agency is to compose basic e-services in such a way that the user’s requirements are met
(and eventually some constraints wrt. the called services, such as avoiding unreliable ones).
Thus, one main objective is to be able to check automatically that the composition of basic
e-services satisfies certain desirable properties or realizes another complex e-service.

In this paper we study a problem that arises in the composition of e-services as con-
sidered in [2, 3, 4]. The setting is the following: we get as input a specification (goal) B,
together with n available services A1, . . . ,An. Then we ask whether the composition of the
services Ai can simulate the behavior of the goal B. This problem is known as composition

synthesis. It amounts to synthesize a so-called delegator, that tells at any moment which

1998 ACM Subject Classification: F.1.2, F.3.1.
Key words and phrases: Automata simulation, complexity, web services composition.

a,b Work supported by the projects ANR DOCFLOW (ANR-06-MDCA-005) and ANR DOTS (ANR-06-
SETI-003).

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-4 (2:5) 2008

c© A. Muscholl and I. Walukiewicz
CC© Creative Commons

http://creativecommons.org/about/licenses

2 A. MUSCHOLL AND I. WALUKIEWICZ

service must perform an action. In essence, a delegator implements a simulation relation
of the goal service B by the composition of the available services Ai. In the most general
setting, as considered for instance in [9, 8, 7], services are modeled by communicating state
machines [5], that have access to some local data. In this paper, we reconsider the simplified
setting of the so-called Roman model [2] where services are finite state processes with no
access to data and no mutual synchronization. This restriction is severe, however sufficient
for our purposes, since our primary motivation is to obtain a complexity lower bound for
the composition synthesis problem.

In this paper we study the complexity of the composition synthesis problem in the very
simple setting where the composition of the finite state machines Ai is fully asynchronous
(in particular there is no communication). This case is interesting for two reasons. It is
known to be decidable in Exptime [2], contrary to some richer frameworks where it is un-
decidable [3]. It is also probably the simplest setting where the problem can be formulated,
thus the complexity of this variant gives a lower bound on the complexity of any other
variants of the synthesis problem. A related problem arises when instead of simulation one
considers bisimulation. This is sometimes called orchestration problem, where the issue is
to find a communication architecture of the available services, that is equivalent to the goal,
modulo bisimulation. In our setting, this problem amounts to checking if the asynchronous
composition of finite state machines is bisimilar to a given machine.

The main result of this paper is the Exptime lower bound for the composition synthesis
problem. We also show that the same question can be solved in polynomial time if we
assume that the sets of actions of the available machines are pairwise disjoint, i.e., each
request can be handled by precisely one service. Note that in the latter case, the set of
actions depends on the number of processes, whereas for the first result we show that the
case where the set of actions is fixed is already Exptime-hard. We also show that the
orchestration (bisimulation) problem is Nlogspace complete, independently of whether
the sets of actions of the components are disjoint or not1. This result, however, is less
interesting the context of service composition. The bisimulation requirement means that
that the client (goal automaton) should be prepared to admit all possible interleavings in
the composition, which usually makes the specification too complex.

Similar kinds of questions were also considered by the verification community. There
is a large body of literature on the complexity of bisimulation and simulation problems
for different kinds of process calculi (for a survey see [12]). A result that is most closely
related to ours is the Exptime completeness of simulation and bisimulation between non-
flat systems [10]. The main difference to our setting is that there both a system and services
are given as composition of finite state machines using (binary) synchronization on actions,
i.e., an action can synchronize two services. In a sense this paper shows that the lower
bound for the simulation holds even without any synchronization.

This paper is an extended version of the conference publication [11]. In particular, the
characterization of the complexity of the bisimulation problem is new.

1This problem is easier than checking bisimulation between a BPP and a finite state automaton, which
is P-complete. The reason is that the finite-state automaton is deterministic in our setting.

A LOWER BOUND ON WEB SERVICES COMPOSITION 3

2. Notations

We denote throughout this paper tuples of states (i.e., global states of a product au-
tomaton) by bold characters ~q,~s,~t, Unless otherwise stated, the components of vector
~t are t1, . . . , tn.

An asynchronous product of n deterministic automata

Ai = 〈Qi,Σi, q
0
i , δi : Qi × Σi → Qi〉

is a nondeterministic automaton:

A1 ⊗ · · · ⊗ An = 〈Q,Σ, ~q, δ : Q× Σ → P(Q)〉

where: Q = Q1 × · · · ×Qn; Σ =
⋃

i=1,...,nΣi; ~q = (q01, . . . , q
0
n); and δ is defined by:

~t ∈ δ(~s, a) iff for some i, ti = δi(si, a) and for all j 6= i we have tj = sj.

Observe that the product automaton can be non deterministic because the alphabets
Σi are not necessarily disjoint.

