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ABSTRACT. The problem of model checking procedural programs has fostered much research
towards the definition of temporal logics for reasoning on context-free structures. The most
notable of such results are temporal logics on Nested Words, such as CaRet and NWTL.
Recently, the logic OPTL was introduced, based on the class of Operator Precedence
Languages (OPLs), more powerful than Nested Words. We define the new OPL-based
logic POTL and prove its FO-completeness. POTL improves on NWTL by enabling the
formulation of requirements involving pre/post-conditions, stack inspection, and others
in the presence of exception-like constructs. It improves on OPTL too, which instead we
show not to be FO-complete; it also allows to express more easily stack inspection and
function-local properties. In a companion paper we report a model checking procedure
for POTL and experimental results based on a prototype tool developed therefor. For
completeness a short summary of this complementary result is provided in this paper too.

1. INTRODUCTION

Linear Temporal Logic (LTL) is one of the most successful languages for the specification and
verification of system requirements. Being defined on a linearly ordered algebraic structure,
it is ideal to express safety and liveness properties on a linear flow of events. In particular,
LTL is equivalent to First-Order Logic (FOL) on this structure [Kam68] and captures the
first-order definable fragment of (w-)regular languages. Its satisfiability and model checking
are PSPACE-complete with respect to formula length but polynomial in model size.

The need for model checking software programs lead to several attempts at widening
the expressive power of specifications beyond LTL. Indeed, procedural programs are often
modeled with operational formalisms such as Boolean programs [BR00], Pushdown Systems,
and Recursive State Machines [ABET05]. Reachability and LTL model checking have been
extensively studied for such systems [BEM97, EHRS00, ABET05]. However, they present
behaviors typical of pushdown automata. Thus, many properties thereof cannot be expressed
by a formalism whose expressive power is limited to regular languages. Some early attempts
at extending the expressive power of specifications beyond regular languages in model
checking include equipping LTL with Presburger arithmetic [BH96|, using directly a class of
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pushdown automata for the specification [KPV02], and a variant of Propositional Dynamic
Logic that can express a restricted class of Context-Free Languages (CFLs) [HKT02].

A natural way of generalizing LTL is defining temporal logics on more complex al-
gebraic structures. The introduction of logics based on Nested Words [AMO09], such as
CaRet [AEMO04], has been one of the first attempts in this direction. Nested Words consist of
a discrete, linear order with the addition of a one-to-one nesting relation. They are equivalent
to Visibly Pushdown Languages (VPLs) [AMO04], a.k.a. Input-Driven Languages [Meh80],
a strict subclass of deterministic CFLs. The parenthetical nature of VPLs results in the
nesting relation on words, which naturally models the one-to-one correspondence between
function calls and returns in procedural programs. CaRet is the first temporal logic that
extends LTL through explicit modalities that refer to the underlying model’s context-free
structure. Thus, CaRet can easily express Hoare-style pre/post-conditions, stack inspection,
and more.

The applications of Nested Words in model checking lead to the question of which
theoretical properties of LTL could be extended to them. One of the most prominent is First-
Order (FO) completeness. CaRet was devised with the specification of procedural programs
in mind, but its stance with respect to FOL remains unknown, although it is conjectured
not to be FO-complete [AABT08]. FO-completeness on Nested Words is thoroughly studied
in [AABT08], and is achieved with Nested Words Temporal Logic (NWTL) and other logics.
NWTL satisfiability and model checking are EXPTIME-complete and retain polinomiality
on system size.

One natural further question is whether it is possible to define temporal logics that
capture a fragment of CFLs wider than VPLs. Several practical applications motivate this
question: the nesting relation of Nested Words is one-to-one [MP18], preventing its ability
to model behaviors in which a single event is related to multiple ones. Such behaviors occur,
e.g., in widespread programming constructs such as exceptions, interrupts and continuations.

OPTL [CMP20] is a recent temporal logic that can express specifications concerning,
e.g., whether a function is terminated by an exception, or throws one, and pre/post-
conditions. OPTL is based on Operator Precedence Languages (OPLs), which are a subclass
of deterministic CFLs initially introduced with the purpose of efficient parsing [Flo63], a
field in which they continue to offer useful applications [GJ0O8, BCM™15]. They strictly
contain VPLs [CM12] and retain all complexity, closure and decidability properties that
make regular languages and VPLs well-suited for temporal logics: they are closed under
Boolean operations, concatenation, Kleene *, and language emptiness and inclusion are
decidable [CM12]. They have also been characterized through Monadic Second-Order Logic
(MSO) [LMPP15]. This greater expressive power results in OPTL being based on a structure
called OP word, made of a linear order plus a nesting relation that can be one-to-many
and many-to-one, and considerably generalizes that of Nested Words. Indeed, OPTL is
strictly more expressive than NWTL, but retains the same satisfiability and model checking
complexity [CMP20]. However, the relationship between OPTL and FOL remained unknown.

In this paper, we close this gap thanks to the novel temporal logic POTL (Precedence-
Oriented Temporal Logic). POTL too is based on OPLs and is devised to easily navigate
a word’s underlying syntax tree (ST). It is also based on OP words, enabling reasoning
on constructs such as exceptions, but has a better ability to express properties on the
context-free structure of words. It features new until and since modalities based on summary
paths, which can navigate a word’s ST up or down while skipping subtrees, and hierarchical
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paths, which move between word positions where the nesting relation is many-to-one or
one-to-many.

The gap in expressive power between OPTL and POTL is both practical and theoretical.
In fact, in POTL it is easier to express stack inspection properties in the presence of uncaught
exceptions, as well as function-frame local properties. We show that one of such properties
is not expressible at all in OPTL, but it is in POTL, and hence POTL is strictly more
expressive than OPTL.

Moreover, we prove that POTL is equivalent to FOL on both OP finite and w-words. We
obtain the result on finite words by translating an FO-complete logic for finite trees [Mar04]
to POTL. We then extend the proof to w-words by employing a composition argument on
trees proved with Ehrenfeucht-Fraissé games. This last proof is rather involved, as it needs
to distinguish between two classes of trees that arise from OP w-words.

As a corollary, we show that FOL has the three-variable property on OP words. l.e., every
FO formula on OP words is equivalent to another FOL formula in which only three distinct
variables appear. This property is related to FO-completeness in temporal logics [Gab81]
and holds both on simple Dedekind-complete linear orders and Nested Words [AAB108].

Recently, we also showed [MPC20b, MPC20a] that FO-definable OPLs coincide with
aperiodic or noncounting ones, according to a definition of aperiodic structured CFLs which
naturally extends the classic one for regular languages [MP71]!. Whereas various regular
languages of practical usage are counting —e.g., many hardware devices are just counters
modulo some integer— we are not aware of programming languages or other CFLs of practical
interest, such as structured data description languages, that exhibit counting properties:
e.g., no language imposes to write programs with an even number of nested loops. Thus,
the breadth of coverage in terms of practical applications of model-checking algorithms for
an FO-complete logic is even larger for the class of CFLs than that of classic model checkers
for regular languages.

POTL’s expressiveness gains do not come at the cost of higher model checking complexity,
which remains EXPTIME-complete, as we show in [CMP21].

The paper is organized as follows: Section 2 provides some background on OPLs;
Section 3 presents the syntax and semantics of POTL, with some qualitative demonstration
of its expressive power and comparison with similar logics, and the proof of the expressive
incompleteness of OPTL; Section 4 proves the equivalence of POTL to FOL on finite words;
Section 5 extends this result to w-words; Section 6 summarizes the results of the companion
paper [CMP21] where a model checker for OPLs based on POTL is provided, its complexity
evaluated, and experimental results are also reported; Section 7 concludes and proposes
future research lines. Appendices A and B contain proofs that did not fit into the main text.

We assume familiarity with classic topics of theoretical computer science, specifically
context-free grammars and languages, pushdown automata, parsing, syntax tree (ST)
(cf. [Har78]), w-languages, i.e., languages with infinite words, and temporal logic —LTL in
particular— [Eme90].

2. OPERATOR PRECEDENCE LANGUAGES

Operator Precedence Languages (OPLs) were originally defined through their generating
grammars [Flo63]: operator precedence grammars (OPGs) are a special class of context-free

1Noticeably, this equivalence does not hold for tree-languages and their FO-logic [Tho84, Heu91].
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Figure 1: The OPM M_can.

grammars (CFGs) in operator normal form —i.e., grammars in which right-hand sides (rhs)
of production rules contain no consecutive non-terminals®>—. As a consequence, the syntax
trees generated by such grammars never exhibit two consecutive internal nodes.

The distinguishing feature of OPGs is that they define three precedence relations (PR)
between pairs of input symbols which drive the deterministic parsing and therefore the
construction of a unique ST, if any, associated with an input string. For this reason we
consider OPLs a kind of input-driven languages, but larger then the original VPLs. The three
PRs are denoted by the symbols <, =, > and are respectively named yields precedence, equal
in precedence, and takes precedence. They graphically resemble the traditional arithmetic
relations but do not share their typical ordering and equivalence properties; we kept them
for “historical reasons”, but we recommend the reader not to be confused by the similarity.

Intuitively, given two input characters a, b belonging to a grammar’s terminal alphabet
separated by at most one non-terminal, a < b iff in some grammar derivation b is the first
terminal character of a grammar’s rhs following a whether the grammar’s rule contains
a non-terminal character before b or not (for this reasons we also say that non-terminal
characters are “transparent” in OPL parsing); a = b iff a and b occur consecutively in some
rhs, possibly separated by one non-terminal; a > b iff @ is the last terminal in a rhs —whether
followed or not by a non-terminal—, and b follows that rhs in some derivation. The following
example provides a first intuition of how a set of unique PRs drives the parsing of a string of
terminal characters in a deterministic way; subsequently the above concepts are formalized.

Example 2.1. Consider the alphabet of terminal symbols ¥ = {call, ret, han, exc}: as the
chosen identifiers suggest, call represents the fact that a procedure call occurs, ret represents
the fact that a procedure terminates normally and returns to its caller, exc that an exception
is raised and han that an exception handler is installed. We want to implement a policy
such that an exception aborts all the pending calls up to the point where an appropriate
handler is found in the stack, if any; after that, execution is resumed normally. Calls and
returns, as well as possible pairing of handlers and exceptions are managed according to the
usual LIFO policy. The alphabet symbols are written in boldface for reasons that will be
explained later but are irrelevant for this example.

The above policy is implemented by the PRs described in Figure 1 which displays the
PRs through a square matrix, called operator precedence matriz (OPM), where the element
of row ¢ and column j is the PR between the symbol labeling row ¢ and that of column j. We
also add the special symbol # which is used as a string delimiter and state the convention
that all symbols of ¥ yield precedence to, and take precedence over it.

Let us now see how the OPM of Figure 1, named Mcay, drives the construction of a
unique ST associated to a string on the alphabet > through a typical bottom-up parsing

2Evelry CFG can be effectively transformed into an equivalent one in operator form [Har78].
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# < call < han < call < call < call > exc > call =ret > call =ret > ret > #
# < call < han < call < call N > exc > call =ret > call =ret > ret > #

# < call < han < call N > exc > call =ret > call =ret > ret > #

# < call < han = N exc > call =ret > call =ret > ret > #

# < call < N call =ret > call =ret > ret > #

# < call < N call =ret > ret > #

# <call= N ret > #

#=N#
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Figure 2: The sequence of bottom-up reductions during the parsing of we,.

algorithm. We will see that the shape of the obtained ST depends only on the OPM and
not on the particular grammar exhibiting the OPM. Consider the sample word w.; = call
han call call call exc call ret call ret ret. First, add the delimiter # at its boundaries
and write all precedence relations between consecutive characters, according to Mcai- The
result is row 0 of Figure 2.

Then, select all innermost patterns of the form a << ¢y =---=c¢p > b. In row 0 of Figure 2
the only such pattern is the underscored call enclosed within the pair (<¢, >). This means
that the ST we are going to build, if it exists, must contain an internal node with the
terminal character call as its only child. We mark this fact by replacing the pattern <call>
with a dummy non-terminal character, say N —i.e., we reduce call to N—. The result is
row 1 of Figure 2.

Next, we apply the same labeling to row 1 by simply ignoring the presence of the dummy
symbol N and we find a new candidate for reduction, namely the pattern <call N>. Notice
that there is no doubt on building the candidate rhs as <call N>: if we reduced just the
call and replaced it by a new N, we would produce two adjacent internal nodes, which is
impossible since the ST must be generated by a grammar in operator normal form.

By skipping the obvious reduction of row 2, we come to row 3. This time the terminal
characters to be reduced, again, underscored, are two, with an = and an N in between. This
means that they embrace a subtree of the whole ST whose root is the node represented by
the dummy symbol N. By executing the new reduction leading from row 3 to 4 we produce
a new N immediately to the left of a call which is matched by an equal in precedence ret.
Then, the procedure is repeated until the final row 7 is obtained, where, by convention we
state the = relation between the two delimiters.

Given that each reduction applied in Figure 2 corresponds to a derivation step of a
grammar and to the expansion of an internal node of the corresponding ST, it is immediate
to realize that the ST of we, is the one depicted in Figure 3, where the terminal symbols
have been numbered according to their occurrence —including the conventional numbering
of the delimiters— for future convenience, and labeling internal nodes has been omitted as
useless.

Remarks 2.2. The tree of Figure 3 emphasizes the main difference between various types
of parenthesis-like languages, such as VPLs, and OPLs: whereas in the former ones every
open parenthesis is consumed by the only corresponding closed one?, in our example a call

3To be precise, VPLs allow for unmatched closed parentheses but only at the beginning of a string and
unmatched open ones at the end.
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Figure 3: The ST corresponding to word w.;. Dots represent non-terminals.

can be matched by the appropriate ret but can also be “aborted” by an exc which in turn
aborts all pending calls until its corresponding han —if any— is found.

Thus, an OPM defines a universe of strings on the given alphabet that can be parsed
according to it and assigns a unique ST —with unlabeled internal nodes— to each one
of them. Such a universe is the whole X* iff the OPM is complete, i.e. it has no empty
cells, including those of the implicit row and column referring to the delimiters. In the
early literature about OPLs, e.g., [Flo63, CMMT78] OPGs sharing a given OPM were used
to define restricted languages w.r.t. the universe defined by the OPM and their algebraic
properties have been investigated. Later on the same operation has been defined by using
different formalisms such as pushdown automata, monadic second order logic, and suitable
extensions of regular expressions. In this paper we refer to the use automata and temporal
logic, which are typical of model checking. As a side remark we mention that, in general, it
may happen that in the same string there are several patterns ready to be reduced; this
could enable the implementation of parallel parsing algorithms (see e.g., [BCM™15]) which
however is not an issue of interest in this paper.

We now state the basics of OPLs needed for this paper in a formal way. Let X be a
finite alphabet, and ¢ the empty string. We use the special symbol # ¢ 3 to mark the
beginning and the end of any string.

Definition 2.3. An operator precedence matriz (OPM) M over ¥ is a partial function
(S U{#})? — {<,=, >}, that, for each ordered pair (a,b), defines the precedence relation
M (a,b) holding between a and b. If the function is total we say that M is complete. We call
the pair (X, M) an operator precedence alphabet. By convention, the initial # can only yield
precedence to other symbols, and other symbols can only take precedence on the ending #.

If M(a,b) = 7, where m € {<,=,>}, we write a w b. For u,v € (XU {#})" we write
u v if u =xa and v = by with a 7 b.

The next concept of chain makes the connection between OP relations and ST structure
explicit, through brackets.

Definition 2.4. A simple chain “©[cicy ... co%+t, with £ > 1, is a string cpcica . .. cpcpy,
such that: cg,cor1 € BU{#}, ¢; € Eforeveryi=1,2,...¢, and co<<c1=cy...co_1=c¢>Cpyq.
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A composed chain is a string cpsoc181C2 . .. cgSpcer1, Where ©[cicy . .. cp]®+ is a simple
chain, and s; € ¥* is either the empty string or is such that “[s;]“+! is a chain (simple
or composed), for every i = 0,1,...,¢ (£ > 1). Such a composed chain will be written as
co [80618162 - Cgsdc“‘l.

In a chain, simple or composed, ¢y (resp. cp41) is called its left (resp. right) context; all
terminals between them are called its body.

A finite word w over X is compatible with an OPM M iff for each pair of letters ¢, d,
consecutive in w, M(c,d) is defined and, for each substring = of #w# which is a chain of
the form %[y]®, M(a,b) is defined. For a given operator precedence alphabet (X, M) the set
of all words compatible with M is called the universe of the operator precedence alphabet.

The chain below is the chain defined by the OPM M_ap of Figure 1 for the word we,.
It shows the natural isomorphism between STs with unlabeled internal nodes (see Figure 3)
and chains.
#[call[[[han|call[call[call]]|exc|call ret|call ret|ret|#

Note that, in composed chains, consecutive inner chains are always separated by an
input symbol: this is due to the fact that OPL strings are generated by grammars in operator
normal form.

Next we introduce operator precedence automata as pushdown machines suitable to
carve specific OPLs within the universe of an operator precedence alphabet.

Definition 2.5. An operator precedence automaton (OPA) is a tuple A = (X, M,Q, 1, F,J)
where: (3, M) is an operator precedence alphabet, @ is a finite set of states (disjoint from
Y), I C @ is the set of initial states, F' C @ is the set of final states, 6 C Q x (XUQ) X Q is
the transition relation, which is the union of the three disjoint relations dsp € @ X X X @,
Opush € @ X X x Q, and dpop € Q X @ x Q. An OPA is deterministic iff I is a singleton, and
all three components of § are —possibly partial— functions.

