
Logical Methods in Computer Science

Vol. 7 (1:6) 2011, pp. 1–35

www.lmcs-online.org

Submitted Oct. 3, 2009

Published Mar. 22, 2011

A FOCUSED SEQUENT CALCULUS FRAMEWORK FOR

PROOF-SEARCH IN PURE TYPE SYSTEMS

STÉPHANE LENGRAND a, ROY DYCKHOFF b, AND JAMES MCKINNA c

a CNRS, École Polytechnique, France
e-mail address: Lengrand@LIX.Polytechnique.fr

b School of Computer Science, University of St Andrews, Scotland
e-mail address: rd@cs.st-andrews.ac.uk

c Radboud University, Nijmegen, The Netherlands
e-mail address: james.mckinna@cs.ru.nl

Abstract. Basic proof-search tactics in logic and type theory can be seen as the root-first
applications of rules in an appropriate sequent calculus, preferably without the redundan-
cies generated by permutation of rules. This paper addresses the issues of defining such
sequent calculi for Pure Type Systems (PTS, which were originally presented in natural de-
duction style) and then organizing their rules for effective proof-search. We introduce the
idea of Pure Type Sequent Calculus with meta-variables (PTSCα), by enriching the syn-
tax of a permutation-free sequent calculus for propositional logic due to Herbelin, which
is strongly related to natural deduction and already well adapted to proof-search. The
operational semantics is adapted from Herbelin’s and is defined by a system of local re-
write rules as in cut-elimination, using explicit substitutions. We prove confluence for this
system. Restricting our attention to PTSC, a type system for the ground terms of this
system, we obtain the Subject Reduction property and show that each PTSC is logically
equivalent to its corresponding PTS, and the former is strongly normalising iff the latter
is. We show how to make the logical rules of PTSC into a syntax-directed system PS

for proof-search, by incorporating the conversion rules as in syntax-directed presentations
of the PTS rules for type-checking. Finally, we consider how to use the explicitly scoped
meta-variables of PTSCα to represent partial proof-terms, and use them to analyse in-
teractive proof construction. This sets up a framework PE in which we are able to study
proof-search strategies, type inhabitant enumeration and (higher-order) unification.

1998 ACM Subject Classification: F.4.1.
Key words and phrases: Type theory, PTS, sequent calculus, strong normalisation, proof-search, meta-

variables, interactive proof construction.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-7 (1:6) 2011

c© S. Lengrand, R. Dyckhoff, and J. McKinna
CC© Creative Commons

http://creativecommons.org/about/licenses

2 S. LENGRAND, R. DYCKHOFF, AND J. MCKINNA

Contents

Introduction 2
1. Syntax and operational semantics of PTSCα 5
1.1. Syntax 5
1.2. Operational semantics 6
2. λ-terms and Confluence 8
3. Typing system and properties 12
4. Correspondence with PTS 14
4.1. Type preservation 14
4.2. Equivalence of Strong Normalisation 15
5. Proof-search 16
6. Using meta-variables for proof-search 19
7. Example: commutativity of conjunction 23
Conclusion and Further Work 26
References 27
Subject Reduction 30

Introduction

Pure Type Systems (PTS) (see e.g. [Bar91]) were independently introduced by Be-
rardi [Ber88] and Terlouw [Ter89] as a generalisation of Barendregt’s λ-cube, and form
a convenient framework for representing a range of different extensions of the simply-typed
λ-calculus. System F , System Fω [Gir72], System λΠ [Daa80, HHP87], and the Calcu-
lus of Constructions (CoC) [CH88] are examples of such systems, on which several major
proof assistants are based (e.g. Coq [Coq], Lego [LP92], and the Edinburgh Logical Frame-
work [HHP87]; Higher-Order Logic can also be presented as a PTS, but this is not the basis
of its principal implementation [HOL]).

With typed λ-calculus as their basis, such systems are traditionally presented in natural
deduction style, with rules introducing and eliminating logical constants (aka type construct-
ors). Dowek [Dow93] and Muñoz [Muñ01] show how to perform proof-search in this style,
by enumerating type inhabitants.

This however misses out on the advantages of sequent calculus [Gen35] for proof-search.
As suggested by Plotkin [Plo87], a Gentzen-style sequent calculus (with left and right intro-
duction rules) can be used as a basis for proof-search in the case of λΠ [PW91, Pym95] (later
extended to any PTS [GR03a, GR03c]). However, the permutations of inference steps avail-
able in a Gentzen-style calculus (such as G3 [Kle52]) introduce some extra non-determinism
in proof-search.

Herbelin [Her94, Her95] introduced a permutation-free calculus LJT for intuitionistic lo-
gic, exploiting the focusing ideas of Andreoli [And92], Danos et al. [DJS95] and (ultimately)
ideas from Girard’s linear logic [Gir87]. Herbelin’s calculus has been considered as a basis
for proof-search in intuitionistic logic [DP99b], generalising the uniform proof approach to
logic programming (see [MNPS91] for hereditary Harrop logic). A version with cut rules and
proof-terms forms an explicit substitution calculus λ [Her94, DU03] with a strong connection
to (call-by-name) β-reduction and abstract machines such as that of Krivine [Kri].

PROOF SEARCH IN PTS 3

This builds, as in the Curry-Howard correspondence, a computational interpretation
of sequent calculus proofs on the basis of which type theory can be reformulated, now
with a view to formalising proof-search. In earlier work [LDM06, Len06], we reformulated
the language and proof theory of PTSs in terms of Pure Type Sequent Calculi (PTSC).
The present paper completes this programme, introducing Pure Type Sequent Calculi with
meta-variables (PTSCα), together with an operationalisation of proof-search in PTS in
terms of PTSCα. It follows earlier work [PD98], relating λ to proof-search in the ΛΠ
calculus [PW91, Pym95]. Introducing meta-variables for proof-search is the main technical
novelty of this paper over [LDM06].

This gives a secure but simple theoretical basis for the implementation of PTS-based
systems such as Coq [Coq] and Lego [LP92]; these proof assistants feature interactive proof
construction methods using proof-search tactics. As observed by [McK97], the primitive
tactics are not in exact correspondence with the elimination rules of the underlying natural
deduction formalism: while the tactic intro does correspond to the right-introduction rule
for Π-types (whether in natural deduction or in sequent calculus), the tactics apply in Coq
and Refine in Lego, however, are much closer (in spirit) to the left-introduction rule ΠL
for Π-types in the focused sequent calculus LJT than to the Π-elimination rule in natural
deduction. The ΠL rule types the construct M ·l of λ, representing a list of terms with head
M and tail l:

Γ ⊢⊢⊢ M :A Γ; 〈M/x〉B ⊢⊢⊢ l :C
ΠL

Γ;ΠxA.B ⊢⊢⊢ M ·l :C
However, the aforementioned tactics are also able to postpone the investigation of the

first premiss and start investigating the second. This leads to incomplete proof-terms and
unification constraints to be solved. Here, we integrate these features into PTSC using
explicitly scoped meta-variables. The resulting framework, called PTSCα, supports the
analysis and definition of interactive proof construction tactics (as in Coq and Lego), as
well as type inhabitant enumeration (see [Dow93, Muñ01]).

Of course, formalising proof-search mechanisms has already been investigated, if only
to design tactic languages like Delahaye’s Ltac and Lpdt [Del01]. Also noteworthy here are
McBride’s and Jojgov’s PhD theses [McB00, GJ02], which consider extensions of type theory
to admit partial proof objects. Using meta-variables similar to ours, Jojgov shows how to
manage explicitly their progressive instantiation via a definitional mechanism and compares
this with Delahaye’s Ltac and Lpdt.

While formalising the connections with this line of research remains as future work,
the novelty of our approach here is to use the sequent calculus to bridge the usual gap
(particularly wide for PTS and their implementations) between the rules defining a logic and
the rules describing proof-search steps. A by-product of this bridge is ensuring correctness
of proof-search, whose output thus need not be type-checked (which it currently is, in most
proof assistants).

One reason why this is possible in our framework is that it can decompose (and thus
account for) some mechanisms that are usually externalised and whose outputs usually need
to be type-checked, such as unification (including higher-order [Hue76]). Indeed, it integrates
the idea, first expounded in [Dow93], that proof-search and unification generalise in type
theory to a single process.

The rules of our framework may not be deterministic enough to be considered as spe-
cifying an algorithm, but they are atomic enough to provide an operational semantics in
which algorithms such as the above can be specified. They thus provide a semantics not

4 S. LENGRAND, R. DYCKHOFF, AND J. MCKINNA

only for type inhabitation algorithms, but also more generally for tactic languages, and,
more originally, for unification algorithms.

As an example, we consider commutativity of conjunction expressed in (the PTSCα
corresponding to) System F , previously presented in [LDM06] without meta-variables. We
show here how meta-variables improve the formalisation of proof-search.

Our work may be compared with that of our predecessors as follows:

Type Theory Inference rules Proof-terms
Formalisation of
incomplete proofs

(by e.g. meta-variables)
[Pym95] λΠ G3 λ YES
[Dow93] CoC NJ λ YES

[PD98] λΠ(Σ) LJT λ NO
[GR03c] PTS G3 λ NO
[GJ02] λHOL NJ λ YES

This paper PTS LJT λ YES

Note that, in contrast to [Pym95, GR03a, GR03c], we use a focused sequent calculus
(LJT) instead of an unfocused one (G3). The former forces proof-search to be ‘goal-directed’
in the tradition of logic programming and uniform proofs, while the latter is more relaxed
and would accommodate saturation-based reasoning. Our choice here is motivated by a
tighter connection with natural deduction and by the tactics currently used in proof as-
sistants such as Coq and Lego. While [Pym95] does identify permutations of inference
rules which would allow the recovery of a goal-directed strategy, [GR03c] focuses instead
on the elimination of a cut-rule which then sheds a surprising light on the open problem of
Expansion Postponement [GR03b].

Our move from G3 to LJT is also particularly convenient to capture the process of higher-
order unification as a proof-search mechanism. Pym and Wallen address proof-search [PW91]
in the particular case of λΠ, the type theory of the Edinburgh Logical Framework, using a
black-box higher-order unification algorithm adapted from that of Huet. They discuss how
well-typedness of meta-variable instantiations computed by unification can be exploited to
control the search space. Meanwhile no meta-variables (or similar technology supporting
unification) feature in [GR03a, GR03c].

In any case, this line of research keeps a traditional λ-calculus syntax for proof-terms,
which thus does not reflect the structure of proof trees. We sought instead a formalism
whose terms reflect how proofs and unifiers are constructed, and so moved from λ-calculus
to λ.

The paper’s structure is as follows: Section 1 presents the syntax of PTSCα, the full
language of terms and lists containing meta-variables, and gives the rewrite rules for normal-
isation. Section 2 relates this syntax with that of λ-calculus in PTS style and thereby derives
the confluence of the PTSCα-calculus. Section 3 presents a parametric typing system PTSC
for ground terms (i.e. the restriction to PTSCα-terms containing no meta-variables), and
states and proves properties such as Subject Reduction. Section 4 establishes the correspond-
ence between a PTSC and the PTS with the same parameters; we show type preservation
and the strong normalisation result. Section 5 discusses proof-search in a PTSC. Section 6
introduces the inference system for PTSCα, as a way to formalise incomplete proofs and op-
erationalise proof-search. Section 7 shows the aforementioned example. These are followed
by a conclusion and discussion of directions for further work.

PROOF SEARCH IN PTS 5

Some ideas and results of this paper (namely Sections 2, 3 and 4, which were already
presented in [LDM06]) have been formalised and machine-checked in the Coq system [Sil09]
using a de Bruijn index representation, as in e.g. [Len06].

1. Syntax and operational semantics of PTSCα

1.1. Syntax. We consider an extension (with type annotations) of the proof-term syntax
λ of Herbelin’s focused sequent calculus LJT [Her95]. As in λ, the grammar of PTSCα
features two syntactic categories: that of terms and that of lists.

The syntax depends on a given set S of sorts, written s, s′, . . ., a denumerable set X of
variables, written x, y, z, . . ., and two denumerable sets of meta-variables: those for terms,
written α,α′, . . ., and those for lists, written β, β′, These meta-variables come with an
intrinsic notion of arity.

Definition 1.1 (Terms and Lists). The set T of terms (denoted M,N,P ,. . . , A,B, . . .) and
the set L of lists (denoted l, l′, . . .) are inductively defined by:

M,N,P,A,B ::= ΠxA.B | λxA.M | s | x l | M l | 〈M/x〉N | α(M1, . . . ,Mn)
l, l′ ::= [] | M ·l | l@l′ | 〈M/x〉l | β(M1, . . . ,Mn)

where n is the arity of α and β.
The constructs ΠxA.M , λxA.M , and 〈N/x〉M bind x in M , and 〈M/x〉l binds x in

l, thus defining the free variables of a term M (resp. a list l), denoted FV(M) (resp.
FV(l)), as well as α-conversion, issues of which are treated in the usual way. Note that
FV(α(M1, . . . ,Mn)) = FV(β(M1, . . . ,Mn)) =

⋃n
i=1 FV(Mn); see the discussion on meta-

variables below. A term M is closed if FV(M) = ∅. As usual, let A→B denote ΠxA.B when
x 6∈ FV(B).

Terms and lists without meta-variables are called ground terms and ground lists, re-
spectively. (Previously, these were just called terms and lists in [LDM06]).

Lists are used to represent sequences of arguments of a function; the term x l (resp.
M l) represents the application of x (resp. M) to the list of arguments l. Note that a
variable alone is not a term; it must be applied to a list, possibly the empty list, denoted [].
The list M·l has head M and tail l, with a typing rule corresponding to the left-introduction
of Π-types (cf. Section 3). The following figure shows the generic structure of a λ-term
λx1 λxp .V M1 . . .Mn, and its λ-representation as the term λx1 λxp .V (M1 ·. . .Mn ·[]),
as follows:

V M1

Mn

λx1

λxp

λx1

λxp

V

M1

[]Mn

Successive applications give rise to list concatenation, denoted l@l′ (with @ acting as
an explicit constructor). For instance, the list (M1 ·. . .Mn ·[])@(Mn+1 ·. . .Mp ·[]) will reduce
to M1 ·. . .Mn ·Mn+1 ·. . .Mp ·[].

