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ABSTRACT. Cartesian differential categories are categories equipped with a differential
combinator which axiomatizes the directional derivative. Important models of Cartesian
differential categories include classical differential calculus of smooth functions and categor-
ical models of the differential A-calculus. However, Cartesian differential categories cannot
account for other interesting notions of differentiation of a more discrete nature such as the
calculus of finite differences. On the other hand, change action models have been shown to
capture these examples as well as more “exotic” examples of differentiation. But change
action models are very general and do not share the nice properties of Cartesian differential
categories. In this paper, we introduce Cartesian difference categories as a bridge between
Cartesian differential categories and change action models. We show that every Carte-
sian differential category is a Cartesian difference category, and how certain well-behaved
change action models are Cartesian difference categories. In particular, Cartesian difference
categories model both the differential calculus of smooth functions and the calculus of
finite differences. Furthermore, every Cartesian difference category comes equipped with a
tangent bundle monad whose Kleisli category is again a Cartesian difference category.
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1. INTRODUCTION

In the early 2000’s, Ehrhard and Regnier introduced the differential A-calculus [ER03], an
extension of the A-calculus equipped with a differential combinator capable of taking the
derivative of arbitrary higher-order functions. This development, based on models of linear
logic equipped with a natural notion of “derivative” [Ehr18], sparked a wave of research into
categorical models of differentiation. One of the most notable developments in the area are
Cartesian differential categories [BCS09], introduced by Blute, Cockett and Seely, which
provide an abstract categorical axiomatization of the directional derivative from differential
calculus. The relevance of Cartesian differential categories lies in their ability to model both
“classical” differential calculus (with the canonical example being the category of Euclidean
spaces and smooth functions between) and the differential A-calculus (as every categorical
model for it gives rise to a Cartesian differential category [Manl2a]). However, while
Cartesian differential categories have proven to be an immensely successful formalism, they
have, by design, some limitations. Firstly, they cannot account for certain “exotic” notions
of derivative, such as the difference operator from the calculus of finite differences [Ric54].
This is because the axioms of a Cartesian differential category stipulate that derivatives
should be linear in their second argument (in the same way that the directional derivative is),
whereas these aforementioned discrete sorts of derivatives need not be. Additionally, every
Cartesian differential category is equipped with a tangent bundle monad [CC14, Man12b]
whose Kleisli category can be intuitively understood as a category of generalized vector
fields.

More recently, discrete derivatives have been suggested as a semantic framework for
understanding incremental computation. This led to the development of change struc-
tures [CGRO14] and change actions [APO19]. Change action models have been successfully
used to provide a model for incrementalizing Datalog programs [APETJO19], and have also
been shown to model the calculus of finite differences. Change action models, however, are
very general, lacking many of the nice properties of Cartesian differential categories (for
example, addition in a change action model is not required to be commutative), even though
they are verified in most change action models. As a consequence of this generality, the
tangent bundle endofunctor in a change action model can fail to be a monad.

In this work, we introduce Cartesian difference categories (Section 4.2), whose key
ingredients are an infinitesimal extension operator and a difference combinator, whose
axioms are a generalization of the differential combinator axioms of a Cartesian differential
category. In Section 4.3, we show that every Cartesian differential category is a Cartesian
difference category whose infinitesimal extension operator is zero, and conversely how every
Cartesian difference category admits a full subcategory which is a Cartesian differential
category. In Section 4.4, we show that every Cartesian difference category is a change action
model, and conversely how a full subcategory of suitably well-behaved objects and maps
of a change action model is a Cartesian difference category. In Section 5 we provide some
examples of Cartesian difference categories; notably, the calculus of finite differences and
the stream calculus. In Section 6, we show that every Cartesian difference category comes
equipped with a monad whose Kleisli category (Section 6.3) and a certain full sub-category
of its Eilenberg-Moore category (Section 6.2) are again both Cartesian difference categories.
Lastly, in Section 7, we briefly discuss difference A-categories, which are Cartesian difference
categories that are Cartesian closed. We conclude with a discussion on future work regarding
Cartesian difference categories.
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This paper is an extended version of a conference paper [APL20] for Foundations of
Software Science and Computation Structures: 23rd International Conference (FOSSACS
2020). While the overall structure and story of both versions are very similar, this version
includes additional details, proofs, and results, as well as some important corrections. We
highlight the main differences between this paper and the conference paper. Probably the
most important change to point out is the correction made in Section 6.3. In this version,
we correct the Cartesian difference structure of the Kleisli category of the tangent bundle
monad. The proposed infinitesimal extension and difference combinator for said Kleisli
category in the conference paper [APL20] was based on a result from another paper [APO19].
Unfortunately, we have found that the result in said other paper is incorrect, and therefore so
were the proposed infinitesimal extension and difference combinator for the Kleisli category
in the conference paper. Section 2 and Section 3, the background sections, are mostly
the same with some added background details. In Section 4, more detailed proofs and
computations are provided throughout, and both Lemma 4.8 and Lemma 4.9 are new results.
In Section 4.3, we give a specific name to objects whose infinitesimal extensions is zero,
which in Definition 4.11 we call e-vanishing. In Section 4.4 we introduce flat objects, whose
definition (Definition 4.15) is slightly more general than the original one. Section 5, the
example section, is mostly unchanged with some added details and proofs. In Section 6, we
provide full detailed computations for all the necessary structure relating to the tangent
bundle monad. Section 6.2 and Section 7 are both new sections.

CONVENTIONS:

In an arbitrary category, we use the classical notation for composition as opposed to
diagrammatic order which was used in [BCS09]: this means that the composite map
gof: A — Cisthe map which first does f : A — B then g : B — C'. By a Cartesian category
we mean a category X with chosen finite products where we denote the binary product of
objects A and B by A x B with projection maps mp: Ax B — A and m : AXx B — B and
pairing operation (—, —), so the product of maps is f x g = (f o mp, g o m1), and the chosen
terminal object as T with unique terminal maps !4 : A — T.