To define the semantics of OPA, we need some new notations. Letters p,q,p;, ¢;, - -
denote states in Q. We use gy — ¢ for (90, @, q1) € Opush, 9o N q1 for (qo,a,q1) € dsnife,
g == ¢ for (90,92, q1) € Opop, and qo ~% q1, if the automaton can read w € ¥* going from
go to 1. Let T'be ¥ x Q and IV = T'U {L} be the stack alphabet; we denote symbols in
I as [a, q]. We set smb([a, ¢]) = a, smb(L) = #, and st([a, q]) = q. For a stack content
Y =Yn...71L, with 75 € T', n > 0, we set smb(y) = smb(~y,) if n > 1, and smb(y) = # if
n = 0.

A configuration of an OPA is a triple ¢ = (w, ¢, 7), where w € ¥*#, ¢ € @, and
v eT* L. A computation or run is a finite sequence co - ¢1 F ... F ¢, of moves or transitions
¢; F ¢iy1. There are three kinds of moves, depending on the PR between the symbol on top
of the stack and the next input symbol:

push move: if smb(y) < a then (az, p, v) F (z, q, [a, p]v), with (p,a,q) € dpush;
shift move: if a =0 then (bx, q, [a, p]y) & (x, r, [b, ply), with (q,b,7) € Osnip;
pop move: if a > b then (bx, ¢, [a, p]y) F (bz, r, ), with (q,p,7) € pop.

Shift and pop moves are not performed when the stack contains only 1. Push moves
put a new element on top of the stack consisting of the input symbol together with the
current state of the OPA. Shift moves update the top element of the stack by changing

its input symbol only. Pop moves remove the element on top of the stack, and update
the state of the OPA according to d,,, on the basis of the current state and the state
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in the removed stack symbol. They do not consume the input symbol, which is used
only as a look-ahead to establish the > relation. The OPA accepts the language L(A) =

{z e | (@#, g, L) #, qr, L),qr€1,qr € F}.
Definition 2.6. Let A be an OPA. We call a support for the simple chain “©[cicy . .. cg]%+!

any path in A of the form gy —» q1 —=» ... —=> qu_1 N Q== ge+1- The label of the last
(and only) pop is exactly qo, i.e. the first state of the path; this pop is executed because of
relation ¢y > cpyq.

We call a support for the composed chain “[spci81C2 ... ¢S]+t any path in A of the

form go %% ¢ 5 1 > ¢} N g 5 Q RN qe+1 where, for every i = 0,1,...,¢: if
s; # €, then ¢; N ¢, is a support for the chain “[s;]%+1, else ¢/ = g;.

Chains fully determine the parsing structure of any OPA over (X, M). If the OPA
performs the computation (sb, g;, [a, q;]7) F* (b, q,7), then ¢[s]® is necessarily a chain over
(X, M), and there exists a support like the one above with s = sgcy ... cps¢ and g1 = gx.
This corresponds to the parsing of the string sgci ... cpsy within the context a,b, which
contains all information needed to build the subtree whose frontier is that string.

Consider the OPA A(X, M) = (3, M,{q},{q}, {4}, Omaz) where dpmaz(q,q) = g, and
Omaz(q,c) = ¢, Ve € ¥. We call it the OP Maz-Automaton over (X, M). For a max-
automaton, each chain has a support; thus, a max-automaton accepts exactly the universe
of the operator precedence alphabet. If M is complete, the language accepted by A(X, M)
is ¥*. With reference to the OPM M_ap of Figure 1, the string ret call han is accepted by
the max-automaton with structure defined by the chain #[[ret]call[han]]#.

In conclusion, given an OP alphabet, the OPM M assigns a unique structure to any
compatible string in ¥*; unlike VPLs, such a structure is not visible in the string, and must
be built by means of a non-trivial parsing algorithm. An OPA defined on the OP alphabet
selects an appropriate subset within the universe of the OP alphabet. OPAs form a Boolean
algebra whose universal element is the max-automaton. The language classes recognized by
deterministic and non-deterministic OPAs coincide. For a more complete description of the
OPL family and of its relations with other CFLs we refer the reader to [MP18].

Example 2.7. For readers not familiar with OPLs, we show how OPAs can naturally model
programming languages such as Java and C++. Given a set AP of atomic propositions
describing events and states of the program, we use (P(AP), M4p) as the OP alphabet. For
convenience, we consider a partitioning of AP into a set of normal propositional labels (in
round font), and structural labels (in bold). Structural labels define the OP structure of the
word: Map is only defined for subsets of AP containing exactly one structural label, so that
given two structural labels 1y, 1y, for any a,d’,b,b' € P(AP) s.t. 11 € a,a’ and 1y € b, b’ we
have Map(a,b) = Mup(a’,b'). In this way, it is possible to define an OPM on the entire
P(AP) by only giving the relations between structural labels, as we did for M¢ay. Figure 4
shows how to model a procedural program with an OPA. The OPA simulates the program’s
behavior with respect to the stack, by expressing its execution traces with four event kinds:
call (resp. ret) marks a procedure call (resp. return), han the installation of an exception
handler by a try statement, and exc an exception being raised. OPM M.,y defines the
context-free structure of the word, which is strictly linked with the programming language
semantics: the < PR causes nesting (e.g., calls can be nested into other calls), and the
= PR implies a one-to-one relation, e.g. between a call and the ret of the same function,
and a han and the exc it catches. Each OPA state represents a line in the source code.
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pAO { pBO { pCcO {
AO:  try { BO: pCO; Co: if () {
Al: pBO; Br: } C1: throw;
A2: } catch { C2: } else {
A3: pPErr(); C3: pCO;
A4: PErr(Q); ¥
Cr: }

Ar: }

call @ han . call . call @ callpc

pa try b5 be Al, B0, CO

~ret PErr xc |

Y
MO t A4 11 A0
GGt
PErr U
call w A3
PErr @

Figure 4: Example procedural program (top) and the derived OPA (bottom). Push, shift,
pop moves are shown by, resp., solid, dashed and double arrows.

First, procedure py is called by the program loader (M0), and [{call,p}, MO0] is pushed
onto the stack, to track the program state before the call. Then, the try statement at line
A0 of py4 installs a handler. All subsequent calls to pp and pc push new stack symbols on
top of the one pushed with han. po may only call itself recursively, or throw an exception,
but never return normally. This is reflected by exc being the only transition leading from
state CO to the accepting state Mr, and pp and p¢o having no way to a normal ret. The
OPA has a look-ahead of one input symbol, so when it encounters exc, it must pop all
symbols in the stack, corresponding to active function frames, until it finds the one with
han in it, which cannot be popped because han =exc. Notice that such behavior cannot be
modeled by Visibly Pushdown Automata or Nested Word Automata, because they need to
read an input symbol for each pop move. Thus, han protects the parent function from the
exception. Since the state contained in han’s stack symbol is A0, the execution resumes in
the catch clause of ps. pa then calls twice the library error-handling function pg.., which
ends regularly both times, and returns. The string of Figure 1 is accepted by this OPA.

In this example, we only model the stack behavior for simplicity, but other statements,
such as assignments, and other behaviors, such as continuations, could be modeled by
a different choice of the OPM, and other aspects of the program’s state by appropriate
abstractions [JPR18].

2.1. Operator Precedence w-Languages. All definitions regarding OPLs are extended
to infinite words in the usual way, but with a few distinctions [LMPP15]. Given an alphabet
(X, M), an w-word w € X is compatible with M if every prefix of w is compatible with M.
OP w-words are not terminated by the delimiter #. An w-word may contain never-ending
chains of the form ¢y < ¢; =c¢9 =---, where the < relation between ¢y and ¢ is never closed
by a corresponding . Such chains are called open chains and may be simple or composed.
A composed open chain may contain both open and closed subchains. Of course, a closed
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chain cannot contain an open one. A terminal symbol a € ¥ is pending if it is part of the
body of an open chain and of no closed chains.

OPA classes accepting the whole class of wOPLs can be defined by augmenting Def-
inition 2.5 with Biichi or Muller acceptance conditions. In this paper, we only consider
the former one. The semantics of configurations, moves and infinite runs are defined as
for finite OPAs. For the acceptance condition, let p be a run on an w-word w. Define
Inf(p) = {q € Q | there exist infinitely many positions i s.t. (8, ¢, z;) € p} as the set of
states that occur infinitely often in p. p is successful iff there exists a state ¢y € F' such that
qr € Inf(p). An WOPBA A accepts w € 3¢ iff there is a successful run of A on w. The
w-language recognized by A is L(A) = {w € £“ | A accepts w}. Unlike OPAs, wOPBAs do
not require the stack to be empty for word acceptance: when reading an open chain, the
stack symbol pushed when the first character of the body of its underlying simple chain is
read remains into the stack forever; it is at most updated by shift moves.

The most important closure properties of OPLs are preserved by wOPLs, which form a
Boolean algebra and are closed under concatenation of an OPL with an wOPL [LMPP15].
The equivalence between deterministic and nondeterministic automata is lost in the infinite
case, which is unsurprising, since it also happens for regular w-languages and wVPLs.

A more complete treatment of OPLs properties and parsing algorithms can be found
in [MP18, GJ08]; wOPLs are described in some depth in [LMPP15].

2.2. OPLs vs other structured language families. The nice closure properties of OPLs
come from the fact that a word’s syntactic structure is determined locally, once an OPM is
given. Other language classes enjoy similar properties. The simplest (and earliest) ones are
Parenthesis Languages [McN67]. In Parenthesis Languages, two terminals disjoint from the
input alphabet are used as open and closed parentheses, and they surround all grammar rule
rhs. Thus, the syntactic structure is directly encoded in words (just like we did in Figure 1
with chains).

Visibly Pushdown Languages (VPLs) [AM04], first introduced as Input-Driven Lan-
guages [Meh80], extend parenthesis languages; they also lead to applications in model
checking. In VPLs, the input alphabet X is partitioned into three disjoint sets ., ¥J;, and
3, called respectively the call, internal, and return alphabets. Visibly Pushdown Automata
(VPA), the automata class recognizing VPLs, always perform a push move when reading a
call symbol, a pop move when reading a return symbol, and, when reading an internal symbol,
they perform a move that only updates the current state, leaving the stack untouched. Thus,
a string’s syntactic structure is fully determined by the alphabet partition, and is clearly
visible: a symbol in Y. is an open parenthesis, and one in 3., is a closed parenthesis. The
matching between such symbols is unambiguous. Once the alphabet partition is fixed, VPLs
form a Boolean algebra, which enabled their success in model checking. VPAs are real-time,
as they read exactly one input symbol with each move. This limitation distinguishes them
from OPAs, whose pop moves are so-called e-moves. OPLs strictly contain VPLs [CM12].

Nested Words [AMO09], an algebraic characterization of VPLs, were introduced to foster
their logic and data-theoretic applications. They consist of a linear sequence of positions,
plus a matching relation encoding the pairing of call and return symbols. As a result, the
matching relation is a strictly one-to-one nesting relation that never crosses itself (each
“open parenthesis” is matched to a closed one, with a minor exception). The class of Regular
Languages of Nested Words is recognized by Nested Words Automata, and is equivalent to
VPLs.
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# < call < han < call < call < call > exc > call = ret > call = ret > ret > #
ba PB pc Pc PEm PErm PErm PErm ba
0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 5: The example string of Figure 1 as an OP word. Chains are highlighted by arrows
joining their contexts; structural labels are in bold, and other atomic propositions
are shown below them. p; means a call or a ret is related to procedure p;. First,
procedure p4 is called (pos. 1), and it installs an exception handler in pos. 2.
Then, three nested procedures are called, and the innermost one (p¢) throws an
exception, which is caught by the handler. Two more functions are called and,
finally, p4 returns.

The original motivation for VPLs was model checking procedural programs: the matching
between call and return symbols easily models the behavior of a program’s stack during
function calls and returns, while internal symbols model other statements. However, many
programming languages manage the stack in more complex ways. E.g., when an exception is
raised, the stack may be unwound, as multiple procedures are terminated by the exception.
In Example 2.7, this is easily modeled by an OPM where the call symbol takes precedence
from exc. In contrast, a VPA would need to read a different symbol for each pop move, so
a single exc would not suffice.

An early attempt at overcoming such limitations was made with Colored Nested
Words [AF16], in which multiple calls can be matched with a return of a different color,
allowing many-to-one relations. Colored Nested Words are subsumed by OPLs and, as we
show in Section 3, the nesting relation of OPLs can be also one-to-many, besides many-to-one.

3. PRECEDENCE-ORIENTED TEMPORAL LOGIC

POTL is a linear-time temporal logic, which extends the classical LTL. We recall that
the semantics of LTL [Pnu77] is defined on a Dedekind-complete set of word positions U
equipped with a total ordering and monadic relations, called atomic propositions (AP). In
this paper, we consider a discrete timeline, hence U = {0,1,...,n}, withn € N, or U = N.
Each LTL formula ¢ is evaluated in a word position: we write (w,i) = ¢ to state that ¢
holds in position i of word w. Besides operators from propositional logic, LTL features
modalities that enable movement between positions; e.g., the Next modality states that a
formula holds in the subsequent position of the current one: (w,i) = Oy iff (w,i+ 1) = ¢;
the Until modality states that there exists a linear path, made of consecutive positions and
starting from the current one, such that a formula v holds in the last position of such path,
and another formula ¢ holds in all previous positions. Formally, (w,i) = ¢ U 1) iff there
exists j > i s.t. (w,j) E 1, and for all j/, with i < j' < j, we have (w, j') = ¢.

The linear order, however, is not sufficient to express properties of more complex
structures than the linear ones, typically the tree-shaped ones, which are the natural domain
of context-free languages. The history of logic formalisms suitable to deal with CFLs
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somewhat parallels the path that led from regular languages to tree-languages [Tha67] or
their equivalent counterpart in terms of strings, i.e. parenthesis languages [McN67].

A first logic mechanism aimed at “walking through the structure of a context-free
sentence” was proposed in [LST94| and consists in a matching condition that relates the two
extreme terminals of the rhs of a context-free grammar in so-called double Greibach normal
form, i.e. a grammar whose production rhs exhibit a terminal character at both ends: in
a sense such terminal characters play the role of explicit parentheses. [LST94] provides a
logic language for general CFLs based on such a relation which however fails to extend the
decidability properties of logics for regular languages due to lack of closure properties of
CFLs. The matching condition was then resumed in [AMO09] to define their MSO logic for
VPLs and subsequently the temporal logics CaRet [AEM04] and NWTL [AABT08].

OPLs are structured but not “visibly structured” as they lack explicit parentheses
(see Section 2). Nevertheless, a more sophisticated notion of matching relation has been
introduced in [LMPP15] for OPLs by exploiting the fact that OPLs remain input-driven
thanks to the OPM. We name the new matching condition chain relation and define it here
below. We fix a finite set of atomic propositions AP, and an OPM M4p on P(AP).

A word structure —also called OP word for short— is the tuple (U, <, Map, P), where
U, <, and Myp are as above, and P: AP — P(U) is a function associating each atomic
proposition with the set of positions where it holds, with 0, (n + 1) € P(#). For the time
being, we consider just finite string languages; the necessary extensions needed to deal with
w-languages will be introduced in Section 3.2.

Definition 3.1 (Chain relation). The chain relation x(i,j) holds between two positions
i,j €U iff i <j—1, and i and j are resp. the left and right contexts of the same chain (cf.
Definition 2.4), according to M 4p and the labeling induced by P.

In the following, given two positions ¢, j and a PR «, we write ¢ 7 j to say a w b, where
a={p|i€ P(p)},and b= {p|j € P(p)}. For notational convenience, we partition AP
into structural labels, written in bold face, which define a word’s structure, and normal
labels, in round face, defining predicates holding in a position. Thus, an OPM M can be
defined on structural labels only, and M4p is obtained by inverse homomorphism of M on
subsets of AP containing exactly one of them.

The chain relation augments the linear structure of a word with the tree-like structure of
OPLs. Figure 5 shows the word of Figure 3 as an OP word and emphasizes the distinguishing
feature of the relation, i.e. that, for composed chains, it may not be one-to-one, but also
one-to-many or many-to-one. Notice the correspondence between internal nodes in the ST
and pairs of positions in the x relation.

In the ST, we say that the right context j of a chain is at the same level as the left one
i when ¢ = j (e.g., in Figure 3, pos. 1 and 11), at a lower level when i < j (e.g., pos. 1 with
7, and 9), at a higher level if i > j (e.g., pos. 3 and 4 with 6).

Furthermore, given i, j € U, relation x has the following properties:

(1) Tt never crosses itself: if x(i,7) and x(h, k), for any h,k € U, then we have i < h <
j = k<jandi<k<j = 1< h.

(2) If x(4,7), then i <i+1and j — 1> j.

(3) Consider all positions (if any) i; < ig < --- < iy s.t. x(ip, ) for all 1 < p < n. We have
i1<jorip=jand,ifn>1,i>jforall2<qg<n.

(4) Consider all positions (if any) j; < jo < -+ < jn s.t. x(4,Jp) for all 1 < p < n. We have
i>jpori=jpand,ifn>1i<j,foralll1 <g<n-1
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Property 4 says that when the chain relation is one-to-many, the contexts of the outermost
chain are in the = or » relation, while the inner ones are in the < relation. Property 3 says
that contexts of outermost many-to-one chains are in the = or < relation, and the inner
ones are in the > relation. Such properties are proved in Appendix A for readers unfamiliar
with OPLs.

