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Abstract. Tree automata with one memory have been introduced in 2001. They gener-
alize both pushdown (word) automata and the tree automata with constraints of equality
between brothers of Bogaert and Tison. Though it has a decidable emptiness problem,
the main weakness of this model is its lack of good closure properties.

We propose a generalization of the visibly pushdown automata of Alur and Madhusu-
dan to a family of tree recognizers which carry along their (bottom-up) computation an
auxiliary unbounded memory with a tree structure (instead of a symbol stack). In other
words, these recognizers, called Visibly Tree Automata with Memory (VTAM) define a
subclass of tree automata with one memory enjoying Boolean closure properties. We show
in particular that they can be determinized and the problems like emptiness, member-
ship, inclusion and universality are decidable for VTAM. Moreover, we propose several
extensions of VTAM whose transitions may be constrained by different kinds of tests be-
tween memories and also constraints a la Bogaert and Tison. We show that some of these
classes of constrained VTAM keep the good closure and decidability properties, and we
demonstrate their expressiveness with relevant examples of tree languages.

Introduction

The control flow of programs with calls to functions can be abstracted as pushdown
systems. This allows to reduce some program verification problems to problems (e.g. model-
checking) on pushdown automata. When it comes to functional languages with continuation
passing style, the stack must contain information on continuations and has the structure of
a dag (for jumps). Similarly, in the context of asynchronous concurrent programming lan-
guages, for two concurrent threads the ordering of return is not determined (synchronized)
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and these threads can not be stacked. In these cases, the control flow is better modeled as
a tree structure rather than a stack. That is why we are interested in tree automata with
one memory, which generalize the pushdown (tree) automata, replacing the a stack with a
tree. Here, a “memory” has to be understood as a storage device, whose structure is a tree.
For instance, two memories would correspond to two storage devices whose access would be
independent.

The tree automata with one memory introduced in [7] compute bottom-up on a tree,
with an auxiliary memory carrying a tree, as in former works such as [14]. Along a com-
putation, at any node of the tree, the memory is updated incrementally from the memory
reached at the sons of the node. This update may consist in building a new tree from the
memories at the sons (this generalizes a push) or retrieving a subtree of one of the memories
at the sons (this generalizes a pop). In addition, such automata may perform equality tests:
a transition may be constrained to be performed, only when the memories reached at some
of the sons are identical. In this way, tree automata with one memory also generalize certain
cases of tree automata with equality and disequality tests between brothers [4].

Automata with one memory have been introduced in the context of the verification of
security protocols, where the messages exchanged are represented as trees. In the context of
(functional or concurrent) programs, the creation of a thread, or a callcc, corresponds to a
push, the termination of a thread or a callcc corresponds to a pop. The emptiness problem
for such automata is in EXPTIME (note that for the extension with a second memory the
emptiness problem becomes undecidable). However, the class of tree languages defined by
such automata is neither closed by intersection nor by complement. This is not surprising
as they are strictly more general than context free languages.

On the other hand, Alur and Madhusudan have introduced the notion of visibility for
pushdown automata [2], which is a relevant restriction in the context of control flow analysis.
With this restriction, determinization is possible and actually the class of languages is closed
under Boolean operations.

In this paper, we propose the new formalism of Visibly Tree Automata with Memory
(VTAM). On one hand, it extends visibly pushdown languages to the recognition of trees,
and with a tree structure instead of a stack, following former approaches [14, 21, 10]. On the
other hand, VTAM restrict tree automata with one memory, imposing a visibility condition
on the transitions: each symbol is assigned a given type of action. When reading a symbol,
the automaton can only perform the assigned type of action: push or pop.

We first show in Section 2 that VTAM can be determinized, using a proof similar to
the proof of [2], and do have the good closure properties. The main difficulty here is to
understand what is a good notion of visibility for trees, with memories instead of stacks. We
also show that the problems of membership and emptiness are decidable in deterministic
polynomial time for VTAM.

In a second part of the paper (Section 3), we extended VTAM with constraints. Our
constraints here are recognizable relations; a transition can be fired only if the memory
contents of the sons of the current node satisfy such a relation. We give then a general
theorem, expressing conditions on the relations, which ensure the decidability of emptiness.
Such conditions are shown to be necessary on one hand, and, on the other hand, we prove
that they are satisfied by some examples, including syntactic equality and disequality tests
and structural equality and disequality tests. The case of VTAM with structural equality
and disequality tests (this class is denoted VTAM≡

6≡) is particularly interesting, since the
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determinization and closure properties of Section 2 carry over this generalization, which we
show in Section 3.4.2. The automata of VTAM≡

6≡ also enjoy a good expressive power, as
we show in Section 3.7 by presenting some non-trivial examples of languages in this class:
well-balanced binary trees, red-black trees, powerlists...

As an intermediate result, we show that, in case of equality tests or structural equality
tests, the language of memories that can be reached in a given state is always a regular
language. This is a generalization of the well-known result that the set of stack contents
in a pushdown automaton is always regular. To prove this, we observe that the memories
contents are recognized by a two-way alternating tree automaton with constraints. Then we
show, using a saturation strategy, that two-way alternating tree automata with (structural)
equality constraints are not more expressive than standard tree automata.

Finally, in Section 4 we propose a class of visibly tree automata, which combines the
structural constraints of VTAM≡

6≡, testing memory contents, with Bogaert-Tison constraints

of [4] (equality and disequality tests between brothers subterms) which operate on the term
in input. We show that the tree automata of this class can be determinized, are closed
under Boolean operations and have a decidable emptiness problem.

Related Work. Generalizations of pushdown automata to trees (both for input and stack)
are proposed in [14, 21, 10]. Our contributions are the generalization of the visibility
condition of [2] to such tree automata – our VTAM (without constraints) strictly generalize
the VP Languages of [2], and the addition of constraints on the stack contents. The visibly
tree automata of [1] use a word stack which is less general than a tree structured memory
but the comparison with VTAM is not easy as they are alternating and compute top-down
on infinite trees.

Independently, Chabin and Rety have proposed [5] a formalism combining pushdown
tree automata of [14] with the concept of visibly pushdown languages. Their automata
recognize finite trees using a word stack. They have a decidable emptiness problem and the
corresponding tree languages (Visibly Pushdown Tree Languages, VPTL) are closed under
Boolean operations. Following remarks of one of these two authors, it appeared that VTAM
and VPTL are incomparable, see Section 2.2.

1. Preliminaries

1.1. Term algebra. A signature Σ is a finite set of function symbols with arity, denoted
by f , g. . .We write Σn the subset of function symbols of Σ of arity n. Given an infinite
set X of variables, the set of terms built over Σ and X is denoted T (Σ,X ), and the subset
of ground terms is denoted T (Σ). The set of variables occurring in a term t ∈ T (Σ,X ) is
denoted vars(t). A substitution σ is a mapping from X to T (Σ,X ) such that {x|σ(x) 6= x},
the support of σ, is finite. The application of a substitution σ to a term t is written tσ.
It is the homomorphic extension of σ to T (Σ,X ). The positions Pos(t) in a term t are
sequences of positive integers (Λ, the empty sequence, is the root position). A subterm of
t at position p is written t|p, and the replacement in t of the subterm at position p by u
denoted t[u]p.
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1.2. Rewriting. We assume standard definitions and notations for term rewriting [11]. A
term rewriting system (TRS) over a signature Σ is a finite set of rewrite rules ℓ → r, where
ℓ ∈ T (Σ,X ) and r ∈ T (Σ, vars(ℓ)). A term t ∈ T (Σ,X ) rewrites to s by a TRS R (denoted
t →R s) if there is a rewrite rule ℓ → r ∈ R, a position p of t and a substitution σ such
that t|p = ℓσ and s = t[rσ]p. The transitive and reflexive closure of →R is denoted −−→∗R .

1.3. Tree Automata. Following definitions and notation of [8], we consider tree automata
which compute bottom-up (from leaves to root) on (finite) ground terms in T (Σ). At each
stage of computation on a tree t, a tree automaton reads the function symbol f at the current
position p in t and updates its current state, according to f and to the respective states
reached at the positions immediately under p in t. Formally, a bottom-up tree automaton
(TA) A on a signature Σ is a tuple (Q,Qf ,∆) where Σ is the computation signature, Q is a
finite set of nullary state symbols, disjoint from Σ, Qf ⊆ Q is the subset of final states and
∆ is a set of rewrite rules of the form: f(q1, . . . , qn) → q, where f ∈ Σ and q1, . . . , qn ∈ Q.
A term t is accepted (we may also write recognized) by A in state q iff t −−→∗∆ q, and the
language L(A, q) of A in state q is the set of ground terms accepted in q. The language
L(A) of A is

⋃
q∈Qf

L(A, q) and a set of ground terms is called regular if it is the language
of a TA.

2. Visibly Tree Automata with Memory

We propose in this section a subclass of the tree automata with one memory [7] which
is stable under Boolean operations and has decidable emptiness and membership problems.

2.1. Definition of VTAM. Tree automata have been extended [14, 21, 10, 7] to carry an
unbounded information along the states in computations. In [7], this information is stored
in a tree structure and is called memory. We keep this terminology here, and call our
recognizers tree automata with memory (TAM). For consistency with the above formalisms,
the memory contents will be ground terms over a memory signature Γ.

Like for TA we consider bottom-up computations of TAM in trees; at each stage of
computation on a tree t, a TAM, like a TA, reads the function symbol at the current
position p in t and updates its current state, according to the states reached immediately
under p. Moreover, a configuration of TAM contains not only a state but also a memory,
which is a tree. The current memory is updated according to the respective contents of
memories reached in the nodes immediately under p in t.

As above, we use term rewrite systems in order to define the transitions allowed in
a TAM. For this purpose, we add an argument to state symbols, which will contain the
memory. Hence, a configuration of TAM in state q and whose memory content is the
ground term m ∈ T (Γ), is represented by the term q(m). We propose below a very general
definition of TAM. It is similar to the one of [7], except that we have here general patterns
m1, . . . ,mn,m, while these patterns are restricted in [7], for instance avoiding memory
duplications. Since we aim at providing closure and decision properties, we will also impose
(other) restrictions later on.

Definition 2.1. A bottom-up tree automaton with memory (TAM) on a signature Σ is a
tuple (Γ, Q,Qf ,∆) where Γ is a memory signature, Q is a finite set of unary state symbols,
disjoint from Σ∪Γ, Qf ⊆ Q is the subset of final states and ∆ is a set of rewrite rules of the
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form f
(
q1(m1), . . . , qn(mn)

)
→ q(m) where f ∈ Σn, q1, . . . , qn, q ∈ Q and m1, . . . ,mn,m ∈

T (Γ,X ).

The rules of ∆ are also called transition rules. A term t is accepted by A in state q ∈ Q
and with memory m ∈ T (Γ) iff t −−→∗∆ q(m), and the language L(A, q) and memory language
M(A, q) of A in state q are respectively defined by:

L(A, q) =
{
t

∣∣ ∃m ∈ T (Γ), t −−→∗∆ q(m)
}

M(A, q) =
{
m

∣∣ ∃t ∈ T (Σ), t −−→∗∆ q(m)
}
.

The language of A is the union of languages of A in its final states, denoted: L(A) =⋃
q∈Qf

L(A, q).

Visibility Condition. The above formalism is of course far too expressive. As there are
no restrictions on the operation performed on memory by the rewrite rules, one can easily
encode a Turing machine as a TAM. We shall now define a decidable restriction called visibly
tree automata with memory (VTAM).

First, we consider only three main families (later divided into the subcategories defined
in Figure 1) of operations on memory. We assume below a computation step at some position
p of a term, where memories m1, . . . ,mn have been reached at the positions immediately
below p:

PUSH: the new current memory m is built with a symbol h ∈ Γn pushed on the top of
memories m1, . . . ,mn: f

(
q1(m1), . . . , qn(mn)

)
→ q

(
h(m1, . . . ,mn)

)
. According to the

terminology of [2], this corresponds to a call move in a program represented by an au-
tomaton.

POP: the new current memory is a subterm of one of the memories reached so far:
f
(
. . . , qi(h(m

′
1, . . . ,m

′
k)), . . .

)
→ q(m′

j). The top symbol h of mi is also read. This corre-
sponds to a function’s return in a program.

We have here to split POP operations into four categories, depending on whether we
pop on the memory at the left son or on the memory at the right son and on whether we
get the left son of that memory or its right son.

INT (internal): the new current memory is one of the memories reached:

f
(
q1(m1), . . . , qn(mn)

)
→ q(mi)

This corresponds to an internal operation (neither call nor return) in a function of a
program.

Again, we need to split INT operations into three categories: one for constant symbols
and two rules for binary symbols, depending on which of the two sons memories we keep.