6 S. LENGRAND, R. DYCKHOFF, AND J. MCKINNA

The terms 〈M/x〉N and 〈M/x〉l are explicit substitutions, on terms and lists, respect-
ively. They will be used in two ways: first, to instantiate a universally quantified variable,
and second, to describe explicitly the interaction between the constructors in the normal-
isation process (given in Section 1.2).

More intuition about Herbelin’s calculus, its syntax and operational semantics, may be
found in [Her95].

Among the features added to the syntax of λ, our meta-variables can be seen as higher-
order variables. As in CRS [Klo80], unknown terms are represented with (meta/higher-
order) variables applied to the series of (term-)variables that could occur freely in those
terms, e.g. α(x, y) (more formally, α(x [], y [])) represents an unknown term M in which
x and y could occur free (and no other). Such arguments x, y can later be instantiated,
so that α(N,P) represents

{

N,P�x,y

}

M . In other words, a meta-variable by itself stands
for something closed, i.e. a term under a series of bindings covering all its free variables,
e.g. x.y.M when FV(M) ⊆ {x, y} (using a traditional notation for higher-order terms, see
e.g. [Ter03], Ch. 11).1 This allows us to consider a simple notion of α-conversion, with
λxs.α(x [], y []) ≡α λzs.α(z [], y []). Henceforth, however, we will elide further discussion of
such matters, and simply write = to denote ≡α.

This kind of meta-variable differs from that in [Muñ01], which is rather in the style
of ERS [Kha90] where the variables that could occur freely in the unknown term are not
specified explicitly. The drawback of our approach is that we have to know in advance the
free variables that might occur free in the unknown term, but in a typed setting such as
proof-search these are actually the variables declared in the typing environment. Moreover,
although specifying explicitly the variables that could occur free in an unknown term might
seem heavy, it actually avoids the usual (non-)confluence problems when terms contain meta-
variables in the style of ERS.2 The solution in [Muñ01] has the drawback of not simulating
β-reduction (although the reductions reach the expected normal forms).

1.2. Operational semantics. The operational semantics of PTSCα is given by the system
of reduction rules in Figure 1, comprising sub-systems B, x′, and xsubst′, and combinations
thereof. This system extends that of [LDM06] with rules A4,Cα,Dβ. Side-conditions to
avoid variable capture can be inferred from the rules. We prove confluence in Section 2.

We denote by −→G the contextual closure of the reduction relation defined by any
system G of rewrite rules.3 The transitive closure of −→G is denoted by −→+

G , its reflexive
and transitive closure is denoted by −→∗

G , and its symmetric reflexive and transitive closure
is denoted by←→∗

G . The set of strongly normalising elements (those from which no infinite

−→G -reduction sequence starts) is SNG. When not specified, G is assumed to be the system
B, x′ from Fig. 1.

We now show that system x′ is terminating. If we add rule B, then the system fails to
be terminating unless we only consider terms that are typed in a normalising typing system.

1We develop this in Section 6 below. There is no binding mechanism for meta-variables in the syntax of
PTSCα, but at the meta-level there is a natural notion of instantiation, also presented in Section 6. We thus
emphasise the fact that instantiation of meta-variables never occurs during computation; in that respect,
meta-variables really behave like constants or term constructors.

2See the discussion at the end of Section 2.
3Via contextual closure, a rewrite rule for terms can thus apply deep inside lists, and vice versa.

PROOF SEARCH IN PTS 7

B (λxA.M) (N ·l) −→ (〈N/x〉M) l

x’

B1 M [] −→ M
B2 (x l) l′ −→ x (l@l′)
B3 (M l) l′ −→ M (l@l′)

A1 (M ·l′)@l −→ M ·(l′@l)
A2 []@l −→ l
A3 (l@l′)@l′′ −→ l@(l′@l′′)
A4 l@[] −→ l

xsubst’:

C1 〈P/y〉λxA.M −→ λx〈P/y〉A.〈P/y〉M
C2 〈P/y〉(y l) −→ P 〈P/y〉l
C3 〈P/y〉(x l) −→ x 〈P/y〉l if x 6= y
C4 〈P/y〉(M l) −→ 〈P/y〉M 〈P/y〉l
C5 〈P/y〉ΠxA.B −→ Πx〈P/y〉A.〈P/y〉B
C6 〈P/y〉s −→ s

Cα 〈P/y〉α(M1, . . . ,Mn) −→ α(〈P/y〉M1, . . . , 〈P/y〉Mn)

D1 〈P/y〉[] −→ []
D2 〈P/y〉(M ·l) −→ (〈P/y〉M)·(〈P/y〉l)
D3 〈P/y〉(l@l′) −→ (〈P/y〉l)@(〈P/y〉l′)

Dβ 〈P/y〉β(M1, . . . ,Mn) −→ β(〈P/y〉M1, . . . , 〈P/y〉Mn)

Figure 1: Reduction Rules

We can define an encoding S(_), given in Fig. 2, that maps terms and lists into a
first-order syntax given by the following signature:

{⋆/0, i/1, ii/2, cut/2, sub/2} ∪ {tuplen/n | n ∈ N}

which we then equip with the well-founded precedence relation defined by

⋆ ≺ i ≺ ii ≺ tuple0 ≺ . . . ≺ tuplen ≺ tuplen+1 ≺ . . . ≺ cut ≺ sub

The lexicographic path ordering (lpo) induced on the first-order terms is also well-founded
(definitions and results can be found in [KL80], or [Ter03, ch. 6]).

Theorem 1.2.

• If M −→x′ M ′ then S(M) >lpo S(M
′).

• If l −→x′ l′ then S(l) >lpo S(l
′).

Proof. By simultaneous induction on M, l.

Corollary 1.3. System x′ is terminating (on all terms and lists).

8 S. LENGRAND, R. DYCKHOFF, AND J. MCKINNA

S(s) = ⋆
S(λxA.M) = ii(S(A),S(M))
S(ΠxA.M) = ii(S(A),S(M))
S(x l) = i(S(l))
S(M l) = cut(S(M),S(l))
S(〈M/x〉N) = sub(S(M),S(N))
S(α(M1, . . . ,Mn)) = tuplen(S(M1), . . . ,S(Mn))
S([]) = ⋆
S(M ·l) = ii(S(M),S(l))
S(l@l′) = ii(S(l),S(l′))
S(〈M/x〉l) = sub(S(M),S(l))
S(β(M1, . . . ,Mn)) = tuplen(S(M1), . . . ,S(Mn))

Figure 2: First-order encoding

2. λ-terms and Confluence

In this section we define translations between the syntax of PTSCα and that of Pure
Type Systems (PTS), i.e. a variant of λ-terms. Since, in the latter, the only reduction rule
(namely, β) is confluent, we infer from the translations the confluence of PTSCα.

We briefly recall the framework of PTS. Terms have the following syntax:

t, u, v, T, U, V, . . . ::= x | s | ΠxT .t | λxT .t | t u

with an operational semantics given by the contextual closure of the β-reduction rule
(λxv.t) u −→β {

u�x}t, in which the substitution is implicit, i.e. is a meta-operation.
Notice now that meta-variables in PTSCα behave like constants of fixed arities during

reduction; so it would be natural to reduce the confluence problem of PTSCα to that of a
λ-calculus extended with such constants. We avoid proving confluence of such an extension
of PTS with constants. Instead we consider such a constant, say of arity k, directly as a
free variable applied to (at least) k arguments (indeed, such an approach could also justify
confluence for the extended system).

Consequently we set aside some of the traditional variables of PTS for the specific
purpose of encoding meta-variables of PTSCα: for each meta-variable α (resp. β) of arity
k, we reserve in the syntax of PTS a variable which we write αk (resp. βk).

For the remainder of this section, we therefore restrict our attention to that fragment,
PTSα, of PTS-terms where such a variable αk (resp. βk) is never bound and is applied to
at least k (resp. k+ 1) arguments. The only subtlety, explained below, is why βk is applied
to at least k + 1 arguments (instead of the expected k).

Remark 2.1. The fragment PTSα is stable under β-reduction,4 and thus satisfies conflu-
ence.

Fig. 3 shows the translation of the syntax of PTSCα into PTSα. While the translation
of meta-variables for terms is natural, that of meta-variables for lists is more subtle, since
the translation of lists is parameterised by the future head variable. How can we relate such

4By the capture-avoiding properties of β-reduction and the fact that, if an occurrence of a free variable
is applied to (at least) k arguments, so are its residuals after a β-step.

PROOF SEARCH IN PTS 9

B(ΠxA.B) := ΠxB(A).B(B)

B(λxA.M) := λxB(A).B(M)
B(s) := s
B(x l) := {x�z}B

z(l) z fresh

B(M l) :=
{

B(M)�z

}

Bz(l) z fresh

B(〈P/x〉M) :=
{

B(P)�x

}

B(M)
B(α(M1, . . . ,Mn)) := αn B(M1) . . .B(Mn)

By([]) := y

By(M ·l) :=
{

y B(M)�z

}

Bz(l) z fresh

By(l@l′) :=
{

By(l)�z

}

Bz(l′) z fresh

By(〈P/x〉l) :=
{

B(P)�x

}

By(l)
By(β(M1, . . . ,Mn)) := βn y B(M1) . . .B(Mn)

Figure 3: From PTSCα to PTSα

a variable to a list of terms that is (yet) unknown? We simply give it as an extra argument
(the first one) of the encoded meta-variable.

Theorem 2.2 (Simulation of PTSCα). −→β simulates −→Bx′ through B.

Proof. If M −→B N then B(M)−→∗
β B(N), if l −→B l′ then By(l)−→∗

β B
y(l′), if

M −→x′ N then B(M) = B(N) and if l −→x′ l′ then By(l) = By(l′), which are proved by
simultaneous induction on the derivation step and case analysis.

A(s) := s

A(ΠxT .U) := ΠxA (T).A(U)

A(λxT .t) := λxA (T).A(t)
A(αk t1 . . . tk) := α(A(t1), . . . ,A(tk))
A(βk t t1 . . . tk) := Aβ(A (t1),...,A (tk))(t)
A(t) := A[](t) otherwise

Al(α
k t1 . . . tk) := α(A(t1), . . . ,A(tk)) l

Al(β
k t t1 . . . tk) := Aβ(A (t1),...,A (tk))@l(t)

Al(t u) := AA (u)·l(t) otherwise
Al(x) := x l
Al(t) := A(t) l otherwise

Figure 4: From PTSα to PTSCα

Fig. 4 shows the translation from PTSα into PTSCα.5 It is simply the adaptation to the
higher-order case of Prawitz’s translation from natural deduction to sequent calculus [Pra65]:
the translation A(t) of an application relies on a list-parameterised version Al(t) of the
translation. Example 2.8 below illustrates how the definitions in Fig. 4 and Fig. 3 expand.

5Note how we spot the situations which arise from encoded meta-variables, using the explicitly displayed
arity to identify the arguments.

10 S. LENGRAND, R. DYCKHOFF, AND J. MCKINNA

It is not obvious that the inductive definition of the translation is well-founded. To see
this we need the following notion:

Definition 2.3 (List-needing terms). We say that a λ-term t needs a list l if the pair (t, l)
satisfies the following property: if l = [] then t is either a variable or an application that is
not of the form αk t1 . . . tk.

6

The inductive definition of the translation is done by structural induction on the term,
subject to the consideration that Al(t) is defined before A(t) if t needs l, and that Al(t) is
defined after A(t) if not. The terminology comes from the fact that t needs l if and only if
Al(t) is not a B1-redex.

In order to prove confluence, we first need the following results:

Lemma 2.4.

(1) A(t) is an x′-normal form.
If l is x′-normal and t needs l then Al(t) is x′-normal.

(2) If l −→Bx′ l′ then Al(t) −→Bx′ Al′(t).
(3) Al′(t) l−→

∗
x′ Al′@l(t) and A(t) l−→∗

x′ Al(t).
(4) 〈A(u)/x〉A(t)−→∗

x′ A({u�x}t) and 〈A(u)/x〉Al(t)−→
∗

x′ A〈A (u)/x〉l({
u�x}t).

Proof. Each point is obtained by straightforward induction on t. Note that in order to prove
point 4 we need rules A3 and A4. These are not needed (for simulation of β-reduction and
for confluence) when only ground terms are concerned.

Theorem 2.5 (Simulation of PTS).
−→Bx′ (strongly) simulates −→β through A.

Proof. If t −→β u then A(t)−→+
Bx′ A(u) and Al(t)−→

+
Bx′ Al(u), each proved by induc-

tion on the derivation step, using Lemma 2.4.4 for the base case and Lemma 2.4.3.

Now we study the composition of the two translations:

Lemma 2.6. Suppose M and l are x′-normal forms.

(1) If t needs l then Al(t) = A(
{

t�x

}

Bx(l)) (for any x /∈ FV(l)).
(2) M = A(B(M)).

Proof. By simultaneous induction on l and M . Again, rules A3 and A4 (as well as Cα and
Dβ) are needed for this lemma to capture the notion of normal form corresponding to the
PTS-terms, when meta-variables are present.

Theorem 2.7.

(1) B(A(t)) = t
(2) M−→∗

x′ A(B(M))

Proof.

(1) B(A(t)) = t and B(Al(t)) =
{

t�x

}

Bx(l) (with x 6= FV(l)) are obtained by simultaneous
induction on t.

(2) M−→∗
x′ A(B(M)) holds by induction on the longest sequence of x′-reduction from

M (x′ is terminating): by Lemma 2.6.2, it holds if M is an x′-normal form, and if
M −→x′ N then we can apply the induction hypothesis on N and by Theorem 2.2 we
have the result.