2. CARTESIAN DIFFERENTIAL CATEGORIES

In this section, we very briefly review Cartesian differential categories, so that the reader
may compare Cartesian differential categories with the new notion of Cartesian difference
categories which we introduce in Section 4.2. For a full detailed introduction on Cartesian
differential categories, we refer the reader to the original paper [BCS09].

2.1. Cartesian Left Additive Categories. Here we recall the definition of Cartesian left
additive categories [BCS09], which is the underlying structure of both Cartesian differential
categories and Cartesian difference categories. Here “left additive” is meant being skew
enriched [Cam18] over commutative monoids, so in particular, this means that we do not
assume the existence of additive inverses, i.e., “negative elements”. This left additive
structure allows one to sum maps and have zero maps while allowing for maps that do not
preserve the sum or zero. Maps that do preserve the additive structure are called additive
maps.
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Definition 2.1 [BCS09, Definition 1.1.1]. A left additive category is a category X
such that each hom-set X(A, B) is a commutative monoid with addition operation + :
X(A,B) x X(A,B) — X(A, B) and zero element (called the zero map) 0 € X(A, B), such
that pre-composition preserves the additive structure:

(f+g)oh=foh+goh 0of=0
A map k is additive if post-composition by k preserves the additive structure:
ko(f+g)=kof+kog ko0=0

Definition 2.2 [Lem18, Definition 2.3]. A Cartesian left additive category is a Carte-
sian category X which is also a left additive category such all projection maps 7y : AxB — A
and 7 : A X B — B are additive.

Examples of Cartesian left additive categories can be found in Section 5. We note that
the definition given here of a Cartesian left additive category is slightly different from the
one found in [BCS09, Definition 1.2.1], which also assumed that the pairing of additive maps
be additive, but it is indeed equivalent as explained in [Lem18]. Furthermore, by [BCS09,
Proposition 1.2.2], an equivalent axiomatization of a Cartesian left additive category is that
of a Cartesian category where every object comes equipped with a commutative monoid
structure such that the projection maps are monoid morphisms, which we discuss further in
Lemma 4.4. Here are some useful identities on how the additive and product structures are
compatible:

Lemma 2.3 [Lem18, Lemma 2.4]. In a Cartesian left additive category X:

(i) {f,9) +(h. k) = (f +h,g+ k) and (0,0) = 0;

(i) If f: C — A and g : C — B are additive then (f,g) : C — A x B is additive;

(i) If h: A— B and k : C — D are additive then h x k: A x C — B x D is additive;
(i) For any object A, the unique map to the terminal object T is the zero map, !4 = 0.

2.2. Cartesian Differential Categories. Cartesian differential categories are Cartesian
left additive categories that come equipped with a differential combinator, which in turn
is axiomatized by the basic properties of the directional derivative from multivariable
differential calculus. In the following definition, it is important to note that here, following
the more recent work on Cartesian differential categories, we’ve flipped the convention found
in [BCS09], so that the linear argument is in the second argument rather than in the first
argument.

Definition 2.4 [BCS09, Definition 2.1.1]. A Cartesian differential category is a Carte-
sian left additive category equipped with a differential combinator D of the form
fiA—>B
D[f]:AxA— B

verifying the following coherence conditions:

[CD.1] DI/ + g] = D[] + Dg] and D[0] =

[CD.2] D|[f]o(z,y+z) = D[f] o (z,y) + D[f] o (x,2) and D[f] o (z,0) =0

[CD.3] D[14] = m and D[mg] = mp o m1 and D[m] =m om
[(f,
[0

[CD.4] D[(f,9)] = (D[], Dlg]) and D[!a] =laxa
[CD.5] Dlg o f] = Dlg] o (f o mo, D[f])
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[CD.6] D [D[f]] o ({x,y),(0,2)) = D[f] o (x, 2)
[CD.7] DD[f]] o ((z,9),(2,0)) = D[D[f]] o {{z, 2), {y,0))

As we will see in Section 4.3, a Cartesian difference category is a generalization of a Cartesian
differential category. Therefore, we leave the discussion of the intuition of these axioms for
later in Section 4.2 below. We also refer to [BCS09, Section 4] for a term calculus which
may help better understand the axioms of a Cartesian differential category. We highlight
that the last two axioms [CD.6] and [CD.7] can equivalently be expressed as follows:

Lemma 2.5 [CC14, Proposition 4.2]. In the presence of the other azioms, [CD.6] and [CD.7]
are equivalent to the following two axioms:

[CD.6.a] D[D[f]] o ((,0),(0,y)) = D[f] o {x, y)
[CD.7.a] D[D[f]] o {(z,),(z,w)) = D[D[f]] o ((z,2), (y, w))

The canonical example of a Cartesian differential category is the category of real smooth
functions, which we will discuss in Section 5.1. Other interesting examples of Cartesian
differential categories can be found throughout the literature such as categorical models of the
differential A-calculus [ER03, Man12a], the subcategory of differential objects of a tangent
category [CC14], and the coKleisli category of a differential category [BCS06, BCS09].

3. CHANGE AcCTION MODELS

Change actions [APETJO19, APO19] have recently been proposed as a setting for reasoning
about higher-order incremental computation, based on a discrete notion of differentiation.
Together with Cartesian differential categories, they provide the core ideas behind Cartesian
difference categories. In this section, we quickly review change actions and change action
models, in particular, to highlight where some of the axioms of a Cartesian difference
category come from. For more details on change actions, we invite readers to see the original
paper [APO19].

3.1. Change Actions. The basic intuition for a change action is an object A equipped
with a monoid AA which represents the possible “changes” or “updates” that might be
applied to A, with the monoid structure on AA representing the capability to compose
updates.