Next, we adhere to the visibility condition of [2]. The idea behind this restriction,
which was already in [16], is that the symbol read by an automaton (in a term in our case
and [1], in a word in the case of [2]) corresponds to an instruction of a program, and hence
belongs to one of the three above families (call, return or internal). Indeed, the effect of
the execution of a given instruction on the current program state (a stack for [2] or a tree
in our case) will always be in the same family. In other words, in this context, the family of
the memory operations performed by a transition is completely determined by the function
symbol read.

Let us assume from now on for the sake of simplicity the following restriction on the
arity of symbols:
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PUSH a → q(c) a ∈ ΣPUSH

PUSH f
(
q1(y1), q2(y2)

)
→ q

(
h(y1, y2)

)
f ∈ ΣPUSH

POP11 f
(
q1(h(y11, y12)), q2(y2)

)
→ q(y11) f ∈ ΣPOP11

f
(
q1(⊥), q2(y2)

)
→ q(⊥)

POP12 f
(
q1(h(y11, y12)), q2(y2)

)
→ q(y12) f ∈ ΣPOP12

f
(
q1(⊥), q2(y2)

)
→ q(⊥)

POP21 f
(
q1(y1), q2(h(y21, y22))

)
→ q(y21) f ∈ ΣPOP21

f
(
q1(y1), q2(⊥)

)
→ q(⊥)

POP22 f
(
q1(y1), q2(h(y21, y22))

)
→ q(y22) f ∈ ΣPOP22

f
(
q1(y1), q2(⊥)

)
→ q(⊥)

INT0 a → q(⊥) a ∈ ΣINT0

INT1 f
(
q1(y1), q2(y2)

)
→ q(y1) f ∈ ΣINT1

INT2 f
(
q1(y1), q2(y2)

)
→ q(y2) f ∈ ΣINT2

where q1, q2, q ∈ Q, y1, y2 are distinct variables of X , c ∈ Γ2, h ∈ Γ2.

Figure 1: VTAM transition categories.

All the symbols of Σ and Γ have either arity 0 or 2.

This is not a real restriction, and the results of this paper can be extended straightforwardly
to the case of function symbols with other arities. The signature Σ is partitioned in eight
subsets:

Σ = ΣPUSH ⊎ ΣPOP11
⊎ ΣPOP12

⊎ ΣPOP21
⊎ ΣPOP22

⊎ΣINT0
⊎ΣINT1

⊎ΣINT2

The eight corresponding categories of transitions (transitions of the same category perform
the same kind of operation on the memory) are defined formally in Figure 1. In this figure,
one constant symbol has a particular role:

⊥ is a special constant symbol in Γ, used to represent an empty memory.

Note that there are three categories for INT, INT0 is for constant symbols and INT1, INT2

are for binary symbols and differ according to the memory which is kept. Similarly, there
are four variants of POP transitions, POP11, . . . ,POP22. Moreover, each POP rule has a
variant, which reads an empty memory (i.e. the symbol ⊥).

Definition 2.2. A visibly tree automaton with memory (or VTAM for short) on Σ is a
TAM (Γ, Q,Qf ,∆) such that every rule of ∆ belongs to one of the above categories PUSH,
POP11, POP12, POP21, POP22, INT0, INT1, INT2.

2.2. Expressiveness, Comparison. Standard bottom-up tree automata are particular
cases of VTAM (simply assume all the symbols of the signature in INT0 or INT1).

Now, let us try to explain more precisely the relation with the visibly pushdown lan-
guages of [2], when considering finite word languages.

If the stack is empty in any accepting configuration of some finite word pushdown

automaton A, then it is easy to compute a pushdown automaton Ã, which accepts the
reverses (mirror images) of the words accepted by A. Moreover, if A is a visibly pushdown

automaton, then Ã is also a visibly pushdown automaton: it suffices to exchange the push
and pop symbols.
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For pushdown word languages, there is a well-known lemma showing that the recogni-
tion by final state is equivalent to the recognition by empty stack. This equivalence however
requires ǫ-transitions to empty the stack when a final state is reached. There are however
no ǫ-transitions in visibly pushdown automata. So, if we consider for instance the language
of words w ∈ {a, b}∗ such that any prefix of w contains more a than b’s, it is recognized by
a visibly pushdown automaton. While, if we consider the mirror image (all suffixes contain
more a’s than b’s), it is not recognized by a visibly pushdown automaton.

In conclusion, as long as visibility is relevant, the way the automaton is moving is also
relevant. This applies of course to trees as well: there is a difference between top-down and
bottom-up recognition.

Now, if we encode a word as a tree on a unary alphabet, starting from right to left,
VTAM generalize visibly pushdown automata: moving bottom-up in the tree corresponds
to moving left-right in the word.

VPTA transitions and VPTL are defined in [5] in the same formalism (rewrite rules) as
in Figure 1, except that the rules are oriented in the other direction (top-down computa-
tions) and the memory contains a word, i.e. terms built with unary function symbols and
one constant (empty stack).

As sketched above, since the automata of [5] work top-down, a language can be rec-
ognized by a VTAM (which works bottom-up) and not by a VPTL. As a typical example,
consider the trees containing only unary symbols a, b and a constant 0 and such that all
subterms contain more a’s than b’s.

But the converse is also true: there are similarly languages that are recognized by
VPTA and not by VTAM (and there, constraints cannot help!)

Now, if we consider a slight modification of VPTA, in which the automata work bottom-
up (simply change the direction of transition rules), it is not clear that good properties
(closure and decision) are preserved since, now, we get equality tests between memory
contents, increasing the original expressive power; when going top-down we always duplicate
the memory content and send one copy to each son, while going bottom-up we may have
different memory contents at two brother positions.

2.3. Determinism. A VTAM A is said complete if every term of T (Σ) belongs to L(A, q)
for at least one state q ∈ Q. Every VTAM can be completed (with a polynomial overhead)
by the addition of a trash state. Hence, we shall consider from now on only complete
VTAM.

A VTAM A = (Γ, Q,Qf ,∆) is said deterministic iff:

• for all a ∈ ΣINT0
there is at most one rule in ∆ with left-member a,

• for all f ∈ ΣPUSH ∪ ΣINT1
∪ ΣINT2

, for all q1, q2 ∈ Q, there is at most one rule in ∆ with
left-member f

(
q1(y1), q2(y2)

)
,

• for all f ∈ ΣPOP11
∪ΣPOP12

(respectively ΣPOP21
∪ΣPOP22

), for all q1, q2 ∈ Q and all h ∈ Γ,
there is at most one rule in ∆ with left-member f

(
q1(h(y11, y12)), q2(y2)

)
(respectively

f
(
q1(y1), q2(h(y21, y22))

)
).

Theorem 2.3. For every VTAM A = (Γ, Q,Qf ,∆) there exists a deterministic VTAM
Adet = (Γdet , Qdet , Qdet

f
,∆det ) such that L(A) = L(Adet), where |Qdet | and |Γdet | both are

O
(
2|Q|2

)
.
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Proof. We follow the technique of [2] for the determinization of visibly pushdown automata:
we do a subset construction and postpone the application (to the memory) of PUSH rules,
until a matching POP is met. The construction of [2] is extended in order to handle the
branching structure of the term read and of the memory.

With the visibility condition, for each symbol read, only one kind of memory operation
is possible. This permits a uniform construction of the rules of Adet for each symbol of Σ.
As we shall see below, Adet does not need to keep track of the contents of memory (of A)
during its computation, it only needs to memorize information on the reachability of states
of A, following the path (in the term read) from the position of the PUSH symbol which has
pushed the top symbol of the current memory (let us call it the last-memory-push-position)
to the current position in the term. We let :

Qdet := {0, 1} × P(Q)× P(Q2)

Qdet

f
is the subset of states whose second component contains a final state of Qf . The first

component is a flag indicating whether the memory is currently empty (value 0) or not
(value 1). The second component is the subset of states of Q that A can reach at current
position, and the third component is a binary relation on Q which contains (q, q′) iff starting
from a state q and memory m at the last-memory-push-position, A can reach the current
position in state q′, and with the same memory m. We consider memory symbols made of
pairs of states and PUSH symbols:

Γdet :=
(
Qdet

)2
× (ΣPUSH)

The components of a symbol p ∈ Γdet refer to the transition who pushed p: the first and
second components of p are respectively the left and right initial states of the transition
and the third component is the symbol read.

The transition rules of ∆det are given below, according to the symbol read.

INT. For every i and for every f ∈ ΣINTi
, we have the following rules in ∆det :

f
(
〈b1, R1, S1〉(y1), 〈b2, R2, S2〉(y2)

)
→ 〈b1, R, S〉(y1)

where R :=
{
q
∣∣ ∃q1 ∈ R1, q2 ∈ R2, f

(
q1(y1), q2(y2)

)
→ q(y1) ∈ ∆

}
, and S is the update of

S1 according to the INT1-transitions of ∆, when b1 = 1 (the case b1 = 0 is similar):

S :=
{
(q, q′)

∣∣ ∃q1 ∈ Q, q2 ∈ R2, (q, q1) ∈ S1 and f
(
q1(y1), q2(y2)

)
→ q′(y1) ∈ ∆

}
.

The case f ∈ ΣINT2
is similar.

PUSH. For every f ∈ ΣPUSH, we have the following rules in ∆det :

f
(
〈b1, R1, S1〉(y1), 〈b2, R2, S2〉(y2)

)
→ 〈1, R, IdQ〉(p(y1, y2))

where R :=
{
q
∣∣ ∃q1 ∈ R1, q2 ∈ R2, h ∈ Γ, f

(
q1(y1), q2(y2)

)
→ q

(
h(y1, y2)

)
∈ ∆

}
, IdQ :={

(q, q)
∣∣ q ∈ Q

}
is used to initialize the memorization of state reachability from the position

of the symbol f , and p :=
〈
〈b1, R1, S1〉, 〈b2, R2, S2〉, f

〉
. Note that the two states reached

just below the position of application of this rule are pushed on the top of the memory.
They will be used later in order to update R and S when a matching POP symbol is read.
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POP. For every f ∈ ΣPOP11
, we have the following rules in ∆det :

f
(
〈b1, R1, S1〉(H(y11, y12)), 〈b2, R2, S2〉(y2)

)
→ 〈b,R, S〉(y11)

where H = 〈Q1, Q2, g〉, with Q1 = 〈b′1, R
′
1, S

′
1〉 ∈ Qdet , Q2 = 〈b′2, R

′
2, S

′
2〉 ∈ Qdet .

b = b′1

R =

{
q

∣∣∣∣
∃q′1 ∈ R′

1, q
′
2 ∈ R′

2, (q0, q1) ∈ S1, q2 ∈ R2, h ∈ Γ, g
(
q′1(y1), q

′
2(y2)

)
→

q0
(
h(y1, y2)

)
∈ ∆, f

(
q1(h(y11, y12)), q2(y2)

)
→ q(y11) ∈ ∆

}

S =

{
(q, q′)

∣∣∣∣
∃q′1 ∈ S′

1(q), q
′
2 ∈ R′

2, (q0, q1) ∈ S1, q2 ∈ R2, h ∈ Γ, g
(
q′1(y1), q

′
2(y2)

)

→ q0
(
h(y1, y2)

)
∈ ∆, f

(
q1(h(y11, y12)), q2(y2)

)
→ q′(y11) ∈ ∆

}

When a POP symbol is read, the top symbol of the memory, which is popped, contains the
states reached just before the application of the matching PUSH. We use this information
in order to update 〈b1, R1, S1〉 and 〈b2, R2, S2〉 to 〈b,R, S〉.
The cases f ∈ ΣPOP12

, f ∈ ΣPOP21
, f ∈ ΣPOP22

are similar.
The above constructions ensure the three invariants stated above, after the definition

of Qdet and corresponding to the three components of these states. It follows that L(A) =
L(Adet).

2.4. Closure Properties. The tree automata with one memory of [7] are closed under
union but not closed under intersection and complement (even their version without con-
straints). The visibility condition makes possible these closures for VTAM.

Theorem 2.4. The class of tree languages of VTAM is closed under Boolean operations.
One can construct VTAM for union, intersection and complement of given VTAM languages
whose sizes are respectively linear, quadratic and exponential in the size of the initial VTAM.

Proof. Let A1 = (Γ1, Q1, Qf,1,∆1) and A2 = (Γ2, Q2, Qf,2,∆2) be two VTAM on Σ. We
assume wlog that Q1 and Q2 are disjoint.

For the union of the languages of A1 and A2, we construct a VTAM A∪ whose memory
signature, state set, final state set and rules set are the union of the respective memory
signatures, state sets, final state sets and rules sets of the two given VTAM. We have
L(A∪) = L(A1) ∪ L(A2).