We define a simulation relation on nondeterministic automata in a standard way.
Take two nondeterministic automata A = 〈QA,Σ, q

0
A, δA : QA × Σ → P(QA)〉 and B =

〈QB ,Σ, q
0
B , δB : QB × Σ → P(QB)〉 over the same alphabet. The simulation relation

4⊆ QA × QB is the biggest relation such that if qA 4 qB then for every a ∈ Σ and every
q′A ∈ δA(qA, a) there is q′B ∈ δB(qB, a) such that q′A 4 q′B. We write A 4 B if q0A 4 q0B.

Problem: Given n deterministic automata A1, . . . ,An and a deterministic automaton B
decide if B 4 A1 ⊗ · · · ⊗ An.

We will show that this problem is Exptime-complete. It is clearly in Exptime as one
can construct the product A1 ⊗ · · · ⊗ An explicitly and calculate the biggest simulation
relation with B. The rest of this paper will contain the proof of Exptime-hardness. We
will start with the Pspace-hardness, as this will allow us to introduce the method and some
notation.

3. A Pspace lower bound

We will show Pspace-hardness of the problem by reducing it to the existence of a loop-
ing computation of a linearly space bounded deterministic Turing machine. The presented
proof of the Pspace bound has the advantage to generalize to the encoding of alternating
machines that we will present in the following section.

Fix a deterministic Turing machine M working in space bounded by the size of its
input. We want to decide if on a given input the computation of the machine loops. Thus
we do not need any accepting states in the machine and we can assume that there are
no transitions from rejecting states. We denote by Q the states of M and by Γ the tape
alphabet of M . A configuration of M is a word over Γ∪(Q×Γ) with exactly one occurrence
of a letter from Q×Γ. A configuration is of size n if it is a word of length n. Transitions of
M will be denoted as qa −→ q′bd, where q, q′ are the old/new state, a, b the old/new tape
symbol and d ∈ {l, r} the left/right head move (w.l.o.g. we assume that M moves the head
in each step).

Suppose that the input is a word w of size n. We will construct automata A1, . . . ,An

and B such that B 4 A1 ⊗ · · · ⊗ An iff the computation of M on w is infinite.

4 A. MUSCHOLL AND I. WALUKIEWICZ

We start with some auxiliary alphabets. For every i = 1, . . . , n let

Γi = Γ× {i} and ∆i = (Q× Γi) ∪ (Q× Γi × {l, r}) .

We will write ai instead of (a, i) for elements of Γi. Let also ∆ =
⋃

i=1,...,n∆i.

The automaton Ai = 〈Qi,Σi, q
0
i ,−→〉 is defined as follows:

• The set of states is Qi = Γ∪ (Q×Γ)∪{⊤}, and the alphabet of the automaton is Σi = ∆.
• We have transitions:
− a

qai
−→ qa, for all a ∈ Γ and q ∈ Q,

− qa
q′bid
−→ b, for qa → q′bd the transition of M on qa (there is at most one).

− From a, transitions on letters in ∆i \ {qai : q ∈ Q} go to ⊤. Similarly, from qa

transitions on ∆i \ {qbid} go to ⊤ if there is a transition of M on qa; if not, then qa

has no outgoing transitions. From ⊤ there are self-loops on all letters from ∆.
• For i = 2, . . . , n the initial state of Ai is wi, the i-th letter of w; for A1 the initial state
is q0w1, i.e., the initial state of M and the first letter of w.

Figure 1 shows a part of Ai:

⊤ qa

a b

qai
∆ i

\ {
qa i

: q
∈ Q}

∆i \ {q
′bid}

q′bid

∆

Figure 1: Part of Ai

The idea is classical: automaton Ai controls the i-th tape symbol, whereas automaton
B defined below is in charge of the control part of M . The challenge is to do this without
using any synchronization between adjacent automata Ai,Ai+1. Next, we introduce an
automaton K that will be used to define B (see also Figure 2). The set of states of K is
QK = {s, e} ∪ (Q×

⋃
Γi × {l, r}); the initial state is s and the final one e; the alphabet is

∆; the transitions are defined by:

• s
q′bir
−→ q′bir for i = 1, . . . , n − 1, whenever we have a transition qa → q′br in M for some

state q and some letter a;

• s
q′bi+1l
−→ q′bi+1l for i = 1, . . . , n−1, whenever we have a transition qa → qbl in M for some

state q and some letter a;

• q′bir
q′ci+1

−→ e and q′bi+1l
q′ci
−→ e for all c ∈ Γ.

Figure 2 presents a schema of the automatonK. We define B as the deterministic automaton
recognizing (L(K))∗, that is obtained by gluing together the states s and e.

Remark 1. All Ai and B are deterministic automata of size polynomial in n. The input

alphabets of the Ai are almost pairwise disjoint: the only states with common labels on

outgoing transitions are the ⊤ states.

A LOWER BOUND ON WEB SERVICES COMPOSITION 5

s e

q′bi+1l

q′bir

q′bi+1l

q′bir

q′ci

q′ci+1

Figure 2: Automaton K

Definition 3.1. We say that a configuration C of size n of M corresponds to a global state
~s of A1 ⊗ · · · ⊗ An iff si = C(i) for i = 1, . . . , n; in other words, if the state of Ai is the
same as the i-th letter of C.