Definition 3.1 [APO19, Section 2]. A change action A in a Cartesian category X is a
quintuple:

A= (Aa AAa DA, +4, OA)
consisting of two objects A and AA, and three maps:
Ga:AXAA—= A +4: AA X AA— AA 04: T —AA

such that:
[CA.1] (AA,+4,04) is a monoid, that is, the following equalities hold:

+40({1aa,0aa0'04) =1aa=+aa0(0aa0!a,,1a4)

+a0(laaX+a)=4a0(+a0(laa X m), 7 071)
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[CA.2] ©4:AxAA— Ais an action of AA on A, that is, the following equalities hold:
@ao(la,0a0ls) =14

@ao(lax—+4a)=®a0(®ao(lgxmg),m omy)

In [CA.1], the first line says that 04 is a unit for + 4 while the second line is the associativity
of +4. In [CA. 2], the first line is the unit law of the module action, while the second line is
the associativity law of the module action. These are highlighted in Lemma 3.2 below. If

A= (A AA ®4,+4,04) is a change action, then for a pair of parallel maps h: C' — AA
and k : C — AA, we define their AA-sum h +3k: C — AA as follows:

h4+5k=+a0(hk)
Similarly, for a pair of maps f:C — A and g: C — AA, we define f &5 9:C — A as:

fe&xg=®a0(f9)
Here, f @ g should be thought of as g acting on f.

Lemma 3.2. In a Cartesian category X, let A= (A, AA, &4, +4,04) be a change action.
Then for any suitable maps:

(i) f+7(Oaole)=f=(0aolc)+7f

(i) f+x(g+ah) = (f+x9) +ah

(ili) f @z (0acle)=f

(iv) faz(g+ah)=(fOz9) &xh

(v) (f®zg)oh=(foh)®z(goh)
Proof. We leave these as a simple exercises for the reader. Briefly, (i) and (i) will follow
from [CA.1], while (ii7) and (iv) will follow from [CA.2], and (v) follows directly from the
definition. []

Change actions give rise to a notion of derivative, with a distinctly “discrete” flavour.
Given change actions structure on A and B, a map f : A — B can be said to be differentiable
when changes to the input (in the sense of elements of AA) are mapped to changes to the
output (that is, elements of AB). In the setting of incremental computation [APETJO19,
CGRO14, KPS16], this is precisely what it means for f to be incrementalizable, with the
derivative of f corresponding to an incremental version of f.

Definition 3.3 [APO19, Definition 1]. Let

AE(A,AA,EBA,+A,OA) and BE(B,AB,@B,—FB,OB)

be change actions in a Cartesian category X. For a map f : A — B, a map of type
9[f]: Ax AA — AB is a derivative of f whenever the following equalities hold:
[CAD.1] fo(z&zy)=(fox)dg (0f]o(z,y))
[CAD.2] 3f] o (2.5 +5 2) = (8] o (2,9)) +5 (lf] o (x &5y, 2)) and

O[flo(z,0p0!p) =0p0laxaa
The second axiom [CAD.2] is also known as regularity [APO19, Definition 2]. The intuition
for these axioms will be explained in more detail in Section 4.2 when we explain the axioms
of a Cartesian difference category. It is important to note that there is nothing in the
definition that says that derivatives are necessarily unique, and therefore a map f could
have multiple possible derivatives.
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3.2. Change Action Models. The chain rule for derivatives still holds for change actions,
or in other words, differentiation is compositional. Indeed by [APO19, Lemma 1], whenever
9[f] and 8]g] are derivatives for composable maps f and g respectively, then 8[g]o(fomg, 8[f])
is a derivative for g o f. As a corollary, change actions in X form a category where the maps
are pairs consisting a map f and a derivative of f. For more details on this category of
change actions, see [APO19, Section 3].

Definition 3.4 [APO19, Section 3]. Given a Cartesian category X, define its change actions
category CAct(X) as the category whose objects are change actions A in X and whose maps
f A — B are the pairs (f, 8[f]), where f : A — B is amap in X and 9[f] : Ax AA — AB
is a derivative for f. The identity is (14,71), while composition of (f, d[f]) and (g, d[g]) is
(g0 £.8lg] o (f om0, BL])):

For a Cartesian category X, it is straightforward to see that CAct(X) is also a Cartesian
category where the terminal object and the product of objects is the same as in X, where the
projection maps are the pairs (7;, m; o 1), and where the pairing of maps is given point-wise
((f,01f]), (g,8]g])) = ({f,g),(O[f],8]g])). There is an obvious product-preserving forgetful
functor £ : CAct(X) — X sending every change action (A, AA, @, +,0) to its base object A
and every map (f, 8[f]) to the underlying map f. Here is a useful lemma which describes
the compatibility between change action structure and the product structure.

Lemma 3.5. Let A=(A,AA,®,+4,04) and B=(B,AB,®p,+5,05) be change actions
in a Cartesian category X. Then for any suitable maps:

(i) (f,9) Oxp (k) = (f @z h.g D5 k)
(iii) (0,4,03) =04xB

Proof. These are immediate from the definition of product structure in CAct(X), and so we
leave this as excercise for the reader. []

As a setting for studying differentiation, the category CAct(X) is rather lacklustre, since
there is no notion of higher derivatives. Instead, one works with change action models.
Informally, a change action model consists of a rule which for every object A of X associates
a change action over it, and for every map a choice of a derivative.

Definition 3.6 [APO19, Definition 5]. A change action model is a Cartesian category X
with a product-preserving functor o : X — CAct(X) that is a section of the forgetful functor
&, that is, £ o a = 1x.

For brevity, when A is an object of a change action model, we will simply write its
associate change action as a(A) = (A, AA, @4, +4). Examples of change action models can
be found in [APO19]. In particular, as was shown in [APO19, Theorem 6], every Cartesian
differential category provides a change model action. We will generalize this result, and
show in Section 4.4 that a Cartesian difference category also always provides a change action
model.

4. CARTESIAN DIFFERENCE CATEGORIES

In this section, we introduce Cartesian difference categories, which are generalizations of
Cartesian differential categories. Examples of Cartesian difference categories can be found
in Section 5.
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4.1. Infinitesimal Extensions in Left Additive Categories. We first introduce infini-
tesimal extensions, which is an operator that turns a map into an “infinitesimal” version of
itself, in the sense that every map coincides with its Taylor approximation on infinitesimal
elements.

