
Logical Methods in Computer Science
Volume 17, Issue 3, 2021, pp. 19:1–19:53
https://lmcs.episciences.org/

Submitted Jul. 05, 2018
Published Aug. 13, 2021

EQUIVALENCE CHECKING FOR WEAK BI-KLEENE ALGEBRA ∗
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Abstract. Pomset automata are an operational model of weak bi-Kleene algebra, which
describes programs that can fork an execution into parallel threads, upon completion of
which execution can join to resume as a single thread. We characterize a fragment of pomset
automata that admits a decision procedure for language equivalence. Furthermore, we
prove that this fragment corresponds precisely to series-rational expressions, i.e., rational
expressions with an additional operator for bounded parallelism. As a consequence, we
obtain a new proof that equivalence of series-rational expressions is decidable.

1. Introduction

Kleene’s theorem states the correspondence between the operational world of automata and
the denotational world of expressions, on formal languages [Kle56]. This famous discovery
has proven pivotal to establish later results, such as Kozen’s axiomatisation of equivalence
of rational expressions [Koz94], as well as to transpose the application of algorithms from a
denotational to an operational setting — for instance, one can leverage Hopcroft and Karp’s
algorithm for finite automata [HK71] to decide equivalence of rational expressions.

In spite of their simplicity, finite automata and rational expressions provide valuable
tools in analyzing the behaviour of sequential programs [Koz96]. The behavioural patterns
of present-day programs, however, are not limited to sequential scenarios, where each event
either strictly precedes or succeeds all others. Indeed, reasoning about programs that run
on multi-core processors requires us to adapt our descriptions such that two events need
not be strictly ordered, but instead may occur in parallel. The study of concurrent Kleene
algebra [HMSW09], in the broadest sense, is concerned with extending techniques from
rational expressions and finite automata to reason about systems that include parallelism.
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T. Kappé was partially supported by the ERC Starting Grant 679127 (ProFoundNet) and DARPA grant
HR001120C0107 (Pronto). A. Silva was partially supported by the ERC Starting Grant 679127 (ProFound-
Net) and a Leverhulme Prize (PLP–2016–129). P. Brunet acknowledges support from EPSRC grant n.
EP/R006865/1. F. Zanasi acknowledges support from EPSRC grant n. EP/R020604/1.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-17(3:19)2021
© T. Kappé, P. Brunet, B. Luttik, A. Silva, and F. Zanasi
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses
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We propose pomset automata as an operational model for a fragment of concurrent Kleene
algebra known as weak bi-Kleene algebra, which describes programs where an execution may
fork into parallel computations, to join the results of those computations later on, resuming
execution. The language semantics of these automata is given by sets of partially ordered
multisets, or pomsets. The first main contribution is a proof that language equivalence of
states is decidable for the class of fork-acyclic finite pomset automata. The second main
contribution is a Kleene theorem, which shows that this same fragment corresponds precisely
to the denotational model of bi-Kleene algebra, known as series-rational expressions, or
sr-expressions for short [LW00, LS14] — that is, rational expressions extended with parallel
composition. This correspondence then yields a decision procedure for deciding equivalence
of series-rational expressions, via pomset automata.

In Section 2, we discuss related work; we go over the necessary background regarding
pomsets in Section 3. In Section 4, we introduce pomset automata and their semantics.
Additionally, we introduce a (structural) restriction on pomset automata, defining the class
of fork-acyclic pomset automata. In Section 5, we develop an algorithm for checking language
equivalence of a subclass of fork-acyclic pomset automata; in Section 6, we extend this
procedure to fork-acyclic pomset automata in general. In Section 7, we show how to obtain
a pomset automaton that recognizes the language of a series-rational expression; conversely,
in Section 8, we show how to obtain an equivalent series-rational expression from a finite
and fork-acyclic pomset automaton. We list directions for further work in Section 9.

For the sake of self-containment, we include proofs of formal claims that are not cited.
Routine proofs are delegated to the appendices to ensure brevity.

2. Related work

There exist three pomset-based operational models for sr-expressions in the literature.
Branching automata were pioneered by Lodaya and Weil [LW00]. These are non-deterministic
finite automata enriched with two additional types of transition to mediate forking and joining
of computation. No decision procedure for language equivalence of branching automata is
known. Branching automata also come equipped with a reverse construction, which shows
how to obtain an equivalent sr-expression from a particular class of branching automata.
The difference is that the description of this class involves a semantic condition, i.e., makes
a statement about the pomsets that can be accepted by a state in the branching automaton,
whereas fork-acyclic pomset automata are described in purely structural terms.

Another model, proposed by Jipsen and Moshier [JM16] based on [LW00] and also called
branching automata, is given by non-deterministic finite automata, enriched with a relation
that specifies where computation may be joined, provided all threads can be traced back
to a given common state. In some sense, pomset automata are a dual to this model, in
that they specify where execution can be forked, after which all threads can be joined at a
given state after termination. As far as we can tell, there is no known decision procedure for
language equivalence of branching automata. Branching automata in the style of Jipsen and
Moshier also come with a translation back to sr-expressions; being based on [LW00], this
construction inherits the semantic description of automata to which it can be applied.

Petri nets, specifically safe Petri nets, can also be used to describe the behaviours
modelled by sr-expressions [BPS17, LRR03]. The advantage of this approach is that it allows
one to use results from Petri net theory to study sr-expressions. Furthermore, particularly
in the case of [BPS17], one can leverage the encoding of sr-expressions into Petri nets to
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develop a decision procedure for equivalence of sr-expressions, as well as a more general
type of equivalence that allows threads to sequentialise (corresponding to concurrent Kleene
algebra proper). However, it should be noted that safe Petri nets can express a form of
concurrency that is strictly more general than the type of concurrency that can be described
by concurrent Kleene algebra [Gra81]. As such, converting a safe Petri net to an equivalent
sr-expression necessarily discards some behaviour [LRR03].

The operational models discussed above associate an automaton or Petri net to an
sr-expression by induction on the structure of the expression, using a Thompson-style trans-
lation [Tho68]. In contrast, our expressions-to-automata translation generalizes Antimirov’s
construction [Ant96], and thus allows the operational representation to be constructed
lazily. This is particularly beneficial for algorithms that explore the state space of automata
step-by-step, as it prevents them from computing the entire state space.

In [BLMvT16], Baeten et al. give an operational semantics to sr-expressions in terms
of (non-deterministic) transitions systems, by interpreting the parallel composition as
interleaving, which obviates the need for a parallel thread construction. They show that
there exist transition systems that are not bisimilar to any sr-expression, and characterise
the fragment of systems for which such an sr-expression does exist. A full Kleene theorem is
recovered when they extend sr-expressions with interaction.

Our algorithm to check language equivalence in pomset automata was inspired by the
work of Laurence and Struth [LS14] on a more general form of sr-expressions; specifically,
the idea of checking language equality by computing the atoms of languages is due to them.

This paper is an extension of a CONCUR’17 paper [KBL+17]; in comparison, the
present work contains a more generalised presentation of pomset automata that allows for
non-determinism, which enables us to define the class of well-structured pomset automata.
We then use this structural restriction to guide the construction of a decision procedure for
language equivalence of fork-acyclic pomset automata. Moreover, the syntactic derivatives
are now presented in the style of Antimirov [Ant96], rather than Brzozowski [Brz64].

Another closely related paper is [KBL+19], in which we generalised the Kleene theorem
of [KBL+17] to series-parallel regular expressions, which include the parallel variant of
the Kleene star known as parallel star. For this generalisation to work, one needs to
loosen the notion of fork-acyclicity to the strictly more liberal well-nestedness ; crucially, the
definition of well-nested pomset automata relies on the presentation of pomset automata
found in [KBL+17]. Furthermore, in [KBL+19], we show that language equivalence of pomset
automata in general is undecidable — this justifies the fact that the decision procedure
presented in this paper requires fork-acyclicity.

3. Preliminaries

We fix a finite set of symbols Σ, referred to as the alphabet. When S and T are sets, we
write TS for the set of functions from S to T . We write 2S for the set of subsets of S, which
can be identified with the functions from S to the two-element set 2 = {0, 1}.

A multiset over a set S is a “subset” of S where elements may occur more than once;
more formally, it is a function φ : S → N. Finite multisets are denoted using double braces,
e.g., φ = {|1, 1|} is the multiset over N where φ(n) = 2 if n = 1, and φ(n) = 0 otherwise. In
the following, we fix multisets φ, ψ over S. When s ∈ S, we use s ∈ φ as a shorthand for
φ(s) 6= 0. We say that φ is finite if there are finitely many s ∈ S such that s ∈ φ. If φ is
finite, then the size of φ, denoted |φ|, is given by

∑
s∈S φ(s). We write M(S) for the set of
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finite multisets over S. We denote the empty multiset by �, and write φtψ for the disjoint
union of φ and ψ, where (φ t ψ)(s) = φ(s) + ψ(s). For instance, {|0|} t {|0, 1|} = {|0, 0, 1|}.

A non-deterministic finite automaton (NFA) is a tuple A = 〈Q, δ, F 〉 where Q is a finite
set of states, with F ⊆ Q the accepting states, and δ : Q × Σ → 2Q is a function. The
language of q ∈ Q in A, denoted LA(q), is the set of words w = a1 · · · an such that there
exist q = q0, . . . , qn ∈ Q where qi+1 ∈ δ(qi, ai+1) for 0 ≤ i < n, and qn ∈ F .

3.1. Pomsets. We commonly represent an execution of a program as a word over some
finite alphabet Σ. In such a word, each position corresponds to an event in the execution
whose name is given by the symbol on that position; events are ordered according to their
positions. For instance, if Σ = {a, b, c}, then the word abca represents an execution where
an event of type a occurs, followed by events of type b, c and a, in that order.

To represent an execution of a program with concurrency, we need to relax this model
to allow a partial order on events. For instance, a concurrent program may execute an event
of type a before forking into two threads that execute events of type b and c respectively,
after which the threads join to perform an event of type a. Note now, in this execution,
there is no ordering of the events labelled by b and c — they are concurrent.

The model most commonly found in the literature to account for such executions was
proposed independently by Winkowski [Win77] and Pratt [Pra82], and studied extensively
by Winkowski [Win79] and Grabowski [Gra81]; we adopt Pratt’s terminology. Defining the
model requires some patience, as the indirection between events and their names, which is
given implicitly in words by positions and their symbols is slightly tricky to generalize.

Definition 3.1. A labelled partially ordered set (labelled poset) is a tuple u = 〈Su,≤u, λu〉
consisting of a carrier set Su, a partial order ≤u on Su and a labelling function λu : Su → Σ.

For technical reasons, we adopt the convention that the carrier of a labelled poset is a
subset of N; under this convention, the collection of labelled posets is a proper set.

The definition above gets us close to where we need to be. For instance, the example
execution above can be represented by the labelled poset 〈Su,≤u, λu〉, in which

Su = {1, 2, 3, 4} 1 ≤u 2 ≤u 4 1 ≤u 3 ≤u 4 λu = {1 7→ a, 2 7→ b, 3 7→ c, 4 7→ a}
However, if the event labelled by b were represented by 5 instead of 2 (adjusting ≤u and

λu accordingly), then this new labelled poset would still represent the same execution; in
some sense, we care only about the labels of the events, and their order. Hence, we should
abstract from the exact contents of the carrier. This is done as follows.

Definition 3.2 (Pomsets). Let u = 〈Su,≤u, λu〉 and v = 〈Sv,≤v, λv〉 be labelled posets.
A labelled poset isomorphism from u to v is a bijection h : Su → Sv, such that λv ◦ h = λu,
and for s, s′ ∈ Su we have s ≤u s

′ if and only if h(s) ≤u h(s′). We write u ∼= v if such an
isomorphism exists between u and v, and note that ∼= is an equivalence.

A partially ordered multiset, or pomset for short, is an equivalence class of labelled
posets; we write [Su,≤u, λu] for the equivalence class of the labelled poset 〈Su,≤u, λu〉.

Since the collection of labelled posets forms a proper set, ∼= is a proper relation.
Consequently, a pomset is also a proper set, as is the set of pomsets.

We write 1 for the empty pomset, i.e., the isomorphism class consisting of the unique
empty labelled poset. When a ∈ Σ we may write a to denote the unique pomset containing
one event, which is labelled with a; such a pomset is called primitive.
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Definition 3.3 (Pomset composition). Let U = [Su,≤u, λu] and V = [Sv,≤v, λv] be
pomsets. Without loss of generality, we may assume that Su and Sv are disjoint.

We define two types of composition. The sequential composition of U and V , denoted
U · V , is the pomset [Su ∪ Sv,≤u ∪≤v ∪ (Su × Sv), λu ∪ λv]. The parallel composition of U
and V , denoted U ‖ V , is the pomset [Su ∪ Sv,≤u ∪ ≤v, λu ∪ λv].

In the above, λu ∪ λv : Su ∪ Sv → Σ is the function that agrees with λu on Su, and
with λv on Sv — note that λu ∪ λv is well-defined, given that Su and Sv are disjoint. The
order relations of U · V and U ‖ V are partial orders for the same reason.

Of course, one should check that the operators given above are well-defined, i.e., that
U · V and U ‖ V are the same (as in, given by isomorphic labelled posets) regardless of the
disjoint labelled posets that are chosen as representatives. This turns out to be the case.

It is easy to see that both operators are associative, and that ‖ is commutative. Further-
more, 1 is the unit of both sequential and parallel composition, i.e., U ·1 = 1 ·U = U ‖ 1 = U
for all pomsets U [Gis88]. For the remainder of this paper, we adopt the convention that ·
binds more tightly than ·, i.e., U · V ‖W should be read as (U · V ) ‖W .

Definition 3.4 (Pomset types). Let U be a pomset. We say that U is sequential if there
exist non-empty pomsets U1, U2 such that U = U1 · U2. Also, U is a sequential prime if it is
non-empty, and for all pomsets V and W such that U = V ·W , we have V = 1 or W = 1.

Similarly, we say that U is parallel if there exist non-empty pomsets U1, U2 such that
U = U1 ‖ U2. Also, U is a parallel prime if it is non-empty, and for all pomsets V and W
such that U = V ‖W , it holds that V = 1 or W = 1.

For our type of concurrency, we study a specific type of pomset, as follows.

Definition 3.5. The set of series-parallel pomsets, or sp-pomsets, denoted SP(Σ), is the
smallest set that contains the empty and primitive pomsets, and is closed under sequential
and parallel composition. In other words, SP(Σ) is the smallest set satisfying the rules

1 ∈ SP(Σ)

a ∈ Σ

a ∈ SP(Σ)

U, V ∈ SP(Σ)

U · V ∈ SP(Σ)

U, V ∈ SP(Σ)

U ‖ V ∈ SP(Σ)

It should be clear that the pomsets in SP(Σ) built without parallel composition have
a total order on their nodes, and hence correspond exactly to words. We will make this
identification throughout this paper, writing Σ∗ for the set of words over Σ.

Series-parallel pomsets have the convenient property that they may be partitioned into
empty, primitive, sequential and parallel pomsets, in the following way.

Lemma 3.6 [Gis88, Theorem 3.1]. Let U ∈ SP(Σ). Exactly one of the following is true:
(i) U is empty, or (ii) U is primitive, or (iii) U is sequential, or (iv) U is parallel.

Another useful tool in dissecting pomsets comes from factorisation. In a sense, factorising
a pomset is analogous to writing a word as the sequence of its letters; the difference here is
that whereas words can be composed only sequentially, pomsets can also be composed in
parallel — hence, we obtain two types of factorisation.

Definition 3.7 (Factorisation). Let U be a pomset. When U = U1 · · ·Un with U1, . . . , Un
sequential primes, we refer to the sequence U1, . . . , Un as a sequential factorisation of U .

Similarly, when U = U1 ‖ · · · ‖ Un such that U1, . . . , Un are parallel primes, we refer to
the multiset {|U1, . . . , Un|} as a parallel factorisation of U .
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Just like a word can be uniquely written as a concatenation of its symbols, so does
sequential factorisation give rise to such a unique concatenation.

Lemma 3.8 ([Gis88, Lemma 3.2] and [Gra81, Proposition 2]; see also [GKM72]). Sequential
factorisations exist uniquely for sp-pomsets.

We conclude with a similar statement about parallel factorisation.

Lemma 3.9. Parallel factorisations exist uniquely for sp-pomsets.

3.2. Pomset languages. All possible executions of a sequential program (described as
words) can be collected in a set to form a language describing the behaviour of a program.
Analogously, we can collect pomsets in a pomset language to describe the behaviour of a
concurrent program, as follows.

Definition 3.10. A pomset language is a set of pomsets; a pomset language made up of
sp-pomsets is referred to as a series-parallel language, or sp-language for short.

The composition operators of pomsets lift in a pointwise manner; concretely

L · L′ =
{
U · U ′ : U ∈ L,U ′ ∈ L′

}
L ‖ L′ =

{
U ‖ U ′ : U ∈ L,U ′ ∈ L′

}
The Kleene closure also applies to pomset languages, as follows

L∗ =
⋃
n∈N

Ln in which L0 = {1} and Ln+1 = L · Ln

To relate pomset languages over different alphabets, the notion of substitution is useful;
a substitution allows us to translate a pomset language over one alphabet into a pomset
language over another alphabet, just by substituting the letters.

Definition 3.11. Let ∆ be an alphabet. A substitution is a function ζ : Σ→ 2SP(∆). We
can lift the domain ζ to SP(Σ) inductively, as follows:

ζ(1) = {1} ζ(U · V ) = ζ(U) · ζ(V ) ζ(U ‖ V ) = ζ(U) ‖ ζ(V )

When L is a pomset language, we write ζ(L) for the set
⋃
U∈L ζ(U).

Finally, we call ζ atomic if all of the following hold:

(i) for a ∈ Σ we have that ζ(a) consists of sequential primes exclusively, and
(ii) for a, b ∈ Σ, we have that ζ(a) ∩ ζ(b) 6= ∅ if and only if a = b.

Atomic substitutions have the following useful properties.

Lemma 3.12. Let L,L′ ⊆ Σ∗, and let ζ be a substitution. If ζ is atomic, then

ζ(L ∩ L′) = ζ(L) ∩ ζ(L′) ζ(L \ L′) = ζ(L) \ ζ(L′) ζ(L) = ∅ ⇐⇒ L = ∅
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3.3. Series-rational expressions. Rational expressions can denote languages, which in
turn can describe the behaviour of a program. Continuing our analogy, series-rational
expressions [LW00] can denote the behaviour of a program with fork/join-style concurrency.
Essentially, these are rational expressions extended with parallel composition.

Definition 3.13. The set of series-rational expressions, or sr-expressions for short, denoted
T , is the smallest set generated by the grammar

e, f ::= 0 | 1 | a ∈ Σ | e+ f | e · f | e ‖ f | e∗

Like rational expressions, series-rational expressions have a straightforward semantics in
terms of sp-languages, where each operator is interpreted as an operator on sp-languages.

Definition 3.14 (Semantics). We define J−K : T → 2SP(Σ) inductively, as follows.

J0K = ∅ J1K = {1} JaK = {a} Je+ fK = JeK ∪ JfK

Je · fK = JeK · JfK Je ‖ fK = JeK ‖ JfK Je∗K = JeK ∗

When L is a pomset language and there exists an e ∈ T such that L = JeK, we say that L is
a series-rational language, or sr-language for short.

An important property of sr-expressions is whether their semantics contains the empty
pomset. We syntactically characterise such sr-expressions.

Definition 3.15. F is the smallest subset of T that satisfies the following for all e, f ∈ T :

1 ∈ F
e ∈ F

e+ f ∈ F
f ∈ F

e+ f ∈ F
e, f ∈ F
e · f ∈ F

e, f ∈ F
e ‖ f ∈ F e∗ ∈ F

To see that F indeed characterizes the empty pomset property, we have

Lemma 3.16. Let e ∈ T . Now e ∈ F if and only if 1 ∈ JeK.

4. Pomset automata

We now turn our attention to pomset automata, which are intended as an operational model
for bi-Kleene algebra. Intuitively, a pomset automaton is a non-deterministic automaton
enriched with an additional type of transition. Instances of this type of transition tell us
where execution may fork into several “threads”, as well as where execution resumes when
each of these threads has reached an accepting state. More formally, we have the following.

Definition 4.1. A pomset automaton (PA) is a tuple 〈Q,F, δ, γ〉 where

• Q is a set of states, with F ⊆ Q the accepting states, and
• δ : Q× Σ→ 2Q is the sequential transition function, and
• γ : Q×M(Q)→ 2Q is the parallel transition function.

Lastly, for all q ∈ Q, there are only finitely many φ ∈M(Q) such that γ(q, φ) 6= ∅.

In the above, q′ ∈ γ(q, {|r1, . . . , rn|}) should be interpreted to mean that, in state q, the
automaton may fork into states r1, . . . , rn, and when all of these have reached an accepting
state, may resume computation from q′. The final requirement ensures that only finitely
many fork transitions of a state can be meaningful, i.e., lead to an accepting state.

Visually, we can represent pomset automata in a style similar to finite automata, as in
Figure 1. There, a state is represented by a vertex, which is doubly circled when the state is
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q0 q1

q3

q4

q2 q5
a

b

c

a

Figure 1. PA accepting a · (b ‖ c) · a.

accepting. Transitions are represented by edges: the edge between q0 and q1 encodes that
q1 ∈ δ(q0, a), and the multi-ended edge that connects q1 to q2 and q3 as well as q4 signifies
that q2 ∈ γ(q1, {|q3, q4|}). To avoid visual clutter, we draw neither the sequential transitions
where δ(q, a) = ∅, nor the parallel transitions where γ(q, {|r1, . . . , rn|}) = ∅. Our convention
that for q ∈ Q there are only finitely many φ ∈ M(Q) with γ(q, φ) 6= ∅ ensures that a PA
with finitely many states also has only finitely many transitions, and can therefore be drawn.

For the remainder of this section, we fix a PA A = 〈Q,F, δ, γ〉. We proceed to define
how one can “read” an sp-pomset U while transitioning from a state q to a state q′, in a
way that matches the intuition given to the parallel transition function. This information is
encoded in a ternary relation between states, pomsets, and states, called the run relation.
If a state q is related to a pomset U and another state q′ by this relation, it means that,
starting in state q, we can read the pomset U to end up in state q′. The pomsets that we
can read to reach an accepting state form the language of a state.

Definition 4.2 (Runs). We define →A ⊆ Q× SP(Σ)×Q as the smallest relation satisfying

q 1−→A q

q′ ∈ δ(q, a)

q a−→A q
′

q U−→A q
′′ q′′ V−→A q

′

q U ·V−−→A q
′

∀1 ≤ i ≤ n. qi Ui−→A q
′
i ∈ F

q′ ∈ γ(q, {|q1, . . . , qn|})
q U1‖···‖Un−−−−−−→A q

′

The language of q ∈ Q, denoted LA(q), is the set
{
U ∈ SP(Σ) : q U−→A q

′ ∈ F
}

.