6Remember that we suppose that αk is applied to at least k arguments.

PROOF SEARCH IN PTS 11

Example 2.8. Here is an example illustrating Theorem 2.7.1:

B(A(βk(x y)t1 . . . tk)) = B(AD(x y))
= B(x (y [])·D) = Bx((y [])·D)

=
{

x B(y [])�z

}

Bz(D) =
{

x By([])�z

}

Bz(D)
= {x y�z}B

z(D) = {x y�z}(β
k z B(A(t1)) . . .B(A(tk)))

= βk(x y)B(A(t1)) . . .B(A(tk))

where D = β(A(t1), . . . , A(tk)).

We finally get confluence:

Corollary 2.9 (Confluence). −→x′ and −→Bx′ are confluent.

∗

Bx′ ##
GG

GG
GG

GG
G

∗

Bx′{{ww
ww

ww
ww

w

B

��

∗Bx′

��

B

��

B

��
∗ Bx′

��

∗

β
##

GG
GG

GG
GG

G

∗

β
{{ww

ww
ww

ww
w

∗

β
##

GG
GG

GG
GG

G

A

��

∗

β
{{ww

ww
ww

ww
w

A

��
A

��

∗

Bx′
##

GG
GG

GG
GG

G

∗

Bx′
{{ww

ww
ww

ww
w

Figure 5: Confluence by simulation

Proof. We use the simulation technique, as for instance in [KL05]: consider two reduction se-
quences starting from a term in PTSCα. They can be simulated through B by β-reductions,
and since PTSα is confluent, we can close the diagram. Now the lower part of the diagram
can be simulated through A back in PTSCα, which closes the diagram there as well, as
shown in Fig. 5 for Bx′. Notice that the proof of confluence has nothing to do with typing
and does not rely on any result in Section 3 (in fact, we use confluence in the proof of Subject
Reduction in the Appendix).

Considering meta-variables in the style of CRS [Klo80] avoids the usual problem of non-
confluence coming from the critical pair between B and C4 which generate the two terms
〈N/x〉〈P/y〉M and 〈〈N/x〉P/y〉〈N/x〉M . Indeed, with ERS-style meta-variables these two
terms need not reduce to a common term, but with the CRS-approach, they now can (using
the rules Cα and Dβ). Again, note how the critical pair between B3 and itself (or B2) needs
rule A3 in order to be closed, while it was only there for convenience when all terms were
ground.

12 S. LENGRAND, R. DYCKHOFF, AND J. MCKINNA

3. Typing system and properties

Throughout this section we consider PTSC, that is, the restriction to ground terms of
PTSCα. We thus do not need to consider any notion of meta-variable, nor that of any
special variable distinguished among PTS terms, such as those considered in the previous
section.

Given the set of sorts S, a particular PTSC is specified by a set A ⊆ S2 and a set
R ⊆ S3. We shall see an example in Section 4.2.

Definition 3.1 (Typing Environments).

• A typing environment (henceforth simply: ‘environment’, for brevity’s sake) is a list Γ of
pairs taken from X × T , denoted (x : A).
• We define the domain of an environment and the application of a substitution to an

environment as follows:

Dom(∅) = ∅ Dom(Γ, (x : A)) = Dom(Γ), x
〈P/y〉(∅) = ∅ 〈P/y〉(Γ, (x : A)) = 〈P/y〉Γ, (x : 〈P/y〉A)

• It is useful (see Section 6) to define Dom(Γ) as a list, for which the meaning of x ∈ Dom(Γ)
is clear. If M is a set of variables, M ⊆ Dom(Γ) means for all x ∈ M, x ∈ Dom(Γ).
Similarly, Dom(Γ) ∩ Dom(∆) is the set {x ∈ X | x ∈ Dom(Γ) ∧ x ∈ Dom(∆)}.

We define the following inclusion relation between environments:

Γ ⊑ ∆ if for all (x : A) ∈ Γ, there is (x : B) ∈ ∆ with A←→∗ B.

The inference rules in Fig. 6 inductively define the derivability of three kinds of statement:

(1) Γ wf
Intuitively, the derivability of this statement means that the environment Γ is well-
formed.

(2) Γ ⊢⊢⊢ M :A ‘term typing’
Intuitively, the derivability of this statement means that M is of type A in the environ-
ment Γ (is a proof of A from the assumptions in Γ).

(3) Γ;B ⊢⊢⊢ l :C ‘list typing’
The position of B in the sequent is a special place called the stoup. Intuitively, the
derivability of this statement means that, in the environment Γ, the list l codes for an
actual list of terms such that, when something of type B is applied to them, the result
is of type C (this codes for a natural deduction of C from B by a series of Π-elimination
rules, whose minor premisses are derived by the proofs-terms in l using the assumptions
in Γ).

Side-conditions are used, such as (s1, s2, s3) ∈ R, x 6∈ Dom(Γ), A←→∗ B or Γ ⊑ ∆, and we
use the abbreviation Γ ⊑ ∆ wf for Γ ⊑ ∆ and ∆ wf. We freely abuse the notation in the
customary way, by not distinguishing between a statement and its derivability according to
the rules of Fig. 6.

There are three conversion rules convR, conv′R, and convL in order to deal with the
two kinds of typing statement and, for list typing, also to be able to convert the type in the
stoup.

Because substituting for a variable in an environment affects the rest of the environment
(which could depend on that variable), the two rules for explicit substitutions (Cut2 and
Cut4) must have a particular shape that manipulates the environment, if the PTSC is to
satisfy basic required properties like those of a PTS.

PROOF SEARCH IN PTS 13

empty
∅ wf

Γ ⊢⊢⊢ A :s x /∈ Dom(Γ)
extend

Γ, (x :A) wf

Γ wf (s, s′) ∈ A
sorted

Γ ⊢⊢⊢ s :s′

Γ ⊢⊢⊢ A :s1 Γ, (x :A) ⊢⊢⊢ B :s2 (s1, s2, s3) ∈ R
Πwf

Γ ⊢⊢⊢ ΠxA.B :s3

Γ ⊢⊢⊢ ΠxA.B :s Γ, (x :A) ⊢⊢⊢ M :B
ΠR

Γ ⊢⊢⊢ λxA.M :ΠxA.B

Γ;A ⊢⊢⊢ l :B (x :A) ∈ Γ
Selectx

Γ ⊢⊢⊢ x l :B

Γ ⊢⊢⊢ A :s
axiom

Γ;A ⊢⊢⊢ [] :A

Γ ⊢⊢⊢ M :A Γ ⊢⊢⊢ B :s A←→∗ B
convR

Γ ⊢⊢⊢ M :B

Γ ⊢⊢⊢ ΠxA.B :s Γ ⊢⊢⊢ M :A Γ; 〈M/x〉B ⊢⊢⊢ l :C
ΠL

Γ;ΠxA.B ⊢⊢⊢ M ·l :C

Γ;C ⊢⊢⊢ l :A Γ ⊢⊢⊢ B :s A←→∗ B
conv′R

Γ;C ⊢⊢⊢ l :B

Γ;A ⊢⊢⊢ l :C Γ ⊢⊢⊢ B :s A←→∗ B
convL

Γ;B ⊢⊢⊢ l :C

Γ;C ⊢⊢⊢ l′ :A Γ;A ⊢⊢⊢ l :B
Cut1

Γ;C ⊢⊢⊢ l′@l :B

Γ ⊢⊢⊢ P :A Γ, (x :A),∆;B ⊢⊢⊢ l :C Γ, 〈P/x〉∆ ⊑ ∆′ wf
Cut2

∆′; 〈P/x〉B ⊢⊢⊢ 〈P/x〉l :〈P/x〉C

Γ ⊢⊢⊢ M :A Γ;A ⊢⊢⊢ l :B
Cut3

Γ ⊢⊢⊢ M l :B

Γ ⊢⊢⊢ P :A Γ, (x :A),∆ ⊢⊢⊢ M :C Γ, 〈P/x〉∆ ⊑ ∆′ wf
Cut4

∆′ ⊢⊢⊢ 〈P/x〉M :C′

where either (C′ = C ∈ S) or C 6∈ S and C′ = 〈P/x〉C

Figure 6: Typing rules of a PTSC

Example 3.2. Here is, as an example, a derivation of x : s1 ⊢⊢⊢ x [] : s1 in a PTSC where
(s1, s2) ∈ A.

empty
∅ wf (s1, s2) ∈ A

sorted
∅ ⊢⊢⊢ s1 :s2

extend
x :s1 wf (s1, s2) ∈ A

sorted
x :s1 ⊢⊢⊢ s1 :s2

axiom
x :s1; s1 ⊢⊢⊢ [] :s1

Selectx
x :s1 ⊢⊢⊢ x [] :s1

The lemmas of this section are proved by straightforward inductions on typing derivations:

Lemma 3.3 (Properties of typing statements). If Γ ⊢⊢⊢ M :A (respectively, Γ;B ⊢⊢⊢ l :C) then
FV(M) ⊆ Dom(Γ) (respectively, FV(l) ⊆ Dom(Γ)), and the following statements can be
derived with strictly smaller typing derivations:

14 S. LENGRAND, R. DYCKHOFF, AND J. MCKINNA

(1) Γ wf
(2) Γ ⊢⊢⊢ A :s for some s ∈ S, or A ∈ S

(resp. Γ ⊢⊢⊢ B :s and Γ ⊢⊢⊢ C :s′ for some s, s′ ∈ S)

Corollary 3.4 (Properties of well-formed environments).

(1) If Γ, x : A,∆ wf then Γ ⊢⊢⊢ A : s for some s ∈ S with x 6∈ Dom(Γ,∆) and FV(A) ⊆
Dom(Γ) (and in particular x 6∈ FV(A))

(2) If Γ,∆ wf then Γ wf.

Lemma 3.5 (Weakening). Suppose Γ,Γ′ wf and Dom(Γ′) ∩ Dom(∆) = ∅.

(1) If Γ,∆ ⊢⊢⊢ M :A then Γ,Γ′,∆ ⊢⊢⊢ M :A.
(2) If Γ,∆;B ⊢⊢⊢ l :C, then Γ,Γ′,∆;B ⊢⊢⊢ l :C.
(3) If Γ,∆ wf, then Γ,Γ′,∆ wf.

We can also strengthen the weakening property into the thinning property by induction
on the typing derivation. This allows to weaken the environment, permute it, and convert
the types inside, as long as it remains well-formed:

Lemma 3.6 (Thinning). Suppose Γ ⊑ ∆ wf.

(1) If Γ ⊢⊢⊢ M :A then ∆ ⊢⊢⊢ M :A.
(2) If Γ;B ⊢⊢⊢ l :C, then ∆;B ⊢⊢⊢ l :C.

Using all of the results above, we obtain Subject Reduction:

Theorem 3.7 (Subject Reduction in a PTSC).

(1) If Γ ⊢⊢⊢ M :A and M −→ M ′, then Γ ⊢⊢⊢ M ′ :A
(2) If Γ;B ⊢⊢⊢ l :C and l −→ l′, then Γ;B ⊢⊢⊢ l′ :C

Proof. See the Appendix.

4. Correspondence with PTS

4.1. Type preservation. There is a logical correspondence between a PTSC given by the
sets S, A and R and the associated PTS given by the same sets.

We prove this by showing that (when restricted to ground terms) the translations pre-
serve typing.

Terms in PTS are typed according to the typing rules in Fig. 4.1, which depend on the
sets S, A andR. Besides confluence for β-reduction, PTSs have the following meta-theoretic
properties (for proofs, see e.g. [Bar92]):

Theorem 4.1.

(1) If Γ ⊢PTS t :T and Γ ⊑ ∆ wf then ∆ ⊢PTS t :T (where the relation ⊑ is defined similarly
to that of PTSC, but with β-equivalence).

(2) If Γ ⊢PTS t :T and Γ, y : T,∆ ⊢PTS u :U
then Γ,

{

t�y

}

∆ ⊢PTS

{

t�y

}

u :
{

t�y

}

U .
(3) If Γ ⊢PTS t :T and t −→β u then Γ ⊢PTS u :T .

PROOF SEARCH IN PTS 15

∅ wf

Γ ⊢PTS T :s x /∈ Dom(Γ)

Γ, (x : T) wf

Γ wf (x : T) ∈ Γ

Γ ⊢PTS x :T

Γ wf (s, s′) ∈ A

Γ ⊢PTS s :s′

Γ ⊢PTS U :s1 Γ, (x : U) ⊢PTS T :s2 (s1, s2, s3) ∈ R

Γ ⊢PTS ΠxU .T :s3

Γ ⊢PTS ΠxU .T :s Γ, (x : U) ⊢PTS t :T

Γ ⊢PTS λxU .t :ΠxU .T

Γ ⊢PTS t :ΠxU .T Γ ⊢PTS u :U

Γ ⊢PTS t u :{u�x}T

Γ ⊢PTS t :U Γ ⊢PTS V :s U←→∗
β V

Γ ⊢PTS t :V

Figure 7: Typing rules of a PTS

We now extend the translations to environments:

A(∅) = [] B(∅) = []
A(Γ, (x : T)) = A(Γ), (x : A(T)) B(Γ, (x : A)) = B(Γ), (x : B(A))

Now note that the simulations in Section 2 imply:

Corollary 4.2 (Equational theories).
t←→∗

β u if and only if A(t)←→∗ A(u)
M←→∗ N if and only if B(M)←→∗

β B(N)

Preservation of typing is proved by induction on the typing derivations:

Theorem 4.3 (Preservation of typing 1).