Definition 4.1. A Cartesian left additive category X is said to have an infinitesimal
extension ¢ if every pair of objects A and B, there is a function ¢ : X(4, B) — X(A4, B)
such that:

[E.1] € is a monoid morphism, that is, e(f + ¢) = e(f) + e(g) and €(0) =0

[E.2] e(go f)=c(g)of

[E.3] e(mg) =mpoe(laxp) and e(m) =71 0e(laxp)

By [E.1], €(14) is an additive map, while by [E.2], it follows that e(f) = e(1g) o f. In
light of this, it turns out that infinitesimal extensions can equivalently be described as a
class of additive maps €4 : A — A. The equivalence is given by setting (f) = ep o f and
ea=¢(1a).
Lemma 4.2. For a Cartesian left additive category X, the following are in bijective corre-
spondence:

(i.) An infinitesimal extension € on X;

(ii.) A family of maps €4 : A — A indexed by objects A, such that €4 is additive and

EAxB — €A X EB.

Therefore, for any map f: A — B, e(f) =¢cao0 f.

Proof. Let € be an infinitesimal extension. Then for each object A, define ey : A — A as
4 =¢€(14). Since € preserves the additive structure and e(go f) = £(g) o f, it follows that:

eao(f+g)= e(la)o(f+yg)

= c(lao(f+g) [E.2]
= e(f+9)

= e(f) +¢(g) [E.1]
= e(laof)+e(laocyg)

£(la)o f)o(e(la)og) [E.2]
eaof)+(eacyg)

(
(

eao00= ¢e(lg)00

= e(lg00) [E.2]
= £(0)
=0 [E.1]

So therefore, ¢ 4 is additive. Now for a pair of objects A and B, we have the following:

Moo caxp = 7o E(laxp)
= &(mo) [E.3]
= e(lyomp)
= e(la)omp [E.2]
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= €407

So mp o eaxp = €4 0 g, and similarly, 7 o e4xp = €p o m1. Then by the universal property
of the product, it follows that eaxp = €4 X €B.

Conversely, suppose that each object A comes equipped with an additive mapes : A — A
such that eaxp = €4 X ep. Define ¢ : X(A4, B) — X(A, B) as e(f) = epo f. Since ep is
additive, it follows that:

e(f+g)=epo(f+g)= (epof)+(epog)= e(f)+elg)

e(0)= epo0= 0

So € is a monoid morphism, and so [E.1] holds. Next, it is straightforward by definition
that (g o f) = e(g) o f, so [E.2] holds. So it remains to show that e is compatible
with the projections. Note that esxp = €4 X e implies that mg o eaxp = €4 0 Ty and
w1 0eaxp = €p o . Therefore, we have that:

e(mg) = €a0my = MO EAXB
g(m) = €pom = T OEAxB

So we have that [E.3] holds. Therefore, ¢ is an infinitesimal extension.
Lastly, we need to show that these constructions are inverses of each other. Starting
with an infinitesimal extension €, we have that:

e(f)= e(lpof)= e(lg)of= epof

While in the other direction, it is automatic that e(14) = €4. So we conclude that infinitesimal
extensions are bijective correspondence with a family of additive maps €4 : A — A such
that eaxp =€ X €B. L]

As an immediate consequence of the previous lemma, it follows that infinitesimal
extensions are compatible with the product structure.

Lemma 4.3. Let X be a Cartesian left additive category with an infinitesimal extension .
Then =((f,9)) = (e(f), £(g)) and e(h x k) = =(h) x (k).
Proof. We compute that:

e((f.9)) = eaxpo(f.9) (Lemma 4.2)
= (eaxep)o(f,9) (Lemma 4.2)
= (eao f.epog)
= (e(f),e(9)) (Lemma 4.2)
So e((f,g)) = (e(f),e(g)). By similar calculations, we also have that:
e(hx k)= eaxpo(hxk) (Lemma 4.2)
= (eaxep)o(hxk) (Lemma 4.2)
= (epa0h) X (epok)
= ¢e(h) x e(k) (Lemma 4.2)
So e(h x k) =¢e(h) x e(k). (]

Infinitesimal extensions equip each object with a canonical change action structure:
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Lemma 4.4. Let X be a Cartesian left additive category with infinitesimal extension €. For
every object A, define the three maps ®a: AX A — A, +4: AXA— A and0y: T — A
respectively as follows:

@A:7T0+6(7T1) +aA=m9+m1 04=0
Then (A, A, @A, +4,04) is a change action in X.

Proof. That (A, +4,04) is a commutative monoid was shown in [BCS09, Proposition 1.2.2].
Thus [CA.1] holds. It remains to show that @4 is an action, which follows directly from
the fact that € preserves the additive structure. So we first that compute:

®ao(la,040!4) = (mo+e(m))o(1la,0)
= mpo(la,04)+¢e(m)o(la,0)

= mpo{la,04) +e(m0(14g,0)) [E.2]
= 14 +¢(0)

= 14+0 [E.1]
— 14

So ®a0(la,040!y) =14. Next we compute that:
Dao(®ao(laxm)mom)= (m+e(m))o(Bao(laXm),mom)
= mpo(Bao(lagxmy),mom)+e(m)o(®ao(lgxmy),m 0m)
= mpo(®ao(lgyxm),mom)+e(mo(®ao(lg X m),m 0m)) [E.2]
= @a0(lgxm) +e(mom)
= (mo+¢&(m))o(la xm) +e(mom)
= mpo(laxm)+e(m)o(laxm)+e(mom)

= mpo(laxm)+e(mo(laxm))+e(mom) [E.2]
= mp+e(m omp) + e (m om)

= 7wy +e(mom+mom) [E.1]
= mo+e(m o (mp+m1)) (71 is additive)

= mo+e(mo+a)
= mpo(lax+a)+e(mo(lax+a))
= mpo(lax+a)+e(m)o(lax+a) [E.2]
= (mp+e&(m))o(la X +4)
= @g0(lgx+4)
So @go(lax—+4)=®a0(Bao(lgxm),m om1). Thus [CA.2] holds. So we conclude
that (A, A,®a,+4,04) is a change action. ]

It is important to note that in an arbitrary Cartesian left additive category, ®4, +a4,
and 04 are not necessarily natural transformations. That said, +4 and 04 are natural
with respect to additive maps, that is, if f : A — B is additive then f o004 = Op and
fo+a=+po(fxf). Setting A= (A, A, Da,+4,04), we note that f &g = f+e(g) and
f+z9 = f+g, and so in particular +5 = +. Therefore, from now on we will omit the
subscripts and simply write & and +.
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For every Cartesian left additive category, there are always at least two possible infini-
tesimal extensions: one given by setting the infinitesimal extension of a map to be zero and
another given by setting the infinitesimal extension of a map to be itself.