A∪ = (Γ1 ∪ Γ2, Q1 ∪Q2, Qf,1 ∪Qf,2,∆1 ∪∆2)

For the intersection of the languages of A1 and A2, we construct a VTAM A∩ whose
memory signature, state set and final state set are the Cartesian product of the respective
memory signatures, state sets and final state sets of the two given VTAM.

A∩ = (Γ1 × Γ2, Q1 ×Q2, Qf,1 ×Qf,2,∆∩)

The rule set ∆∩ of the intersection VTAM A∩ is obtained by ”product” of rules of the two
given VTAM with same function symbols. The product of rules means Cartesian products
of the respective states and memory symbols pushed or popped. More precisely, ∆∩ is the
smallest set of rules such that:

• if ∆1 contains f
(
q11(y1), q12(y2)

)
→ q1

(
h1(y1, y2)

)
and ∆2 contains f

(
q21(y1), q22(y2)

)
→

q2
(
h2(y1, y2)

)
, for some f ∈ ΣPUSH, then ∆∩ contains f

(
〈q11, q21〉(y1), 〈q12, q22〉(y2)

)
→

〈q1, q2〉
(
〈h1, h2〉(y1, y2)

)
.
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• if ∆1 contains f
(
q11(h1(y11, y12)

)
, q12(y2)

)
→ q1(y11) and ∆2 contains

f
(
q21(h2(y11, y12)

)
, q22(y2)

)
→ q2(y11) for some f ∈ ΣPOP11

, then ∆∩ contains

f
(
〈q11, q2,1〉(〈h1, h2〉(y11, y12)

)
, 〈q12, q2,2〉(y2)

)
→ 〈q1, q2〉(y11)

• similarly for POP12, POP21 and POP22

• if ∆1 contains f
(
q11(y1), q21(y2)

)
→ q1(y1) and ∆2 contains f

(
q21(y1), q22(y2)

)
→ q2(y1)

for some f ∈ ΣINT1
, then ∆∩ contains f

(
〈q11, q2,1〉(y1), 〈q12, q2,2〉(y2)

)
→ 〈q1, q2〉(y1)

• and similarly for INT2, INT0.

We have then L(A∩) = L(A1)∩L(A2). Note that the above product construction for A∩ is
possible only because the visibility condition ensures that two rules with the same function
symbol in left-side will have the same form. Hence we can synchronize memory operations
on the same symbols.

For the complement, we use the construction of Theorem 2.3 and a completion (this
operation preserves determinism), and take the complement of the final state set of the
VTAM obtained.

2.5. Decision Problems. Every VTAM is a particular case of tree automaton with one
memory of [7]. Since the emptiness problem (whether the language accepted is empty or
not) is decidable for this latter class, it is also decidable for VTAM. However, whereas this
problem is EXPTIME-complete for the automata of [7], it is only PTIME for VTAM.

Theorem 2.5. The emptiness problem is PTIME-complete for VTAM.

Proof. Assume given a VTAM A = (Γ, Q,Qf ,∆). By definition, for each state q ∈ Q, the
language L(A, q) is empty iff the memory language M(A, q) is empty. For each state q, we
introduce a predicate symbol Pq and we construct Horn clauses in such a way that Pq(m)
belongs to the least Herbrand model of this set of clauses, iff the configuration with state q
and memory m is reachable by the automaton (i.e. m ∈ M(A, q)).

For such a construction (already given in [7]), we simply forget the function symbol, as-
sociating to a transition rule f(q1(m1), q2(m2)) → q(m) the Horn clause Pq1(m1), Pq2(m2) ⇒
Pq(m). Then, according to the restrictions in Definition 2.2, we get only Horn clauses of
one of the following forms:

⇒ Pq(c)
Pq1(y1), Pq2(y2) ⇒ Pq

(
h(y1, y2)

)

Pq1

(
h(y11, y12)

)
, Pq2(y2) ⇒ Pq(y11)

Pq1

(
h(y11, y12)

)
, Pq2(y2) ⇒ Pq(y12)

Pq1(⊥), Pq2(y2) ⇒ Pq(⊥)
Pq1(y1), Pq2(y2) ⇒ Pq(y1)

where all the variables are distinct. Such clauses belong to the class H3 of [19], for which
it is proved in [19] that emptiness is decidable in cubic time. It follows that emptiness of
VTAM is decidable in cubic time.

Hardness for PTIME follows from the PTIME-hardness of emptiness of finite tree au-
tomata [8].
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Another proof relying on similar techniques, but for a more general result, will be stated
in Lemma 3.7 and can be found in Appendix 5.

The universality is the problem of deciding whether a given automaton recognizes
all ground terms. Inclusion refers to the problem of deciding the inclusion between the
respective languages of two given automata.

Corollary 2.6. The universality and inclusion problem are EXPTIME-complete for VTAM.

Proof. A VTAM A is universal iff the language of its complement automaton A is empty,
and L(A1) ⊆ L(A2) iff L(A1) ∩ L(A2) = ∅. With the bounds given in Theorem 2.4 these
problems can be decided in EXPTIME for VTAM (these operations require a determiniza-
tion of a given VTAM first).

The EXPTIME-hardness follows from the corresponding property of finite tree au-
tomata (see [8] for instance).

The membership problem is, given a term t and an automaton A, to know whether t is
accepted by A.

Corollary 2.7. The membership problem is decidable in PTIME for VTAM.

Proof. Given a term t we can build a VTAM At which recognizes exactly the language
{t}. The intersection of At with the given VTAM A recognizes a non empty language iff t
belongs to the language of A.

3. Visibly Tree Automata with Memory and Constraints

In the late eighties, some models of tree recognizers were obtained by adding equality
and disequality constraints in transitions of tree automata. They have been proposed in
order to solve problems with term rewrite systems or constraints systems with non-linear
patterns (terms with multiple occurrences of the same variable). The tree automata of [4]
for instance can perform equality and disequality tests between subterms located at brother
positions of the input term.

In the case of tree automata with memory, constraints are applied to the memory
contents. Indeed, each bottom-up computation step starts with two states and two memories
(and ends with one state and one memory), and therefore, it is possible to compare the
contents of these two memories, with respect to some binary relation.

We state first the general definition of visibly tree automata with constraints on mem-
ories (Section 3.1), then give sufficient conditions on the binary relation for the emptiness
decidability (Section 3.2) and show that, if in general regular binary relations do not sat-
isfy these conditions (and indeed, the corresponding class of constrained VTAM has an
undecidable emptiness problem, Section 3.3) some relevant examples do satisfy them. In
particular, we study in Section 3.4.2 the case of VTAM with structural equality constraints.
They enjoy not only decision properties but also good closure properties. Some relevant
examples of tree languages recognized by constrained VTAM of this class are presented at
the end of the section.
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INTR
1 f9

(
q1(y1), q2(y2)

)
−−−−−→y1 Ry2 q(y1) f9 ∈ Σ

INT
R
1

INTR
2 f10

(
q1(y1), q2(y2)

)
−−−−−→y1 Ry2 q(y2) f10 ∈ Σ

INT
R
2

INTR
1 f11

(
q1(y1), q2(y2)

)
−−−−−−→y1 ¬Ry2 q(y1) f11 ∈ Σ

INT
R
1

INTR
2 f12

(
q1(y1), q2(y2)

)
−−−−−−→y1 ¬Ry2 q(y2) f12 ∈ Σ

INT
R
2

Figure 2: New transition categories for VTAMR
¬R.

3.1. Definitions. Assume given a fixed equivalence relation R on T (Γ). We consider now
two new categories for the symbols of Σ: INTR

1 and INTR
2 , in addition to the eight previous

categories of page 6. The new categories correspond to the constrained versions of the
transition rules INT1 and INT2 presented in Figure 2. The constraint y1Ry2 in the two first
rules of Figure 2 is called positive and the constraint y1 ¬Ry2 in the two last rules is called
negative.

We shall not extend the rules PUSH and POP with constraints for some rea-
sons explained in section 3.5. A ground term t rewrites to s by a constrained rule
f
(
q1(y1), q2(y2)

)
−−−−→y1 c y2 r (where c is either R or ¬R) if there exists a position p of t

and a substitution σ such that t|p = ℓσ, y1σ c y2σ and s = t[rσ]p.
For example, if R is term equality, the transition is performed only when the memory

contents are identical.

Definition 3.1. A visibly tree automaton with memory and constraints (VTAMR
¬R) on a

signature Σ is a tuple (Γ, R,Q,Qf ,∆) where Γ, Q, Qf are defined as for TAM, R is an
equivalence relation on T (Γ) and ∆ is a set of rewrite rules in one of the above categories:
PUSH, POP11, POP12, POP21, POP22, INT0, INT1, INT2, INT

R
1 , INT

R
2 .

We let VTAMR be the subclass of VTAMR
¬R with positive constraints only. The accep-

tance of terms of T (Σ) and languages of term and memories are defined and denoted as in
Section 2.1.

The definition of complete VTAMR
¬R is the same as for VTAM. As for VTAM, every

VTAMR
¬R can be completed (with a polynomial overhead) by the addition of a trash state

q⊥. The only subtle difference concerns the constrained rules: for every f9 ∈ INTR
1 and

every states q1, q2,

• if there is a rule f9
(
q1(y1), q2(y2)

)
−−−−−→y1 Ry2 q(y1) and no rule of the form

f9
(
q1(y1), q2(y2)

)
−−−−−−→y1 ¬Ry2 q′(y1), then we add f9

(
q1(y1), q2(y2)

)
−−−−−−→y1 ¬Ry2 q⊥(y1),

• if there is a rule f9
(
q1(y1), q2(y2)

)
−−−−−−→y1 ¬Ry2 q(y1) and no rule of the form

f9
(
q1(y1), q2(y2)

)
−−−−−→y1 Ry2 q′(y1), then we add f9

(
q1(y1), q2(y2)

)
−−−−−→y1 Ry2 q⊥(y1),

• if there is no rule of the form f9
(
q1(y1), q2(y2)

)
−−−−−→y1 Ry2 q(y1) or f9

(
q1(y1), q2(y2)

)
−−−−−−→y1 ¬Ry2

q′(y1), then we add f9
(
q1(y1), q2(y2)

)
−−−−−→y1 Ry2 q⊥(y1) and f9

(
q1(y1), q2(y2)

)
−−−−−−→y1 ¬Ry2

q⊥(y1).

The definition of deterministic VTAMR
¬R is based on the same conditions as for VTAM

for the function symbols in categories of PUSH0, PUSH, POP11, . . . , POP22, INT1, INT2. For
the function symbols of INTR

1 , INT
R
2 , we have the following condition: for all f ∈ Σ

INT
R
1

∪

Σ
INT

R
2

for all q1, q2 ∈ Q, there are at most two rules in ∆ with left-member f
(
q1(y1), q2(y2)

)
,

and if there are two, one has a positive constraint and the other has a negative constraint.
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We will see in Section 3.4 a subclass of VTAMR
¬R that can be determinized (when R is

structural equality) and another one that cannot (when R is syntactic equality).

3.2. Sufficient Conditions for Emptiness Decision. We propose here a generic theo-
rem ensuring emptiness decision for VTAMR

¬R. The idea of this theorem is that under some
condition on R, the transition rules with negative constraints can be eliminated.

Theorem 3.2. Let R be an equivalence relation satisfying these two properties:

i. for every automaton A of VTAMR and for every state q of A, the memory language
M(A, q) is effectively a regular tree language,

ii. for every term m ∈ T (Γ), the cardinality of the equivalence class of m for R is finite
and and its elements can be enumerated.

Then the emptiness problem is decidable for VTAMR
¬R.

Proof. The proof relies on the following Lemma 3.3 which states that the negative con-
straints in VTAMR

¬R can be eliminated, while preserving the memory languages. The elim-

ination can be done thanks to the condition ii , by replacement of the rules of INT¬R
1 and

INT¬R
2 by rules of INTR

1 and INTR
2 .

Next, we can use i in order to decide emptiness for the VTAMR obtained by elimination
of negative constraints. Indeed, for all states q of A, by definition, L(A, q) is empty iff
M(A, q) is empty.

Lemma 3.3. Let R satisfy the hypotheses i and ii of Theorem 3.2, and let A =
(Γ, R,Q,Qf ,∆) be a VTAMR

¬R. There exists a VTAMR A+ = (Γ, R,Q+, Qf ,∆
+) such

that Q ⊆ Q+, and for each q ∈ Q, M(A+, q) = M(A, q).

Proof. The construction of A+ is by induction on the number n of rules with negative
constraints in ∆ and uses the bound on the size of equivalence classes, condition ii of the
theorem.
The result is immediate if n = 0.
We assume that the result is true for n − 1 rules, and show that we can get rid of a rule
of ∆ with negative constraints (and replace it with rules unconstrained or with positive
constraints). Let us consider one such rule:

f
(
q1(y1), q2(y2)

)
−−−−−−→y1 ¬Ry2 q(y1) (3.1)

We show that, under the induction hypothesis, we have the following lemma which will
be used below in order to get rid of the rule (3.1).