Given an element q U−→A q
′ of the run relation, a proof tree (using the inference rules

above) witnessing that this triple occurs in →A contains all structural information about
how the pomset automaton reads the pomset, i.e., the order in which the states were visited,
which fork transitions were used, et cetera. Such a proof tree can therefore be called a run
of the pomset automaton; we shall often abuse this nomenclature and refer to individual
elements of the run relation as runs, with their underlying proof tree implicitly present.

Example 4.3. Suppose A is the PA in Figure 1. Then, we have that

q0
a−→A q1 q2

a−→A q5 q3
b−→A q5 q4

c−→A q5

From the latter two runs and the fact that q2 ∈ γ(q1, {|q3, q4|}), it follows that q1
b‖c−−→A q2 by

the last rule above. By applying the third rule of run composition to this run and the first two

runs above, we find that q0
a·(b‖c)·a−−−−−→A q5. Since q5 ∈ F , we have that a · (b ‖ c) · a ∈ LA(q0),

that is to say, q0 accepts the pomset a · (b ‖ c) · a.

It is useful to distinguish runs based on the rules that induce them. To this end, we
establish the following terminology for q, q′ ∈ Q and U ∈ SP(Σ). If q U−→A q

′ follows by an
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q1

q3

q4

q5

q2

a

(a) A PA with a parallel unit run, from q1 to
q2, which is labelled by a primitive pomset.

q1

q3

q2

q4 q5

a

b

(b) A PA with unbounded parallelism as a
result of a fork-cycle.

Figure 2. Some problematic pomset automata.

application of the first rule, we speak of a trivial run. Also, if q U−→A q′ has a derivation
in which the second rule is applied last, this run is a sequential unit run. Furthermore, if
q U−→A q

′ is a consequence of the last rule, this run is a parallel unit run. The sequential and

parallel unit runs are collectively referred to as unit runs. Lastly, if q U−→A q
′ is a result of

applying the third rule, i.e., there exist U1, U2 ∈ SP(Σ) and q′′ ∈ Q such that q U1−→A q
′′ as

well as q′′ U2−→A q
′, and neither of these is trivial, then q U−→A q

′ is known as a composite run.
By definition of →A, each run falls into at least one of these categories.

Example 4.4. Returning to Example 4.3 above, we find that q0
a−→A q1 is a sequential unit

run, and q1
b‖c−−→A q2 is a parallel unit run. An example of a trivial run is q5

1−→A q5. Lastly,

the run q0
a·(b‖c)·a−−−−−→A q5 is a composite run.

Remark 4.5. The type of a run is not uniquely determined by the kind of pomset that
labels it. For example, even though most parallel unit runs are labelled by a parallel pomset,
this is not true in general: if A is the PA in Figure 2a, then we can construct the parallel
unit run q1

a−→A q2, even though a is not parallel. Similarly, not every run labelled by the

empty pomset is trivial. For instance, if q, q′ ∈ Q such that q′ ∈ γ(q,�), then q 1−→A q
′. We

deal with this kind of confusion between run types in Section 5.

We reap the benefits of our new vocabulary with the following useful lemma.

Lemma 4.6. Let q U−→A q′. There exist q = q0, . . . , q` = q′ ∈ Q and U1, . . . , U` ∈ SP(Σ),

such that U = U1 · · ·U`, and for all 1 ≤ i ≤ ` we have that qi−1
Ui−→ qi is a unit run.

The minimal ` for a given run as obtained above is known as the length of the run.

4.1. Fork-acyclicity. As it turns out, pomset automata are a rather powerful model of
computation. For instance, they can be used to recognize context-free languages; consequently,
language equivalence of states is undecidable in general [KBL+19]. The heart of the argument
from op. cit. is that we can use the forks of a pomset automaton to simulate something
that resembles the call stack of a recursive program. To prevent this excessive amount of
expressive power, we need to put a structural restriction on PAs; specifically, what we will
do is ensure that the level of (nested) forks in constructing any run is bounded from above.1

1Earlier automata models for sr-expressions had to apply similar restrictions [LW00, JM16].
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Example 4.7. Suppose A is the PA in Figure 2b. We then find that q4
b−→A q5 and q3

a−→A q1.

Since q2 ∈ γ(q1, {|q3, q4|}), we know that q1
a‖b−−→A q2. However, because q3

a−→A q1, it follows

that q3
a·(a‖b)−−−−→A q2, and hence we also find that q1

a·(a‖b)‖b−−−−−→A q2. This pattern can be
repeated indefinitely, leading to an unbounded number of forks in the construction of runs
originating from q1. In addition, we note that LA(q1) is not series-rational [LS14].

The problem in the example above is that q1 can fork into a state q3, which can itself
reach q1 and fork again, giving rise to an unbounded number of nested forks. More generally,
this behaviour can occur if q3 can construct a run that somehow involves q1, through a series
of transitions and forks. Hence, the first step to inhibit this kind of recursion is to get a
handle on the states that can be involved in constructing a run that originates in a given
state, by transitioning to that state, by forking into it, or some combination of the two.

Definition 4.8 (Support). We define �A as the smallest preorder on Q satisfying for q ∈ Q
a ∈ Σ q′ ∈ δ(q, a)

q′ �A q
φ ∈M(Q) q′ ∈ γ(q, φ)

q′ �A q
r ∈ φ ∈M(Q) γ(q, φ) 6= ∅

r �A q
We refer to �A as the support relation of A. This relation in turn gives rise to the strict
support relation ≺A, which is the strict order in which q′ ≺A q holds if q′ �A q and q 6�A q′.
Example 4.9. Returning to the PA in Figure 2b, we see that q5 �A q4, since q5 ∈ δ(q4, b)
(by the first rule). Because q2 ∈ γ(q1, {|q3, q4|}), it follows that q2 �A q1 (by the second rule)
as well as q3, q4 �A q1 (by the third rule). By transitivity, it then follows that q5 �A q1.

Intuitively, if q′ is necessary to establish some run originating from q, then q′ �A q;
hence, we say that q′ supports q. In particular, if r �A q because there exists a φ ∈M(Q)
with r ∈ φ and γ(q, φ) 6= ∅, then r serves as the start of one or more threads that q may
fork into, and we say that r is a fork target of q. Support can be mutual, for instance when
q′ ∈ δ(q, a) and q ∈ δ(q′, a); consequently, �A need not be antisymmetric.

To break fork cycles, we can define the restriction necessary to avoid infinitely nested
forks, by stipulating that a state cannot be supported by any of its fork targets.

Definition 4.10 (Fork-acyclicity). We say that A is fork-acyclic if for q, r ∈ Q such that
there exists a φ ∈M(Q) with r ∈ φ and γ(q, φ) 6= ∅, we have that r ≺A q, i.e., q 6�A r.
Example 4.11. Returning to the PA in Figure 2b, we see that γ(q1, {|q3, q4|}) 6= ∅, while
q1 �A q3. Hence, this PA is not fork-acyclic. On the other hand, the PA in Figure 2a is
fork-acyclic, because neither q3 nor q4 is supported by q1.

4.2. Boundedness. Our primary interest is pomset automata with finitely many states,
known as finite pomset automata. It is sometimes convenient to relax this property and
speak of PAs with infinitely many states, but where each state relies on only finitely many
states to establish its runs. To formalize this, we introduce the following notions.

Definition 4.12 (Support and boundedness). We say that Q′ ⊆ Q is support-closed if for
all q ∈ Q′ with q′ �A q we have q′ ∈ Q′. The support of q ∈ Q, denoted πA(q), is the smallest
support-closed set containing q. When πA(q) is finite for all q ∈ Q, we say that A is bounded.

Example 4.13. In Figure 2b, the set {q2, q4, q5} is support-closed, while the set {q3} is not,
since q1 �A q3. The support of q1 is given by the set of all states, while the support of q4 is
given by {q4, q5}. Like all finite PAs, this PA is bounded.
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When working with bounded and fork-acyclic automata, it is also useful to reason based
on how many nested forks can occur in a single run. To this end, the following is useful.

Definition 4.14 (Depth). If q is a state in A, we write DA(q) for the depth of q in A, which
is the maximum n such that there exist q1, . . . , qn ∈ Q with q1 ≺A q1 ≺A · · · ≺A qn = q, if
such an n exists; otherwise, DA(q) is undefined. If Q is finite and DA(q) is defined for every
q ∈ Q, we write DA for the depth of A, i.e., the maximum of DA(q) for all q ∈ Q.

If A is bounded, then one can use the definition of ≺A to argue that DA(q) is defined
for every state q. Moreover, if A is finite, then DA is defined.

Example 4.15. The PA in Figure 2a has depth 2, since q3 ≺A q1. The PA in Figure 2b
has depth 3, as q5 ≺ q4 ≺ q1.

4.3. Implementation. We will perform a number of transformations on automata to enforce
desirable properties. To ensure correctness, we require these constructions to transform an
automaton A into an automaton A′ implementing A, in the following sense:

Definition 4.16. Let A = 〈Q,F, δ, γ〉 and A′ = 〈Q′, F ′, δ′, γ′〉 be pomset automata. We say
that A′ implements A if the following hold:

(i) Q ⊆ Q′, and for every q ∈ Q it holds that LA(q) = LA(q′), and
(ii) if A is fork-acyclic, then so is A′.

Any PA A can be restricted to a support-closed set of states, such that A implements the
restricted PA. In particular, if A is bounded, this means that the language of any particular
state q can also be described by a finite PA, simply by restricting A to the support of q;
moreover, if A is bounded, then so is this new PA. Formally, we have the following.

Lemma 4.17. If Q′ ⊆ Q is support-closed, then we can construct a PA A[Q′] with states
Q′ such that A implements A[Q′]. Moreover, if A is bounded (resp. finite), then so is A[Q′].

Proof. Since Q′ is support-closed, we can regard δ as a function of type Q′ × Σ→ 2Q
′
, and

γ as a function of type Q′ ×M(Q′)→ 2Q
′
. We choose A[Q′] = 〈Q′, Q′ ∩ F, δ, γ〉.

We should show that, for all q ∈ Q′, it holds that LA[Q′](q) = LA(q). The inclusion
from left to right should be clear: any (accepting) run in A[Q′] can be replayed in A by
construction. For the other inclusion, we prove more generally that if q ∈ Q′ and q U−→A q

′

then q′ ∈ Q′ and q U−→A[Q′] q
′, by induction on →A. In the base, there are two cases.

• If U = 1 and q = q′, then q′ ∈ Q′ and q U−→A[Q′] q
′ immediately.

• If U = a for some a ∈ Σ, and q′ ∈ δ(q, a), then q′ �A q, and hence q′ ∈ Q′. Furthermore,
we find that q U−→A[Q′] q

′.

For the inductive step, there are two cases to consider.

• Suppose that q U−→A q
′ because U = V ·W , and there exists a q′′ ∈ Q such that q V−→A q

′′

and q′′ W−→A q
′. It follows that q′′ ∈ Q′ and q V−→A[Q′] q

′′ by induction. Similarly, we find

q′ ∈ Q′ and q′′ W−→A[Q′] q
′, again by induction. We then conclude that q U−→A[Q′] q

′.

• Suppose that q U−→A q′ because U = U1 ‖ · · · ‖ Un, and there exist r1, . . . , rn ∈ Q and

q′1, . . . , q
′
n ∈ F ′ such that for 1 ≤ i ≤ n we have qi Ui−→A q

′
i, as well as q′ ∈ γ(q, {|r1, . . . , rn|}).

We have r1, . . . , rn �A q, and thus r1, . . . , rn ∈ Q′, as well as q′ ∈ Q′. By induction, we
then find for 1 ≤ i ≤ n that r′i ∈ Q′ and ri Ui−→A[Q′] r

′
i. We conclude that q U−→A[Q′] q

′.
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A variation of the above argument shows that for q, q′ ∈ Q, we have q �A[Q′] q
′ if and only

if q �A q′ and q, q′ ∈ Q′; hence, if A is fork-acyclic, then so is A[Q′]. This also shows that,
for q ∈ Q′, we have that πA[Q′](q) = πA(q); hence, if A is bounded, then so is A[Q′]. Finally,
if A is finite, then clearly Q′ is finite, and hence A[Q′] has finitely many states.

5. Language equivalence

We consider the following decision problem: given a PA A = 〈Q,F, δ, γ〉 and states q, q′ ∈ Q,
do q and q′ accept the same language? As stated previously, this problem is undecidable for
finite PAs that need not be fork-acyclic [KBL+19]. In this section, we investigate whether
there exists a general decision procedure for fork-acyclic finite PAs.

To fully appreciate the complexity of this problem, we start by illustrating the intricacies
of PAs through a series of examples. These show how PAs with very different structures
accept the same language. Any procedure to decide language equivalence for fork-acyclic
PAs must take such cases into account.

Example 5.1 (Run confusion). In Figure 2a, we find that both q1 and q3 accept the
singleton language {a}. However, q1 and q3 have a very different transition structure, since
δ(q1, a) = ∅ and δ(q3, a) = {q5}, with q5 ∈ F . Indeed, q1 accepts a by means of a parallel
unit run (forking to q3 and q4), while q3 accepts a by means of a sequential unit run.

More generally, a state could accept a more complicated pomset by means of a composite
run (i.e., of length greater than one), while another state accepts the same pomset with a
parallel unit run (i.e., of length one) forking into one or more accepting states. A similar
phenomenon occurs when a state forks into a multiset of size one.

Example 5.2 (Empty forks). The definition of pomset automata does not prohibit forks
into the empty multiset; in a sense, these are analogous to ε-transitions in NFAs, since the
parallel composition of zero pomsets is 1. This could allow a non-accepting state to accept
the empty pomset, or a state without parallel transitions to accept a parallel pomset.

Hence, different types of runs may be labelled by the same pomset, especially when fork
targets can be accepting, or when unary or nullary forks are allowed. The next example is
about how nested forks may encode the same behaviour differently.

Example 5.3 (Associativity). Consider the PA in Figure 3a, where both q1 and q′1 accept
the language {a ‖ b ‖ c}. In the transition from q1 to q2, the pomset a ‖ b is contributed by
q3, and c comes from q4, while in the transition from q′1 to q′2, we obtain a from q′4, and b ‖ c
from q′3. The language of q3 is distinct from, and in fact incomparable with, the languages
of q′3 and q′4. Hence, to compare the language of q1 to that of q′1, we need not only consider
the states they may fork into, but also the states where those states may fork into, provided
that the second-level forks land in an accepting state.

We can counteract the phenomena exhibited in Examples 5.1 to 5.3, by preventing the
structures that enable this kind of behaviour. This leads to the following definition.

Definition 5.4 (Well-structured). A pomset automaton A = 〈Q,F, δ, γ〉 is well-structured
if for q, q′ ∈ Q, φ ∈M(Q) with q′ ∈ φ and γ(q, φ) 6= ∅, all of the following hold:

|φ| ≥ 2 , q′ 6∈ F , and ∀ψ ∈M(Q). γ(q′, ψ) ∩ F = ∅ .
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(a) Associativity of parallelism.
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(b) Distributivity of parallelism over union.
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q′4 q′5
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(c) Distributivity of sequential composition over union.

Figure 3. Examples of PAs where q1 and q′1 accept the same language,
while having different transition structures.

Example 5.5. The PAs in Figures 1 and 2b are well-structured. On the other hand, a PA
with a state q such that γ(q,�) 6= ∅, or γ(q, {|r|}) 6= ∅ for some state r, is not well-structured
(by the first condition). The PA in Figure 2a is not well-structured (by the second condition)
because γ(q1, {|q3, q4|}) 6= ∅, while q4 ∈ F . Finally, the PA in Figure 3a is not well-structured
(by the third condition) because γ(q1, {|q3, q4|}) 6= ∅, while q2 ∈ γ(q3, {|q5, q6|}) ∩ F .

Well-structuredness does not diminish the expressive power of PAs, as we shall formally
prove in Section 6. For instance, the behaviour of the PA discussed in Example 5.3 (see
Figure 3a) can be expressed using a ternary fork, and the behaviour of the PA discussed in
Example 5.1 (see Figure 2a) can be obtained by a sequential transition. For now, we focus
our decision procedure on the fragment of well-structured PAs.
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One of the benefits of well-structured PAs is that the type of a run is uniquely determined
by the kind of its pomset, as spelled out by the following lemma.

Lemma 5.6. If A is well-structured and q U−→A q
′, then the following hold:

(i) q U−→A q
′ is trivial if and only if U is empty.

(ii) q U−→A q
′ is a sequential unit run if and only if U is primitive.

(iii) q U−→A q
′ is a composite run if and only if U is sequential.

(iv) q U−→A q
′ is a parallel unit run if and only if U is parallel.

Proof. We start by treating (i) in detail. Here, we note that the implication from left to
right holds by definition. For the proof from right to left, we proceed by induction on the
construction of q U−→A q′. In the base, we need only consider the case where q U−→A q′ is
already trivial. For the inductive step, there are two cases to consider.

• Suppose that U = V ·W and there exists a q′′ ∈ Q such that q V−→A q′′ and q′′ W−→A q′,

then V = W = 1. By induction, we then know that q V−→A q
′′ and q′′ W−→A q

′ are trivial,

and hence q = q′′ = q′. We conclude that q U−→A q
′ must also be trivial.

• Suppose that U = U1 ‖ · · · ‖ Un and there exist r1, . . . , rn ∈ Q as well as r′1, . . . , r
′
n ∈ F

such that for 1 ≤ i ≤ n we have ri Ui−→A r
′
i, and furthermore q′ ∈ γ(q, {|r1, . . . , rn|}). Then

necessarily U1, . . . , Un = 1. Since A is well-structured, we also know that r1, . . . , rn 6∈ F ,
and furthermore that n ≥ 2. However, by induction, we know that for 1 ≤ i ≤ n it holds
that ri Ui−→A r

′
i is trivial, and hence it would follow that ri = r′i. We have now reached a

contradiction, for r1 ∈ F while also r1 6∈ F . We can therefore disregard this case.

We treat the implications from left to right for the remaining claims as follows.

• For (ii), we find that U is primitive by definition of sequential unit runs.
• For (iii), suppose that q U−→A q

′ is composite. We then know that U = V ·W and there

exists a q′′ ∈ Q such that q V−→A q
′′ and q′′ W−→A q

′ are nontrivial. By (i), we then know
that V and W must be non-empty, and hence U is sequential.
• For (iv), suppose that q U−→A q

′ is a parallel unit run. We then know that U = U1 ‖ · · · ‖ Un
and there exist r1, . . . , rn ∈ Q and r′1, . . . , r

′
n ∈ F , such that for 1 ≤ i ≤ n it holds that

ri Ui−→A r′i, and furthermore q′ ∈ γ(q, {|r1, . . . , rn|}). By the premise that A is well-
structured, we know that r1, . . . , rn 6∈ F and n ≥ 2. It then follows that for 1 ≤ i ≤ n,
the run ri Ui−→A r

′
i is non-trivial, and hence Ui is non-empty by the above. From this and

the fact that n ≥ 2, we can conclude that U is parallel.

The implications from right to left for the latter three claims now follow from Lemma 3.6.
For instance, if U is primitive, then q U−→A q

′ must be a sequential unit run, for if it were
trivial then U would be empty, if it were composite then U would be sequential, and if it
were a parallel unit run then U would be parallel.

Furthermore, because of the restriction on fork targets in a well-structured PA, pomsets in
their languages are not parallel:

Lemma 5.7. If A is well-structured and q is a fork target in A, then all pomsets in LA(q)
are parallel primes.

Even for well-structured PAs, however, there are still structural factors confounding
language equivalence with which a decision procedure will need to reckon.
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Example 5.8 (Distributivity I). In Figure 3b, we have the state q1 which may fork into q2

and q3, as well as q4 and q5. Now, q1 accepts the language {a ‖ b, a ‖ c}, where the former
behaviour stems from forking into q2 and q3, but the latter is obtained by forking into q4

and q5. On the other hand, we have the state q′1, which may fork into q′2 and q′3; here, q′1
accepts the same language as q1, but the two pomsets are due to the same fork. This is a
consequence of the distributivity of parallel composition over union of pomset languages:

LA(q1) = ({a} ‖ {b}) ∪ ({a} ‖ {c}) = {a} ‖ ({b} ∪ {c}) = LA(q′1)

This example illustrates how behaviour of language-equivalent states may be spread out
across different parallel transitions, and that this division may differ locally.

The last example stems from an implicit kind of non-determinism that is supported by
PAs, as a result of overlap between the languages of fork targets.

Example 5.9 (Distributivity II). In Figure 3c, q1 can read a ‖ b to arrive in either q3 or
q4. From that point on, q3 can read a to reach an accepting state, while q4 can read b to do
the same. In contrast, q′1 can read a ‖ b to arrive in only one state, q′4, whence it can read
either a or b to arrive in q′5 and accept. Nevertheless, q1 and q′1 accept the same language.
Even though the behaviour implemented by the forks from q1 is the same, the state where
they land is not uniquely determined. In a sense, this is a consequence of distributivity of
sequential composition over union of pomset languages:

LA(q1) = ({a ‖ b} · {a}) ∪ ({a ‖ b} · {b}) = {a ‖ b} · ({a} ∪ {b}) = LA(q′1)

Examples 5.8 and 5.9 illustrate that there are many structurally different ways to express
parallel behaviour in a pomset automaton. It is not so clear how to choose for one particular
way of representing parallel behaviour. Instead, we design our algorithm to directly deal
with the illustrated equivalences. To understand how this can be done, it is convenient to
first shift perspective from trying to decide language equivalence to trying to find out which
states do and do not overlap in terms of their language [LS14].

Definition 5.10 (Atoms). Let A be a PA or an NFA, with states Q and α ⊆ Q. We write

LA(α) =
(⋂
q∈α

LA(q)
)
\
(⋃
q 6∈α

LA(q)
)

When LA(α) 6= ∅, we say that α is an atom of A; we write AtA for the set of atoms of A.

Example 5.11. In the PA in Figure 3b, {q3, q
′
3} is an atom, as is {q5, q

′
3}; the set {q2, q4, q

′
2}

is also an atom. In fact, these are all atoms that contain fork targets of Figure 3b.
The PA in Figure 3c has {q3, q5, q

′
2, q
′
4} as an atom; similarly, {q2, q4, q

′
3, q
′
4} is an atom.

These are again all of the atoms that contain fork targets in Figure 3c.

The following lemma shows how atoms can be used to decide language equivalence.