(1) If Γ ⊢PTS t :T then A(Γ) ⊢⊢⊢ A(t) :A(T)
(2) If (Γ ⊢PTS ti :

{

ti−1�xi−1

}

· · ·
{

t1�x1

}

Ti)i=1...n

and A(Γ) ⊢⊢⊢ A(Πx1
T1Πxn

Tn .T) :s
then A(Γ);A(Πx1

T1Πxn
Tn .T) ⊢⊢⊢ A(t1 . . . tn) :A(

{

tn�xn

}

· · ·
{

t1�x1

}

T)
(3) If Γ wf then A(Γ) wf

Theorem 4.4 (Preservation of typing 2).

(1) If Γ ⊢⊢⊢ M :A then B(Γ) ⊢PTS B(M) :B(A)
(2) If Γ;B ⊢⊢⊢ l :C then B(Γ), y : B(B) ⊢PTS B

y(l) :B(C) for any fresh y
(3) If Γ wf then B(Γ) wf

4.2. Equivalence of Strong Normalisation.

Theorem 4.5. A PTSC given by the sets S, A, and R is strongly normalising if and only
if the corresponding PTS given by the same sets is.

16 S. LENGRAND, R. DYCKHOFF, AND J. MCKINNA

Proof. Assume that the PTSC is strongly normalising, and let us consider a well-typed t of
the corresponding PTS, i.e. Γ ⊢PTS t :T for some Γ, T . By Theorem 4.3, A(Γ) ⊢⊢⊢ A(t) :A(T)
so A(t) ∈ SN. Now by Theorem 2.5, any reduction sequence starting from t maps to a
reduction sequence of at least the same length starting from A(t), but those are finite.

Now assume that the PTS is strongly normalising and that Γ ⊢⊢⊢ M : A in the corres-
ponding PTSC. By subject reduction, any N such that M−→∗ N satisfies Γ ⊢⊢⊢ N :A and
any sub-term P (resp. sub-list l) of any such N is also typable. By Theorem 4.4, for any
such P (resp. l), B(P) (resp. By(l)) is typable in the PTS, so it is strongly normalising by
assumption.

We now refine the first-order encoding of any such P and l (as defined in Section 1),
emulating the technique of Bloo and Geuvers [BG99].

Accordingly, we refine the first-order signature from Section 1 by labelling the symbols
cutt(_,_) and subt(_,_) with all strongly normalising terms t of a PTS, thus generating
an infinite signature. The precedence relation is refined as follows

⋆ ≺ i(_) ≺ ii(_,_) ≺ cutt(_,_) ≺ subt(_,_)

but we also set subt(_,_) ≺ cutt
′

(_,_) whenever t′−→+
β t. The precedence is still well-

founded, so the induced (lpo) is also still well-founded (definitions and results can be found
in [KL80]). The refinement of the encoding is given in Fig 8. An induction on terms shows
that reductions decrease the lpo.

T (s) = ⋆
T (λxA.M) = T (ΠxA.M) = ii(T (A),T (M))
T (x l) = i(T (l))

T (M l) = cutB(M l)(T (M),T (l))

T (〈M/x〉N) = subB(〈M/x〉N)(T (M),T (N))
T ([]) = ⋆
T (M ·l) = ii(T (M),T (l))
T (l@l′) = ii(T (l),T (l′))

T (〈M/x〉N) = subB(〈M/x〉l)(T (M),T (l))

Figure 8: First-order encoding

Examples of strongly normalising PTS are the Calculus of Constructions [CH88], on
which the proof-assistant Coq is based [Coq] (but it also uses inductive types and local
definitions), as well as the other systems of Barendregt’s Cube, for all of which we now have
a corresponding PTSC that can be used for proof-search.

5. Proof-search

Proof-search considers as inputs an environment Γ and a type A, and the output, if
successful, will be a term M such that Γ ⊢⊢⊢ M :A, moreover one in normal form. When we
search for a list l such that Γ;B ⊢⊢⊢ l :C, the type B in the stoup is also an input. Henceforth,
such a term type A or list type C will be called simply a goal.

The inference rules now need to be syntax-directed, that is determined by the shape of
the goal (or of the type in the stoup), and the proof-search system (PS, for short) is then
obtained by optimising appeals to the conversion rules, yielding the presentation given in

PROOF SEARCH IN PTS 17

Fig. 9. The incorporation of the conversion rules into the other rules is similar to that of
the Constructive Engine in natural deduction [Hue89, vBJMP94]; however that algorithm
was designed for type synthesis, for which the inputs and outputs are not the same as in
proof-search, as mentioned in the introduction.

D←→∗ C
axiom

Γ;D ⊢PS [] :C

D−→∗ ΠxA.B Γ ⊢PS M :A Γ; 〈M/x〉B ⊢PS l :C
ΠL

Γ;D ⊢PS M ·l :C

C−→∗ s3 (s1, s2, s3) ∈ R Γ ⊢PS A :s1 Γ, (x : A) ⊢PS B :s2
Πwf

Γ ⊢PS ΠxA.B :C

C−→∗ s′ (s, s′) ∈ A
sorted

Γ ⊢PS s :C

(x : A) ∈ Γ Γ;A ⊢PS l :C
Selectx

Γ ⊢PS x l :C

C−→∗ ΠxA.B Γ, (x : A) ⊢PS M :B
ΠR

Γ ⊢PS λxA.M :C

Figure 9: Rules for Proof-search

Note one small difference from [LDM06]: we do not, in rule ΠR, require that A be a normal
form. As in [LDM06], soundness and completeness hold, but because of this difference, we
get quasi-normal forms rather than normal forms.

Definition 5.1 (Quasi-normal form). A term (or a list) is a quasi-normal form if all its
redexes are within type annotations of λ-abstractions, e.g. A in λxA.M .

Notice that, as we are searching for (quasi-)normal forms, there are no cut-rules in
PS. However, in PTSC even terms in normal form may need instances of the cut-rule in
their typing derivation. This is because, in contrast to logics where well-formedness of
formulae is pre-supposed (such as first-order logic, where cut is admissible), PTSC checks
well-formedness of types. For instance in rule ΠL of PTSC a type which is not normalised
(〈M/x〉B) occurs in the stoup of the third premiss, so cuts might be needed to type it inside
the derivation.

We conjecture that if we modify rule ΠL by now requiring in the stoup of its third
premiss a normal form to which 〈M/x〉B reduces, then any typable normal form can be
typed with a cut-free derivation. However, this would make rule ΠL more complicated and,
more importantly, we do not need such a conjecture to hold in order to perform proof-search.

In contrast, system PS avoids this problem by obviating such type-checking constraints
altogether, because types are the input of proof-search, and should therefore be checked be-
fore starting search. This is the spirit of the type-checking proviso in the following soundness
theorem.

PS is sound and complete in the following sense:

18 S. LENGRAND, R. DYCKHOFF, AND J. MCKINNA

Theorem 5.2.

(1) (Soundness) Provided Γ ⊢⊢⊢ A :s, if Γ ⊢PS M :A then Γ ⊢⊢⊢ M :A and M is a quasi-normal
form.

(2) (Completeness) If Γ ⊢⊢⊢ M :A and M is a quasi-normal form, then we can derive Γ ⊢PS

M :A.

Proof. Both proofs are done by induction on typing derivations, with similar statements
for list typing. For Soundness, the type-checking proviso is verified every time we need the
induction hypothesis. For Completeness, the following lemma is required (and also proved
inductively): given A←→∗ A′, B←→∗ B′ and C←→∗ C ′, if Γ ⊢PS M :A then Γ ⊢PS M :A′,
and if Γ;B ⊢PS l :C then Γ;B′ ⊢PS l :C ′.

Note that neither part of the theorem relies on the unsolved problem of expansion
postponement [vBJMP94, Pol98]. Indeed, as indicated above PS does not check types.
When recovering a full derivation tree from a PS one by the soundness theorem, expansions
and cuts might be introduced at any point, arising from the derivation of the type-checking
proviso.

Basic proof-search can be done in PS simply by

• reducing the goal, or the type in the stoup;
• depending on its shape, trying to apply one of the inference rules bottom-up; and
• recursively calling the process on the new goals (called sub-goals) corresponding to each

premiss.

However, some degree of non-determinism is to be expected in proof-search. Such non-
determinism is already present in natural deduction, but the sequent calculus version con-
veniently identifies where it occurs exactly.

There are three potential sources of such non-determinism:

• The choice of a variable x for applying rule Selectx, knowing only Γ and B (this cor-
responds in natural deduction to the choice of the head-variable of the proof-term). Not
every variable of the environment will work, since the type in the stoup will eventually
have to be unified with the goal, so we still need backtracking.
• When the goal reduces to a Π-type, there is an overlap between rules ΠR and Selectx;

similarly, when the type in the stoup reduces to a Π-type, there is an overlap between rules
ΠL and axiom. Both overlaps disappear when Selectx is restricted to the case when the
goal does not reduce to a Π-type (and sequents with stoups never have a goal reducing to
a Π-type). This corresponds to looking only for η-long normal forms in natural deduction.
This restriction also brings the derivations in LJT (and in our PTSC) closer to the notion
of uniform proofs. Further work includes the addition of η to the notion of conversion in
PTSC.
• When the goal reduces to a sort s, three rules can be applied (in contrast to the first two

points, this source of non-determinism does not already appear in the propositional case).

Such classification is often called “don’t care” non-determinism in the case of the choice
to apply an invertible rule and “don’t know” non-determinism when the choice identifies a
potential backtracking point.

Don’t know non-determinism can be in fact quite constrained by the need to eventually
unify the stoup with the goal, as an example in Section 7 below illustrates. Indeed, the
dependency created by a Π-type forces the searches for proofs of the two premisses of rule
ΠL to be sequentialised in a way that might prove inefficient: the proof-term produced for

PROOF SEARCH IN PTS 19

the first premiss, selected among others at random, might well lead to the failure to solve
the second premiss, leading to endless backtracking.

Hence, there is much to be gained by postponing the search for a proof of the first
premiss and trying to solve the second with incomplete inputs. This might not terminate
with success or failure but will send back constraints that may be useful in helping to
solve the first premiss with the correct proof-term. “Helping” could just be giving some
information to orient and speed-up the search for the right proof-term, but it could well
define it completely (saving numerous attempts with proof-terms that will lead to failure).
Unsurprisingly, these constraints are produced by the axiom rule as unification constraints.

In Coq [Coq], the proof-search tactic apply x can be decomposed into the bottom-
up application of Selectx followed by a series of bottom-up applications of ΠL and finally
axiom, but it either postpones the solution of sub-goals or automatically solves them from
the unification attempt, often avoiding obvious back-tracking.

In the next section we use the framework with meta-variables we have introduced to
capture this behaviour in an extended sequent calculus.

6. Using meta-variables for proof-search

We now use the meta-variables in PTSCα to delay the solution of sub-goals created
by the application of rules such as ΠL. In this way, the extension from PTSC to PTSCα
supports not only an account of tactics such as apply x of Coq, but also the specification
of algorithms for type inhabitant enumeration and unification. It provides the search-trees
that such algorithms have to explore. Our approach has two main novelties in compar-
ison with similar approaches (in the setting of natural deduction) by Dowek [Dow93] and
Muñoz [Muñ01].

The first main novelty is that the search-tree is made of the inference rules of sequent
calculus and its exploration is merely the root-first construction of a derivation tree; this
greatly simplifies the understanding and the description of what such algorithms do.

The second main novelty is the avoidance of the complex phenomenon known as r-
splitting that features in traditional inhabitation and unification algorithms (e.g. [Dow93]).
In natural deduction, lists of arguments are not first-class objects; hence, when choosing a
head variable in the construction of a λ-term, one also has to anticipate how many arguments
it will be applied to (with polymorphism, there could be infinitely many choices). This
anticipation can require a complex analysis of the sorting relations during a single search
step and result in an infinitely branching search-tree whose exploration requires interleaving
techniques. This is avoided by the use of meta-variables for lists of unknown length, which
allows the choice of a head variable without commitment to the number of its arguments.

In contrast to Section 4, where we confined our attention to the ground terms of PTSCα
and their relation to the corresponding PTS, here we consider the full language of open
terms, representing incomplete proofs and partially solved goals. Correspondingly, (open)
environments are now lists of pairs, denoted (x : A), where x is a variable and A is a
(possibly open) term (while ground environments only feature ground terms). Ground terms
and environments are the eventual targets of successful proof-search, with all meta-variables
instantiated. We further consider a new environment Σ that contains the sub-goals that
remain to be proved:

20 S. LENGRAND, R. DYCKHOFF, AND J. MCKINNA

Definition 6.1 (Goal environment, constraint, solved constraint, substitution).

• A goal environment Σ is a list of:
− Triples of the form Γ ⊢⊢⊢ α : A, declaring the meta-variable α and called (term-)goals,

where A is an open term and Γ is an open environment.
− 4-tuples of the form Γ;B ⊢⊢⊢ β :A, declaring the meta-variable β and called (list-)goals,

where A and B are open terms and Γ is an open environment.

− Triples of the form A
Γ
= B, called constraints, where Γ is an open environment and A

and B are open terms.
Goals of a goal environment are required to declare distinct meta-variables.

• A constraint is solved if it is of the form A
Γ
= B where A and B are ground and A←→∗ B.

• A goal environment is solved if it contains no term or list goals and consists only of solved
constraints.
• A substitution is a finite function σ that maps a meta-variable for term (resp. list), of

arity n, to a closed higher-order term (resp. list) of arity n, that is to say, a term (resp.
list) under a series of n bindings that capture (at least) its free variables (e.g. x.y.M with
FV(M) ⊆ {x, y}).7

Such a series of bindings can be provided by a typing environment Γ, e.g. Dom(Γ).M
(which is a useful notation when e.g. Γ ⊢⊢⊢ M :A).

