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Abstract. We propose a set theory strong enough to interpret powerful type theories
underlying proof assistants such as LEGO and also possibly Coq, which at the same time
enables program extraction from its constructive proofs. For this purpose, we axiomatize
an impredicative constructive version of Zermelo-Fraenkel set theory IZF with Replacement
and ω-many inaccessibles, which we call IZFRω. Our axiomatization utilizes set terms, an
inductive definition of inaccessible sets and the mutually recursive nature of equality and
membership relations. It allows us to define a weakly-normalizing typed lambda calculus
corresponding to proofs in IZFRω according to the Curry-Howard isomorphism principle.
We use realizability to prove the normalization theorem, which provides a basis for program
extraction capability.

1. Introduction

Since the advent of proofs-as-programs paradigm, also called propositions-as-types or
Curry-Howard isomorphism, many systems with program extraction capability have been
built. Lego [LP92], Agda/Alfa [Coq, Hal], Coq [The04], Nuprl [C+86], Minlog [BBS+98] —
to name a few. Some are quite powerful — for example Coq can interpret an intuitionistic
version of Zermelo’s set theory [Wer97]. With such power at hand, these systems have the
potential of becoming very useful tools.

There is, however, one problem they all share, namely their foundational basis. In order
to use Coq or Nuprl, one has to master the ways of types, a setting quite different from
the set theory, the standard framework for doing mathematics. A newcomer to this world,
presented even with Π and Σ types emulating familiar universal and existential quantifiers,
is likely to become confused. The fact that the consistency of the systems is usually justified
by a normalization theorem in one form or other, does not make the matters easier. Even
when set-theoretic semantics is provided, it does not help much, given that the translation of
“the stamement ∀x : nat, φ(x) is provable” is “the set Πn∈N[[φ[x := n]]] is inhabited”, instead
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of expected “for all x ∈ N, φ(x) holds”. The systems which are not based on type theory
share the problem of unfamiliar foundations. This is a serious shortcoming preventing the
systems from becoming widely used, as the initial barrier to cross is set quite high.

In [Moc06a] we have made the first step to provide a solution to this problem, by pre-
senting a framework enabling extraction of programs from proofs, while using the standard,
natural language of set theory. That framework was based on the intuitionistic set theory
IZF with Replacement, called IZFR. Roughly speaking, IZFR is what remains from Zermelo-
Fraenkel set theory ZF after carefully removing the excluded middle, while retaining the
axioms of Power Set and unrestricted Separation. The detailed exposition can be found
in Section 3. For more information on IZF and bibliography see [Š85, Bee85]. We have
defined a lambda calculus λZ corresponding to proofs in an intensional version of IZFR and
using realizability we have shown that λZ weakly normalizes. By employing an inner model
of extensional set theory, we have used the normalization result to show that IZFR enjoys
the standard properties of constructive theories — the disjunction, numerical existence, set
existence and term existence properties (DP, NEP, SEP and TEP). These properties can be
used to extract programs from proofs [CM06]. All of them, apart from SEP, are essential
to the extraction process. However, even though IZFR is quite powerful, it is unclear if
it is as strong as type theories underlying the systems of Coq and LEGO, Calculus of In-
ductive Constructions (CIC) and Extended Calculus of Constructions (ECC), as all known
set-theoretical interpretations use ω-many strongly inaccessible cardinals [Wer97, Acz99].

We therefore axiomatize IZF with Replacement and ω-many inaccessible sets, which we
call IZFRω. Our axiomatization uses an inductive definition of inaccessible sets. IZFRω ex-
tended with excluded middle is equivalent to ZF with ω-many strong inaccessible cardinals.
By utilizing the mutually recursive nature of equality and membership relation, we avoid
the need for the inner model and define a lambda calculus λZω corresponding directly to
proofs in IZFRω. We prove its normalization using realizability. As in [Moc06a], normaliza-
tion can be used to show DP, NEP, SEP and TEP. While DP and NEP have been proved
for even stronger theories in [FS84], our method is the first to provide the proof of TEP
and SEP for intuitionistic set theory with inaccessible sets.

Inaccessible sets perform a similar function in a constructive setting to strongly inac-
cessible cardinals in the classical world and universes in type theories. They are “large”
sets/types, closed under certain operations ensuring that they give rise to models of set/type
theories. The closure conditions largely coincide in both worlds and an inaccessible can be
used to provide a set-theoretic intepretation of a universe [Wer97, Acz99]. Both CIC and
ECC have ω-many universes. By results of Aczel [Acz99], IZFRω is strong enough to inter-
pret ECC. It is reasonable to expect that CIC could be interpreted too, as the inductive
types in CIC need to satisfy positivity conditions and sufficiently strong inductive definitions
are available in IZFRω due to the presence of the Power Set and unrestricted Separation
axioms. Indeed, Werner’s set-theoretic interpretation [Wer97] of a large fragment of CIC
uses only the existence of inductively-defined sets in the set-theoretic universe to interpret
inductively-defined types.

Our normalization result makes it possible to extract programs from proofs, using
techniques described in [CM06]. Thus IZFRω has all the proof-theoretic power of LEGO
and likely Coq, uses familiar set-theoretic language and enables program extraction from
proofs. This makes it an attractive basis for a powerful and easy to use theorem prover.

This paper is mostly self-contained. We assume some familiarity with set theory, proof
theory and programming languages terminology, found for example in [Kun80, SU06, Pie02].
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The paper is organized as follows. In section 2 we present the intuitionistic first-order
logic. We axiomatize IZF with Replacement and ω-many inaccessibles in sections 3 and 4.
In section 5 we define the calculus λZω and prove its standard properties. Realizability is
defined in section 6 and used to prove normalization in section 7. We describe related work
in section 8.

2. Intuitionistic first-order logic

We start with a detailed presentation of the intuitionistic first-order logic (IFOL). We
use a natural deduction style of proof rules. The terms will be denoted by letters t, s, u.
The logical variables will be denoted by letters a, b, c, d, e, f . The notation ~a denotes a finite
sequence, treated as a set when convenient. The i-th element of a sequence is denoted by
ai. We consider α-equivalent formulas equal. The capture-avoiding substitution is defined
as usual; the result of substituting s for a in a term t is denoted by t[a := s]. We write
t[a1, . . ., an := s1, . . ., sn] to denote the result of substituting simultaneously s1, . . ., sn for
a1, . . ., an. Contexts, denoted by Γ, are sets of formulas. The free variables of a formula
φ, denoted by FV (φ), are defined as usual. The free variables of a context Γ, denoted by
FV (Γ), are the free variables of all formulas in Γ. The notation φ(~a) means that all free
variables of φ are among ~a. The proof rules are as follows:

Γ, φ ⊢ φ

Γ ⊢ φ→ ψ Γ ⊢ φ

Γ ⊢ ψ

Γ, φ ⊢ ψ

Γ ⊢ φ→ ψ

Γ ⊢ φ Γ ⊢ ψ

Γ ⊢ φ ∧ ψ

Γ ⊢ φ ∧ ψ

Γ ⊢ φ

Γ ⊢ φ ∧ ψ

Γ ⊢ ψ
Γ ⊢ φ

Γ ⊢ φ ∨ ψ

Γ ⊢ ψ

Γ ⊢ φ ∨ ψ

Γ ⊢ φ ∨ ψ Γ, φ ⊢ ϑ Γ, ψ ⊢ ϑ

Γ ⊢ ϑ
Γ ⊢ φ

Γ ⊢ ∀a. φ
a /∈ FV (Γ)

Γ ⊢ ∀a. φ

Γ ⊢ φ[a := t]
Γ ⊢ ⊥
Γ ⊢ φ

Γ ⊢ φ[a := t]

Γ ⊢ ∃a. φ

Γ ⊢ ∃a. φ Γ, φ ⊢ ψ

Γ ⊢ ψ
a /∈ FV (Γ) ∪ {ψ}

Negation in IFOL is an abbreviation: ¬φ ≡ φ → ⊥. So is the symbol ↔: φ ↔ ψ ≡
(φ → ψ ∧ ψ → φ). Note that IFOL does not contain equality. The excluded middle rule
added to IFOL makes it equivalent to the classical first-order logic without equality.

Lemma 2.1. For any formula φ, φ[a := t][b := u[a := t]] = φ[b := u][a := t], for b /∈ FV (t).

Proof. Straightforward structural induction on φ.

3. IZF
−
Rω

In this section we introduce our first approximation to IZFR, called IZF−
Rω, which is

IZFR from [Moc06a] extended with the axioms postulating the existence of inaccessible
sets. We start by presenting the axioms of IZFR. It is a first-order theory. When extended
with excluded middle, it is equivalent to ZF. The signature consists of two binary relational
symbols ∈,= and function symbols used in the axioms below. The symbols 0 and S(a)
are abbreviations for ∅ and

⋃
{a, {a, a}}. Bounded quantifiers and the quantifier ∃!a (there

exists exactly one a) are also abbreviations defined in the standard way.
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• (EXT) ∀a, b. a = b↔ ∀c. c ∈ a↔ c ∈ b

• (Lφ) ∀a, b, ~f . a = b ∧ φ(a, ~f ) → φ(b, ~f )
• (EMPTY) ∀c. c ∈ ∅ ↔ ⊥
• (PAIR) ∀a, b∀c. c ∈ {a, b} ↔ c = a ∨ c = b
• (INF) ∀c. c ∈ ω ↔ c = 0 ∨ ∃b ∈ ω. c = S(b)

• (SEPφ) ∀~f∀a∀c. c ∈ Sφ(a, ~f) ↔ c ∈ a ∧ φ(c, ~f)
• (UNION): ∀a∀c. c ∈

⋃
a↔ ∃b ∈ a. c ∈ b

• (POWER) ∀a∀c. c ∈ P (a) ↔ ∀b. b ∈ c→ b ∈ a

• (REPLφ) ∀~f, a∀c. c ∈ Rφ(a, ~f) ↔ (∀x ∈ a∃!y. φ(x, y, ~f)) ∧ (∃x ∈ a. φ(x, c, ~f ))

• (INDφ) ∀~f.(∀a.(∀b ∈ a. φ(b, ~f )) → φ(a, ~f)) → ∀a. φ(a, ~f)

The axioms (SEPφ), (REPLφ), (INDφ) and (Lφ) are axiom schemas — there is one
axiom for each formula φ. Note that there are terms Sφ and Rφ for each instance of the
Separation and Replacement axioms. Formally, terms and formulas are defined by mutual
induction:

φ ::= t ∈ t | t = t |. . . t ::= a | {t, t} | Sφ(t,~t) | Rφ(t,~t) |. . .

The axioms (EMPTY), (PAIR), (INF), (SEPφ), (UNION), (POWER) and (REPLφ) all
assert the existence of certain classes and have the same form: ∀~a.∀c. c ∈ tA(~a) ↔ φA(c,~a),
where tA is a function symbol and φA a corresponding formula for the axiom (A). For
example, for (POWER), tPOWER is P and φPOWER is ∀b. b ∈ c → b ∈ a. We reserve the
notation tA and φA to denote the term and the corresponding formula for the axiom (A).

The terms Sφ(t,~t) and Rφ(t,~t) could be displayed as {c ∈ t | φ(c,~t)} and {c | (∀x ∈

t∃!yφ(x, y,~t)) ∧ (∃x ∈ t. φ(x, c,~t))}, respectively.

3.1. On the axioms of IZFR.

3.1.1. The Leibniz axiom. The Leibniz axiom (Lφ) is usually not present among the axioms
of set theories, as it is assumed that logic contains equality and the axiom is a proof rule.
We include (Lφ) among the axioms of IZFR, because there is no obvious way to add it to
intuitionistic logic in the Curry-Howard isomorphism context, as its computational content
is unclear.

3.1.2. The Replacement axiom. A more familiar formulation of Replacement could be: “For

all ~F ,A, if for all x ∈ A there is exactly one y such that φ(x, y, ~F ) holds, then there is a

set D such that ∀x ∈ A∃y ∈ D. φ(x, y, ~F ) and for all d ∈ D there is x ∈ A such that

φ(x, d, ~F )”. Let this formulation of Replacement be called (REPL0φ), let (Rφ) be the
term-free statement of our Replacement axiom, that is:

(Rφ) ≡ ∀~f, a∃!d. ∀c. c ∈ d↔ (∀x ∈ a∃!y. φ(x, y, ~f )) ∧ (∃x ∈ a. φ(x, c, ~f ))

and let IZ denote IZFR without the Replacement axiom and corresponding function symbols.
To justify our definition of Replacement, we prove the following two lemmas:

Lemma 3.1. IZ ⊢ (Rφ) →(REPL0φ).
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Proof. Assume (Rφ), take any ~F ,A and suppose that for all x ∈ A there is exactly one y

such that φ(x, y, ~F ). Let D be the set we get by applying (Rφ). Take any x ∈ A, then

there is y such that φ(x, y, ~F ), so y ∈ D. Moreover, if d ∈ D then there is x ∈ A such that

φ(x, d, ~F ). This shows (REPL0φ).

Lemma 3.2. IZ ⊢ (REPL0φ) →(Rφ).

Proof. Assume (REPL0φ), take any ~F ,A and consider the set

B ≡ {a ∈ A | ∀x ∈ A∃!y. φ(x, y, ~F )}.

Then for all b ∈ B there is exactly one y such that φ(b, y, ~F ). Use (REPL0φ) to get a set
D. Then D is the set we are looking for. Indeed, if d ∈ D, then there is b ∈ B such that

φ(b, d, ~F ) and so by the definition of B, ∀x ∈ A∃!y. φ(x, y, ~F ) and b ∈ A. On the other

hand, take any d and suppose that ∀x ∈ A∃!y. φ(x, y, ~F ) and there is x ∈ A such that

φ(x, d, ~F ). Then x ∈ B, so there is y′ ∈ D such that φ(x, y′, ~F ). But y′ must be equal to d,
so d ∈ D. As it is trivial to see that D is unique, the claim follows.