The x relation is the core of the MSO logic characterization for OPLs given in [LMPP15]
where it is also shown that the greater generality of OPLs and corresponding MSO logic,
though requiring more technical proofs, produces results in terms of closure properties,
decidability and complexity of the constructions that are the same as the corresponding
ones for VPLs. Similarly, in this paper we are going to show that the temporal logic POTL
replicates the FO-completeness result of NWTL despite the greater complexity of the x
relation.*

While LTL’s linear paths only follow the ordering relation <, paths in POTL may follow
the x relation too. As a result, a POTL path through a string can simulate paths through
the corresponding ST.

We envisage two basic types of path. The first one is that of summary paths. By
following the chain relation, summary paths may skip chain bodies, which correspond to
the fringe of a subtree in the ST. We distinguish between downward and upward summary
paths (resp. DSP and USP). Both kinds can follow both the < and the y relations; DSPs
can enter a chain body but cannot exit it so that they can move only downward in a ST
or remain at the same level; conversely, USPs cannot enter one but can move upward by
exiting the current one. In other words, if a position k is part of a DSP, and there are two
positions ¢ and j, with i < k < j and x(4,7) holds, the next position in the DSP cannot be
> j. E.g., two of the DSPs starting from pos. 1 in Figure 5 are 1-2-3, which enters chain
Xx(2,6), and 1-2-6, which skips its body. USPs are symmetric, and some examples thereof
are paths 3-6-7 and 4-6-7.

Since the y relation can be many-to-one or one-to-many, it makes sense to write formulas
that consider only left contexts of chains that share their right context, or vice versa. Thus,
the paths of our second type, named hierarchical paths, are made of such positions, but
excluding outermost chains. E.g., in Figure 5, positions 2, 3 and 4 are all in the y relation
with 6, so 3-4 is a hierarchical path (x(2,6) is the outermost chain). Symmetrically, 7-9 is
another hierarchical path. The reason for excluding the outermost chain is that, with most
OPMs, such positions have a different semantic role than internal ones. E.g., positions 3
and 4 are both calls terminated by the same exception, while 2 is the handler. Positions 7
and 9 are both calls issued by the same function (the one called in position 1), while 11 is
its return. This is a consequence of properties 3 and 4 above.

In the next subsection, we describe in a complete and formal way POTL for finite string
OPLs while in the subsequent subsection we briefly describe the necessary changes to deal
with w-languages.

3.1. POTL Syntax and Semantics. Given a finite set of atomic propositions AP, let
a € AP, and t € {d,u}. The syntax of POTL is the following;:

pu=al-p|eVe|Ovloe|xre | Xpel ol o|eS, ¢
| O | O | U o | 0 Sir

“In [CMP21] we produce model checking algorithms with the same order of complexity as those for NWTL.
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The truth of POTL formulas is defined w.r.t. a single word position. Let w be an OP
word, and a € AP. Then, for any position ¢ € U of w, we have (w,i) = a iff i € P(a).
Operators such as A and — have the usual semantics from propositional logic. Next, while
giving the formal semantics of POTL operators, we illustrate it by showing how it can be
used to express properties on program execution traces, such as the one of Figure 5.

Next/back operators. The downward next and back operators 0% and ©¢ are like their
LTL counterparts, except they are true only if the next (resp. current) position is at a lower
or equal ST level than the current (resp. preceding) one. The upward next and back, O* and
O, are symmetric. Formally, (w,1) = O%p iff (w,i+1) E @ and i< (i +1) ori= (i + 1),
and (w,i) = 0% iff (w,i — 1) = ¢, and (i — 1) <i or (i — 1) =i. Substitute < with > to
obtain the semantics for O% and ©".

E.g., we can write O%call to say that the next position is an inner call (it holds in pos.
2, 3, 4 of Figure 5), ©%call to say that the previous position is a call, and the current is the
first of the body of a function (pos. 2, 4, 5), or the ret of an empty one (pos. 8, 10), and
O"call to say that the current position terminates an empty function frame (holds in 6, 8,
10). In pos. 2 O%p holds, but O¥pp does not.

Chain Next/Back. The chain next and back operators % and x% evaluate their argument
resp. on future and past positions in the chain relation with the current one. The downward
(resp. upward) variant only considers chains whose right context goes down (resp. up) or
remains at the same level in the ST. Formally, (w,4) = x%¢ iff there exists a position j > i
such that x(i,7), i <j or i=j, and (w, ) = ¢. (w,i) | xbe iff there exists a position j < i
such that x(4,7), 7 <ior j =14, and (w,j) E ¢. Replace < with > for the upward versions.

E.g., in pos. 1 of Figure 5, ché"pErr holds because x(1,7) and x(1,9), meaning that p4
calls pg at least once. Also, x%exc is true in call positions whose procedure is terminated
by an exception thrown by an inner procedure (e.g. pos. 3 and 4). x%call is true in exc
statements that terminate at least one procedure other than the one raising it, such as
the one in pos. 6. XdFret and x%ret hold in calls to non-empty procedures that terminate
normally, and not due to an uncaught exception (e.g., pos. 1).

(Summary) Until/Since operators. POTL has two kinds of until and since operators.
They express properties on paths, which are sequences of positions obtained by iterating the
different kinds of next or back operators. In general, a path of length n € N between i,j € U
is a sequence of positions ¢ = i1 < iy < --- < i, = j. The until operator on a set of paths I'
is defined as follows: for any word w and position ¢ € U, and for any two POTL formulas ¢
and ¥, (w,1) = @U(T) 1 iff there exist a position j € U, j > i, and a path i1 < 19 < -+ <y,
between ¢ and j in I' such that (w,i;) = ¢ for any 1 < k < n, and (w,i,) = . Since
operators are defined symmetrically. Note that, depending on I', a path from ¢ to j may not
exist. We define until/since operators by associating them with different sets of paths.
The summary until ¢ Uy 0 (resp. since 1 Sy, ) operator is obtained by inductively
applying the Of and X% (resp. ©! and ti) operators. It holds in a position in which either 8
holds, or ¢ holds together with O' (UL 0) (resp. O (¢ SL0)) or X (YULO) (resp. xp(1SL0)).
It is an until operator on paths that can move not only between consecutive positions, but
also between contexts of a chain, skipping its body. With the OPM of Figure 1, this means
skipping function bodies. The downward variants can move between positions at the same
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level in the ST (i.e., in the same simple chain body), or down in the nested chain structure.
The upward ones remain at the same level, or move to higher levels of the ST.

Formula T U} exc is true in positions contained in the frame of a function that is
terminated by an exception. It is true in pos. 3 of Figure 5 because of path 3-6, and false
in pos. 1, because no upward path can enter the chain whose contexts are pos. 1 and 11.
Formula T U;j exc is true in call positions whose function frame contains excs, but that are
not directly terminated by one of them, such as the one in pos. 1 (with path 1-2-6)

We formally define Downward Summary Paths (DSP) as follows. Given an OP word w,
and two positions ¢ < j in w, the DSP between i and j, if it exists, is a sequence of positions
=11 <ig < -+ <1, =7 such that, for each 1 < p < n,

P k if k =max{h|h <jAx(ip,h) A (ip <hVi,=h)} exists;
PYET V4, 41 otherwise, if i) < (i + 1) or iy = (ip + 1).

The Downward Summary (DS) until and since operators L{g and Sfcl use as I' the set of
DSPs starting in the position in which they are evaluated. The definition for the upward
counterparts is, again, obtained by substituting > for <. In Figure 5, call Z/{g (ret A pgpr)
holds in pos. 1 because of path 1-7-8 and 1-9-10, (call V exc) Sy pp in pos. 7 because of
path 3-6-7, and (call V exc) Uy ret in 3 because of path 3-6-7-8.

Hierarchical operators. A single position may be the left or right context of multiple

chains. The operators seen so far cannot keep this fact into account, since they “forget”

about a left context when they jump to the right one. Thus, we introduce the hierarchical

next and back operators. The upward hierarchical next (resp. back), O%v (resp. ©%), is

true iff the current position j is the right context of a chain whose left context is ¢, and

1 holds in the next (resp. previous) pos. j' that is a right context of ¢, with i < j,j’. So,

O%YPEr holds in pos. 7 of Figure 5 because pgy holds in 9, and O%pg- in 9 because pg,,

holds in 7. In the ST, O% goes up between calls to pg., while ©% goes down. Their

downward counterparts behave symmetrically, and consider multiple inner chains sharing

their right context. They are formally defined as:

o (w,i) = OY%¢ iff there exist a position h < ¢ s.t. x(h,i7) and h < i and a position
j=min{k | i < kA x(h,k) Nh <k} and (w,j) = ¢;

o (w,i) = O%¢ iff there exist a position h < ¢ s.t. x(h,i7) and h < i and a position
j=max{k |k <iAx(hk)ANh <k} and (w,j) = ¢;

o (w,i) = O%p iff there exist a position h > i s.t. x(i,h) and i > h and a position
j=min{k | i < kA x(k,h) Nk >h} and (w,j) = ¢;

o (w,i) = 0% iff there exist a position h > i s.t. x(i,h) and i > h and a position
j=max{k |k <iAx(k,h) ANk >h} and (w,j) | ¢.

In the ST of Figure 3, Ojlq and @}l{ go down and up among calls terminated by the same

exc. For example, in pos. 3 OCIl{pC holds, because both pos. 3 and 4 are in the chain

relation with 6. Similarly, in pos. 4 @}l{p B holds. Note that these operators do not consider

leftmost /rightmost contexts, so Ofret is false in pos. 9, as call =ret, and pos. 11 is the

rightmost context of pos. 1.

The hierarchical until and since operators are defined by iterating these next and back
operators. The upward hierarchical path (UHP) between i and j is a sequence of positions
i =141 < i9 < --- < i, = j such that there exists a position A < 7 such that for each
1 < p < n we have x(h,ip) and h < iy, and for each 1 < ¢ < n there exists no position k
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such that i, < k < ig41 and x(h, k). The until and since operators based on the set of UHPs
starting in the position in which they are evaluated are denoted as U} and Sp . E.g.,
call U}; pgr holds in pos. 7 because of the singleton path 7 and path 7-9, and call S}, pg
in pos. 9 because of paths 9 and 7-9.

The downward hierarchical path (DHP) between ¢ and j is a sequence of positions
1 =11 < iy < --- < ip, = j such that there exists a position h > j such that for each
1 < p < n we have x(ip, h) and i, > h, and for each 1 < g < n there exists no position
k such that iy < k < ig41 and x(k,h). The until and since operators based on the set of
DHPs starting in the position in which they are evaluated are denoted as Z/{ff[ and S}lI . In
Figure 5, call L{I‘f] pc holds in pos. 3, and call Sl‘f[ pp in pos. 4, both because of path 3-4.

Equivalences. The POTL until and since operators enjoy expansion laws similar to those
of LTL. Here we give those for two until operators, those for their since and downward
counterparts being symmetric. All such laws are proved in Appendix B.

pUL V=PV (9N (O (PULE)V Xr(pUL 1))
pU b= (WAXET A=XBT)V (9 A O (0 Uiy )

As in LTL, it is worth defining some derived operators. For t € {d,u}, we define the
downward /upward summary eventually as Oty == T Z/{f( ¢, and the downward/upward
summary globally as (g := =0t (=), O%p and % respectively say that ¢ holds in one
or all positions in the path from the current position to the root of the ST. Their downward
counterparts are more interesting: they consider all positions in the current rhs and its
subtrees, starting from the current position. ©%p says that ¢ holds in at least one of such
positions, and (% in all of them. E.g., if 0%(=p4) holds in a call, it means that p4 never
holds in its whole function body, which is the subtree rooted next to the call.

We anticipate that preventing downward paths from crossing the boundaries of the
current subtrees and conversely imposing upward ones to exit it without entering any inner
one adds, rather than limiting, generality w.r.t. paths that can cross both such boundaries.

3.2. POTL on w-Words. Since applications in model checking usually require temporal
logics on infinite words, we now extend POTL to w-words.

To define OP w-words, it suffices to replace the finite set of positions U with the set of
natural numbers N in the definition of OP words. Then, the formal semantics of all POTL
operators remains the same as in Section 3.1. The only difference in the intuitive meaning
of operators occurs in w-words with open chains. In fact, chain next operators (X% and x})
do not hold on the left contexts of open chains, as the x relation is undefined on them. The
same can be said for downward hierarchical operators, when evaluated on left contexts of
open chains.

Also, property 4 of the x relation does not hold if a position ¢ is the left context of an
open chain. In this case, there may be positions j; < jo < -+ < jy s.t. x(i,jp) and i < j, for
all 1 < p < n, but no position k s.t. x(i,k) and i > k or i = k.
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3.3. Motivating Examples. POTL can express many useful requirements of procedural
programs. To emphasize the potential practical applications in automatic verification, we
supply a few examples of typical program properties expressed as POTL formulas.

Let O be the LTL globally operator, which can be expressed in POTL as in Section 3.4.1.
POTL can express Hoare-style pre/postconditions with formulas such as O(call A p =
x%(ret A 6)), where p is the precondition, and @ is the postcondition.

Unlike NWTL, POTL can easily express properties related to exception handling and
interrupt management. E.g., the shortcut CallThr(¢) := O"(exc A ¢) V x%(exc A ),
evaluated in a call, states that the procedure currently started is terminated by an exc in
which 9 holds. So, O(call A p A CallThr(T) = CallThr(f)) means that if precondition
p holds when a procedure is called, then postcondition # must hold if that procedure is
terminated by an exception. In object oriented programming languages, if p = 0 is a class
invariant asserting that a class instance’s state is valid, this formula expresses weak (or basic)
exception safety [Abr00], and strong exception safety if p and 6 express particular states of the
class instance. The no-throw guarantee can be stated with O(call Apy = —CallThr(T)),
meaning procedure p4 is never interrupted by an exception.

Stack inspection [EKS03, JLT99], i.e. properties regarding the sequence of procedures
active in the program’s stack at a certain point of its execution, is an important class of
requirements that can be expressed with shortcut Scall(p, ) := (call = o) S;l (call A1),
which subsumes the call since of CaRet, and works with exceptions too. E.g., D((call A
pp A Scall(T,pa)) = CallThr(T)) means that whenever pp is executed and at least one
instance of p4 is on the stack, pp is terminated by an exception. The OPA of Figure 4
satisfies this formula, because pp is always called by p4, and pc always throws. If the OPA
was an wOPBA, it would not satisfy such formula because of computations where po does
not terminate.

3.4. Comparison with the state of the art.

3.4.1. Linear Temporal Logic (LTL). The main limitation of LTL is that the algebraic
structure it is defined on only contains a linear order on word positions. Thus, it fails to
model systems that require an additional binary relation, such as the y relation of POTL.
LTL is in fact expressively equivalent to the first-order fragment of regular languages, and it
cannot represent context-free languages, as POTL does. LTL model checking on pushdown
formalisms has been investigated extensively [EHRS00, ABET05].

On the other hand, POTL can express all LTL operators, so that POTL is strictly
more expressive than LTL. Any LTL Next formula Oy is in fact equivalent to the POTL
formula O%p' v 0%y, where ¢’ is the translation of ¢ into POTL, and the LTL Back can be
translated symmetrically.

The Globally operator can be translated as (v := =O%(<O%—p). This formula contains
an upward summary eventually followed by a downward one, and it can be explained by
thinking to a word’s ST. The upward eventually evaluates its argument on all positions from
the current one to the root. Its argument considers paths from each one of such positions
to all the leaves of the subtrees rooted at their right, in the same rhs. Together, the two
eventually operators consider paths from the current position to all subsequent positions in
the word. Thus, with the initial negation this formula means that — never holds in such
positions, which is the meaning of the LTL Globally operator.
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The translation for LTL Until and Since is much more involved. We need to define some
shortcuts, that will be used again in Section 4.2.2. For any a C AP, o, := /\pea pPA /\qga —q
holds in a position i iff a is the set of atomic propositions holding in i. For any POTL
formula v, let X7v =V, pcap a<s(@a A x% (o, A7) be the restriction of x4~ to chains with
contexts in the < PR; x77 is analogous.

The translation for ¢ U ¢ follows, that for LTL Since being symmetric:

WV (@ Aal) Uy (87 V(¢ A B UL (WA B($)))
where ¢’ and 1)’ are the translations of ¢ and v into POTL, and

a(@) = xET = (O (T UL ") VXF(T U =)

B(@) = xT = =(0" (T 8¢ ~¢) V xp(T Sy =¢))

The main formula is the concatenation of a US until and a DS until, and it can be
explained similarly to the translation for LTL Globally. Let ¢ be the word position in which
the formula is evaluated, and j the last one of the linear path, in which 1)’ holds. The
outermost US until is witnessed by a path from ¢ to a position 7’ which, in the ST, is part of
the rhs which is the closest common ancestor of ¢ and j. In all positions 7 < k < ¢’ in this
path, formula a(¢) holds. It means ¢’ holds in all positions contained in the subtree rooted
at the non-terminal to the immediate right of £ (i.e., in the body of the chain whose left
context is k).

Then, the DS until is witnessed by a downward path from i’ to j. Here 3(p) has a role
symmetric to a(p). It forces ¢’ to hold in all subtrees rooted at the non-terminal to the left
of positions in the DS path.

Thus, formulas a(p) and () make sure ¢’ holds in all chain bodies skipped by the
summary paths, and v’ holds in j.