Lemma 4.5. For any Cartesian left additive category X,
(i). Setting (f) = 0 defines an infinitesimal extension on X and therefore in this case,
Ga=mand fdg=f.
(i). Setting e(f) = f defines an infinitesimal extension on X and therefore in this case,
Ga=+aand fOg=f+y.
Proof. These are both straightforward to check and we leave it as an exercise. []

We note that while these examples of infinitesimal extensions may seem trivial, they are
both very important as they will give rise to key examples of Cartesian difference categories.

4.2. Cartesian Difference Categories. Here we introduce Cartesian difference categories,
the main novel contribution of this paper.

Definition 4.6. A Cartesian difference category is a Cartesian left additive category
with an infinitesimal extension ¢ which is equipped with a difference combinator 9 of
the form:
f:A—>B
9[f] : AxA— B
verifying the following coherence conditions:

[CB.0] fo(x+e(y))=fox+e(d[f]o(z,y))

[CO.1] B(f +g) = Blf] + Bg], B0] = 0, and D[e(f)] = (D))

[C8.2] B[f] 0 (,y+2) = Blf] o (z,4) + Bf] o { + £(y), 2) and D] o (x,0) = 0
[CO.3] O[14] = m and 9[mg) = mp o7y and 9[m1] = m oMy

[CB.4] 9[(f,9)] = (9[f], Blg])

[C8.5] B[g o f] = Blg] o (f om0, DIf])

[CH.6] O %0 ((, §,<

af 0,2)) = 8[f] o (x +
[C8.7] 8[8[f]] o ({x,y), (2,0)) = 8[B[[]] o (
We say that 8[f] is the derivative of f.

£(y), 2)

(z, 2), (y,0))

Before giving some intuition on the axioms [C9.0] to [Cd.7], we first observe that one
could have used change action notation @ to express [C8.0], [C8.2], and [CD.6]:
[CO.0): fo(z&y)=for®d[flo(r,y)
[C8.2]: O[f] o (z,y+z) = B[f] o (x,y) + O[f] o (x By, 2) and B[] o (x,0) =0
[CO.6]: O[O[f]] o ((x,y),(0,2)) = B[f] o (z©y,2)
And also, just like Cartesian differential categories, [C0.6] and [C8.7] have alternative
equivalent expressions.

Lemma 4.7. In the presence of the other axioms, [C8.6] and [C8.7] are equivalent to:

[CO.6.2a] 0 [0[f]] o ((x,0),(0,y)) = [f] o (x,y)

[CO.7.a] 9[0[f]] o {(z,y), (z,w)) = O[O[f]] ° ((x, 2), (y, w))

Proof. The proof is essentially the same as [CC14, Proposition 4.2]. Assume that the
other axioms [C8.0] to [Cd.5] hold. Suppose that [C8.6] and [CH.7] also hold. We first
compute [C9.6.a] using [CH.6]:

A [B[f]] o ((x,0),(0,9)) = 8[f] o (z +2(0),y) [CH.6]
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= Olflo{z+0,y) [E.1]
= O[f] o (x,y)
Next we compute [Cd.7.a] using [CH.2], [CH.6], and [CO.T]:
A [0[f1l o ((z,y), (z,w)) = B[B[f]] o ((x,4),(2,0) + (0, w))
= 0[0[fl] o ((2,9),(2,0)) + D[O[f]] o {(z,y) + £((2,0)), (0, w)) [CH.2]
= 9[0[f]] o {(z,0),(y,0)) + B[D[f]] o ((z,y) + (€(2),£(0)) , (0, w)) (Lemma 4.3)
= 0[0[f] e ((2,0),(y,0)) + D[D[f]] o ((z,y) + (¢(2),0) , (0, w)) [E.1]
= 0[0[f o ((2,0),(y,0)) + D [D[f]] o {{z + £(2), ), (0, w))
= 0[0[f] e ((2,2),(y,0)) + B[f] o (x + (2) + &(y), w) [C8.7] + [CO.6]
= 0[0[f] o ((2,2),(y,0)) + B[f] o {x + (y) + (2), w)
= 0[0[fl] o ((x,2),(y,0)) + D[D[f]] o {(z + £(y), 2), (0, w)) [CH.6]
= 0[0[fl] o ((2,2),(y,0)) + D[O[f]] o {(z + £(y), 2+ 0), (0, w))
= 0[0[f]] o {(z,2),(y,0)) + B[D[f]] o ((z + £(y), 2 + £(0)), (0, w)) [E.1]
= 0[0[f]] o {(z,2),(y,0)) + B[D[f]] o (2, 2) + ((y),£(0)), (0, w))
= 0[0[fl] o ((x,2),(y,0)) + D[D[f]] o {(z, 2) + £((y, 0)), (0, w)) (Lemma 4.3)
= 0[0[f e ((x,2), (y,0) + (0, w)) [CH.2]
= 0[0[f] e ((2,), (z,w)) [CH.7]

On the other, suppose instead that [Cd.6.a] and [Cd.7.a] hold. Then [C.7] follows

immediately from [C8.7.a] by setting the last term w = 0.

A [9[f]] o ((x,9), (2,0)) = 8[8][f]] o {(x, 2), (y,0)) [CH.7.a]

Next we compute [C9.6] using [Cd.2], [Cd.6.a], and [CI.7.a].