Definition 3.2. We say that a global state ~s of A1 ⊗ · · · ⊗ An is proper when there is no
⊤-state in ~s.

Lemma 3.3. If ~s is a proper state, then for every letter a ∈ ∆ the automaton A1⊗· · ·⊗An

has in state ~s at most one outgoing a-transition. Once the automaton enters a state that is

not proper, it stays in non proper states.

It is easy to see that from a non proper state, A1 ⊗ · · · ⊗ An can simulate any state of
B. The reason is that from ⊤, any move on letters from ∆ is possible.

Lemma 3.4. Suppose that A1⊗ · · ·⊗An is in a state ~s that corresponds to a configuration

C of M .

• If C is a configuration with no successor, then there is a word v ∈ L(K) that cannot be

simulated by A1 ⊗ · · · ⊗ An from ~s.

• Otherwise, the successor configuration C ⊢ C ′ exists, and there is a unique word v ∈ L(K)

such that ~s
v

−→ ~t and ~t is proper. Moreover ~t corresponds to C ′. All other words from

L(K) lead from ~s to non proper states of A1 ⊗ · · · ⊗ An.

Proof. For the first claim, assume that ~s corresponds to a configuration, thus there is exactly
one i such that Ai is in a state from Q× Γ. The other automata are in states from Γ.

If C is terminal then Ai is in a state qa which has no outgoing transition. This means
that this state can simulate no move on letters q′bir, for q′ ∈ Q and bi ∈ Γi (and such a
move exists in K, as the machine M must have a move to the right if it is nontrivial). All
other automata are also not capable to simulate q′bir as they can do only moves on letters
∆j for j 6= i.

Now suppose that C ⊢ C ′. To avoid special, but simple, cases suppose that the position
i of the state is neither the first nor the last. Let si = qa and suppose also that qa → q′br

is the move of M on qa. The case when the move is to the left is similar.
The only possible move of K from s which will put A1 ⊗ · · · ⊗An into a proper state is

q′bir. This makes Ai to change the state to b and it makes K to change the state to q′bir.
From this latter state the only possible move of K is on letters q′c′i+1 for arbitrary c′ ∈ Γ.
Suppose that Ai+1 is in the state c = si+1 ∈ Γ, then all moves of K on q′c′i+1 with c′ 6= c

can be matched with a move to ⊤ of Ai+1. On q′ci+1 the automaton Ai+1 goes to q′c and
automaton K goes to e. This way the state in the configuration is changed and transmitted
to the right. We have that the new state of A1 ⊗ · · · ⊗An corresponds to the configuration
C ′.

6 A. MUSCHOLL AND I. WALUKIEWICZ

Lemma 3.5. We have B 4 A1 ⊗ · · · ⊗ An iff the computation of M on w is infinite.

Proof. Recall that B is a deterministic automaton recognizing (L(K))∗, and has initial state
s. The initial state of A1 ⊗ · · · ⊗ An corresponds to the initial configuration C0 of M on
w. We show now for every state ~t corresponding to a configuration C of M : s 4 ~t iff the
computation of M starting in C is infinite.

From a configuration C, the machine M has only one computation: either infinite, or a
finite one that is blocking. Suppose that the computation from C has at least one step and
let C1 be the successor configuration. By Lemma 3.4 from state s there is exactly one word

v1 ∈ L(K) such that ~t
v1−→ ~t1 in A1 ⊗ · · · ⊗ An, and ~t1 is proper. Moreover ~t1 corresponds

to C1. On all other words from L(K), the product A1 ⊗ · · · ⊗ An reaches non proper
states and from there it can simulate any future behaviour of B. If C1 has no successor
configuration then, again by Lemma 3.4, there is a word in L(K) that cannot be simulated
by A1 ⊗ · · · ⊗ An from ~t1. If C1 has a successor then we repeat the whole argument. Thus
the behaviour of B from s can be simulated by A1 ⊗ · · · ⊗An from the state corresponding
to C iff the machine M has an infinite computation starting from C.

One can note that the construction presented in this section uses actions that are
common to several processes in a quite limited way: the only states that have common
outgoing labels are the ⊤ states from which all behaviours are possible. This observation
motivates the question about the complexity of the problem when the automata A1, . . . ,An

have pairwise disjoint alphabets. With this restriction, the simulation problem can be solved
efficiently:

Theorem 3.6. The following question can be solved in polynomial time:

Input: n deterministic automata A1, . . . ,An over pairwise disjoint input alphabets, and

a deterministic automaton B.
Output: decide if B 4 A1 ⊗ · · · ⊗ An.

Proof. Let Ci be a automaton with a single state ⊤, and with self-loops on every letter from
the alphabet Σi of Ai. We write A(i) for the asynchronous product of all Cj, j 6= i, and

of Ai. Similarly, ~t(i) will denote ~t with all components but i replaced by ⊤. Suppose now
that p is a state of B, and ~t a state of A1 ⊗ · · · ⊗ An. We write p 4i

~t if p is simulated by
~t(i) in A(i). Notice that since B and Ai are both deterministic, we can decide if p 64i ~t in
logarithmic space (hence in polynomial time), by guessing simultaneously a path in B and
one in Ai.