3.4.2. Logics on Nested Words. The first temporal logics with explicit context-free aware
modalities were based on nested words (cf. Section 2.2).

CaRet [AEMO04] was the first temporal logic on nested words to be introduced, and
it focuses on expressing properties on procedural programs, which explains its choice of
modalities. The Abstract Next and Until operators are defined on paths of positions in
the frame of the same function, skipping frames of nested calls. The Caller Next and
Until are actually past modalities, and they operate on paths made of the calls of function
frames containing the current position. LTL Next and Until are also present. The Caller
operators enable upward movement in the ST of a nested word, and abstract operators
enable movement in the same rhs. However, no CaRet operator allows pure downward
movement in the ST, which is needed to express properties limited to a single subtree. While
the LTL until can go downward, it can also go beyond the rightmost leaf of a subtree, thus
effectively jumping upwards.

This seems to be the main expressive limitation of CaRet, which is conjectured not to be
FO-complete [AABT08]. In fact, FO-complete temporal logics were introduced in [AABT08]
by adding various kinds of Within modalities to CaRet. Such operators limit their operands
to span only positions within the same call-return pair, and hence the same subtree of the
ST, at the cost of an exponential jump in the complexity of model checking.

Another approach to FO-completeness is that of NWTL [AAB"08], which is based
on Summary Until and Since operators. Summary paths are made of either consecutive
positions, or matched call-return pairs. Thus, they can skip function bodies, and enter or
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Figure 6: Example OP word on OPM M.

exit them. Summary-up and down paths, and the respective operators, can be obtained
from summary paths, enabling exclusive upward or downward movement in the ST. In
particular, summary-down operators may express properties limited to a single subtree.

In Corollary 4.11, we show that CaRet C NWTL C POTL.

3.4.3. Logics on OPLs. The only way to overcome the limitations of nested words is to base
a temporal logic on a more general algebraic structure. OPTL [CMP20] was introduced with
this aim, but it shares some of the limitations that CaRet has on nested words. It features
all LTL past and future operators, plus the Matching Next (O,) and Back (©,) operators,
resp. equivalent to POTL x% and x%, OP Summary Until and Since, and Hierarchical Until
and Since. POTL has several advantages over OPTL in its ease of expressing requirements.

Given a set of PRs II, an OPTL Summary Until &/ evaluated on a position 4 considers
paths ¢ = i1 < iy < --- < iy = j, with ¢ < j, such that for any 1 < p < n,

, h if there exists h s.t. x(ip, h) and (i, = h or i, > h), and h < j;
7 =
P ip+1 if i 7 iy for some 7w € II, otherwise.

The Summary Since S is symmetric: positions in the y relation must be in the < or =
PRs. Since the PRs checked on chain contexts are fixed, the user can control whether such
paths go up or down in the ST only partially. OPTL’s ¢ {=> 1) is equivalent to POTL’s
Uy P, and ¢ S<=hto o Sff 1: both operators only go upwards in the ST. However, there
is no OPTL operator equivalent to POTL’s Z/{;? or &y, which go downward. This makes it
difficult to express function-local properties limited to a single subtree in OPTL.

E.g., consider POTL formula « := O(exc = x%(han A ©%p4)), which means that
if an exception is thrown, it is always caught, and procedure py4 is called at some point
inside the han-exc block. One could try to translate it into OPTL with a formula such as
B:=0(exc => Oy(hanATU"py)). Consider the OP word of Figure 6. When the until
in § is evaluated in the han of pos. 3, its paths can only consider positions 4 and 5, because
paths touching such positions cannot pass the > relation between 5 and 6. Its paths, unlike
those of its POTL counterpart, cannot jump between chain contexts in the < relation, and
cannot reach positions 6, 8, and 12 in this way. If p4 held in pos. 6 and 10, o would be
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true in the word, but 3 would be false. Replacing the until with T U/<=> p4 overcomes such
issues, but it introduces another one: its paths would go past pos. 14, going outside of the
subtree. Thus, if p4 held only in pos. 15, a would be false, but this variant of 5 would hold.

OPTL has Hierarchical operators, too. Its yield-precedence Hierarchical Until (1) and
since (S*) operators, when evaluated on a position i, consider paths i < j; < jo < -+ < Jjp s.t.
x (4, jp) and i < jj, for all 1 < p < n, and there is no k < ji s.t. x(¢, k). Their take-precedence
counterparts (U' and ST) are symmetric. Thus, such paths do not start in the position
where until and since operators are evaluated, but always in a future position: this is another
limitation of OPTL. In fact, it is not possible to concatenate them to express complex
properties on right (resp. left) contexts of chains sharing their left (resp. right) context, such
as several function calls issued by the same function, or multiple function calls terminated
by the same exception. POTL has both Hierarchical Next/Back and Until/Since pairs which
are composable, making it expressively complete on such positions. For example, POTL
formula v := O(call Apy = (T S} (call App)) S¢ (0% V xb#)) means that whenever
procedure py4 is called, all procedures in the stack have previously invoked pp (possibly
excluding the one directly calling p4). While S;? can be replaced with OPTL’s S<=, POTL’s
S} cannot be easily translated. In fact, OPTL’s Hierarchical operators would only allow us
to state that pp is invoked by the procedures in the stack, but not necessarily before the
call to p4.

The above intuition about OPTL’s weaknesses are made formal in the next subsection.

3.4.4. OPTL is not expressively complete. In this section, we prove that no OPTL formula

is equivalent to POTL formula ¢%p4. The proof is quite elaborate, which is unsurprising,

since the analogous problem of the comparison between CaRet and NWTL is still open.
First, we prove the following

Lemma 3.2 (Pumping Lemma for OPTL). Let ¢ be an OPTL formula and L an OPL,
both defined on a set of atomic propositions AP and an OPM Map. Then, for some positive
integer n, for each w € L, |w| > n, there exist strings u,v,z,y,z € P(AP)* such that
w = wryz, jvy| > 1, |lvay| < n and for any k > 0 we have w' = wkzy*z € L; for any
0<j<kand0<i<|v] we have (w,|u| + i) E ¢ iff (W', |u] + jlv| + i) = ¢, and for any
0 < i < |y| we have (w, [uvkz| +1i) | ¢ iff (W', [uv*z| + jly| +1) = .

Proof. Given a word w € L, we define A(w) as the word of length |w| such that, if position ¢
of w is labeled with a, then the same position in A(w) is labeled with (a,1) if (w,i) = ¢,
and with (a,0) otherwise. Let A\(L) = {\(w) | w € L}, and A~! is such that A= (A(w)) = w.
If we prove that A(L) is context-free, from the classic Pumping Lemma [Har78] follows that,

AAAAA

claim follows by applying A~! to such strings, and the word positions in which ¢ holds in
A~ () are those labeled with 1.

To prove that A(L) is context-free, we use the OPTL model checking construction given
in [CMP20], which yields an OPA A, = (P(AP), Map,Q,1,F,0) accepting models of ¢.
The states of A, are elements of the set Cl(y), which contains ¢ and all its subformulas.
Given a word w compatible with M4p, the accepting computations of A, are such that,
for each 0 < i < |w|, the state of A, prior to reading position i contains ¢ € Cl(y) iff

(w, ) = .
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call; ret han exc call
Figure 7: Structure of a word in Lea.

Thus, we build OPA Aypapy<y = (P(AP) x {0,1}, Map,Q,I', F,d') that reads words
on (P(AP) x {0,1})* and accepts A(P(AP)") as follows:
e [’ is the set of all states in @) not containing past operators (and possibly ¢);
® 0,4, 18 such that if (@, a, ©) € dpysn, then (@, (a,1),0) € dpus if ¢ € @, and (P, (a,0),0) €
Opush otherwise;
) 5;hift is derived from 05 similarly;
° (%op = Opop-
Since L is an OPL, there exists an OPA Ay accepting it. Aj can be easily modified to
obtain A, an OPA accepting all words w € (P(AP) x {0,1})* such that the underlying

word w € P(AP)" is in L. Language A(L) is the intersection between the language accepted
by A, and A(P(AP)"). Since OPLs are closed under intersection, A\(L) is also an OPL. []

Let Lean be the max-language generated by OPM Mca)), with the addition that p4 may
appear in any word position. We prove the following:

Theorem 3.3. Given the POTL formula ¢%a, for every OPTL formula ¢ there exist a
word w € Lean and an integer 0 < i < |w| such that either (w,i) = O%pa and (w,1) = o,

or (w,1) = O%pa and (w,i) = .

Proof. Figure 7 shows the structure of the syntax trees of words in a subset of L¢an. Dots
between han—exc pairs can be replaced with repetitions of the whole tree structure, and
other dots with the repetition of surrounding tree fragments (e.g., call-ret or han-exc).
hang is the position in which ¢ is evaluated, and excy is its matched exc. call; is the call
right after hang, and cally is the one at the highest level of the subtree between hangy and
excy. calls between cally and excy do not have a corresponding ret, and are terminated
by excg. The word delimited by hang and excy is itself part of a larger tree with the same
structure. For ¢ to be equivalent to &% 4, it must be able to

(1) look for the symbol py4 in all positions between hany and excy; and
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(2) not consider any positions before hang or after excy.
In the following, we show that any OPTL formula ¢ fails to satisfy both requirements, thus

(1) one can hide p4 in one of the positions not covered, so that ¢ is false in hang, but Opy
is true; or

(2) put pa in one of the positions outside hany—excy reached by ¢, so that it is true in
hang, but O%y is not.

If ¢ is evaluated on position hang, it must contain some modal operator based on paths
that reach each position between hang and excy. The length of the word between hang
and excy has no limit, so ¢ must contain at least an until operator, which may be a LTL
Until, an OPTL Hierarchical Until, or an OPTL Summary Until ™. For &, we must have
> € II, or the path would not be able to reach past position ret; (remember that an OPTL
summary path cannot skip chains with contexts in the < relation). The presence of > allows
the Summary Until to reach positions past excy: the formula could be true if p4 appears
after excg, but not between hang and excg, unlike ¢%p 4. To avoid this, the path must be
stopped earlier, by embedding an appropriate subformula as the left operand of the until.

Suppose there exists a formula 1) that is true in excg, and false in all positions between
hanj and excy. By Lemma 3.2, there exists an integer n such that for any w € L¢ay longer
than n there is w’' = wv*zy*z € Lean, for some k > 0, such that either (a) ) never holds in
vFxy*, or (b) it holds at least k times in there. We can take w such that hang and excg
both appear after position n, and they contain nested han—exc pairs. In case (a), ¥ cannot
distinguish excy from nested excs, so a ¢ based on 1) is not equivalent to ¢%p4 in hany.
The same can be said in case (b), by evaluating ¢ in a han from v’ with i < k. In this case,
also chaining multiple untils, each one ending in a position in which 1 holds, does not work,
as k can be increased beyond the finite length of any OPTL formula.

The above argument holds verbatim for LTL Until, and does not change if we prepend
LTL or abstract next operators to the until, because the length of the branch between
call; and callp is unlimited. The argument for using since operators starting from excy
is symmetric. If both until and since operators are used, it suffices to apply the Pumping
Lemma twice (one for until and one for since), and take a value of k large enough that a part
of the string cannot be reached by the number of until and since operators in the formula.
If Hierarchical operators are used, the argument does not change, as they still need nested
until or since operators to cover the whole subtree.

This argument also holds when the formula contains (possibly nested) negated until
operators. This is trivial if their paths cannot reach part of the subtree between hangy and
excy. If, instead, they can reach positions past excy, we can build a word with p4 in one
of such positions, but not between hang and excy. To distinguish it from a word with p4
between hangy and excg, the formula would need a subformula that can distinguish positions
between hangy and excy from those outside, which would contradict Lemma 3.2.

Until now, we have proved that a formula equivalent to ¢%p4 cannot contain until or
since operators that stop exactly at excy. However, they could be stopped earlier. In the
following, we show that any such OPTL formula can only work for words of a limited length.
Hence, no OPTL formula is equivalent to &% 4 on all words in Leay.

Let w € Lean, and z = han y exc a subword of w with the structure of Figure 7, in which
each han has a matched exc, and conversely. We define hexc(x) = 0 if y contains no positions
labeled with han or exc (hence, only calls and rets). Otherwise, let 2/ = hany’ exc be the
proper subword of y with the maximum value of hexe(2'): we set hexe () = hexe(2') + 1.
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We prove by induction on hexe(x) that any OPTL formula evaluated in the first position
of x must contain nested until or since operators with a nesting depth of at least 2-hexe(x)+1
to be equivalent to G9py.

If hexe(x) = 0, at least one until or since operator is needed, as the length of x is not
fixed. E.g., OPTL formula —exc U <=> py4 suffices.

If hexe(z) = n > 0, Figure 7 shows a possible structure of . Any Summary Until in the
formula must be nested into another operator, or its paths would jump to, and go past, the
last position of z (excp). A Summary Until could be, instead, nested into any number of
nested next operators, to be evaluated in one of the positions shown in Figure 7 between
hang and cally. (The tree fragments between call; and cally can be repeated enough times
so that the next operators alone cannot reach cally.) As noted earlier, any such summary
until must allow for paths with consecutive positions in the > relation. It may also jump to
exco by following the chain relation, because call > exc. Hence, the until must be stopped
earlier by choosing appropriate operands (e.g., = O, exc as the left operand). However, this
leaves the subword between cally and excy unreached, so any of its positions containing (or
not) pa would be ignored. This can only be solved with another until operator, so at least
two are needed. If it is a Summary Until, then it must not allow the > relation, or it could,
again, escape excy (e.g. by skipping chains between calls and excp). The argument can be
extended by considering an LTL Until which stops anywhere before excg, or since operators
evaluated in exc (e.g., nested in a O, operator). The same can be said for Hierarchical
operators, which can cover only a part of the subtree if used alone.

Let 2/ = hany’ exc be a proper subword of y with hexe(2') = n — 1. Suppose it appears
before cally (the other case is symmetric). It needs at least an until or since operator to
be covered, which must not escape hang or excy. The Pumping Lemma can be used to
show that no OPTL formula can distinguish positions in x or 2’ from those outside. Thus,
a formula with until or since operators that do not exit ¢y’ is needed. By the inductive
hypothesis, it consists of at least 2(n — 1) + 1 until or since operators, thus x needs 2n + 1
of them.

Note that the argument also holds if the until formulas are negated, because negation
cannot change the type of paths considered by an operator, and cannot decrease the number
of nested untils needed to cover the whole subtree. L]

4. FIRST-ORDER COMPLETENESS ON FINITE WORDS

To show that POTL C FOL on finite OP words, we give a direct translation of POTL into
FOL. Proving that FOL C POTL is more involved: we translate X,,; [Mar04], a logic on
trees, into POTL. X, (defined in Section 4.2.2) is a logic on trees introduced to prove
the expressive completeness of Conditional XPath, and from its being equivalent to FOL on
trees [Mar05, LS10] we derive a FO-completeness result for POTL.

4.1. First-Order Semantics of POTL. We show that POTL can be expressed with FOL
equipped with monadic relations for atomic propositions, a total order on positions, and the
chain relation between pairs of positions. We define below the translation function v, such
that for any POTL formula ¢, word w and position i, (w,7) = v,(z) iff (w,i) = ¢. The
translation for propositional operators is trivial.
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For temporal operators, we first need to define a few auxiliary formulas. We define the
successor relation as the FO formula

succ(z,y) :=x <yA-Jz(zr <z Az <y).

The PRs between positions can be expressed by means of propositional combinations of
monadic atomic relations only. Given a set of atomic propositions a C AP, we define formula
oq(x), stating that all and only propositions in a hold in position z, as follows:

oa(z) = \p@) A A\ -pl) (4.1)
p€a pEAP\a
For any pair of FO variables z,y and 7 € {<,=, >}, we can build formula
ery= V(0@ A)).
a,bCAP|amd

The following translations employ the three FO variables z,y, z, only. This, in addition
to the FO-completeness result for POTL, proves that FOL on OP words retains the three-
variable property, which holds in regular words.

4.1.1. Next and Back Operators.
Vo, (T) 1= EIy(succ(:U, YA(z<yVae=y)Adz(z=yA I/@(x)))
Vody () is defined similarly, and voug(2) and veouy(x) by replacing < with >.
VXdF‘p(JJ) =Jy(x(z,y) Az <yVa=y)AJz(z =y Avy(z)))

Vyd, »(T); Vyup(2) and vy, () are defined similarly.

4.1.2. Downward/Upward Summary Until/Since. The translation for the DS until operator
can be obtained by noting that, given two positions z and y, the DSP between them, if
it exists, is the one that skips all chain bodies entirely contained between them, among
those with contexts in the < or = relations. A position z being part of such a path can be
expressed with formula —y(x,y, z) as follows:

V(xagﬁ Z) = rYL(:L‘aZ) ArYR(?/? Z)
vo(z, z) = Ely(:r <yAy< z/\El:L‘(z < w/\x(y,az)/\(y<x\/yi$))>

Yr(y, 2) :zEIx(z<a:/\:cSy/\EIy(y<zAx(y,x)/\(y<x\/y£x)))

~v(x,y, z) is true iff z is not part of the DSP between z and y, while z < z < y. In particular,
~vr(z, z) asserts that z is part of the body of a chain whose left context is after =, and
vr(y, z) states that z is part of the body of a chain whose right context is before y. Since
chain bodies cannot cross, either the two chain bodies are actually the same one, or one of
them is a sub-chain nested into the other. In both cases, 2 is part of a chain body entirely
contained between z and y, and is thus not part of the path.