2 [0[f]] o ({z,y),(0,2)) = 9[0|f]] o ((x,0), (y,2)) [CO.7.a]

= 9[0[f]] o ((z,0), (y,0) + (0, 2))

= 9[0[f]] o ((x,0),(y,0)) + 9 [0]f]] o ((z,0) + £((y,0)), (0, 2)) [Co.2]

= 9(0[f]] o ((z,y),(0,0)) + 8[| f]] o ((z,0) + £((y,0)), (0, 2)) [CO.7.a]

= 0+ 9[9[f]] o {(x,0) +e({y,0)),(0,2)) [Co.2]
9 [9[f]] o {(x,0) + ((y),£(0)) ,(0,2)) (Lemma 4.3)

= 9[0[f]] o ({x,0) + (e(y),0),(0,2)) [E.1]

= 0[9[f]] o {{z +(y),0),(0,2))

= 9[f]o(x+e(y),2) [CO.6.3]

So we conclude that [C8.6] and [Cd.7] are equivalent to [C9.6.a] and [CH.7.a].

[

The keen eyed reader will notice that the axioms of a Cartesian difference category are
very similar to the axioms of a Cartesian differential category. Indeed, [Cd.1], [C8.3], [CD.4],
[CA.5], and [C.7] are the same as their Cartesian differential category counterpart. The
axioms which are different are [C8.2] and [C8.6] where the infinitesimal extension ¢ is now
included, and also there is the new extra axiom [C8.0]. On the other hand, interestingly
enough, [CD.6.a] is the same as [C0.6.a]. We also point out that writing out [C8.0]
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and [C3.2] using change action notion, we see that these axioms are precisely [CAD.1]
and [CAD.2] respectively. To better understand [C9.0] to [C9.7] it may be useful to write
them out using element-like notation. In element-like notation, [C8.0] is written as:

flx+e(y)) = f(x) +2(9f](z,y))

This condition can be read as a generalization of the Kock-Lawvere axiom that characterizes
the derivative from synthetic differential geometry [Koc06]. Broadly speaking, the Kock-
Lawvere axiom states that, for any map f: R — R and any x € R and d € D, there exists a
unique f'(z) € R verifying f(z +d) = f(x)+d- f'(x), where D is the subset of R consisting
of infinitesimal elements. It is by analogy with the Kock-Lawvere axiom that we refer to
€ as an “infinitesimal extension” as it can be thought of as embedding the space A into a
subspace ¢(A) of infinitesimal elements.

[C.1] states that the differential of a sum of maps is the sum of differentials, and
similarly for zero maps and the infinitesimal extension of a map. [C9.2] is the first crucial
difference between a Cartesian difference category and a Cartesian differential category. In
a Cartesian differential category, the differential of a map is assumed to be additive in its
second argument. In a Cartesian difference category, just as derivatives for change actions,
while the differential is still required to preserve zeros in its second argument, it is only
additive “up to a small perturbation”, that is:

Ofl(z,y + 2) = 8[fl(z,y) + O[f](z + £(y), 2)

[C.3] tells us what the differential of the identity and projection maps are, while [Cd.4]
says that the differential of a pairing of maps is the pairing of their differentials. [C.5] is
the chain rule which expresses what the differential of a composition of maps is:

dg o fl(z,y) = Blgl(f(x), 8[f](x,y))
The last two axioms, [C8.6] and [C9.7] tell us how to work with second order differen-
tials. [C0.6] is expressed as follows:

A [9[/]] (2,9,0,2) = A[f](x + &(y), 2)
and finally [C8.7] is expressed as:

A [0[f1] (x,y,2,0) = B9[]} (, 2,9,0)
It is interesting to note that while [C8.6] is different from [CD.6], its alternative ver-
sion [Cd.6.a] is the same as [CD.6.a].

2 [0[f]] ((x,0),(0,y)) = 8[f](z, 2)

The interplay between [C.0], [Cd.2], and [Cd.6] gives rise to some remarkable and

counter-intuitive consequences.

Lemma 4.8. In a Cartesian difference category X, for any map f: A — B, the following
equalities hold for any suitable maps:

(i). 9[f] e (x,e(y)) =e(B[f]) o (. y)
(ii). ([f]) o (x +e(y), z) = £([f]) o (z + *(y), 2)
(iii). €*(8[8[f])) o ((w,y), (2,0)) = * (B[B[f]]) o ((w,y), (2,0))
Proof. These are mostly straightforward calculations. We start by computing (i):
Af] o (x,e(y)) = O[f] o ((x,0) +(0,2(y)))
= 0[f] o ((2,0) + (£(0),e(y))) [E.1]
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(Lemma 4.3)
[C.0]
[E.2]

[CA.2] + [C.6.a]

Af] o ({x,0) +2({0,)))
= 9[f] o (2,0) + (8°[f] o ({x,0), (0,4)))

0+¢e(8[f] o (z,y))
= €(0[f]) o (x,y)

M. ALVAREZ-PICALLO AND J-S. P. LEMAY

Next, we use (i) to compute (ii):
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= e2(9[8e(£)]]) o (z,2), (y,0))
= e2(9[8e(f)]] o ((z,2), (y,0)))
= e2(9[8le(f)]] o ((z,), (2,0)))
= e2(9[8e(£)]]) o (1), (2,0))
= € (@[A1fN) o {(z,y), (2,0))

23:15

(Lemma 4.8.1)

[E.2]
[CO.7.4]
[E.2]
[Co.1] [

A desirable identity we would like to hold is a slightly stronger version of Lemma 4.8.iii:

e(@[O[f1)) o ({x,y), (2, 0)) = e2(8[8f]]) o ((x,1), (2,0))

Note that if € is injective (i.e e(f) = &(g) implies that f = g) or if € is idem

(4.1)

potent (i.e.

e2(f) = e(f)), then (4.1) holds. In fact, in all of our examples of Cartesian difference
categories in Section 5, (4.1) holds (even for those where ¢ is neither injective or idempotent).
It is currently unclear if (4.1) holds in any Cartesian difference category, as we do not have
a counterexample. If (4.1) holds and the infinitesimal extension is nilpotent, then it turns

out that [C.2] is the same as [CD.2].