We show now that p 4 ~t in A1 ⊗ · · · ⊗ An iff p 4i
~t for all i.

If p 4 ~t, then all the more p 4 ~t(i), since Cj can simulate Aj for all j = 1, . . . , n.

Conversely, assume that p 4i
~t for all i, but p 64 ~t. This means that there exist computations

p
a1...ak−→ p′ in B, ~t

a1...ak−→ ~u in A1 ⊗ · · · ⊗ An and a letter a ∈ Σi for some i, such that p′

has an outgoing a-transition, but ~ui does not (in Ai). Clearly, we also have a computation
~t(i)

a1...ak−→ ~u(i) in A(i). Since ~ui has no outgoing a-transition, so neither does ~u(i), which
contradicts p 4i

~t.

A LOWER BOUND ON WEB SERVICES COMPOSITION 7

4. The complexity of simulation

This time we take an alternating Turing machine M working in space bounded by the
size of the input. We want to decide if M has an infinite computation. This means that
the machine can make choices of existential transitions in such a way that no matter what
are the choices of universal transitions the machine can always continue. Clearly, one can
reduce the word problem to this problem, hence it is Exptime-hard (see [6]; for more details
on complexity see any standard textbook).

We will assume that M has always a choice between two transitions, i.e., for each non
blocking state/symbol pair qa there will be precisely two distinct tuples q′b′d′, q′′b′′d′′ such
that qa → q′b′d′ and qa → q′′b′′d′′. If q is existential then it is up to the machine to choose
a move; if q is universal then the choice is made from outside. To simplify the presentation
we will assume that d′ = d′′, i.e., both moves go in the same direction. Every machine
can be transformed to an equivalent one with this property. We will also assume that the
transitions are ordered in some way, so we will be able to say that qa → q′b′d is the first
transition and qa → q′′b′′d is the second one.

Take the input word is w of size n. We will construct automata A′
1,A

′′
1, . . . ,A

′
n,A

′′
n

and B such that B is simulated by A′
1 ⊗A′′

1 · · · ⊗A′
n ⊗A′′

n iff there is an infinite alternating
computation of M on w. The main idea is that automata A′

i and A′′
i control the i-th tape

symbol, as in the previous section, and each one is in charge of one of the two possible
transitions (if any) when the input head is at position i in an existential state (universal
moves are simpler).

We will modify a little the alphabets that we use. Let

∆′
i =(Q× Γi) ∪ (Q× Γi × {l, r} × {1})

∆′′
i =(Q× Γi) ∪ (Q× Γi × {l, r} × {2})

We then put ∆i = ∆′
i ∪∆′′

i , ∆ =
⋃

i∆i, ∆
′ =

⋃
i∆

′
i and ∆′′ =

⋃
i ∆

′′
i .

The automaton A′
i is defined as follows:

• The set of states is Q′
i = {⊤}∪Γ∪(Q×Γ)∪(Q×Γ×{l, r}), the alphabet of the automaton

is Σ′
i = ∆ ∪ {ζ}; where ζ is a new letter common to all automata.

• We have the following transitions:

− a
qai
−→ qa for all a ∈ Γ and q ∈ Q,

− qa
q′b′id1−→ b′ and qa

q′′b′′i d1−→ b′′ if q is an universal state and qa → q′b′d, qa → q′′b′′d are
the two transitions from qa. We have also transitions to ⊤ on all the letters from
∆′

i \ {q
′b′id1, q

′′b′′i d1}.

− qa
ζ

−→ q′b′d
q′b′id1−→ b′ and qa

q′′b′′i d1−→ b′′ if q is an existential state and qa → q′b′d,
qa → q′′b′′d are the first and the second transitions from qa, respectively. We have
also transitions to ⊤ on all the letters from ∆′

i \ {q
′′b′′i d1}. From q′b′d all transitions

on ∆′
i \ {q

′b′id1} go to ⊤.
− From a, transitions on letters in ∆′

i \ {qai : q ∈ Q} go to ⊤. If qa is terminal then
there are no outgoing transitions from qa. From ⊤ there are self-loops on all letters
from ∆c := ∆ ∪ {ζ}.

• The initial state of A′
i is wi, the i-th letter of w except for A1 whose initial state is q0w1,

the initial state of M and the first letter of w.

Figure 3 below presents parts of A′
i corresponding to universal and existential states.

8 A. MUSCHOLL AND I. WALUKIEWICZ

⊤ qa

a b′b′′

qai
∆
′
i
\ {

qa i
: q

∈ Q}

∆′
i \ {q

′b′id1, q
′′b′′i d1}

q
′ b
′
i
d1q

′′ b
′′

i
d1

∆c

⊤ qa

q′b′d

a b′b′′

⊤

qai
∆
′
i
\ {

qa i
: q

∈ Q}

∆′
i \ {q

′′b′′i d1}
ζ

q
′ b
′
i
d1

q
′′ b
′′

i
d1

∆c

∆ ′
i \ {q ′b ′

i d1}

Figure 3: Parts of the automaton A′
i corresponding to universal and existential states q,

respectively. The alphabet ∆c is ∆ ∪ {ζ}.