3.1.3. The terms of IZFR. The original presentation of IZF with Replacement presented in
[Myh73] is term-free. Let us call it IZFR0. We will now show that IZFR is a definitional
extension of IZFR0.

In IZFR0 for each axiom (A) among the Empty Set, Pairing, Infinity, Separation, Re-
placement, Union and Power Set axioms, we can derive ∀~a∃!d∀c. c ∈ d ↔ φA(c,~a), using
Lemma 3.2 in case of the Replacement axiom. We therefore definitionally extend IZFR0,
by introducing for each such (A) the corresponding new function symbol tA(~a) along with
the defining axiom ∀~a∀c. c ∈ tA(~a) ↔ φA(c,~a).

We then need to provide the Separation and Replacement function symbols Rφ and Sφ,
where φ may contain the new terms. To fix our attention, consider the Separation axiom.
For some function symbol Sφ, we need to have:

∀~f, a∀c. c ∈ Sφ(a, ~f) ↔ c ∈ a ∧ φ(c, ~f )

As all terms present in φ were introduced via a definitional extension of IZFR0, there is a
term-free formula φ′ equivalent to φ. We therefore have:

∀~f, a∀c. c ∈ Sφ′(a, ~f) ↔ c ∈ a ∧ φ′(c, ~f )

and consequently:

∀~f, a∀c. c ∈ Sφ′(a, ~f) ↔ c ∈ a ∧ φ(c, ~f )

We define Sφ to be Sφ′ . Similarly, we can define Rφ to be Rφ′ . After iterating this process
ω-many times, we obtain all instances of terms and axioms (A) present in IZFR.

It remains to derive the Leibniz and ∈-Induction axioms for formulas with terms. For
the Leibniz axiom, take any A,B, ~F and suppose A = B and φ(A, ~F ). Then there is a

term-free formula φ′ equivalent to φ, so also φ′(A, ~F ). By the Leibniz axiom in IZFR0,

φ′(B, ~F ), so also φ(B, ~F ).

For the ∈-Induction axiom, take any ~F and suppose:

∀a. (∀b ∈ a. φ(b, ~F )) → φ(a, ~F )
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Taking φ′ to be the term-free formula equivalent to φ, we get:

∀a. (∀b ∈ a. φ′(b, ~F )) → φ′(a, ~F )

By ∈-Induction in IZFR0, we get ∀a. φ′(a, ~F ), thus also ∀a. φ(a, ~F ).

3.2. Inaccessible sets. To extend IZFR with inaccessible sets, we add a family of axioms
(INACi) for i > 0. We call the resulting theory IZF−

Rω. The axiom (INACi) asserts the
existence of the i-th inaccessible set, denoted by a new constant symbol Vi, and is defined
as follows:

(INACi) ∀c. c ∈ Vi ↔ φi1(c, Vi) ∧ ∀d. φi2(d) → c ∈ d

Following the conventions set up for IZFR, φINACi
(c) is φi1(c, Vi) ∧ ∀d. φi2(d) → c ∈ d. The

formula φi1(c, d) intuitively sets up conditions for c being a member of Vi, while φ
i
2(d) says

what it means for d to be inaccessible. To streamline the definition, we set V0 to abbreviate
ω.

Definition 3.3. The formula φi1(c, Vi) for i > 0 is a disjunction of the following five clauses:

(1) c = Vi−1

(2) there is a ∈ Vi such that c ∈ a.
(3) there is a ∈ Vi such that c is a union of a.
(4) there is a ∈ Vi such that c is a power set of a.
(5) there is a ∈ Vi such that c is a function from a to Vi.

Definition 3.4. The formula φi2(d) for i > 0 is a conjunction of the following five clauses:

(1) Vi−1 ∈ d.
(2) ∀e, f. e ∈ d ∧ f ∈ e→ f ∈ d.
(3) ∀e ∈ d.

⋃
e ∈ d.

(4) ∀e ∈ d. P (e) ∈ d.
(5) ∀e ∈ d. ∀f ∈ e→ d. f ∈ d, where e→ d denotes the set of all functions from e to d.

Briefly, the i-th inaccessible set is the smallest transitive set containing Vi−1 and closed
under unions, power sets and taking functions from its elements into itself. It is easy to see
that IZF−

Rω+ EM is equivalent to ZF with ω-many strongly inaccessible cardinals. For a
theory T , let M(T ) denote a sentence “T has a model”. To show that the set Vi defined by
(INACi) behaves as an inaccessible set in IZF−

Rω we prove:

Theorem 3.5 (IZF−
Rω). For all i > 0, Vi |=IZFR+ M(IZFR) + M(IZFR+ M(IZFR)) + . . .

(i times).

Proof. By Clause 2 in the Definition 3.3, V1 is transitive, so the equality and membership
relations are absolute. Clause 1 gives us ω ∈ V1 and since its definition is ∆0, V1 |=(INF).
Clauses 3 and 4 provide the (UNION) and (POWER) axioms. Transitivity then gives (SEP)
and (PAIR), while Clause 5, thanks to Lemma 3.2, gives (REPLφ). The existence of the
empty set follows by (INF) and (SEP). For the Induction axiom, we need to show:

∀~f ∈ Vi. (∀a ∈ Vi. (∀b ∈ Vi. b ∈ a→ φVi(b, ~f)) → φVi(a, ~f)) → ∀a ∈ Vi.φ
Vi(a, ~f)

Take any ~F ∈ Vi. It suffices to show that:

(∀a. a ∈ Vi → (∀b. b ∈ Vi → b ∈ a→ φVi(b, ~F )) → φVi(a, ~F )) → ∀a. a ∈ Vi → φVi(a, ~F )
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This is equivalent to:

(∀a. (∀b. b ∈ a→ b ∈ Vi → φVi(b, ~F )) → a ∈ Vi → φVi(a, ~F )) → ∀a. a ∈ Vi → φVi(a, ~F )

But this is the instance of the induction axiom for the formula a ∈ Vi → φVi(a, ~f).
Thus V1 |=IZFR. Since V1 ∈ V2, V2 |= IZFR+ M(IZFR). Since V2 ∈ V3, V3 |=IZFR+

M(IZFR+ M(IZFR)). Proceeding in this manner by induction we get the claim.

4. IZFRω

We now present our final axiomatization of IZF with Replacement and inaccessible
sets, which we call IZFRω. The advantage of this axiomatization over the previous one is
that equality and membership are defined in terms of each other, instead of being taken for
granted and axiomatized with Extensionality and Leibniz axioms. This trick, which amounts
to interpreting an extensional set theory in an intensional one, has already been used by
Friedman in [Fri73]. As we shall see later, this makes it possible to prove a normalization
theorem directly for the theory, thus avoiding the need for the detour via the class of
transitively-L-stable sets used in [Moc06a].

The signature of IZFRω consists of three relational symbols: ∈I ,∈,= and terms of
IZF−

Rω. The axioms of IZFRω are as follows:

• (IN) ∀a, b. a ∈ b↔ ∃c. c ∈I b ∧ a = c
• (EQ) ∀a, b. a = b↔ ∀d. (d ∈I a→ d ∈ b) ∧ (d ∈I b→ d ∈ a)

• (INDφ) ∀~f.(∀a.(∀b ∈I a.φ(b, ~f)) → φ(a, ~f )) → ∀a.φ(a, ~f)
• (A) ∀~a. ∀c. c ∈I tA(~a) ↔ φA(c,~a), for (A) being one of (EMPTY), (PAIR), (INF), (SEPφ),
(UNION), (POWER), (REPLφ), (INACi). For example, the Power Set axiom has a form:
∀a∀c. c ∈I P (a) ↔ ∀b. b ∈ c→ b ∈ a.

The extra relational symbol ∈I intuitively denotes the intensional membership relation.
Note that neither the Leibniz axiom (Lφ) nor the extensionality axiom are present. We
will show, however, that they can be derived and that this axiomatization is as good as
IZF−

Rω. From now on in this section, we work in IZFRω. The following sequence of lemmas
establishes that equality and membership behave in the correct way. Statements similar
in spirit are also proved in the context of Boolean-valued models. Our treatment slightly
simplifies the standard presentation by avoiding the need for mutual induction.

Lemma 4.1. For all a, a = a.

Proof. By ∈-induction on a. Take any b ∈I a. By the inductive hypothesis, b = b, so also
b ∈ a.

Corollary 4.2. If a ∈I b, then a ∈ b.

Lemma 4.3. For all a, b, if a = b, then b = a.

Proof. Straighforward.
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Lemma 4.4. For all b, a, c, if a = b and b = c, then a = c.

Proof. By ∈-induction on b. First take any d ∈I a. By a = b, d ∈ b, so there is e ∈I b such
that d = e. By b = c, e ∈ c, so there is f ∈I c such that e = f . By the inductive hypothesis
for e, d = f , so d ∈ c.

The other direction is symmetric and proceeds from c to a. Take any d ∈I c. By b = c,
d ∈ b, so there is e ∈I b such that d = e. By a = b, e ∈ a, so there is f ∈I a such that e = f .
The inductive hypothesis gives the claim.

Lemma 4.5. For all a, b, c, if a ∈ c and a = b, then b ∈ c.

Proof. Since a ∈ c, there is d ∈I c such that a = d. By previous lemmas we also have b = d,
so b ∈ c.

Lemma 4.6. For all a, b, d, if a = b and d ∈ a, then d ∈ b.

Proof. Suppose d ∈ a, then there is e such that e ∈I a and d = e. By a = b, e ∈ b. By
Lemma 4.5, d ∈ b.

Lemma 4.7 (Extensionality). If for all d, d ∈ a iff d ∈ b, then a = b.

Proof. Take any d ∈I a. By Corollary 4.2 d ∈ a, so by Lemma 4.6 also d ∈ b. The other
direction is symmetric.

We would like to mention that all the lemmas above have been verified by the computer,
by a toy prover we wrote to experiment with IZFRω.

Lemma 4.8 (The Leibniz axiom). For any term t(a, ~f) and formula φ(a, ~f) not containing

∈I , if a = b, then t(a, ~f) = t(b, ~f) and φ(a, ~f) ↔ φ(b, ~f).

Proof. Straightforward mutual induction on generation of t and φ. We show some repre-
sentative cases. Case t or φ of:

•
⋃
t1(a). If c ∈I

⋃
t1(a), then for some d, c ∈ d ∈ t1(a). By the inductive hypothesis

t!(a) = t1(b), so by Lemma 4.6 d ∈ t1(b), so c ∈I
⋃
t1(b) and by Corollary 4.2 also

c ∈
⋃
t1(b). The other direction is symmetric and by the (EQ) axiom we get t(a) = t(b).

• Sφ(t1(a), ~u(a)). If c ∈I Sφ(t1(a), ~u(a)), then c ∈ t1(a) and φ(c, ~u(a)). By the in-
ductive hypothesis, t1(a) = t1(b), ~u(a) = ~u(b), and thus φ(c, ~u(b)) and c ∈ t1(b), so
c ∈I Sφ(t1(b), ~u(b)) and also c ∈ Sφ(t1(b), ~u(b)).

• t(a) ∈ s(a). By the inductive hypothesis, t(a) = t(b) and s(a) = s(b). Thus by Lemma
4.6 t(a) ∈ s(b) and by Lemma 4.5 t(b) ∈ s(b).

• ∀c. φ(c, a, ~f ). Take any c, we have φ(c, a, ~f ), so by inductive hypothesis φ(c, b, ~f ), so

∀c. φ(c, b, ~f ).

Lemma 4.9. For any term tA(~a), c ∈ tA(~a) iff φA(c,~a).

Proof. The right-to-left direction follows immediately by Corollary 4.2. For the left-to-right
direction, suppose c ∈ tA(~a). Then there is d such that d ∈I tA(~a) and c = d. Therefore
φA(d,~a) holds and by the Leibniz axiom we also get φA(c,~a).
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Lemma 4.10. For any axiom A of IZF−
Rω, IZFRω⊢ A.

Proof. Lemmas 4.7, 4.8 and 4.9 show the claim for all the axioms apart from (INDφ). So

suppose ∀a. (∀b ∈ a. φ(b, ~f)) → φ(a, ~f). We need to show ∀a. φ(a, ~f). We proceed by

∈I -induction on a. It suffices to show ∀c. (∀d ∈I c. φ(d, ~f)) → φ(c, ~f ). Take any c and

suppose ∀d ∈I c. φ(d, ~f). We need to show φ(c, ~f). Take a to be c in the assumption, so it

suffices to show that ∀b ∈ c. φ(b, ~f). Take any b ∈ c. Then there is e ∈I c such that e = b.

By the inductive hypothesis φ(e, ~f) holds and hence by the Leibniz axiom we get φ(b, ~f),
which shows the claim.

Corollary 4.11. If IZF−
Rω⊢ φ, then IZFRω⊢ φ.

Lemma 4.12. If IZFRω⊢ φ and φ does not contain ∈I , then IZF−
Rω⊢ φ.

Proof. Working in IZF−
Rω simply interpret ∈I as ∈ to see that all axioms of IZFRω are valid

and that if IZFRω⊢ φ, then IZF−
Rω⊢ φ[∈I :=∈].

Therefore IZFRω is a legitimate axiomatization of IZF with Replacement and inacces-
sible sets. From now on the names of the axioms refer to the axiomatization of IZFRω.