Lemma 5.12. Let A be a PA or NFA with states q1 and q2. Then LA(q1) = LA(q2) if and
only if for all α ∈ AtA it holds that q1 ∈ α precisely when q2 ∈ α.

Proof. First, suppose that q1 and q2 have the same language, and let α ∈ At with q1 ∈ α.
Then surely q2 ∈ α, because otherwise we have that LA(α) ⊆ LA(q1) \ LA(q2) = ∅, which
contradicts that α is an atom. Similarly, we have that q2 ∈ α implies q1 ∈ α.

For the other implication, let U ∈ LA(q1). Choose α = {q ∈ Q : U ∈ LA(q)}, and
note that α is an atom, since U ∈ LA(α) by construction. Because q1 ∈ α, we know that
q2 ∈ α by the premise, and thus (by the above), we have that U ∈ LA(q2). This shows that
LA(q1) ⊆ LA(q2); the other inclusion follows by symmetry.
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Thus, if we can compute the set of atoms of a PA then we can decide language equivalence
of states. As it turns out, this is possible if the PA is finite, fork-acyclic and well-structured.

Lemma 5.13. If A is finite, fork-acyclic, and well-structured, then AtA is computable.

Proof. We proceed by induction on DA (c.f. Definition 4.14). In the base, where DA = 0,
we have Q = ∅, since if q ∈ Q, then DA(q) ≥ 1; hence, ∅ is the only atom in this case.2

For the inductive step, let DA > 0 and suppose that the claim holds for pomset automata
of strictly smaller depth. We choose Q′ = {q ∈ Q : DA(q) < DA}, and note that Q′ is
support-closed: if q′ �A q ∈ Q′, then DA(q′) ≤ DA(q), and hence q′ ∈ Q′. By Lemma 4.17,
we can then restrict A to obtain A[Q′], which, by construction, is of depth strictly less than
DA. By applying the induction hypothesis, we can compute the atoms of A[Q′].

To compute the atoms of A proper, we shall construct an NFA A′ = 〈Q, δ′, F 〉 whose
atoms are precisely those of A; the claim then follows because we can compute the atoms
of an NFA using a standard algorithm such as the one by Brzozowski and Tamm [BT14].
The idea behind this NFA is that it contains the δ-transitions of A, and it encodes the
γ-transitions by transitions labelled with symbols built from the atoms of A[Q′].

The alphabet of our NFA will contain the symbols from Σ, as well as additional symbols
that encode (parts of) the languages of pomsets that can label parallel unit transitions, as
divided up by the atoms of A[Q′]; more precisely, we choose

∆ = Σ ∪
{
{|α1, . . . , αn|} ∈M(AtA[Q′]) :

∃q ∈ Q, q1 ∈ α1, . . . , qn ∈ αn.
γ(q, {|q1, . . . , qn|}) 6= ∅

}
Here, we assume without loss of generality that the two sets are disjoint, i.e., that none of
the multisets are already symbols in Σ. This alphabet is finite because AtA[Q′] is finite, and
because by definition of pomset automata, there are finitely many multisets φ s.t. γ(q, φ) 6= ∅.

We define the sequential transition function δ′ : Q×∆→ 2Q, as follows.

δ′(q, a) = δ(q, a) δ′(q, {|α1, . . . , αn|}) =
⋃
{γ(q, {|q1, . . . , qn|}) : q1 ∈ α1, · · · , qn ∈ αn}

Example 5.14. Let A be the PA in Figure 3b. In Example 5.11, we saw that α1 = {q3, q
′
3},

α2 = {q5, q
′
3} and α3 = {q2, q4, q

′
2} are the atoms that contain fork targets. The resulting NFA

is drawn in Figure 4a. There, we see that q6 ∈ δ′(q2, a) because q6 ∈ δ(q2, a). Furthermore,
q6 ∈ δ′(q1, {|α3, α1|}) because q6 ∈ γ(q1, {|q2, q3|}) and q2 ∈ α3 while q3 ∈ α1.

Example 5.15. Let A be the PA in Figure 3c. In Example 5.11, we found atoms α1 =
{q3, q5, q

′
2, q
′
4} and α2 = {q2, q4, q

′
3, q
′
4}. The resulting NFA is drawn in Figure 4b. There, we

see that q7 ∈ δ′(q1, {|α1, α2|}) because q7 ∈ γ(q1, {|q3, q2|}) with q3 ∈ α1 and q2 ∈ α2.

Having defined our target NFA, it remains to show that the atoms of A are the same as
those of A′. To this end, we need to relate the languages of A′ to the languages of A; we do
this by means of the substitution ζ : ∆→ 2SP(Σ), given by:

ζ(a) = {a} ζ({|α1, . . . , αn|}) = LA(α1) ‖ · · · ‖ LA(αn)

We need the following two technical properties of ζ. The first of these relates the languages
of the states of the NFA A′ to the languages of the states of the PA A by means of ζ.

Fact 5.16. For all q ∈ Q, it holds that LA(q) = ζ(LA′(q)).

2The empty intersection is assumed to be the set of all sp-pomsets SP(Σ).
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q5

a

b

a
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{|α3, α1|} {|α3, α2|}
q′1 q′4

q′2

q′3

a

b, c

{|α3, α1|}

{|α3, α2|}

(a) NFA created in inductive step of atom computation for Figure 3b.

q1q3 q4

q7 q6q2 q5
b

ba

a

{|α1, α2|} {|α1, α2|}

q′1

q′2

q′3

q′4 q′5

a

b

a, b{|α1, α2|}

(b) NFA created in inductive step of atom computation for Figure 3c.

Figure 4. Examples of PAs obtained in the inductive step of atom compu-
tation.

The second property that we need says that ζ is atomic; this is a consequence of the
fact that A is well-structured, and hence if {|α1, . . . , αn|} ∈ ∆, then n ≥ 2 and 1 6∈ LA(αi)
for all 1 ≤ i ≤ n, meaning that ζ({|α1, . . . , αn|}) must consist of sequential primes.

Fact 5.17. The substitution ζ is atomic.

Let α ⊆ Q; we can then use the above observations to calculate that

ζ(LA′(α)) = ζ
((⋂

q∈α
LA′(q)

)
\
(⋃
q 6∈α

LA′(q)
))

(def. LA′ on sets of states)

=
(⋂
q∈α

ζ(LA′(q))
)
\
(⋃
q 6∈α

ζ(LA′(q))
)

(Fact 5.17 and Lemma 3.12)

=
(⋂
q∈α

LA(q)
)
\
(⋃
q 6∈α

LA(q)
)

(Fact 5.16)

= LA(α) (def. LA on sets of states)

To wrap up, suppose α is an atom of A; then ζ(LA′(α)) = LA(α) 6= ∅, and hence LA′(α) 6= ∅
by Fact 5.17 and Lemma 3.12, making α an atom of A′. Conversely, if α is an atom of A′

then LA(α) = ζ(LA′(α)) 6= ∅ by Fact 5.17 and Lemma 3.12, meaning α is an atom of A.

Lemmas 5.12 and 5.13 now give us the decidability result for well-structured PAs.

Theorem 5.18. Let A be a finite, fork-acyclic and well-structured PA. Given states q1 and
q2, it is decidable whether LA(q1) = LA(q2).

The complexity of the above procedure is dominated by the complexity of calculating
the atoms of the NFA constructed in each inductive step. Brzozowski and Tamm’s algorithm
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is doubly exponential in the number of states [BT14], which implies a rough upper bound

of O(DA · 22|Q|) on our algorithm. Despite this, the algorithm in [BT14] is known to have
good performance in practice [AMR07].

6. Well-structured automata

In this section we show that for every finite and fork-acyclic automaton, we can construct
a finite, fork-acyclic, and well-structured automaton that implements it. More precisely,
we show that this transformation can take a bounded and fork-acyclic automaton, and
produce a bounded, fork-acyclic and well-structured automaton; the former claim then
follows, since every finite automaton is bounded, and every bounded automaton can be made
finite while preserving fork-acyclicity, by Lemma 4.17.3 We first decompose the definition of
well-structured automata into three simpler properties.

Definition 6.1 (n-forking). Let n ∈ N. A pomset automaton A is n-forking if for every
state q ∈ Q and every multiset of states φ ∈M(Q) such that γ(q, φ) 6= ∅ we have |φ| ≥ n.

Definition 6.2 (Parsimony). A pomset automaton A is said to be parsimonious if, whenever
p ∈ Q and q ∈ φ ∈M(Q) such that γ(p, φ) 6= ∅, we have that 1 6∈ LA(q).

Definition 6.3 (Flat-branching). A pomset automaton A is flat-branching if for all states
q, q′ ∈ Q and every multiset φ ∈M(Q), if γ(q, φ) 6= ∅ and q′ ∈ φ then

∀ψ ∈M(Q). γ(q′, ψ) ∩ F = ∅.

Example 6.4. All automata displayed in Figures 1 to 3 are 2-forking. The automata in
Figure 3 are parsimonious, but the ones in Figure 2 are not; for instance, in Figure 2a, we
have that γ(q1, {|q3, q4|}) 6= ∅, while 1 ∈ LA(q4). The automata in Figures 2, 3b and 3c are
flat-branching, but the one in Figure 3a is not; in particular, in that automaton we have
that γ(q1, {|q3, q4|}) 6= ∅, while q2 ∈ γ(q3, {|q5, q6|}) ∩ F .

One can prove that the above properties are indeed equivalent to well-structuredness.

Lemma 6.5. A pomset automaton A is well-structured if and only if it is 2-forking, parsi-
monious, and flat-branching.

Our task can therefore be reduced to converting a bounded and fork-acyclic PA into
an equivalent bounded and fork-acyclic PA that is also 2-forking, parsimonious and flat-
branching. Note that these properties can be at cross purposes: for instance, ensuring
parsimony may introduce forks of smaller sizes, which could make it so that the automaton
is no longer 2-forking. Similarly, eliminating forks into the empty multiset may introduce
new accepting states, which can invalidate flat-branching.

Thus, establishing all properties simultaneously requires some care. The remainder of
this section describes a series of transformations that establish one property while maintaining
the ones already established. More precisely, our construction to convert a bounded PA A
into a bounded, 2-forking, parsimonious and flat-branching PA goes as follows:

(1) we first show how to implement A with a parsimonious automaton A0;
(2) then we discuss how to implement A with a 1-forking automaton A1;
(3) we proceed to show how to implement A with a 2-forking automaton A2;
(4) finally, we show that A can be implemented by a flat-branching PA A3.

3It is clear that the construction from this lemma also preserves well-structuredness.
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Since each of these transformations preserves the established properties (e.g., A2 is still
bounded, 1-forking and parsimonious), we end up with a bounded PA that implements A
and is 2-forking, parsimonious, and flat-branching, and hence well-structured by Lemma 6.5.

Before we get into the weeds, we discuss some technical properties that will help simplify
the constructions. First, note that we shall need to rule out a form of ε-transitions. Indeed,
although our model does not include such transitions explicitly, they may be achieved by
branching to states accepting the empty pomset (if the automaton is not parsimonious), or
by using a γ(p,�)-transition (if the automaton is not 1-forking). The result is a run p 1−→A q
that is non-trivial. To reason about such transitions, we observe the following:

Lemma 6.6. For any bounded PA A, the predicate p 1−→A q is decidable.

Another useful notion for this section will be that of weak implementation. Essentially, a
weak implementation of a PA is another PA where the behaviour of each state of the first PA
is spread out across a set of states, rather than just one (as is the case for implementation).

Definition 6.7. A PA A′ weakly implements a PA A if the following hold:

(i) for every state q in A there is a finite set of states Qq in A′ s.t. LA(q) =
⋃
x∈Qq

LA′(x).

(ii) if A is fork-acyclic, then so is A′.

To prove that there exists an automaton implementing A that satisfies some of the properties
above, it suffices to find one that weakly implements A.

Lemma 6.8. If a PA A′ weakly implements A, then we can construct a PA A′′ implementing
A. If A′ is bounded (resp. n-forking, flat-branching, parsimonious), then so is A′′.

6.1. Parsimony. Let A = 〈Q,F, δ, γ〉 be a bounded and fork-acyclic PA; we want to
implement A with a fork-acyclic and parsimonious PA A0. There are two key ideas to this
translation:

• We introduce a new state >, which will be the only accepting state of the automaton;
in fact, it will be the only state accepting the empty pomset. This state will not have
any outgoing transitions, so its language is exactly {1}. We will modify the transition
functions, such that if a transition in A can lead to a state that accepts 1, it can also
non-deterministically lead to > in A0.
• To ensure our construction preserves successful runs, we need to add γ transitions to

mitigate the previous modification. More precisely, if p ∈ Q can fork into φtψ ∈M(Q) to
reach q ∈ Q, i.e., q ∈ γ(p, φ t ψ), and all states in ψ accept the empty pomset in A, then
we make sure that, in A0, q can also fork into φ to reach p, simulating the acceptance of
the empty pomset from states in ψ.

Doing so, we obtain an automaton weakly implementing A — indeed, if 1 6∈ LA(q), then
LA(q) = LA0(q), and otherwise LA(q) = LA0(q) ∪ LA0(>). Since > cannot be a fork target,
and any other state cannot accept the empty pomset, this new automaton is parsimonious.
Finiteness and fork-acyclicity are also maintained by this construction.

Definition 6.9 (A0). The PA A0 is given by the tuple 〈Q0, F0, δ0, γ0〉 where Q0 = Q∪ {>}
(with > 6∈ Q), and F0 = {>}. Furthermore, δ0 is generated by the rules

q′ ∈ δ(q, a)

q′ ∈ δ0(q, a)

q′ ∈ δ(q, a) 1 ∈ LA(q′)

> ∈ δ0(q, a)
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(a) A PA A that is not parsimonious.
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q3

q4

>

q5

a

a

(b) Part of the PA A0 obtained from A.

Figure 5. Example of construction to ensure parsimony.

Also, γ0 is generated by the following rules for all q ∈ Q and φ ∈M(Q):

q′ ∈ γ(q, φ t ψ)
∀r ∈ ψ. 1 ∈ LA(r)

q′ ∈ γ0(q, φ)

q′ ∈ γ(q, φ t ψ) 1 ∈ LA(q′)
φ 6= � ∀r ∈ ψ. 1 ∈ LA(r)

> ∈ γ0(q, φ)

Lastly, δ0(>, a) = ∅ for all a ∈ Σ and γ0(>, φ) = ∅ for all φ ∈M(Q0).

Example 6.10. Recall the automaton A from Figure 2a, depicted in Figure 5a. Part of
the resulting PA A0 is drawn in Figure 5b. For instance, since q5 ∈ δ(q3, a) in A, we have
q5 ∈ δ0(q3, a) and > ∈ δ0(q3, a) in A0 by the first and second rules generating δ0 respectively.

Furthermore, since 1 ∈ LA(q4) and q2 ∈ γ(q1, {|q3, q4|}) while 1 ∈ LA(q2), we have that
> ∈ γ0(q1, {|q3, q4|}) as well as > ∈ γ0(q1, {|q3|}) by the second rule generating γ0. Not drawn
are the transitions witnessed by q2 ∈ γ0(q1, {|q3, q4|}) and q2 ∈ γ0(q1, {|q3|}), both of which
are consequences of the first rule generating γ0, but do not contribute to the language of the
automaton. Indeed in the new automaton, no accepting state is present in the support of q2,
so visiting this state never leads to an accepting run.

Note that even though A was 2-forking, this is no longer the case in A0, as a result of
the fact that > ∈ γ0(q1, {|q3|}). We will remedy the appearance of unary forks later on.

Our construction is correct, in the following sense.

Lemma 6.11. A0 is bounded, parsimonious, and weakly implements A.

6.2. Removing nullary forks. Let A = 〈Q,F, δ, γ〉 be a bounded, parsimonious, and
fork-acyclic automaton. We want to implement A with a 1-forking PA A1 while maintaining
boundedness, parsimony and fork-acyclicity. As mentioned, the nullary forks that we want
to eliminate — i.e., those where q ∈ γ(p,�) — essentially furnish silent transitions p 1−→A q,
analogous to classic NFAs. We proceed eliminate these by means of the classic method, i.e.,
by saturating the transition relations.

Definition 6.12 (A1). The PA A1 is defined to be 〈Q,F, δ1, γ1〉, where δ1 and γ1 are
generated by the following inference rules for all a ∈ Σ and φ ∈M(Q) with φ 6= �.

p 1−→A q r ∈ δ(q, a) r 1−→A s

s ∈ δ1(p, a)

p 1−→A q r ∈ γ(q, φ) r 1−→A s

s ∈ γ1(p, φ)
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q1

q3

q4

q5

q2 q6

a

b

a

b

(b) The PA A1 obtained from A.

Figure 6. Example of nullary fork removal.

Example 6.13. Suppose A is the automaton in Figure 6a. This automaton has two nullary
forks: q5 ∈ γ(q3,�) and q6 ∈ γ(q2,�). We have drawn the automaton A1 obtained from A
in Figure 6b. Here, q6 ∈ δ1(q3, a), because q3

1−→A q5, q6 ∈ δ(q5, a) and q6
1−→A q6. Similarly,

q6 ∈ γ1(q1, {|q3, q4|}) because q1
1−→A q1, q2 ∈ γ(q1, {|q3, q4|}) and q2

1−→A q6.

We conclude by stating correctness of our translation, in the following sense.

Lemma 6.14. A1 is bounded, 1-forking, parsimonious, and weakly implements A.

6.3. Removing unary forks. We now show that, given a fork-acyclic, bounded, parsimo-
nious and 1-forking PA A = 〈Q,F, δ, γ〉, we can implement it using a 2-forking PA A2 that
retains the properties of A. The main idea is to simulate unary forks by keeping a “call
stack” in the state. When A follows a unary fork, e.g., q′ ∈ γ(q, {|r|}), A2 will push q′ on the
stack to “remember” where we should continue after completing the computation in r; once
we reach an accepting state, the transitions of q′ will become available. By fork-acyclicity
we can bound the height of this stack by the depth of the automaton.

To keep track of this call stack, we need to know which unary forks can occur in sequence
from any given state. This is captured by the following.

Definition 6.15. The relation ↑, is the least subset of Q×Q∗ satisfying the following rules:

q ↑ q
r ↑ w q′ ∈ γ(q, {|r|})

q ↑ wq′

Intuitively, if q ↑ q1 · · · qn, then q can perform a series of unary forks leading to state q1.
Once the computation starting in q1 reaches an accepting state, that state will be at the
top of the stack; since it is accepting, we can then pop it off the stack to continue trying
to resolve q2, and so on. The first rule covers the case where no fork takes place, while the
second rule allows to extend an existing series of forks with one more.

Example 6.16. Suppose A is the PA in Figure 7a. We first note that q6 ↑ q6 by the first rule;
hence, since q4 ∈ γ(q3, {|q6|}), we have q3 ↑ q6q4 by applying the second rule. Furthermore,
since q2 ∈ γ(q1, {|q3|}), we find that q1 ↑ q6q4q2, again by the second rule. Hence, q1 can fork
into q6, and after completing a computation there and in q4, we can carry on in q2.

We can now define our transformation, as follows.
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(b) Part of the PA A2 obtained from A.

Figure 7. An example of unary fork removal.

Definition 6.17. The PA A2 is defined to be 〈Q2, F2, δ2, γ2〉, where Q2 = Q∗ and F2 = F ∗.
Also, δ2 and γ2 are generated by the following rules for a ∈ Σ and φ ∈M(Q) with |φ| ≥ 2:

q ↑ rw q′ ∈ δ(r, a) q′wx ∈ Q∗

q′wx ∈ δ2(qx, a)

w′ ∈ δ2(w, a) q ∈ F qw ∈ Q∗

w′ ∈ δ2(qw, a)

q ↑ rw q′ ∈ γ(r, φ) q′wx ∈ Q∗

q′wx ∈ γ2(qx, φ)

w′ ∈ γ2(w, φ) q ∈ F qw ∈ Q∗

w′ ∈ γ2(qw, φ)

The first rule allows us to look at the state q on top of the stack, and see where it can fork
to; if the state r where we end up allows a δ-transition to q′, we push q′ onto the stack, along
with the unresolved states w gained from the unary fork.4 The third rule works analogously,
for (non-unary) parallel transitions.

The second rule says that we can also look at states further down the stack, provided
that they are preceded only by accepting states. This allows us to pop states off the stack
when their computation has reached an accepting state, while continuing in the next state.

Example 6.18. Let A be the PA in Figure 7a. We have drawn the support of q1 in the
automaton A2 obtained from A in Figure 7b. There, we have q2q2, q5q2 ∈ F2 because
q2, q5 ∈ F . Also, since q1 ↑ q3q2 (see Example 6.16) and q2 ∈ δ(q3, a), we have q2q2 ∈ δ2(q1, a)
by the first rule above. Furthermore, since q1 ↑ q6q4q2 (see Example 6.16) and q5 ∈ δ(q6, b),
we have q5q4q2 ∈ δ2(q1, b), again by the first rule above. Lastly, q4 ↑ q4, so q5q2 ∈ δ2(q4q2, c)
by the first rule. Since q5 ∈ F , we find that q5q2 ∈ δ2(q5q4q2, c) by the second rule.

The effect of the third and fourth rule is not shown, but is largely analogous.

We again conclude with a statement of correctness of the transformation.

Lemma 6.19. A2 is bounded, parsimonious, 2-forking, and implements A.

6.4. Flat-branching. In this section, we enforce flat-branching. We start from a PA A
that is assumed to be fork-acyclic, bounded, parsimonious, and 2-forking, and we want to
construct a flat-branching PA A3 that weakly implements A, but keeps the properties of A.

The first idea of this construction is fairly obvious: to remove chains of forks while
retaining the same language, we will saturate the parallel transitions by unfolding every
possible chain of forks. For instance, if q ∈ γ(p, {|q1, q2|}) and γ(q1, {|r1, r2|}) ∩ F 6= ∅, we
want to have q ∈ γ3(p, {|r1, r2, q2|}). Fork-acyclicity is instrumental for this construction to

4Note that since q ↑ q, we have that q′x ∈ δ2(qx, a) whenever q′ ∈ δ(q, a).
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terminate, as fork cycles could introduce infinitely many φ ∈ M(Q) such that γ(p, φ) 6= ∅.
We make this idea formal as follows:

Definition 6.20. We define J as the smallest reflexive relation on M(Q) satisfying:

γ(p, χ) ∩ F 6= ∅ φ J ψ t {|p|}
φ J ψ t χ

Intuitively, φ J ψ when a fork into φ can be expanded to a fork into ψ, by forking from
one or more of its states, provided the new fork reaches an accepting state.

