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Abstract. De Vrijer has presented a proof of the finite developments theorem which, in
addition to showing that all developments are finite, gives an effective reduction strategy
computing longest developments as well as a simple formula computing their length.

We show that by applying a rather simple and intuitive principle of duality to de Vrijer’s
approach one arrives at a proof that some developments are finite which in addition yields
an effective reduction strategy computing shortest developments as well as a simple formula
computing their length. The duality fails for general β-reduction.

Our results simplify previous work by Khasidashvili.

1. Introduction

Let S = { “(”, “)”, “.”, “λ”, “λ” } and V be an infinite alphabet (ranged over by
x, y, z) disjoint from S. Then ΛK is the set of words over S ∪ V defined by:

x ∈ V ⇒ x ∈ ΛK

P ∈ ΛK ⇒ (λx.P ) ∈ ΛK

P,Q ∈ ΛK ⇒ (P Q) ∈ ΛK

P,Q ∈ ΛK ⇒ ((λx.P )Q) ∈ ΛK

We assume the reader is familiar with the fundamental conventions, definitions, and
properties pertaining to ΛK—see, e.g., [1]—notably the conventions for omitting parenthe-
ses, the notions of free and bound variables, the identification of terms that differ only in
the choice of names for bound variables, the conventions for avoiding confusion between
free and bound variables, the definition of substitution M{x := N}, and the set FV(M) of
variables occurring free in M . Also, M ≡ N means that M and N differ only in the choice
of names for bound variables.

Let →β be the smallest relation on ΛK with (λx.P )Q →β P{x := Q} satisfying

P →β P ′ ⇒ λx.P →β λx.P ′

P →β P ′ ⇒ P Q →β P ′ Q

P →β P ′ ⇒ Q P →β Q P ′

P →β P ′ ⇒ (λx.P ) Q →β (λx.P ′) Q

P →β P ′ ⇒ (λx.Q) P →β (λx.Q) P ′
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A development of M0 is a finite or infinite sequence M0 →β M1 →β . . .. If the sequence

is finite, it ends in the last term Mn and has length n. If it is infinite, it has length ∞.1 We
write M ∈ NFβ and call M a β-normal form if M 6→β N for all N ∈ ΛK . A development is

complete if it is infinite or ends in a β-normal form. By sβ(M) and lβ(M) we denote the

length of a shortest complete and longest complete development of M , respectively. The
finite developments theorem, due to Curry and Feys [3] and later proved by many others,
states in its simplest form that all developments are finite.

Lemma 1.1.

(i) M,N ∈ ΛK ⇒ M{x := N} ∈ ΛK ;

(ii) M ∈ ΛK & M →β N ⇒ N ∈ ΛK .

Proof. (i): By induction on M . (ii): By induction on M →β N , using (i).

2. Shortest developments

We first present our technique for computing shortest developments and then explain
the relation to de Vrijer’s [7] technique for computing longest developments in §4.

Definition 2.1.

(i) For all x ∈ V define mx : ΛK → N by:2

mx(x) = 1
mx(y) = 0 if x 6≡ y

mx((λy.P ) Q) = mx(P ) +mx(Q)⌊my(P ), 1⌋
mx(P Q) = mx(P ) +mx(Q) if P 6≡ λy.R

mx(λy.P ) = mx(P )

(ii) Define h : ΛK → N by:

h(x) = 0
h((λy.P ) Q) = h(P ) + h(Q)⌊my(P ), 1⌋ + 1
h(P Q) = h(P ) + h(Q) if P 6≡ λy.R

h(λy.P ) = h(P )

(iii) Define H : ΛK → ΛK by:

H(x) = x

H((λy.P ) Q) =

{

(λy.P ) H(Q)
P{y := Q}

if ⌊my(P ), 1⌋ = 1 & Q 6∈ NFβ

otherwise

H(P Q) =

{

H(P ) Q
P H(Q)

if P 6≡ λy.R & P 6∈ NFβ

if P 6≡ λy.R & P ∈ NFβ

H(λy.P ) = λy.H(P )

(iv) Let LH(M) be the length of the complete development

M →β H(M) →β H(H(M)) →β . . .

1We adopt the conventions n ≤ ∞ and ∞+ n = ∞ for all n ∈ N ∪ {∞}.
2⌊m,n⌋ and ⌈m,n⌉ denote the minimum and maximum of m and n, respectively.
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As will be seen in Corollary 2.8, M →β H(M) →β H(H(M)) →β . . . is a shortest

complete development from M , and h(M) is its length. Informally, the auxiliary function
mx(M) calculates the number of copies of N we have to reduce in a shortest complete
development of M{x := N}.