The automaton A′′
i is the same as A′

i with the difference that we replace every label
q′′b′′d1 by q′b′d2, every q′b′d1 by q′′b′′d2 (notice the change of primes and double primes),
every ∆′

i by ∆′′
i and ∆′ by ∆′′. Moreover, state labels b′ and b′′ are exchanged, and state

q′b′d is relabeled q′′b′′d.
Next, we define a new automaton K that will be used to define new automaton B. The

states of K are
QK = {s, e, choice} ∪ (Q×

⋃

i

Γi × {l, r})

plus some auxiliary states to implement transitions on two letters at a time. We will write
transitions with two letters on them for readability. The initial state is s and the final one
is e. The alphabet is ΣK =

⋃
Σi. The transitions are defined by (cf. Figure 4):

• s
ζ

−→ choice;

• s
(q′bir1)(q′bir2)

−→ q′bir whenever we have a transition qa → q′br in M for some universal
state q and some letter a, and similarly from choice instead of s when q is existential;

• s
(q′bi+1l1)(q′bi+1l2)

−→ q′bi+1l whenever we have a transition qa → q′bl in M for some universal
state q and some letter a, and similarly from choice instead of s when q is existential;

• q′bir
(q′ci+1)2

−→ e and q′bi+1l
(q′ci)

2

−→ e for all c ∈ Γ.

We define B as the deterministic automaton recognizing (L(K))∗ that is obtained by gluing
together states s and e.

Remark 2. All A′
i, A

′′
i and B are deterministic and of size polynomial in n.

Definition 4.1. A configuration C of size n corresponds to a global state ~s of A′
1⊗A′′

1 · · ·⊗
A′

n ⊗ A′′
n if s2i = s2i−1 = C(i) for i = 1, . . . , n; in other words, if the states of A′

i and A′′
i

are the same as the i-th letter of C.

A LOWER BOUND ON WEB SERVICES COMPOSITION 9

q′bi+1l q′bir

s

choice

e

(q
′ b i+

1l
1)(

q
′ b i+

1l
2) (q ′b

ir1)(q ′b
ir2)

(q′bi+1l1)(q
′bi+1l2) (q′bir1)(q

′bir2)

ζ

(q ′c
i)(q ′c

i)
(q
′ c i+

1)
(q
′ c i+

1)

Figure 4: Automaton K

Definition 4.2. We say that a global state ~s of A′
1 ⊗A′′

1 · · · ⊗ A′
n ⊗A′′

n is proper when ⊤
does not appear in ~s.

It is easy to see that from a non proper state, A′
1 ⊗A′′

1 · · · ⊗A′
n ⊗A′′

n can simulate any
state of B. The reason is that from ⊤, any move on letters from ∆c is possible.

Lemma 4.3. Suppose that A′
1 ⊗A′′

1 · · · ⊗ A′
n ⊗A′′

n is in a state ~s corresponding to a con-

figuration C of M . If C has no successor configuration then there is a word v ∈ L(K) that
cannot be simulated by A′

1 ⊗ A′′
1 · · · ⊗ A′

n ⊗ A′′
n from ~s. Otherwise, C has two successor

configurations C ⊢ C ′ and C ⊢ C ′′. We have two cases:

• If C is universal then there are two words v′ and v′′ in L(K): each leading from ~s to a

unique state ~t′ and ~t′′, respectively. These two states are proper and correspond to C ′ and

C ′′, respectively. On all other words from L(K), non proper states can be reached from ~s.

• If C is existential, then on the letter ζ exactly two states are reachable from ~s, call them
~s′ and ~s′′. There is a word v′ such that ζv′ ∈ L(K) and on v′ from ~s′ a unique state is

reachable. This state is proper and corresponds to C ′. Similarly there is a word v′′ for ~s′′

and C ′′. On all words from L(K) that are different from ζv′ and ζv′′, non proper states

can be reached from ~s.

Proof. As ~s corresponds to the configuration C, there is some i such that both automata
A′

i and A′′
i are in state qa, for some q ∈ Q and a ∈ Γ, and all other automata are in states

from Γ.
If C is a configuration without successor, then the state qa in A′

i and A′′
i does not have

any outgoing transition. Thus these automata cannot simulate the ζ transition of K from
s. No other automaton A′

j, or A′′
j can simulate the ζ transition either, as they are all in

states from Γ.
Suppose that C is an universal configuration with two possible transitions to the right,

qa → q′b′r and qa → q′′b′′r. The case when the moves are to the left is similar. In A′
i

from the state qa we have a transition on q′b′ir1 leading to b′ and on q′′b′′i r1 leading to b′′.
Similarly for A′′

i , but on q′b′ir2 and q′′b′′i r2. These transitions can simulate both transitions
(q′b′ir1)(q