Lemma 4.9. Let X be a Cartesian difference category with a nilpotent infinitesimal extension,
that is, for every map f: A — B there is some k € N such that €*(f) = 0, and suppose that
(4.1) holds. Then [CD.2] holds, or in other words, every derivative O|f] is additive in its
second argument, that is, O[f] o (x,y + z) = 9[f] o (z,y) + O[f] o (z,2) and B[f] o (x,0) = 0.

Proof. By [C9.2], it already holds that 9[f] o (x,0) = 0. Therefore it remains to show that
O[f] o (z,y + 2) = O[f] o (z,y) + I[f] o {x, 2). So suppose that £*(f) = 0 for some k € N.

Then using Lemma 4.1, we compute that:

Aflofz,y+2) = 8|fle(x,y) + df] oz +e(y), 2) [CH.2]
= O[flo{z,y) + 9[f] o ({z, 2) + (e(y),0))
= O[f]o(z,y) +0[flo((z,2) + (e(y),2(0))) [E.1]
= Olflo{x,y) + [f] o ({z, 2) +({y,0))) (Lemma 4.3)
= Olflo{z,y) +8[f] o (x,2) +£(8[0[f]] o {{z, 2), (y,0))) [CH.0]
= Olflo{x,y) +8[f]o(x,2) +£(8[D[f]]) o {(z, 2), (¥, 0)) [E.2]
= 8[f]o(z,y) +dlf] o (w,2) + <" (B[Af) o ((z, 2), (y,0)) (Iterating (4.1))
= Blf] o {w,y) + Blf] o {2,2) + 8 [DF(N)]] © (@, 2), {y,0)) [(Co.1]
= 9[f]o(z,y) + B[f] o (z,z) + 8 [9[0]] o ({x, 2), (y, 0)) (¢ is nilpotent)
= Ofl oz, y) +8[f]o(x,2) + 00 ((x,2),(y,0)) [CH.1]
= Oflo{x,y) +d[fl oz, 2) +0
= O[flo(z,y) +0[f]o(x,2)

We conclude that 8[f] is additive in its second argument, and so [CD.2] holds. []
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4.3. Another look at Cartesian Differential Categories. Here we explain how every
Cartesian differential category is a Cartesian difference category where the infinitesimal
extension is given by zero.

Proposition 4.10. Fvery Cartesian differential category X with differential combinator D
is a Cartesian difference category where the infinitesimal extension is defined as e(f) =0
and the difference combinator is defined to be the differential combinator, & = D.

Proof. As noted before, the first two parts of the [C8.1], the second part of [C9.2], [C8.3],
[CO.4], [CO.5], and [C.7] are precisely the same as their Cartesian differential axiom
counterparts. On the other hand, since (f) = 0, [C.0] and the third part of [C.1]
trivially state that 0 = 0, while the first part of [C9.2] and [C9.6] end up being precisely
the first part of [CD.2] and [CD.6]. Therefore, the differential combinator satisfies the
Cartesian difference axioms and we conclude that a Cartesian differential category is a
Cartesian difference category. []

Conversely, one can always build a Cartesian differential category from a Cartesian
difference category by considering the objects for which the infinitesimal extension of the
identity map is the zero map. We call such objects e-vanishing.

Definition 4.11. In a Cartesian left additive category X with infinitesimal extension e,
an object A is said to be e-vanishing if €4 = £(14) = 0. We denote X..yan to be the full
subcategory of e-vanishing objects of X.

The full subcategory of e-vanishing objects always forms a Cartesian left additive
category.

Lemma 4.12. In a Cartesian left additive category X with infinitesimal extension €,

(i). The terminal object T is e-vanishing;
(ii). If A and B are e-vanishing then their product A x B is e-vanishing;

Therefore, X¢_yan s a Cartesian left additive category with the same Cartesian left additive
structure as X. Furthermore:

(iii). If B is e-vanishing, then for any map f: A — B, e(f) = 0.

Proof. For (i), recall that for the terminal object, 17 = 0. Therefore by [E.1] we easily see
that e(17) = €(0) = 0. So the terminal object T is e-vanishing. For (ii), first recall that by
Lemma 4.2, for any pair of objects A and B, eaxp = €4 X €. Therefore, if both A and B
are e-vanishing, we have that e4xp = €4 X eg =0 x 0 = 0. So there product of e-vanishing
objects is again e-vanishing. Thus X, ya, is closed under finite products and therefore we
conclude that X. yap is also a Cartesian left additive category. For (iii), suppose that B is
e-vanishing. Then by [E.2], we have that e(f) =e(1p)o f =00 f = 0. []

For a Cartesian difference category, its subcategory of e-vanishing objects is a Cartesian
differential category.

Proposition 4.13. For a Cartesian difference category X with infinitesimal extension € and
difference combinator 8, then X yan s a Cartesian differential category where the differential
combinator is defined to be the difference combinator, D = 0.

Proof. In Lemma 4.12 we already explained why X van is a Cartesian left additive category.
So it remains to explain why @ is a differential combinator. However, by Lemma 4.12.iii,
every map in X ya, satisfies (f) = 0. Therefore, for maps between objects in X;_yan, the



Vol. 17:3 CARTESIAN DIFFERENCE CATEGORIES 23:17

Cartesian difference axioms are precisely the Cartesian differential axioms. So we conclude
that the difference combinator is a differential combinator for this subcategory, and thus
Xevan is a Cartesian differential category. ]

Note that by Lemma 4.12.i, for any Cartesian difference category X, the terminal object
T is always e-vanishing, and so therefore, X van is never empty. On the other hand, applying
Proposition 4.13 to a Cartesian differential category results in the entire category, since
every object is e-vanishing by definition. It is also important to note that the above two
propositions do not imply that if a difference combinator is a differential combinator then
the infinitesimal extension must be zero. In Section 5.3, we provide such an example of a
Cartesian differential category that comes equipped with a non-zero infinitesimal extension
such that the differential combinator is a difference combinator with respect to this non-zero
infinitesimal extension.