5. The λZω calculus

We now introduce a lambda calculus λZω for IZFRω, based on the Curry-Howard iso-
morphism principle. The part of λZω corresponding to the first-order logic is essentially
λP1 from [SU06]. The rest of the calculus, apart from clauses corresponding to (IN), (EQ)
and (INACi) axioms, is identical to λZ from [Moc06a].

5.1. The terms of λZω. The lambda terms in λZω will be denoted by letters M,N,O,P .
There are two kinds of lambda abstraction in λZω, one corresponding to the proofs of impli-
cation, the other to the proofs of universal quantification. We use separate sets of variables
for these abstractions and call them propositional and first-order variables, respectively.
Letters x, y, z will be used for the propositional variables and letters a, b, c for the first-
order variables. Letters t, s, u are reserved for IZFRω terms. The types in the system are
IZFRω formulas. The terms are generated by the following abstract grammar:

M ::= x | M N | λa. M | λx : φ. M | inl(M) | inr(M) | fst(M) | snd(M)

[t,M ] | M t | 〈M,N〉 | case(M,x : φ. N, x : ψ. O) | magic(M) | let [a, x : φ] :=M in N

ind
φ(a,~b)

(M,~t) | inaciProp(t,M) | inaciRep(t,M)

inProp(t, u,M) | inRep(t, u,M) | eqProp(t, u,M) | eqRep(t, u,M)

pairProp(t, u1, u2,M) | pairRep(t, u1, u2,M) | unionProp(t, u,M) | unionRep(t, u,M)

sep
φ(a, ~f)

Prop(t, u, ~u,M) | sep
φ(a, ~f)

Rep(t, u, ~u,M) | powerProp(t, u,M) | powerRep(t, u,M)

infProp(t,M) | infRep(t,M) | repl
φ(a,b, ~f)

Prop(t, u, ~u,M) | repl
φ(a,b, ~f)

Rep(t, u, ~u,M)

The ind terms correspond to the (IND) axiom, Prop and Rep terms correspond to the
respective axioms of IZF−

Rωand the rest of the terms corresponds to the rules of IFOL. The
exact nature of the correspondence will become clear in Section 5.3. To avoid listing all
of them repeatedly, we adopt a convention of using axRep and axProp terms to tacitly
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mean all Rep and Prop terms, for ax being one of in, eq, pair, union, sep, power, inf, repl
and inaci, unless we list some of them separately. With this convention in mind, we can
summarize the definition of the Prop and Rep terms as:

axProp(t, ~u,M) | axRep(t, ~u,M),

where the number of terms in the sequence ~u depends on the particular axiom.
The free variables of a lambda term are defined as usual, taking into account that

variables in λ, case and let terms bind respective terms. The relation of α-equivalence is
defined taking this information into account. We consider α-equivalent terms equal. We
denote all free variables of a term M by FV (M) and the free first-order variables of a term
by FVF (M). The free (first-order) variables of a context Γ are denoted by FV (Γ) (FVF (Γ))
and defined in a natural way.

5.2. The reduction relation. The deterministic reduction relation → arises from the
following reduction rules and evaluation contexts:

(λx : φ. M)N →M [x := N ] (λa. M)t→M [a := t]

fst(〈M,N〉) →M snd(〈M,N〉) → N

case(inl(M), x : φ. N, x : ψ. O) → N [x :=M ] case(inr(M), x : φ. N, x : ψ. O) → O[x :=M ]

let [a, x : φ] := [t,M ] in N → N [a := t][x :=M ]

axProp(t, ~u, axRep(t, ~u,M)) →M

indφ(M, t) → λc. M c (λb.λx : b ∈I c. indφ(M, t) b)

In the reduction rules for ind terms, the variable x is new.
The evaluation contexts describe call-by-need (lazy) evaluation order:

[◦] ::= fst([◦]) | snd([◦]) | case([◦], x.N, x.O)

axProp(t, ~u, [◦]) | let [a, x : φ] := [◦] in N | [◦] M | magic([◦])

We distinguish certain λZω terms as values. The values are generated by the follow-
ing abstract grammar, where M is an arbitrary term. Obviously, there are no possible
reductions from values.

V ::= λa. M | λx : φ. M | inr(M) | inl(M) | [t,M ] | 〈M,N〉 | axRep(t, ~u,M)

Definition 5.1. We write M ↓ if the reduction sequence starting from M terminates. In
this situation we also say that M normalizes. We write M ↓ v if we want to state that v is
the term at which this reduction sequence terminates. We write M →∗ M ′ if M reduces to
M ′ in some number of steps.
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5.3. The types of λZω. The type system for λZω is constructed according to the principle
of the Curry-Howard isomorphism for IZFRω. Types are IZFRω formulas, and terms are
λZω terms. Contexts Γ are finite sets of pairs (xi, φi). The first set of rules corresponds to
first-order logic.

Γ, x : φ ⊢ x : φ

Γ ⊢M : φ→ ψ Γ ⊢ N : φ

Γ ⊢M N : ψ

Γ, x : φ ⊢M : ψ

Γ ⊢ λx : φ. M : φ→ ψ

Γ ⊢M : φ Γ ⊢ N : ψ

Γ ⊢ 〈M,N〉 : φ ∧ ψ

Γ ⊢M : φ ∧ ψ

Γ ⊢ fst(M) : φ

Γ ⊢M : φ ∧ ψ

Γ ⊢ snd(M) : ψ
Γ ⊢M : φ

Γ ⊢ inl(M) : φ ∨ ψ

Γ ⊢M : ψ

Γ ⊢ inr(M) : φ ∨ ψ
Γ ⊢M : φ ∨ ψ Γ, x : φ ⊢ N : ϑ Γ, x : ψ ⊢ O : ϑ

Γ ⊢ case(M,x : φ. N, x : ψ. O) : ϑ

Γ ⊢M : φ

Γ ⊢ λa. M : ∀a. φ
a /∈ FVF (Γ)

Γ ⊢M : ∀a. φ

Γ ⊢M t : φ[a := t]

Γ ⊢M : φ[a := t]

Γ ⊢ [t,M ] : ∃a. φ

Γ ⊢M : ⊥
Γ ⊢ magic(M) : φ

Γ ⊢M : ∃a. φ Γ, x : φ ⊢ N : ψ

Γ ⊢ let [a, x : φ] :=M in N : ψ
a /∈ FVF (Γ, ψ)

The rest of the rules correspond to IZFRω axioms:

Γ ⊢M : ∀d. (d ∈I t → d ∈ u) ∧ (d ∈I u→ d ∈ t)

Γ ⊢ eqRep(t, u,M) : t = u
Γ ⊢M : t = u

Γ ⊢ eqProp(t, u,M) : ∀d. (d ∈I t→ d ∈ u) ∧ (d ∈I u→ d ∈ t)
Γ ⊢M : ∃c. c ∈I u ∧ t = c

Γ ⊢ inRep(t, u,M) : t ∈ u
Γ ⊢ t ∈ u

Γ ⊢ inProp(t, u,M) : ∃c. c ∈I u ∧ t = c

Γ ⊢M : φA(t, ~u)

Γ ⊢ axRep(t, ~u,M) : t ∈I tA(~u)

Γ ⊢M : t ∈I tA(~u)

Γ ⊢ axProp(t, ~u,M) : φA(t, ~u)

Γ ⊢M : ∀c. (∀b. b ∈I c→ φ(b,~t)) → φ(c,~t)

Γ ⊢ ind
φ(a,~b)

(M,~t) : ∀a. φ(a,~t)

5.4. The properties of λZω. We now proceed with a standard sequence of lemmas for
λZω.

Lemma 5.2 (Canonical Forms). Suppose M is a value and ⊢M : ϑ. Then:

• ϑ = t ∈I tA(~u) iff M = axRep(t, ~u,N) and ⊢ N : φA(t, ~u).
• ϑ = φ ∨ ψ iff (M = inl(N) and ⊢ N : φ) or (M = inr(N) and ⊢ N : ψ).
• ϑ = φ ∧ ψ iff M = 〈N,O〉, ⊢ N : φ and ⊢ O : ψ.
• ϑ = φ→ ψ iff M = λx : φ. N and x : φ ⊢ N : ψ.
• ϑ = ∀a. φ iff M = λa. N and ⊢ N : φ.
• ϑ = ∃a. φ iff M = [t,N ] and ⊢ N : φ[a := t].
• ϑ = ⊥ never happens.

Proof. Immediate from the typing rules and the definition of values.
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Lemma 5.3 (Weakening). If Γ ⊢ M : φ and FV (ψ) ∪ {x} are fresh to the proof tree
Γ ⊢M : φ, then Γ, x : ψ ⊢M : φ.

Proof. Straightforward induction on Γ ⊢M : φ.

There are two substitution lemmas, one for the propositional part, the other for the
first-order part of the calculus. Since the rules and terms of λZω corresponding to IZFRω
axioms do not interact with substitutions in a significant way, the proofs are routine.

Lemma 5.4. If Γ, x : φ ⊢M : ψ and Γ ⊢ N : φ, then Γ ⊢M [x := N ] : ψ.

Proof. By induction on Γ, x : φ ⊢M : ψ. We show two interesting cases.

• ψ = ψ1 → ψ2, M = λy : ψ1. O. Using α-conversion we can choose y to be new, so that
y /∈ FV (Γ, x) ∪ FV (N). The proof tree must end with:

Γ, x : φ, y : ψ1 ⊢ O : ψ2

Γ, x : φ ⊢ λy : ψ1. O : ψ1 → ψ2

By the inductive hypothesis, Γ, y : ψ1 ⊢ O[x := N ] : ψ2, so Γ ⊢ λy : ψ1. O[x := N ] : ψ1 →
ψ2. By the choice of y, Γ ⊢ (λy : ψ1. O)[x := N ] : ψ1 → ψ2.

• ψ = ψ2,M = let [a, y : ψ1] :=M1 in M2. The proof tree ends with:

Γ, x : φ ⊢M1 : ∃a. ψ1 Γ, x : φ, y : ψ1 ⊢M2 : ψ2

Γ, x : φ ⊢ let [a, y : ψ1] :=M1 in M2 : ψ2

Choose a and y to be fresh. By the inductive hypothesis, Γ ⊢ M1[x := N ] : ∃a. ψ1 and
Γ, y : ψ1 ⊢ M2[x := N ] : ψ2. Thus Γ ⊢ let [a, y : ψ1] := M1[x := N ] in M2[x := N ] : ψ2.
By a and y fresh, Γ ⊢ (let [a, y : ψ1] :=M1 in M2)[x := N ] : ψ2 which is what we want.

Lemma 5.5. If Γ ⊢M : φ, then Γ[a := t] ⊢M [a := t] : φ[a := t].

Proof. By induction on Γ ⊢ M : φ. Most of the rules do not interact with first-order
substitution, so we will show the proof just for two of them which do.

• φ = ∀b. φ1, M = λb. M1. The proof tree ends with:

Γ ⊢M1 : φ1

Γ ⊢ λb. M1 : ∀b. φ1
b /∈ FVF (Γ)

Without loss of generality we can assume that b /∈ FV (t)∪{a}. By the inductive hypothe-
sis, Γ[a := t] ⊢M1[a := t] : φ1[a := t]. Therefore Γ[a := t] ⊢ λb. M1[a := t] : ∀b. φ1[a := t]
and by the choice of b, Γ[a := t] ⊢ (λb. M1)[a := t] ⊢ (∀b. φ1)[a := t].

• φ = φ1[b := u], M =M1 u for some term u. The proof tree ends with:

Γ ⊢M1 : ∀b. φ1

Γ ⊢M1 u : φ1[b := u]

Choosing b to be fresh, by the inductive hypothesis we get Γ[a := t] ⊢ M1[a := t] :
∀b. (φ1[a := t]), so Γ[a := t] ⊢ M1[a := t] u[a := t] : φ1[a := t][b := u[a := t]]. By Lemma
2.1 and b /∈ FV (t), we get Γ[a := t] ⊢ (M1 u)[a := t] : φ1[b := u][a := t].
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With the lemmas at hand, Progress and Preservation follow easily:

Lemma 5.6 (Subject Reduction, Preservation). If Γ ⊢M : φ and M → N , then Γ ⊢ N : φ.

Proof. By induction on the definition of M → N . We show several cases. Case M → N of:

• (λx : φ1. M1) M2 →M1[x :=M2]. The proof tree Γ ⊢M : φ must end with:

Γ, x : φ1 ⊢M1 : φ

Γ ⊢ λx : φ1. M1 : φ1 → φ Γ ⊢M2 : φ1

Γ ⊢ (λx : φ1. M1) M2 : φ

By Lemma 5.4, Γ ⊢M1[x :=M2] : φ1.
• let [a, x : φ1] := [t,M1] in M2 →M2[a := t][x :=M1]. The proof tree Γ ⊢M : φ must end
with:

Γ ⊢M1 : φ1[a := t]

Γ ⊢ [t,M1] : ∃a. φ1 Γ, x : φ1 ⊢M2 : φ

Γ ⊢ let [a, x : φ1] := [t,M1] in M2 : φ

Choose a to be fresh. Thus M1[a := t] = M1 and Γ[a := t] = Γ. By the side-condition
of the last typing rule, a /∈ FV (φ), so φ[a := t] = φ. By Lemma 5.5 we get Γ[a := t], x :
φ1[a := t] ⊢ M2[a := t] : φ[a := t], so also Γ, x : φ1[a := t] ⊢ M2[a := t] : φ. By Lemma
5.4, we get Γ ⊢M2[a := t][x :=M1] : φ.