Example 6.21. Recall the left half of the automaton in Figure 3a, depicted in Figure 8a.
Since J is reflexive, we have {|q3|} J {|q3|}. Then, because γ(q3, {|q5, q6|}) ∩ F 6= ∅, we have
that {|q3|} J {|q5, q6|} applying the rule. Similarly, we have that {|q1|} J {|q3, q4|}. Combining
these two using the rule above then tells us that {|q1|} J {|q5, q6, q4|}. Thus, any fork into
{|q1|} to reach some q′ can be expanded to a fork into {|q5, q6, q4|} to reach q′.

Next, we want to make sure that the original forks cannot be executed in succession
anymore, by forcing all forks to expand maximally before continuing with some non-forking
transition. The main idea is to split each state q into qs and qp. The state qs will ensure
that γ3(qs, φ)∩F = ∅ for any multiset φ, i.e., no forks are allowed. We leverage this property
to get flat-branching, by making sure that for any state p ∈ Q3 of the new automaton,
γ3(p, φ) 6= ∅ implies that every state in φ is of the qs variety. On the other hand, from the
state qp, one cannot perform δ-transitions, and furthermore for any multiset φ we have
γ3(qp, φ) ⊆ {>}, where > is the unique accepting state of A3 (as in Section 6.1).

Definition 6.22 (A3). The PA A3 is the quadruple 〈Q3, F3, δ3, γ3〉, where

Q3 = {qp : q ∈ Q} ∪ {qs : q ∈ Q} ∪ {>} F3 = {>}

with > a fresh state, such that for all a ∈ Σ and φ ∈M(Q3) we have δ3(>, a) = γ3(>, φ) = ∅.
Furthermore, the action of δ3 and γ3 on states different from > is generated by the following
rules for all a ∈ Σ and all ψ, φ ∈M(Q) with ψ J φ:

q ∈ δ(p, a)

qs, qp ∈ δ3(ps, a)

δ(p, a) ∩ F 6= ∅
> ∈ δ3(ps, a)

q ∈ γ(p, ψ)

qs, qp ∈ γ3(ps, φs)

γ(p, ψ) ∩ F 6= ∅
> ∈ γ3(pp, φs)

in which φs = {|q1
s, . . . , qn

s|} whenever φ = {|q1, . . . , qn|}.

Example 6.23. Let A be the PA in Figure 8a. Part of the support of q1
p is drawn in

Figure 8b. There, we find that, since q2 ∈ γ(q1, {|q3, q4|}) ∩ F and {|q3, q4|} J {|q4, q5, q6|}
(refer to the previous example), also > ∈ γ3(q1

p, {|q4
s, q5

s, q6
s|}) by the last rule above.

Furthermore, since q2 ∈ δ(q5, a) ∩ F , we have that > ∈ δ3(q5
s, a) by the second rule above,

but also q2
s, q2

p ∈ δ3(q5
s, a), by the first rule above. Not drawn are the transitions q2

s, q2
p ∈

γ3(q1
s, {|q3

s, q4
s|}) which would result from applying the third rule. These transitions do not

contribute to the language, since they lead to states from which no accepting run is possible.

We conclude this transformation by stating the desired correctness.

Lemma 6.24. A3 is bounded, 2-forking, parsimonious, flat-branching (i.e., well-structured)
and weakly implements A.

In total, we have proved the following theorem.
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Figure 8. Example of construction to ensure flat-branching.

Theorem 6.25. Let A be a finite and fork-acyclic PA. We can construct a finite and
fork-acyclic PA A′ that is well-structured and implements A.

The complexity of the construction above is hard to pin down, because the number of
states supporting any single state in the well-nested automaton is obscured by the infinite
nature of the intermediate automata. Nevertheless, we anticipate that the removal of unary
forks can be expected to provide the worst blowup in automaton size (possibly exponential
in DA), as the number of states grows to accommodate all possible “call stacks”. The
removal of nullary forks and the flat-branching construction both contribute a relatively
small number of new states; the same is true for parsimonification, although this step may
add a significant number of parallel transitions.

7. From expressions to automata

Recall that sp-languages can be defined denotationally, in terms of a sr-expression e ∈ T . In
this section, we show how to obtain a fork-acyclic and finite PA that accepts the semantics
of e, starting at some state. Concretely, we define a bounded pomset automaton where every
sr-expression is a state, and the language of this state is intended to be the semantics of said
sr-expression. The transition functions are set up such that, starting from e ∈ T , reading a
particular pomset brings us to e′ ∈ T , which describes the sr-language that remains to be
read. This generalizes Antimirov’s (partial) derivatives of rational expressions [Ant96]; we
therefore refer to the transition functions on expressions as derivatives.

Before we define the derivatives, it is convenient to introduce two shorthands. The first
of these allows us to include a set of terms based on whether or not another term is in F ,
the set of sr-expressions that accept the empty pomset (c.f. Definition 3.15). The second
shorthand allows us to concatenate a set of terms with another term on the right.

Definition 7.1 (Derivatives). We define δΣ : T × Σ → 2T and γΣ : T × M(T ) → 2T

inductively. To this end, the following shorthands are useful, for all e ∈ T and T ⊆ T :

e ? T =

{
T e ∈ F
∅ otherwise

T # e = {f · e : f ∈ T}
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a · b∗ ‖ c

a · b∗ 1 · b∗

c

1

a

c

b

Figure 9. Part of the syntactic pomset automaton.

This then allows us to define δΣ and γΣ inductively, as follows:

δΣ(0, a) = ∅ γΣ(0, φ) = ∅
δΣ(1, a) = ∅ γΣ(1, φ) = ∅
δΣ(b, a) = {1 : a = b} γΣ(b, φ) = ∅

δΣ(e+ f, a) = δΣ(e, a) ∪ δΣ(f, a) γΣ(e+ f, φ) = γΣ(e, φ) ∪ γΣ(f, φ)

δΣ(e · f, a) = δΣ(e, a) # f ∪ e ? δΣ(f, a) γΣ(e · f, φ) = γΣ(e, φ) # f ∪ e ? γΣ(f, φ)

δΣ(e ‖ f, a) = ∅ γΣ(e ‖ f, φ) = {1 : φ = {|e, f |}}
δΣ(e∗, a) = δΣ(e, a) # e∗ γΣ(e∗, φ) = γΣ(e, φ) # e∗

We can now define our pomset automaton that operates on terms.

Definition 7.2. The syntactic PA, denoted by AΣ, is the PA 〈T ,F , δΣ, γΣ〉.

We simplify subscripts, writing →Σ instead of →AΣ
, and so forth.

Example 7.3. We have drawn part of the syntactic PA, specifically the support of a ·b∗ ‖ c,
in Figure 9. There, we see that 1 ·b∗ is an accepting state, because 1, b∗ ∈ F . The sequential
transitions are generated by δΣ; for instance, 1 · b∗ ∈ δΣ(a · b∗, a), because 1 ∈ δΣ(a, a)
and δΣ(a, a) # b∗ ⊆ δΣ(a · b∗, a); also, 1 · b∗ ∈ δΣ(1 · b∗, b), because 1 ∈ δΣ(b, b), and
δΣ(b, b) # b∗ ⊆ δΣ(1 · b∗, b). Lastly, 1 ∈ γΣ(a · b∗ ‖ c, {|a · b∗, c|}) by definition of γΣ.

To show that the language of a state e in the syntactic PA is exactly JeK, we first need
to show a number of intermediary lemmas that analyze runs that can occur.

7.1. Deconstruction lemmas. The first set of lemmas are called deconstruction lemmas:
they tell us how, given a run originating in e, we can obtain one or more runs of terms
originating in subterms of e. First, we show how to do this for sums.

Lemma 7.4. Let e1, e2 ∈ T , f ∈ F and U ∈ SP(Σ), such that e1 + e2
U−→Σ f . There exists

an f ′ ∈ F with e1
U−→Σ f ′ or e2

U−→Σ f ′.

Proof. Let ` be the length of e1 + e2
U−→Σ f . There are two cases to consider.

• If ` = 0, then e1 + e2
U−→Σ f is trivial. In that case, f = e1 + e2, and so ei ∈ F for some

i ∈ {1, 2}; if we choose f ′ = ei, we find ei U−→Σ f ′, and the claim is satisfied.
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• Otherwise, if ` > 0, then U = U0 · U ′ and there exists a g ∈ T such that e1 + e2
U0−→Σ g is

a unit run, and g U ′−→Σ f is of length `− 1. If e1 + e2
U0−→Σ g is a sequential unit run, then

U0 = a for some a ∈ Σ, and g ∈ δΣ(e1 + e2, a). Without loss of generality, let g ∈ δΣ(e1, a);
in that case, e1

U0−→Σ g. If we then choose f ′ = f , we find that e1
U−→Σ f ′. The case where

e1 + e2
U0−→Σ g is a parallel unit run is similar.

Next, we show how a run that starts in a sequential composition gives rise to runs that
originate in each of the components. In this case, it is useful to also relate the length of the
original run to the lengths of the deconstructed runs, so that we can use this result in the
analogous deconstruction result for the Kleene star (Lemma 7.7).

Lemma 7.5. Let e1, e2 ∈ T , f ∈ F and U ∈ SP(Σ), with e1 · e2
U−→Σ f (of length `). Then

U = U1 · U2 and there exist f1, f2 ∈ F with ei Ui−→Σ fi for i ∈ {1, 2} (of length at most `).

There is also a deconstruction lemma for runs originating in a parallel composition,
where the pomset accepted is a parallel composition of pomsets accepted by the operands.

Lemma 7.6. Let e1, e2 ∈ T , f ∈ F and U ∈ SP(Σ) such that e1 ‖ e2
U−→Σ f . Then

U = U1 ‖ U2, and there exist f1, f2 ∈ F such that ei Ui−→Σ fi for i ∈ {1, 2}.

For the last deconstruction lemma, we consider terms with the Kleene star as the
topmost operator. Here, we show how to obtain a number of runs, each of which originates
in the expression directly below the Kleene star.

Lemma 7.7. Let e ∈ T , f ∈ F and U ∈ SP(Σ) be such that e∗ U−→Σ f . There exist

f1, f2, . . . , fn ∈ F such that U = U1 · U2 · · ·Un and for 1 ≤ i ≤ n it holds that e Ui−→Σ fi.

Proof. The proof proceeds by induction on the length ` of e∗ U−→Σ f . In the base, where
` = 0, we have that f = e∗ and U = 1; it suffices to choose n = 0.

In the inductive step, let e∗ U−→Σ f be of length `+ 1. We find g ∈ T and U = U0 · U ′

such that e∗ U0−→Σ g is a unit run, and g U ′−→Σ f is of length `. If e∗ U0−→Σ g is a sequential
unit run, then U0 = a for some a ∈ Σ, and g ∈ δΣ(e∗, a) = δΣ(e, a) # e∗. Hence, g = g′ · e∗,
with g′ ∈ δΣ(e, a). By Lemma 7.5, we find f ′′, f ′ ∈ F such that U ′ = V ·W as well as
g′ V−→Σ f ′′ and e∗ W−→Σ f ′, of length at most `. By induction, we find f2, f3, . . . , fn ∈ F such

that W = U2 · U3 · · ·Un, and for 1 < i ≤ n we have e Ui−→Σ fi.
We then choose f1 = f ′′ and U1 = U0 · V . For these choices, U = U0 ·U ′ = U ′0 · V ·W =

U1 · U2 · · ·Un. Since e U0−→Σ δΣ(e, a) V−→Σ f ′, we also have e U1−→Σ f1, satisfying the claim.

The case where e∗ U0−→Σ g is a parallel unit run is similar.

7.2. Construction lemmas. Next, we prove the construction lemmas, so called because
they tell us how to combine runs that originate in some terms into runs that originate in
some composition of those terms. Keeping the same order of operators as before, we start
by showing how to construct runs originating from terms that are sums.

Lemma 7.8. Let e1, e2 ∈ T , f1, f2 ∈ F and U ∈ SP(Σ) be such that e1
U−→Σ f1 or e2

U−→Σ f2.

There exists an f ∈ F such that e1 + e2
U−→Σ f .

Proof. We treat the case where e1
U−→Σ f1; the case where e2

U−→Σ f2 can be treated similarly.

There are two possibilities to consider, based on the length ` of e1
U−→Σ f1.
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• If ` = 0, then f1 = e1 and U = 1. We then choose f = e1 + e2.
• If ` > 0, then we find e′1 ∈ T and U = U0 · U ′ such that e1

U0−→Σ e′1 is a unit run, and

e′1
U ′−→Σ f1. If e1

U0−→Σ e′1 is a sequential unit run, then U0 = a for some a ∈ Σ, and

e′1 ∈ δΣ(e1, a). But then e′1 ∈ δΣ(e1 + e2, a) as well, and hence e1 + e2
U0−→Σ e′1. Putting

this together, we find that e1 + e2
U−→Σ f1; choosing f = f1 then satisfies the claim.

The case where e1
U0−→Σ e′1 is a parallel unit run is similar.

The construction lemma for sequential composition says that we can compose runs to
accepting states in the following way.

Lemma 7.9. Let e1, e2 ∈ T , f1, f2 ∈ F and U, V ∈ SP(Σ) such that e1
U−→Σ f1 and

e2
V−→Σ f2. There exists an f ∈ F with e1 · e2

U ·V−−→Σ f .

The next operator is parallel composition; here, the construction lemma is easy.

Lemma 7.10. Let e1, e2 ∈ T , f1, f2 ∈ F , and U, V ∈ SP(Σ) such that e1
U−→Σ f1 and

e2
V−→Σ f2. Then e1 ‖ e2

U‖V−−−→Σ 1.

The last construction lemma concerns the Kleene star. Here, a succession of runs
originating in the expression below the star allows us to create a run originating in the
starred expression, provided each of these runs reaches an accepting state.

Lemma 7.11. Let e ∈ T , f1, f2, . . . , fn ∈ F , and U1, U2, . . . , Un ∈ SP(Σ) be such that for

1 ≤ i ≤ n it holds that e Ui−→Σ fi. There exists an f ∈ F such that e∗ U1·U2···Un−−−−−−→Σ f .

Proof. We can assume w.l.o.g. that for 0 ≤ i < n it holds that e Ui−→Σ fi is non-trivial. We
proceed by induction on n. In the base, where n = 0, we can choose f = e∗.

For the inductive step, let n > 0 and assume that the claim holds for n−1. By induction,
we find f ′ ∈ F with e∗ U2·U3···Un−−−−−−→Σ f ′. Since e U1−→Σ f1 is non-trivial, we find e′ ∈ T and

U1 = U0 · U ′1 such that e U0−→Σ e′ is a unit run, and e′ U ′1−→Σ f1. By Lemma 7.9, we find

f ∈ F such that e′ · e∗ U ′1·U2·U3···Un−−−−−−−−→Σ f . If e U0−→Σ e′ is a sequential unit run, then U0 = a for

some a ∈ Σ, and e′ ∈ δΣ(e, a). But then e′ · e∗ ∈ δΣ(e∗, a), and hence e∗ U0−→Σ e′ · e∗. Thus,

e∗ U0−→Σ e′ · e∗ U ′1·U2·U3···Un−−−−−−−−→Σ f and therefore e∗ U1·U2···Un−−−−−−→Σ f .

The case where e U0−→Σ e′ is a parallel unit run is similar.

7.3. Correctness of the syntactic PA. The (de)construction lemmas combine to prove
the equations claimed by the lemma below; the deconstruction lemmas show inclusion from
left to right, whereas construction lemmas show the inclusion from right to left.

Lemma 7.12. Let e, f ∈ T . The following hold:

LΣ(0) = ∅ LΣ(e+ f) = LΣ(e) ∪ LΣ(f) LΣ(e∗) = LΣ(e)∗

LΣ(1) = {1} LΣ(e · f) = LΣ(e) · LΣ(f)

LΣ(a) = {a} LΣ(e ‖ f) = LΣ(e) ‖ LΣ(f)

A straightforward inductive argument now helps us validate the following:

Lemma 7.13. For all e ∈ T , we have LΣ(e) = JeK.
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This covers the correctness of our expressions-to-automata construction as far as the
languages are concerned. It remains to show that the automaton is also fork-acyclic, which
comes down to showing that if e �Σ f , then the nesting depth of ‖ in e is bounded by that
of f . Since forks only occur to expressions with strictly lower parallel nesting depth, neither
e nor f can support e ‖ f .

Lemma 7.14. The syntactic pomset automaton is fork-acyclic.

Proof sketch. We construct a function depth(−) : T → N, and we show that if e �Σ f , then
depth(e) ≤ depth(f). In the process, we also show that if e, f ∈ T and φ ∈ M(T ) with
γ(e, φ) 6= ∅ and f ∈ φ, then depth(f) < depth(e); together with the earlier proprety of
depth(−), this tells us that f ≺Σ e, as desired.

Furthermore, each state in the syntactic PA has finite support. This is done by
constructing a (finite) overestimation of the expressions that support e in AΣ.

Lemma 7.15. The syntactic pomset automaton is bounded.

Proof sketch. We should show that for e ∈ T , it holds that πΣ(e) is finite. Since πΣ(e) is
the smallest closed set that contains e, it suffices to find a finite closed set S(e) such that
e ∈ S(e). The construction of this set and the verification of its closure is entirely routine;
we refer to the appendix for details.

This then allows us to state one half of our Kleene theorem, as follows.

Theorem 7.16 (Expressions to automata). Let e ∈ T . We can obtain a fork-acyclic and
finite PA A with a state q such that LA(q) = JeK.

Proof. Choose A = AΣ[e]. By Lemmas 7.14 and 7.15 as well as Lemma 4.17, A is finite and
fork-acyclic. Finally, by Lemmas 7.13 and 4.17, we have that LA[πΣ(e)](e) = LΣ(e) = JeK.

It also shows that equivalence of sr-expressions is decidable.

Corollary 7.17. Given e, f ∈ T , it is decidable whether JeK = JfK.

8. From automata to expressions

Let A = 〈Q,F, δ, γ〉 be a finite and fork-acyclic pomset automaton. In this section, we set
out to obtain the converse of the result in the previous section, that is, to construct for
every state q ∈ Q of the automaton A a series-rational expression eq such that JeqK = LA(q).
Since A is finite and fork-acyclic, the strict support relation ≺A is well-founded. We can
therefore proceed building eq by ≺A-induction. Our main induction hypothesis is as follows:

If r ∈ Q with r ≺A q, then there exists an sr-expression er with JerK = LA(r).

Our task is to define for q a series-rational expression eq such that JeqK = LA(q). As a matter
of fact, it is convenient to establish a slightly more general result: we let

Q′ = {p ∈ Q : q �A p �A q}

and simultaneously define for every p ∈ Q′ an sr-expression ep such that JepK = LA(p).
To define these expressions, we use an approach due to McNaughton and Yamada [MY60].

The first step in this approach is to define, for all p ∈ Q′ and r ∈ Q, an sr-expression epr
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that captures the pomsets that can be read when transitioning from p to r by means of a
(sequential or parallel) unit run. This can be done as follows:

epr =
∑

r∈δ(p,a)

a +
∑

r∈γ(p,{|s1,...,sn|})

es1 ‖ · · · ‖ esn

Intuitively, the first sum accounts for sequential unit runs: if r ∈ δ(p, a), then p a−→A r is
a unit run. For the second term, we note that if s1, . . . , sn ∈ Q and r ∈ γ(p, {|s1, . . . , sn|}),
then s1, . . . , sn ≺A p by fork-acyclicity; therefore, by the main induction hypothesis, esi is
already defined such that LA(si) = JesiK. Thus, if for 1 ≤ i ≤ n, we have Ui ∈ JesiK, then

the pomset Ui is accepted by si, which means that p U1‖···‖Un−−−−−−→A r is a parallel unit run.
The following asserts that epr is fit for purpose:

Lemma 8.1. Let p ∈ Q′ and r ∈ Q. Now U ∈ JeprK if and only if p U−→A r is a unit run.

The next step is to extend the expression epr into an expression that describes the
labels of (non-trivial) runs that may pass through intermediate states in Q′. More precisely,
for S ⊆ Q′, we choose eSpr to describe the language of pomsets that can be read while

transitioning from p to r, while passing through states in S as intermediates.5

eSpr =

epr S = ∅

eS
′

pr + eS
′

ps ·
(
eS
′

ss

)∗
· eS′sr S = S′ ∪ {s} , s 6∈ S′

Intuitively, when S = ∅, no intermediate states are allowed, so we need a unit run from p to
r. When S is non-empty, we single out the state s; a run from p to r either does not pass
through s (the first term), or it passes through s at least once, where it may loop several
times, before continuing on to r (the second term).

The following asserts the correctness of eSpr w.r.t. our intention:

Lemma 8.2. Let p ∈ Q′, r ∈ Q, and S ⊆ Q′. Now it holds that U ∈ JeSprK if and only if
there exist ` ≥ 1 and s1, . . . , s`−1 ∈ S and U = U1 · · ·Un, such that

p = s0
U1−→A s1

U2−→A s2
U3−→A · · ·

U`−1−−−→A s`−1
U`−→A s` = r

in which each of the above is a unit run.

Proof. We proceed by induction on S. The case where S = ∅, is covered by Lemma 8.1.
In the inductive step, let S = S′ ∪ {s}, with s 6∈ S′. For the implication from left to

right, suppose U ∈ JeSprK. Then, there are two cases:

• If U ∈ JeS′prK, then the claim follows immediately by induction.

• If U ∈ JeS′ps · (eS
′

ss)
∗ · eS′srK, then, in accordance with the semantics of sequential composition

and Kleene star, there exist U0 ∈ JeSpsK, U1, . . . , Un ∈ JeS′ssK and Un+1 ∈ JeS′srK such that
U = U0 ·U1 · · ·Un ·Un+1. With n+ 2 applications of the induction hypothesis we then we
get an appropriate sequence of unit runs.

For the converse implication, we can identify all occurrences of s among the s1, . . . , s`−1,
and partition the sequence into subsequences that do not travel through s as an intermediate

state. We can then apply the induction hypothesis to find that U ∈ JeS′ps · (eS
′

ss)
∗ · eS′srK.

5The inductive step is ambiguous, in that we do not specify which s ∈ S to choose — any choice will do.
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The final step is to create an expression ep that characterises LA(p), i.e., the pomsets

U such that p U−→A r for some r ∈ F . Note that, if this run has exited Q′ to reach s, then
p ≺A s; in particular, this means that once a run has left Q′, it cannot pass through (or fork
into) states in Q′ anymore. Therefore, p U−→A r only passes through states in Q′, or p U−→A r
eventually leaves Q′, never to return again.

This guides us to define ep as follows:

ep =
∑

r∈Q′∩F
eQ
′

pr +
∑
r≺Ap

eQ
′

pr · er +

{
1 p ∈ F
0 otherwise

Intuitively, the first term accounts for the possibility that the run from p to some accepting
state stays within Q′; the second term incorporates that we can reach some r ≺A p (for
which we already have the expression er, by the main induction hypothesis), whence we
reach an accepting state. The last term is there to allow for p to accept immediately.