Remark 2.2.

(i) x 6∈ FV(M) ⇒ mx(M) = 0.
(ii) M ∈ NFβ ⇔ h(M) = 0.

(iii) ⌊my(P ), 1⌋ 6= 1 ⇒ ⌊my(P ), 1⌋ = my(P ).

Lemma 2.3. Let x 6≡ y. Then:

(i) my(M{x := N}) = my(M) +my(N)mx(M);
(ii) h(M{x := N}) = h(M) + h(N)mx(M).

Proof. (i) is by induction on M . Let L∗ ≡ L{x := N}.

1. M ≡ z.
1.1. z ≡ x. Then

my(x
∗) = my(N)

= my(x) +my(N)mx(x)

1.2. z 6≡ x. Then
my(z

∗) = my(z)
= my(z) +my(N)mx(z)

2. M ≡ (λz.P ) Q. Since z 6∈ FV(N), also mz(N) = 0. By the induction hypothesis,

my((λz.P
∗) Q∗)

= my(P
∗) +my(Q

∗)⌊mz(P
∗), 1⌋

= my(P ) +my(N)mx(P ) + (my(Q) +my(N)mx(Q))⌊mz(P ), 1⌋
= my(P ) +my(N)mx(P ) +my(Q)⌊mz(P ), 1⌋ +my(N)mx(Q)⌊mz(P ), 1⌋
= my(P ) +my(Q)⌊mz(P ), 1⌋ +my(N)(mx(P ) +mx(Q)⌊mz(P ), 1⌋)
= my((λz.P ) Q) +my(N)mx((λz.P ) Q)

3. M ≡ P Q where P 6≡ λy.R. Then, by the induction hypothesis,

my(P
∗ Q∗) = my(P

∗) +my(Q
∗)

= my(P ) +my(N)mx(P ) +my(Q) +my(N)mx(Q)
= my(P Q) +my(N)mx(P Q)

4. M ≡ λy.P . Similar to Case 3.

This concludes the proof of (i); (ii) is also by induction on M .

1. M ≡ z.
1.1. z ≡ x. Then

h(x∗) = h(N)
= h(x) + h(N)mx(x)

1.2. z 6≡ x. Then
h(z∗) = h(z)

= h(z) + h(N)mx(z)
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2. M ≡ (λz.P ) Q. Since z 6∈ FV(N), also mz(N) = 0. Therefore, by the induction
hypothesis and (i),

h((λz.P ∗) Q∗)
= h(P ∗) + h(Q∗)⌊mz(P

∗), 1⌋ + 1
= h(P ) + h(N)mx(P ) + (h(Q) + h(N)mx(Q))⌊mz(P ), 1⌋ + 1
= h(P ) + h(N)mx(P ) + h(Q)⌊mz(P ), 1⌋ + h(N)mx(Q)⌊mz(P ), 1⌋ + 1
= h(P ) + h(Q)⌊mz(P ), 1⌋ + 1 + h(N)(mx(P ) +mx(Q)⌊mz(P ), 1⌋)
= h((λz.P ) Q) + h(N)mx((λz.P ) Q)

3. M ≡ P Q where P 6≡ λy.R. Then, by the induction hypothesis,

h(P ∗ Q∗) = h(P ∗) + h(Q∗)
= h(P ) + h(N)mx(P ) + h(Q) + h(N)mx(Q)
= h(P Q) + h(N)mx(P Q)

4. M ≡ λy.P . Similar to Case 3.

Lemma 2.4. Suppose that M →β N . Then

(i) mx(M) ≤ mx(N);
(ii) h(M) ≤ h(N) + 1.

Proof. (i) is by induction on M →β N .

1. M ≡ (λy.P ) Q →β P{y := Q} ≡ N . By Lemma 2.3,

mx((λy.P ) Q) = mx(P ) +mx(Q)⌊my(P ), 1⌋
≤ mx(P ) +mx(Q)my(P )
= mx(P{y := Q})

2. M ≡ (λy.P ) Q →β (λy.P ′) Q′ ≡ N , where P →β P ′ and Q ≡ Q′, or vice versa. By

the induction hypothesis,

mx((λy.P ) Q) = mx(P ) +mx(Q)⌊my(P ), 1⌋
≤ mx(P

′) +mx(Q
′)⌊my(P

′), 1⌋
= mx((λy.P

′) Q′)

3. M ≡ P Q →β P ′ Q′ ≡ N , where P 6≡ λy.R, and where P →β P ′ and Q ≡ Q′, or vice

versa. Similar to Case 2.
4. M ≡ λy.P →β λy.P ′ ≡ N , where P →β P ′. Similar to Case 2.