• axProp(t, ~u, axRep(t, ~u,M1)) →M1. The proof tree must end with:

Γ ⊢M1 : φA(t, ~u)

Γ ⊢ axRep(t, ~u,M1)) : t ∈I tA(~u)

Γ ⊢ axProp(t, ~u, axRep(t, ~u,M1)) : φA(t, ~u)

The claim follows immediately.
• ind

ψ(a, ~f)(M1,~t) → λc. M1 c (λb.λx : b ∈I c. indψ(a,~b)(M1,~t) b). The proof tree must end

with:
Γ ⊢M1 : ∀c. (∀b. b ∈I c→ ψ(b,~t)) → ψ(c,~t)

Γ ⊢ ind
ψ(a, ~f)

(M1,~t) : ∀a. ψ(a,~t)

We choose b, c, x to be fresh. By applying α-conversion we can also obtain a proof tree
of Γ ⊢ M1 : ∀e. (∀d. d ∈I e → ψ(d,~t)) → ψ(e,~t), where {d, e} ∩ {b, c} = ∅. Then by
Weakening we get Γ, x : b ∈I c ⊢ M1 : ∀e. (∀d. d ∈I e → ψ(d,~t)) → ψ(e,~t), so also
Γ, x : b ∈I c ⊢ ind

ψ(a,~b)(M1,~t) : ∀a. ψ(a,~t). Let the proof tree T be defined as:

Γ, x : b ∈I c ⊢ ind
ψ(a,~b)

(M1,~t) : ∀a. ψ(a,~t)

Γ, x : b ∈I c ⊢ ind
ψ(a,~b)(M1,~t) b : ψ(b,~t)

Γ ⊢ λx : b ∈I c. indψ(a,~b)
(M1,~t) b : b ∈I c→ ψ(b,~t)

Γ ⊢ λb.λx : b ∈I c. indψ(a,~b)
(M1,~t) b : ∀b. b ∈I c→ ψ(b,~t)

Then the following proof tree shows the claim:

Γ ⊢M1 : ∀c. (∀b. b ∈I c→ ψ(b,~t)) → ψ(c,~t)

Γ ⊢M1 c : (∀b. b ∈I c→ ψ(b,~t)) → ψ(c,~t) T

Γ ⊢M1 c (λb.λx : b ∈I c. indψ(a,~b)
(M1,~t) b) : ψ(c,~t)

Γ ⊢ λc. M1 c (λb.λx : b ∈I c. indψ(a,~b)
(M1,~t) b) : ∀c. ψ(c,~t)
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Lemma 5.7 (Progress). If ⊢ M : φ, then either M is a value or there is N such that
M → N .

Proof. Straightforward induction on the length of M . The proof proceeds by case analysis
of M . We show several cases:

• It is easy to see that the case M = x cannot happen.
• If M = λx : φ. N , then M is a value.
• If M = N O, then for some ψ, the proof must end with:

⊢ N : ψ → φ ⊢ O : ψ

⊢ N O : φ

By the inductive hypothesis, either N is a value or there is N ′ such that N → N ′. In the
former case, by Canonical Forms for some P we have N = λx : ψ. P , soN O → P [x := O].
In the latter case, N O → N ′ O.

• If M = axRep(t, ~u,M), then M is a value.
• If M = axProp(t, ~u,O), then we have the following proof tree:

⊢ O : t ∈I tA(~u)

⊢ axProp(t, ~u,O) : φA(t, ~u)

By the inductive hypothesis, either O is a value or there is O1 such that O → O1. In the
former case, by Canonical Forms, O = axRep(t, ~u, P ) and M → P . In the latter, by the
evaluation rules axProp(t, ~u,O) → axProp(t, ~u,O1).

• The cases corresponding to the equality and membership axioms work in the same way.
• The ind terms always reduce.

Corollary 5.8. If ⊢M : φ and M ↓ v, then ⊢ v : φ and v is a value.

Corollary 5.9. If ⊢M : ⊥, then M does not normalize.

Proof. If M normalized, then by Corollary 5.8 we would have a value of type ⊥, which by
Canonical Forms is impossible.

Finally, we state the formal correspondence between λZω and IZFRω:

Lemma 5.10 (Curry-Howard isomorphism). If Γ ⊢ O : φ then IZFRω+rg(Γ) ⊢ φ, where

rg(Γ) = {φ | (x, φ) ∈ Γ}. If IZFRω+Γ ⊢ φ, then there exists a term M such that ~Γ ⊢M : φ,

where ~Γ = {(xφ, φ) | φ ∈ Γ}.

Proof. Both parts follow by easy induction on the proof. The first part is straightforward,
to get the claim simply erase the lambda terms from the proof tree. For the second part,
we show terms and trees corresponding to IZFRω axioms:

• Let φ be one of the IZFRω axioms apart from ∈-Induction. Then φ = ∀~a. ∀c. c ∈I
tA(~a) ↔ φA(c,~a) for the axiom (A) (incorporating axioms (IN) and (EQ) in this case in
the obvious way). Recall that φ1 ↔ φ2 is an abbreviation for (φ1 → φ2)∧ (φ2 → φ1). Let
T be the following proof tree:

Γ, x : φA(c,~a) ⊢ x : φA(c,~a)

Γ, x : φA(c,~a) ⊢ axRep(c,~a, x) : c ∈I tA(~a)

Γ ⊢ λx : φA(c,~a). axRep(c,~a, x) : φA(c,~a) → c ∈I tA(~a)
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Let M1 = λx : c ∈I tA(~a). axProp(c,~a, x) and let M2 = λx : φA(c,~a). axRep(c,~a, x).
Then the following proof tree shows the claim:

Γ, x : c ∈I tA(~a) ⊢ x : c ∈I tA(~a)

Γ, x : c ∈I tA(~a) ⊢ axProp(c,~a, x) : φA(c,~a)

Γ ⊢M1 : c ∈I tA(~a) → φA(c,~a) T

Γ ⊢ 〈M1,M2〉 : c ∈I tA(~a) ↔ φA(c,~a)

Γ ⊢ λ~aλc. 〈M1,M2〉 : ∀~a. ∀c. c ∈I tA(~a) ↔ φA(c,~a)

• Let φ be the ∈-induction axiom. Let

M = λ~fλx : (∀a.(∀b. b ∈I a→ ψ(b, ~f)) → ψ(a, ~f )). ind(x, ~f).

The following proof tree shows the claim:

Γ, x : ∀a.(∀b. b ∈I a→ ψ(b, ~f )) → ψ(a, ~f) ⊢ x : ∀a.(∀b. b ∈I a→ ψ(b, ~f )) → ψ(a, ~f)

Γ, x : ∀a.(∀b. b ∈I a→ φ(b, ~f)) → ψ(a, ~f ) ⊢ ind
ψ(a, ~f)

(x, ~f ) : ∀a. ψ(a, ~f)

Γ ⊢M : ∀~f.(∀a.(∀b. b ∈I a→ ψ(b, ~f)) → ψ(a, ~f )) → ∀a. ψ(a, ~f )

Note that all proofs in this section are constructive and quite weak from the proof-
theoretic point of view — Heyting Arithmetic should be sufficient to formalize the argu-
ments. However, by the Curry-Howard isomorphism and Corollary 5.9, normalization of
λZω entails consistency of IZFRω, which easily interprets Heyting Arithmetic. Therefore a
normalization proof must utilize much stronger means, which we introduce in the following
section.

6. Realizability for IZFRω

In this section we work in ZF with ω-many strongly inaccessible cardinals. We denote
the i-th strongly inaccessible by Γi and choose them so that Γi ∈ Γi+1. It is likely that
IZF with Collection and ω-many inaccessible sets would be sufficient, as excluded middle
is not used explicitly; however, arguments using ordinals and ranks would need to be done
very carefully, as the notion of an ordinal in constructive set theories is problematic [Pow75,
Tay96].

6.1. Realizers. Our realizers are essentially terms of λZω. For convenience, wherever
possible, we erase logic terms and formulas from parameters of axRep, axProp, ind and case
terms. We call the resulting calculus λZω. More formally, λZω arises as an image of an
erasure mapM , which takes as its argument a λZω-term. This map is defined by structural
induction on M and induced by the following cases:

axRep(t, ~u,M) = axRep(M) axProp(t, ~u,M) = axProp(M) indφ(M,~t) = ind(M )

λx : φ. M = λx. M let [a, x : φ] :=M in N = let [a, x] :=M in N

case(M,x : φ. N, x : ψ. O) = case(M,x.N, x.O)

The erasure on the rest of terms is defined in a natural way, for example 〈M,N〉 = 〈M,N〉,

[t,M ] = [t,M ] and M t = M t. The reduction rules and values in λZω are induced from
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λZω in an obvious way. The set of λZω terms will be denoted by ΛZω and the set of λZω
values will be denoted by λZωv.

Lemma 6.1. If M normalizes, so does M .

Proof. Straightforward — the erased information does not affect the reductions.

The fact that logic terms do not play any role in the reductions is crucial for the
normalization argument to work.

This definition of the erasure map and λZω fixes a small mistake in the presentation in
[Moc06a], where a bit too much information was erased.

6.2. Realizability relation. Having defined realizers, we proceed to define the realizability
relation. Our definition was inspired by McCarty’s [McC84]. From now on, the letter T
denotes the set of all IZFRω terms.

Definition 6.2. A set A is a λ-name iff A is a set of pairs (v,B) such that v ∈ λZωv and
B is a λ-name.

In other words, λ-names are sets hereditarily labelled by λZω values.

Definition 6.3. The class of λ-names is denoted by V λ.

Formally, V λ is generated by the following transfinite inductive definition on ordinals:

V λ
α =

⋃

β<α

P (λZωv × V λ
β ) V λ =

⋃

α∈ORD

V λ
α

Definition 6.4. The λ-rank of a λ-name A, denoted by λrk(A), is the smallest α such that
A ∈ V λ

α .

We now define three auxiliary relations between λZω terms and pairs of sets in V λ,
which we write as M  A ∈I B, M  A ∈ B, M  A = B. These relations are a prelude
to the definition of realizability.

M  A ∈I B ≡ M ↓ v ∧ (v,A) ∈ B
M  A ∈ B ≡ M ↓ inRep(N) ∧N ↓ [u,O] ∧ ∃C ∈ V λ. O ↓ 〈O1, O2〉∧

O1  C ∈I B ∧O2  A = C
M  A = B ≡ M ↓ eqRep(M0) ∧M0 ↓ λa. M1 ∧ ∀t ∈ T,∀D ∈ V λ. M1[a := t] ↓ 〈O,P 〉∧

O ↓ λx. O1 ∧ ∀N. (N  D ∈I A) → O1[x := N ]  D ∈ B∧
P ↓ λx. P1 ∧ ∀N. (N  D ∈I B) → P1[x := N ]  D ∈ A

The relations M  A ∈ B and M  A = B are defined together in a standard way by
transfinite recursion. See for example [Rat05] for more details.

Definition 6.5. For any set C ∈ V λ, C+ denotes {(M,A) | M  A ∈ C}.

Definition 6.6. A (class-sized) first-order language L arises from enriching the IZFRω
signature with constants for all λ-names.

From now on until the end of this section, symbols M,N,O,P range exclusively over
λZω-terms, letters a, b, c vary over first-order variables in the language, letters A,B,C vary
over λ-names and letter ρ varies over finite partial functions from first-order variables in L
to V λ. We call such functions environments.
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Definition 6.7. For any formula φ of L, any term t of L and ρ defined on all free variables of
φ and t, we define by metalevel induction a realizability relation M ρ φ in an environment
ρ and a meaning of a term [[t]]ρ in an environment ρ:

(1) [[a]]ρ ≡ ρ(a)
(2) [[A]]ρ ≡ A
(3) [[ω]]ρ ≡ ω′, where ω′ is defined by the means of inductive definition: ω′ is the smallest

set such that:
• (infRep(N), A) ∈ ω′ if N ↓ inl(O), O ρ A = 0 and A ∈ V λ

ω .
• If (M,B) ∈ ω′+, then (infRep(N), A) ∈ ω′ if N ↓ inr(N1), N1 ↓ [t, O], O ↓ 〈M,P 〉,
P ρ A = S(B) and A ∈ V λ

ω .

Note that if (M,B) ∈ ω′+, then there is a finite ordinal α such that B ∈ V λ
α .

(4) [[Vi]]ρ ≡ Ui. We will define Ui below.

(5) [[tA(~u)]]ρ ≡ {(axRep(N), B) ∈ λZωv × V λ
γ | N ρ φA(B,

−−−→
[[u]]ρ)}. The ordinal γ will be

defined below.
(6) M ρ ⊥ ≡ ⊥
(7) M ρ t ∈I s ≡M  [[t]]ρ ∈I [[s]]ρ
(8) M ρ t ∈ s ≡M  [[t]]ρ ∈ [[s]]ρ
(9) M ρ t = s ≡M  [[t]]ρ = [[s]]ρ
(10) M ρ φ ∧ ψ ≡M ↓ 〈M1,M2〉 ∧ (M1 ρ φ) ∧ (M2 ρ ψ)
(11) M ρ φ ∨ ψ ≡ (M ↓ inl(M1) ∧M1 ρ φ) ∨ (M ↓ inr(M1) ∧M1 ρ ψ)
(12) M ρ φ→ ψ ≡ (M ↓ λx. M1) ∧ ∀N. (N ρ φ) → (M1[x := N ] ρ ψ)

(13) M ρ ∃a. φ ≡M ↓ [t,N ] ∧ ∃A ∈ V λ. N ρ φ[a := A]

(14) M ρ ∀a. φ ≡M ↓ λa. N ∧ ∀A ∈ V λ,∀t ∈ T. N [a := t] ρ φ[a := A]

To define Ui, first recall that the axiom (INACi) has the following form:

(INACi) ∀c. c ∈ Vi ↔ φi1(c, Vi) ∧ ∀d. φi2(d) → c ∈ d.