Lemma 3.4. Given m1, . . . ,mk ∈ M(A, q2), it is effectively decidable whether M(A, q2) \
{m1, . . . ,mk} is empty or not and, in case it is not empty, we can effectively build a mk+1

in this set.

Proof. Let [mi]R denote the equivalence class of mi. By condition ii, every [mi]R is finite,
hence for each i ≤ k, we can build a VTAM Ai with a state pi such that M(Ai, pi) is the
complement of [mi]R. We add all the rules of Ai to A, obtaining A′ (we assume that the
state sets of A1, . . . ,Ak,A are disjoint, and that the states of A1, . . . ,Ak are not final in
A′).

Since R is an equivalence relation, we have:

y1 ¬Rmi iff y1 /∈ [mi]R iff ∃y2 /∈ [mi]R, y1Ry2
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Hence, if y2 = mi is a witness for the rule (3.1), then we can apply instead a rule:

f
(
q1(y1), pi(y2)

)
−−−−−→y1 Ry2 q(y1) (3.2)

Then we add to A′ the rules (3.2) as above and obtain A′′. It can be shown that M(A′′, q2) =
M(A, q2).

Let mk+1 be a term of M(A′′, q2) \ {m1, . . . ,mk} of minimal size (if one exists). This
term mk+1 can be created in a run of A′′ which does not use the rule (3.1). Otherwise, the
witness for y2 in the application of this rule would be a term of M(A′′, q2) \ {m1, . . . ,mk}
smaller than mk+1 (it cannot be one of {m1, . . . ,mk} because for these particular values
of y2, we assume the application of (3.2)). It follows that mk+1 ∈ M(A′′ \ (3.1), q2). This
automaton A1 = A′′ \ (3.1) has n− 1 rules with negative constraints. Hence, by induction
hypothesis, there is a VTAMR A+

1 with mk+1 in its memory language M(A+
1 , q2). By

condition i, this language is regular and we can build mk+1 from a TA for this language.

Now, let us come back to the proof that we can replace rule (3.1), while preserving the
memory languages.
IfM(A, q2) = ∅ (which can be effectively decided according to lemma 3.4) then the rule (3.1)
is useless and can be removed from A without changing its memory language. Note that
the condition M(A, q2) = ∅ is decidable because by hypothesis i, M(A, q2) is regular.
Otherwise, let m1 ∈ M(A, q2) be built with Lemma 3.4 and let N1 be the cardinal of the
equivalence class [m1]R. We apply N1 times the construction of Lemma 3.4. There are
three cases:

(1) if we find more than N1 terms in M(A, q2), then one of them, say mk is not in [m1]R.
Then (3.1) is useless for the point of view of memory languages: whatever value for y1,
we know a y2 ∈ M(A, q2) which permits to fire the rule. Indeed, if y1 ∈ [m1]R, then we
can choose y2 = mk, and otherwise we choose y2 = m1. Hence (3.1) can be replaced
without changing the memory language by:

f
(
q1(y1), q0(y2)

)
−→ q(y1) (3.3)

where q0 is any state of A such that M(A, q0) 6= ∅. We can then apply the induction
hypothesis to the VTAMR

¬R obtained.
(2) if we find less than N1 terms in M(A, q2), but one is not in [m1]R. The case is the same

as above.
(3) if we find less than N1 terms in M(A, q2), all in [m1]R, it means that one of the appli-

cations of Lemma 3.4 was not successful, and hence that we have found all the terms
of M(A, q2). It follows that the rule (3.1) can be fired iff y1 /∈ [m1]R, i.e. there exists
y2 /∈ [m1]R such that y1Ry2. Hence, we can replace (3.1) by

f
(
q1(y1), p1(y2)

)
−−−−−→y1 Ry2 q(y1).

Then we can apply the induction hypothesis.

We present in Section 3.4 two examples of relations satisfying i. and ii.
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3.3. Regular Tree Relations. We first consider the general case of VTAMR
¬R where the

equivalence R is based on an arbitrary regular binary relation on T (Γ). By regular binary
relation, we mean a set of pairs of ground terms accepted by a tree automaton computing
simultaneously in both terms of the pair. More formally, we use a coding of a pair of terms
of T (Σ) into a term of T

(
(Σ ∪ {⊥})2

)
, where ⊥ is a new constant symbol (not in Σ). This

coding is defined recursively by:

• ⊗ : T (Σ) ∪ {⊥} × T (Σ) ∪ {⊥} → T
(
(Σ ∪ {⊥})2

)

• for all a, b ∈ Σ0 ∪ {⊥}, a⊗ b := 〈a, b〉,
• for all a ∈ Σ0∪⊥, f ∈ Σ2, t1, t2 ∈ T (Σ), f(t1, t2)⊗a := 〈f, a〉(t1⊗⊥, t2⊗⊥) a⊗f(t1, t2) :=
〈a, f〉(⊥ ⊗ t1,⊥⊗ t2),

• for all f, g ∈ Σ2, s1, s2, t1, t2 ∈ T (Σ), f(s1, s2)⊗ g(t1, t2) := 〈f, g〉(s1 ⊗ t1, s2 ⊗ t2).

Then, a binary relation R ⊆ T (Σ)× T (Σ) is called regular iff the set {s ⊗ t
∣∣ (s, t) ∈ R} is

regular. The above coding of pairs is unrelated to the product used in Theorem 2.4.

Theorem 3.5. The membership problem for VTAMR
¬R is NP-complete when R is a regular

binary relation.

Proof. Assume given a ground term t ∈ T (Σ) and a VTAMR
¬R A = (Γ, R,Q,Qf ,∆). Because

of the visibly condition, for every subterm s of t, we can compute in polynomial time in the
size of s the shape denoted struct(s), which is an abstraction of the memory reached when
A runs on s. More precisely, struct(s) is an unlabeled tree, and every possible content of
memory m reachable by A in a computation s −−→∗∆ q(m) is obtained by a labeling of the
nodes of struct(s) with symbols of Γ. Note that for all subterm s, the size of struct(s) is
smaller than the size of t.

Let us guess a decoration of every node of t with a state of Q and a labeling of struct(s)
(where s is the subterm of t at the given node), such that the root of t is decorated with
a final state of Qf . We can check in polynomial time whether this decoration represents a
run of A on t or not.

The NP-hardness is a consequence of Theorem 3.9, which applies to the particular case
where R is the syntactic equality between terms.

Note that the NP algorithm works with every equivalence R based on a regular relation,
but the the NP-hardness concerns only some cases of such relations. For instance, in
Section 3.4, we will see one example of relation for which membership is NP-hard and
another example for which it is in PTIME.

The class of VTAMR
¬R when R is a binary regular tree relation constitutes a nice and

uniform framework. Note however the condition ii of Theorem 3.2 is not always true in
this case. Actually, this class is too expressive.

Theorem 3.6. Given a regular binary relation R and an automaton A in VTAMR, the
emptiness of L(A) is undecidable.

Proof. We reduce the blank accepting problem for a deterministic Turing machine M. We
encode configurations of M as ”right-combs” (binary trees) built with the tape and state
symbols of M, in ΣPUSH (hence binary) and a constant symbol ε in ΣINT0

. Let R be the
regular relation which accepts all the pairs of configurations c⊗c′ such that c′ is a successor
of c by M. A sequence of configurations c0c1 . . . cn (with n ≥ 1) is encoded as a tree
t = f(c0(f(c1, . . . f(cn−1, cn))), where f is a binary symbol of Σ

INT
R
1

.
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We construct a VTAMR A which accepts exactly the term-representations t of com-
putation sequences of M starting with the initial configuration c0 of M and ending with
a final configuration cn with blank tape. Following the type of the function symbols, the
rules of A will

• push all the symbols read in subterms of t corresponding to configurations,
• compare, with R, ci and ci+1 (the memory contents in respectively the left and right
branches) and store ci in the memory, with a transition applied at the top of a subterm
f(ci, f(ci+1, . . .)).

This way, A checks that successive configurations in t correspond to transitions of M,
hence that the language of A is not empty iff M accepts the initial configuration c0.

3.4. Syntactic and Structural Equality and Disequality Constraints. We present
now two examples of relations satisfying the conditions of Theorem 3.2: syntactic and
structural term equality. The satisfaction of condition i will be proved with the help of the
following crux Lemma.

Lemma 3.7. Let R be a regular binary relation defined by a TA whose state set is
{
Ri

∣∣
i = {1..n}

}
and such that ∀i, j ∃k, l, ∀x, y, z. xRiy ∧ yRjz ⇔ xRky ∧ xRlz.

Let A = (Γ, R,Q,Qf ,∆) be a tree automaton with memory and constraints (not necessarily
visibly). Then it is possible to compute in exponential time a finite tree automaton A′, such
that, for every state q ∈ Q, the language M(A, q) is the language accepted in some state
of A′.

Proof. (Sketch) To prove this lemma, we first observe that the M(A, q) (for q ∈ Q) are
actually the least sets that satisfies the following conditions (we assume here for simplicity
that the non-constant symbols are binary and display only some of the implications; the
others can be easily guessed):

∀x, y, z. x ∈ M(A, q1), y ∈ M(A, q2)) ⇒ g(x, y) ∈ M(A, q)
if there is a rule f(q1(x1), q2(x2)) → q(g(x1, x2))

g(x, y) ∈ M(A, q1), z ∈ M(A, q2) ⇒ x ∈ M(A, q)
if there is a rule f(q1(g(x, y), q2(z)) → q(x)

x ∈ M(A, q1), y ∈ M(A, q2), R(x, y) ⇒ x ∈ M(A, q)

if there is a rule f(q1(x), q2(y)) −−−→
xRy q(x)

· · ·

In terms of automata, this means that M(A, q) is a language recognized by a two-way
alternating tree automaton with regular binary constraints. In other words, such languages
are the least Herbrand model of a set of clauses of the form

Q1(y1), Q2(y2), R(y1, y2) ⇒ Q3(y1) INT1, INT2

Q1(y1), Q2(y2) ⇒ Q3(f(y1, y2)) PUSH

⇒ Q1(a) INT0

Q1(f(y1, y2)), Q2(y3) ⇒ Q3(y1) POP11,POP21

Q1(f(y1, y2)), Q2(y3) ⇒ Q3(y2) POP12,POP22

The lemma then shows that languages that are recognized by two-way alternating
tree automata with some particular regular constraints, are also recognized by a finite
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tree automaton. This corresponds to classical reductions of two-way automata to one-way
automata (see e.g [8], chapter 7, [13], or [12, 6] for the first relevant references). The idea
of the reduction is to find shortcuts: moving up and down yields a move at the same
level. Add such shortcuts as new rules, until getting a “complete set”. Then only keep
the non-redundant rules: this yields a finite tree automaton. Such a procedure relies on
the definitions of ordered strategies, redundancy and saturation (aka complete sets), which
are classical notions in automated first-order theorem proving [13, 3, 20]. Indeed, formally,
a “shortcut” must be a formula, which allows for smaller proofs than the proof using the
two original rules. A saturated set corresponds to a set of formulas whose all shortcuts are
already in the set.

The advantage of the clausal formalism is to enable an easy representation of the above
shortcuts, as intermediary steps. Such shortcuts are clauses, but are not automata rules.
Second, we may rely on completeness results for Horn clauses.

That is why, only for the proof of this lemma, which follows and extend the classical
proofs adding some regular constraints, we switch to a first-order logic formalization. The
complete proof can be found in Appendix 5. As in the classical proofs, we saturate the
set of clauses by resolution with selection and eager splitting. This saturation terminates,
and the set of clauses corresponding to finite tree automata transitions in the saturated set
recognizes the language M(A, q), which is therefore regular.

The condition on R in the lemma allows to break chains such as ∃x1, . . . , xn.xRx1 ∧
x1Rx2 ∧ · · · ∧xnRy∧P (x, y), which would be a source of non-termination in the saturation
procedure. We may indeed replace such chains by ∃x1, . . . , xn.xR1x1∧xR2x2∧. . .∧xRnxn∧
xR0y∧P (x, y), which can again be simplified into ∃x1.xSx1∧xR0y∧P (x, y) where S is the
intersection of R1, . . . , Rn. Possible such intersections range in a finite set as the relation R
is regular and the Ris are states of the automaton accepting R.

Finally note that finding k, l in the lemma’s assumption can always be performed in an
effective way since R is regular.

3.4.1. Syntactic Constraints. We first apply Lemma 3.7 to the class VTAM=
6= where = de-

notes the equality between ground terms made of memory symbols. Note that it is a
particular case of constrained VTAMR

¬R of the above section 3.3, since the term equality is
a regular relation. The automata of the subclass with positive constraints only, VTAM=,
are particular cases of tree automata with one memory of [7], and have therefore a decidable
emptiness problem. We show below that VTAM=

6= fulfills the hypotheses of Theorem 3.2,
and hence that the emptiness is also decidable for the whole class.