We can then prove that ep indeed describes the language of p.

Lemma 8.3. For all p ∈ Q′ it holds that JepK = LA(p).

Proof. For the inclusion from left to right, suppose that U ∈ JepK; we distinguish three cases:

• If U ∈ JeQ
′

pr K for some r ∈ Q′ ∩ F , then by Lemma 8.2 we have that p U−→A r and hence,
since r ∈ F , we find that U ∈ LA(p).

• If U ∈ JeQ
′

pr · erK for some r ≺A p, then there exist pomsets V and W such that U = V ·W
with V ∈ JeQ

′
pr K and W ∈ JerK. From V ∈ JeQ

′
pr K it follows by Lemma 8.2 that p V−→A r; from

W ∈ JepK it follows by the main induction hypothesis that W ∈ LA(r), and hence r W−→A r
′

for some r′ ∈ F . In total, we have that p V ·W−−−→A r
′, and therefore U = V ·W ∈ LA(p).

• If U = 1 and p ∈ F , then p U−→ p ∈ F , and hence U ∈ LA(p) immediately.

For the other inclusion, suppose that U ∈ LA(p). Then there exists r ∈ F such that p U−→A r,
and hence, by Lemma 4.6, there exist states p = s0, . . . , sn = r and pomsets U1, . . . , Un
such that U = U1 · · ·Un and si−1

Ui−→A si is a unit run for all 1 ≤ i ≤ n. If n = 0, then

p U−→ r is trivial, meaning p ∈ F and U = 1, and hence U ∈ JepK immediately. If n ≥ 1 and

si ∈ Q′ for all 0 ≤ i < n, then by Lemma 8.2, we have U ∈ JeQ
′

pr K ⊆ JepK. Otherwise, let si
be the first intermediate state such that si 6∈ Q′. Since si �A p, we have that si ≺A p, so
from Ui · · ·Un ∈ LA(si) it follows by the main induction hypothesis that Ui · · ·Un ∈ JesiK.
Moreover, since sj ∈ Q′ for all 0 ≤ j < i, we have by Lemma 8.2 that U1 · · ·Ui−1 ∈ JekpsiK.
We conclude that U1 · · ·Un ∈ JeQ

′
psi · esiK ⊆ JepK.

By induction on strict support, we have now proved the following theorem.

Theorem 8.4 (Automata to expressions). Let A = 〈Q,F, δ, γ〉 be a finite and fork-acyclic
PA. For every q ∈ Q, we can construct an eq ∈ T such that JeqK = LA(q).

Theorems 7.16 and 8.4 now combine to form our Kleene theorem.

Theorem 8.5 (Kleene theorem). Let L be a pomset language. The following are equivalent:

(1) L is series-rational;
(2) L is accepted by a state of a finite and fork-acyclic PA.
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9. Further work

The decision procedure for language equivalence in pomset automata as outlined in Section 5
is not very efficient. For one, the algorithm computes the atoms generated by the languages
of all states, rather than just the ones being compared. Consequently, to use equivalence
checking of pomset automata as a proxy for equivalence checking of sr-expressions in an
applied setting, a more efficient procedure is necessary. Bisimulation up-to equivalence [HK71]
and extensions thereof would be an obvious class of optimizations to explore.

Another direction for future work is to transfer the techniques from [BPS17] to fork-
acyclic pomset automata. The advantage of such an approach is that it would most likely not
require the input PA to be well-structured. Furthermore, since the techniques from [BPS17]
can also be used to compare safe Petri nets “up-to sequentialisation”, an adaptation of this
algorithm could help us decide an analogous property for pomset automata.

In [KBL+19], we presented a Kleene theorem that includes the parallel variant of the
Kleene star, sometimes known as parallel star or replication. This version of the theorem
covers a strictly larger class of pomset automata, including those that are not fork-acyclic.
However, the structural condition that describes this larger class is not overly complicated
and we would like to extend the decision procedure of the present paper to work for this class
as well. Doing so would distinguish our algorithm from [BPS17], which does not (and cannot)
include this operator, as it would necessarily construct Petri nets that are unbounded.

Acknowledgements. We would like to thank the anonymous reviewers for their insightful
comments, which helped to substantially improve the initial version of this paper.
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Appendix A. Lemmas about pomsets and pomset automata

To prove Lemma 3.9, we first recall the following lemma from [KBSZ18].

Lemma A.1. Let U, V,W,X be sp-pomsets such that U ‖ V = W ‖ X. There exist
sp-pomsets Y0, Y1, Z0, Z1 such that

U = Y0 ‖ Y1 V = Z0 ‖ Z1 W = Y0 ‖ Z0 X = Y1 ‖ Z1

Lemma 3.9. Parallel factorisations exist uniquely for sp-pomsets.

Proof. Let V1, . . . , Vn and W1, . . . ,Wm be sp pomsets that form parallel factorisations of U .
We set out to prove that {|V1, . . . , Vn|} = {|W1, . . . ,Wm|}. The proof proceeds by induction
on min(n,m). In the base, there are two cases to consider. If min(n,m) = 0, then the claim
follows by Lemma 3.6. If min(n,m) = 1, the claim follows by definition of parallel primes.

For the inductive step, we assume that the claim holds for n′,m′ with min(n′,m′) <
min(n,m), and that min(n,m) > 1. By Lemma A.1, we find sp-pomsets Y0, Y1, Z0, Z1 s.t.

V1 = Y0 ‖ Y1 V2 ‖ · · · ‖ Vn = Z0 ‖ Z1 W1 = Y0 ‖ Z0 W2 ‖ · · · ‖Wm = Y1 ‖ Z1

Since V1 is a parallel prime, we find that Y0 or Y1 is empty (but not both). In the
former case, we find that V1 = Y1 and W1 = Z0. Now, let X1, . . . , Xk be a parallel
factorisation of Z1. By induction, we then find that {|V2, . . . , Vn|} = {|Z0, X1, . . . , Xk|}, as
well as {|W2, . . . ,Wm|} = {|Y1, X1, . . . , Xk|}. Consequently, we have that

{|V1, . . . , Vn|} = {|V1, Z0, X1 . . . , Xk|}
= {|Y1,W1, X1, . . . , Xk|}
= {|W1, . . . ,Wm|}

In the latter case, we find that Y0 is not empty, and thus Z0 is empty, by the fact that W1 is a
parallel prime — thus, W1 = Y0 = V1. Furthermore, V2 ‖ · · · ‖ Vm = W2 ‖ · · · ‖Wm. Hence,
by induction it follows that {|V2, . . . , Vn|} = {|W2, . . . ,Wm|}; the claim then follows.

Lemma 3.12. Let L,L′ ⊆ Σ∗, and let ζ be a substitution. If ζ is atomic, then

ζ(L ∩ L′) = ζ(L) ∩ ζ(L′) ζ(L \ L′) = ζ(L) \ ζ(L′) ζ(L) = ∅ ⇐⇒ L = ∅

Proof. We first claim that for every U ∈ SP(∆) there exists at most one w ∈ Σ∗ such that
U ∈ ζ(w). To see this, suppose that w,w′ ∈ Σ∗ such that U ∈ ζ(w) and U ∈ ζ(w′). This
means that we can write w = a1 · · · an and w′ = a′1 · · · a′n′ , as well as U = U1 · · ·Un and
U = U ′1 · · ·U ′n′ such that for 1 ≤ i ≤ n we have Ui ∈ ζ(ai), and for 1 ≤ i ≤ n′ we have
U ′i ∈ ζ(a′i). Indeed, by the first restriction on ζ and Lemma 3.8, we find that n = n′, and
that for 1 ≤ i ≤ n we have that Ui = U ′i . This also means that for 1 ≤ i ≤ n we have that
Ui ∈ ζ(ai) ∩ ζ(a′i); the second restriction on ζ then tells us that for 1 ≤ i ≤ n we have that
ai = a′i, which entails that w = w′. Hence, we conclude that w = w′.

We now treat the claims in the order given.

(i) First suppose that U ∈ ζ(L ∩ L′); then there exists a w ∈ L ∩ L′ such that U ∈ ζ(w).
We then have that U ∈ ζ(L) and U ∈ ζ(L′), meaning that U ∈ ζ(L) ∩ ζ(L′).

For the other inclusion, let U ∈ ζ(L) ∩ ζ(L′). Then there exist w ∈ L and w′ ∈ L′
such that U ∈ ζ(w) and U ∈ ζ(w′); by the above, we conclude that w = w′, and hence
w ∈ L ∩ L′, which means that U ∈ ζ(L ∩ L′).
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(ii) For the third equality, first suppose that U ∈ ζ(L ∩ L′). In that case there exists
a w ∈ L \ L′ such that U ∈ ζ(w). In particular, this means that w ∈ L and hence
U ∈ ζ(L). Furthermore, suppose that U ∈ ζ(L′); we then find a w′ ∈ L′ such that
U ∈ ζ(w′). By the above, this would mean that w = w′, and hence w ∈ L′ — a
contradiction. We therefore know that U 6∈ ζ(L′), and hence U ∈ ζ(L) \ ζ(L′).

For the other inclusion, let U ∈ ζ(L) \ ζ(L′). Then we obtain w ∈ L such that
U ∈ ζ(L), and furthermore there cannot be a w′ ∈ L′ with U ∈ ζ(w′), which in
particular means that w 6∈ L′. We conclude that w ∈ L \ L′, and hence U ∈ ζ(L \ L′).

(iii) Lastly, if L = ∅, then ζ(L) = ∅ by definition. For the other direction, suppose that
L 6= ∅, i.e., that w ∈ L. By the second condition, we have that ζ(a) 6= ∅ for all a ∈ Σ,
and hence ζ(w) cannot be empty, which means that ζ(L) cannot be empty either.

Lemma 3.16. Let e ∈ T . Now e ∈ F if and only if 1 ∈ JeK.

Proof. The proof from left to right proceeds by induction on the construction of F . In the
base, we have e = 1 or e = f∗ for some f ∈ T ; in both cases, we find 1 ∈ JeK by definition.

For the inductive step, there are three cases to consider. First, if e ∈ F because e = f+g
and f ∈ F or g ∈ F , then 1 ∈ JfK or 1 ∈ JgK by induction, and hence 1 ∈ JeK. Second, if
e ∈ F because e = f · g and f, g ∈ F , then by induction 1 ∈ JfK and 1 ∈ JgK, meaning that
1 = 1 · 1 ∈ JeK. Third, if e ∈ F because e = f ‖ g and f, g ∈ F , then by induction 1 ∈ JfK
and 1 ∈ JgK, meaning that 1 = 1 ‖ 1 ∈ JeK.

The proof from right to left proceeds by induction on the structure of e. In the base,
the only case to consider is e = 1, where we find e ∈ F immediately.

For the inductive step, there are four cases to consider. First, e = f + g, then 1 ∈ JeK
implies that 1 ∈ JfK or 1 ∈ JgK. In the former case, f ∈ F by induction, and hence e ∈ F by
definition. Second, if e = f · g, then 1 ∈ JeK implies that 1 ∈ JfK and 1 ∈ JgK. By induction,
we then find that f, g ∈ F , and thus e ∈ F by definition. The case where e = f ‖ g can
be argued similarly. Lastly, if e = f∗, then e ∈ F by definition, and there is nothing to
prove.

Lemma 4.6. Let q U−→A q′. There exist q = q0, . . . , q` = q′ ∈ Q and U1, . . . , U` ∈ SP(Σ),

such that U = U1 · · ·U`, and for all 1 ≤ i ≤ ` we have that qi−1
Ui−→ qi is a unit run.

Proof. We proceed by induction on →A. In the base, there are two cases to consider.

• If q U−→A q
′ because q = q′ and U = 1, then we choose ` = 0 to satisfy the claim.

• If q U−→A q
′ because U = a for some a ∈ Σ and q′ ∈ δ(q, a), then choose ` = 1 and U1 = a.

For the inductive step, there are also two cases to consider.

• On the one hand, if q U−→A q′ because U = V ·W and there exists a q′′ ∈ Q such that

q V−→A q
′′ and q′′ W−→A q

′, then we can obtain the necessary states and pomsets by induction
from those runs.
• On the other hand, if q U−→A q

′ because U = U1 ‖ · · · ‖ Un and there exist r1, . . . , rn ∈ Q
as well as r′1, . . . , r

′
n ∈ F such that for 1 ≤ i ≤ n we have ri

U ′i−→ r′i, and furthermore
q′ ∈ γ(q, {|r1, . . . , rn|}), then we can choose ` = 1 and U1 = U to satisfy the claim.

Appendix B. Lemmas towards the decision procedure

Lemma 5.7. If A is well-structured and q is a fork target in A, then all pomsets in LA(q)
are parallel primes.
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Proof. Let p, q ∈ Q and φ ∈ M(Q) such that γ(p, φ) 6= ∅ and q ∈ φ. Suppose, towards a
contradiction, that U ∈ LA(q) is parallel. We then know that there exists a q′ ∈ F with
q U−→A q

′, which is a parallel unit run by Lemma 5.6. In particular, q′ ∈ γ(q, φ′) for some
φ′ ∈M(Q). However, the latter contradicts the fact that q′ ∈ F , by the premise that A is
well-structured. It thus follows that U must be either primitive or sequential.

Fact 5.16. For all q ∈ Q, it holds that LA(q) = ζ(LA′(q)).

Proof. It suffices to prove that, for q, q′ ∈ Q as well as U ∈ SP(Σ), it holds that q U−→A q
′ is a

unit run if and only if there exists an a ∈ ∆ with U ∈ ζ(a) and q′ ∈ δ′(q, a); straightforward
inductive arguments on run length (for the forward inclusion, using Lemma 4.6) and word
length (for the backwards inclusion) then complete the proof.

First suppose that q U−→A q
′ is a unit run. We have two cases to consider.

• If q U−→A q
′ is a sequential unit run, then U = b for some b ∈ Σ, and q′ ∈ δ(q, b). We can

then choose a = b to find that q′ ∈ δ′(q, a) by definition of δ′.
• If q U−→A q′ is a parallel unit run, then U = U1 ‖ · · · ‖ Un and we obtain q1, . . . , qn ∈ Q

such that q′ ∈ γ(q, {|q1, . . . , qn|}) as well as Ui ∈ LA(qi). For 1 ≤ i ≤ n, we then choose
αi = {r ∈ Q′ : Ui ∈ LA(r)} ∈ AtA[Q′], and set a = {|α1, . . . , αn|} ∈ ∆. We now find that
U ∈ ζ(a) as well as q′ ∈ δ′(q, {|α1, . . . , αn|}).

Conversely, suppose a ∈ ∆ s.t. U ∈ ζ(a) and q′ ∈ δ′(q, a). We have two cases to consider.

• If a ∈ Σ, then q′ ∈ δ(q, a) and U = a. Hence q U−→A q
′ is a sequential unit run.

• If a = {|α1, . . . , αn|}, then q′ ∈ γ(q, {|q1, . . . , qn|}) with qi ∈ αi. Since U ∈ ζ(a), also
U = U1 ‖ · · · ‖ Un with Ui ∈ LA(qi). Thus, q U−→A q

′ is a parallel unit run.

Fact 5.17. The substitution ζ is atomic.

Proof. If a ∈ ∆ and U ∈ ζ(a), then U = b for some b ∈ Σ, or U ∈ LA(α1) ‖ · · · ‖ LA(αn)
for atoms α1, . . . , αn ∈ AtA[Q′]. In the former case, we know that U is primitive, and hence
a sequential prime. In the latter case, we know that none of these atoms contain the empty
set and n ≥ 2 (since A is well-structured); it follows that U is a sequential prime.

Furthermore, suppose a, b ∈ ∆ such that U ∈ ζ(a) and U ∈ ζ(b). By the above, we know
that U is either primitive and a, b ∈ Σ, or U is parallel and a, b ∈ ∆\Σ. In the former case, it
follows that a = U = b by definition of ζ. In the latter case, we know that U = U1 ‖ · · · ‖ Un
and U = U ′1 ‖ · · · ‖ U ′n′ as well as a = {|α1, . . . , αn|} and b = {|α′1, . . . , α′n′ |}, such that for
1 ≤ i ≤ n we have that Ui ∈ LA(αi) and for 1 ≤ i ≤ n′ we have that U ′i ∈ LA(α′i). Because A
is well-structured, each of the Ui and U ′i is a parallel prime; by Lemma 3.9, we then find that
n = n′, and without loss of generality we have that Ui = U ′i . Since Ui ∈ LA(αi) ∩ LA(α′i), it
follows that αi = α′i, and hence a = b.

Appendix C. Lemmas about well-structured automata

The following characterisation of runs labelled by the empty pomset will be useful.

Fact C.1. Let  A be the smallest relation on Q satisfying the rules

p A p

p A r r  A q

p A q

q ∈ γ(p, {|q1, . . . , qn|}) ∀1 ≤ i ≤ n. qi  A q
′
i ∈ F

p A q

Now p A q holds if and only if p 1−→A q.
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Proof. The first inclusion is proved by induction on the construction of  A. In the base,
p A q because p = q, thus p 1−→A q immediately. In the inductive step, there are two cases.

• If p A q because there exists an r ∈ Q such that p A r and r  A q, then by induction
we have that p 1−→A r and r 1−→A q. It then follows that p 1−→A q.
• Suppose p  A q because there exist q1, . . . , qn ∈ Q such that q ∈ γ(p, {|q1, . . . , qn|}) and
q′1, . . . , q

′
n ∈ F such that for 1 ≤ i ≤ n we have that qi 1−→A q

′
i. By induction, we find for

1 ≤ i ≤ n that qi 1−→A q
′
i. We can then conclude that p 1−→A q.

For the other inclusion, we proceed by induction on the construction of 1−→A. In the base, we

have p 1−→A q because p = q, and so we are done. The case where p 1−→A q is a sequential unit
run can be disregarded. For the inductive step, there are two cases to consider.

• If p 1−→A q because 1 = U · V and there exists an r ∈ Q such that p U−→A r and r V−→A q,
then note that U = V = 1. Hence p A r and r  A q by induction, meaning p A q.
• Suppose p 1−→A q because there exist q1, . . . , qn ∈ Q such that q ∈ γ(p, {|q1, . . . , qn|}) and

there exist q′1 . . . , q
′
n ∈ F such that 1 = U1 ‖ · · · ‖ Un and for 1 ≤ i ≤ n we have qi Ui−→A q

′
i.

By induction, we find for 1 ≤ i ≤ n that qi  A q
′
i. We can then conclude that p A q.

To prove Lemma 6.5, the following is useful.

Fact C.2. Let A be a 1-forking PA such that if q is a fork target, then q 6∈ F . For any
states p, q ∈ Q, we have p 1−→A q iff p = q. Furthermore, 1 ∈ LA(p) iff p ∈ F .

Proof. For the first part, the implication from right to left holds by definition of →A. For
the other implication, note that p 1−→A q is equivalent to p A q by Fact C.1. We proceed
by induction on the derivation p  A q. In the base, we have that p  A q because p = q,
and we are done. In the inductive step, there are two cases to consider.

• If p A q because p A r and r  A q for some r ∈ Q, then by induction p = r = q.
• If p  A q because there exist q1, . . . , qn ∈ Q such that r ∈ γ(p, {|q1, . . . , qn|}), and
q′1, . . . , q

′
n ∈ F such that for 1 ≤ i ≤ n we have that qi  A q

′
i, then by induction we have

for 1 ≤ i ≤ n that qi = q′i. Since A is 1-forking, it follows that q1 = q′1 ∈ F . But this
contradicts our premise, because q1 is a fork target; we can therefore exclude this case.

As for the second part, the implication from right to left holds by definition of LA(p). For
the other implication, note that if 1 ∈ LA(p), then p 1−→A q for some q ∈ F . Since p = q by
the first part, we conclude that p ∈ F .

Lemma 6.5. A pomset automaton A is well-structured if and only if it is 2-forking, parsi-
monious, and flat-branching.

Proof. By definition, an automaton is well-structured iff it is 2-forking, flat-branching, and
satisfies the property that for all p ∈ Q and q ∈ φ ∈ M(Q) with γ(p, φ) 6= ∅, it holds that
q /∈ F . If the automaton is parsimonious, then this property is satisfied. By Fact C.2, if A is
well-structured, then q /∈ F ⇔ 1 /∈ LA(q), so it is in particular parsimonious.

Lemma 6.6. For any bounded PA A, the predicate p 1−→A q is decidable.

Proof. By Fact C.1, it suffices to show that  A is decidable. Since A finite, we can build
 A by saturation, starting from the identity and adding pairs until we reach a fixpoint; this
fixpoint is reached after finitely many steps as a result of boundedness.

Lemma 6.8. If a PA A′ weakly implements A, then we can construct a PA A′′ implementing
A. If A′ is bounded (resp. n-forking, flat-branching, parsimonious), then so is A′′.
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Proof. Let A = 〈Q,F, δ, γ〉, and A′ = 〈Q′, F ′, δ′, γ′〉. We can assume without loss of generality
that Q and Q′ are disjoint. We define A′′ = 〈Q′′, F ′′, δ′′, γ′′〉 as follows:

Q′′ = Q′ ]Q F ′′ = F ′ ] {q ∈ Q : 1 ∈ LA(q)}

δ′′(q′′, a) =

δ
′(q′′, a) q′′ ∈ Q′⋃
x∈Qq′′

δ′(x, a) q′′ ∈ Q
γ′′(q′′, φ) =

γ
′(q′′, φ) q′′ ∈ Q′⋃
x∈Qq′′

γ′(x, φ) q′′ ∈ Q

Here, Qq′′ is the set of states of Q implementing q′′ ∈ Q, by weak implementation. Note
that if q′′ ∈ Q, then there are finitely many φ ∈M(Q′′) such that γ′′(q′′, φ) 6= ∅, because Qq′′
is finite, and for each x ∈ Qq′′ there are finitely many φ ∈M(Q′) such that γ′(x, φ) 6= ∅.

We now prove that A′′ implements A. First, we show for q ∈ Q that LA(q) = LA′′(q).

• For the inclusion from left to right, suppose that U ∈ LA(q). If U = 1, then q ∈ F ′′ by
definition of F ′′, and thus U = 1 ∈ LA′′(q′′) immediately.

On the other hand, suppose U 6= 1. There exists an x ∈ Qq such that U ∈ LA′(x),

because A′ weakly implements A. Hence, there must exist a q′ ∈ F ′ such that x U−→A′ q
′;

a straightforward inductive argument then shows that x U−→A′′ q
′. Now, since U 6= 1, the

latter run must be non-trivial. We thus find x′ ∈ Q′′ and U = V ·W such that x V−→A′′ x
′

is a unit run, and x′ W−→A′′ q
′. By construction of A′′, it follows that q V−→A′′ x

′ is a unit

run too, and hence q U−→A′′ q
′. Since q′ ∈ F ′′, it follows that U ∈ LA′′(q).