As usual, substitutions σ are built up from individual bindings of the form (α 7→
x1 . . . xn.M) by concatenation σ, σ′, where bindings in σ′ override those in σ.
• The application of a substitution to terms and lists is defined by induction on these. Only

the base cases are interesting:
If σ(α) = x1 . . . xn.M , then σ(α(N1, . . . , Nn)) is the x′-normal form8 of

〈σ(N1)/x1〉. . . 〈σ(Nn)/xn〉M

(with the usual capture-avoiding conditions).
Similarly, if σ(β) = x1 . . . xn.l, then σ(β(N1, . . . , Nn)) is the x′-normal form of

〈σ(N1)/x1〉. . . 〈σ(Nn)/xn〉l

The application of a substitution to an environment is the straightforward extension of
the above.

For instance on the example of Section 1.1, for an actual term M with
FV(M) = {x, y} and σ(α) = x.y.M , we have that σ(α(N,P)) is the x′-normal form of
〈σ(N)/x〉〈σ(P)/y〉M .

The reason why we x′-normalise the instantiation of meta-variables is that if M is
already x′-normal then (α 7→ x1 . . . xn.M)(α(y1 [], . . . , yn [])) really is a renaming of M (and
also an x′-normal form). This ensures that only normal forms are output by our system for
proof-search, which we can more easily relate to PS.

We now introduce this system, called PE for Proof Enumeration, which can be seen as
an extension of PS to open terms.

Definition 6.2 (An inference system PE for proof enumeration).
The inference rules for system PE, in Fig. 10, manipulate three kinds of statement:

• The first two are of the form Γ ⊢⊢⊢ M :A ||| Σ and Γ;B ⊢⊢⊢ l :C ||| Σ.

7This uses a standard notation that can be found in e.g. [Ter03], Ch. 11.
8Which exists because x′ is convergent even on untyped terms, by Corollary 1.3.

PROOF SEARCH IN PTS 21

Γ = x1 :A1, . . . , xn :An

Γ;D ⊢⊢⊢PE β(x1 [], . . . , xn []) :C | (Γ;D ⊢⊢⊢ β :C)
Claimβ

Γ;D ⊢⊢⊢PE [] :C | D
Γ
= C

axiom

D−→∗

Bx ΠxA.B Γ ⊢⊢⊢PE M :A | Σ1 Γ; 〈M/x〉B ⊢⊢⊢PE l :C | Σ2

Γ;D ⊢⊢⊢PE M ·l :C | Σ1,Σ2

ΠL

Γ = x1 :A1, . . . , xn :An

Γ ⊢⊢⊢PE α(x1 [], . . . , xn []) :C | (Γ ⊢⊢⊢ α :C)
Claimα

C−→∗

Bx s (s′, s) ∈ A

Γ ⊢⊢⊢PE s′ :C | ∅
sorted

C−→∗

Bx s (s1, s2, s) ∈ R Γ ⊢⊢⊢PE A :s1 | Σ1 Γ, x :A ⊢⊢⊢PE B :s2 | Σ2

Γ ⊢⊢⊢PE ΠxA.B :C | Σ1,Σ2

Πwf

(x :A) ∈ Γ Γ;A ⊢⊢⊢PE l :C | Σ′

Γ ⊢⊢⊢PE x l :C | Σ′

Selectx

C−→∗

Bx ΠxA.B Γ, x :A ⊢⊢⊢PE M :B | Σ′

Γ ⊢⊢⊢PE λxA.M :C | Σ′

ΠR

Γ;B ⊢⊢⊢PE l :C | Σ′′ Σ,Σ′′, (β 7→ Dom(Γ).l)(Σ′) =⇒PE σΣ, σΣ′′ , σΣ′

Σ, (Γ;B ⊢⊢⊢ β :C),Σ′ =⇒PE σΣ, (β 7→ Dom(Γ).(σΣ, σΣ′′)(l)), σΣ′

Solveβ

Γ ⊢⊢⊢PE M :A | Σ′′ Σ,Σ′′, (α 7→ Dom(Γ).M)(Σ′) =⇒PE σΣ, σΣ′′ , σΣ′

Σ, (Γ ⊢⊢⊢ α :A),Σ′ =⇒PE σΣ, (α 7→ Dom(Γ).(σΣ, σΣ′′)(M)), σΣ′

Solveα

Σ is solved

Σ =⇒PE ∅
Solved

Figure 10: Proof-term enumeration ⊢⊢⊢PE

• The third kind of statement is of the form Σ =⇒ σ, where
− Σ is a goal environment;
− σ is a substitution as defined above.

In the bottom part of the figure we use the notational convention that a substitution
denoted σΣ has the meta-variables of the goal environment Σ as its domain.

22 S. LENGRAND, R. DYCKHOFF, AND J. MCKINNA

Derivability in PE of the three kinds of statement is denoted respectively by Γ ⊢⊢⊢PE M :
A | Σ, Γ;B ⊢⊢⊢PE l :C | Σ and Σ =⇒PE σ.

The statements Γ ⊢⊢⊢ M :A ||| Σ and Γ;B ⊢⊢⊢ l :C ||| Σ have the same intuitive meaning as
the corresponding statements in system PS, but note the extra goal environment Σ, which
represents the list of sub-goals and constraints that have been produced by proof-search and
that remain to be solved. Thus, the inputs of proof enumeration are Γ and A (and Γ, B
and C for the second kind of statement) and the outputs are a term M (or list l) and goal
environment Σ. Statements of PS are in fact particular cases of these statements with Σ
being always solved.

In contrast, in a statement of the form Σ =⇒ σ, Σ is the list of goals to solve, together
with the constraints that the solutions must satisfy. It is the input of proof enumeration
and σ is meant to be its solution, i.e. the output.

Now we prove that PE is sound. For that we need the following notion:

Definition 6.3 (Solution). We define the property σ is a solution of a goal environment Σ,
by induction on the length of Σ.

• σ is a solution of ∅.
• If σ is a solution of Σ and

x1 :σ(A1), . . . , xn :σ(An) ⊢PS (σ(α))(x1 [], . . . , xn []) :σ(C)

then σ is a solution of Σ, (x1 :A1, . . . , xn :An ⊢⊢⊢ α :C).
• If σ is a solution of Σ and

x1 :σ(A1), . . . , xn :σ(An);σ(D) ⊢PS (σ(β))(x1 [], . . . , xn []) :σ(C)

then σ is a solution of Σ, (x1 :A1, . . . , xn :An;D ⊢⊢⊢ β :C).
• If σ is a solution of Σ and

σ(D)←→∗ σ(C)

then σ is a solution of Σ,D
Γ
= C.

For soundness we also need the following lemma:

Lemma 6.4. Suppose that σ(M) and σ(l) are ground.

(1) If M −→Bx′ N then σ(M)−→∗
Bx σ(N).

(2) If l −→Bx′ l′ then σ(l)−→∗
Bx σ(l′).

Proof. By simultaneous induction on the derivation of the reduction step, checking all rules
for the base case of root reduction.

Theorem 6.5 (Soundness). Suppose σ is a solution of Σ.

(1) If Γ ⊢⊢⊢PE M :A | Σ then σ(Γ) ⊢PS σ(M) :σ(A).
(2) If Γ;B ⊢⊢⊢PE l :C | Σ then σ(Γ);σ(B) ⊢PS σ(l) :σ(C).

Proof. By induction on derivations.

Corollary 6.6. If Σ =⇒PE σ then σ is a solution of Σ.

Proof. By induction on the derivation, using Theorem 6.5.

PROOF SEARCH IN PTS 23

System PE is complete in the following sense:

Theorem 6.7 (Completeness).

(1) If Γ ⊢PS M :A then Γ ⊢⊢⊢PE M :A | Σ for some solved Σ.
(2) If Γ;B ⊢PS l :C then Γ;B ⊢⊢⊢PE l :C | Σ for some solved Σ.

Proof. By induction on derivations. The rules of PE generalise those of PS.

In fact, completeness of the full system PE is not surprising, since it is quite general. In
particular, nothing is said about when the process should decide to abandon the current
goal and start working on another one. Hence we should be interested in completeness of
particular strategies dealing with that question. For instance:

• We can view the system PS as supporting the strategy of eagerly solving sub-goals as
soon as they are created, never delaying them with the sub-goal environment.
• The algorithm for proof enumeration in [Dow93] would correspond here to the “lazy”

strategy that always abandons the sub-goal generated by rule ΠLPS, but this in fact
enables unification constraints to guide the solution of this sub-goal later, so in that case
laziness is probably more efficient than eagerness. This is probably what should be chosen
for automated theorem proving.
• Mixtures of the two strategies can also be considered and could be the basis of interactive

theorem proving. Indeed in some cases the user’s input might be more efficient than the
automated algorithm, and rule ΠLPS would be a good place to ask whether the user has
any clue to solve the sub-goal (since it could help solving the rest of the unification). If
he or she has none, then by default the algorithm might abandon the sub-goal and leave
it for later.

In Coq, the tactic apply x does something similar: it tries to automatically solve the
sub-goals that interfere with the unification constraint (leaving the other ones for later,
visible to the user), but, if unification fails, it is always possible for the user to use the
tactic and give explicitly the proof-term to make it work. However, such an input is not
provided in proof synthesis mode in Coq and the user really has to give it fully, since the
tactic will fail if unification fails. In PE, the unification constraint can remain partially
solved.

All these behaviours can be simulated in PE, which is therefore a useful framework for
the study of proof-search strategies in type theory and for comparison with the work of
Jojgov [GJ02], McBride [McB00] and Delahaye [Del01].

7. Example: commutativity of conjunction

We now give an example of proof-search (first introduced in [LDM06] without using
meta-variables) in the PTSC equivalent to System F , i.e. the one given by the sets:

S = {⋆,�}, A = {(⋆,�)}, and R = {(⋆, ⋆), (�, ⋆)}

For brevity, we omit types on λ-abstractions, abbreviate x [] as x for any variable x
and simplify 〈N/x〉P to P when x 6∈ FV(P). We also write A ∧B in place of its System F
representation as ΠQ⋆.(A→(B→Q))→Q.

24 S. LENGRAND, R. DYCKHOFF, AND J. MCKINNA

Proof-search in system PS would result in the following derivation:

πB

Γ ⊢PS NB :B

πA

Γ ⊢PS NA :A
axiom

Γ;Q ⊢PS [] :Q
ΠL

Γ;A→Q ⊢PS NA ·[] :Q
ΠL

Γ;B→(A→Q) ⊢PS NB ·NA ·[] :Q
Selecty

Γ ⊢PS y NB ·NA ·[] :Q
=== ΠR
A : ⋆,B : ⋆ ⊢PS λx.λQ.λy.y NB ·NA ·[] : (A ∧B)→(B ∧A)

where Γ = A : ⋆,B : ⋆, x : A ∧ B,Q : ⋆, y : B→(A→Q), and πA is the following derivation
(NA = x A·(λx′ .λy′ .x′)·[]):

axiom
Γ; ⋆ ⊢PS [] :⋆

SelectA
Γ ⊢PS A :⋆

axiom
Γ, x′ : A, y′ : B;A ⊢PS [] :A

Selectx′

Γ, x′ : A, y′ : B ⊢PS x′ :A
======================= ΠR
Γ ⊢PS λx′ .λy′ .x′ :A→(B→A)

axiom
Γ;A ⊢PS [] :A

ΠL
Γ; (A→(B→A))→A ⊢PS (λx′ .λy′ .x′)·[] :A

ΠL
Γ;A ∧B ⊢PS A·(λx′ .λy′ .x′)·[] :A

Selectx
Γ ⊢PS x A·(λx′ .λy′ .x′)·[] :A

Similarly, πB has a derivation (NB = x B ·(λx′ .λy′ .y′)·[]) with an analogous conclusion
Γ ⊢PS x B ·(λx′ .λy′ .y′)·[] :B.

We now reconsider the above example in the light of system PE. It illustrates the need
for delaying the search for a proof of the first premiss of rule ΠL. Let

Γ = A : ⋆,B : ⋆, x : A ∧B,Q : ⋆, y : B→A→Q
αA(Γ) = αA(A,B, x,Q, y)
αB(Γ) = αB(A,B, x,Q, y)
M ′ = λx.λQ.λy.y αB(Γ)·αA(Γ)·[]

Σ = (Γ ⊢⊢⊢ αB :B), (Γ ⊢⊢⊢ αA :A), (Q
Γ
= Q)

We get the PE-derivation below:

Γ ⊢⊢⊢ αB(Γ) :B ||| (Γ ⊢⊢⊢ αB :B)

Γ ⊢⊢⊢ αA(Γ) :A ||| (Γ ⊢⊢⊢ αA :A) Γ;Q ⊢⊢⊢ [] :Q ||| (Q
Γ
= Q)

Γ;A→Q ⊢⊢⊢ αA(Γ)·[] :Q ||| (Γ ⊢⊢⊢ αA :A), (Q
Γ
= Q)

Γ;B→A→Q ⊢⊢⊢ αB(Γ)·αA(Γ)·[] :Q ||| Σ

Γ ⊢⊢⊢ y αB(Γ)·αA(Γ)·[] :Q ||| Σ
===============================
A : ⋆,B : ⋆ ⊢⊢⊢ M ′ : (A ∧B)→(B ∧ A) ||| Σ

. . .

Σ =⇒ σΣ

(A : ⋆,B : ⋆ ⊢⊢⊢ α : (A ∧B)→(B ∧ A)) =⇒ (α 7→ σΣ(M
′))

where σΣ = (αB 7→ Dom(Γ).NB , αA 7→ Dom(Γ).NA) is the solution to be obtained from the
right premiss.

PROOF SEARCH IN PTS 25

In the above derivation, we have systematically abandoned the sub-goals and recorded
them for later. The only choice we made was that of the head-variable y, because it led to

the production of the (solved) unification constraint (Q
Γ
= Q).