We define a monotonic operator F on sets as:

F (A) = A ∪ {(inaciRep(N), C) ∈ λZωv × V λ
Γi

| N ρ φ
i
1(C,A) ∧ ∀d. φi2(d) → C ∈ d}.

We set Ui to be the smallest fixpoint of F . Formally, Ui is generated by transfinite inductive
definition on ordinals:

Ui,γ = F (
⋃

β<γ

Ui,β) Ui =
⋃

γ∈ORD

Ui,γ

Since F adds only elements from λZωv×V
λ

Γi
, any element of Ui is in λZωv×V

λ
Γi
, so Ui ∈ V λ

Γi+1
.

The definition of the ordinal γ in item 5 depends on tA(~u). This ordinal is close to the
rank of the set denoted by tA(~u) and is chosen so that Lemma 6.31 can be proved. Let

~α =
−−−−−−→
λrk([[u]]ρ). Case tA(~u) of:

• {u1, u2} — γ = max(α1, α2)
• P (u) — γ = α+ 1.
•
⋃
u — γ = α.

• S
φ(a, ~f)(u, ~u) — γ = α1.

• R
φ(a,b, ~f)

(u, ~u). This case is more complicated. The names are chosen to match the

corresponding clause in the proof of Lemma 6.31. Let G = {(N1, (N21, B)) ∈ ΛZω ×

[[u]]+ρ | ∃d ∈ V λ. ψ(N1, N21, B, d)}, where ψ(N1, N21, B, d) ≡ (N1 ↓ λa. N11) ∧ (N11 ↓
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λx. O) ∧ (O[x := N21] ρ φ(B, d,
−−→
[[u]]ρ) ∧ ∀e. φ(B, e,

−−→
[[u]]ρ) → e = d). Then for all g ∈ G

there is D and (N1, (N21, B)) such that g = (N1, (N21, B)) and ψ(N1, N21, B,D). Use
Collection to collect these D’s in one set H, so that for all g ∈ G there is D ∈ H such
that the property holds. Apply Replacement to H to get the set of λ-ranks of sets in H.
Then β ≡

⋃
H is an ordinal and for any D ∈ H, λrk(D) < β. Therefore for all g ∈ G

there is D ∈ V λ
β and (N1, (N21, B)) such that g = (N1, (N21, B)) and ψ(N1, N21, B,D)

holds. Set γ = β + 1.

At this point it is not clear yet that the realizability definition makes sense — a priori
it might be circular. We will now show that it is not the case.

Definition 6.8. For any closed term s, we define number of occurences of s in any term
t and formula φ, denoted by Occ(s, t) and Occ(s, φ), respectively, by induction on the
definition of terms and formulas. We show representative clauses of the definition:

• Occ(s, s) = 1.
• Occ(s, a) = 0, where a is a variable.
• Occ(s, tA(~u)) = Occ(s, u1) + . . .+Occ(s, un).
• Occ(s, Sφ(t, ~u)) = Occ(s, φ) +Occ(s, t) +Occ(s, u1) + . . .+Occ(s, un).
• Occ(s, t ∈ u) = Occ(s, t) +Occ(s, u).
• Occ(s, φ ∧ ψ) = Occ(s, φ) +Occ(s, ψ).

In a similar manner we define the number of function symbols FS in a term and formula.

Definition 6.9. Let M(N) denote the set of all multisets over N with the standard well-
founded ordering. Formally, a member A of M(N) is a function from N to N, returning for
any n the number of copies of n in A. We define a function V taking terms and formulas
intoM(N): V (x) for any number i returns Occ(Vi, x), for x being either a term or a formula.

Lemma 6.10. The definition of realizability is well-founded.

Proof. Use the measure function m which takes a clause in the definition and returns an
element of M(N)× N

3 with the lexicographical order:

m(M ρ φ) = (V (φ), Occ(ω, φ), FS(φ), “structural complexity of φ”)

m([[t]]ρ) = (V (t), Occ(ω, t), FS(t), 0)

Then the measure of the definiendum is always greater than the measure of the definiens —
in the clauses for formulas the structural complexity goes down, while the rest of parameters
do not grow larger. In the definition of [[Vi]]ρ, one Vi disappears replaced by two Vi−1’s. In
the definition of [[ω]]ρ, one ω disappears. Finally, in the definition of [[tA(~u)]]ρ, the topmost
tA disappears, while no new Vi’s and ω’s appear.

Since the definition is well-founded, (metalevel) inductive proofs on the definition of
realizability are justified, such as the proof of the following lemma:

Lemma 6.11. [[t[a := s]]]ρ = [[t[a := [[s]]ρ]]]ρ = [[t]]ρ[a:=[[s]]ρ] and M ρ φ[a := s] iff M ρ

φ[a := [[s]]ρ] iff M ρ[a:=[[s]]ρ] φ.

Proof. By induction on the definition of realizability. We show representative cases. Case t
of:

• A — then [[t[a := s]]]ρ = [[t[a := [[s]]ρ]]]ρ = [[t]]ρ[a:=[[s]]ρ] = A.
• a — then [[t[a := s]]]ρ = [[s]]ρ, [[t[a := [[s]]ρ]]]ρ = [[[[s]]ρ]]ρ = [[s]]ρ and also [[t]]ρ[a:=[[s]]ρ] = [[s]]ρ.
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• tA(~u). Then [[t[a := s]]]ρ = {(axRep(N), A) | N ρ φA(A,~u[a := s])}. By the inductive
hypothesis, this is equal to {(axRep(N), A) | N ρ[a:=[[s]]ρ] φA(A,~u)} = [[t]]ρ[a:=[[s]]ρ] and
also to {(axRep(N), A) | N ρ φA(A,~u[a := [[s]]ρ])} and thus to [[t[a := [[s]]ρ]]]ρ.

For formulas, the atomic cases follow by the proof above and the non-atomic cases follow
immediately by the application of the inductive hypothesis.

Lemma 6.12. If (M ρ φ) then M ↓.

Proof. Straightforward from the definition of realizability — in every case the definition
starts with the clause assuring normalization of M .

Lemma 6.13. If M →∗ M ′ then M ′
ρ φ iff M ρ φ.

Proof. Whether M ρ φ or not depends only on the value of M , which does not change
with reduction or expansion.

Lemma 6.14. If ρ agrees with ρ′ on FV (φ), then M ρ φ iff M ρ′ φ. In particular, if
a /∈ FV (φ), then M ρ φ iff M ρ[a:=A] φ.

Proof. Straightforward induction on the definition of realizability — the environment is
used only to provide the meaning of the free variables of terms in a formula.

Lemma 6.15. If M ρ φ→ ψ and N ρ φ, then M N  ψ.

Proof. Suppose M ρ φ → ψ. Then M ↓ (λx. O) and for all P  φ, O[x := P ]  ψ. Now,
M N →∗ (λx. O) N → O[x := N ]. Lemma 6.13 gives us the claim.

6.3. Properties of realizability. We now establish several properties of the realizability
relation, which mostly state that the truth in the realizability universe is not far from the
truth in the real world, as far as ranks of sets are concerned.

Several lemmas mirror similar facts from McCarty’s thesis [McC84]. We cannot, how-
ever, simply point to these lemmas and say that essentially they prove the same thing, as
our realizability behaves a bit differently from his.

Lemma 6.16. If A ∈ V λ
α , then there is β < α such that for all B, if M ρ B ∈ A, then

B ∈ V λ
β . If M ρ B = A, then B ∈ V λ

α . If M ρ B ∈I A, then λrk(B) < λrk(A).

Proof. By induction on α. Take any A ∈ V λ
α . By the definition of V λ

α , there is β < α such
that A ⊆ λZωv×V

λ
β . SupposeM ρ B ∈ A. ThenM ↓ inRep(N), N ↓ [u,O], O ↓ 〈O1, O2〉

and there is C such that O1  C ∈I A and O2  B = C. Therefore, O1 ↓ v and (v,C) ∈ A.
Thus C ∈ V λ

β , so by the inductive hypothesis also B ∈ V λ
β and we get the claim of the first

part of the lemma.
For the second part, suppose M ρ B = A. This means that M ↓ eqRep(M0), M0 ↓

λa. M1 and for all t ∈ T,D, M1[a := t] ↓ 〈O,P 〉. Moreover, O ↓ λx. O1 and for all
N ρ D ∈I B we have O1[x := N ] ρ D ∈ A. In particular, if (v,D) ∈ B, then O1[x :=

v] ρ D ∈ A. By the first part of the lemma, any such D is in V λ
β for some β < α, so

B ∈ V λ
α .

The third part is trivial.

Lemma 6.17. M ρ A = B iff M ↓ eqRep(N) and N ρ ∀d. (d ∈I A → d ∈ B) ∧ (d ∈I
B → d ∈ A). Also, M ρ A ∈ B iff M ↓ inRep(N) and N ρ ∃c. c ∈I B ∧A = c.

Proof. Simply expand what it means for M to realize respective formulas.
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We now exhibit realizers corresponding to proofs of Lemmas 4.1-4.5. Their existence
and corresponding properties will follow immediately from Theorem 7.4 once it is proved;
however, we need them for the proof of Lemma 6.27. Since Lemma 6.27 only needs to be
used for a set theory with inaccessibles, an alternative to tedious proofs below could be to
prove normalization for the theory without inaccessibles first, and take realizers from that
normalization theorem.

Lemma 6.18. There is a term eqRefl such that eqRefl ρ ∀a. a = a.

Proof. Take the term eqRefl ≡ ind(M), where M = λc. λx. eqRep(λd. 〈N,N〉) and N =
λy. inRep([d, 〈y, x d y〉]). Then eqRefl → λa. M a (λe. λz. ind(M) e). It suffices to show that
for any A, t,M t (λe. λz. ind(M) e) ρ A = A. We proceed by induction on λ-rank of A. We
haveM t (λe. λz. ind(M) e) ↓ eqRep(λd. 〈N,N〉[x := λe. λz. ind(M) e]). It suffices to show
that for all s ∈ T,D ∈ V λ, for all O ρ D ∈I A, inRep([s, [O, (λe. λz. ind(M) e) s O〉]) ρ
D ∈ A. Take any s,D and O ρ D ∈I A. By Lemma 6.16, λrk(D) < λrk(A). We need to
show the existence of C such that O ρ C ∈I A and (λe. λz. ind(M) e) s O ρ D = C.
Taking C ≡ D, the first part follows trivially. Since (λe. λz. ind(M) e) s O →∗ ind(M) s→
M s (λe. λz. ind(M) s), we get the claim by Lemma 6.13 and the inductive hypothesis.

Lemma 6.19. There is a term eqSymm such that eqSymm ρ ∀a, b. a = b→ b = a.

Proof. Take

eqSymm ≡ λa, b. λx. N, where N = eqRep(λd. 〈snd(eqProp(x) d), fst(eqProp(x) d)〉).

To show that eqSymm ρ ∀a, b. a = b→ b = a, it suffices to show that for any A,B, t, u,M ,
if M ρ A = B then N [x := M ] ρ B = A. Take any A,B, t, u,M . The claim follows if for
all s ∈ T,C we can show:

• There is M1 such that snd(eqProp(M) s) ↓ λx. M1 and for all N1 ρ C ∈I B, M1[x :=
N1] ρ C ∈ A.

• There is M2 such that fst(eqProp(M) s) ↓ λx. M2 and for all N2 ρ C ∈I A, M2[x :=
N2] ρ C ∈ B.

Since M ρ A = B, then there is O such that M ↓ eqRep(O), so fst(eqProp(M) s) →∗

fst(O s). Moreover, for some O1, O2 we have O s ↓ 〈O1, O2〉, where O1 ρ C ∈I A →
C ∈ B and O2 ρ C ∈I B → C ∈ A. Therefore, fst(eqProp(M) s) →∗ O1 and similarly
snd(eqProp(M) s) →∗ O2. We also know that there are some P1, P2 such that O1 ↓ λx. P1,
O2 ↓ λx. P2, P1[x := N2] ρ C ∈ B and P2[x := N1] ρ C ∈ A. Taking M1 = P2 and
M2 = P1, we get the claim by Lemma 6.13.

Lemma 6.20. There is a term eqTrans such that eqTrans ρ ∀b, a, c. a = b∧b = c→ a = c.

Proof. The proof and the realizers mirror closely the proof of Lemma 4.4. Set:

eqTrans = ind(M0)

M0 = λb, x1, a1, c, x2. eqRep(λf. 〈N,O〉)

N = λx3. let [a2, x4] := inProp(fst(eqProp(fst(x2)) f) x3) in N1

N1 = let [a3, x5] := inProp(fst(eqProp(snd(x2)) a2) fst(x4)) in N2

N2 = inRep([a3, 〈fst(x5), x1 a2 fst(x4) f a3 〈snd(x4), snd(x5)〉〉])

O = λx3. let [a2, x4] := inProp(snd(eqProp(snd(x2)) f) x3) in O1

O1 = let [a3, x5] := inProp(snd(eqProp(fst(x2)) a2) fst(x4)) in O2

O2 = inRep([a3, 〈fst(x5), x1 a2 fst(x4) f a3 〈snd(x4), snd(x5)〉〉]).
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We will show that for all B, eqTrans ↓ λb. R for some term R such that for any term t,
R[b := t] ρ ∀a, c. a = B ∧ B = c → a = c, which trivially implies the claim. We proceed
by induction on λ-rank of B.