• For the inclusion from right to left, suppose that U ∈ LA′′(q). There must then exist a
q′ ∈ F ′′ such that q U−→A′′ q

′. Now, if this run is trivial, then q = q′ and U = 1. This
means that q ∈ F ′′; since q ∈ Q, it follows that q 6∈ F ′, and hence U = 1 ∈ LA(q).

Otherwise, if q U−→A′′ q
′ is non-trivial, then there exists a q′′ ∈ Q′′ and U = V ·W such

that q V−→A′′ q
′′ is a unit run, and q′′ W−→A′′ q

′. By construction of A′′, we find an x ∈ Qq
such that x V−→A′′ q

′′ is a unit run, and hence x U−→A′′ q
′. A simple inductive argument then

shows that x U−→A′ q
′ and q′ ∈ F ′, and thus U ∈ LA′(x). Because A′ weakly implements

A, we conclude that U ∈ LA(q).

We should also show that if A is fork-acyclic, then so is A′′. To this end, note that fork-
acyclicity of A already implies fork-acyclicity of A′; hence, we need only show that our
construction above preserves fork-acyclicity. The following property is useful.

Fact C.3. For any q ∈ Q′ and q′ ∈ Q′′, if q′ �A′′ q then q′ ∈ Q′ and q′ �A′ q.

Proof. It suffices to argue that if q′ �A′′ q arises from one of the rules that generate �A′′ ,
then q′ ∈ Q′ and q′ �A′ q. This is straightforward, for if q ∈ Q′ then δ′′(q, a) coincides with
δ′(q, a) for all a ∈ Σ, and γ′′(q, φ) coincides with γ′(q, φ) for all φ ∈M(Q′′).

Let r, q ∈ Q′′ and φ ∈ M(Q′′) with r ∈ φ and γ′′(q, φ) 6= ∅. By construction of A′′, we
have that r ∈ Q′. If q �A′′ r, then by Fact C.3 we have that q ∈ Q′ and q �A′ r. In that
case, also γ′(q, φ) 6= ∅, and hence r �A′ q. This, however, contradicts the premise that A′ is
fork-acyclic; we thus have that r ≺A′′ q. Hence, A′′ must be fork-acyclic as well.

We should also show that our construction preserves boundedness, n-forking, flat-
branching and parsimony. For boundedness, the following is useful.

Fact C.4. For any q ∈ Q and q′ ∈ Q′′, if q′ �A′′ q, then q = q′, or q′ ∈ Q′ such that
q′ �A′ x for some x ∈ Qq.
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Proof. To see this, we proceed by induction on the construction of �A′′ . In the base, either
q = q′ by reflexivity, or one of three cases applies.

• If q′ �A′′ q because q′ ∈ δ′′(q, a) ⊆ Q′ for some a ∈ Σ, then q′ ∈ δ′(x, a) for some x ∈ Qq,
and therefore q′ �A′ x.
• If q′ �A′′ q because q ∈ γ′′(q, φ) for some φ ∈ M(Q′′), then q′ ∈ γ′(x, φ) ⊆ Q′ for some
x ∈ Qq, and therefore q′ �A′ x.
• If q′ �A′′ q because there exists a φ ∈ M(Q′′) such that q′ ∈ φ and γ′′(q, φ) 6= ∅, then
φ ∈M(Q′) and there exists an x ∈ Qq such that γ′(x, φ) 6= ∅, and hence q′ �A′ x.

For the inductive step, q′ �A′′ q because q′′ ∈ Q′′ and q′ �A′′ q′′ and q′′ �A′′ q. By induction,
either q = q′′ (in which case the claim follows by applying induction to q′ �A′′ q′′ = q), or
q′′ �A′ x for some x ∈ Qq, in which case q′ �A′ q′′ by Fact C.3.

By Fact C.4 we have that the support of q ∈ Q in A′′ is given by {q} ∪
⋃
x∈Qq

πA′(x); if

A′ is bounded, this set must be finite. Furthermore, by C.3, we know that the support of
q ∈ Q′ in A′′ is given by the support of q in A′, which is finite if A′ is bounded. Thus, if A′

is bounded, then so is A′′.
We now prove that our construction preserves n-forking, parsimony and flat-branching.

• If A′ is n-forking, let φ ∈ M(Q′′) and q ∈ Q′′ such that γ′′(q, φ) 6= ∅. By construction
there exists q′ ∈ Q′ such that γ′(q′, φ) 6= ∅. Since A′ is n-forking we may conclude |φ| ≥ n.
• Assume, towards a contradiction, that A′′ is not parsimonious. Then there exist q ∈ Q′′

and r ∈ φ ∈M(Q′′) such that γ′′(q, φ) 6= ∅ but 1 ∈ LA′′(r). By construction there exists
q′ ∈ Q′ such that γ′(q′, φ) 6= ∅. We also know that it must be the case that r ∈ Q′, hence
1 ∈ LA′(r). This contradicts the premise that A′ is parsimonious.
• Assume, towards a contradiction, that A is not flat-branching. There must then exist
q ∈ Q′′ and φ, ψ ∈ M(Q′′) with r ∈ φ such that γ′′(q, φ) 6= ∅ and γ′′(r, ψ) ∩ F 6= ∅.
By construction of A′′, we find that φ ∈ M(Q′), and there exists a q′ ∈ Q′ such that
γ′(q′, φ) 6= ∅. Also by construction of A′′ and the fact that r ∈ φ (and hence r ∈ Q′),
we find that ψ ∈ M(Q′) and γ′(r, ψ) ∩ F ′ 6= ∅. This contradicts the premise that A′ is
flat-branching.

C.1. Ensuring parsimony.

Lemma 6.11. A0 is bounded, parsimonious, and weakly implements A.

Proof. We relate runs in A to runs in A0 and vice versa, as follows:

Fact C.5. For any run p U−→A q we have p U−→A0
q, and if in addition we know that 1 ∈ LA(q)

and U 6= 1, then p U−→A0
>.

Proof. In the base, there are two cases.

• If p U−→A q because p = q and U = 1, then p U−→A0
q; the second claim holds vacuously.

• If p U−→A q because U = a for some a ∈ Σ and q ∈ δ(p, a), then q ∈ δ0(p, a) by construction,

so indeed p U−→A0
q. If 1 ∈ LA(q), then > ∈ δ0(p, a) as well, so p a−→A0

>.

For the inductive step, we have two more cases.

• If p U−→A q because U = V ·W and there exists r ∈ Q such that p V−→A r and r W−→A q,

then by induction we know that p V−→A0
r and r W−→A0

q, so p U−→A0
q.

If furthermore 1 ∈ LA(q) and V ·W 6= 1, then we distinguish two subcases.
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– If W = 1, then V = U , and 1 ∈ LA(r); therefore by induction we get p U−→A0
>.

– If W 6= 1, then by induction we get r W−→A0
>, hence p V ·W−−−→A0

q.

• Suppose that p U−→A q because there exist q1, . . . , qn ∈ Q with q ∈ γ(p, {|q1, . . . , qn|}), and

there exist q′1, . . . , q
′
n ∈ F such that U = U1 ‖ · · · ‖ Un and for 1 ≤ i ≤ n we have qi Ui−→A q

′
i.

We then partition {|q1, . . . , qn|} into φ and ψ such that:

{|q1, . . . , qn|} = φ t ψ ∀i. qi ∈ φ⇒ Ui 6= 1 ∀i. qi ∈ ψ ⇒ Ui = 1.

By construction of γ0, we have q ∈ γ0(p, φ). By induction, since ∀i.qi ∈ φ⇒ Ui 6= 1, we

get ∀i.qi ∈ φ⇒ qi Ui−→A0
>. Consequently, we have p U1‖···‖Un−−−−−−→A0

q.

If additionally 1 ∈ LA(q) and U1 ‖ · · · ‖ Un 6= 1, then there must exist a 1 ≤ i ≤ n with

Ui 6= 1, so we know that φ 6= �; hence, > ∈ γ0(p, φ). As result, we get p U1‖···‖Un−−−−−−→A0
>.

Fact C.6. For any p ∈ Q, if p U−→A0
q, then if q ∈ Q we have p U−→A q, and if q = > we

have U ∈ LA(p) but U 6= 1.

Proof. In the base, there are two cases.

• If p U−→A0
q because U = 1 and p = q, then p U−→A q immediately.

• If p U−→A0
q because U = a for some a ∈ Σ and q ∈ δ0(p, a), then there are two subcases:

– If q ∈ Q, then q ∈ δ(p, a), and hence p U−→A q.
– If q = >, then there exists a q′ ∈ δ(p, a) such that 1 ∈ LA(q′). In particular, this means

that p U−→A q′ and q′ 1−→A q′′ for some q′′ ∈ F . This means that p U−→A q′′, and hence
U ∈ LA(p). Since a 6= 1, we rightfully get U 6= 1.

For the inductive step, there are again two cases.

• Suppose p U−→A0
q because U = V ·W and there exists an r ∈ Q0 with p V−→A0

r and

r W−→A0
q. We distinguish two cases based on r:

– If r = >, then by construction of A0 we have W = 1 and q = >, so by induction it
follows that U = V ∈ LA(p) while U = V 6= 1;

– If r ∈ Q, then by induction hypothesis we have p U−→A r. We distinguish two cases:

∗ If q ∈ Q, then by induction r V−→A q, so p U ·V−−→A q.
∗ If q = >, then by induction W ∈ LA(r) while W 6= 1, so U ∈ LA(p) while U 6= 1.

• Suppose p U−→A0
q because there exist q1, . . . , qn ∈ Q0 such that q ∈ γ(p, {|q1, . . . , qn|}) such

that U = U1 ‖ · · · ‖ Un and for 1 ≤ i ≤ n we have qi Ui−→A0
>. By construction of γ0,

we also know that for 1 ≤ i ≤ n we have qi ∈ Q. By induction, we then know that for
1 ≤ i ≤ n we have Ui ∈ LA(qi) but Ui 6= 1. We distinguish the two cases for q:
– If q ∈ Q, then by construction of γ0 there exists a multiset ψ such that:

q ∈ γ(p, {|q1, . . . , qn|} t ψ) ∀r ∈ ψ. 1 ∈ LA(r).

If ψ = {|qn+1, . . . , qm|}, we may then complete the run by setting ∀n < i ≤ m.Ui = 1
and performing the following γ step:

∀1 ≤ i ≤ m. Ui ∈ LA(qi) q ∈ γ(p, {|q1, . . . , qm|})
p U1‖···‖Um−−−−−−→A q

This concludes this case, since we have:

U1 ‖ · · · ‖ Um = U1 ‖ · · · ‖ Un ‖ 1 ‖ · · · ‖ 1 = U1 ‖ · · · ‖ Un.
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– Similarly, if q = >, then φ 6= � and there exist ψ ∈M(Q) and q′ ∈ Q such that:

q′ ∈ γ(p, {|q1, . . . , qn|} t ψ) ∀r ∈ ψ. 1 ∈ LA(r) 1 ∈ LA(q′).

We may proceed as in the previous case to show that p U1‖···‖Un−−−−−−→A q
′. Since 1 ∈ LA(q′),

this implies U1 ‖ · · · ‖ Un ∈ LA(p). To conclude, note that for all 1 ≤ i ≤ n we have
Ui 6= 1; since φ 6= �, also n > 0. This entails that U = U1 ‖ · · · ‖ Un 6= 1.

Summing up, we get that LA(q) \ {1} = LA0(q). So, if 1 6∈ LA(q), then we have LA(q) =
LA0(q), and otherwise LA(q) = LA0(q)∪LA0(>). Therefore, A0 weakly implements A, since
fork-acyclicity is clearly preserved by this construction.

To show that A0 is parsimonious, notice that by construction, if γ0(p, φ) 6= ∅ and q ∈ φ,
then q ∈ Q. As we showed above, this implies 1 /∈ LA0(q).

To show that A0 is bounded, note that if q, q′ ∈ Q0 with q′ ≺A0 q, then either q′ = >,
q = > or q, q′ ∈ Q with q′ �A q. Hence, if q ∈ Q0, then either q = > and πA0(q) = {>}, or
q ∈ Q and πA0(q) ⊆ πA(q); in either case, πA0(q) is finite, since A is bounded; hence, A0 is
bounded, too.

C.2. Removing nullary forks.

Lemma 6.14. A1 is bounded, 1-forking, parsimonious, and weakly implements A.

Proof. To see that A1 is bounded, note that q′ �A1 q if and only if q′ �A q; hence,
πA1(q) ⊆ πA(q) for all q ∈ Q; since A is bounded, this implies that A1 is bounded, too. This
also show that A1 is fork-acyclic if A1 is.

The condition φ 6= � in the definition of γ1 ensures that A1 is 1-forking. Before we show
that A1 is parsimonious, note that if we have r ∈ φ and γ1(q, φ) 6= ∅, then there is a state q′

such that q 1−→A q
′ and γ(q′, φ) 6= ∅. By parsimony of A, we have 1 /∈ LA(r), hence r 6∈ F .

By Fact C.2, we conclude that 1 6∈ LA1(p), hence A1 is parsimonious.
We now check that A1 weakly implements A, by relating their runs.

Fact C.7. If q 1−→A p
U−→A p

′ 1−→A q
′ with U 6= 1, then q U−→A1

q′.

Proof of Fact C.7. We proceed by induction on the construction of p′ U−→A q
′. In the base,

we can exclude the case where p′ = q′ and U = 1, because it contradicts the premise.
This leaves the case where p U−→A p′ because U = a for some a ∈ Σ and p′ ∈ δ(p, a). By

construction of δ1, we then find that q′ ∈ δ1(q, a), hence q U−→A1
q′. For the inductive step,

there are two cases:

• Suppose p U−→A p′ because U = V ·W and there exists p′′ ∈ Q such that p V−→A p′′ and

p′′ W−→A p
′. We distinguish four subcases:

– If V = 1 = W , then U = V ·W = 1, contradicting the premise; we disregard this case.
– If V 6= 1 = W , then p′′ 1−→A q

′ and U = V ; by induction, we find that q U−→A1
q′.

– If V = 1 6= W , then q 1−→A p
′′ and U = W ; by induction, we find that q U−→A1

q′.

– If V 6= 1 6= W , then induction we get q V−→A1
p′′ and p′′ W−→A1

q′, hence q U−→A1
q′.

• Suppose p U−→A p because there exist r1, . . . , rn ∈ Q such that p′ ∈ γ(p, {|r1, . . . , rn|}), and

U = U1 ‖ · · · ‖ Un such that for 1 ≤ i ≤ n there exists r′i ∈ F with ri U1−→A r′i. By
parsimony of A, we know that each of the Ui is different from 1. Hence, U1 ‖ · · · ‖ Un is
itself non-empty, and we have n > 0. Therefore q′ ∈ γ1(q, {|r1, . . . , rn|}). By induction we

have for every 1 ≤ i ≤ n that ri Ui−→A1
r′i ∈ F , so we may conclude q U−→A1

q′.
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Fact C.8. If q U−→A1
q′, then q U−→A q

′.

Proof of Fact C.8. We proceed by induction on q U−→A1
q′. In the base, there are two cases.

• If q U−→A1
q′ because q = q′ and U = 1, then q U−→A q

′ immediately.

• If q U−→A1
q′ because U = a for some a ∈ Σ and q′ ∈ δ1(q, a), then there exist p, p′ ∈ Q

such that q 1−→A p and p′ 1−→A q′ with p′ ∈ δ(p, a), by construction of δ1. We can string

these together to find that q 1−→A p
a−→A p

′ 1−→A q
′, hence q U−→A q

′.

In the inductive step, there are again two cases:

• Suppose q U−→A1
q′ because U = V ·W and there exists a q′′ ∈ Q such that q V−→A1

q′′ and

q′′ W−→A1
q′. By induction, q V−→A q

′′ and q′′ W−→A q
′, and hence q U−→A q

′.

• Suppose q U−→A1
q′ because there exist r1, . . . , rn ∈ Q with q′ ∈ γ1(q, {|r1, . . . , rn|}), and

U = U1 ‖ · · · ‖ Un and for 1 ≤ i ≤ n there exists r′i ∈ F with ri Ui−→A1
r′i. By induction, it

must be the case that for 1 ≤ i ≤ n we have ri Ui−→A r
′
i. By construction of γ1, we know

that there are p, p′ ∈ Q such that q 1−→A p, p
′ 1−→A q

′, and p′ ∈ γ(p, {|q1, . . . , qn|}). We then

know that p U1‖···‖Un−−−−−−→A p
′, and hence q U1‖···‖Un−−−−−−→A q

′.

We can now wrap up by showing that, for q ∈ Q, we have LA(q) =
⋃
q 1−→A

p
LA1(p).

• Let U ∈ LA(q), meaning there is q′ ∈ F such that q U−→A q
′. On the one hand, if U = 1,

then 1 ∈ LA1(q′); since q 1−→A q
′, U is contained in the right-hand side. On the other hand,

if U 6= 1, then q U−→A1
q′ by Fact C.7, hence U ∈ LA1(p). Since q 1−→A q, we are done.

• Let p ∈ Q such that q 1−→A p, and let U ∈ LA1(p). This means there is p′ ∈ F such that

p U−→A1
p′, and hence p U−→A p

′ by Fact C.8. Therefore q U−→A p
′ ∈ F , so U ∈ LA(q).

Since boundedness and fork-acyclicity are preserved, A1 weakly implements A.

C.3. Removing unary forks.

Lemma 6.19. A2 is bounded, parsimonious, 2-forking, and implements A.

Proof. We start by showing that our construction preserves fork-acyclicity, and that A2 is
bounded. For preservation of fork-acyclicity, we first verify the following.

Fact C.9. The following hold for all w = q1 · · · qn ∈ Q2 and w′ = q′1 · · · q′m ∈ Q2:

(i) If q ∈ Q such that q ↑ w, then for all qi we have qi �A q.
(ii) If w′ ∈ δ2(w, a), then for every q′i there exists a qj with q′i �A qj.
(iii) If w′ ∈ γ2(w, φ), then for every q′i there exists a qj with q′i �A qj.
(iv) If γ2(w, φ) 6= ∅ with r ∈ φ, then there exists a qi with r ≺A qi.
(v) If w′ �A2 w, then for every q′i there exists a qj with q′i �A qj.

Proof of Fact C.9. We treat the claims in the order given.

(i) We proceed by induction on the construction of ↑. In the base, where q = q1, the
claim holds vacuously. For the inductive step, we have r ∈ Q such that r ↑ q1 · · · qn−1

and qn ∈ γ(q, {|r|}). In that case, qn �A q and r �A q immediately. Also, we find by
induction that for all 1 ≤ i < n it holds that qi �A r, and hence qi �A q.
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(ii) We proceed by induction on the construction of δ2. In the base, we have w′ ∈ δ2(w, a)
because w′ = q′ · x · y and w = q · y, and there exists an r ∈ Q such that q ↑ r · x and
q′ ∈ δ(r, a). By (i), we know that q′1 = q′ �A r �A q = q1. Furthermore, if q′i appears
in x, then also by (i) we know that q′i �A q = q1. Lastly, if q′i appears in y, then note
that it also appears in w, and hence we can conclude by q′i �A qj for some j. In the
inductive step, w = q · x such that q ∈ F and w′ ∈ δ2(x, a). The claim then follows
immediately by induction.

(iii) This proof proceeds analogously to the one above.
(iv) We proceed by induction on the construction of γ2. In the base, we have that w = q1 ·x

and w′ = q′1 · y ·x such that there exists an p ∈ Q with q1 ↑ p · y and q′1 ∈ γ(p, φ). Since
A is fork-acyclic, it follows that r ≺A p; because p �A q1 by (i), the claim follows.

For the inductive step, we have that γ2(w, φ) 6= ∅ because w = q · x such that q ∈ F
and γ2(x, φ) 6= ∅. By induction, we then find a qi such that r ≺A qi.

(v) This can be shown by induction on �A2 , noting that the base cases are covered
by (ii)–(iv). For the inductive step, it suffices to note that the claimed property is
transitive in nature.

Now, if w ∈ φ ∈M(Q2) and x ∈ Q2 with γ2(x, φ) 6= ∅, we should show that w ≺A2 w. First,
note that w = r ∈ Q for some r ∈ Q by construction of γ2. By Fact C.9(iv), we know that
w = q1 · · · qn, and there exists a 1 ≤ i ≤ n with r ≺A qi. Suppose, towards a contradiction,
that w �A2 r; then by Fact C.9(v) we also know that qi �A r, contradicting that r ≺A qi.

To argue that A2 is bounded, we first record the following.

Fact C.10. Let w = q1 · · · qn ∈ Q2 and x = q′1 · · · qn′ ∈ Q2. If w �A2 x, then for every
1 ≤ i ≤ n there exists a 1 ≤ j ≤ n′ such that n+DA(qi)− i ≤ n′ +DA(q′j)− j.

Proof of Fact C.10. It suffices to verify the claim for the pairs generating �A2 .

• If w ∈ δ2(x, a) for some a ∈ Σ, then we proceed by induction on the construction of δ2.
In the base, there exist r ∈ Q and 1 ≤ k ≤ n such that q′1 ↑ r · q2 · · · qk and q1 ∈ δ(r, a),
while n′ + k − 1 = n, and for k < i ≤ n′ we have qi = q′i−k+1. We now consider two cases.
– When 1 ≤ i ≤ k, we choose j = 1; since n ≤ n′ and i ≥ 1 and DA(qi) ≤ DA(q′1) by

Fact C.9(i), we find that n+DA(qi)− i ≤ n′ +DA(q′1)− 1.
– Otherwise, when k < i ≤ n, we choose j = i − k + 1 to find that n + DA(qi) − i =
n+DA(q′j)− i = n′ + k − 1−DA(q′j)− i = n′ +DA(q′j)− j

In the inductive step, q′1 ∈ F and w ∈ δ2(q′2 · · · q′n′ , a). The claim then follows by induction.
• If w ∈ γ2(x, φ) for some φ ∈M(Q2), then the proof is similar to the previous case.
• If there exists a φ ∈M(Q2) such that w ∈ φ and γ2(x, φ) 6= ∅, then note that φ ∈M(Q) by

construction of γ2, and thus that w = r for some r ∈ Q. The proof proceeds by induction
on γ2, where it suffices to show that DA(r) < DA(q′j) for some 1 ≤ j ≤ n′. This is a direct

consequence of Fact C.9(iv).