Moreover, for such a path to exist, each one of its positions must be in one of the
admitted PRs with the next one. Formula

6(y,2) =Tw(z<zhaz<yA(z<zVz=z)A(z,y,x) A (suce(z,z) V x(2,2)))
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asserts this for position z, with the path ending in y. (Note that by exchanging x and z
in the definition of v(z,y, z) above, one can obtain v(z,y, x) without using any additional
variable.) Finally, ¢ Z/{ff 1 can be translated as follows:

V(@) =Ty (2 < y A (e = y Avy(a))
AVz(z <zhz<yA-(z,y,2) = Jz(z =2 Ave(z)) A 6(y,z)))
The translation for the DS since operator is similar:
Vs (@) =Ty (y < @ A (e = y Avy())
AVz(y <zAz<zAy(y,z,2) = Jz(z =2 Avy(z)) A 5(m,z)))
Vouuy () and vpsuy () are defined as above, substituting > for <.

4.1.3. Hierarchical Operators. Finally, below are the translations for two hierarchical opera-
tors, the others being symmetric.

vou () =Ty (y <z Ax(y,x) Ny <zA
EIz(:c <zAXx(y,z) Ny <zAJx(x =z Avy(x))

/\Vy(x<y/\y<z = Vz(x(z,2) Nz <2 = —odz,y)))))

V() 1= 32 (z <z Az<zAx(zx)A

3y<m§y/\x(z,y)/\z<y/\3m(xzy/\u¢(aﬁ))/\
Vz(z <zAz<yATyly<zAy<zAx(y,z) Ax(y,z))

= Jz(z=2zA V@("E))D)

4.2. Expressing X,,;; in POTL. To translate X,,;; to POTL, we give an isomorphism
between OP words and (a subset of) unranked ordered trees (UOT), the structures on which
Xyna 1s defined. First, we show how to translate OP words into UOTSs, and then the reverse.

4.2.1. OPM-compatible Unranked Ordered Trees.

Definition 4.1 (Unranked Ordered Trees). A UOT is a tuple T' = (S, Ry, R—, L). Each
node is a sequence of child numbers, representing the path from the root to it. S is a finite
set of finite sequences of natural numbers closed under the prefix operation, and for any
sequence s € S, if s-k € S, k € N, then either k =0 or s- (k—1) € S (by - we denote
concatenation). R and R_ are two binary relations called the descendant and following
sibling relation, respectively. For s,t € S, sRyt iff t is any child of s (t =s -k, k € N, i.e. ¢
is the k-th child of s), and sR-t iff ¢ is the immediate sibling to the right of s (s = r-h and
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Figure 8: The UOT corresponding to the word of Figure 5, and the ST of Figure 3. PRs
between adjacent nodes are highlighted: < is blue and = is green. A dashed red
arrow connects each node to its Re, if any.

t=r-(h+1),forreSand heN). L: AP — P(S) is a function that maps each atomic
proposition to the set of nodes labeled with it. We denote as 7 the set of all UOTs.

Given an OP word w = (U, <, Mp(ap), P), it is possible to build a UOT T, = (S,
Ry,R-,L,) € T with labels in P(AP) isomorphic to w. To do so, we define a function
7: U — Sy, which maps positions of w into nodes of T,,. First, 7(0) = 0: position 0 is the
root node, and the last # is its rightmost child. Given any position ¢ € U:

o if i=4+4 1, then 7(¢ + 1) = 7(¢) - 0 is the only child of 4

e if 1 >4+ 1, then ¢ has no children;

o if i < i+ 1, then the leftmost child of ¢ is i + 1 (7(i + 1) = 7(¢) - 0). Moreover, if
J1 < jo < -+ < jp is the largest set of positions such that x(7,ji) and either i < jj or
i =ji for 1 <k <n, then 7(ji) = 7(7) - k.

In general, i is in the < relation with all of its children, except possibly the rightmost one,

with which ¢ may be in the = relation (cf. property 4 of the y relation).

This way, every position i in w appears in the UOT exactly once. Indeed, if either
(i—1)<ior (i—1)=4, then ¢ is a child of ¢ — 1. Conversely, (i — 1) > ¢ iff 7 is the right
context of at least one chain. Thus, consider j s.t. x(j,4), and for no j' < j we have x(j',7):
by property 3 of x, either j =i or j < i. So, 7 is a child of j by the third rule above, and of
no other node, because if (i — 1) > 4, then no other rule applies.

Finally, 7(i) € Ly(a) iff i € P(a) for all a € AP, so each node in Ty, is labeled with
the set of atomic propositions that hold in the corresponding word position. We denote as
T = 7(w) the UOT obtained by applying 7 to every position of an OP word w. Figure 8
shows the translation of the word of Figure 5 into an UOT.

As for the other way of the isomorphism, notice that we are considering only a subset
of UOTs. In fact, we only consider UOTs whose node labels are compatible with a given
OPM Mp(4p). In order to define the notion of OPM compatibility for UOTs, we need to
introduce the right context (Rc) of a node. Given a UOT T and a node s € T', the Rc of s is
denoted Re(s). If s has a child s’ such that s =s’, then Re(s) is undefined. Otherwise, if r is
the leftmost right sibling of s, then Re(s) = r; if s has no right siblings, then Re(s) = Re(p),
where p is the parent of s. In Figure 8, nodes are linked to their Rc by a dashed red arrow.
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In the following, for any nodes s,s and m € {<,=, >}, we write s 7 s’ meaning that
anb, wherea={p|se L(p)},and b={p | s € L(p)}.

Definition 4.2 (OPM-compatible UOTs). We denote the set of UOTs compatible with an
OPM M as Tpr. A UOT T is in Ty iff the following properties hold. The root node and its
rightmost child are the only ones labeled with #. For any node s € T, its rightmost child r,
if any, is such that either s < r or s =r. For any other child s’ # r of s, we have s < s'. If
Re(s) exists, then s > Re(s).

Given a tree T' € Ty with labels on P(AP), it is possible to build an OP word wr
isomorphic to T". Indeed,

Lemma 4.3. Given an OP word w and the UOT T,, = 7(w), function T is an isomorphism
between positions of w and nodes of T,.

Proof. We define function T;}D : S — P(AP)", which maps a UOT node to the subword
corresponding to the subtree rooted in it. For any node s € T', let its label a = {p | s € L(p)},
and let cg, ¢1 ... cy, be its children, if any. Tgllg(s) is defined as 7';113(5) = a if s has no children,
and 7, p(s) = a- T p(co) - Typ(c1) - Typ(cn) otherwise. We prove 7 p(s) is an OP word.

We need to prove by induction on the tree structure that for any tree node s, T;}D(s)
is of the form agxpaixy ... anx,, with n > 0, and such that for 0 < k < n, ap = ap+1 and
either z; = ¢ or *[z;|*+1. In the following, we denote as first(x) the first position of a
string z, and as last(z) the last one. Indeed, for each 0 < i < n we have a < first(7,p(c;)),
and the rightmost leaf f; of the tree rooted in ¢; is such that Re(f;) = ¢;i41. Since f; =
T(last(7p(c;))) and c;11 = T(first(7 p(ci+1))), we have last(p(c;)) > first (7 p(ci+1)). So,
‘1[Tg}g(ci)]ﬁ“t(ﬂzlj(ci“)). As for 73 p(cp), if a < ¢, then 7 5(s) = apwo (and ag < first(zo)),
with ag = a and @ = 7 p(co) - Typ(c1) - Typlen). If a = c,, consider that, by hypothesis,
TZ};(Cn) is of the form a1z1as...apT,. SO Tg}g(s) = apToA1T1a2 . .. Anxy, With ag = a and
o = Typ(co) - Tapler) - Taplen-1).

The root 0 of T" and its rightmost child cx are labeled with #. So, Tg;(c#) = #, and
715 (0) = #xo#, with #[20]#, which is a finite OP word.

77118 — U can be derived from 7, 4. By construction, we have 7~((i)) = i for any
word w and position 1. []

From Lemma 4.3 follows:

Proposition 4.4. Let Map be an OPM on P(AP). For any FO formula p(x) on OP words
compatible with M ap, there exists a FO formula ¢'(x) on trees in Tyr,, such that for any
OP word w and position i in it, w = ¢(i) iff Tw = @' (7(7)), with T, = T7(w).

4.2.2. POTL Translation of Xy n. We now give the full translation of the logic Xy
from [Mar04] into POTL.

The syntax of Xy, formulasis ¢ s=a | T | —¢ | o Ay | p(e,p), with a € AP and
p € {I, M, =,<}. The semantics of propositional operators is the usual one, while p(y, ¢) is
an until/since operator on the child and sibling relations. Let '€ T be a UOT with nodes
in S. For any r,s € S, Ry and R< are s.t. rRys iff sRyr, and rR<s iff sR_.r. We denote
as R;r the transitive (but not reflexive) closure of relation R,, and by R} its transitive and
reflexive closure. For s € S, (T,s) = p(g, 1) iff there exists a node t € S s.t. sR}t and
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(T,t) = ¢, and for any r € S s.t. sR}r and r R}t we have (T,7) |= ¢. Notice that ¢t # s and
r # 8, S0 s is not included in the paths: we call this semantics strict. Conversely, in POTL
paths always start from the position where an until/since operator is evaluated.

[LS10] proved the equivalence of X4 to the logic Conditional XPath, which was proved
equivalent to FOL on finite UOTs in [Mar05]. This result is valid for any labeling of tree
nodes, and so is on OPM-compatible UOTs.

Theorem 4.5 [Mar05, LS10]. Let Map be an OPM on AP. For any FO formula ¢(x) on
trees in Tar,p, there exists a Xypq formula ¢’ such that, for any T € Tar,, and node t € T,

we have T |= ¢(t) iff (T,t) = ¢'.

We define function ¢y, which translates any X,,;; formula ¢ into a POTL formula
s.t. ¢ holds on a UOT T iff tx(¢) holds on the isomorphic word wr. ¢y is defined as the
identity for the propositional operators, and with the equivalences below for the other X,
operators. Recall from Section 3.4.1 that for any a C AP, o, := /\pEa PA /\qga —q holds in
a position ¢ iff a is the set of atomic propositions holding in ¢. For any POTL formula ~, let
X5y = Vascap, a<p(Ta A x%(op A7)) be the restriction of x4~ to chains with contexts in

the < PR; operators Xz7, X5V, X7, O, O are defined analogously.
For any Xy, formulas ¢, v, let ¢’ = 1x(¢) and 0" = 1x(1)). We define 1y as follows:

e (I (0, 0) = O UL Y)Y v X (' UL ) (4.2

)

e (fh (@, 9)) = 0%(¢’ SE') Vv xb (¢’ Sy o) (4.3)
(= (p,)) = O (& Ul ) (4.4)
V (= O (TUE ~¢") AXFOFY)) (4.5)

Vo (xi (@ A -0 (TS ~)) (4.6)

VOS(xFY A xiy) (4.7)

(= (p,9)) = 0% (¢ Sk ') (4.8)
VXp(XE(- Ol TAY S o)) (4.9)

V (XB(OY) A% (T St ~¢)) (4.10)

VB0 A =xFEy) (4.11)

We prove the correctness of this translation in the following lemmas.

Lemma 4.6. Given an OP alphabet (AP, Map), for every Xynw formula | (¢,), and for
any OP word w and position i in w, we have

(T, () = (0, 90) aff (w, i) = eax($ (0, 9)).

Tw € Tayp is the UOT obtained by applying function T to every position in w, such that for
any position i' in w (T, 7(i") E ¢ iff (w,i') E tx(p), and likewise for 1.
Proof. Let ¢’ = 1x(p) and ' = 11 ().

[Only if] Suppose (To, 7(7)) = (,9). Let r = 7(i), and s = 7(j) s.t. rRys and s is
the first tree node of the path witnessing | (i, 9).

We inductively prove that ¢’ L{gw/ holds in j. If s is the last node of the path, then ¢’ holds
in j and so does, trivially, ¢’ Z/{;Cl Y’. Otherwise, consider any node ¢t = 7(k) in the path, except
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the last one, and suppose ¢’ U;f Y’ holds in k' s.t. t' = 7(k’) is the next node in the path. If ¢/
is the leftmost child of ¢, then k' = k+1 and either k <k’ or k=FK": in both cases O%(¢'Uy)
holds in k. If #' is not the leftmost child, then x(k, k') and k < k" or k = k': so x% (¢’ L{;l )
holds in k. Thus, by expansion law ¢’ L{)‘Cl Y=V (@ A (O Z/{;l V)V XL(p L{ff ")),
¢' Uy holds in k and, by induction, also in j.

Suppose s is the leftmost child of r: j =4 + 1, and either i < j or i = j, so O%(¢y’ Z/{;f ")
holds in i. Otherwise, x(i, j) and either i < j or 4= j. In both cases, x% (¢’ Z/lff ¥’) holds in 1.

[If] Suppose (4.2) holds in i. If O%(¢’ U ¢') holds in i, then ¢’ U ¢ holds in j =i+ 1,
and either i < j or i = j: then s = 7(j) is the leftmost child of (). If x%4(¢’ Z/I;f ¥") holds in
i, then @' U2 ¢ holds in j s.t. x(i,7) and i < j or i = j: s = 7(j) is a child of 7(i) in this
case as well.

We prove that if ¢/ Z/lfcl ¢’ holds in a position j s.t. 7(¢)Ry7(j), then | (¢,) holds in
7(1). If ¢’ Z/{ff " holds in j, then there exists a DSP of minimal length from j to h > j s.t.
(w,h) =4 and ¢’ holds in all positions j < k < h of the path, and (T, 7(k)) = ¢. In any
such k, ' UL ' = ¢/ v (' A (O UL Y) V XE(' UL ') holds. Since this DSP is the
minimal one, ¢’ does not hold in k. Either O% (¢’ L{g Y') or x4(¢’ L{f(l ¥’) hold in it. Therefore,
the next position in the path is &’ s.t. either ¥’ = k + 1 or x(k, k'), and either k < £’ or
k=Fk,and (w, k') = ¢ Z/{g ¢’. Therefore, 7(k) is a child of 7(k). So, there is a sequence of
nodes sq, 51, ...,5, in Ty, s.t. 7(7)Ryso, and s;Rys;41 and (Ty, s;) = ¢ for 0 < i < n, and
(T'w, $n) = . This is a path making | (¢, %) true in 7(i). ]

The proof for tx (1} (p,1)) (4.3) is analogous to Lemma 4.6, and is therefore omitted.

Lemma 4.7. Given an OP alphabet (AP, M ap), for every Xy formula = (p,v), and for
any OP word w and position i in w, we have

(Tw, 7(4) = (0, 9) iff (w,i) = tx(= (@, 9)).

Tw € Tarap s the UOT obtained by applying function T to every position in w, such that for
any position i' in w (Ty,7(i")) E ¢ iff (w,i) Etx(p), and likewise for 1.

Proof. Let ¢ = 1x(p) and ¢’ = 1x ().

[Only if] Suppose = (¢, ) holds in s = 7(i). Then, node r = 7(h) s.t. rRys has at
least two children, and = (p,1) is witnessed by a path starting in ¢t = 7(j) s.t. sR=t, and
ending in v = 7(k). We have the following cases:

(1) s is not the leftmost child of r.

(a) h<k. By the construction of Ty, for any node ¢’ in the path, there exists a position
jewst. .t =71(5), x(h,j") and h < j'. The path made by such positions is a UHP,
and ¢’ Uy )’ is true in j. Since s is not the leftmost child of r, we have x(h, %), and
h <, so (4.4) holds in i.

(b) h =k, so v is the rightmost child of r. ¢ holds in all siblings between s and v
(excluded), and ¢’ holds in the corresponding positions of w. All such positions 7,
if any, are s.t. x(h,j) and h < j, and they form a UHP, so O% (T U}, —¢') never
holds in i. Moreover, since ¥ holds in v, ¢’ holds in k. Note that x3 in ¢ uniquely

identifies position A, and X? evaluated in h identifies k. So, (4.5) holds in 7.
(2) s is the leftmost child of r. In this case, we have i = h+ 1 and h < (if h =4, then r
would have only one child).
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(a) h <k. ©F evaluated in i identifies position h. 1’ holds in k, and 0% (T S§; —¢')
does not, because in all positions between ¢ and k (excluded) corresponding to
children of r, ¢’ holds. Note that all such positions form a UHP, but 7 is not part of
it (i = h+1, so =x(h,7)), and is not considered by T S}, =¢’. So, (4.6) holds in i.

(b) h =k, so v is the rightmost child of r. 1 holds in v, and ¢ holds in all children of
r, except possibly the first (s) and the last one (v). These are exactly all positions
s.t. x(h, j) and h < j. Since ¢’ holds in all of them by hypothesis, =x ¢’ holds in

h. Since ¢ holds in v, ¢ holds in k, and 7%’ in h. So, (4.7) holds in i.

[If] We separately consider cases (4.4)—(4.7).

(4.4): O% (" U ') holds in a position ¢ in w. Then, there exists a position h s.t. x(h, )
and h < i, and a position j s.t. x(h,j) and h < j that is the hierarchical successor of 7, and
¢’ U}, ' holds in j. So, i and j are consecutive children of r = 7(h). Moreover, there exists
a UHP between j and a position k£ > j. The tree nodes corresponding to all positions in the
path are consecutive children of r, so we fall in case 1a of the only if part of the proof. In
Ty, a path between t = 7(j) and v = 7(k) witnesses the truth of = (¢,%) in s.