We have eqTrans → λe. M0 e M1, where M1 = λg. λx. eqTrans g. Thus it suffices
to show that for all t1, M0 t1 M1 ρ ∀a, c. a = B ∧ B = c → a = c. Since M0 t1 M1 ↓
λa1, c, x2. eqRep(λf. 〈N,O〉[x1 := M1]), it suffices to show that for all A,C,M2 such that
M2 ρ A = B ∧ B = C we have eqRep(λf. 〈N,O〉[x1, x2 := M1,M2]) ρ A = C. By
Lemma 6.17, it suffices to show that for all F, u we have N [x1, x2, f :=M1,M2, u] ρ F ∈I
A→ F ∈ C and O[x1, x2, f :=M1,M2, u] ρ F ∈I C → F ∈ A.

For the proof of the first claim, we have N [x1, x2, f := M1,M2, u] ↓ λx3. . . .. Take any
M3 ρ F ∈I A. We need to show that:

let [a2, x4] := inProp(fst(eqProp(fst(M2)) u) M3)

in N1[x1, x2, x3, f := M1,M2,M3, u] ρ F ∈ C.

We have fst(M2) ρ A = B, so eqProp(fst(M2)) ρ ∀f. (f ∈I A → f ∈ B) ∧ (f ∈I
B → f ∈ A), so by Lemma 6.15 fst(eqProp(fst(M2) u)) M3 ρ F ∈ B. Therefore,
fst(eqProp(fst(M2) u)) M3 ↓ inRep(P ) and P ↓ [t2,M4] for some P,A2, t2,M4 such that
M4 ρ A2 ∈I B∧F = A2. Thus our term let [a2, x4] := . . . reduces to1 N1[x1, x2, x4, a2, f :=
M1,M2,M4, t2, u].

Since snd(M2) ρ B = C, we similarly have fst(eqProp(snd(M2)) t2) fst(M4) ρ A2 ∈
C, so fst(eqProp(snd(M2)) t2) fst(M4) ↓ inRep(Q) and for some A3, Q ↓ [t3,M5], M5 ρ

A3 ∈I C ∧A2 = A3. Therefore

N1[. . .] ↓ inRep([t3, 〈fst(M5),M1 t2 fst(M4) u t3 〈snd(M4), snd(M5)〉〉])

and by Lemma 6.13 it suffices to show that

inRep([t3, 〈fst(M5),M1 t2 fst(M4) u t3 〈snd(M4), snd(M5)〉〉]) ρ F ∈ C

For this purpose, we need to show that fst(M5) ρ A3 ∈I C, which is trivial, and that

M1 t2 fst(M4) u t3 〈snd(M4), snd(M5)〉 ρ F = A3.

Since M1 = λg. λx. eqTrans g, snd(M4) ρ F = A2 and snd(M5) ρ A2 = A3, all we need
to have is that eqTrans t2 ρ ∀a, c. a = A2 ∧ A2 = c → a = c. Since fst(M4) ρ A2 ∈I B,
λrk(A2) < λrk(B) and we get the claim by the inductive hypothesis.

The proof of the second claim proceeds in a very similar fashion. The only thing which
differs O and O1 from N and N1 is the exchange of fst and snd which corresponds to using
the information that ∀f. f ∈I C → f ∈ B and ∀f. f ∈I B → f ∈ A and proceeding from
C to A in the second part of the proof of Lemma 4.4.

Lemma 6.21. There is a term lei such that lei ρ ∀a, b, c. a ∈ c ∧ a = b→ b ∈ c.

Proof. Take

lei = λa, b, c, x. let [d, y] := inProp(fst(x)) in

inRep([d, 〈fst(y), eqTrans a b c 〈eqSymm a b snd(x), snd(y)〉〉]).

We need to show that for any t1, t2, t3 ∈ T , A,B,C, for any M ρ A ∈ C ∧A = B, we have

let [d, y] := inProp(fst(M)) in

inRep([d, 〈fst(y), eqTrans t1 t2 t3 〈eqSymm t1 t2 snd(M), snd(y)〉〉]) ρ B ∈ C.

1Since x3 does not occur in N1 and N2, we omit it from the substitution.
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We have M ↓ 〈M1,M2〉, M1 ρ A ∈ C, M2 ρ A = B. Therefore M1 ↓ inRep(N),
N ↓ [u,O], O ↓ 〈O1, O2〉 and there is D such that O1 ρ D ∈I C, O2 ρ A = D. Therefore
inProp(fst(M)) ↓ [u,O], so it suffices to show that

inRep([u, 〈fst(O), eqTrans t1 t2 t3 〈eqSymm t1 t2 snd(M), (snd(O)〉〉]) ρ B ∈ C.

This follows if we can find some E such that O1 ρ E ∈I C and

eqTrans t1 t2 t3 〈eqSymm t1 t2 snd(M), snd(O)〉 ρ B = E.

Take E to be D. Since we have eqSymm t1 t2 snd(M) ρ B = A and snd(O) ρ A = E,
the claim follows by Lemma 6.20.

The following two lemmas will be used for the treatment of ω in Lemma 6.31.

Lemma 6.22. If A,B ∈ V λ
α , then [[{A,B}]]ρ ∈ V λ

α+1.

Proof. Take any (M,C) ∈ [[{A,B}]]ρ. By the definition of [[{A,B}]]ρ, any such C is in V λ
α ,

so [[{A,B}]]ρ ∈ V λ
α+1.

Lemma 6.23. If A ∈ V λ
α and M ρ B = S(A), then B ∈ V λ

α+3.

Proof. M ρ B = S(A) means M ρ B =
⋃
{A, {A,A}}. By Lemma 6.16, it suf-

fices to show that [[
⋃
{A, {A,A}}]]ρ ∈ V λ

α+3. Applying Lemma 6.22 twice, we find that

[[{A, {A,A}}]]ρ ∈ V λ
α+2. By the definition of [[

⋃
{A, {A,A}}]]ρ , if (M,C) ∈ [[

⋃
{A, {A,A}}]]ρ ,

then C ∈ Vλrk([[
S

{A,{A,A}}]]ρ), so C ∈ V λ
α+2. Therefore [[

⋃
{A, {A,A}}]]ρ ∈ V λ

α+3 which shows
the claim.

Lemma 6.24. If A,B ∈ V λ
α and M ρ C = (A,B), then C ∈ V λ

α+2.

Proof. Similar to the proof of Lemma 6.23, utilizing Lemmas 6.22 and 6.16.

Lemma 6.25. λrk(C) ≤ rk(C+) + ω.

Proof. If (M,A) ∈ C, then M ρ A ∈I C. We have inRep([a, 〈M, eqRefl a〉]) ρ A ∈
C, so (inRep([a, 〈M, eqRefl a〉]), A) ∈ C+. The extra ω is there to deal with possible
difficulties with finite C’s, as we do not know a priori the rank of set-theoretic encoding of
inRep([a, 〈M, eqRefl a〉].

Lemma 6.26. If N ρ ∀x ∈ A. φ then for all (O,X) ∈ A+, N ↓ λa. N1 and N1 ↓ λx. N2

and N2[x := O] ρ φ[x := X]. Also, if N ρ ∃x ∈ A. φ then there is (O,X) ∈ A+ such that
N ↓ [t,N1], N1 ↓ 〈O,N2〉 and N2 ρ φ[x := X].

Proof. If N ρ ∀x ∈ A. φ then N ↓ λa. N1 and for all t,X, N1[a := t] ρ X ∈ A → φ.
In particular, taking t = a, we get N1 ↓ λx. N2 and for all O such that O ρ X ∈ A,
N2[x := O] ρ φ[x := X]. This implies that for all X, for all O, if O ρ X ∈ A, then
N ↓ λa. N1, N1 ↓ λx. N2 and N2[x := O] ρ φ[x := X], which proves the first part of the
claim.

If N ρ ∃x ∈ A. φ, then N ↓ [t,N1] and there is X such that N1 ↓ 〈O,N2〉, O ρ X ∈ A
and N2 ρ φ[x := X], so there is (O,X) ∈ A+ such that N ↓ [t,N1], N1 ↓ 〈O,N2〉 and
N2 ρ φ[x := X].
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With our lemmas in hand, we can now prove:

Lemma 6.27. Suppose A ∈ Ui and N ρ”C is a function from A into Vi”. Then C ∈ V λ
Γi
.

Proof. First let us write formally the statement “C is a function from A into Vi”. This means
“for all x ∈ A there is exactly one y ∈ Vi such that (x, y) ∈ C and for all z ∈ C there is x ∈ A
and y ∈ Vi such that z = (x, y)”. Thus N ↓ 〈N1, N2〉, N1 ρ ∀x ∈ A∃!y ∈ Vi. (x, y) ∈ C
and N2 ρ ∀z ∈ C∃x ∈ A∃y ∈ Vi. z = (x, y). So N1 ρ ∀x ∈ A∃y ∈ Vi. (x, y) ∈
C ∧∀z. (x, z) ∈ C → z = y. By Lemma 6.26, for all (O,X) ∈ A+ there is (P, Y ) ∈ U+

i such
that φ(O,X,P, Y ) holds, where φ(O,X,P, Y ) is defined as:

φ(O,X,P, Y ) ≡ (N1 ↓ λa. N11) ∧ (N11 ↓ λx. N12) ∧ (N12[x := O] ↓ [t,N13]) ∧

(N13 ↓ 〈P,Q〉) ∧ (Q ↓ 〈Q1, Q2〉) ∧

(Q1 ρ (X,Y ) ∈ C) ∧ (Q2 ρ ∀z. (X, z) ∈ C → z = Y )

Let ψ(O,X,P, Y ) be defined as:

ψ(O,X,P, Y ) ≡ ∃Q1, Q2. (Q1 ρ (X,Y ) ∈ C) ∧ (Q2 ρ ∀z. (X, z) ∈ C → z = Y )

Obviously, if φ(O,X,P, Y ) then ψ(O,X,P, Y ). So for all (O,X) ∈ A+ there is (P, Y ) ∈ U+
i

such that ψ(O,X,P, Y ) holds.
Define a function F which takes (O,X) ∈ A+ and returns {(P, Y ) ∈ U+

i | ψ(O,X,P, Y )}.
Suppose (P1, Y1), (P2, Y2) ∈ F ((O,X)). Then there are Q11, Q12, Q21 such that Q11 ρ

(X,Y1) ∈ C, Q12 ρ ∀z. (X, z) ∈ C → z = Y1, Q21 ρ (X,Y2) ∈ C. By Lemma 6.26,
Q12 ↓ λa. R1, R1 ↓ λx. R2 and R2[x := Q21] ρ Y2 = Y1. Since eqSymm a a R2[x :=
Q21] ρ Y1 = Y2, by Lemma 6.16 the λ-ranks of Y1, Y2 are the same and, since any such
(P, Y ) is a member of U+

i , they are smaller than Γi. Also, for any (O,X) ∈ A+, F (O,X)
is inhabited.

Furthermore, define a function G from A+ to Γi, which takes (O,X) ∈ A+ and returns⋃
{λrk((P, Y )) | (P, Y ) ∈ F (O,X) ∧ ψ(O,X,P, Y )}. Then for any (O,X) ∈ A+, G(O,X)

is an ordinal smaller than Γi and if (P, Y ) ∈ U+
i and ψ(O,X,P, Y ), then (P, Y ) ∈ V λ

G(O,X).

Moreover, as Γi is inaccessible, G ∈ R(Γi), where R(Γi) denotes the Γi-th element of the
standard cumulative hierarchy. Therefore

⋃
ran(G) is also an ordinal smaller than Γi. We

define an ordinal β to be max(λrk(A),
⋃
ran(G)).

Now take any (M,B) ∈ C+, so M ρ B ∈ C. Then, by the definition of N2 and
Lemma 6.26 there is (O,X) ∈ A+ and (O1, Z) ∈ U

+
i such that N2 ↓ λa. N21, N21 ↓ λx. N22,

N22[x := M ] ↓ [t,N23], N23 ↓ 〈O,N24〉, N24 ↓ [t,N25], N25 ↓ 〈O1, R〉 and R ρ B = (X,Z).
Let M1 = lei a a a 〈M,R〉, then M1 ρ (X,Z) ∈ C. Take any element (P, Y ) ∈ F (O,X)
and accompanying Q1, Q2. Then Q2 ↓ λa. Q3, Q3 ↓ λx. Q4 and Q4[x :=M1] ρ Z = Y . By
Lemma 6.16, λrk(Z) ≤ λrk(Y ) and thus λrk(Z) ≤ β. Since (O,X) ∈ A+, λrk(X) ≤ β, too.
By Lemma 6.24, λrk(B) ≤ β +2. By Lemma 6.25, rk(B) ≤ β + ω, so rk(C+) ≤ β + ω+1.
By Lemma 6.25 again, λrk(C) ≤ β + 2ω. Since β + 2ω is still smaller than Γi, we get the
claim.

Lemma 6.28. If M ρ A ∈ Ui,γ , then M ρ A ∈ Vi.

Proof. If M ρ A ∈ Ui,γ , then M ↓ inRep(N), N ↓ [t, O], O ↓ 〈O1, O2〉 and there is C such
that O1 ↓ v, (v,C) ∈ Ui,γ , O2 ρ C = A. Then also (v,C) ∈ Ui, so O1 ρ C ∈I Vi, so also
M ρ A ∈ Vi.
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Lemma 6.29. If N ρ ψi(C,Ui,γ), where ψi is one of the five clauses defining φi1(C,Ui,γ)
in the Definition 3.3, then N ρ ψi(C, Vi).