We can first verify that the relation = checks the hypothesis of Lemma 3.7, hence the
condition i of Theorem 3.2. Moreover, the relation = obviously also checks the condition ii
of Theorem 3.2.

Corollary 3.8. The emptiness problem is decidable for VTAM=
6=.

A careful analysis of the proof of Theorem 3.2 permits to conclude to an EXPTIME
complexity for this problem with VTAM=

6=.

Theorem 3.9. The membership problem is NP-complete for VTAM=
6=.

Proof. An NP algorithm is given in the proof of Theorem 3.5. For the NP-hardness, we use
a logspace reduction of 3-SAT. Let us consider an instance of 3-SAT with n propositional
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variables X1, . . . ,Xn and a conjunction of m clauses:
m∧

i=1

(αi,1 ∨ αi,2 ∨ αi,3)

where every αi,j is either a variable Xk (k ≤ n) or a negation of variable ¬Xk. We assume
wlog that every variable occurs at most once in a clause.

We consider an encoding t of the given instance as a term over the signature Σ containing
the symbols: X1, . . . ,Xn (constants), id , false , ¬ (unary) and ∧ and ∨ (binary). The
encoding is:

t := C∧

[
C∨[δ1,1(X1), . . . , δ1,n(Xn)], . . . , C∨[δm,1(X1), . . . , δm,n(Xn)]

]

where C∧ (resp. C∨) is a context built solely with ∧ (resp. ∨) and where every δi,j is either:

• δi,j = id (interpreted as the identity) if one of αi,1, αi,2, αi,3 is Xj ,
• δi,j = ¬ if one of αi,1, αi,2, αi,3 is ¬Xj ,
• δi,j = false (interpreted as the constant function returning false) if Xj does not occur in
αi,1, αi,2, αi,3.

Now, let us partition the signature Σ with: X1, . . . ,Xn,∨ ∈ PUSH, id , false ,¬ ∈ INT1

and ∧ ∈ INT=
1 ; and let consider the memory signature Γ = {0, 1,∨}. We construct now a

VTAM= A = (Γ,=, {q0, q1}, {q1},∆) whose transition will, intuitively:

• guess an assignment for each constant symbol Xk of t, by mean of a non-deterministic
choice of one state q0 or q1,

• compute the value of t with these assignments,
• push each tuple of assignment for each clause, in the contexts C∨,
• check the coherence of assignments by means of equality tests between the tuples pushed,
in the context C∧.

More formally, we have the following transitions in ∆:

Xi → q0(0)
Xi → q1(1) i ≤ n

id(qε(y1)) → qε(y1)
false(qε(y1)) → q0(y1)

¬(qε(y1)) → q1−ε(y1) with ε ∈ {0, 1}

∨(qε1(y1), qε2(y2)) → qε1∨ε2(∨(y1, y2))
∧(qε1(y1), qε2(y2)) −−−−→y1=y2 qε1∧ε2(y1) with ε1, ε2 ∈ {0, 1}

We can verify that the above VTAM= A recognizes t iff the instance of 3-SAT has a solution.

VTAM=
6= is closed under union (using the same construction as before) but not under

complementation. This is a consequence of the following Theorem.

Theorem 3.10. The universality problem is undecidable for VTAM=
6=.

Proof. We reduce the blank accepting problem for a deterministic Turing machine M. Like
in the proof of Theorem 3.6, we encode configurations of M as right-combs on a signature
Σ containing the tape and state symbols of M, considered as binary symbols of ΣPUSH and
a constant symbol ε in ΣPUSH. A sequence of configurations c0, c1, . . . , cn (with n ≥ 1) is
encoded as a tree t = f(cn(f(cn−1, . . . f(c0, ε)))), where f is a binary symbol of ΣINT

=

1
. Such

a tree is called a computation of M if c0 is the initial configuration, cn is a final configuration
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ε → qǫ(ε)

f(qB(y1), qε(y2)) −−−−→y1 6=y2 q(y1)
f(qB(y1), q(y2)) −−−−→y1=y2 q(y1)

f(qB(y1), q(y2)) −−−−→y1 6=y2 qf(y1)
f(qB(y1), qf(y2)) −−−−→y1=y2 qf(y1)

f(qB(y1), qf(y2)) −−−−→y1 6=y2 qf(y1)

Figure 3: The VTAM=
6= A3 in the proof of Theorem 3.10.

ε −→ qε(ε) f(q∀(y1), qε(y2)) −−−−→y1 6=y2 q∀(y1)
f(q∀(y1), q∀(y2)) −−−−→y1=y2 q∀(y1)
f(q✷(y1), q∀(y2)) −−−−→y1=y2 q✷(y1)

f(q=(y1), q✷(y2)) −−−−→y1 6=y2 qf(y1)
f(q∀(y1), qf(y2)) −−−−→y1=y2 qf(y1)

Figure 4: The VTAM=
6= A4 in the proof of Theorem 3.10.

and for all 0 ≤ i < n, ci+1 is the successor of ci with M. Moreover, we assume that all the
ci have the same length (for this purpose we complete the representations of configurations
with blank symbols).

We want to construct a VTAM=
6= A which recognizes exactly the terms which are not

computations of M. Hence, A recognizes all the terms of T (Σ) iff M does not accept the
initial blank configuration.

For the construction of A, let us first observe that we can associate to M a VTAM A✷

which, while reading a configuration ci, will push on the memory its successor ci+1. The
existence of such an automaton is guaranteed by the first fact that for each regular binary
relation R, as defined in Section 3.3, there exists a VTAM which, for each (s, t) ∈ R, will
push t while reading s, and by the second fact that the language of ci ⊗ ci+1, hence the
relation of successor configuration, are regular. Moreover, since only push operations are
performed, we can ensure that A✷ satisfies the visibly condition. Let us note q✷ the final
state (which is assumed unique wlog) of the VTAM A✷. We also use the following VTAMs:

A∀: a VTAM with (unique) final state q∀ which, while reading a configuration ci will push
on the memory any configuration with same length as ci,

A=: a VTAM with final state q= which, while reading a configuration ci will push ci on the
memory,

AB : a VTAM with final state qB which, while reading a configuration ci will push on the
memory a configuration with same length as ci and containing only blank symbols.

The VTAM=
6= A is the union of the following automata:

A1: a VTAM=
6= recognizing the terms of T (Σ) which are not representations of sequences

of configurations (malformed terms). Its language is actually a regular tree language.
A2: a VTAM=

6= recognizing the sequences of configurations f(cn(f(cn−1, . . . f(c0, ε)))) such
that c0 is not initial or cn is not final. Again, this is a regular tree language.

A3: a VTAM=
6= recognizing the sequences of configurations with two configurations of differ-

ent lengths. It contains the transitions rules of AB and the additional transitions described
in Figure 3, which perform this test.

A4: a VTAM=
6= recognizing the sequences of configurations f(cn(f(cn−1, . . . f(c0, ε)))) such

that all the ci have the same length but there exists 0 ≤ i < n such that ci+1 is not the
successor of ci by M. This last VTAM=

6= contains the transitions of A✷, A∀, A=, and the
additional transitions described in Figure 4.
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With the transition rules in Figure 4, the automaton A4 guesses a i < n and, while
reading each of the configurations cj with j ≤ i, it pushes the successor configuration of cj ,
say c′j (second column of figure 4). Then, while reading ci+1 A4 pushes ci+1, and it checks

that c′i and ci+1 differ. After that, when reading each of the remaining configurations, A4

pushes ci+1 (third column of figure 4).
The VTAM=

6= A1 to A4 cover all the cases of term T (Σ) not being an accepting com-
putation of M starting with the initial blank configuration. Hence the language of their
union A is T (Σ) iff M does not accept the initial blank configuration.

Corollary 3.11. VTAM=
6= is not effectively closed under complementation.

Proof. It is a consequence of Corollary 3.8 (emptiness decision) and Theorem 3.10.

3.4.2. Structural Constraints. Lemma 3.7 applies also to another class VTAM≡
6≡, where ≡

denotes structural equality of terms, defined recursively as the smallest equivalence relation
on ground terms such that:

• a ≡ b for all a, b of arity 0,
• f(s1, s2) ≡ g(t1, t2) if s1 ≡ t1 and s2 ≡ t2, for all f , g of arity 2.

Note that it is a regular relation, and that it satisfies the hypothesis of Lemma 3.7 and the
condition ii of Theorem 3.2.

Corollary 3.12. The emptiness problem is decidable for VTAM≡
6≡.

Following the procedure in the proof of Theorem 3.2, we obtain a 2-EXPTIME com-
plexity for this problem and this class.

The crucial property of the relations ≡ and 6≡ is that, unlike the above class VTAM=
6=

or the general VTAMR
¬R, they ignore the labels of the contents of the memory. They just

care of the structure of these memory terms. A benefit of this property of VTAM≡
6≡ is that

the decision of the membership problem drops to PTIME for this class.

Theorem 3.13. The membership problem is decidable in PTIME for VTAM≡
6≡.

Proof. Let A = (Γ,≡, Q,Qf ,∆) be a VTAM≡
6≡ on Σ and let t be a term in T (Σ). Let sub(t)

be the set of subterms of t and let us construct a VTAM A′ = (Γ, sub(t)×Q, {t}×Qf,∆
′) on

Σ′ where the symbols of Σ′ and Σ are the same, and we assume that the symbols in category
INT≡

1 (resp. INT≡
2 ) in the partition of Σ are in INT1 (resp. INT2) in the partition of Σ′.

The transitions of ∆′ are obtained by the following transformation of the transitions of ∆.
We only describe the construction for the cases INT1 and INT≡

1 with positive constraints.
The other cases are similar.

• for every f7(q1(y1), q2(y2)) → q(y1) ∈ ∆, we add to ∆′ all the transitions:
f7
(
〈q1, t1〉(y1), 〈q2, t2〉(y2)

)
→

〈
q, f(t1, t2)

〉
(y1) such that f(t1, t2) ∈ sub(t),

• for every f9(q1(y1), q2(y2)) −−−−→
y1≡y2 q(y1) ∈ ∆, we add to ∆′ all the transitions as above (in

this case, f9 is assumed a symbol of category INT1 in Σ′) such that moreover struct(t1) =
struct(t2), where struct(s) is defined, like in the proof of Theorem 3.5, as the shape
(unlabeled tree) that will have the memory of A after A processed s.

The VTAM A′ can be computed in time O(‖t‖2 × ‖A‖). It recognizes at most one term, t,
and it recognizes t iff A recognizes t. Therefore, t is recognized by A iff the language of A′

is not empty. This can be decided in PTIME according to Theorem 2.5.
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Even more interesting, the construction for determinization of Section 2.3 still works
for VTAM≡

6≡.

Theorem 3.14. For every VTAM≡
6≡ A = (Γ,≡, Q,Qf ,∆) there exists a deterministic

VTAM≡
6≡ Adet = (Γdet ,≡, Qdet , Qdet

f
,∆det) such that L(A) = L(Adet), where |Qdet | and

|Γdet | both are O
(
2|Q|2

)
.

Proof. We use the same construction as in the proof of Theorem 2.3, with a direct extension
of the construction for INT to INT≡. The key property for handling constraints is that the
structure of memory (hence the result of the structural tests) is independent from the non-
deterministic choices of the automaton. With the visibility condition it only depends on
the term read.

Theorem 3.15. The class of tree languages of VTAM≡
6≡ is closed under Boolean operations.

One can construct VTAM≡
6≡ for union, intersection and complement of given VTAM≡

6≡ lan-
guages whose sizes are respectively linear, quadratic and exponential in the size of the initial
VTAM≡

6≡.

Proof. We use the same constructions as in Theorem 2.4 (VTAM) for union and intersec-
tion. For the intersection, in the case of constrained rules we can safely keep the constraints
in product rules, thanks to the visibility condition (as the structure of memory only de-
pends on the term read, see the proof of Theorem 3.14). For instance, the product of
the INT≡

1 rules f9
(
q11(y1), q12(y2)

)
−−−−→y1≡y2 q1(y1) and f9

(
q21(y1), q22(y2)

)
−−−−→y1≡y2 q1(y1) is

f9
(
〈q11, q21〉(y1), 〈q12, q22〉(y2)

)
−−−−→y1≡y2 〈q1, q2〉(y1). The product of two INT

6≡
1 is constructed

similarly. We do not need to consider the product of a rule INT≡
1 with a rule INT

6≡
1 , and

vice-versa, because in this case the product is empty (no rule is added to the VTAM≡
6≡ for

intersection). For the complementation, we use Theorem 3.14 and completion.