(4.5): = O% (TUE ~¢" A x5 (xF1'")) holds in position i € w (this corresponds to case 1b).
If ij(x??ﬁ’) holds in ¢, then there exists a position h s.t. x(h,i) and h < ¢, and a position k
s.t. x(h,k) and h =k, and ¢’ holds in k. v = 7(k) is the rightmost child of r = 7(h), parent
of s = 7(i). Moreover, if = OY% (T Uj; ~¢’) holds in i, then either:

e — O% T holds, i.e. there is no position j > i s.t. x(h,j) and h < j, so v is the immediate
right sibling of s. In this case = (¢, ) holds in s because 1 holds in v.

o (T Uf —¢') holds in j > 14, the first position after i s.t. x(h,j) and h < j. This means
¢ holds in all positions j' > j s.t. x(h,j’) and h < j/. Consequently, the tree nodes
corresponding to these positions plus v = 7(k) form a path witnessing = (p, ), which
holds in s = 7(4).

(4.6): O (X; (W' A=Y (TSY —|g0’))> holds in . Let h =i —1, with h < (it exists because
O< is true). There exists a position k, x(h, k) and h < k, in which ¢’ holds, so 1 does in
v="7(k), and O% (T S} —¢’) is false in it. If it is false because = @Y% T holds, there is no
position j < k s.t. x(h,j) and h < j, so v is the second child of r = 7(h), s = 7(i) being the
first one. So, = (¢, ) trivially holds in s because % holds in the next sibling. Otherwise,
let j < k be the rightmost position lower than k s.t. x(h,j) and h < j. =(T S} —¢’) holds
in it, so ¢’ holds in all positions j’ between ¢ and k that are part of the hierarchical path,
i.e. s.t. x(h,j") and h < j'. The corresponding tree nodes form a path ending in v = 7(k)
that witnesses the truth of = (¢, ) in s (case 2a).

(4.7): 0% (xF' A=x5—¢') holds in i. Then let h =4 —1, h<i, and s = 7(i) is the leftmost
child of 7 = 7(h). Since x7%' holds in h, there exists a position k, s.t. x(h, k) and h =k, in
which ¢’ holds. So, ¢ holds in v = 7(k), which is the rightmost child of r, by construction.
Moreover, ¢’ holds in all positions s.t. x(h,j) and h < j. Hence, ¢ holds in all corresponding
nodes t = 7(j), which are all nodes between s and v, excluded. This, together with 1) holding
in v, makes a path that verifies = (p,%) in s (case 2b). []

Lemma 4.8. Given an OP alphabet (AP, M ap), for every Xynu formula < (p,v), and for
any OP word w and position i in w, we have

(Tw, 7(4)) <= (0, 9) iff (w,i) | tx (<= (@, 9)).
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Tw € Tayp is the UOT obtained by applying function T to every position in w, such that for
any position i' in w (Ty,7(1")) E ¢ iff (w,7) E tx(p), and likewise for 1.

Proof. Let ¢ = 1x(p) and ¢’ = 11 ().

[Only if] Suppose < (p,%) holds in s = 7(i). Then node r = 7(h) s.t. rRys has at
least two children, and <= (¢, 1) is true because of a path starting in v = 7(k), s.t. rRyv and
(Ty,v) E 9 and ending in t = 7(j) s.t. tR=s. We distinguish between the following cases:

(1) v is not the leftmost child of r.

(a) h <i. By construction, all nodes in the path correspond to positions j' € w s.t.
x(h,j) and h < j', so they form a UHP. Hence, ¢’ S}, ¢’ holds in j, and (4.8) holds
in 1.

(b) h=4i. In this case, s is the rightmost child of r, and x(h,7). The path made of
positions between k and j corresponding to nodes between v and ¢ (included) is a
UHP. So ¢’ S}, ¢ holds in j, which is the rightmost position of any possible such
UHP: so = O% T also holds in j. Hence, (4.9) holds in i.

(2) v is the leftmost child of r.

(a) h<i. In this case, k = h+1 and ¢’ holds in k. So, O<%’ holds in h, and x5(O<Y")
holds in 7. Moreover, in all word positions 7' with k < j' < j corresponding to
children of r, ¢’ holds. Such positions form a UHP. So = oY (T 8} —¢’) holds in i.
Note that this is true even if s is the first right sibling of v. Thus, (4.10) holds in i.

(b) h=i. v’ holds in k = h+ 1, so O’ holds in h. Since x(h,i) and h =i, xp(O<')
holds in 7. Moreover, ¢ holds in all children of r except the first and last one, so ¢’
holds in all positions j" s.t. x(h,j") and h < j’. So —x5—¢’ holds in h, and (4.11)
in 1.

[If] We separately consider cases (4.8)—(4.11).

(4.8): @Y (¢" S}y 4') holds in 4. Then, there exists a position h s.t. x(h,?) and h <4, and a
position j < i s.t. x(h,j) and h < j. Since j # h + 1, the corresponding tree node is not the
leftmost one. So, this corresponds to case la, and < (y,) holds in s = 7(3).

(4.9): x5 (x5(~ 0% T A¢’' S%¢')) holds in 4. Then, there exists a position h s.t. x(h, i) and
h =1i. Moreover, at least a position j’ s.t. x(h,j’) and h < j' exists. Let j be the rightmost
one, i.e. the only one in which - O% T holds. The corresponding tree node ¢t = 7(j) is s.t.
tR- s, with s = 7(¢). Since ¢’ S}, ¢’ holds in j, a UHP starts from it, and ¢ and ¢ hold in
the tree nodes corresponding to, respectively, the first and all other positions in the path.
This is case 1b, and < (¢,%) holds in s.

(4.10): xH(OY') A=Y (T S} ~¢’) holds in i. Then, there exists a position h s.t. x(h, 1)
and h <. ¢’ holds in k = h + 1, so 9 holds in the leftmost child of » = 7(h). Moreover, ¢’
holds in all positions j" < i s.t. x(h,j") and h < j', so ¢ holds in all children of r between
v =7(k) and s = 7(i), excluded. This is case 2a, and < (p, ) holds in s.

(4.11): Xp(O<Y' A=x5—¢') holds in i. Then, there exists a position h s.t. x(h,4) and h=1.
O<9’ holds in h, so 1 holds in node v = 7(h + 1), which is the leftmost child of r» = 7(h).
Since —x 3¢’ holds in h, 9" holds in all positions j’ s.t. x(h,j’) and h < j. So, ¥ holds in
all children of r except (possibly) the leftmost (v) and the rightmost (s = 7(i)) ones. This is
case 2b, and < (¢, ) holds in s. ]

It is possible to express all POTL operators in FOL, as per Section 4.1. From this, and
Lemmas 4.6, 4.7, and 4.8 together with Theorem 4.5, we derive

Theorem 4.9. POTL = FOL with one free variable on finite OP words.
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Corollary 4.10. The propositional operators plus Qd,@d,x%,x‘]ig, L{>‘f7 S;é, O, U,
S} are expressively complete on OP words.

Corollary 4.11. NWTL C OPTL C POTL over finite OP words.

Corollary 4.12. FEvery FO formula with at most one free variable is equivalent to one using
at most three distinct variables on finite OP words.

Corollary 4.10 follows from the definition of ¢, and Theorem 4.9 (note that all other
operators are shortcuts for formulas expressible with those listed). In Corollary 4.11, NWTL
C OPTL was proved in [CMP20], and OPTL C POTL comes from Theorem 4.9 and the
semantics of OPTL being expressible in FOL similarly to POTL, while OPTL C POTL comes
from Theorem 3.3. Corollary 4.12, stating that OP words have the three-variable property,
follows from the FOL semantics of POTL being expressible with just three variables.

5. FIRST-ORDER COMPLETENESS ON w-WORDS

To prove the FO-completeness of the translation of X,,; into POTL also on OP w-words,
we must prove that X, is FO-complete on the OPM-compatible UOTs resulting from
w-words. In Section 5.1 we show that infinite OPM-compatible UOTs can be divided in two
classes, depending on their shape. Then, after introducing some new notation in Section 5.2,
we show how to translate a given FO formula into X, separately for each UOT class in
Sections 5.3 and 5.4, and how such translations can be combined to work on any infinite
OPM-compatible UOT in Section 5.5. Our proofs exploit composition arguments on trees
from [Lib09, HT87, MR99] but introduce new techniques to deal with the peculiarities of
UOTs derived from w-OPLs.

5.1. OPM-compatible w-UOTs. The application of function 7 from Section 4 to OP
w-words results in two classes of infinite UOTs, depending on the shape of the underlying
ST. In both cases, in the UOT the rightmost child of the root is not labeled with #, and
nodes in the rightmost branch do not have a right context. 7=, which can be defined in the
same way, converts such UOTs into words with open chains.

If a word w reaches infinity through right recursion, then it contains an infinite number
of chains that have a left context, which we call a pending position, but no right context.
An wOPBA reading such a word does an infinite number of push moves, and its stack grows
to infinity. The corresponding UOT T,, = 7(w) presents a single infinite branch, made of
the rightmost nodes of each level. Such nodes, which we call pending, are in the < PR when
they correspond to a right recursion step, and in the = PR when they are siblings in the
ST. Pending nodes may have left non-terminal (dot) siblings, which correspond to bodies of
inner chains between two consecutive right-recursion steps. So, w-words in which left and
right recursion are alternated also fall into this class, which we call right-recursive (RR)
UOTs (Figure 9).

If w reaches infinity by left recursion, then it contains an infinite number of chains
sharing the same left context. An wOPBA reading w performs an infinite sequence of pop
moves, each one followed by a push, and its stack size is “ultimately bounded”, i.e., the stack
symbol related to such a left context remains in the stack indefinitely, and other symbols are
repeatedly pushed on top of it, and popped. Thus, the stack reaches the same size infinitely
many times. The rightmost branch of T\, = 7(w) ends with a node ro, with an infinite
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Figure 9: ST (left) and UOT (right) of the RR OP w-word # call han exc ret call
call ret call call call ... on OPM Mcay (Figure 1).

call call call

4
>/ "

\
/ \ call | / \
call ret : call
\ .
/ | \ ///
: call ret L
11/ \\ ret call
: ca . ret
: call ret han
/N
call ret ret

ret = han > ret ret

—~

Figure 10: ST (left) and UOT (right) of the LR OP w-word # call ret call call ret
call ret call han ret callret ... on OPM M., (Figure 1).

number of children (cf. Figure 10). Node r4 is in the < relation with all of its children,
otherwise it would violate property 3 of the x relation. This is the left-recursive (LR) class

of UOTs.

An exception to the above classification may occur if the OPM is such that the transitive
closure of the = relation is reflexive —in other words the OPM contains =-circularities—.
In this case the ST may contain just one node with an infinite number of children, all in
the = PR. As a result, such nodes form a unique infinite branch in the corresponding UOT
whose nodes are in the = relation unlike the case of Figure 9. This is the distinguishing
feature of RR UOTSs, despite the fact that in this case the stack of the wOPBA remains
“ultimately bounded” as in the case of LR UOTs. Thus, this exceptional case is attributed

to the RR class.
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In the following, by RR (resp. LR) word or ST we mean an OP w-word or ST that
translates to a RR (resp. LR) UOT. Next, we separately give a translation of FOL into
Xyntar for RR and LR UOTs, and then show how to combine them to obtain completeness.

Remarks 5.1. There cannot be RR UOTs containing a node with infinitely many children,
or LR UOTs where more than one node has infinite children. If this was the case, then the
infinite children would appear as consecutive infinite subsets of positions in the OP w-word
isomorphic to the UOT. But this is impossible, because the set of word positions is N, which
is not dense and does not contain dense subsets.

The FO-completeness proof of the logic NWTL [AABT08] is also based on a translation
of Nested Words to UOTs. However, Nested Words result in only one kind of UOT, because
VPL grammars can be transformed so that words grow in only one direction. Thus, that
proof does not deal with the issue of combining two separate translations.

5.2. Notation. Given a FO formula ¢, we call its quantifier rank (q.r.) the maximum
nesting level of its quantifiers. Let M be a structure on a relational signature (D, Ry, ..., R,),
with domain D and relations Ry, ..., R,. The rank-k type of M is the set

ox(M) ={p | € FOL, M |= ¢ and the q.r. of ¢ is k},
while the rank-k type of M with a distinguished element d € D is
0x(M,d) ={¢(x) | p(z) € FOL, (M,d) = ¢(x) and the q.r. of p(x) is k}.

Since the set of nonequivalent FO formulas with at most k quantifiers on a relational
signature is finite, there are only finitely many rank-k types. For each rank-k type oy it is
possible to define the Hintikka formula H,, [Hin53|, s.t. M = H,, iff the rank-k type of M
1S 0.

The compositional argument used here is based on Ehrenfeucht-Fraissé (EF) games (see
e.g., [GKLT07, Imm12]) between two players, V (the Spoiler) and 3 (the Duplicator). A
round of an EF game between two structures M and M’ with the same signature starts
with V picking an element of the domain of either one of M and M’, followed by 3 answering
by picking an element of the other structure. 3 wins the k-round game on two structures
if the map between the elements picked by V and those picked by 3 in each of the first k
rounds is a partial isomorphism between M and M’. We write M ~j M’ if 3 has a winning
strategy for the k-round game between M and M’ and, given a € D and ' € D', we write
(M, a) ~ (M, a’) iff 3 wins the game on M and M’ in whose first round V picks a, and
3 answers with a/. We write M =, M’ to state that M and M’ have the same rank-k
type, i.e. they satisfy exactly the same FO formulas of q.r. at most k. By the EF Theorem,
M~ M iff M =, M, for all k.

We refer to the syntax and semantics of X,,; presented in Section 4.2.2. The semantics
of the until and since operators is strict, i.e. the position where they are evaluated is not
part of their paths, which start with the next one. Thus, next and back operators are not
needed, but we define them as shortcuts, for any X,,s; formula :

Ope:=4(=T,0) Opp:=1(T,0) Ospi==(T,p) Ocp:=<«(-T,p)

We call the structure (U, <, P) a finite LTL word if U C N is finite, and an LTL w-word
if U = N. < is a linear order on U, and P: AP — P(U) is a labeling function. The syntax
of an LTL formula ¢ is, for a € AP, p :=a | —¢ | oV | oU ¢ | ¢S ¢, where propositional
operators have the usual meaning. Given an LTL word w, and a position ¢ in it,
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tug

Figure 11: Parts in which we divide a RR UOT for Lemma 5.3 (right) and Lemma 5.4 (left).

e (w,i) =aiff i € P(a);

e (w,i) E U O iff there is j > i s.t. (w,j) E 0 and for any i < j' < j we have (w, j') E ;
o (w,i) =1 S0 iff there is j < i s.t. (w,j) = 0 and for any j < j' < i we have (w, j') E 9.
A future LTL formula only contains the &/ modality, and a past one only contains S.

5.3. RR UOTs. We prove the following:

Lemma 5.2. Given a FO formula on UOTs ¢(x) of q.r. k > 1, there exists a Xy formula
oRr s.t. for any OP w-word w s.t. T, = 7(w) is a RR UOT, and for any node n € T, we

have (T, n) = ¢(z) iff (Tw.n) F ¢r.

To prove Lemma 5.2, we show that ¢pr can be built by combining formulas describing
only parts of a UOT, as hinted in Figure 11. First, we prove that the rank-k type of such
parts determines the rank-k type of the whole tree (Lemma 5.3); then, since such subdivision
includes finite subtrees, we show how to express their rank-k types in Xy (Lemma 5.4);
finally we use such results to translate ¢(z).

This part of the proof partially resembles the one for the FO-completeness of NWTL
in [AABT08], because of the similarity between the shape of RR UOTSs and those resulting
from nested w-words. However, the two proofs diverge significantly, because Nested Words
are isomorphic to binary trees, while RR UOTs are unranked.