Proof. There are five cases to consider:

• N ρ C = Vi−1. This case is trivial.
• N ρ ∃a. a ∈ Ui,γ ∧ c ∈ a. Then there is A such that N ↓ [t, O], O ↓ 〈O1, O2〉, O1 ρ A ∈
Ui,γ , O2 ρ C ∈ A. By Lemma 6.28, O1 ρ A ∈ Vi, so also N ρ ∃a. a ∈ Vi ∧ c ∈ a.

• N ρ ∃a. a ∈ Ui,γ ∧ c =
⋃
a. Then there is A such that N ↓ [t, O], O ↓ 〈O1, O2〉,

O1 ρ A ∈ Ui,γ , O2 ρ C =
⋃
A. Thus by Lemma 6.28 O1 ρ A ∈ Vi and we get the

claim in the same way as in the previous case.
• N ρ ∃a. a ∈ Ui,γ ∧ C = P (a). Similar to the previous case.
• N ρ ∃a. a ∈ Ui,γ ∧ C ∈ a → Ui,γ . Then there is A such that N ↓ [t, O], O ↓ 〈O1, O2〉,
O1 ρ A ∈ Ui,γ , O2 ρ “C is a function from A into Ui,γ”. By Lemma 6.28, O1 ρ A ∈ Vi.
Expanding the second part, we have O2 ↓ 〈P1, P2〉, P1 ρ ∀x ∈ A∃!y ∈ Ui,γ . (x, y) ∈ C
and P2 ρ ∀z ∈ C∃x ∈ A∃y ∈ Ui,γ . z = (x, y). We will tackle P1 and P2 separately.
- For P1, we have for all X, t, P1 ↓ λa. P11, P11[a := t] ↓ λx.Q and for all R ρ X ∈ A
there is Y such that Q[x := R] ↓ [t1, Q0], Q0 ↓ 〈Q1, Q2〉, Q1 ρ Y ∈ Ui,γ and Q2 ρ

(X,Y ) ∈ C ∧ ∀z. (X, z) ∈ C → z = Y . By Lemma 6.28 we also have Q1 ρ Y ∈ Vi, so
also P1 ρ ∀x ∈ a∃!y. y ∈ Vi ∧ (x, y) ∈ C.

- For P2, we have for all Z, t, P2 ↓ λa. P11, P11[a := t] ↓ λx.Q and for all R ρ Z ∈ C
there are X,Y such that Q[x := R] ↓ [t1, Q0], Q0 ↓ 〈Q1, Q2〉 and Q1 ρ X ∈ A.
Moreover, Q2 ↓ [t2, S0], S0 ↓ 〈S1, S2〉 and S1 ρ Y ∈ Ui,γ . By Lemma 6.28 we also have
S1 ρ Y ∈ Vi, so also P2 ρ ∀z ∈ C → ∃x ∈ A∃y ∈ Vi. z = (x, y).

Therefore also O2 ρ “C is a function from A into Vi” and in the end N ρ ∃a. a ∈
Vi ∧ C ∈ a→ Vi.

Corollary 6.30. If M ρ φ
i
1(C,Ui,γ), then M ρ φ

i
1(C, Vi).

The following lemma states the crucial property of the realizability relation.

Lemma 6.31. (M,C) ∈ [[tA(~u)]]ρ iff M = axRep(N) and N ρ φA(C,
−−−→
[[u]]ρ).

Proof. The proof proceeds by case analysis on tA(~u). We first do the proof for all terms
apart from ω and Vi, then we show the claim for ω and finally for Vi.

For all terms, save ω and Vi, the left-to-right direction is immediate. For the right-to-left

direction, suppose N ρ φA(C,
−−→
[[u]]ρ) and M = axRep(N). To show that (M,C) ∈ [[tA(~u)]]ρ,

we need to show that C ∈ V λ
γ . Let ~α =

−−−−−−−→
rank([[u]]ρ). Case tA(~u) of:

• {u1, u2}. Suppose that N ρ C = [[u1]]ρ ∨ C = [[u2]]ρ. Then either N ↓ inl(N1) ∧N1 ρ

C = [[u1]]ρ or N ↓ inr(N1) ∧ N1 ρ C = [[u2]]ρ. By Lemma 6.16, in the former case

C ∈ V λ
α1
, in the latter C ∈ V λ

α2
, so C ∈ V λ

max(α1,α2).

• P (u). Suppose that N ρ ∀d. d ∈ C → d ∈ [[u]]ρ. Then N ↓ λa. N1 and for any
t, ∀D. N1[a := t] ρ D ∈ C → D ∈ [[u]]ρ, so ∀D, t. N1[a := t] ↓ λx. N2 and for
all O, if O  D ∈ C then N2[x := O] ρ D ∈ [[u]]ρ. Take any (v,B) ∈ C. Then
inRep([a, 〈v, eqRefl a〉]) ρ B ∈ C, so N2[x := inRep([a, 〈v, eqRefl a〉]] ρ B ∈ [[u]]ρ. Thus

by Lemma 6.16 any such B is in V λ
α , so C ∈ V λ

α+1.
•
⋃
u. Suppose N ρ ∃c. c ∈ [[u]]ρ ∧ C ∈ c. Then N ↓ [t,N1] and there is B such that

N1 ρ B ∈ [[u]]ρ ∧ C ∈ B. Thus N1 ↓ 〈N1, N2〉, N1 ρ B ∈ [[u]]ρ, N2 ρ C ∈ B. By

Lemma 6.16, any such B is in V λ
α , so also C ∈ V λ

α .
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• S
φ(a, ~f)

(u, ~u). Suppose N ρ C ∈ [[u]]ρ ∧ φ(C,
−−→
[[u]]ρ). Then N ↓ 〈N1, N2〉 and N1 ρ C ∈

[[u]]ρ. Thus C ∈ V λ
α1
.

• R
φ(a, ~f)

(u, ~u). Suppose N ρ (∀x ∈ [[u]]ρ∃!y. φ(x, y,
−−→
[[u]]ρ))∧∃x ∈ [[u]]ρ. φ(x,C,

−−→
[[u]]ρ). Then

N ↓ 〈N1, N2〉 and N2 ρ ∃x ∈ [[u]]ρ. φ(x,C,
−−→
[[u]]ρ). Thus N2 ↓ [t,N20], N20 ↓ 〈N21, N22〉

and there is B such that N21 ρ B ∈ [[u]]ρ and N22 ρ φ(B,C,
−−→
[[u]]ρ). We also have

N1 ρ ∀x ∈ [[u]]ρ∃!y. φ(x, y,
−−→
[[u]]ρ), so N1 ↓ λa. N11 and for all C, N11 ↓ λx. O and

for all P ρ C ∈ [[u]]ρ, O[x := P ] ρ ∃!y. φ(C, y,
−−→
[[u]]ρ). So taking C = B and P =

N21, there is D such that N1 ↓ λa. N11, N11 ↓ λx. O and O[x := N21] ↓ [s,O1] and

O1 ρ φ(B,D,
−−→
[[u]]ρ) ∧ ∀e. φ(B, e,

−−→
[[u]]ρ) → e = D. Therefore (N1, (N21, B)) ∈ G from

the definition of γ, so there is D ∈ V λ
γ such that N1 ↓ λa. N11, N11 ↓ λx.O, O[x :=

N21] ↓ [s,O1] and O1 ρ φ(B,D,
−−→
[[u]]ρ) ∧ ∀e. φ(B, e,

−−→
[[u]]ρ) → e = D. So O1 ↓ 〈O11, O12〉

and O12 ρ ∀e. φ(B, e,
−−→
[[u]]ρ) → e = D. Therefore, O12 ↓ λa. Q, Q ↓ λx. Q1 and

Q1[x := N22] ρ C = D. By Lemma 6.16, C ∈ V λ
γ .

Now we tackle ω. For the left-to-right direction, obviously M = infRep(N). For the claim
about N we proceed by induction on the definition of ω′:

• The base case. Then N ↓ inl(O) and O ρ A = 0, so N ρ A = 0 ∨ ∃y ∈ ω′. A = S(y).
• Inductive step. Then N ↓ inr(N1), N1 ↓ [t, O], O ↓ 〈M ′, P 〉, (M ′, B) ∈ ω′+, P ρ A =
S(B). Therefore, there is C (namely B) such that M ′

ρ C ∈ ω′ and P ρ A = S(C).
Thus [t, O] ρ ∃y. y ∈ ω′ ∧A = S(y), so N ρ A = 0 ∨ ∃y ∈ ω′. A = S(y).

For the right-to-left direction, suppose N ρ A = 0 ∨ (∃y. y ∈ ω′ ∧A = S(y)). Then either

N ↓ inl(N1) or N ↓ inr(N1). In the former case, N1 ρ A = 0, so by Lemma 6.16 A ∈ V λ
ω .

In the latter, N1 ρ ∃y. y ∈ ω′ ∧ A = S(y). Thus N1 ↓ [t, O] and there is B such that
O ρ B ∈ ω′ ∧ A = S(B). So O ↓ 〈M ′, P 〉, (M ′, B) ∈ ω′+ and P ρ A = S(B). This is

exactly the inductive step of the definition of ω′, so it remains to show that A ∈ V λ
ω . Since

(M ′, B) ∈ ω′+, there is a finite ordinal α such that B ∈ V λ
α . By Lemma 6.23, A ∈ V λ

α+3, so

also A ∈ V λ
ω and we get the claim.

Finally, we take care of Vi. We first show the left-to-right direction. Suppose (M,A) ∈
Ui, then M = inaciRep(N). We must have N ρ φ

i
1(A,Ui,γ) ∧ ∀d. φi2(d) → A ∈ d for some

ordinal γ. Then N ↓ 〈N1, N2〉, N1 ρ φ
i
1(A,Ui,γ), N2 ρ ∀d. φ

i
2(d) → A ∈ d. Corollary 6.30

gives us N1 ρ φ
i
1(A,Vi), so N ρ φ

i
1(A,Vi) ∧ ∀d. φi2(d) → A ∈ d, which is what we want.

For the right-to-left direction, suppose N ρ φ
i
1(C, Vi) ∧ ∀d. φi2(d) → C ∈ d. We need

to show that (inaciRep(N), C) ∈ Ui. By the definition of Ui it suffices to show that C ∈ VΓi
.

We have N ↓ 〈N1, N2〉 and N1 ρ “C is equal to Vi−1 or there is A ∈ Vi such that C
is a powerset/union/member of A, or C is a function from A into Vi.”. The proof splits
into corresponding five cases. The first four are easy to prove using Lemma 6.16 and the
definition of the ordinal γ in the clause 5 in the definition of realizability. The last one
follows by Lemma 6.27.

7. Normalization

In this section, environments ρ are finite partial functions mapping propositional vari-
ables to terms of λZω and first-order variables to pairs (t, A), where t ∈ T and A ∈ V λ.
Therefore, ρ : V ar ∪ FV ar → ΛZω ∪ (T × V λ), where V ar denotes the set of propositional
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variables and FV ar denotes the set of first-order variables. Note that any ρ can be used as
a realizability environment by considering only the mapping of first-order variables to V λ.
Therefore we will be using the notation ρ also for these environments ρ.

Definition 7.1. For a sequent Γ ⊢ M : φ, ρ |= Γ ⊢ M : φ means that ρ is defined on
FV (Γ,M, φ) and for all (xi, φi) ∈ Γ, ρ(xi) ρ φi.

Note that if ρ |= Γ ⊢ M : φ, then for any term t in Γ, φ, [[t]]ρ is defined and so is the
realizability relation M ρ φ.

Definition 7.2. For a sequent Γ ⊢ M : φ, if ρ |= Γ ⊢ M : φ then M [ρ] is M [x1 :=
ρ(x1), . . ., xn := ρ(xn), a1 := ρT (a1), . . ., ak := ρT (ak)], where FV (M) = {x1, . . ., xn},
FVF (M) = {a1, . . ., ak} and ρT denotes the restriction of ρ to the mapping from first-order
variables into terms: ρT = λa ∈ FV ar. π1(ρ(a)).

Lemma 7.3. M [ρ][x := N ] =M [ρ[x := N ]]. Also M [ρ][a := t] =M [ρ[a := (t, A)]].

Proof. Straightforward structural induction on M .

Theorem 7.4 (Normalization). If Γ ⊢M : ϑ then for all ρ |= Γ ⊢M : ϑ, M [ρ] ρ ϑ.

Proof. For any λZω term M , M ′ in the proof denotes M [ρ]. We proceed by metalevel
induction on Γ ⊢M : ϑ. Case Γ ⊢M : ϑ of:

•
Γ, x : φ ⊢ x : φ

Then M ′ = ρ(x) and the claim follows.
•

Γ ⊢M : φ→ ψ Γ ⊢ N : φ

Γ ⊢M N : ψ

By the inductive hypothesis, M ′
ρ φ→ ψ and N ′

ρ φ. Lemma 6.15 gives the claim.
•

Γ, x : φ ⊢M : ψ

Γ ⊢ λx : φ. M : φ→ ψ

We need to show that for any N ρ φ, M
′[x := N ] ρ ψ. Take any such N . Let

ρ′ = ρ[x := N ]. Then ρ′ |= Γ, x : φ ⊢ M : ψ, so by the inductive hypothesis M [ρ′] ρ′ ψ.