Corollary 3.16. The universality and inclusion problems are decidable for VTAM≡
6≡.

Proof. This is a consequence of Corollary 3.12 and Theorem 3.15.

3.5. Constrained PUSH Transitions. Above, we always considered constraints in tran-
sitions with INT symbols only. We did not consider a constrained extension of the rules
PUSH. The main reason is that symbols of a new category PUSH≡, which test two memories
for structural equality and then push a symbol on the top of them, permit us to construct
a constrained VTAM A whose memory language M(A, q) is the set of well-balanced binary
trees. This language is not regular, whereas the base of our emptiness decision procedure
is the result (Theorem 3.2, Lemma 3.7) of regularity of these languages for the classes
considered.

3.6. Contexts as Symbols and Signature Translations. Before looking for some ex-
amples of VTAM≡

6≡ languages, we show a ”trick” that (seemingly) adds expressiveness to

VTAM≡
6≡. One symbol can perform either a PUSH or a POP operation, or make an INT

transition (constrained or not), but it cannot combine several of these operations. Here, we
propose a way to combine several operations in one symbol, and thus increase the expres-
siveness of VTAM≡

6≡, without losing the good properties of this class.
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The trick is to replace symbols by contexts. For instance a context g2(g1(·, ·), g0) can
replace a symbol of arity 2. Assume that g2 is a PUSH symbol, g1 is an INT1 symbol with
test, and g0 is an INT0 symbol. This context first performs a test on the memories of the
sons, and then a PUSH operation on the memory kept by g1 (and on the ⊥ leaf created by
g0). Such a combination is normally not possible, and replacing symbols by contexts brings
a lot of additional expressiveness.

Here is how we precisely proceed: we want to recognize a language (on a signature Σ)
with a VTAM, and we have then to choose the categories for each symbol of the signature
(PUSH, POPij , INT

≡
1 , ...). As we will see in the examples below, it might be useful in

practice to have some extra categories combining the powers of two or more categories of
VTAM≡

6≡. We can do that still with VTAM≡
6≡, by mean of an encoding of the terms of T (Σ).

More precisely, we replace some symbols of the initial signature Σ by contexts built with
new symbols. For instance, we replace a g ∈ Σ, which will perform the complex operation
described above, by the context g2(g1(·, ·), g0). Then, we will have to ensure that the new
symbols (in our example g0, g1 and g2) are only used to form the contexts encoding the
symbols of Σ. This can easily be done with local information maintained in the state
of the automaton. The set of well formed terms, built with new symbols organized in
allowed contexts, is a regular tree language. We will call the VTAM≡

6≡ signature obtained a

translation of the initial signature. If L is a tree language on Σ, then c(L) is the translation
of L.

In summary, we have shown here a general method for adding new categories of symbols
corresponding to (relevant) combinations of operations of VTAM≡

6≡, and hence defining

extensions of VTAM≡
6≡ with the same good properties as VTAM≡

6≡. By relevant, we mean
that some combinations are excluded, like for instance, PUSH + constraint ≡ at the same
time (see paragraph above). Such forbidden combination cannot be handled by our method.
With similar encodings, we can deal with symbols of arity bigger than 2, e.g. g(·, ·, ·) can
be replaced by g2(·, g1(·, ·)).

Note however first that this encoding concerns the recognized tree, not the memories.
For instance, it is not possible to systematically encode the syntactic equality as structural
equality (on memories) in this way. And indeed, the decision results are drastically different
in the two cases.

Also note that, even if c(L) is accepted by a VTAM, which implies that ¬c(L) is also
accepted by a VTAM, it may well be the case that c(¬L) is not recognized by a VTAM.
So, the above trick does not show that we can extend our results to a wider class of tree
languages.

3.7. Some VTAM≡
6≡ Languages. The regular tree languages and VPL are particular cases

of VTAM languages. We present in this section some other examples of relevant tree
languages translatable, using the method of Section 3.6, into VTAM≡

6≡ languages.

Well balanced binary trees. The VTAM≡
6≡ with memory signature {f,⊥}, state set {q, qf},

unique final state qf , and whose rules follow accepts the (non-regular) language of well
balanced binary trees build with g and a.

Here a is a constant in ΣINT0
, and g is in a new category, and is translated into the

context g2(g1(·, ·), g0), where g2 ∈ ΣPUSH, g1 ∈ ΣINT
≡
1
, and g0 ∈ ΣINT0

.



VISIBLY TREE AUTOMATA WITH MEMORY AND CONSTRAINTS 23

a → qf(⊥)
g0 → q0(⊥)

g1
(
qf(y1), qf(y2)

)
−−−−→y1≡y2 q(y1)

g2
(
q(y1), q0(y2)

)
−→ qf

(
f(y1, y2)

)

Powerlists. A powerlist [18] is roughly a list of length 2n (for n ≥ 0) whose elements are
stored in the leaves of a balanced binary tree. For instance, the elements may be integers
represented in unary notation with the unary successor symbol s and the constant 0, and
the balanced binary tree on the top of them can be built with a binary symbol g. This
data structure has been used in [18] to specify data-parallel algorithms based on divide-
and-conquer strategy and recursion (e.g. Batcher’s merge sort and fast Fourier transform).

It is easy following the above construction to characterize translations of powerlists
with a VTAM≡

6≡. We do not push on the ”leaves”, i.e. on the elements of the powerlist, and

compute in the higher part (the complete binary tree) as above.
Some equational properties of algebraic specifications of powerlists have been studied in

the context of automatic induction theorem proving and sufficient completeness [17]. Tree
automata with constraints have been acknowledged as a very powerful formalism in this
context (see e.g. [9]). We therefore believe that a characterization of powerlists (and their
complement language) with VTAM≡

6≡ is useful for the automated verification of algorithms
on this data structure.

Red-black trees. A red-black tree is a binary search tree following these properties:

(1) every node is either red or black,
(2) the root node is black,
(3) all the leaves are black,
(4) if a node is red, then both its sons are black,
(5) every path from the root to a leaf contains the same number of black nodes.

The four first properties are local and can be checked with standard TA rules. The
fifth property make the language red-black trees not regular and we need VTAM≡

6≡ rules to
recognize it. It can be checked by pushing all the black nodes read. We use for this purpose
a symbol black ∈ ΣPUSH.

When a red node is read, the number of black nodes in both its sons are checked to be
equal (by a test ≡ on the corresponding memories) and only one corresponding memory is
kept. This is done with a symbol red ∈ ΣINT

≡
1
.

When a black node is read, the equality of number of black nodes in its sons must also
be tested, and a black must moreover be pushed on the top of the memory kept. It means
that two operations must be combined. We can do that by defining an appropriate context
with the method of Section 3.6.

In [15] a special class of tree automata is introduced and used in a procedure for the
verification of C programs which handle balanced tree data structures, like red-black tree.
Based on the above example, we think that, following the same approach, VTAM≡

6≡ can also
be used for similar purposes.
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BTINT1 f13
(
q1(y1), q2(y2)

)
−−−→1=2 q(y1) f13 ∈ ΣBTINT1

BTINT2 f14
(
q1(y1), q2(y2)

)
−−−→1=2 q(y2) f14 ∈ ΣBTINT2

BTINT1 f15
(
q1(y1), q2(y2)

)
−−−→16=2 q(y1) f15 ∈ ΣBTINT1

BTINT2 f16
(
q1(y1), q2(y2)

)
−−−→16=2 q(y2) f16 ∈ ΣBTINT2

Figure 5: New transition categories for BTVTAMR
¬R.

4. Visibly Tree Automata with Memory and Structural Constraints and

Bogaert-Tison Constraints

In Section 3, we have only considered VTAM with constraints testing the memories
contents. In this section, we go a bit further and add to VTAMR

¬R some Bogaert-Tison
constraints [4], i.e. equality and disequality tests between brother subterms in the term
read by the automaton.

We consider two new categories for the symbols which we call BTINT1 and BTINT2, for
”Bogaert-Tison Internal”. A transition with a symbol in one of these categories will make no
test on the memory contents, but rather an equality or disequality test between the brother
subterms directly under the current position of computation. In Figure 5, we describe the
new transitions categories. We use the same notation as in [4] for the constraints. Note
that again, we only allow Bogaert-Tison constraints in internal rules.

For instance, if f13(t1, t2) is a subterm of the input tree, and if t1 leads to q1(m1), and

t2 to q2(m2), then the transition rule f13
(
q1(y1), q2(y2)

)
−−−→1=2 q(y1), of type BTINT1 can be

applied at this position iff t1 = t2.

Definition 4.1. A visibly tree automaton with memory and constraints and Bogaert-Tison
tests (BTVTAMR

¬R) on a signature Σ is a tuple (Γ, R,Q,Qf ,∆) where Γ, Q, Qf are defined
as for TAM, R is an equivalence relation on T (Γ) and ∆ is a set of rewrite rules in one of
the above categories: PUSH, POP11, POP12, POP21, POP22, INT0, INT1, INT2, INT

R
1 , INT

R
2 ,

BTINT1, BTINT2.

The acceptance of terms of T (Σ) and languages of term and memories are defined and
denoted as in Section 2.1.

The definition of complete BTVTAMR
¬R is the same as before. Every BTVTAMR

¬R

can be completed (with a polynomial overhead) by the addition of a trash state q⊥ (the
construction is similar to the one for VTAMR

¬R in Section 3.1).

The definition of deterministic BTVTAMR
¬R is based on the same conditions as for

VTAMR
¬R for the function symbols in categories PUSH0, PUSH, POP11, . . . , POP22, INT1,

INT2, INT
R
1 , INT

R
2 , and for the function symbols of BTINT1, BTINT2, we use the same kind

of conditions as for INTR
1 , INT

R
2 : for all f ∈ ΣBTINT1

∪ ΣBTINT2
for all q1, q2 ∈ Q, there are

at most two rules in ∆ with left-member f
(
q1(y1), q2(y2)

)
, and if there are two, then their

constraints have different signs.

Theorem 4.2. For every BTVTAM≡
6≡ A = (Γ,≡, Q,Qf ,∆) there exists a deterministic

BTVTAM≡
6≡ Adet = (Γdet ,≡, Qdet , Qdet

f
,∆det ) such that L(A) = L(Adet), where |Qdet | and

|Γdet | both are O
(
2|Q|2

)
.



VISIBLY TREE AUTOMATA WITH MEMORY AND CONSTRAINTS 25

Proof. We use, again, the same construction as in the proof of Theorem 2.3, with a direct
extension of the construction for INT to INT≡ and BTINT. As mentioned in Theorem 3.14,
the extension works for INT≡ because the results of the tests are independent from the
non-deterministic choices of the automaton. For BTINT it is exactly the same (the brother
terms are not changed by the automaton!).

Theorem 4.3. The class of tree languages of BTVTAM≡
6≡ is closed under Boolean opera-

tions.

Proof. We use the same constructions as in Theorem 2.4 for union and intersection. For the
intersection, as in Theorem 3.15, the constraints (even Bogaert-Tison tests) can be safely
kept in product rules, thanks to the visibility condition. For the complementation, we use
Theorem 4.2 and complementation.

The proof of the following theorem follows the same idea as the proof for Bogaert-Tison
automata [4], but we need here to take care of the structural constraints on the memory
contents. A consequence is that the complexity of emptiness decision is much higher.

Theorem 4.4. The emptiness problem is decidable for BTVTAM≡
6≡.

Proof. Let A be a BTVTAM≡
6≡. First we determinize it into Adet and assume that Adet is

also complete. Then, we delete the rules BTINT1 of the form: f
(
q1(y1), q2(y2)

)
−−−→1=2 q(y1).

with q1 distinct from q2 (idem for BTINT2 rules) because they can’t be used (the automaton
is deterministic so one term cannot lead to two different states).

For the same reason, we change each rule BTINT1 of the form: f
(
q1(y1), q2(y2)

)
−−−→16=2

q(y1) with q1 distinct from q2 (idem for BTINT 6=
2 rules) into the same rule but without the

disequality test: f
(
q1(y1), q2(y2)

)
→ q(y1).

We call the newly obtained automaton Anew . It is still deterministic and recognizes
the same language as Adet . Actually, the careful reader may notice that Anew is not a true
BTVTAM≡

6≡, because some unconstrained rules may involve symbols in BTINT in this au-
tomaton. However, it is just an intermediate step in the construction of another automaton
A′ below.

Now, we consider the remaining BTINT1 or BTINT2 rules with negative Bogaert-Tison

constraints, which are of the form: f
(
q1(y1), q1(y2)

)
−−−→16=2 q(y1) (or q(y2)). We denote them

by R1, ..., Ri, ..., RN , and denote by qi the state in the left member of Ri, for each i ≤ N .
We also denote the corresponding BTINT1 or BTINT2 rules by S1,...., Si,..., SN . Note that,
since Adet is deterministic and complete, we can associate to each rule of BTINTi, whose
constraint is negative, a unique rule of BTINTi with a positive constraint and the same
states in its left member. So, the state in the left member of Si is the same qi as for Ri.