To see that A2 is bounded, let q1 · · · qn ∈ Q2 and choose m = max1≤i≤nDA(qi). If
q′1, . . . , q

′
n′ ∈ Q such that q′1 · · · qn′ �A q1 · · · qn, then by Fact C.10, we find 1 ≤ j ≤ n′

such that n′ ≤ n′ + DA(q′1) − 1 ≤ n + DA(qj) − j ≤ n + m. By Fact C.9(v), q′1, . . . , q
′
n ∈

πA(q1)∪ · · · ∪ πA(qn); the latter set is finite. Hence, the states supporting q1 · · · qn in A2 are
words of length at most n+m over a finite alphabet; thus πA2(q1 · · · qn) must be finite.

To show that A2 can accept the same languages as A, the following facts are useful.
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Fact C.11. If q ∈ Q and q ↑ q1 · · · qn such that for 1 ≤ i ≤ n there exist q′i ∈ Q and Ui ∈ SP

with qi Ui−→A q
′
i, and for 1 ≤ i < n it holds that q′i ∈ F , then q U1···Un−−−−→A q

′
n.

Proof of Fact C.11. The proof proceeds by induction on the construction of ↑. In the base,
we have that q = q1 and n = 1; it then follows immediately that q = q1

U1−→A q
′
1 = q′n.

For the inductive step, we have q ↑ q1 · · · qn because there exists r ∈ Q with r ↑ q1 · · · qn−1

and qn ∈ γ(q, {|r|}). By induction, we then know that r U1···Un−1−−−−−−→A qn−1; since qn−1 ∈ F and

qn ∈ γ(q, {|r|}) it follows that q U1···Un−1−−−−−−→A qn
Un−−→ q′n, and hence q U1···Un−−−−→ q′n.

Fact C.12. If w ∈ Q2 and w′ ∈ F2 and U ∈ SP such that w U−→A2
w′, then w = q1 · · · qn

and U = U1 · · ·Un such that for 1 ≤ i ≤ n there exists a q′i ∈ F with qi Ui−→A q
′
i.

Proof of Fact C.12. We proceed by induction on the length ` of w U−→A2
w′. In the base,

where ` = 0, we have U = 1 and w = w′ ∈ F2. We choose for 1 ≤ i ≤ n that Ui = 1 and
q′i = qi ∈ F .

For the inductive step, we have that U = V ·W and w′′ ∈ Q2 such that w V−→A2
w′′ is a

unit run, and w′′ W−→A2
w′ of length `− 1. By induction, w′′ = r1 · · · rm and W = W1 · · ·Wm

such that for 1 ≤ i ≤ m there exists an r′i ∈ F with ri Wi−−→A r
′
i. Suppose that w V−→A2

w′′

is a sequential unit run. Then V = a for some a ∈ Σ, and w′′ ∈ δ2(w, a). We proceed by
induction on δ2.

In the base, we have that w = q1 · · · qn and w′′ = q′ · v · q2 · · · qn such that there exists
an r ∈ Q with q1 ↑ r · v and q′ ∈ δ(r, a). Note that q′ · v = r1 · · · rk for some k ≤ m, and that
ri+k−1 = qi for 2 ≤ i ≤ n. We choose U1 = a ·W1 · · ·Wk. Since r a·W1−−−→A r′1 ∈ F and for

2 ≤ i ≤ k we have ri Wi−−→A r
′
i ∈ F , it follows that q1

U1−→A r
′
k by Fact C.11; we set q′1 = r′k.

For i ≥ 2, we choose q′i = r′i+k−1 and Ui = Wi+k−1, to find that ri+k−1
Wi+k−1−−−−−→A r

′
i+k−1, and

hence qi Ui−→ q′i. Finally, we note that U1 · · ·Un = a ·W1 · · ·Wk ·Wk+1 · · ·Wm = V ·W = U .
In the inductive step, w = q1 · · · qn and w′′ ∈ δ2(q2 · · · qn, a), with q1 ∈ F . By induction,

U = U2 · · ·Un where, for 2 ≤ i ≤ n, q′i ∈ F with qi Ui−→A q′i. Here, U1 = 1 and q′1 = q1

suffices.
The case where w V−→A2

w′′ is a parallel unit run can be treated similarly.

Fact C.12 tells us that for q ∈ Q we have that LA2(q) ⊆ LA(q). After all, if q U−→A2
w

for some w ∈ F2, then we find q′ ∈ F such that q U−→A q
′, and hence U ∈ LA(q).

For the converse inclusion, the following facts tell us how we can compose runs in A2.

Fact C.13. If w U−→A2
w′ and x ∈ Q2, then w · x U−→A2

w′ · x.

Proof of Fact C.13. We proceed by induction on the length ` of w U−→A2
w′. In the base,

where ` = 0, we have that w = w′ and U = 1. We then know that w · x = w′ · x; hence
w · x U−→A2

w′ · x.

For the inductive step, let ` > 1. We then find w′′ ∈ Q2 and U = V ·W such that
w V−→A2

w′′ is a unit run, and w′′ W−→A2
w′ is of length ` − 1. Hence, w′′ · x W−→A2

w′ · x
by induction. If w V−→A2

w′′ is a sequential unit run, then V = a for some a ∈ Σ, and

w′′ ∈ δ2(w, a). By construction of δ2, we have w′′ · x ∈ δ2(w · x, a), which means that
w · x V−→A2

w′′ · x. In total, we have w · x U−→A2
w′ · x.

The case where w V−→A2
w′′ is a parallel unit run can be treated similarly.
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Fact C.14. Let q, r ∈ Q with q′ ∈ γ(q, {|r|}), and let r U−→A2
w be nontrivial. Then

q U−→A2
w · q′.

Proof of Fact C.14. Since r U−→A2
w is nontrivial, U = V ·W and x ∈ Q2 such that r V−→A2

x

is a unit run, and x W−→A2
w. If r V−→A2

x is a sequential unit run, then V = a for some

a ∈ Σ, and x ∈ δ2(r, a). By construction of δ2, we obtain q′′, r ∈ Q and y ∈ Q2 such that
x = q′′ · y and r ↑ r′ · y as well as q′′ ∈ δ(r′, a). By definition of ↑, also q ↑ r′ · y · q′, and
thus x · q′ = q′′ · y · q′ ∈ δ2(q, a). We then find that q V−→A2

x · q′. Since x · q′ W−→A2
w · q′ by

Fact C.13, we conclude that q U−→A2
w · q′.

The case where r V−→A2
is a parallel unit run can be argued similarly.

Fact C.15. Let w U−→A2
w′ be nontrivial, and x ∈ F2. Then x · w U−→A2

w′.

Proof of Fact C.15. Since w U−→A2
w′ is non-trivial, we find that U = V ·W and w′′ ∈ Q2

such that w V−→A2
w′′ is a unit run, and w′′ W−→A2

w′. If w V−→A2
w′′ is a sequential unit run,

then V = a for some a ∈ Σ, and w′′ ∈ δ2(w, a). A simple inductive argument on the length
of x then tells us that w′′ ∈ δ2(x ·w, a) as well. From this, it follows that x ·w V−→A2

w′′, and

thus x · w U−→A2
w′.

The case where w V−→A2
w′′ is a parallel unit run can be argued similarly.

Finally, we can use the above to show that A2 can simulate the unary forks of A.

Fact C.16. If q U−→A q
′, then there exists x ∈ F2 such that q U−→A2

x · q′.

Proof of Fact C.16. We proceed by induction on q U−→A q′. If q U−→A q′ is trivial, then the

claim is satisfied by choosing x = 1. Otherwise, suppose q U−→A q
′ is a sequential unit run,

i.e., U = a for some a ∈ Σ, and q′ ∈ δ(q, a). Since q ↑ q, we then have that q′ ∈ δ2(q, a), and
hence q U−→A2

q′.
For the inductive step, there are again two cases to consider.

• Suppose q U−→A q′ because U = V ·W and there exists q′′ ∈ Q such that q V−→A q′′ and

q′′ W−→A q
′. By induction, we obtain x′′, x′ ∈ F2 such that q V−→A2

x′′ ·q′′ and q′′ W−→A2
x′ ·q′.

Without loss of generality, q′′ W−→A q
′ is non-trivial, and hence neither is q′′ W−→A2

x′ · q′.
By Fact C.15, we find that x′′ · q′′ W−→A2

x′ · q′. In total, we find that q U−→A2
x · q′.

• Suppose q U−→A q′ because U = U1 ‖ · · · ‖ Un, and there exist r1, . . . , rn ∈ Q and

r′1, . . . , r
′
n ∈ F such that for 1 ≤ i ≤ n we have ri Ui−→A r′i, and q′ ∈ γ(q, {|r1, . . . , rn|}).

There are two subcases.
– If n = 1, then by induction we find x1 ∈ F2 such that r1

U1−→A2
x′1 · r′1. By Fact C.14,

we then find q U−→A2
x′1 · r′1 · q′. Choosing x′ = x′1 · r′1 satisfies the claim.

– If n ≥ 2, then q′ ∈ γ2(q, {|r1, . . . , rn|}). By induction, we find for 1 ≤ i ≤ n an xi ∈ F2

with ri Ui−→A2
x′i · r′i ∈ F2. Thus q U−→A2

q′; choosing x′ = 1 satisfies the claim.

The above allows us to prove that, for q ∈ Q, we have LA(q) ⊆ LA2(q). To this end,
suppose U ∈ LA(q); then there exists a q′ ∈ F with q U−→A q

′. By Fact C.16 we find x′ ∈ F2

with q U−→A2
x · q′ ∈ F2, and hence U ∈ LA2(q). Since LA2(q) ⊆ LA(q), it follows that

LA(q) = LA2(q).

Note that it is 2-forking by construction. For parsimony, observe that if w ∈ φ ∈M(Q2)
and x ∈ Q2 such that γ2(x, φ), then φ ∈ M(Q) by definition of γ2, and hence w = q for



Vol. 17:3 EQUIVALENCE CHECKING FOR WEAK BI-KLEENE ALGEBRA 19:45

some q ∈ Q. A simple inductive argument then tells us that there exists an r ∈ Q such that
γ(r, φ) 6= ∅. Since A is parsimonious, we know that 1 6∈ LA(q); since LA(q) = LA2(q), it
follows that 1 6∈ LA2(q).

C.4. Ensuring flat-branching.

Lemma 6.24. A3 is bounded, 2-forking, parsimonious, flat-branching (i.e., well-structured)
and weakly implements A.

Proof. The proof of this statement consists of several steps. In the sequel, we will write
Qp = {qp : q ∈ Q} and Qs = {qs : q ∈ Q}. We start by making the following observations:

Fact C.17. The following hold for all ψ ∈M(Q):

(i) If φ J ψ, then |φ| ≤ |ψ|.
(ii) If p ∈ Q3 and φ ∈M(Q3) such that γ3(p, φ) 6= ∅, then φ ∈M(Qs).
(iii) If p ∈ Q and φ ∈M(Q3), then γ3(ps, φ) ⊆ Qs ∪Qp.

Proof. We treat the claims in the order given.

(i) This claim is proved by induction on J. In the base, φ J ψ because φ = ψ, and so
the claim holds immediately. For the inductive step, we have that φ J ψ because
ψ = ψ1 tψ2, such that φ J ψ1, and γ(p, ψ2)∩F 6= ∅ with φ J ψ1 t{|p|}. By induction,
we have that |φ| ≤ |ψ1| + 1. Since A is 1-forking, we have that |ψ2| ≥ 1; hence, we
conclude that |φ| ≤ |ψ1|+ |ψ2| = |ψ|.

(ii) If p ∈ Q3 and φ ∈M(Q3) such that γ3(p, φ) 6= ∅, then by definition of γ3 we have that
φ = ψs for some ψ ∈M(Q). Hence, φ ∈M(Qs).

(iii) Suppose that p ∈ Q and φ ∈M(Q3), and let q ∈ γ3(ps, φ). By definition of γ3, we have
that q ∈ {rs, rp} such that r ∈ γ(p, ψ) for some ψ ∈M(Q). Hence, q ∈ Qs ∪Qp.

We are now set to prove that A3 indeed satisfies the right properties.

Fact C.18. A3 is 2-forking, parsimonious, and flat-branching.

Proof. For 2-forking, suppose p ∈ Q3 and φ ∈ M(Q3) such that γ3(p, φ) 6= ∅. Then by
definition of γ3 we find χ, ψ ∈M(Q) and r ∈ Q, such that φ = χs, ψ J χ, and γ(r, ψ) 6= ∅.
Since A is 2-forking, we can conclude by Fact C.17(i) that 2 ≤ |ψ| ≤ |χ| = |φ|.

For parsimony, suppose γ3(p, φ) 6= ∅ and q ∈ φ. Then by Fact C.17(ii) we know that
q ∈ Qs, so q 6∈ F3. Since A3 is 1-forking, 1 6∈ LA3(q) by Fact C.2, hence A3 is parsimonious.

For flat-branching, suppose p ∈ Q3 is a fork target. Then by Fact C.17(ii), we know that
p ∈ Qs. By Fact C.17(iii), we can then conclude that γ3(p, ψ)∩F3 ⊆ (Qp∪Qs)∩F3 = ∅.

We can now relate the runs of A3 to those in A as follows.

Fact C.19. If p U−→A3
q, then the following hold:

(i) If p = p′s and q ∈ {q′s, q′p}, then p′ U−→A q
′.

(ii) If p ∈ {p′s, p′p} and q = >, then there exists a q′ ∈ F with p′ U−→A q
′.

Proof. We proceed by induction on p U−→A3
q. In the base, the case where p U−→A3

q is trivial

holds vacuously. Otherwise, if p U−→A3
q because U = a for some a ∈ Σ and q ∈ δ3(p, a), then

we know that p 6∈ Qp by definition of δ3. Therefore, assume p = p′s for some p′ ∈ Q. There
are two cases.
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• If q ∈ {q′s, q′p}, then it must be the case that q′ ∈ δ(p′, a), so p′ a−→A q
′.

• If q = >, then δ(p′, a) ∩ F 6= ∅. Choose q′ ∈ δ(p′, a) ∩ F to find that so p′ a−→A q
′.

For the inductive step, there are again two cases.

• Suppose p U−→A3
q because U = V ·W and there exists an r ∈ Q3 such that p V−→A3

r and

r W−→A3
q. Furthermore, we may assume w.l.o.g. that neither of these runs is trivial. Since

> does not permit nontrivial runs, we have r ∈ Qp ∪Qs. Furthermore, p 6∈ Qp, because if
p ∈ Qp then r = >; we set p = p′s. We do a case analysis on r.
– If r = r′p, then necessarily q = >. By the induction hypothesis we get that p′ V−→A r

′

and we find q′ ∈ F such that r′ W−→A q
′, hence p′ U−→A q

′.

– If r = r′s, then by induction we get that p′ V ·W−−−→A r
′. We now look at q:

∗ If q ∈ {q′s, q′p}, then by induction we have r′ W−→A q
′, so p′ V ·W−−−→A q

′.

∗ If q = >, then induction gives us q′ ∈ F such that r′ W−→A q
′, and thus p′ V ·W−−−→A q

′.

• Suppose p U−→A3
q because q1, . . . , qn ∈ Q3 with q ∈ γ3(p, {|q1, . . . , qn|}), and U = U1 ‖ · · · ‖

Un such that for 1 ≤ i ≤ n we have qi Ui−→A3
>. Since A3 is 1-forking and parsimonious,

each Ui is non-empty by Fact C.2. By definition of γ3, for each 1 ≤ i ≤ n there exists a
q′i ∈ Q such that qi = q′i

s. By induction, we obtain for each 1 ≤ i ≤ n a q′′i ∈ F such that

q′i
Ui−→A q

′′
i .

On the one hand, suppose p = p′s for p′ ∈ Q. In that case, q ∈ {q′s, q′p} for some
q′ ∈ γ(p′, φ), with φ J {|q1, . . . , qn|}. We show p′ U−→A q′ by induction on J. In the
base, φ = {|q1, . . . , qn|}, and so the claim follows. In the inductive step, {|q1, . . . , qn|} =
{|q1, . . . , qk|}t{|qk+1, . . . , qn|} and there exists an r ∈ Q such that γ(r, {|qk+1, . . . , qn|})∩F 6=
∅ and φ J {|q1, . . . , qk|} t {|r|}. In that case, r Uk+1‖···‖Un−−−−−−−→A r

′ for some r′ ∈ F ; hence, by

induction, p′ U1‖···‖Un−−−−−−→A q
′.

On the other hand, if p = p′p for some p′ ∈ Q, then q′ = > by definition of γ3.
Furthermore, there exists q′ ∈ γ(p′, φ) ∩ F for some φ ∈M(Q) with φ J {|q1, . . . , qn|}. A
similar inductive argument to the previous case then shows that p′ U−→A q

′.

Fact C.20. If p U−→A q is nontrivial, then ps U−→A3
qs and ps U−→A3

qp.

Furthermore, if q ∈ F , then either ps U−→A3
> or pp U−→A3

>.

Proof. We proceed by induction on p U−→A q. In the base, p U−→A q because U = a for some

a ∈ Σ, and q ∈ δ(p, a). Thus qs, qp ∈ δ3(ps, a), and hence ps U−→A3
qs and ps U−→A3

qp.

Furthermore, q ∈ F , then > ∈ δ3(ps, a), and hence ps U−→A3
>. In the inductive step, there

are two cases.

• If p U−→A q because U = V ·W and there exists an r ∈ Q with p V−→A r and r W−→A q, then
we can assume without loss of generality that neither of these runs is trivial. By induction,
we then find that ps V−→A3

rs and ps W−→A3
rs, as well as rs W−→A3

qs and rs W−→A3
qp.

Putting this together, we have that ps U−→A3
qs and ps U−→A3

qp.

Furthermore, if q = >, then it suffices to prove that rs W−→A3
> or rp W−→A3

>, which

we obtain from r W−→A q by induction.

• Suppose p U−→A q because there exist q1, . . . , qn ∈ Q such that q ∈ γ(p, {|q1, . . . , qn|}), and

U = U1 ‖ · · · ‖ Un such that for 1 ≤ i ≤ n there exists a q′i ∈ F with qi Ui−→A q
′
i. Since A is

parsimonious, we can assume without loss of generality that none of these runs is trivial.
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We then claim that, for 1 ≤ i ≤ n, there exists a φi = {|qi,1, . . . , qi,ni |} ∈M(Q) such that

{|qi|} J φi, and Ui = Ui,1 ‖ · · · ‖ Ui,ni , such that for 1 ≤ i ≤ ni we have that qi,j
s Ui,j−−→A3

>.

Applying the induction hypothesis to each qi Ui−→A q
′
i ∈ F , there are two cases to consider:

– If qi
s Ui−→A3

>, then we choose ni = 1 and qi,1 = qi and Ui,1 = Ui.

– If qi
p Ui−→A3

>, then by construction of A3 this must be a parallel unit run. Consequently,

there exist qi,1
s, . . . , qi,ni

s ∈ Qs with > ∈ γ3(qi
p, {|qi,1, . . . , qi,ni |}), and Ui = Ui,1 ‖ · · · ‖

Ui,ni such that for 1 ≤ j ≤ ni we have that qi,j
s Ui,j−−→A3

>. By definition of γ3, we then

obtain ψ ∈M(Q) such that γ(qi, ψ)∩F 6= ∅ and ψ J {|qi,1, . . . , qi,ni |}. A straightforward
inductive argument on the definition of J shows that it is transitive; hence, since
{|qi|} J ψ, we have that {|qi|} J {|qi,1, . . . , qi,ni |}.

Using the above, it follows that {|q1, . . . , qn|} J {|q1,1, . . . , qn,nn |}. Hence,

qs, qp ∈ γ3(ps, {|q1,1
s, . . . , qn,nn

s|})

Since U = U1,1 ‖ · · · ‖ Unn , it follows that ps U−→A3
qs and ps U−→A3

qp.

Furthermore, if q ∈ F , then > ∈ γ3(pp, {|q1,1
s, . . . , qn,nn

s|}), and hence pp U−→A3
>.

We are now ready to show that our construction preserves languages. More specifically,
Facts C.19 and C.20 together imply that for p ∈ Q, we have

LA1(q) = LA3(qp) ∪ LA3(qs) ∪

{
LA3(>) q ∈ F
∅ otherwise

To see that our construction preserves fork-acyclicity and that A3 is bounded, one can
show that if p, q ∈ Q are such that ps �A3 q

s, ps �A3 q
p, pp �A3 q

s or pp �A3 q
p, then

p �A3 q. A fork cycle in A3 thus gives rise to a fork cycle in A, which means that if A is
fork-acyclic, then so is A3. Furthermore, the support of a state qs or qp in A3 is contained
in {ps, pp : p ∈ πA(q)} ∪ {>}; since the latter is finite as A is bounded, it follows that A3

must also be bounded.

Appendix D. Lemmas about the syntactic pomset automaton

D.1. Deconstruction lemmas.

Lemma 7.5. Let e1, e2 ∈ T , f ∈ F and U ∈ SP(Σ), with e1 · e2
U−→Σ f (of length `). Then

U = U1 · U2 and there exist f1, f2 ∈ F with ei Ui−→Σ fi for i ∈ {1, 2} (of length at most `).

Proof. We proceed by induction on the length ` of e1 · e2
U−→Σ f . In the base, where ` = 0,

we have f = e1 · e2 (hence e1, e1 ∈ F) and U = 1. We can then choose f1 = e1 and f2 = e2

as well as U1 = U2 = 1, to find that e1
U1−→Σ f1 and e2

U2−→Σ f1, of length zero.

For the inductive step, let e1 · e2
U−→Σ f be of length `+ 1. We find that U = U0 · U ′,

and a g ∈ T such that e1 · e2
U0−→Σ g is a unit run, and g U ′−→Σ f is of length `. If

e1 · e2
U0−→Σ g is a sequential unit run, then U0 = a for some a ∈ Σ, and g ∈ δΣ(e1 · e2, a) =

δΣ(e1, a) # e2 ∪ e1 ? δΣ(e2, a). This gives us two cases to consider.
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• If g ∈ δΣ(e1, a) # e2, then g = g1 · e2 such that g1 ∈ δΣ(e1, a). By induction we find

f1, f2 ∈ F and U ′ = U ′1 ·U ′2 such that g1
U ′1−→Σ f1, and e2

U ′2−→Σ f2, of length at most `. We
choose U1 = U0 · U ′1 and U2 = U ′2 to find U = U0 · U ′ = U0 · U ′1 · U ′2 = U1 · U2, as well as

e1
U1−→Σ f1 of length at most `+ 1, and e2

U2−→Σ f2 of length at most `.
• If g ∈ e1 ? δΣ(e2, a), then first note that e1 ∈ F , and g ∈ δΣ(e2, a). We choose U1 = 1 and
U2 = U as well as f1 = e1 and f2 = f ′ to find that U = U1 · U2 as well as e1

U1−→Σ f1 of

length zero. Lastly, e2
U0−→Σ g U ′−→Σ f ′ = f2, meaning e2

U−→Σ f2 of length at most `+ 1.