This concludes (i); (ii) is also by induction on M →β N .

1. M ≡ (λy.P ) Q →β P{y := Q} ≡ N . By Lemma 2.3

h((λy.P ) Q) = h(P ) + h(Q)⌊my(P ), 1⌋ + 1
≤ h(P ) + h(Q)my(P ) + 1
= h(P{y := Q}) + 1

2. M ≡ (λy.P ) Q →β (λy.P ′) Q′ ≡ N , where P →β P ′ and Q ≡ Q′, or vice versa. By

the induction hypothesis and (i),

h((λy.P ) Q) = h(P ) + h(Q)⌊my(P ), 1⌋ + 1
≤ h(P ′) + h(Q′)⌊my(P

′), 1⌋ + 2
= h((λy.P ′) Q′) + 1
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3. M ≡ P Q →β P ′ Q′ ≡ N , where P 6≡ λy.R, and where P →β P ′ and Q ≡ Q′, or vice

versa. Similar to Case 2.
4. M ≡ λy.P →β λy.P ′ ≡ N , where P →β P ′. Similar to Case 2.

Corollary 2.5. For all M ∈ ΛK : h(M) ≤ sβ(M).

Proof. By induction on h(M).

1. h(M) = 0. Then M ∈ NFβ, and then sβ(M) = 0.

2. h(M) 6= 0. Then M 6∈ NFβ. Let M →β N be such that sβ(M) = sβ(N) + 1. By

Lemma 2.4(ii) and the induction hypothesis,

h(M) ≤ h(N) + 1
≤ sβ(N) + 1

= sβ(M)

Lemma 2.6. If h(M) 6= 0 then M →β H(M) and h(M) = h(H(M)) + 1.

Proof. By induction on M . Assume h(M) 6= 0.

1. M ≡ x. This case is impossible since h(x) = 0.
2. M ≡ (λy.P ) Q.

2.1. ⌊my(P ), 1⌋ = 1 and Q 6∈ NFβ. By the induction hypothesis,

h((λy.P ) Q) = h(P ) + h(Q)⌊my(P ), 1⌋ + 1
= h(P ) + h(Q) + 1
= h(P ) + h(H(Q)) + 2
= h(P ) + h(H(Q))⌊my(P ), 1⌋ + 2
= h((λy.P ) H(Q)) + 1
= h(H((λy.P ) Q)) + 1

2.2. ⌊my(P ), 1⌋ 6= 1 or Q ∈ NFβ. By Lemma 2.3

h((λy.P ) Q) = h(P ) + h(Q)⌊my(P ), 1⌋ + 1
= h(P ) + h(Q)my(P ) + 1
= h(P{y := Q}) + 1

3. M ≡ λy.P . Then, by the induction hypothesis,

h(λy.P ) = h(P )
= h(H(P )) + 1
= h(λy.H(P )) + 1
= h(H(λy.P )) + 1

4. M ≡ P Q. Similar to Case 3.

Corollary 2.7. For all M ∈ ΛK : h(M) = LH(M).

Proof. By induction on h(M).

1. h(M) = 0. Then M ∈ NFβ, and then LH(M) = 0.

2. h(M) 6= 0. Then M 6∈ NFβ, and then by Lemma 2.6 and the induction hypothesis,

h(M) = h(H(M)) + 1
= LH(H(M)) + 1
= LH(M)
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Corollary 2.8. For all M ∈ ΛK : h(M) = sβ(M) = LH(M).