It is important to notice that if a rule Ri can effectively be used, then there must exist
two distinct terms leading to the state qi (we will call them witnesses). If not, the rule can
be removed.

So, our purpose is now to find, for each rule Ri, whether two witnesses exist or not.
We let R be initially {R1, . . . , RN}. Suppose that at least one Ri rule can be used, and
consider a run on a term t that uses such a rule. We consider an innermost application of
a rule Ri in this run on a subterm f(t1, t2). The run on t1 and the run on t2 both lead to
the state qi, without any use of an Rj rule.

Let us remove all the Ri rules from Anew , and we remove all the equality tests in the
Si rules. Let A

′ be the resulting automaton. It is a deterministic VTAM≡
6≡ (considering the



26 H. COMON-LUNDH, F. JACQUEMARD, AND N. PERRIN

symbols in BTINT as INT symbols in this new automaton), and each term in L(A′, qi) can
be transformed (we will call it BT-transformation) into a term in L(Anew , qi): each time
we use a modified Si rule, for instance of type BTINT1, on a subtree f(t1, t2), we replace
t2 with t1 so that the equality test is satisfied (and the resulting memory is unchanged).
Important: all the replacements must be performed bottom-up.

The proof of the emptiness decidability of VTAM≡
6≡ (Corollary 3.12) is constructive,

hence if we choose a reachable state qj, we can find a term in L(A′, qj) to this state, and
then convert it into a witness. So, we can find a first witness tA ∈ L(Anew , qj).

If no witness can be found, then all the Ri rules are useless and we can definitely
remove them all. Otherwise, we still need to find another witness, and if there is at least
one such other witness, then one of them can be recognized without using a Ri rule. We
can construct a VTAM≡

6≡ recognizing all the terms whose BT-transformation leads to tA.

To design it, we read tA top-down (knowing the state of A′ at each node), and each time
we see a subterm f(t1, t2) to which a modified Si rule has to be applied, for instance a
modified BTINT1 (resp. BTINT2) rule, the right (resp. left) son of f only needs to be a
term in L(A′, qi), and the left (resp. right) son of f only needs to be BT-transformed into
t1 (resp. t2). Once this VTAM≡

6≡ is constructed, we can combine it with A′ in order to

obtain a VTAM≡
6≡ recognizing all the terms leading A′ to qj (the state reached by A′ on tA)

except the terms whose BT-transformation is tA. Then we find another term in L(A′, qj)
(if it exists) and its BT-transformation is not tA: it is actually another witness tB .

When we have two witnesses for a rule Rj , we remove it from R, and we add this rule
Rj to A′, but without the disequality test. The automaton A′ keeps its good property: a
term t leading A′ to some state q can be BT-transformed into a term leading Anew to state
q: when we ”meet” the use of a rule formerly in the set R on f(t1, t1) during the bottom-up
exploration of t, we replace the right (for a rule that was of type BTINT1 and with negative
constraints) or the left son (otherwise) by a witness different from t1, so that the disequality
test is satisfied. Note that even if t1 is a witness, we can do so because we have found two
witnesses.

With the new rule in A′ we look for 2 witnesses for some remaining Ri rule. Again, we
can show that if a couple of witnesses exists, then at least one couple can be found without
any use of the remaining Ri rules. When we find a first witness tA for a remaining rule Rj ,
we can find another one (if it exists) using approximately the same technique as previously:
we read tA top-down, and when we see a rule formerly in R, used on f(t1, t2) (e.g. a rule
formerly of type BTINT1 with a negative constraint), we just go on recursively, saying that
the left son must be a term whose BT-transformation is t1, and the right son must be either:

• a term whose BT-transformation is t2,
• or, if our BT-transformation would change f(t1, t1) into f(t1, t2), a term whose BT-
transformation is t1.

As previously, we construct a VTAM≡
6≡, fully using the Boolean closure of this class, that

recognizes the terms in L(A′, qj) (the state reached by A′ on tA), except those whose BT-
transformation is tA, and therefore we can find another witness (if it exists) tB .

We continue to use this method, finding couples of witnesses, until there is no rule in
the set R anymore, or until we are not able to find a new couple of witnesses anymore: in
that latter case, we remove the remaining Ri rules because they are useless.

So, now we use the final version of A′ obtained in order to find a term leading to a final
state, and since we have a couple of witnesses for each rule formerly in the set R, we can
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BT-transform it into a term accepted by Anew (hence by A). If such a term does not exist,
the language recognized by Anew (i.e. the language recognized by A) is empty.

5. Conclusion

Having a tree memory structure instead of a stack is sometimes more relevant (even
when the input functions symbols are only of arities 1 and 0). We have shown how to extend
the visibly pushdown languages to such memory structures, keeping determinization and
closure properties of VPL. Our second contribution is then to extend this automaton model,
constraining the transition rules with some regular conditions on memory contents. The
structural equality and disequality tests appear to a be a good class of constraints since
we have then both decidability of emptiness and Boolean closure properties. Moreover,
they can be combined (while keeping decidability and closure results) with equality and
disequality tests a la [4], operating on brothers subterms of the term read.

Several further studies can be done on the automata of this paper. For instance, the
problem of the closure of the corresponding tree languages under certain classes of term
rewriting systems is particularly interesting, as it can be applied to the verification of
infinite state systems with regular model checking techniques. It could be interesting as well
to study how the definition of VTAM can be extended to deal with unranked trees, with the
perspective of applications to problems related to semi-structured documents processing.
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takes in the examples in the extended abstract, and for having sent us a basis of comparison
of VTAM with (top down) Visibly Pushdown Tree Automata, and Jean Goubault-Larrecq
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Appendix: Two-way tree automata with structural equality constraints

are as expressive as standard tree automata.

In this section, we complete the proof of Lemma 3.7. We show actually a more general
result: we consider two-way alternating tree automata with some regular constraints and
show that the language they recognize is also accepted by a standard tree automaton. This
generalizes the proof for two-way alternating tree automata (see e.g. [8] chapter 7) and the
proof for two-way automata with equality tests [7], which itself relies on a transformation
from two-way automata to one-way automata [6].

Two-way automata are, as usual, automata that can move up and down and alter-
nation consists (as usual) in spawning to copies of the tree in different states, requiring
acceptance of both copies. In the logical formalism, alternation simply corresponds to
clauses q1(x), q2(x) → q(x), requiring to accept x both in state q1 and in state q2 if one
wants to accept x in state q.

For simplicity, we assume that all function symbols have arity 0 or 2. Lexical conven-
tions:

• f, g, h, ... are ranging over symbols of arity 2. Unless explicitly stated they may denote
identical symbols.

• a, b, c... range over constants
• x, x1, . . . , xi, . . . , y, . . . , yi, z, . . . , zi, . . . are (universally quantified) first-order variables,
• S, S1, S2, . . . , Si, . . . range over states symbols for a fixed given tree automaton
• Q,Q1, Q2, . . . , range over states symbols of the tree automaton with memory
• R,R1, R2, . . . , range over state symbols of the binary recognizable relations.

We assume that Ri are recognizable relations defined by clauses of the form:

(A) ⇒ R(a, b)

(B) S1(x), S2(y) ⇒ R(f(x, y), a)

(C) S1(x), S2(y) ⇒ R(a, f(x, y))

(D) R1(x1, x2), R2(y1, y2) ⇒ R3(f(x1, y1), g(x2, y2))

(E) S1(x), S2(y) ⇒ S(f(x, y))

(F ) ⇒ S(a)

We assume wlog that there is a state S⊤ in which all trees are accepted (a “trash state”).
Moreover, we will need in what follows an additional property of the Ri’s:

∀i, j,∃k, l, Ri(x, y) ∧Rj(y, z) |=| Rk(x, y) ∧Rl(x, z)

This property is satisfied by the structural equivalence, for which there is only one index
i: Ri =≡ and we have indeed

x ≡ y ∧ y ≡ z |=| x ≡ y ∧ x ≡ z

It is also satisfied by the universal binary relation and by the equality relation. That is why
this generalizes corresponding results of [8, 7].

Our automata are defined by a finite set of clauses of the form:
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(1) Q1(y1), Q2(y2), R(y1, y2) ⇒ Q3(y1)

(2) Q1(y1), Q2(y2) ⇒ Q3(f(y1, y2))

(2b) ⇒ Q1(a)

(3) Q1(f(y1, y2)), Q2(y3) ⇒ Q3(y1)

(4) Q1(f(y1, y2)), Q2(y3) ⇒ Q3(y2)

These clauses have a least Herbrand model. We write [[Q]] the interpretation of Q in
this model. This is the language recognized by the automaton in state Q.

The goal is to prove that, for every Q, [[Q]] is recognized by a finite tree automaton We
use a selection strategy, with splitting and complete the rules (1)-(4) above. We show that
the completion terminates and that we get out of it a tree automaton which accepts exactly
the memory contents. Splitting will introduce nullary predicate symbols (propositional
variables).

We consider the following selection strategy. Let E1 be the set of literals which contain
at least one function symbol and E2 be the set of negative literals

(1) If the clause contains a negative literal ¬R(u, v) or a negative literal ¬S(u) where either
u, v is not a variable, then select such literals only. This case is ruled out in what follows

(2) If the clause contains at least one negated propositional variable, select the negated
propositional variables only. This case is ruled out in what follows

(3) If E1 ∩ E2 6= ∅, then select E1 ∩ E2

(4) If E1 6= ∅ and E1 ∩E2 = ∅, then select E1

(5) If E1 = ∅ and E2 6= ∅, then select the negative literals ¬R(x, y) and ¬S(x) if any,
otherwise select E2

(6) Otherwise, select the only literal of the clause

In what follows (and precedes), selected literals are underlined.
We introduce the procedure by starting to run the completion with the selection strat-

egy, before showing the general form of the clauses we get.
First, clauses of the form (3), (4) are replaced (using splitting) with clauses of the form

(3) Q1(f(y1, y2)),NEQ2
⇒ Q3(y1)

(4) Q1(f(y1, y2)),NEQ2
⇒ Q3(y2)

(s1) Q2(x) ⇒ NEQ2

Overlapping (s1) and (2, 2b) may yield clauses of the form

(s2) NEQ1
,NEQ2

⇒ NEQ3

(s3) ⇒ NEQ

together with new clauses of the form (s1). Eventually, we may reach, using (s3) and (3-4)
clauses:

(3b) Q1(f(y1, y2)) ⇒ Q3(y1)

(4b) Q1(f(y1, y2)) ⇒ Q3(y2)

(1) + (2) yields clauses of the form
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(5.1) Q1(y1), Q2(y2), Q3(g(y3, y4)), R1(y1, y3), R2(y2, y4) ⇒ Q4(f(y1, y2))

(5.2) Q1(y1), Q2(y2), Q3(a), S1(y1), S2(y2) ⇒ Q4(f(y1, y2))

(5.3) Q1(a) ⇒ Q2(b)

(5.4) S1(y1), S2(y2), Q1(f(y1, y2)) ⇒ Q2(a)

(2) +(3b) and (2) + (4b) yield clauses of the form (after splitting):

(6) NEQ3
, Q1(y1) ⇒ Q2(y1)

and eventually
(6b) Q1(y1) ⇒ Q2(y1)

(5.1) + (2) yields

(7.1) Q1(y1), Q2(y2), Q3(y3), Q4(y4), R1(y1, y3), R2(y2, y4) ⇒ Q5(f(y1, y2))

We split (7.1) : we introduce new predicate symbols Q
Rj

i defined by

Qi(y), Rj(x, y) ⇒ Q
Rj

i (x)

Then clauses (7.1) becomes:

(7.1) Q1(y1), Q2(y2), Q
R1

3 (y1), Q
R2

4 (y2) ⇒ Q5(f(y1, y2))

(5.2) + (2b) yields clauses of the form

(7.2) Q1(y1), Q2(y2), S1(y1), S2(y2) ⇒ Q3(f(y1, y2))

(6b) + (2) yields new clauses of the form (2). (7.1) + (5.1) yields clauses of the form:

(8.1) Q1(y1), Q2(y2), Q
R3

3 (y1), Q
R4

4 (y2), Q5(y3), Q6(y4), R1(y3, y1), R2(y4, y2)
⇒ Q7(f(y3, y4))

At this point, we use the property of R and split the clause:

∃y1.Q1(y1) ∧QR3

3 (y1) ∧R1(y3, y1) |=| Q
R4

1 (y1) ∧QR5

3 (y1)

Hence clauses (9.1) can be rewritten into clauses of the form:

(8.1) QR1

1 (y1), Q
R3

3 (y1), Q5(y1), Q
R2

2 (y2), Q
R4

4 (y2), Q6(y2) ⇒ Q7(f(y1, y2))

Finally, if we let Q be the set of predicate symbols consisting of

• Symbols Si

• Symbols Qi

• Symbols Q
Rj

i

For every subset S of Q, we introduce a propositional variable NES . Clauses are split,

introducing new propositional variables (or predicate symbols Q
Rj

i ) in such a way that in
all clauses except split clauses, the variables occurring on the left, also occur on the right
of the clause. And, in split clauses, there is only one variable occurring on the left and not
on the right.