We now continue the proof-search with the right premiss, solving the two sub-goals
(Γ ⊢⊢⊢ αB : B) and (Γ ⊢⊢⊢ αA : A) that have been delayed. For instance, we can now decide
to solve (Γ ⊢⊢⊢ αA : A), which will eventually produce the binding αA 7→ Dom(Γ).NA with
NA = x A·(λx′y′ .x′)·[], as follows:

Γ ⊢⊢⊢ α1(Γ):⋆ ||| Σ1

Γ′ ⊢⊢⊢ α′
1(Γ

′) :α1(Γ) ||| Σ
′
1

============================
Γ ⊢⊢⊢ λx′y′ .α′

1(Γ
′) :A→B→α1(Γ) ||| Σ

′
1 Γ;α1(Γ) ⊢⊢⊢ [] :A ||| Σ′′

1

Γ; (A→B→α1(Γ))→α1(Γ) ⊢⊢⊢ (λx′y′ .α′
1(Γ

′))·[] :A ||| Σ′
1,Σ

′′
1

Γ;A ∧B ⊢⊢⊢ α1(Γ)·(λx
′y′ .α′

1(Γ
′))·[] :A ||| Σ1,Σ

′
1,Σ

′′
1

Γ ⊢⊢⊢ x α1(Γ)·(λx
′y′ .α′

1(Γ
′))·[] :A ||| Σ1,Σ

′
1,Σ

′′
1 D

Σ =⇒ (αB 7→ Dom(Γ).NB , αA 7→ Dom(Γ).x A·(λx′y′ .x′)·[])

where

α1(Γ) = α1(A,B, x,Q, y)
Σ1 = (Γ ⊢⊢⊢ α1 :⋆)
Γ′ = Γ, x′ :A, y′ :B
α′
1(Γ) = α′

1(A,B, x,Q, y, x′, y′)
Σ′
1 = (Γ′ ⊢⊢⊢ α′

1 :α1(Γ))

Σ′′
1 = (α1(Γ)

Γ
= A)

σ = (αB 7→ Dom(Γ).NB , α1 7→ Dom(Γ).A, α′
1 7→ Dom(Γ′).x′)

and D is a sub-derivation whose conclusion is as follows:
. . .

(Γ ⊢⊢⊢ αB :B),Σ1,Σ
′
1,Σ

′′
1 , (Q

Γ
= Q) =⇒ σ

In the above derivation, we have also abandoned the generated sub-goals. Again we
made one committing choice: that of the head-variable x, which led to the unification

constraint α1(Γ)
Γ
= A. Any other choice of head-variable would have led to a unification

constraint with no solution. Here, this fact (and the subsequent choice of x) can be mech-
anically noticed by a simple syntactic check.

We now continue the proof-search with the right premiss. We can decide to solve
(Γ ⊢⊢⊢ αB :B), (Γ ⊢⊢⊢ α1 :⋆), or (Γ′ ⊢⊢⊢ α′

1 :α1(Γ)). The order in which we solve (Γ ⊢⊢⊢ αB :B) has
little importance (the structure is similar to that of the derivation above), but clearly we
cannot solve (Γ′ ⊢⊢⊢ α′

1 :α1(Γ)) before we know α1(Γ). Hence, we need to solve (Γ ⊢⊢⊢ α1 : ⋆)
first, which will produce α1 7→ Dom(Γ).A:

Γ; ⋆ ⊢⊢⊢ [] :⋆ ||| ⋆
Γ
= ⋆

Γ ⊢⊢⊢ A [] :⋆ ||| ⋆
Γ
= ⋆

. . .

(Γ ⊢⊢⊢ αB :B), (⋆
Γ
= ⋆), (Γ′ ⊢⊢⊢ α′

1 :A), (A
Γ
= A), (Q

Γ
= Q) =⇒ σ′

(Γ ⊢⊢⊢ αB :B), (Γ ⊢⊢⊢ α1 :⋆), (Γ
′ ⊢⊢⊢ α′

1 :α1(Γ)), (α1(Γ)
Γ
= A), (Q

Γ
= Q) =⇒ σ

26 S. LENGRAND, R. DYCKHOFF, AND J. MCKINNA

where σ′ = (αB 7→ Dom(Γ).NB , α′
1 7→ Dom(Γ′).x′).

In this derivation we had to inhabit ⋆. This is a fundamental step of the proof, even when
expressed with ground terms (in system PS) as above. Here, having delayed the solution
of sub-goals, we are now able to infer the correct inhabitation, directly from the unification

constraint (α1(Γ)
Γ
= A) which we have generated previously. Our delaying mechanism thus

avoids many situations in which the correct choice for inhabiting a type has to be guessed
in advance, anticipating the implicit constraints that such a choice will have to satisfy at
some point. This is hardly mechanisable and thus leads to numerous backtrackings.

Finally we proceed to the right premiss by solving (Γ′ ⊢⊢⊢ α′
1 :A):

Γ′;A ⊢⊢⊢ [] :A ||| A
Γ′

= A

Γ′ ⊢⊢⊢ x′ [] :A ||| A
Γ′

= A

. . .

(Γ ⊢⊢⊢ αB :B), (⋆
Γ
= ⋆), (A

Γ′

= A), (A
Γ
= A), (Q

Γ
= Q) =⇒ (αB(Γ) 7→ NB)

(Γ ⊢⊢⊢ αB :B), (⋆
Γ
= ⋆), (Γ′ ⊢⊢⊢ α′

1 :A), (A
Γ
= A), (Q

Γ
= Q) =⇒ σ′

In this derivation we had to inhabit A. Again we made one committing choice: that of

the head-variable x′, which led to the unification constraint A
Γ′

= A. Again, any other choice
of head-variable would have led to obvious failure, a fact which can be mechanically noticed
by a simple syntactic check.

We can then proceed with (Γ ⊢⊢⊢ αB :B), in a way very similar to that for (Γ ⊢⊢⊢ αA :A).
We get eventually NB = x B ·(λx′y′ .y′)·[].

Putting it all together, we have used system PE to produce the following proof of the
commutativity of conjunction:

A : ⋆,B : ⋆ ⊢⊢⊢ λxQy.y (x B ·(λx′y′ .y′)·[])·(x A·(λx′y′ .x′)·[])·[] : (A ∧B)→(B ∧A)

The system has mechanically inferred the relevant choices of the head-variables structuring
the proof-term, by finite checks and using the unification constraints generated by delaying
the solution of sub-goals.

Conclusion and Further Work

In this paper we have developed a framework that serves as a good theoretical basis for
proof-search in type theory.

Proof-search tactics in natural deduction depart from the simple bottom-up application
of the typing rules; thus their readability and usage become more complex, as illustrated
in proof-assistants such as Coq. Just as in propositional logic [DP99a], permutation-free
sequent calculi can be a useful theoretical approach to study and design such tactics, in the
hope of improving semi-automated reasoning.

Following these ideas, we have defined a parameterised formalism giving a sequent cal-
culus for each PTS. It comprises a syntax, a rewrite system and typing rules. In contrast to
previous work, the syntax of both types and proof-terms of PTSCα is in sequent calculus
style, thus avoiding implicit or explicit conversions to natural deduction [GR03c, PD98]. We
have given a direct proof, by simulation, of confluence for each PTSCα.

We have established a strong correspondence with natural deduction (regarding both
logic and strong normalisation), when restricted to the ground terms PTSC of a given
PTSCα. These results and their proofs were formalised in Coq [Sil09]. We can give as
examples the corners of Barendregt’s λ-cube, for which we now have an elegant theoretical

PROOF SEARCH IN PTS 27

framework for proof-search: We have shown how to deal with conversion rules so that basic
proof-search tactics are simply the root-first application of the typing rules.

These ideas have then been extended, in the calculi PTSCα, by the use of meta-variables
to formalise the notion of incomplete proofs, and their theory has been studied. The ap-
proach differs from [Muñ01] both in that we use sequent calculus rules, which match proof-
search tactics, and in that our system simulates β-reduction.

We have shown that, in particular, the explicit use of meta-variables avoids the phe-
nomenon of r-splitting and allows for more flexibility in proof-search, where sub-goals can
be tackled in the order that is most suitable for each situation. Such a flexibility avoids
some of the need for “guess-work” in proof-search, and formalises some mechanisms of proof-
search tactics in proof assistants. This approach has been illustrated by the example of
commutativity of conjunction.

Our system does not commit to specific search strategies a priori, so that it can be used
as a general framework to investigate such strategies, as discussed at the end of Section 6.
This could reflect various degrees of user interaction in proof-search.

Ongoing work includes the incorporation of some of these ideas into the redesign of the
Coq proof engine [Coq]. It also includes the treatment of η-conversion, a feature that is
currently lacking in the PTS-based system Coq. We expect that, by adding η-expansion to
our system, our approach to proof-search can be related to that of uniform proofs in logic
programming.

Further work includes studying direct proofs of strong normalisation (such as Kikuchi’s
for propositional logic [Kik04]), and dealing with inductive types such as those used in Coq.
Their specific proof-search tactics should also clearly appear in sequent calculus. Finally,
given the importance of sequent calculi for classical logic, it would be interesting to build
classical Pure Type Sequent Calculi.

Acknowledgements The authors are grateful to Delia Kesner, Gilles Dowek, Hugo Her-
belin, Arnaud Spiwack, Vincent Siles, Alex Simpson and David Pym for their helpful remarks
and comments, and for pointing out important items of related work.

References

[And92] J. M. Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic and
Computation, 2(3):297–347, 1992.

[Bar91] H. P. Barendregt. Introduction to generalized type systems. Journal of Functional Programming,
1(2):125–154, 1991.

[Bar92] H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 2, chapter 2, pages 117–309.
Oxford University Press, 1992.

[Ber88] S. Berardi. Towards a mathematical analysis of the Coquand-Huet calculus of constructions and
the other systems in Barendregt’s cube. Technical report, Department of Computer Science,
CMU, and Dipartimento di Matematica, Universitá di Torino, 1988.

[BG99] R. Bloo and H. Geuvers. Explicit substitution: on the edge of strong normalization. Theoretical
Computer Science, 211(1-2):375–395, 1999.

[CH88] T. Coquand and G. Huet. The calculus of constructions. Information and Computation, 76(2–
3):95–120, 1988.

[Coq] The Coq Proof Assistant. Available at http://coq.inria.fr/

[Daa80] D. v. Daalen. The Language Theory of Automath. PhD thesis, Eindhoven University of Techno-
logy, 1980. Automath Technical Report AUT-073.

28 S. LENGRAND, R. DYCKHOFF, AND J. MCKINNA

[Del01] D. Delahaye. Conception de langages pour décrire les preuves et les automatisations dans les
outils d’aide à la preuve: une étude dans le cadre du système Coq. PhD thesis, Université Pierre
et Marie Curie (Paris 6), 2001.

[DJS95] V. Danos, J.-B. Joinet, and H. Schellinx. LKQ and LKT: sequent calculi for second order logic
based upon dual linear decompositions of classical implication. In J.-Y. Girard, Y. Lafont, and
L. Regnier, editors, Proceedings of the Workshop on Advances in Linear Logic, volume 222 of
London Math. Society Lecture Note Series, pages 211–224. Cambridge University Press, 1995.

[Dow93] G. Dowek. A complete proof synthesis method for type systems of the cube. Journal of Logic
and Computation, 3(3):287–315, 1993.

[DP99a] R. Dyckhoff and L. Pinto. Proof search in constructive logics. In Sets and proofs (Leeds, 1997),
pages 53–65. Cambridge University Press, 1999.

[DP99b] R. Dyckhoff and L. Pinto. Permutability of proofs in intuitionistic sequent calculi. Theoretical
Computer Science, 212(1–2):141–155, 1999.

[DU03] R. Dyckhoff and C. Urban. Strong normalization of Herbelin’s explicit substitution calculus with
substitution propagation. Journal of Logic and Computation, 13(5):689–706, 2003.

[Gen35] G. Gentzen. Investigations into logical deduction. In Gentzen collected works, pages 68–131. Ed
M. E. Szabo, North Holland, (1969), 1935.

[Gir72] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures de l’arithmétique d’ordre
supérieur. Thèse d’état, Université Paris 7, 1972.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.
[GJ02] H. Geuvers and G. I. Jojgov. Open proofs and open terms: A basis for interactive logic. In J. C.

Bradfield, editor, Proceedings of the 11th Annual Conference of the European Association for
Computer Science Logic (CSL’02), volume 2471 of Lecture Notes in Computer Science, pages
537–552. Springer-Verlag, 2002.

[GR03a] F. Gutiérrez and B. C. Ruiz. A cut-free sequent calculus for Pure Type Systems verifying the
structural rules of Gentzen/Kleene. In M. Leuschel, editor, Revised Selected Papers from the
12th International Workshop on Logic Based Program Synthesis and Transformation, volume
2664 of Lecture Notes in Computer Science, pages 17–31. Springer-Verlag, 2003.

[GR03b] F. Gutiérrez and B. C. Ruiz. Expansion postponement via cut elimination in sequent calculi for
Pure Type Systems. In J. C. M. Baeten, J. K. Lenstra, J. Parrow, and G. J. Woeginger, editors,
Proceedings of the 30th International Colloquium on Automata, Languages and Programming
(ICALP), volume 2719 of Lecture Notes in Computer Science, pages 956–968. Springer-Verlag,
2003.

[GR03c] F. Gutiérrez and B. Ruiz. Cut elimination in a class of sequent calculi for Pure Type Systems.
In R. de Queiroz, E. Pimentel, and L. Figueiredo, editors, Proceedings of the 10th Workshop on
Logic, Language, Information and Computation (WOLLIC’03), volume 84 of Electronic Notes
in Theoretical Computer Science. Elsevier, 2003.

[Her94] H. Herbelin. A lambda-calculus structure isomorphic to Gentzen-style sequent calculus structure.
In L. Pacholski and J. Tiuryn, editors, Computer Science Logic, 8th International Workshop ,
CSL ’94, volume 933 of Lecture Notes in Computer Science, pages 61–75. Springer-Verlag, 1994.