Consider the RR UOT T, of the statement. We denote with sf, s, ... the infinite
sequence of pending nodes obtained by starting from the root of T;,, and always descending
through the rightmost child. We call tﬁ(sg) the finite subtree obtained by removing the
rightmost child of sf and its descendants from the subtree rooted in sﬁ. If sf has one single
child, tfg(sg) is made of sﬁ only. Let n be any node in T;,, and let sf be s.t. n is part of

tﬁ(sf), and sff = n if n is a pending node. Let I'y be the (finite) set of all rank-k types of

finite UOTs, and off(w,n) € I'y be the rank-k type of tfj(sf). We define %kR(w,n) as a
finite LTL word of length ¢ on alphabet I'y, s.t. each position p, 0 < p < g —1, is labeled
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with off(w, sff). Also, let 7?(1&1, n) be a LTL w-word on I'y having each position labeled
with ot (w, qu+j 41) for all j > 0. We give the following compositional argument:

Lemma 5.3. Let wy and wa be two OP w-words, such that T,,, = 7(w1) and Ty, = T(w2)
are two RR UOTs. Let i1 and iy be two positions in, resp., wi and wy, and let s; = 7(iy)
and sy = 7(i2). For any k > 1, if

(1) <Uﬁz(wlvsl) =k <Fk:R(w2’S2)}

(2) (w1, 51) = U F(wa, 52) and

(3) Jl]j(wb 51) = Ul]j(w% 32)7

then (T, ,51) =k (Tw,, $2)-

Proof. By the EF Theorem, equivalences 1-2—-3 imply that the respective games have a
winning strategy; we refer to them by game 1, 2 and 3. We prove that (Ty,, s1) ~k (Tw,, S2),
i.e. that 3 has a winning strategy in the EF game on (Ty,,s1) and (Ty,, s2) so that the
thesis follows. In round 0 of the game, partial isomorphism is ensured by s; and so having
the same labels, due to hypothesis 3. In any subsequent round, suppose w.l.o.g. that V picks
a node s” from T, (the converse is symmetric). Let sffl be the pending node s.t. s is part

of tﬁ(sﬁ), and sg be the pending node s.t. so is part of tﬁ(sg). We have the following

cases:

o s’ = sf\; is one of the pending nodes that are ancestors of s(ﬁ, and ¢" is the corresponding
position in ?f(wl, s1). Then, 3 selects ¢” in <Uf(wg, s2) in response to ¢" according to

v 3 R

her winning strategy for game 1. Her answer to s’ is s = 5.9 (i.e. the pending node with

the same index).

e 57 is part of a subtree tﬁl (555) such that sfp is an ancestor of s,ﬁ. Then 3 chooses position
¢ in <Ff(wg, s9) as before. According to game 1, ¢” and ¢7 must be labeled with the same

rank-k type of a subtree (i.e. off(wy, sf\,) = ol (wo, 553)). Hence, game tf (sf) ~p t8 (s%)

qv q

has a winning strategy, which 3 can use to pick s7 in ¢ (sfa).

e If the node picked by V is the rightmost child of sffl or one of its descendants, then 3
proceeds symmetrically, but using her winning strategy on game 2.

e Finally, if V picks a node in ¢, (sfl), then by 3 we have ¢ (sfl) ~p R (s(g), and 3 answers
according to her winning strategy in this game.

This strategy preserves the partial isomorphism w.r.t. the child and sibling relations and

monadic predicates, as a direct consequence of rank-k type equivalences in the hypotheses. [ ]

Lemma 5.3 shows that the rank-k type of an RR OPM-compatible UOT is determined
by the rank-k types of the parts in which we divide it. Given FO formula ¢(x), consider the
set of all tuples made of (1) the rank-k type of ?kR(w, s), (2) the rank-k type of Wf(w, s),
and (3) the type off(w, s), such that (T, s) = ¢(x) for any RR UOT T, and s € T,,. This
set is finite, because there are only finitely many rank-k types of each component. So we
can translate the formulas expressing the types in each tuple into X,.;; separately, and
combine them to obtain one for the whole tree. Then, X,,;; formula ¢ is a disjunction of
the resulting translated formulas, one for each tuple.

Before proceeding with our translation, we need to show how to express in X,,,;; the
rank-k type of a finite UOT such as tfg(sf), for some w and p, in the context of T},. Since
the rank-k type of tﬁ(sf) only contains information about that subtree, we need to restrict
the formula expressing it to such nodes. In the following lemma we show how to do this,
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thanks to a formula a* which holds in the root of the subtree (but may hold in other parts
of Ty,), and allows us to restrict Xy, operators so that they do not exit the subtree.

Lemma 5.4. Let oy(t), with k > 1, be the rank-k type of a finite OPM-compatible UOT t.
Let r be a node of a RR or LR OPM-compatible UOT T,, with a finite number of children.
Let a* be a Xypnp formula that holds in r, and does not hold in subtrees rooted at children
of r, except possibly the rightmost one. Then, there exists a Xyny formula B(t) that, if
evaluated in r, is true iff r is the root of a subtree of T\, with rank-k type ox(t), from which
the subtree rooted in r’s rightmost child has been erased in case a* holds in that child.

Proof. Let t,, be the subtree rooted at r, excluding r’s rightmost child and its descendants,
if & holds in it. We provide a formula 3(t) that holds in r iff ¢,, = t. If ¢ has only one
node s with no children, which can be determined with a FO formula with one quantifier,
then B(t) := Bap(s) A = Oy(—a*), where S4p(s) is a Boolean combination of the atomic
propositions holding in s.

Otherwise, the rank-k type of t is fully determined by

(1) the propositional symbols holding in its root s;

(2) the rank-k type of the finite LTL word v;, whose positions 0 < p < m are labeled
with the rank-k types of the subtrees ¢,, rooted at the children w, of s (including the
rightmost one).

This can be proved with a simple compositional argument.
Thus, we define

B(t) :=0y(~ 0= T AB'(t) A Bap(s),

where B4p(s) is a Boolean combination of the atomic propositions holding in s, and 3'(t)
characterizes ty,, . . ., ty,,. By this we mean that 8’(¢) is such that when §(¢) holds on r, its
children (except the rightmost one if o* holds in it) must be roots of subtrees isomorphic to
tugs - - - tu,,- Note that formula '(t) is enforced in the leftmost child (where O T is false)
of the node where [(t) is evaluated.

We now show how to obtain '(¢). Due to Kamp’s Theorem [Kam68] and the separation
property of LTL [GHR94], there exists a future LTL formula 3”(t) that, evaluated in the
first position of vy, completely determines its rank-k type (it can be obtained by translating
into LTL the Hintikka formula equivalent to the rank-k type of v;).

We now show how to express the rank-k types of the subtrees t,,. Since they are finite,
by Marx’s Theorem [Mar05, Corollary 3.3], there exists a Xy, formula ~, that, evaluated
in wy, fully determines the rank-k type of ,, (7, can be obtained by translating the Hintikka
formula for the rank-k type of t,, into Xunti). Unfortunately, the separation property
does not hold for X, [BL16], and 7, may contain f} operators that, in the context of Ty,
consider nodes that are not part of .

There is, however, a way of syntactically transforming -, so that, if evaluated on a child
r’ of r, its paths remain constrained to t,,, the subtree rooted in /. Given a X,,,;; formula ),
it can be written as a Boolean combination of atomic propositions and until/since operators
(possibly nested). We denote by " the formula obtained by replacing all subformulas of the
form 1} (¢, ¢'), = (¢, ¢’) and <= (¢, ¢') at the topmost level with —=T. If ~, is evaluated in

the root of ¢,,, outside of ¢, all such operators evaluate to false. So, 'yg in 7" agrees with ~, in

the root of ¢,, on such subformulas. Now, take 7}} , and recursively replace all subformulas
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of the form 1} (¢, ¢') with the following:
o (cp/\ —Opa*, (mOpa* APV (Of /\(p’U)>.

We call ’yj’o the obtained formula. Note that, since a* holds in r and at most in its rightmost
child, O4 o™ only holds in nodes u,, 0 < p < m. This way, we can prove that {} paths in ’y}’,
cannot continue past u,, and those ending in u, depend on a formula that does not consider
nodes outside the subtree rooted at u,. Thus, when 71’3 is evaluated in wu, in the context of
Ty, all its until/since operators consider exactly the same positions as the corresponding
ones in v, evaluated outside of T;,. Hence, the two formulas are equivalent in their respective
contexts, and 7;) is true in positions that are the root of a subtree equivalent to .

We now show that such transformations do not change the formula’s meaning in unwanted
ways. Let t1 be a UOT, and let t5 be a subtree of a larger UOT T, such that ¢; and ¢y are
identical, and «* holds in the parent of ro, the root of to. We prove that 72’3 holds on 7y iff
p holds on 7y, the root of ¢;. For any subformula 1 of v, not at the topmost nesting level,
let 1)’ be the corresponding subformula in 71’3. Then, we prove by structural induction on
that, for any node s # r in ¢; and t9, we have (t1,s) = ¢ iff (T,s) E /.

The base case, where v is an atomic proposition, is trivial. The composition by Boolean
operators is also straightforward.

Paths considered by formulas of the form = (¢1, p2), <= (¥1, ¢2), and |} (¢1, p2) cannot
get out of to, when evaluated in one of its nodes that is not r3. Thus, we have e.g.
(t1,8) E = (p1,02) I (T,s) &= = (¢),¢,) directly from the fact that (t1,s") | ¢ iff
(T,s") = ¢} for any ¢’ € t; (and the same for ¢3).

Finally, let ¢ = 1} (¢1, p2). Suppose ¥ is witnessed by a path in ¢; that does not include
its root 7. Then, = Oy o* holds in all positions in such path inside to, and ¢’ is satisfied
by the same path, thanks to the inductive hypothesis. Otherwise, 1y may be witnessed by
a path ending in 7. In this case, = O4 o™ holds in all positions in the corresponding path
in ty except the last one. There, (O4a® A ¢'"*) holds. In fact, ¢ holds in the root of #;
where any 1}, = and < operator are false, so they can correctly be replaced with =T in ¢V,
Moreover, |} operators are strict, so they must be witnessed by paths completely contained
in t1, excluding its root. Hence, by the inductive hypothesis they witness the corresponding
operators in ¢'¥. Conversely, any path that witnesses ¢/ in s € to must be, by construction,
entirely inside to, so it witnesses ¢ in t; as well. Finally, ’yj’o holding on 79 can be justified by
an argument similar to the one for ¥,

Now, we can go on with the definition of 5(¢): we set 8(t) := —~a* A 5" (t), where 5" (t)
is obtained from (3" (t) by
e recursively replacing all subformulas p U ¢ with = (=a* A @, —a* A ¢');

e replacing all labels, which are rank-k types of UOTs t,,, with the corresponding ’y]’o.

Thus, 8'(t) is a Xy formula that characterizes children of r, without considering the one
where o* holds (if any). ]

Lemma 5.4 allows us to express in X, the rank-k type of any subtree t = tﬁ(sﬁ),
for any pending node sf‘ in T,,. The root of ¢ is a pending node, and so is its rightmost
child sgﬂ, which is not part of t. So, we use afo := - (T,O= T), which is true in pending
nodes, where the path from the current node to the root is made of rightmost nodes only.
Thus, formula 5(t) from Lemma 5.4 is true in a pending node iff it is the root of a subtree
equivalent to t, excluding its rightmost child.
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st(w,v(n) = 1) st (w, v(n))

tE (w, 0) tE (w,v(n) — 1) tE (w, v(n)) tY(w,v(n) + 1)
Figure 12: Parts in which we divide a LR UOT for Lemma 5.6.

Let n be the node where the translated formula is evaluated (i.e. the one corresponding
to the free variable in the FO formula @(z) to be translated). Let sf be its closest pending
ancestor. According to Lemma 5.3, we need to express the rank-k types of tﬁ(s?ﬂ), ﬁkR(w, n),
and v R(w, n)

For tR( '), simply take formula B(tZ(s p"))

By Kamp s Theorem and the separation property of LTL, the rank-k type of WR(w n)
can be expressed by a future LTL formula ¢ to be evaluated in its first position. First,
we recursively take the conjunction of all subformulas of zp with af. Then, we recurswely
substitute each LTL operator ¢ U ¢' with || (¢, ¢’), obtaining a X, formula w that
evaluates its paths only on pending positions in T,,. We can prove that equivalence is
kept despite such transformations by induction on the formula’s structure, as we did in
Lemma 5.4. Since ﬁkR(w, n) is labeled with rank-k types of UOTSs, we substitute any such

%
atomic proposition ok (t) in ¥’ with 5(¢), obtaining formula ", that captures the part of
the tree rooted at the rightmost child of s

A formula @Z)” for <Uf(w n) can be obtamed similarly, but using a past LTL formula.
The Since modality can be replaced with 1}, while other transformations remain the same.

All formulas we built so far are meant to be evaluated in a pending node. If n = sfn,
then we are done. Otherwise, we evaluate in n an appropriate {} formula, that can only be
witnessed by a path ending in sfn. Thus, the final translation is

pr = (ol ARV 1 (mal, ol A @)
where
P = BUR(E)) A Oy (2 Os T A" A Oy 9",
This concludes the proof of Lemma 5.2. []

5.4. LR UOTs. Let w be an OP w-word, and T,, = 7(w) a LR UOT. We name ry the
node with infinite children, and denote as t¢(w) the finite UOT obtained by removing all
children of ro, from T,. We prove the following:

Lemma 5.5. Given a FO formula on UOTs ¢(x) of q.r. k > 1, there are two Xy formulas
w1 and g s.t. for any OP w-word s.t. T, = 7(w) is a LR UOT, and for any node n € T,
we have

@(x) iff (Tw,n) = or1 when n € tp(w), and
o(x) iff (Tw,n) = pr2 when n € ty(w).
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The proof is structured in a way similar to that of Lemma 5.2, but differs in the parts in
which we divide the tree. In fact, we divide a LR UOT into its finite part, and two LTL
words which make up the infinite children of ro, (see Figure 12).

We name s”(w,0), s“(w,1),... the children of 7o, and denote as t(w, 0), t*(w, 1), ...
the finite subtrees rooted at, resp., s*(w,0), s¥(w,1),..., and of(w,0),0cf(w,1),... their
rank-k types. For all p > 0, for any node m in tL(w,p), we define the map v so that
v(m) = p. Now, let n be any node in T;,. We define 7£(w, n) as the LTL w-word on the
alphabet of rank-k types of finite OPM-compatible UOTs, such that each of its positions i,
q >0, is labeled with of(w,v(n) +q+1) if n & ty(w). If n is in tf(w), then each position
iq is labeled with of(w,q). We further define Té(w, n) as the finite LTL word of length
v(n) on the same alphabet, such that each of its positions 44, 0 < ¢ < v(n) — 1, is labeled
with U}%(w, q). If v(n) =0, or n is part of t7(w), then %i(w, n) is the empty word. We now
prove the following composition argument:

Lemma 5.6. Let wy and we be two OP w-words, such that T,,, = 7(wy1) and Ty, = T7(w2)
are two LR UOTs, and rl, and r2, are their nodes with infinitely many children. Let i1 and
io be two positions in w1 and wa, such that, by letting n1 = 7(i1) and ny = 7(i2), n1 € ty(wy)
iff no € ty(wa). If

(1) (tf(w1),m1) =k (tr(w2),n2) if na € ty(wi); (tp(wr),rl) =5 (tp(wa),rk) otherwise;
(2) WE(wi,n1) =k U E(wa,n2);
(3) 7£(w1,n1) =5 7£(w2,n2);

(4) n1 &€ ty(wr) implies th(wy,v(n1)) =k t*(we, v(n2))
then (Tw,,n1) =k (Twy,n2)-

Proof. The proof is carried out by means of a standard composition argument. We give a
winning strategy for 3 in the k-round EF game between (T),,,n1) and (T, n2). Suppose
w.l.o.g. that V picks a node n" from T, - nY may be part of, either, tr(wy) or a subtree
tL(wy,v(n")). In the former case, 3 answers with a node in ¢s(ws2), according to her winning
strategy in game 1. For the latter case, let us first suppose n; and ng are not in, resp.,
tr(wr) and ty(w2). Then, 3 proceeds as follows:

(a) v(n") < v(ny). In this case, 3 plays her game 2 as if V¥ had picked position v(n") in
v L (wy,n1). Let ¢° be the position in ?ﬁ(wg, ny) chosen according to such strategy.
Since ?i(wl,nl) =k %é(wg,ng) and k > 1, v(n") and ¢7 must have the same label,
so we have ol (w1, v(n")) = oF(wa,q°). So, t*(w1,v(n")) = tX(w2,¢”), and I may
pick a node n? in t*(ws, ¢7) according to her winning strategy for the k-round game on
t(wy,v(n")) and t* (w2, ¢7), considering n” as V’s move.

(b) v(n") = v(ny). In this case, 3 picks n? in T}, according to her winning strategy on the
EF game for equivalence 4.

(c) v(n") > v(ny). 3 may proceed as in case (a), but picking ¢ from ﬁé(wz, ngy) according
to her winning strategy on game 3.

If, instead, ny and ng are in ¢y (wy) and t ¢ (w2), then 7%(101, ny) (resp. 75(102, ng)) represents
all of the infinite siblings in T}y, (resp. To,), and U £ (wy,n1) and 0 (wg, ng) are the empty
word. So, 3 may proceed as in case (a), but picking ¢> from 7£ (w2, ng2) according to her
winning strategy on game 3. []

We now show how to express a FO formula with one free variable with a X,,;; formula
equivalent to it on a LR UOT. As in the RR case, we show how to represent in X,,,;; the
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rank-k types of all parts in which we divide the tree in Lemma 5.6. Let n be the node in
which the X4 formula is evaluated. We need to distinguish whether n € t¢(w) or not.
This is more conveniently done while also discerning such cases from the RR one. Thus, we
now treat the two LR cases separately, and show how to combine them with the RR case in
Section 5.5.

Suppose n & t¢(w). Let s, = si(w,v(n)) be the root of the subtree t, = tX(w, v(n))
containing n. Children of 7o, can be identified by the X, formula ol = O T A
—-= (T,= 0= T), saying that no right sibling without right siblings is reachable from the
current node (i.e. there exists no rightmost sibling). By Lemma 5.4 with o* = o, there
exists a Xy formula G(t,) that fully identifies the rank-k type of tn if evaluated in s,.

Moreover, <Uﬁ(w n) and oL i (w,n) can be expressed similarly to v E(w n) and 7R(w n)
for RR UOTs. By Kamp’s Theorem, there exists a future LTL formula w k(w,n) that,
evaluated in the first position of 7L (w,n), fully identifies its rank-k type. Recursively

substitute ¢ U ¢’ subformulas with = (¢, ¢’) in ?k(w,n), obtaining ﬂl(w,n) Then,
replace all rank-k types of UOTs in ¢} (w,n) with the respective formulas obtained from
Lemma 5.4, with o* = oL, thus obtaining ¥ (w,n). Now, O:>E> (w,n), evaluated in s,
fully describes the rank- k type of all right Slbhngs of Sn, and of the subtrees rooted in them.