′b′ir2) and (q′′b′′i r1)(q
′′b′′i r2) that are possible from s in K. (All other transitions

from s in K lead from ~s to a non proper state of A′
1⊗A′′

1 · · · ⊗A′
n⊗A′′

n.) Let us focus only

10 A. MUSCHOLL AND I. WALUKIEWICZ

on the first case, when (q′b′ir1)(q
′b′ir2) is executed in K and the state q′b′ir is reached. From

this state only transitions (q′c′i+1)
2 are possible, for all c′ ∈ Γ. Suppose that A′

i+1 and A′′
i+1

are in state c ∈ Γ. Transition (q′ci+1)
2 of K is simulated by moves to q′c in both A′

i+1 and

A′′
i+1. This way the new state is transferred to the right. Transitions (q′c′i+1)

2 where c 6= c′

are simulated in A′
1 ⊗A′′

1 · · · ⊗ A′
n ⊗A′′

n by moves of A′
i+1 and A′′

i+1 to ⊤.
Suppose that C is an existential configuration, with possible transitions qa → q′b′r and

qa → q′′b′′r. The case when moves are to the left is similar. Consider first the transition
of K from s that corresponds to the letter ζ. Both A′

i and A′′
i can simulate this transition:

the first goes to state q′b′r, and the second goes to q′′b′′r. Assume that it is the transition
of A′

i that is taken; the other case is symmetric. We get to the position when K is in the
state choice , A′

i is in the state q′b′r and A′′
i in the state qa. From choice, automaton K

can do (q′b′ir1)(q
′b′ir2) that can be simulated by the transitions of A′

i and A′′
i (every other

transition of K can be simulated by a move of A′
1⊗A′′

1 · · ·⊗A′
n⊗A′′

n to a non proper state).
Both automata reach the state b′. Automaton K is now in state q′bir from where it can do
(q′ci+1)

2 for any c ∈ Γ. The result of simulating these transitions while reaching a proper
state is the transfer of the state to the right, in the same way as in the case of the universal
move. Finally, it remains to see what happens if K makes a move from s that is different
from ζ. In this case, at least one of the automata A′

i, A
′′
i can simulate the corresponding

transition on (peid1), (peid2) respectively, by going to state ⊤, since we suppose that in any
configuration of M , the two outgoing transitions are distinct. Hence, a non proper state
can be reached.

Theorem 4.4. The following problem is Exptime-complete:

Input: deterministic automata A1, . . . ,An and a deterministic automaton B.
Output: decide if B 4 A1 ⊗ · · · ⊗ An.

Proof. The problem is clearly in Exptime as the state space of A′
1 ⊗A′′

1 · · · ⊗A′
n ⊗A′′

n can
be constructed in Exptime. For Exptime hardness, we take an alternating machine M

as at the beginning of this section and use the construction presented above together with
Lemma 4.3. Recall, that B is a deterministic automaton obtained from the automaton K by
gluing states s and e (cf. Figure 4). We also have that the initial state ofA′

1⊗A′′
1 · · ·⊗A′

n⊗A′′
n

corresponds to the initial configuration of M (in a way required by Definition 4.1). We will
show that for every state ~t corresponding to a configuration C of M : s 4 ~t iff M has an
infinite alternating computation from C.

Consider a game of two players: Computer and Environment. Positions of the game are
configurations of M . In existential configurations Computer chooses a successor configura-
tion (with respect to the transition table of M). In universal configurations Environment
makes a choice. Having an infinite alternating computation from C is equivalent to saying
that in this game Computer has a strategy to avoid being blocked. At the same time, not
having such a computation from C is equivalent to saying Environment has a strategy to
reach a configuration with no successors. As this is a reachability game, for each such C

there is a bound dC (distance) on the number of steps in which Environment can force
Computer into a blocking configuration. This distance is 0 if C is blocking; it is one plus
the maximum over distances for two successor configurations if C is existential, and it is
one plus the minimum over the distances of successor configurations if C is universal. (Here
we assume that the distance is ∞ if Environment cannot win from C.).

Going back to the proof of the theorem, consider first the case when M does not have
an infinite alternating computation from C. Let ~t be the state of A′

1 ⊗ A′′
1 · · · ⊗ A′

n ⊗ A′′
n

A LOWER BOUND ON WEB SERVICES COMPOSITION 11

corresponding to C. We show that s 64 ~t by induction on the distance dC . There are three
possible cases:

• If dc = 0 then is no transition possible from C. In this case Lemma 4.3 gives us an
execution of B from s that cannot be simulated by A′

1 ⊗A′′
1 · · · ⊗ A′

n ⊗A′′
n from ~t.

• If C is universal, there is a successor C1 such that dC > dC1
. We take the word v ∈ L(K)

given by Lemma 4.3. The only way to simulate this word from ~t leads to the proper state
~t1 corresponding to C1. By induction hypothesis s 64 ~t1.