[Her95] H. Herbelin. Séquents qu’on calcule. Thèse de doctorat, Université Paris 7, 1995.
[HHP87] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In Proceedings of the

2nd Annual IEEE Symposium on Logic in Computer Science (LICS’87), pages 194–204. IEEE
Computer Society Press, 1987.

[HOL] The HOL system. Available at http://www.cl.cam.ac.uk/research/hvg/HOL/

[Hue76] G. Huet. Résolution d’équations dans les langages d’ordre 1, 2, . . . , ω. Thèse d’état, Université
Paris 7, 1976.

[Hue89] G. Huet. The constructive engine. World Scientific Publishing, Commemorative Volume for Gift
Siromoney, 1989.

[Kha90] Z. Khasidashvili. Expression reduction systems. In Proceedings of the IN Vekua Institute of
Applied Mathematics, volume 36, 1990.

[Kik04] K. Kikuchi. A direct proof of strong normalization for an extended Herbelin’s calculus. In
Y. Kameyama and P. J. Stuckey, editors, Proceedings of the 7th International Symposium on
Functional and Logic Programming (FLOPS’04), volume 2998 of Lecture Notes in Computer
Science, pages 244–259. Springer-Verlag, 2004.

PROOF SEARCH IN PTS 29

[KL80] S. Kamin and J.-J. Lévy. Attempts for generalizing the recursive path orderings. 1980. Hand-
written paper, University of Illinois. .

[KL05] D. Kesner and S. Lengrand. Extending the explicit substitution paradigm. In J. Giesl, ed-
itor, Proceedings of the 16th International Conference on Rewriting Techniques and Applica-
tions(RTA’05), volume 3467 of Lecture Notes in Computer Science, pages 407–422. Springer-
Verlag, 2005.

[Kle52] S. C. Kleene. Introduction to Metamathematics, volume 1 of Bibliotheca Mathematica. North-
Holland, 1952.

[Klo80] J.-W. Klop. Combinatory Reduction Systems, volume 127 of Mathematical Centre Tracts. CWI,
1980. PhD Thesis.

[Kri] J.-L. Krivine. Un interpréteur du λ-calcul. Unpublished note. Available at
http://www.pps.jussieu.fr/˜krivine/

[LDM06] S. Lengrand, R. Dyckhoff, and J. McKinna. A sequent calculus for type theory. In Z. Esik,
editor, Proceedings of the 15th Annual Conference of the European Association for Computer
Science Logic (CSL’06), volume 4207 of Lecture Notes in Computer Science, pages 441–455.
Springer-Verlag, 2006.

[Len06] S. Lengrand. Normalisation & Equivalence in Proof Theory & Type Theory. PhD thesis, Uni-
versité Paris 7 & University of St Andrews, 2006.

[LP92] Z. Luo and R. Pollack. LEGO Proof Development System: User’s Manual. Technical Re-
port ECS-LFCS-92-211, School of Informatics, University of Edinburgh, 1992. Available at
http://www.dcs.ed.ac.uk/home/lego/html/papers.html

[McB00] C. McBride. Dependently Typed Functional Programs and their Proofs. PhD thesis, Edinburgh
University, 2000.

[McK97] J. McKinna. A rational reconstruction of LEGO, 1997. CARG Seminar, Durham University.
[MNPS91] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation for logic

programming. Annals of Pure and Applied Logic, 51:125–157, 1991.
[Muñ01] C. Muñoz. Proof-term synthesis on dependent-type systems via explicit substitutions. Theor.

Comput. Sci., 266(1-2):407–440, 2001.
[PD98] L. Pinto and R. Dyckhoff. Sequent calculi for the normal terms of the ΛΠ and ΛΠΣ calculi. In

D. Galmiche, editor, Proceedings of the CADE-15 Workshop on Proof Search in Type-Theoretic
Languages, volume 17 of Electronic Notes in Theoretical Computer Science. Elsevier, 1998.

[Plo87] G. Plotkin. Towards search spaces for the Edinburgh Logical Framework. In A. Avron, R. Harper,
F. Honsell, I. Mason, and G. Plotkin, editors, Proceedings of the Workshop on General Logic,
pages 169–181. LFCS, Edinburgh University, 1987. ECS-LFCS-88-52.

[Pol98] E. Poll. Expansion Postponement for Normalising Pure Type Systems. Journal of Functional
Programming, 8(1):89–96, 1998.

[Pra65] D. Prawitz. Natural deduction. a proof-theoretical study. In Acta Universitatis Stockholmiensis,
volume 3. Almqvist & Wiksell, 1965.

[PW91] D. Pym and L. Wallen. Proof-search in the ΛΠ-calculus. In Logical frameworks, pages 309–340.
Cambridge University Press, 1991.

[Pym95] D. J. Pym. A note on the proof theory of the ΛΠ-calculus. Studia Logica, 54(2):1992–30, 1995.
[Sil09] V. Silès. Formalisation of pure type sequent calculi, 2009. Available at

http://www.lix.polytechnique.fr/˜vsiles/coq/formalisation.html

[Ter03] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Sci-
ence. Cambridge University Press, 2003.

[Ter89] J. Terlouw. Een nadere bewijstheoretische analyse van GSTTs. 1989. Manuscript (in Dutch),
University of Nijmegen, The Netherlands.

[vBJMP94] B. van Benthem Jutting, J. McKinna, and R. Pollack. Checking Algorithms for Pure Type
Systems. In H. Barendregt and T. Nipkow, editors, Types for Proofs and Programs, volume 806
of Lecture Notes in Computer Science. Springer-Verlag, 1994.

30 S. LENGRAND, R. DYCKHOFF, AND J. MCKINNA

Subject Reduction

Definition 1. We write Γ ⊢⊢⊢⋆ M :A (resp. Γ;B ⊢⊢⊢⋆ l :C) whenever we can derive Γ ⊢⊢⊢ M :A
(resp. Γ;B ⊢⊢⊢ l :C) and the last rule is not a conversion rule.

The following Lemma is easily derived by induction on the typing tree:

Lemma 2 (Generation Lemma).

(1) (a) If Γ ⊢⊢⊢PTSC s :C then there is s′ such that Γ ⊢⊢⊢⋆ s :s′ with C←→∗ s′.
(b) If Γ ⊢⊢⊢PTSC ΠxA.B :C then there is s such that Γ ⊢⊢⊢⋆ ΠxA.B :s with C←→∗ s.
(c) If Γ ⊢⊢⊢PTSC λxA.M :C then

there is B such that C←→∗ ΠxA.B and Γ ⊢⊢⊢⋆ λxA.M :ΠxA.B.
(d) If Γ ⊢⊢⊢PTSC 〈M/x〉N :C then there is C ′ such that Γ ⊢⊢⊢⋆ 〈M/x〉N :C ′ with C←→∗ C ′.
(e) If M is not of the above forms and Γ ⊢⊢⊢PTSC M :C, then Γ ⊢⊢⊢⋆ M :C.

(2) (a) If Γ;B ⊢⊢⊢PTSC [] :C then B←→∗ C.
(b) If Γ;D ⊢⊢⊢PTSC M ·l :C then

there are A,B such that D←→∗ ΠxA.B and Γ;ΠxA.B ⊢⊢⊢⋆ M ·l :C.
(c) If Γ;B ⊢⊢⊢PTSC 〈M/x〉l :C then are B′, C ′ such that

Γ;B′ ⊢⊢⊢⋆ 〈M/x〉l :C ′ with C←→∗ C ′ and B←→∗ B′.
(d) If l is not of the above forms and Γ;D ⊢⊢⊢PTSC l :C then Γ;D ⊢⊢⊢⋆ l :C.

Proof. Straightforward induction on the typing tree.

Remark 3. The following rule is derivable, using a conversion rule:

Γ ⊢⊢⊢PTSC Q :A Γ, (x : A),∆ ⊢⊢⊢PTSC M :C ∆′ ⊢⊢⊢PTSC 〈Q/x〉C :s Γ, 〈Q/x〉∆ ⊑ ∆′

===
∆′ ⊢⊢⊢PTSC 〈Q/x〉M :〈Q/x〉C

Proving subject reduction relies on the following properties of −→Bx :

Lemma 4.

• Two distinct sorts are not convertible.
• A Π-construct is not convertible to a sort.
• ΠxA.B←→∗ ΠxD.E if and only if A←→∗ D and B←→∗ E.
• If y 6∈ FV (P), then P←→∗ 〈N/y〉P .
• 〈M/y〉〈N/x〉P←→∗ 〈〈M/y〉N/x〉〈M/y〉P (provided x 6∈ FV (M)).

Proof. The first three properties are a consequence of the confluence of the rewrite system
(Corollary 2.9). The last two rely on the fact that the system xsubst is terminating, so that
only the case when P is an xsubst-normal form remains to be checked, which is done by
structural induction.

Using all of the results above, subject reduction can be proved:

Theorem 5 (Subject reduction in a PTSC).

(1) If Γ ⊢⊢⊢PTSC M :X and M −→Bx M ′, then Γ ⊢⊢⊢PTSC M ′ :X
(2) If Γ;Y ⊢⊢⊢PTSC l :Z and l −→Bx l′, then Γ;Y ⊢⊢⊢PTSC l′ :Z

Proof. By simultaneous induction on the typing tree. For every rule, if the reduction takes
place within a sub-term that is typed by one of the premisses of the rule (e.g. the conversion
rules), then we can apply the induction hypothesis on that premiss. In particular, this takes
care of the cases where the last typing rule is a conversion rule.

PROOF SEARCH IN PTS 31

So it now suffices to look at the root reductions. For lack of space we often do not
display some minor premisses in following derivations, but we mention them before or after.
We also drop the subscript PTSC from derivable statements.

B (λxA.N) (P ·l1) −→ (〈P/x〉N) l1
By the Generation Lemma, 1.(c) and 2.(b), there exist B, D, E such that:

Γ ⊢⊢⊢ ΠxA.B :s Γ, x : A ⊢⊢⊢ N :B

Γ ⊢⊢⊢ λxA.N :C

Γ ⊢⊢⊢ P :D Γ; 〈P/x〉E ⊢⊢⊢ l1 :X

Γ;C ⊢⊢⊢ P ·l1 :X

Γ ⊢⊢⊢⋆ (λxA.N) (P ·l1) :X

with ΠxA.B←→∗ C←→∗ ΠxD.E. Therefore, A←→∗ D and B←→∗ E. Moreover,
Γ ⊢⊢⊢ A :sA, Γ, x : A ⊢⊢⊢ B :sB and Γ wf. Hence, we obtain Γ ⊢⊢⊢ 〈P/x〉B :sB , so:

Γ ⊢⊢⊢ P :D

Γ ⊢⊢⊢ P :A Γ, x : A ⊢⊢⊢ N :B

Γ ⊢⊢⊢ 〈P/x〉N :〈P/x〉B

Γ; 〈P/x〉E ⊢⊢⊢ l1 :X

Γ; 〈P/x〉B ⊢⊢⊢ l1 :X

Γ ⊢⊢⊢ (〈P/x〉N l1) :X

with 〈P/x〉B←→∗ 〈P/x〉E.
As A1 (N ·l1)@l2 −→ N ·(l1@l2)

By the Generation Lemma 2.(b), there are A and B such that Y←→∗ ΠxA.B and:

Γ ⊢⊢⊢ ΠxA.B :s Γ ⊢⊢⊢ N :A Γ; 〈N/x〉B ⊢⊢⊢ l1 :C

Γ;Y ⊢⊢⊢ N ·l1 :C Γ;C ⊢⊢⊢ l2 :Z

Γ;Y ⊢⊢⊢⋆ (N ·l1)@l2 :Z

Hence,

Γ ⊢⊢⊢ Y :sY

Γ ⊢⊢⊢ ΠxA.B :s Γ ⊢⊢⊢ N :A

Γ; 〈N/x〉B ⊢⊢⊢ l1 :C Γ;C ⊢⊢⊢ l2 :Z

Γ; 〈N/x〉B ⊢⊢⊢ l1@l2 :Z

Γ;ΠxA.B ⊢⊢⊢ N ·(l1@l2) :Z

Γ;Y ⊢⊢⊢ N ·(l1@l2) :Z

A2 []@l1 −→ l1
By the Generation Lemma 2.(a), we have A←→∗ Y and

Γ;Y ⊢⊢⊢ [] :A Γ;A ⊢⊢⊢ l1 :Z

Γ;Y ⊢⊢⊢⋆ []@l1 :Z

Since Γ ⊢⊢⊢ Y :sY , we obtain

Γ;A ⊢⊢⊢ l1 :Z

Γ;Y ⊢⊢⊢ l1 :Z

A3 (l1@l2)@l3 −→ l1@(l2@l3)
By the Generation Lemma 2.(d),

Γ;Y ⊢⊢⊢ l1 :B Γ;B ⊢⊢⊢ l2 :A

Γ;Y ⊢⊢⊢⋆ l1@l2 :A Γ;A ⊢⊢⊢ l3 :Z

Γ;Y ⊢⊢⊢⋆ (l1@l2)@l3 :Z

32 S. LENGRAND, R. DYCKHOFF, AND J. MCKINNA

Hence,

Γ;Y ⊢⊢⊢ l1 :B

Γ;B ⊢⊢⊢ l2 :A Γ;A ⊢⊢⊢ l3 :Z

Γ;B ⊢⊢⊢ l2@l3 :Z

Γ;Y ⊢⊢⊢ l1@(l2@l3) :Z

Bs B1 N [] −→ N

Γ ⊢⊢⊢ N :A Γ;A ⊢⊢⊢ [] :X

Γ ⊢⊢⊢⋆ N [] :X

By the Generation Lemma 2.(a), we have A←→∗ X.
Since Γ ⊢⊢⊢ X :sX , we obtain

Γ ⊢⊢⊢ N :A

Γ ⊢⊢⊢ N :X

B2 (x l1) l2 −→ x (l1@l′)
By the Generation Lemma 1.(e),

Γ;A ⊢⊢⊢ l1 :B (x : A) ∈ Γ

Γ ⊢⊢⊢⋆ x l :B Γ;B ⊢⊢⊢ l2 :X

Γ ⊢⊢⊢⋆ (x l1) l2 :X

Hence,

(x : A) ∈ Γ

Γ;A ⊢⊢⊢ l1 :B Γ;B ⊢⊢⊢ l2 :X

Γ;A ⊢⊢⊢ l1@l2 :X

Γ ⊢⊢⊢ x (l1@l2) :X

B3 (N l1) l2 −→ N (l1@l2)
By the Generation Lemma 1.(e),

Γ ⊢⊢⊢ N :A Γ;A ⊢⊢⊢ l1 :B

Γ ⊢⊢⊢⋆ N l1 :B Γ;B ⊢⊢⊢ l2 :X

Γ ⊢⊢⊢⋆ (N l1) l2 :X

Hence,

Γ ⊢⊢⊢ N :A

Γ;A ⊢⊢⊢ l1 :B Γ;B ⊢⊢⊢ l2 :X

Γ;A ⊢⊢⊢ l1@l2 :X

Γ ⊢⊢⊢ N (l1@l2) :X

Cs We have a redex of the form 〈Q/y〉R typed by:

∆′ ⊢⊢⊢ Q :E ∆′, y : E,∆ ⊢⊢⊢ R :X ′ ∆′, 〈Q/y〉∆ ⊑ Γ wf

Γ ⊢⊢⊢⋆ 〈Q/y〉R :X

with either X = X ′ ∈ S or X = 〈Q/y〉X ′.
In the latter case, Γ ⊢⊢⊢ X :sX for some sX ∈ S. We also have Γ wf.