By Lemma 7.3 M [ρ′] = M [ρ][x := N ] = M ′[x := N ], so M ′[x := N ] ρ′ ψ. Since ρ′

agrees with ρ on logic variables, by Lemma 6.14 we get M ′[x := N ] ρ ψ.
•

Γ ⊢M : ⊥
Γ ⊢ magic(M) : φ

By the inductive hypothesis, M ′
ρ ⊥, which is not the case, so anything holds, in

particular magic(M ′) ρ φ.
•

Γ ⊢M : φ ∧ ψ

Γ ⊢ fst(M) : φ

By the inductive hypothesis, M ′
ρ φ ∧ ψ, so M ′ ↓ 〈M1,M2〉 and M1 ρ φ. Therefore

fst(M) →∗ fst(〈M1,M2〉) →M1. Lemma 6.13 gives the claim.
•

Γ ⊢M : φ ∧ ψ

Γ ⊢ snd(M) : ψ

Symmetric to the previous case.
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•
Γ ⊢M : φ Γ ⊢ N : ψ

Γ ⊢ 〈M,N〉 : φ ∧ ψ

All we need to show isM ′
ρ φ and N ′

ρ ψ, which we get from the inductive hypothesis.
•

Γ ⊢M : φ

Γ ⊢ inl(M) : φ ∨ ψ

We need to show that M ′
ρ φ, which we get from the inductive hypothesis.

•
Γ ⊢M : ψ

Γ ⊢ inr(M) : φ ∨ ψ

Symmetric to the previous case.
•

Γ ⊢M : φ ∨ ψ Γ, x : φ ⊢ N : ϑ Γ, x : ψ ⊢ O : ϑ

Γ ⊢ case(M,x : φ. N, x : ψ. O) : ϑ

By the inductive hypothesis, M ′
ρ φ∨ψ. Therefore either M

′ ↓ inl(M1) and M1 ρ φ or
M ′ ↓ inr(M2) andM2 ρ ψ. We only treat the former case, the latter is symmetric. Since

ρ[x := M1] ρ Γ, x : φ ⊢ N : ϑ, by the inductive hypothesis we get N [ρ[x := M1]] ρ ϑ.

We also have case(M,x.N, x.O) →∗ case(inl(M1), x.N, x.O) → N [x := M1]. By Lemma
7.3, N [x :=M1] = N [ρ[x :=M1]], so Lemma 6.13 gives us the claim.

•
Γ ⊢M : φ

Γ ⊢ λa. M : ∀a. φ

By the inductive hypothesis, for all ρ |= Γ ⊢M : φ, M [ρ]  φ. We need to show that for

all ρ |= Γ ⊢ λa. M : ∀a. φ, (λa. M)[ρ] ρ ∀a. φ. This is equivalent to λa. M [ρ] ρ ∀a. φ.
Take any such ρ. We need to show that ∀A, t. M [ρ][a := t] ρ φ[a := A]. Take any A and

t. Since ρ[a := (t, A)] |= Γ ⊢ M : φ and by Lemma 7.3 M [ρ][a := t] = M [ρ[a := (t, A)]],
we get the claim by the inductive hypothesis.

•
Γ ⊢M : ∀a. φ

Γ ⊢M t : φ[a := t]

By the inductive hypothesis, M ′
ρ ∀a. φ, so M

′ ↓ λa. N and ∀A, u. N [a := u] ρ φ[a :=
A]. In particular N [a := t[ρ]] ρ φ[a := [[t]]ρ]. By Lemma 6.11, N [a := t[ρ]] ρ φ[a := t].
Since M ′ (t[ρ]) →∗ (λa. N) t[ρ] → N [a := t[ρ]], Lemma 6.13 gives us the claim.

•
Γ ⊢M : φ[a := t]

Γ ⊢ [t,M ] : ∃a. φ

By the inductive hypothesis, M ′
ρ φ[a := t], so by Lemma 6.11, M ′

ρ φ[a := [[t]]ρ].
Thus, there is a lambda-name A, namely [[t]]ρ, such that M ′

ρ φ[a := A]. Thus,

[t,M ][ρ] = [t[ρ],M ′] ρ ∃a. φ which is what we want.
•

Γ ⊢M : ∃a. φ Γ, x : φ ⊢ N : ψ

Γ ⊢ let [a, x : φ] :=M in N : ψ
a /∈ FV (Γ, ψ)

Let ρ |= Γ ⊢ let [a, x : φ] := M in N : ψ. We need to show let [a, x : φ] :=M in N [ρ] =
let [a, x] := M ′ in N [ρ] ρ ψ. By the inductive hypothesis, M ′

ρ ∃a. φ, so M ′ ↓
[t,M1] and for some A, M1 ρ φ[a := A]. By the inductive hypothesis again, for any
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ρ′ |= Γ, x : φ ⊢ N : ψ we have N [ρ′] ρ′ ψ. Take ρ′ = ρ[x := M1, a := (t, A)]. Since

a /∈ FV (ψ), by Lemma 6.14 N [ρ′] ρ ψ. Now, let [a, x : φ] :=M ′ in N [ρ] →∗ let [a, x] :=

[t,M1] in N [ρ] → N [ρ][a := t][x := M1] = N [ρ′]. Lemma 6.13 gives us the claim.
•

Γ ⊢M : ∀d. (d ∈I t → d ∈ u) ∧ (d ∈I u→ d ∈ t)

Γ ⊢ eqRep(t, u,M) : t = u

By the inductive hypothesis, M ′
ρ ∀d. (d ∈I t→ d ∈ u) ∧ (d ∈I u→ d ∈ t). By Lemma

6.11, M ′
ρ ∀d. (d ∈I [[t]]ρ → d ∈ [[u]]ρ) ∧ (d ∈I [[u]]ρ → d ∈ [[t]]ρ). By Lemma 6.17,

eqRep(M ′) ρ [[t]]ρ = [[u]]ρ. Lemma 6.11 applied again gives us the claim.

Γ ⊢M : t = u
Γ ⊢ eqProp(t, u,M) : ∀d. (d ∈I t→ d ∈ u) ∧ (d ∈I u→ d ∈ t)

By the inductive hypothesis, M ′
ρ t = u. By Lemma 6.11, M ′

ρ [[t]]ρ = [[u]]ρ. By
Lemma 6.17, M ′ ↓ eqRep(N) and N ρ ∀d. (d ∈I [[t]]ρ → d ∈ [[u]]ρ) ∧ (d ∈I [[u]]ρ → d ∈

[[t]]ρ). Since eqProp(t, u,M) = eqProp(M ′) →∗ eqProp(eqRep(N)) → N , by Lemma 6.13

eqProp(t, u,M) ρ ∀d. (d ∈I [[t]]ρ → d ∈ [[u]]ρ) ∧ (d ∈I [[u]]ρ → d ∈ [[t]]ρ). Lemma 6.11
applied once again gives us the claim.

• For inProp and inRep, the proof is similar to the two previous cases.
•

Γ ⊢M : φA(t, ~u)

Γ ⊢ axRep(t, ~u,M) : t ∈I tA(~u)

By the inductive hypothesis, M ′
ρ φA(t, ~u). By Lemma 6.11 this is equivalent to M ′

ρ

φA([[t]]ρ,
−−→
[[u]]ρ). By Lemma 6.31 (axRep(M ′), [[t]]ρ) ∈ [[tA(~u)]]ρ, so axRep(M ′) ρ t ∈I

tA(~u).
•

Γ ⊢M : t ∈I tA(~u)

Γ ⊢ axProp(t, ~u,M) : φA(t, ~u)

By the inductive hypothesis, M ′
ρ t ∈I tA(~u). This means that M ′ ↓ v and (v, [[t]]ρ) ∈

[[tA(~u)]]ρ. By Lemma 6.31, v = axRep(N) and N ρ φA([[t]]ρ,
−−→
[[u]]ρ). By Lemma 6.11,

N ρ φA(t, ~u). Moreover, axProp(t, ~u,M) = axProp(M ′) →∗ axProp(axRep(N)) → N .
Lemma 6.13 gives us the claim.

•
Γ ⊢M : ∀c. (∀b. b ∈I c→ φ(b,~t)) → φ(c,~t)

Γ ⊢ ind(M,~t) : ∀a. φ(a,~t)

Since ind(M ′) reduces to λc. M ′ c (λb. λx. ind(M ′) b), by Lemma 6.13 it suffices to
show that for all C, t, M ′ t (λb. λx. ind(M ′) b) ρ φ(C,~t). We proceed by induction
on λ-rank of C. Take any C, t. By the inductive hypothesis, M ′

ρ ∀c. (∀b. b ∈I c →

φ(b,~t)) → φ(c,~t), so M ′ ↓ λc. N and N [c := t] ρ ∀b. b ∈I C → φ(b,~t). By Lemma

6.15, it suffices to show that λb. λx. ind(M ′) b ρ ∀b. b ∈I C → φ(b,~t). Take any B,u,

O ρ B ∈I C, we need to show that ind(M ′)[x := O] u ρ φ(B,~t). As x /∈ FV (M ′),

it suffices to show that ind(M ′) u ρ φ(B,~t), which, by Lemma 6.13, is equivalent to

M ′ u (λb. λx. ind(M ′) b) ρ φ(B,~t). As O ρ B ∈I C, the λ-rank of B is less than the
λ-rank of C and we get the claim by the inductive hypothesis.
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Corollary 7.5 (Normalization). If ⊢M : φ, then M ↓.

Proof. Take ρ mapping all free propositional variables of M to themselves and all free first-
order variables a of M to (a, ∅). Then ρ |=⊢M : φ. By Theorem 7.4, M [ρ] normalizes. By
the definition of ρ, M [ρ] =M . By Lemma 6.1, M normalizes.

As the reduction system is deterministic, the distinction between strong and weak nor-
malization does not exist. If the reduction system is extended to allow reductions anywhere
inside the term, the Corollary 7.5 shows only weak normalization. The counterexamples
from [Moc06a] adapted to λZω show that IZFRω does not strongly normalize and that
non-well-founded version does not normalize at all.

Our method of carrying the normalization proof is very different from the standard
approach, based on Girard’s method of candidates [GTL89]. As the candidates method is
usually used to show strong normalization of formal systems, it is unclear if it could be
applied to IZFRω, given that it does not strongly normalize. Although it might be possible
to restate the realizability relation in terms closer to the candidates method, we believe our
account is easier to understand and closer to its roots [McC84]. We will show how to apply
our method to show normalization of several weaker systems in the forthcoming [Moc07].

The normalization theorem immediately provides the standard properties of construc-
tive set theories — the disjunction property, the term existence property, the set existence
property and the numerical existence property. Proofs are the same as in [Moc06a]; we only
show the proofs of TEP and SEP.

Corollary 7.6 (Term Existence Property). If IZFRω⊢ ∃x. φ(x), then there is a term t such
that IZFRω⊢ φ(t).

Proof. By the Curry-Howard isomorphism, there is a λZω-term M such that ⊢ M : ∃x. φ.
By Corollary 5.8, M ↓ v and ⊢ v : ∃x. φ. By Canonical Forms, there is a pair [t,N ] such
that ⊢ N : φ(t). Therefore, by the Curry-Howard isomorphism, IZFRω⊢ φ(t).

Corollary 7.7 (Set Existence Property). If IZFRω⊢ ∃x. φ(x) and φ is term-free, then there
is a term-free formula ψ(x) such that IZFRω⊢ ∃!x. φ(x) ∧ ψ(x).

Proof. By the previous corollary we have IZFRω⊢ φ(t) for some term t. Moreover, for
any IZFRω term s, there is a term-free defining formula ψs(x) such that IZFRω⊢ ψs(s) ∧
∃!x. ψs(x). Therefore IZFRω⊢ ∃!x. φ(x) ∧ ψt(x).

In [CM06] we have shown how to use DP, NEP and TEP for the purpose of program
extraction. Thus our results establish IZFRω as a valid basis for a prover based on set theory
with inaccessibles with the capability of program extraction from constructive proofs.

8. Related work

Several normalization results for impredicative constructive set theories much weaker
than IZF exist. Bailin [Bai88] proved strong normalization of a constructive set theory
without the induction and replacement axioms. Miquel interpreted a theory of similar
strength in a PTS (Pure Type System) [Miq04], where he also showed strong normalization
of the calculus. This result was later extended — Dowek and Miquel [DM06] interpreted
a version of constructive Zermelo set theory in a strongly normalizing deduction-modulo
system.
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In [Miq03], Miquel interpreted IZFC without the ∈-induction axiom in a strongly-
normalizing lambda calculus with types based on Fω.2. It is unclear if Miquel’s techniques
could be used to prove any of DP, NEP, SEP and TEP for the theory or to provide inter-
pretations of ECC or CIC.

Krivine [LK01] defined realizability using lambda calculus for classical set theory con-
servative over ZF. The types for the calculus were defined. However, it seems to this author
that the types correspond to truth in the realizability model rather than to provable state-
ments in the theory. Moreover, the calculus does not even weakly normalize.

The standard metamathematical properties of theories related to IZF are well inves-
tigated. Myhill [Myh73] showed DP, NEP, SEP and TEP for IZF with Replacement and

non-recursive list of set terms. Friedman and Ŝĉedrov [FS83] showed SEP and TEP for
an extension of that theory with countable choice axioms. Recently DP and NEP were
shown for IZF with Collection extended with various choice principles by Rathjen [Rat06].
However, the technique does not seem to be strong enough to provide TEP and SEP.

Powerful large set axioms (including the existence of class-many inaccessibles) were

added to IZF with Collection by Friedman and Ŝĉedrov [FS84]. The notion of an inaccessible
set they use differs from ours, as their inaccessibles must also model the Collection axiom.
We do not know if these two notions coincide. Both DP and NEP was shown for the resulting
theories, but we do not think that SEP and TEP could be proved with their technique.

Inaccessible sets were also investigated in the context of weaker, predicative CZF (Con-
structive Zermelo-Fraenkel). Crosilla and Rathjen [CR02] showed that the power of in-
accessible set axioms might be closely linked to the ∈-induction axiom. They proved that
inaccessible sets added to CZF with ∈-induction taken away do not add any proof-theoretical
power.
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