Proof. Let M ∈ ΛK . Obviously, sβ(M) ≤ LH(M). By Corollary 2.5 and 2.7,

sβ(M) ≤ LH(M) = h(M) ≤ sβ(M)

3. Relation to Khasidashvili’s technique

Khasidashvili [4] calls a redex ∆ in M essential, notation E(∆,M), if every complete
development of M must reduce ∆ (or a residual of ∆). He shows that any strategy which
reduces in each step an inner-most essential redex yields shortest complete developments,
and he gives a formula for the length of such developments: the number of essential redexes
in the initial term. He also gives an algorithm to decide whether a redex in a term is
essential; this makes the above strategy and formula effective, but the algorithm is—in our
opinion—somewhat involved. The algorithm can be simpler formulated in terms of the map
my as follows:

E(∆, (λy.P ) Q) ⇔ ∆ ≡ (λy.P ) Q or E(∆, P ) or [E(∆, Q) & my(P ) > 0]
E(∆, P Q) ⇔ E(∆, P ) or E(∆, Q)
E(∆, λy.P ) ⇔ E(∆, P )

In this terminology, the map h counts the number of essential redexes in a term, and H

reduces some essential redex whose argument does not contain another essential redex.

4. Relation to de Vrijer’s technique

De Vrijer [7] studies the following maps nx, g, and G, which arise from mx, h, and H by
replacing all minimum operators ⌊•, •⌋ by maximum operators ⌈•, •⌉; intuitively this makes
sense since we now consider longest instead of shortest developments.

(i) For all x ∈ V define nx : ΛK → N by:

nx(x) = 1
nx(y) = 0 if x 6≡ y

nx((λy.P ) Q) = nx(P ) + nx(Q)⌈ny(P ), 1⌉
nx(P Q) = nx(P ) + nx(Q) if P 6≡ λy.R

nx(λy.P ) = nx(P )

(ii) Define g : ΛK → N by:

g(x) = 0
g((λy.P ) Q) = g(P ) + g(Q)⌈ny(P ), 1⌉ + 1
g(P Q) = g(P ) + g(Q) if P 6≡ λy.R

g(λy.P ) = g(P )

(iii) Define G : ΛK → ΛK by:

G(x) = x

G((λy.P ) Q) =

{

(λy.P ) G(Q)
P{y := Q}

if ⌈ny(P ), 1⌉ = 1 & Q 6∈ NFβ

otherwise

G(P Q) =

{

G(P ) Q
P G(Q)

if P 6≡ λy.R & P 6∈ NFβ

if P 6≡ λy.R & P ∈ NFβ

G(λy.P ) = λy.G(P )
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(iv) Let LG(M) be the length of the complete development

M →β G(M) →β G(G(M)) →β . . .

De Vrijer proves that M →β G(M) →β G(G(M)) →β . . . is a longest complete devel-

opment from M , and that g(M) is the length of this development. This is expressed by
the equations: LG(M) = lβ(M) = g(M). The finite developments theorem is an immediate

corollary.
The proof of these equations can be carried out exactly as in 2.2–2.8 by replacing sβ,

⌊•, •⌋, ≤, mx, h, and LH by lβ, ⌈•, •⌉, ≥, nx, g, and LG, respectively! This works because

the properties used in 2.2–2.8 involving sβ,mx, etc. are invariant under the transformation,

as the reader is encouraged to check.3 For instance, the property ⌊m,n⌋ ≤ m becomes
⌈m,n⌉ ≥ m.

5. Discussion

Although the general notions of longest and shortest complete β-reduction sequences
are intuitively “opposite,” they are, technically speaking, very different. For instance, there
is an effective reduction strategy that computes longest complete β-reduction sequences
(see [6] among others), but no effective reduction strategy that computes shortest complete
β-reduction sequences [1]. In contrast, the above shows that one can effectively compute
both shortest and longest complete developments, and the proofs reveal a duality between
the two concepts. It is natural to ask why the duality does not carry over to the general
case of β-reduction.

The difference between the minimal strategy H and the maximal strategy G is revealed
on terms of form (λy.P ) Q where Q 6∈ NFβ. The rationale behind the minimal strategy is

that if all reductions of (λy.P ) Q to β-normal form must reduce inside at least one residual
of Q, then it is best to perform reductions in Q first, to avoid proliferation. This is decidable
for developments, but undecidable for β-reduction [2].

The rationale behind the maximal strategy is that if all reductions of (λy.P ) Q to
β-normal form may reduce inside at most one residual of Q, then it is best to perform
reductions in Q first, to avoid erasing. An equivalent technique, used by de Vrijer [7], is
to test whether reducing (λy.P ) Q one step would delete Q, and if so reduce Q to normal
form first. This is decidable for developments as well as for β-reduction.

From the point of view of efficiency, a minimal strategy is clearly better than a maximal
strategy. It is a remarkable fact that in general β-reductions we can effectively do the worst
possible job, but not the best possible job.4
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