We let C be the set of clauses obtained by repeated applications of resolution with
splitting, with the above selection strategy (a priori C could be infinite). We claim that all
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generated clauses are of one of the following forms (Where the Pi’s and the P ′
i ’s belong to

Q, Q’s states might actually be Q
Rj

i )

1. Pop clauses. (the original clauses, which are not subsumed by the new clauses):

(3) Q1(f(y1, y2)),NEQ2
⇒ Q3(y1)

(4) Q1(f(y1, y2)),NEQ2
⇒ Q3(y2)

(3b) Q1(f(y1, y2)) ⇒ Q2(y1)

(4b) Q1(f(y1, y2)) ⇒ Q2(y2)

Note that, clause (1) is a particular case of the alternating clauses below, since it can
be written

Q1(y1), Q
R
2 (y1) ⇒ Q3(y1)

2. Push clauses.

(P1) P1(x), . . . , Pn(x), P
′
1(y), . . . , P

′
m(y) ⇒ Q(f(x, y))

(P2) ⇒ P (a)

(P3) NES , P1(x), . . . , Pn(x), P
′
1(y), . . . , P

′
m(y) ⇒ Q(f(x, y))

(P4) NES ⇒ Q(a)

3. Intermediate clauses.

(I1) P1(x), . . . , Pn(x), P
′
1(y), . . . , P

′
m(y), P ′′

1 (f(x, y)), . . . , P
′′
k (f(x, y)) ⇒ Q(f(x, y))

(I2) P1(a), . . . , Pn(a) ⇒ Q(a)

(I3) S1(x1), S2(x2), Q1(a) ⇒ Q2(g(x1, x2))

(I4) Q1(a) ⇒ Q2(b)

4. Alternating clauses.

(A1) NES , P1(x), . . . , Pn(x) ⇒ Q(x)
(A2) P1(x), . . . , Pn(x) ⇒ Q(x)

In addition, we have clauses obtained by splitting:

5. Split clauses.

(S1) Rj(x, y), Qi(y) ⇒ Q
Rj

i (x)

(S1b) Rj(y, x), Qi(y) ⇒ Q
−Rj

i (x)

(S2) R1(x1, y1), R2(x2, y2), Qi(f(y1, y2)) ⇒ Q
±Rj

i (g(x1, x2))

(S3) S1(x), S2(y), Qi(f(x, y)) ⇒ Q
±Rj

i (a)

(S4) P1(x), . . . , Pn(x) ⇒ NE{P1,...,Pn}

(S5) P1(x), . . . , Pn(x), P
′
1(y), . . . , P

′
m(y), P ′′

1 (f(x, y)), . . . , P
′′
k (f(x, y)) ⇒ NES
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6. Propositional clauses.

(E1) NES1
, . . . ,NESn ⇒ NES

(E2) ⇒ NES

(E3) P1(a), . . . Pn(a) ⇒ NES

Every resolution step using the selection strategy of two of the above clauses yield a
clause in the above set

POP+PUSH: yields an alternating clause (A1) and a split clause (S4).
INT + PUSH: yields a Push clause or an intermediate clause
alternating + PUSH: yields an intermediate clause (I1) or (I2).
split + R: yields a split clause (S)2 or (S3) or an intermediate clause (I3) or (I4).
(S2) + PUSH: yields clauses (S1) and push clauses. Note that here, we use the property of

the relation R to split clauses, which may involve predicates Q
Rj

i .
(S3)+ PUSH: yields push clause and split clauses (S4).
(S4)+ PUSH: yields split clauses (S5) or propositional clause (E3).
(S5)+ PUSH: yields split clauses (S5) or propositional clause (E1).

It follows that all clauses of C are of the above form. Since there are only finitely many
such clauses, C is finite and computed in finite (exponential) time.

Now, we let A be the alternating tree automaton defined by clauses (P1) and (P2)
(and automata clauses defining the S states). Let, for any state Q, [[Q]]A be the language
accepted in state Q by A. We claim that [[Q]] = [[A]].

To prove this, we first show (the proof is omitted here) that NE{P1,...,Pn} is in C iff
[[P1]]A ∩ . . . ∩ [[Pn]]A 6= ∅.

Then observe that [[Q]] is also the interpretation of Q in the least Herbrand model of C:
indeed, all computations yielding C are correct. Since [[Q]]A ⊆ [[Q]] is trivial, we only have
to prove the converse inclusion. For every t ∈ [[Q]] there is a proof of Q(t) using the clauses
in C.

Assume, by contradiction, that there is a term t and a predicate symbol Q such that
all proofs of Q(t) using the clauses in C involve at least a clause, which is not an automaton
clause. Then, considering an appropriate sub-proof, there is a term u and a predicate
symbol P such that all proofs of P (u) involve at least one non-automaton clause and there
is a proof of P (u) which uses exactly one non-automaton clause, at the last step of the
proof.

We investigate all possible cases for the last clause used in the proof of P (u) and derive
a contradiction in each case.

Clause I1: The last step of the proof is

P1(u1), . . . , Pn(u1), P
′
1(u2), . . . , P

′
m(u2), P

′′
1 (f(u1, u2)), . . . , P

′′
k (f(u1, u2))

P (f(u1, u2))

and we assume u = f(u1, u2). Assume also that, among the proofs we consider, k is
minimal. (If k = 0 then we have a push clause, which is supposed not to be the case).

By hypothesis, for all i, u1 ∈ [[Pi]]A, u2 ∈ [[P ′
i ]]A and f(u1, u2) ∈ [[P ′′

i ]]A. In particular,
if we consider the last clause used in the proof of P ′′

k (u):

Q1(x), . . . , Qr(x), Q
′
1(y), . . . , Q

′
s(y) ⇒ P ′′

k (f(x, y))
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belongs to C. Then, overlapping this clause with the above clause I1, the following clause
belongs also to C:

P1(x), . . . , Pn(x), Q1(x), . . . , Qr(x),
P ′
1(y), . . . , P

′
m(y), Q′

1(y), . . . , Q
′
s(y), P

′′
1 (f(x, y)), . . . , P

′′
k−1(f(x, y)) ⇒ P (f(x, y))

and therefore we have another proof of P (u):

P1(u1), . . . , Pn(u1), Q1(u1), . . . , Qr(u1)
P ′
1(u2), . . . , P

′
m(u2), Q

′
1(u2), . . . , Q

′
s(u2), P

′′
1 (f(u1, u2)), . . . , P

′′
k−1(f(u1, u2))

P (f(u1, u2))

which contradicts the minimality of k.
Clause (A1): The last step of the proof is

P1(u), . . . , Pn(u)

P (u)

By hypothesis, the proofs of Pi(u) only use automata clauses: ∀i.u ∈ [[Pi]]A. Le the push
rule

Q1(x), . . . , Qm(x), Q′
1(y), . . . , Q

′
p(y) ⇒ Pn(f(x, y))

be the last clause used in the proof of P (u). Overlapping this clause and the clause A1

above, there is another clause in C yielding a proof of P (u):

Q1(x), . . . , Qm(x), Q′
1(y), . . . , Q

′
p(y), P1(f(x, y)), . . . , Pn−1(f(x, y)) ⇒ P (f(x, y))

And we are back to the case of I1.
Clause (3b):

Q1(f(u, t))

P (u)

By hypothesis f(t, u) ∈ [[Q1]]A. Hence there is a push clause

P1(x), . . . , Pn(x), P
′
1(y), . . . , P

′
m(y) ⇒ Q1(f(x, y))

such that t ∈ [[P1]]A∩ . . .∩ [[Pn]]A and u ∈ [[P ′
1]]A∩ . . .∩ [[P ′

m]]A. By resolution on the clause
(3b), there is also in C a clause

P1(x), . . . , Pn(x),NE{P ′
1
,...,P ′

m} ⇒ Q(x)

However, since [[P ′
1]]A ∩ . . . ∩ [[P ′

m]]A 6= ∅, NE{P ′
1
,...,p′m} is also in C and, by resolution again

P1(x), . . . , Pn(x) ⇒ Q(x)

is a clause of C.
Then we are back to the case of A1.

Clause (3): The last step of the proof is

Q1(f(u, t)) NEQ2

P (u)

Since NEQ2
∈ C in this case, by saturation of C, there is a clause Q1(x, y) ⇒ Q(x) in C,

and we are back to the case of (3b).
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Other cases: they are quite similar to the previous ones. Let us only consider the case of
clause (S2), which is slightly more complicated.

R1(u1, v1) R2(u2, v2) Qi(f(v1, v2))

Q
Rj

i (g(u1, u2))

Assume moreover that u = g(u1, u2) is a minimal size term such that, for some Qi, Rj ,

Q
Rj

i (u) is provable using as a last step an inference S2, and is not provable by automata
clauses only,

As before, we consider the overlap between S2 and a push clause. We get

R1(x1, y1), R2(x2, y2), P1(y1), . . . , Pn(y1), P
′
1(y2), . . . , P

′
m(y2) ⇒ Q

Rj

i (g(x1, x2))

Hence, the following clauses belong to C (when Pi, P
′
i are not themselves predicates QR;

otherwise, we have to use the property on R relations and split in another way, using the
S⊤ predicate, as shown later):

R1(x1, y1), Pi(y1) ⇒ PR1

i (x1)

R2(x2, y2), P
′
i (y2) ⇒ P ′

i
R2(x2)

PR1

1 (x1), . . . , P
R1

n (x1), P
′
1
R2(x2), . . . , P

′
m

R2(x2) ⇒ Q
Rj

i (g(x1, x2))

and we have the following proof of g(u1, u2):

R1(u1, v1) P1(v1)

PR1

1 (u1) · · ·

R1(u1, vn) Pn(v1)

PR1

n (u1)

R2(u2, w1) P
′
2(w1)

P ′
1
R2(u2) · · ·

R2(u2, wm) P ′
m(wm)

P ′
m

R2(u2)

Q
Rj

i (g(u1, u2))

Now, by overlapping again R1(x1, y1) and R2(x2, y2) with their defining clause, we
compute “shortcut clauses” belonging to C and get another proof (for instance assuming
v1 = f(v11, v12) and u1 = h(u11, u12)):

R11(u11, v11) R12(u12, v12) P1(f(v11, v12))

PR1

1 (u1) · · ·

R2(u2, w1) P
′
2(w1)

P ′
1
R2(u2) · · ·

R2(u2, wm) P ′
m(wm)

P ′
m

R2(u2)

Q
Rj

i (g(u1, u2))

By minimality of u, u1 ∈ [[PR1

1 ]]A. Similarly, for every i, u1 ∈ [[PR1

i ]]A. u2 ∈ [[P ′
i
R2 ]]A

and it follows that g(u1, u2) ∈ [[Q
Rj

i ]]A.

Finally, let us consider the case where some Pi is itself a predicate symbol QR, in
which case we do not have a predicate (QR)R1 . We use then the assumed property of the
predicates Ri: R1(x, y) ∧R(y, z)|=|R′

1(x, y) ∧R′(x, z), hence

(∃u,∃v.R1(x, u) ∧R(u, v) ∧Q(v))|=|(∃u.R1(x, u) ∧ S⊤(u)) ∧ (∃v.R(x, v) ∧Q(v))

Hence we need two split clauses instead of one:

R′
1(x, y) ⇒ S

R′
1

⊤ (x)

R′(x, y), Q(y) ⇒ QR′
(x)
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And R1(x1, y1), Q
R(y1) is replaced with S

R′
1

⊤ (x1), Q
R′
(x1). Note that such a transforma-

tion is not necessary when there is a single transitive binary relation, as in our application:
then R(x, y) ∧QR(y) is simply replaced with QR(x).

To sum up: if there is a proof of P (u) using clauses of C, then, by saturation of the
clauses of C w.r.t. overlaps with push clauses, we can rewrite the proof into a proof using
push clauses only: u ∈ [[P ]]A. This proves that [[P ]] = [[P ]]A.

Finally, it is easy (and well-known) to compute a standard bottom-up automaton ac-
cepting the same language as an alternating automaton; this only requires a subset con-
struction. That is why the language accepted by our two-way automata with structural
equality constraints is actually a recognizable language. The overall size of the resulting
automaton (and its computation time) are simply exponential, but we know that, already
for alternating automata, we cannot do better.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
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