Formula O« 9% (w,n), which describes left siblings of s, if evaluated in it, can be
obtained symmetrically, but replacing & with < in the LTL formula.

Finally, we need to describe the rank-k type of t;(w). By Marx’s Theorem [Mar05,
Corollary 3.3], there exists a formula 14 that, evaluated in r, describes the rank-k type
of t¢(w). Take the conjunction of each subformula of ¢, with —=al, and call the obtained
formula ¢}1. Thus, the rank-k type of t¢(w) is described by O w}l, evaluated in s,. Finally,
the rank-k type of the whole tree is described by the following formula, evaluated in n:

pr1 = (a Agh) V1 (_‘aéo’ al A ‘P,Ll)7

where the 1} operator is needed to reach s, from n if s, # n, and

P = Og U A O D(w,n) A O B 7(w,n) A B(tn):

Suppose, instead, n € t;(w). Then, we express the rank-k type of ¢f(w) by means of a
Xyt formula 1) o, evaluated in n, which exists by Marx’s Theorem [Mar05, Corollary 3.3].
In it, we recursively take the conjunction of subformulas with —~a, thus obtammg g o

Next, we need to describe the rank-k type of 7£(w, st (w,0)) (recall that o A L(w, s*(w,0))
is the empty word). This can be done as in case n ¢ ty(w), thus obtaining formula

E)% (w, s*(w, 0)) which, evaluated in sE(w,0), fully identifies the children of 7. The latter
can be identified by formula Oy ak . Thus, to describe its children from n, we use formula

o =1 (T, 20 TAL (205 T, 04 (0 A0 T A B (w, 55 (,0))))),

where the outermost 1} reaches the root of T3, (identified by — Oy T), the inner | reaches ro

(identified by Oy a%) by descending through rightmost children (roo is the left context of an

open chain, hence a pending position), and = O~ T identifies s*(w,0). The final formula is
pr2 = Pa AP

This concludes the proof of Lemma 5.5. ]
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5.5. Synthesis. To finish the proof, we must combine the previous cases to obtain a single
Xyntit formula. First, note that it is possible to discern the type of UOT by means of FO
formulas of q.r. at most 5. The following formula identifies RR UOTs:

YR = Vx[(ORjz AVy(ORyy ANyRjz) = u(y)) = y(xRyy A u(y))],

where p(y) := =3z(yR=z2). g means that any node = which is on the rightmost branch
from the root must have a rightmost child, i.e. the rightmost branch has no end. LR UOTs
are identified by the following formulas:

yri(n) == EIx[a:RIfn A Jy(zRyy) ANVy(zRyy = 3z(yR=2))]

v2(n) = Jz[-(aRyn) A y(zRyy) AVy(aRyy = Jz(yR=2))]
Both v71(n) and v72(n) say there exists a node x = 7, that has infinite children, but vz2(n)
is true iff the free variable n is in ¢y(w), while y71(n) is true otherwise.

Given a FO formula of q.r. m with one free variable ¢(z), let k¥ = max(m,5). Consider
the finite set I'y, = {0k (Tw,n) | (Tw,n) = @(z), n € T} of the rank-k types of OPM-
compatible UOTs satisfying ¢(x), with n as a distinguished node. For each one of them,
take the corresponding Hintikka formula H(w,n). Since k > 5, and the UOT type is
distinguishable by formulas of q.r. at most 5, for each o (T, n) it is possible to tell whether
it describes RR or LR UOTs. For each type, by Lemmas 5.2 and 5.5, it is possible to express
H(w,n) through formulas describing the rank-k types of the substructures given by the
composition arguments, and translate them into X,,s; accordingly. Then, the translated
formula ¢ is the XOR of one of the following formulas, for each type oy (T, n) € T'k.

e If T}, is RR, then &g A wr(ok(Tw,n)).

o If oy is LR, and n € ty(w): & A (ak v o (T, aéo)) A @r1(ok(Ty,n)), where we assert one
of the infinite siblings is reachable going upwards form n, and so n is not in ¢(w).

e If T, is LR, and n € ty(w): & A—(ady VA (T, ak)) A ra(on(Tw,n)).

In the above formulas, ¢r(ok(Tw,n)), ¢r1(0k(Tw,n)), and @ra(ok(Tw,n)) are the formulas

expressing o (T, n), obtained as described in the previous paragraphs. Moreover, we have

ER =N (T, 7O TAL(-O=T,70=TA-OYT)),
&= (T, O TAY(m0= T, 0= TAOyak)).

&R identifies RR UOTs. In it, the outermost f} reaches the root of the tree, and the inner |}
imposes that the rightmost branch has no end. £, identifies LR UOTs. The outermost
also reaches the root of the tree, and the inner |} is verified by a path in which all nodes are
on the rightmost branch, except the last one, which is one of the infinite siblings.

Boolean queries can be expressed as Boolean combinations of formulas of the form
@ := Jz(@'(x)). Then, it is possible to translate @'(x) as above, to obtain X, formula ¢/,
and |} (T, ") is such that (T,,0) E U (T,¢') iff T, E @, for any OPM-compatible UOT T,.

Thus, we can state

Theorem 5.7. X,,,;; = FOL with one free variable on OPM-compatible w-UQOTs.

Thanks to Theorem 5.7, we can extend the results entailed by the translation of
Section 4.2.2 to w-words.

Theorem 5.8. POTL = FOL with one free variable on OP w-words.

Corollary 5.9. The propositional operators plus O%, O, X%, X?D, Z/{ff, Sff, YO, Uy, Siy
are expressively complete on OP w-words.
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The containment relations in Corollary 4.11 are easily extended to w-words:
Corollary 5.10. NWTL C OPTL C POTL over OP w-words.
Moreover,

Corollary 5.11. Fvery FO formula with at most one free variable is equivalent to one using
at most three distinct variables on OP w-words.

6. DECIDABILITY, SATISFIABILITY, AND MODEL CHECKING

The decidability of POTL is a consequence of its being equivalent to the FO fragment of
the MSO characterization of OPLs [LMPP15]. More practical algorithms for satisfiability
and model checking can be obtained by building OPAs equivalent to POTL formulas. Such
construction procedure, which is quite involved, is detailed in [CMP21]. Thus,

Theorem 6.1 [CMP21]. Given a POTL formula ¢, we can build an OPA (or an wOPBA)
A, of size 20U2D) gecepting the language defined by ®.

Emptiness of OPA and wOPBA is decidable in polynomial time by adapting techniques
originally developed for Pushdown Systems and Recursive State Machines, such as satura-
tion [ABE18], or graph-theoretic algorithms [ACEMO5]. Hence, satisfiability of a formula
¢ can be tested in time exponential in || by building A, and checking its emptiness. By
Corollaries 4.11 and 5.10, we can extend the EXPTIME-hardness result for NWTL [AAB*08]
to POTL, obtaining

Corollary 6.2. POTL satisfiability is EXPTIME-complete.

Since there are practical algorithms for computing the intersection of both OPA and
wOPBA [LMPP15], model checking of OPA (or wOPBA) models against a formula ¢ can
be done by building A, and checking emptiness of their intersection. Thus,

Corollary 6.3. POTL model checking against OPA and wOPBA is EXPTIME-complete.

An experimental evaluation of the POTL model-checking procedure is reported in [CMP21].
Just to give an idea of its practicality, we report that formula

O((call A pg A Scall(T,pa)) = CallThr(T))

from Section 3.3 has been successfully checked against the OPA of Figure 4 in just 867 ms,
with a RAM occupancy of 70 MiB, on a laptop with a 2.2 GHz Intel processor and 15 GiB
of RAM, running Ubuntu GNU/Linux 20.04.

7. CONCLUSIONS

We introduced the temporal logic POTL, and proved its equivalence to FOL on both OP
finite and w-words. Thus, thanks to an independent result [MPC20a], the languages defined
through POTL formulas coincide with the class of aperiodic OPLs. We also proved that
POTL is strictly more expressive than temporal logics with explicit context-free-aware
modalities in the literature, including OPTL, which is also based on OPLs. Such proofs
are technically quite involved, which is unsurprising, given the difficulties encountered in
analogous problems, even if based on the simpler framework of Nested Words [AAB108]
(recall that the relationship between CaRet and NWTL remains unknown). The same
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hardships, however, do not afllict the algorithmic complexity of satisfiability and model
checking, which are not higher than those of nested-words logics. Thus, we argue that the
strong gain in expressive power w.r.t. previous approaches to model checking CFLs brought
by POTL is worth the technicalities needed to achieve the present —and future— results.

On the other hand, POTL shows promising results in its applications: [CMP21] reports
on a complete model-checker for POTL and on the first encouraging experiments on a
benchmark of practical interest.

In our view, POTL is the theoretical foundation on top of which to build a complete,
practical and user-friendly environment to specify and verify properties of many pushdown-
based systems.

While logics such as CaRet and NWTL can be viewed as the extension of LTL to
Nested Words, POTL can be seen as the extension of LTL to OPLs and OP words. An
interesting path for future investigations is the extension of branching-time logics such as
CTL to OPLs. Something similar has been done for Nested Words in [ACM11], where a
u-calculus of Nested Trees is introduced. Nested-words logics have also been augmented in
other directions: [BS14] introduces a temporal logic capturing the whole class of VPLs, while
timed extensions of CaRet are given in [BMP18]. The same extensions could be attempted
for POTL too.
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APPENDIX A. OMITTED PROOFS: PROPERTIES OF THE X RELATION

In the following lemma, we prove the properties of the chain relation.

Lemma A.1. Given an OP word w and positions i, j in it, the following properties hold.

(1) If x(i,7) and x(h,k), for any h,k in w, then we have i < h < j = k < j and
i<k<j = 1<h.

(2) If x(i,4), theni<i+1 and j— 13> j.

(3) Consider all positions (if any) i1 < ig < -+ < iy s.t. X(ip,J) for all1 < p < mn. We have
iW<jorii=jand, ifn>1,1i;>j forall2<q<n.

(4) Consider all positions (if any) j1 < jo < -+ < jn s.t. x(4,Jp) for all1 < p < n. We
have i > j, ori=j, and, if n > 1,1 <j, foralll1 <qg<n-—1.

Proof. In the following, we denote by ¢, the character labeling word position p, and by
writing “-1[zocox1 . . . TpepTpy1]+t we imply c_; and ¢,41 are the context of a simple or
composed chain, in which either z, =€, or ~1[z,|* is a chain, for each p.

(1) Suppose, by contradiction, that x(i,7), x(h, k), and i < h < j, but k > j. Consider the
case in which x(i, 7) is the innermost chain whose body contains h, so it is of the form
“lx0Co - .. CRTPCp - - . CnTnt1]¥ OF “T0Cq . .. CpTny1]. By the definition of chain, we have
either ¢, = ¢, or ¢, > ¢j, respectively.

Since x(h, k), this chain must be of the form “»[z,cp . ..]% or [zy41¢;...]%, implying
cp, < ¢p Or ¢, < cj, respectively. This means there is a conflict in the OPM, contradicting
the hypothesis that w is an OP word.

In case x(i,7) is not the innermost chain whose body contains h, we can reach the
same contradiction by inductively considering the chain between ¢ and j containing h in
its body. Moreover, it is possible to reach a symmetric contradiction with the hypothesis
x(%,7), x(h,k), and i < k < j, but ¢ > h.

(2) Trivially follows from the definition of chain.

(3) We prove that only i; can be s.t. i1 < j or i1 = j. Suppose, by contradiction, that for
some r > 1 we have i, < j or i, = j.

If i, < j, by the definition of chain, j must be part of the body of another composed
chain whose left context is 7,. So, w contains a structure of the form “r[zc; ...]% where
|xg| > 1, “ir[z9]%, and k > j is s.t. x(ir, k). This contradicts the hypothesis that x (i1, j),
because such a chain would cross x(i,, k), contradicting property (1).

If 4, = j, then w contains a structure “r—1[...¢; z; |%, with |z; | > 1 and “r[z; ]%.
By the definition of chain, we have ¢, > j, which contradicts the hypothesis.

Thus, the only remaining alternative for r > 1 is i, > j.

Similarly, if we had ¢; > j, the definition of chain would lead to the existence of a
position h < iy s.t. x(h,j), which contradicts the hypothesis that i; is the leftmost of
such positions. ¢; < j and ¢; = j do not lead to such contradictions.

(4) The proof is symmetric to the previous one. []
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APPENDIX B. OMITTED PROOFS: EXPANSION LAWS

We prove the following expansion laws for POTL:

eU v =vV (oA (O (PULY)V X0 UL Y))) (B.1)
soSf(dJEde(sM(@t (0 Sy ¥) V xXp(p Sy 1/1))) (B.2)
U b= (Y AXPT AXBT)V (9 A OH (0 U 1)) (B.3)
eSEY=(WAXPTAXET)V (o N O¥(eSHY)) (B.4)
UG Y= (W AXET AXET)V (9 AOH (9 U ¥)) (B.5)
eSHY =W AXET AXET)V (0 A% (p S ) (B.6)

Lemma B.1. Given a word w on an OP alphabet (P(AP), Map), two POTL formulas ¢
and v, for any position i in w the following equivalence holds:

pUl v =V (9 (O (pULY) VX ULY))).

Proof. [Only if] Suppose ¢ L{g 1 holds in 4. If 9 holds in 4, the equivalence is trivially
verified. Otherwise, cpZ/l;f 1 is verified by a DSP i =ip < i1 < -+ < i, = j with n > 1, s.t.
(w,ip) =@ for 0 < p < n and (w,iy) |= 9. Note that, by the definition of DSP, any suffix of
that path is also a DSP ending in j. Consider position i1: ¢ holds in it, and it can be either
e iy =i+ 1. Then either : < (i+ 1) or i = (i + 1), and path iy < is < --- < i, = j is the

DSP between i1 and j, and ¢ holds in all 7, with 1 < p < n, and ¥ in j,. So, cplxlff P

holds in i1, and O%*(@ UY 1) holds in i.

e i1 > i+ 1. Then, x(4,41), and i <4y or i =i;. Since i; < iy < -+ < iy, = j is the DSP

from 41 to j, cpug 1 holds in 4, and so does x%(p Z/{fcl ) in 1.

[If] Suppose the right-hand side of the equivalence holds in i. The case (w,i) |= 1) is trivial,
so suppose ¢ does not hold in ¢. Then ¢ holds in ¢, and either:
e O%p Ufé 1) holds in 4. Then, we have i < (i + 1) or ¢ = (i + 1), and there is a DSP

i+ 1=11 <ip<---<i,=j, with ¢ holding in all 7, with 1 < p < n, and 9 in i,.

— If i=(i+ 1), it is not the left context of any chain, and i =ip < i1 < iz <--- <ipisa
DSP satisfying ¢ US ¢ in i.

— Otherwise, let K = min{h | x(i,h)}: we have k > j, because a DSP cannot cross right
chain contexts. So, adding i to the DSP generates another DSP, because there is no
position h s.t. x(i,h) with A < j, and the successor of ¢ in the path can only be i; =i+ 1.

e xL(p Z/{g 1) holds in i. Then, there exists a position k s.t. x (i, k) and ¢ < k or i =k and
gpb(ff?,/} holds in k, because of a DSP k = i1 <2 < -+ <ip, = j. If k = max{h | h <

JAX(i, h)A(i<hVi=h)}, theni =iy < i3 < iz < --- < iy is a DSP by definition, and since ¢

holds in ¢, ng/I;fQ/J is satisfied in it. Otherwise, let &’ = max{h | h < jAx(i,h)A(i<hVi=h)}.

Since i1 > i and chains cannot cross, there exists a value ¢, 1 < ¢ < n, s.t. iy = k’. Thus

g <lg41 < -+ <ip=Jis a DSP, so gou;lgb holds in 74 too. The path ¢ < iy <--- <y, is

a DSP, and ¢ U¢ 4 holds in i. ]

The proofs for the summary since and upward summary until operators are symmetric.
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Lemma B.2. Given a word w on an OP alphabet (P(AP), Map), and two POTL formulas
@ and 1, for any position i in w the following equivalence holds:

U b= W AXET A-XBET)V (¢ AOY (U b)).

Proof. [Only if] Suppose U}, 1 holds in i. Then, there exists a path i = ip < i1 < -+ < iy,
n > 0, and a position h < i s.t. x(h,ip) and h < i, for each 0 < p < n, ¢ holds in all i, for
0 < g <mn,and ¥ holds in i,. If n =0, ¢ holds in ¢ = ig, and so does XdPT, but x» T does
not. Otherwise, the path i1 < --- <1, is also a UHP, so ¢ U}; 9 is true in ;. Therefore, ¢
holds in 4, and so does O% (¢ U ).

[If] If x4 T holds in i but x4 T does not, then there exists a position h < i s.t. x(h, 1)
and h <. If 1 also holds in 7, then U}, v is trivially satisfied in ¢ by the path made of only
i itself. Otherwise, if O, (¢ U}, ) holds in 4, then there exist a position h < i s.t. x(h,1)
and h < i, and a position i; which is the minimum one s.t. iy > 4, x(h,i1) and h < ;. In iy,
@ UF; 1 holds, so it is the first position of a UHP i1 < i3 < --- < iy. Since ¢ also holds in ¢,
the path ¢ = ip < i1 < --- <, is also a UHP, satisfying ¢ U} v in <. []

The proofs for the other hierarchical operators are analogous.
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