• If C is existential, then for both successor configurations, C ′ and C ′′, the distance is
smaller. We make B execute ζ and then, depending how it was matched by A′

1⊗A′′
1 · · ·⊗

A′
n ⊗A′′

n , a word forcing the automaton to go to a proper state corresponding either to
C ′ or to C ′′. Using the induction hypothesis we get that the simulation is not possible
from s and the obtained states.

The case when M has an infinite alternating computation from C is very similar. In
this case dC = ∞. The means that if C is an existential computation then one of the
successor configurations has distance equal to ∞. By Lemma 4.3 we can match ζ so that
we go to the state corresponding to that configuration. If C is universal then both successor
configurations have distance equal to ∞. Once again Lemma 4.3, tells us how to match
every word from L(K).

We conclude the section by showing that Theorem 4.4 still holds under the assumption
that the alphabet of the automata Ai and B is of constant size.

Theorem 4.5. Let Σ be a fixed alphabet of at least 2 letters. The following problem is

Exptime-complete:

Input: deterministic automata A1, . . . ,An and a deterministic automaton B over the

input alphabet Σ.
Output: decide if B 4 A1 ⊗ · · · ⊗ An.

Proof. We reduce directly from Theorem 4.4. Suppose that the input alphabet of all au-
tomata Ai,B is Σ × {1, . . . ,m}, for some m. Moreover, let S be the set of states of B and
let Q = Q1 × · · · ×Qn be the set of global states of A1 ⊗ · · · ⊗ An.

In each automaton Ai, B we replace every transition s
al−→ t by a sequence of transitions

with labels from Σ ∪ {#, $} as follows:

s
a

−→ (stl0)
#
−→ (stl1)

#
−→ (stl2) · · ·

#
−→ (stll)

$
−→ t

The (l + 1) states (stl0), . . . , (stll) are new. Let A′
i,B

′ be the automata obtained from Ai,
B, with state space Q′ and S′, respectively.

Take 4, the largest simulation relation from B to A1⊗· · ·⊗An. We show how to extend
4 to 4′ such that 4′ is a simulation relation from B′ to A′

1 ⊗ · · · ⊗A′
n (not necessarily the

largest one). Let 4′ be the union of 4 with the set of all pairs ((stlk), ~u′), where s, t ∈ S,
~u′ = (u′1, . . . , u

′
n) ∈ Q′, and such that:

• s
al−→ t and ~v

al−→ ~w for some a ∈ Σ, ~v = (v1, . . . , vn) and ~w = (w1, . . . , wn) such that
s 4 ~v, t 4 ~w,

• there is some i with u′i = (viwilk), and u′j = vj = wj for j 6= i.

It is immediate to check that 4′ is a simulation relation. First, (old) states from S can only
be simulated by (old) states from Q. Second, a new state (stlj) of B can be simulated only
by states ~u′ ∈ Q′ \Q. It can be shown easily that the largest simulation relation from B′ to
A′

1 ⊗ · · · ⊗ A′
n coincides with 4′ (hence with 4) on the set S ×Q of pairs of old states.

12 A. MUSCHOLL AND I. WALUKIEWICZ

5. The complexity of bisimulation

Till now we wanted to decide if an asynchronous product of deterministic automata
A1⊗· · ·⊗An can simulate a deterministic automaton B. An evident question is to consider
what happens if we consider bisimulation instead of simulation. To be bisimilar to an
asynchronous product, B must satisfy some structural constraints. In this section we prove
the following theorem, which shows that indeed, the bisimulation problem is easier.

Theorem 5.1. The following question can be solved in logarithmic space:

Input: n deterministic automata A1, . . . ,An and a deterministic automaton B.
Output: decide if B and A1 ⊗ · · · ⊗ An are bisimilar.

The proof of the theorem will occupy the rest of the section. We fix B and A1, . . . ,An.
Without loss of generality we assume that B is minimal with respect to bisimulation: no
two different states of B are bisimilar (if B is not minimal we can minimize it on-the-fly in
logarithmic space). This assumption also has a very pleasant consequence. If two states s1
and s2 of B are bisimilar to the same global state of A, then s1 = s2.

As we aim to obtain a logarithmic space algorithm we cannot even allow ourselves to
explore the state space of A1 ⊗ · · · ⊗An at random, as we cannot store the tuples of states.
This is why the following definition is crucial for the construction.

Definition 5.2. A sequence of transitions of A1⊗· · ·⊗An is banal if it can be decomposed
into a, possibly empty, sequence of transitions of A1, followed by one of A2, and so on, up
to An.

Observe that thanks to the lack of synchronization every state of A1 ⊗ · · · ⊗ An is
reachable by a run that is a banal sequence. Another pleasant property is that banal
sequences can be explored in logarithmic space: we need only to remember the current
state of the unique process that is active. We call configuration a pair (s,~t) consisting of a
state s of B and a global state ~t of A. For convenience, we say that a configuration (s,~t)
is reachable by some sequence ρ of transitions of A if ρ leads to ~t from the initial state
of A, and if s is reached in B from the initial state by the sequence of actions associated
with ρ (this is well-defined since B is deterministic). Note also that we can explore any
configuration (s,~t) that is reachable by some banal sequence in logarithmic space. Let us
call such pairs banally-reachable configurations.