The case where e1 · e2
U0−→Σ g is a parallel unit run can be treated similarly.

Lemma 7.6. Let e1, e2 ∈ T , f ∈ F and U ∈ SP(Σ) such that e1 ‖ e2
U−→Σ f . Then

U = U1 ‖ U2, and there exist f1, f2 ∈ F such that ei Ui−→Σ fi for i ∈ {1, 2}.

Proof. If e1 ‖ e2
U−→Σ f is trivial, then U = 1 and e1 ‖ e2 = f ∈ F . Hence, e1, e2 ∈ F ; we

can choose f1 = e1, f2 = e2 and U1 = U2 = 1 to satisfy the claim.
Otherwise, there exist U0, U

′ ∈ SP(Σ) and g ∈ T such that U = V ·W and e1 ‖ e2
V−→Σ g

is a unit run, and g W−→Σ f . We can discount the possibility that e1 ‖ V−→Σ g is a sequential

unit run, because δΣ(e1 ‖ e2, a) = ∅ for all a ∈ Σ. Hence, e1 ‖ e2
V−→Σ g is a parallel unit

run, meaning that V = V1 ‖ · · · ‖ Vn and there exists a φ = {|h1, . . . , hn|} ∈M(T ) such that

g ∈ γΣ(e1 ‖ e1, φ), and for 1 ≤ i ≤ n there exists an h′i ∈ F with hi Vi−→Σ h′i. By definition of
γΣ, it then follows that n = 2 and g = 1 as well as (without loss of generality) e1 = h1 and
e2 = h2. Since g = 1, it must be that g W−→Σ f is trivial, and hence W = 1, meaning that
U = V . We choose f1 = h′1, f2 = h′2, U1 = V1 and U2 = V2 to satisfy the claim.

D.2. Construction lemmas.

Lemma 7.9. Let e1, e2 ∈ T , f1, f2 ∈ F and U, V ∈ SP(Σ) such that e1
U−→Σ f1 and

e2
V−→Σ f2. There exists an f ∈ F with e1 · e2

U ·V−−→Σ f .

Proof. The proof consists of two phases; first, we verify the following.

Fact D.1. We have that e1 · e2
U−→Σ f1 · e2.

Proof. The proof proceeds by induction on the length ` of e1
U−→Σ f1. In the base, where

` = 0 and f1 = e1 as well as U = 1, we the claim holds immediately.
In the inductive step, let e1

U−→Σ f1 be of length `+1. We find e′1 ∈ T and U = U0 ·U ′ such

that e1
U0−→Σ e′1 is a unit run, and e′1

U ′−→Σ f1 is of length `. By induction, e′1 · e2
U ′−→Σ f1 · e2.

If e1
U0−→Σ e′1 is a sequential unit run, then U0 = a for some a ∈ Σ, and e′1 ∈ δΣ(e1, a),

meaning e′1 · e2 ∈ δΣ(e1 · e2, a), hence e1 · e2
U0−→Σ e′1 · e2. We conclude that e1 · e2

U−→Σ f1 · e2.

The case where e1
U0−→Σ e′1 is a parallel unit run is similar.

Next, we note the following.

Fact D.2. There exists an f ∈ F such that f1 · e2
V−→Σ f .

Proof. There are two cases to consider, based on the length of e2
V−→Σ f1.

• If ` = 0, we know that f2 = e2 and V = 1. We can then choose f = f1 · e2.
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• In the inductive step, let e2
V−→Σ f1 be of length `+1. We find e′2 ∈ T and V = V0 ·V ′ such

that e2
V0−→Σ e′2 is a unit run, and e′2

V ′−→Σ f2 is of length `. If e2
V0−→Σ e′2 is a sequential

unit run, then V0 = a for some a ∈ Σ, and e′2 ∈ δΣ(e2, a), and thus e′2 ∈ δΣ(f1 · e2, a).

Hence, f1 · e2
V0−→Σ e′2, meaning f1 · e2

V−→Σ f2; choosing f = f2 satisfies the claim.

The case where e2
V0−→Σ e′2 is a parallel unit run is similar.

Putting these together, we find f ∈ F such that e1 · e2
U ·V−−→Σ f .

Lemma 7.10. Let e1, e2 ∈ T , f1, f2 ∈ F , and U, V ∈ SP(Σ) such that e1
U−→Σ f1 and

e2
V−→Σ f2. Then e1 ‖ e2

U‖V−−−→Σ 1.

Proof. Since 1 ∈ γΣ(e1 ‖ e2, {|e1, e2|}), the claim follows immediately.

D.3. Correctness of the syntactic PA.

Lemma 7.12. Let e, f ∈ T . The following hold:

LΣ(0) = ∅ LΣ(e+ f) = LΣ(e) ∪ LΣ(f) LΣ(e∗) = LΣ(e)∗

LΣ(1) = {1} LΣ(e · f) = LΣ(e) · LΣ(f)

LΣ(a) = {a} LΣ(e ‖ f) = LΣ(e) ‖ LΣ(f)

Proof. We treat the claims case-by-case.

• To show LΣ(0) = ∅, suppose that U ∈ LΣ(0). In that case, 0 U−→Σ e for some e ∈ F . Since

0 6∈ F , this means that 0 U−→Σ e cannot be trivial. In that case, there exists an e′ ∈ T such

that 0 U−→Σ e′ is a unit run. However, this contradicts that δΣ(0, a) = ∅ for all a ∈ Σ, and
γΣ(e, φ) = ∅ for all φ ∈M(T ). Therefore, our assumption that U ∈ LΣ(0) must be false.
We conclude that LΣ(0) = ∅.
• To show LΣ(1) = {1}, suppose that U ∈ LΣ(1), i.e., 1 U−→Σ e for some e ∈ F . By an

argument similar to the previous case, we can argue that 1 U−→Σ e is trivial, and hence

U = 1. The other inclusion follows from the fact that 1 ∈ F and 1 1−→Σ 1.

• To show LΣ(a) = {a}, suppose that U ∈ LΣ(a), i.e., a U−→Σ e for some e ∈ F . Since a 6∈ F ,

we know a U−→Σ e must be non-trivial. This means that we can write U = U0 · U ′, and

there exists an f ∈ T such that a U0−→Σ f is a unit run, and f U ′−→Σ e. A quick glance at

δΣ and γΣ then tells us that f = 1. By the previous case, we know that f U ′−→Σ e must

be trivial; hence U ′ = 1 and f = e. Indeed, a U0−→Σ f must be a sequential unit run, for
γΣ(a, φ) = ∅ for all φ ∈M(T ). This tells us that U = b and f ∈ δΣ(a, b) for some b ∈ Σ;
by definition of δΣ, it follows that b = a.

For the other inclusion, let U = a; then a a−→Σ 1 immediately, and hence a ∈ LΣ(a).

• To show LΣ(e+ f) = LΣ(e) ∪ LΣ(f), suppose U ∈ LΣ(e+ f), i.e., e+ f U−→Σ g for g ∈ F .

By Lemma 7.4, we find g′ ∈ F with e U−→Σ g′ or f U−→Σ g′, and hence U ∈ LΣ(e) ∪ LΣ(f).

For the other inclusion, suppose that U ∈ LΣ(e). We then have that e U−→Σ g for

some g ∈ F . By Lemma 7.8, there exists a g′ ∈ F such that e + f U−→Σ g′, and hence
U ∈ LΣ(e+ f). The case where U ∈ LΣ(f) can be treated similarly.
• To show LΣ(e · f) = LΣ(e) · LΣ(f), suppose that U ∈ LΣ(e · f), i.e., e · f U−→Σ g for some

g ∈ F . By Lemma 7.5, we find g0, g1 ∈ F such that U = U0 · U1 as well as e U0−→Σ g0 and

f U1−→Σ g1. This means that U0 ∈ LΣ(e) and U1 ∈ LΣ(f), and thus U ∈ LΣ(e) · LΣ(f).
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If U ∈ LΣ(e) · LΣ(f), then U = U0 · U1 such that U0 ∈ LΣ(e) and U1 ∈ LΣ(f). This
means that there exist g0, g1 ∈ F such that e U0−→Σ g0 and f U−→Σ g1. By Lemma 7.9, there

exists a g ∈ F such that e · f U−→Σ g, and hence U ∈ LΣ(e · f).

• To show LΣ(e ‖ f) = LΣ(e) ‖ LΣ(f), suppose U ∈ LΣ(e ‖ f), i.e., e ‖ f U−→Σ g for some
g ∈ F . By Lemma 7.6, we find g1, g2 ∈ F and U1, U2 ∈ SP(Σ) such that U = U1 ‖ U2 as
well as e1

U1−→Σ g1 and e2
U2−→Σ g2. It then follows that U = U1 ‖ U2 ∈ LΣ(e) ‖ LΣ(f).

If U ∈ LΣ(e) ‖ LΣ(f), then U = U1 ‖ U2 such that U1 ∈ LΣ(e) and U2 ∈ LΣ(f). This
means that there exist g1, g2 ∈ F such that e U1−→Σ g1 and f U2−→Σ g2. By Lemma 7.10, we

find that e ‖ f U−→Σ 1 ∈ F , and hence U ∈ LΣ(e ‖ f).

• To show LΣ(e∗) = LΣ(e)∗, suppose U ∈ LΣ(e∗), i.e., e∗ U−→Σ f for f ∈ F . By Lemma 7.7,

we find that U = U1 · · ·Un and f1, . . . , fn ∈ F such that for 1 ≤ i ≤ n we have e Ui−→Σ fi.
Hence, we know for 1 ≤ i ≤ n that Ui ∈ LΣ(e), and therefore U = U1 · · ·Un ∈ LΣ(e)∗.

For the other direction, let U ∈ LΣ(e)∗. Then we can write U = U1 · · ·Un such that for

1 ≤ i ≤ n it holds that Ui ∈ LΣ(e). We find for 1 ≤ i ≤ n an fi ∈ F such that e Ui−→Σ fi.

By Lemma 7.11, we find an f ∈ F such that e∗ U−→Σ f , and hence U ∈ LΣ(e∗).

Lemma 7.13. For all e ∈ T , we have LΣ(e) = JeK.

Proof. The proof proceeds by induction on the structure of e. In the base, we need to
consider the cases where e ∈ {0, 1} ∪ Σ, all of which go through by Lemma 7.12.

For the inductive step, there are four cases. We argue the case where e = e1 + e2; the
other cases are similar. Using Lemma 7.12 and the induction hypothesis, we can derive that

LΣ(e1 + e2) = LΣ(e1) ∪ LΣ(e2) = Je1K ∪ Je2K = Je1 + e2K

Lemma 7.14. The syntactic pomset automaton is fork-acyclic.

Proof. For fork-acyclicity, we define the following. For e ∈ T , we define depth(e) as follows:

depth(0) = 0 depth(e+ f) = max(depth(e), depth(f)) depth(e∗) = depth(e)

depth(1) = 0 depth(e ‖ f) = max(depth(e), depth(f)) + 1

depth(a) = 0 depth(e · f) = max(depth(e), depth(f))

We now claim that if e �Σ f , then depth(e) ≤ depth(f). To see this, it suffices to prove the
claim for the rules that generate �Σ; this gives us three cases to consider.

(i) If e �Σ f because there exists an a ∈ Σ with e ∈ δΣ(f, a), we proceed by induction on
f . In the base, f ∈ Σ and e = 1; but then depth(e) = 0 ≤ depth(f) immediately.

For the inductive step, there are four cases to consider.
• If f = f1 + f2, then assume without loss of generality that e ∈ δΣ(f1, a). By

induction, depth(e) �Σ depth(f1); since depth(f1) ≤ depth(f), the claim follows.
• If f = f1 · f1, then there are two subcases to consider.

– If e ∈ δΣ(f1, a) #f2, then e = f ′1 ·f2 with f ′1 ∈ δΣ(f1, a). By induction, depth(f ′1) ≤
depth(f1). We then know that

depth(e) = max(depth(f ′1), depth(f2)) ≤ max(depth(f1), depth(f2)) = depth(f)

– If e ∈ f1 ? δΣ(f2, a), then e ∈ δΣ(f2, a). By induction, depth(e) ≤ depth(f2). Since
depth(f2) ≤ depth(f), the claim follows.

• We can disregard the case where f = f1 ‖ f2, for δΣ(f, a) = ∅.
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• If f = f∗1 , then e = f ′1 · f∗1 with f ′1 ∈ δΣ(f1, a). By induction, depth(f ′1) ≤ depth(f1).
We then know that depth(e) = max(depth(f ′1), depth(f1)) ≤ depth(f1) = depth(f).

(ii) If e �Σ f because there exists a φ ∈M(T ) with e ∈ γΣ(f, φ), we proceed by induction
on f . In the base, where f ∈ {0, 1}∪Σ, the claim holds vacuously, because γΣ(f, φ) = ∅.

For the inductive step, all cases except the one for parallel composition are similar to the
argument above. Now, if f = f1 ‖ f2, then e = 1, and hence depth(e) = 0 ≤ depth(f).

(iii) If e �Σ f because there exists a φ ∈M(T ) with e ∈ φ and γΣ(f, φ) 6= ∅, we proceed by
induction on f , showing depth(e) < depth(f). In the base, the claim holds vacuously.

For the inductive step, there are four cases to consider.
• If f = f1 + f2, then assume without loss of generality that γΣ(f1, φ) 6= ∅. By

induction, we have depth(e) < depth(f1). Since depth(f1) ≤ depth(f), we are done.
• If f = f1 · f2, then there are two subcases to consider.

– If γΣ(f1, φ) # f2 6= ∅, then γΣ(f1, φ) 6= ∅. By induction, we have that depth(e) <
depth(f1). Since depth(f1) ≤ depth(f), we are done.

– If f1 ? γΣ(f2, φ) 6= ∅, then γΣ(f2, φ) 6= ∅. By induction, we have that depth(e) <
depth(f1). Since depth(f1) ≤ depth(f), we are done.

• If f = f1 ‖ f2, then without loss of generality φ = {|f1, f2|} and e = f1. By definition
of depth(), we then find that depth(e) = depth(f1) < depth(f).
• If f = f∗1 , then γΣ(f1, φ) 6= ∅. By induction, depth(e) < depth(f1). Since depth(f1) =
depth(f), we are done.

Now, if e, f ∈ T such that there exists a φ ∈ T with γΣ(e, φ) 6= ∅ and f ∈ φ, then
first of all f �Σ e by definition. Suppose towards a contradiction that e �Σ f ; then
depth(e) ≤ depth(f) by the above. However, we also know that depth(f) < depth(e) by (iii)
above — a contradiction. We can therefore conclude that e 6�Σ f , and hence f ≺Σ e.

Lemma 7.15. The syntactic pomset automaton is bounded.

Proof. We should show that for e ∈ T , it holds that πΣ(e) is finite. Since πΣ(e) is the
smallest closed set that contains e, it suffices to find a finite closed set S(e) such that
e ∈ S(e); since πΣ(e) ⊆ S(e) by definition, the claim then follows. In particular, to show
that S(e) is support-closed, it suffices to verify that for f ∈ S(e) the following hold:

• For all a ∈ Σ, we have δΣ(e, a) ⊆ S(e).
• For all φ ∈M(T ), we have γΣ(e, φ) ⊆ S(e).
• If e ∈ φ ∈M(T ) and γΣ(e, φ) 6= ∅, then e ∈ S(e).

We proceed by induction on e. In the base, there are two cases to consider.

• If e ∈ {0, 1}, then we choose S(e) = {e}. Note that δΣ(e, a) = ∅ for all a ∈ Σ, and
γΣ(e, φ) = ∅ for all φ ∈M(T ) — hence, the three conditions above hold vacuously.
• If e = a for some a ∈ Σ, then we choose S(e) = {1, a}. To see that S(e) is support-closed,

we inspect the derivatives of a; the derivatives for 1 satisfy the right conditions by the
previous case. First, for all b ∈ Σ, we have that δΣ(a, b) ⊆ {1}, and hence δΣ(b, a) ⊆ S(e).
Second, for all φ ∈M(T ) we have that γΣ(a, φ) = ∅, and hence γΣ(a, φ) ⊆ S(e). The case
where f ∈ φ ∈M(T ) with γΣ(a, φ) 6= ∅ cannot occur.

For the inductive step, there are four cases to consider.

• If e = e1 + e2, then we choose

S(e) = πΣ(e1) ∪ πΣ(e2) ∪ {e}



19:52 T. Kappé, P. Brunet, B. Luttik, A. Silva, and F. Zanasi Vol. 17:3

First, we note that S(e) is finite by induction. To see that S(e) is closed, it suffices to
consider the derivatives of {e}, since πΣ(e1) and πΣ(e2) are closed by definition.
– For all a ∈ Σ, we have that δΣ(e1 + e2, a) = δΣ(e1, a)∪ δΣ(e2, a). Now, since δΣ(e1, a) ⊆
πΣ(e1) and δΣ(e2, a) ⊆ πΣ(e2), we find that δΣ(e1 + e2, a) ⊆ S(e) as well.

– For all φ ∈M(T ), we have that γΣ(e1 + e2, φ) = γΣ(e1, φ) ∪ γΣ(e2, φ). By an argument
similar to the above, we find that γΣ(e1 + e2, φ) ⊆ S(e).

– If f ∈ φ ∈M(T ) such that γΣ(e1 + e2, φ) 6= ∅, then either γΣ(e1, φ) 6= ∅ or γΣ(e2, φ) 6= ∅.
Hence, either γΣ(e1, φ) 6= ∅ or γΣ(e2, φ) 6= ∅, and hence f ∈ πΣ(e1) ∪ πΣ(e2) ⊆ S(e).

• If e = e1 · e2, then we choose

S(e) = πΣ(e1) # e2 ∪ e1 ? πΣ(e2) ∪ πΣ(e1)

First, note that S(e) is finite by induction. Also, e ∈ S(e), because e1 ∈ πΣ(e1). To see
that S(e) is support-closed, it suffices to consider the elements of the first set above, since
e1 ? πΣ(e2) and πΣ(e1) are already support-closed. Let e′ = e′1 · e2 for some e′1 ∈ πΣ(e1).
– For all a ∈ Σ, we have that

δΣ(e′1 · e2, a) = δΣ(e′1, a) # e1 ∪ e′1 ? δΣ(e2, a)

Since δΣ(e′1, a) · e1 ⊆ πΣ(e1) and δΣ(e2, a) ⊆ πΣ(e2), the claim then holds.
– For all φ ∈M(T ), we can show that γΣ(e′, φ) again occurs in S(e), by a similar argument.
– If f ∈ φ ∈M(T ) such that γΣ(e′, φ) 6= ∅, then γΣ(e′1, φ) #e2 6= ∅, or e′1 ?γΣ(e2, φ) 6= ∅. In

the former case, f ∈ πΣ(e′1) ⊆ πΣ(e1) ⊆ S(e), while in the latter case f ∈ πΣ(e2) ⊆ S(e).
• If e = e1 ‖ e2, then we choose

S(e) = {e1 ‖ e2, 1} ∪ πΣ(e1) ∪ πΣ(e2)

We again have that S(e) is finite by induction. To see that S(e) is support-closed, it
suffices to consider the derivatives of e1 ‖ e2.
– For all a ∈ Σ, we have that δΣ(e1 ‖ e2, a) = ∅ ⊆ S(e).
– For φ ∈M(T ), we have that γΣ(e1 ‖ e2, φ) ⊆ {1} ⊆ S(e) by definition.
– For f ∈ φ ∈ M(T ) such that γΣ(e1, ‖ e2, φ) 6= ∅, we have that φ = {|e1, e2|}. In that

case, f ∈ πΣ(e1) or f ∈ πΣ(e2).
• If e = e∗1, then we choose

S(e) = πΣ(e1) # e∗1 ∪ πΣ(e1) ∪ {e∗1}

First, we note that S(e) is again finite by induction. To see that S(e) is support-closed, it
suffices to consider πΣ(e1) # e∗1 ∪ {e∗1}. To this end, let e′ = e′1 · e∗1 with e′1 ∈ πΣ(e1).
– For all a ∈ Σ, we have that

δΣ(e′1 · e∗1, a) = δΣ(e′1, a) # e∗1 ∪ e1 ? δΣ(e∗1, a)

⊆ δΣ(e′1, a) # e∗1 ∪ δΣ(e∗1, a)

= δΣ(e′1, a) # e∗1 ∪ δΣ(e1, a) # e∗1
⊆ πΣ(e1) # e∗1 ⊆ S(e)

Furthermore, δΣ(e∗1, a) ⊆ S(e) by a similar argument.
– If φ ∈M(T ), then γΣ(e′1 · e∗1, φ) ⊆ S(e) and γΣ(e∗1, φ) ⊆ S(e) by a similar argument.
– If f ∈ φ ∈M(T ) and γΣ(e′1 ·e∗1, φ) 6= ∅, then γΣ(e′1, φ) 6= ∅, hence f ∈ πΣ(e′1) ⊆ πΣ(e1) ⊆
S(e). When γΣ(e∗1, φ) 6= ∅, we have that f ∈ S(e) by a similar argument.
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Appendix E. Lemmas about expressions to automata

Lemma 8.1. Let p ∈ Q′ and r ∈ Q. Now U ∈ JeprK if and only if p U−→A r is a unit run.

Proof. For the implication from left to right, suppose that U ∈ JeprK; we have two cases:

• If U = a such that r ∈ δ(p, a), then p U−→A r is a sequential unit run immediately.
• If s1, . . . , sn ∈ Q with U ∈ Jes1 ‖ · · · ‖ esnK and r ∈ γ(p, {|s1, . . . , sn|}), then U = U1 ‖ · · · ‖
Un such that for all 1 ≤ i ≤ n we have Ui ∈ JesiK. By the main induction hypothesis we

have for each 1 ≤ i ≤ n an s′i ∈ F with si Ui−→A s
′
i. Hence p U−→A r is a parallel unit run.

For the converse implication, there are two cases to consider.

• If p U−→A r is a sequential unit run, then U = a for some a ∈ Σ and r ∈ δ(p, a). In that
case U ∈ JeprK by construction.

• If p U−→A r is a parallel unit run, then U = U1 ‖ · · · ‖ Un and there exist s1, . . . , sn ∈ Q
and s′1, . . . , s

′
n ∈ F such that for 1 ≤ i ≤ n it holds that si Ui−→A s′i, and furthermore

r ∈ γ(p, {|s1, . . . , sn|}). By the main induction hypothesis, we have that Ui ∈ JesiK for
1 ≤ i ≤ n, and thus U ∈ JU1 ‖ · · · ‖ UnK. We can then conclude that U ∈ JeprK again.
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