Let us consider each rule:

PROOF SEARCH IN PTS 33

C1 〈Q/y〉λxA.N −→ λx〈Q/y〉A.〈Q/y〉N
R = λxA.N
By the Generation Lemma 1.(b), there is s3 such that C←→∗ s3 and:

∆′, y : E,∆ ⊢⊢⊢ A :s1 ∆′, y : E,∆, x : A ⊢⊢⊢ B :s2

∆′, y : E,∆ ⊢⊢⊢ ΠxA.B :C ∆′, y : E,∆, x : A ⊢⊢⊢ N :B

∆′, y : E,∆ ⊢⊢⊢ λxA.N :X ′

with (s1, s2, s3) ∈ R and X ′ ≡ ΠxA.B. Therefore, X ′ 6∈ S, and as a consequence

X = 〈Q/y〉X ′←→∗ 〈Q/y〉ΠxA.B←→∗ Πx〈Q/y〉A.〈Q/y〉B. We have:

∆′ ⊢⊢⊢ Q :E ∆′, y : E,∆ ⊢⊢⊢ A :s1

Γ ⊢⊢⊢ 〈Q/y〉A :s1

Hence, Γ, x : 〈Q/y〉A wf and ∆′, 〈Q/y〉∆, x : 〈Q/y〉A ⊑ Γ, x : 〈Q/y〉A, so:

∆′ ⊢⊢⊢ Q :E ∆′, y : E,∆, x : A ⊢⊢⊢ B :s2

Γ, x : 〈Q/y〉A ⊢⊢⊢ 〈Q/y〉B :s2

so that Γ ⊢⊢⊢ Πx〈Q/y〉A.〈Q/y〉B :s3 and

∆′ ⊢⊢⊢ Q :E ∆′, y : E,∆, x : A ⊢⊢⊢ N :B
==============================

Γ, x : 〈Q/y〉A ⊢⊢⊢ 〈Q/y〉N :〈Q/y〉B

Γ ⊢⊢⊢ λx〈Q/y〉A.〈Q/y〉N :Πx〈Q/y〉A.〈Q/y〉B X←→∗ Πx〈Q/y〉A.〈Q/y〉B

Γ ⊢⊢⊢ λx〈Q/y〉A.〈Q/y〉N :X

C2 〈Q/y〉(y l1) −→ Q 〈Q/y〉l1
R = y l1
By the Generation Lemma 1.(e), ∆′, y : E,∆;E ⊢⊢⊢ l1 : X ′. Now notice that y 6∈
FV (E), so 〈Q/y〉E←→∗ E and ∆′ ⊢⊢⊢ E :sE . Also, ∆′ ⊑ Γ, so

∆′ ⊢⊢⊢ Q :E
· · · · · · · · · · ·
Γ ⊢⊢⊢ Q :E

∆′ ⊢⊢⊢ Q :E ∆′, y : E,∆;E ⊢⊢⊢ l1 :X
′

Γ; 〈Q/y〉E ⊢⊢⊢ 〈Q/y〉l1 :X

∆′ ⊢⊢⊢ E :sE
· · · · · · · · · · · ·
Γ ⊢⊢⊢ E :sE

Γ;E ⊢⊢⊢ 〈Q/y〉l1 :X

Γ ⊢⊢⊢ Q 〈Q/y〉l1 :X

C3 〈Q/y〉(x l1) −→ x 〈Q/y〉l1
R = x l1
By the Generation Lemma 1.(e), ∆′, y : E,∆;A ⊢⊢⊢ l1 :X

′ with (x : A) ∈ ∆′,∆. Let
B be the type of x in Γ. We have

∆′ ⊢⊢⊢ Q :E ∆′, y : E,∆;A ⊢⊢⊢ l1 :X
′

Γ; 〈Q/y〉A ⊢⊢⊢ 〈Q/y〉l1 :X Γ ⊢⊢⊢ B :sB

Γ;B ⊢⊢⊢ 〈Q/y〉l1 :X

Γ ⊢⊢⊢ x 〈Q/y〉l1 :X

Indeed, if x ∈ Dom(∆) then B←→∗ 〈Q/y〉A, otherwise B←→∗ A with y 6∈ FV (A),
so in each case B←→∗ 〈Q/y〉A. Besides, Γ wf so Γ ⊢⊢⊢ B :sB .

34 S. LENGRAND, R. DYCKHOFF, AND J. MCKINNA

C4 〈Q/y〉(N l1) −→ 〈Q/y〉N 〈Q/y〉l1
R = N l1
By the Generation Lemma 1.(e),

∆′, y : E,∆ ⊢⊢⊢ N :A ∆′, y : E,∆;A ⊢⊢⊢ l1 :X
′

∆′, y : E,∆ ⊢⊢⊢⋆ N l1 :X
′

Also, we have
∆′ ⊢⊢⊢ Q :E ∆′, y : E,∆ ⊢⊢⊢ A :sA

Γ ⊢⊢⊢ 〈Q/y〉A :sA
Hence,

∆′ ⊢⊢⊢ Q :E ∆′, y : E,∆ ⊢⊢⊢ N :A

Γ ⊢⊢⊢ 〈Q/y〉N :〈Q/y〉A

∆′ ⊢⊢⊢ Q :E ∆′, y : E,∆;A ⊢⊢⊢ l1 :X
′

Γ; 〈Q/y〉A ⊢⊢⊢ 〈Q/y〉l1 :X

Γ ⊢⊢⊢ 〈Q/y〉N 〈Q/y〉l1 :X

C5 〈Q/y〉ΠxA.B −→ Πx〈Q/y〉A.〈Q/y〉B
R = ΠxA.B
By the Generation Lemma 1.(b), there exists s3 such that X ′←→∗ s3 and:

∆′, y : E,∆ ⊢⊢⊢ A :s1 ∆′, y : E,∆, x : A ⊢⊢⊢ B :s2

∆′, y : E,∆ ⊢⊢⊢ ΠxA.B :X ′

with (s1, s2, s3) ∈ R.

∆′ ⊢⊢⊢ Q :E ∆′, y : E,∆ ⊢⊢⊢ A :s1

Γ ⊢⊢⊢ 〈Q/y〉A :s1

Hence, Γ, x : 〈Q/y〉A wf and ∆′, 〈Q/y〉∆, x : 〈Q/y〉A ⊑ Γ, x : 〈Q/y〉A, so we obtain:

∆′ ⊢⊢⊢ Q :E ∆′, y : E,∆, x : A ⊢⊢⊢ B :s2

Γ, x : 〈Q/y〉A ⊢⊢⊢ 〈Q/y〉B :s2

and hence that Γ ⊢⊢⊢ Πx〈Q/y〉A.〈Q/y〉B :s3.
Now if X ′ ∈ S, then X = X ′ = s3 and we are done.
Otherwise X = 〈Q/y〉X ′←→∗ 〈Q/y〉s3←→

∗ s3, and we conclude using a conversion
rule (because Γ ⊢⊢⊢ X :sX).

C6 〈Q/y〉s −→ s and R = s. By the Generation Lemma 1.(a), we obtain X ′←→∗ s′

for some s′ with (s, s′) ∈ A. Since Γ wf, we obtain Γ ⊢⊢⊢ s : s′. If X ′ ∈ S, then
X = X ′ = s′ and we are done. Otherwise X = 〈Q/y〉X ′←→∗ 〈Q/y〉s′←→∗ s′ and
we conclude using a conversion rule (because Γ ⊢⊢⊢ X :sX).

Ds We have a redex of the form 〈Q/y〉l1 typed by:

∆′ ⊢⊢⊢ Q :E ∆′, y : E,∆;Y ′ ⊢⊢⊢ l1 :Z
′ ∆′, 〈Q/y〉∆ ⊑ Γ wf

Γ;Y ⊢⊢⊢⋆ 〈Q/y〉l1 :Z

with Z = 〈Q/y〉Z ′ and Y = 〈Q/y〉Y ′. We also have Γ wf, Γ ⊢⊢⊢ Y :sY and Γ ⊢⊢⊢ Z :sZ .
Let us consider each rule:

PROOF SEARCH IN PTS 35

D1 〈Q/y〉[] −→ []
l1 = []
By the Generation Lemma 2.(a), Y ′←→∗ X ′, so Y←→∗ X.

Γ ⊢⊢⊢ Y :sY

Γ;Y ⊢⊢⊢ [] :Y Γ ⊢⊢⊢ X :sX

Y ⊢⊢⊢ [] :X

D2 〈Q/y〉(N ·l2) −→ (〈Q/y〉N)·(〈Q/y〉l2)
l1 = N ·l2
By the Generation Lemma 2.(b), there are A, B such that
Y ′←→∗ ΠxA.B and:

∆′, y : E,∆ ⊢⊢⊢ ΠxA.B :s ∆′, y : E,∆ ⊢⊢⊢ N :A ∆′, y : E,∆; 〈N/x〉B ⊢⊢⊢ l2 :Z
′

∆′, y : E,∆;ΠxA.B ⊢⊢⊢⋆ l1 :Z
′

From ∆′, y : E,∆; 〈N/x〉B ⊢⊢⊢ l2 :Z
′ we obtain

Γ; 〈Q/y〉〈N/x〉B ⊢⊢⊢ 〈Q/y〉l2 :Z

From ∆′, y : E,∆ ⊢⊢⊢ N :A we obtain Γ ⊢⊢⊢ 〈Q/y〉N :〈Q/y〉A.
From ∆′, y : E,∆ ⊢⊢⊢ ΠxA.B : s part (b) of the Generation Lemma 1 allows us to
conclude ∆′, y : E,∆ ⊢⊢⊢ A :sA and ∆′, y : E,∆, x :A ⊢⊢⊢ B :sB. Hence we obtain

∆′, y : E,∆ ⊢⊢⊢ A :sA

Γ ⊢⊢⊢ 〈Q/y〉A :sA

and thus Γ, x :〈Q/y〉A wf and then

∆′, y : E,∆, x :A ⊢⊢⊢ B :sB

Γ, x :〈Q/y〉A ⊢⊢⊢ 〈Q/y〉B :sB

From that we obtain both Γ ⊢⊢⊢ Πx〈Q/y〉A.〈Q/y〉B :s and
Γ ⊢⊢⊢ 〈〈Q/y〉N/x〉〈Q/y〉B :sB.

Note that Πx〈Q/y〉A.〈Q/y〉B←→∗ 〈Q/y〉ΠxA.B←→∗ 〈Q/y〉Y ′ = Y . We obtain

Γ ⊢⊢⊢ 〈Q/y〉N :〈Q/y〉A

Γ; 〈Q/y〉〈N/x〉B ⊢⊢⊢ 〈Q/y〉l2 :Z

Γ; 〈〈Q/y〉N/x〉〈Q/y〉B ⊢⊢⊢ 〈Q/y〉l2 :Z

Γ;Πx〈Q/y〉A.〈Q/y〉B ⊢⊢⊢ (〈Q/y〉N)·(〈Q/y〉l2) :Z

Γ;Y ⊢⊢⊢ (〈Q/y〉N)·(〈Q/y〉l2) :Z

D3 〈Q/y〉(l2@l3) −→ (〈Q/y〉l2)@(〈Q/y〉l3)
l1 = l2@l3
By the Generation Lemma 2.(d),

∆′, y : E,∆;Y ′ ⊢⊢⊢ l2 :A ∆′, y : E,∆;A ⊢⊢⊢ l3 :Z
′

∆′, y : E,∆;Y ′ ⊢⊢⊢⋆ l2@l3 :Z
′

Hence,
Γ;Y ⊢⊢⊢ 〈Q/y〉l2 :〈Q/y〉A Γ; 〈Q/y〉A ⊢⊢⊢ 〈Q/y〉l3 :Z

Γ;Y ⊢⊢⊢ (〈Q/y〉l2)@(〈Q/y〉l3) :Z

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	Introduction
	1. Syntax and operational semantics of PTSC
	1.1. Syntax
	1.2. Operational semantics

	2. -terms and Confluence
	3. Typing system and properties
	4. Correspondence with PTS
	4.1. Type preservation
	4.2. Equivalence of Strong Normalisation

	5. Proof-search
	6. Using meta-variables for proof-search
	7. Example: commutativity of conjunction
	Conclusion and Further Work
	References
	Subject Reduction