The first necessary condition for B being bisimilar to A1 ⊗ · · · ⊗ An is that for every
banally-reachable configuration (s,~t) the same actions are possible from s and ~t. This can
be checked in logarithmic space as it is easy to verify its negation within this bound.

The second necessary condition is that every reachable configuration is banally-reachable.
Indeed, if (s,~t) is reachable by a sequence that is not banal then the banal sequence ρ ob-
tained by ordering the transitions process-wise also reaches ~t. If a bisimulation exists then
we are guaranteed that ρ reaches s in B. This is because the state reached by ρ must be
bisimilar to s, and B is minimal with respect to bisimulation.

To show that one can check in logarithmic space that every reachable configuration is
banally-reachable, we consider the negation of this property. We can then use the fact that
Logspace is closed under complement. We want to find a reachable configuration that is
not banally-reachable. If one exists then we can look at one that is reachable in a shortest

A LOWER BOUND ON WEB SERVICES COMPOSITION 13

number of steps. This means that there must exist a banally-reachable configuration (s1,~t1),
an action b and a process i such that (s2,~t2) is not banally-reachable, where δB(s1, b) = s2
and ~t2 is obtained from ~t1 by taking transition b of process i. This can be checked as follows.
One produces on-the-fly a banal sequence, when the part of process i is finished an extra
transition with letter b is taken. This way we have two states, one before taking b and one
after. We then continue constructing banal sequences from the two states with transitions
of processes i + 1 up to n. This way we have obtained two sequences which differ by the
action b of process i, and we check that the two states reached by B are different.

Together, the two conditions above are also sufficient for A1 ⊗ · · · ⊗ An and B being
bisimilar, hence the result.

6. Conclusion

We have shown an Exptime lower bound for the composition of services that are
described as a fully asynchronous product of finite state machines. Thus, we answer the
question left open in [2]. Since our lower bound holds for the simplest parallel composition
operation one can think of (no synchronization at all), it also applies to richer models,
such as products with synchronization on actions as in [10] or communicating finite-state
machines (CFSM) as in [9, 8]. It is easy to see that the simulation of a finite-state machine
by a CFSM A with bounded message queues is in Exptime, since the state space of A
is exponential in this case. Hence, this problem, as well as any of its variants with some
restricted form of communication, is Exptime-complete as well.

An interesting open question is what happens if we allow in the asynchronous product
arbitrary many copies of each finite state machine. That is, we suppose that an available
service can be used by an arbitrary number of peers. This question reduces to a bounded
variant of the simulation of a finite state machine by a BPP, and its decidability status is
open.

Acknowledgement: We thank the anonymous referees for interesting comments and
suggestions for improvement.

References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services. Concepts, Architectures and Applica-
tions. Springer, 2004.

[2] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Automatic composition of e-
services that export their behavior. In Proc. of the 1st Int. Conf. on Service Oriented Computing (ICSOC
2003), LNCS 2910, pp. 43–58, 2003.

[3] D. Berardi, D. Calvanese, G. D. Giacomo, R. Hull, and M. Mecella. Automatic composition of web
services in Colombo. In SEBD 2005, pages 8–15, 2005.

[4] D. Berardi, D. Calvanese, G. D. Giacomo, R. Hull, and M. Mecella. Automatic composition of web
services with messaging. In VLDB 2005, pages 613–624, 2005.

[5] D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM 30(2):323–342, 1983.
[6] A. K. Chandra, D. Kozen and L. J. Stockmeyer. Alternation. J. ACM 28(1):114–133, 1981.
[7] A. Deutsch, L. Sui, V. Vianu, and D. Zhou. Verification of communicating data-driven web services. In

Symposium on Principles of Database Systems (PODS), pp. 90-99, 2006.
[8] X. Fu, T. Bultan, and J. Su. Conversation protocols: a formalism for specification and verification of

reactive electronic services. In Theor. Comput. Sci. 328(1-2):19–37, 2004.
[9] R. Hull, M. Benedikt, V. Christophides, J. Su. E-services: a look behind the curtain. In Symposium on

Principles of Database Systems (PODS), pp. 1-14, 2003.

14 A. MUSCHOLL AND I. WALUKIEWICZ

[10] F. Laroussinie and Ph. Schnoebelen. The state explosion problem from trace to bisimulation equivalence.
In FoSSaCS 2000, LNCS 1784, pp. 192–207, 2000.

[11] A. Muscholl and I. Walukiewicz. A lower bound on Web services composition. In Proc. of FoSSaCS’07,
LNCS 4423, pp. 274-286, 2007.

[12] J. Srba. Roadmap of infinite results. Bulletin of the EATCS 78, pages 163-175, 2002. See also
http://www.brics.dk/∼srba/roadmap.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

	1. Introduction
	2. Notations
	3. A Pspace lower bound
	4. The complexity of simulation
	5. The complexity of bisimulation
	6. Conclusion
	References