4.4. Cartesian Difference Categories as Change Action Models. In this section,
we show how every Cartesian difference category is a particularly well-behaved change
action model, and conversely how every change action model contains a Cartesian difference
category.

Proposition 4.14. Let X be a Cartesian difference category with infinitesimal extension
e and difference combinator 8. Define the functor o : X — CAct(X) on objects as a(A) =
(A, A,®4,4+4,04) (as defined in Lemma 4.4) and on maps as a(f) = (f,8[f]). Then
(X, a: X — CAct(X)) is a change action model.

Proof. By Lemma 4.4, (A, A,®4,+4,04) is a change action and so « is well-defined on
objects. While for a map f, 9[f] is a derivative of f in the change action sense since [C9.0]
and [CO.2] are precisely [CAD.1] and [CAD.2], and so « is well-defined on maps. Next
we show that o preserves identities and composition, which follows from [C8.3] and [C9.5]
respectively:

a(la) = (14,8[14])

= (1,4,71’1) [08.3]
a(go f) = (go f,0[ge f])

= (9o f,8lgl o (f om,B[f])) [CO.5]

= (g,0[g]) o (f,0[g]) (by def. of comp. in CAct(X))

= a(g) e a(/)

So « is a functor. Next we check that « preserves projections and pairings, which will follow
from [C.3] and [C.4]:

a(m;) = (m, 8[m;])

= (m,mom) [CO.3]
a((f,9) = ({f,9),0[(f.9)])
= ({(f,9),(0lf],8lg))) [CO.4]
]
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= ({a(f),a(g))

So « preserves finite products. Lastly, it is clear that « is a section of the forgetful functor,
and therefore we conclude that (X, a) is a change action model. L]

Not every change action model is a Cartesian difference category. For example, change
action models do not require the addition to be commutative. On the other hand, it can
be shown that every change action model contains a Cartesian difference category as a full
subcategory. We call the objects and maps in this subcategory flat. It is important to
note that the definition here is a slight generalisation of the one in [APL20]. The original
suggested definition implied that & = + and as a result e(f) = f. While this indeed
resulted in a Cartesian difference category (specifically one that generalized the Abelian
group example from Section 5.2), we found that it was a bit too restrictive of a construction.
We correct this by generalizing the definition slightly, while still keeping the construction’s
overall core ideas the same.

Definition 4.15. Let (X, a : X — CAct(X)) be a change action model. An object A is flat
whenever the following equations hold:

[F.1] AA=A

[F.2] a(®4) = (®a,Paom) and a(+4) = (+4,+40m1)

[F.3] @4 is right-injective, that is, if @4 0 (f,g) = @4 o (f, h) then g = h.

Let f : A — B be a map between flat objects in the above change action model, with
a(f) = (f,8]f]). Then f is flat whenever the following condition holds:

[F.4] 0p @p d[f] o (z,y) = 0[f] o (2,04 Bay)
We define Flat, to be the subcategory of X containing all flat objects and all flat morphisms
between them.

Intuitively, the condition [F.1] simply states that a flat object is similar to an Euclidean
space in the sense that its “tangent space” is equal to itself. [F.2] can be read as stating
that the action @4 and the addition of changes 4+ 4 are linear. In this sense, flat objects
behave like Euclidean spaces. [F.3] tells us that we may cancel the left argument of @4,
which will imply that the result infinitesimal extension is injective. This cancellation ability
that [F.3] provides will be used throughout most of the proofs in this section. Lastly, as we
will see below, [F.4] is a generalization of Lemma 4.8.1.

We would like to show that for any change action model (X, «), Flat, is a Cartesian
difference category. We first explain the finite product structure of Flat,.

Lemma 4.16. Let (X, : X — CAct(X)) be a change action model. Then:

(i). The terminal object T is flat;
i). If A and B are flat then their product A x B is flat;
ii). If A is a flat object, then the identity 14 : A — A is flat;
). If A, B, and C are flat objects, and f : A — B and g : B — C are flat maps, then
their composite go f : A — C is flat;
(v). If A and B are flat objects, then the projection maps my : A X B — A and
m : Ax B — B are flat;
(vi). If A, B, and C are flat objects, and f : C — A and g : C — B are flat maps, then
their pairing (f,g) : C — A x B is flat.

Furthermore, Flaty is a Cartesian category with the same Cartesian structure as X.
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Proof. These are straightforward and we leave it as an exercise for the reader to check for
themselves. (i), (ii), (v), and (vi) follows from the fact that « preserves finite products,
while (iii) and (v) follows from the functoriality of . ]

As an immediate consequence, we note that for any change action model (X, ), since the
terminal object is always flat, Flat, is never empty. Next we discuss the additive structure
of Flat,. The sum of maps f: A — B and g : A — B in Flat,, is defined using the change
action structure f + g := f +p g, while the zero map 0: A - B is 0:=0p o!4. And so we
obtain that:

Lemma 4.17. Let (X, a: X — CAct(X)) be a change action model. Then:
(i). If A and B are flat objects, then the zero map 0: A — B is flat;
(ii). If A and B are flat objects, and f : A — B and g : A — B are flat morphisms, then

their sum f+g: A — B is flat.

Furthermore, Flaty is a Cartesian left additive category.

Proof. Most of the Cartesian left additive structure is straightforward. However, since the

addition is not required to be commutative for arbitrary change actions, we will show that

the addition is commutative for flat objects. Using that @ p is an action as in Lemma 3.2,

that by [F.2] we have that @p o 7 is a derivative for @p, and [CAD.1], we obtain that:

0p @& (f+9)=0p®pf)OBY (Lemma 3.2.iv)
= (OB DB f) Dp (g Dp 0) (Lemma 3.2.iii)
=®po(0p®p f,9®B0)

)

=®po ((0p,g9) @B (f,0) (Lemma 3.5.1)

= (@B o (0B,9)) & (0[®5] ({08, 9),(f,0))) [CAD.1]
= (0p @ 9) ©p 9[®E]| ({08, 9), (f,0))

= (0p®p g) ®B (B omi o ((0B,9),(f,0))) [F.2]
= (0p @B g) @B (BB (f,0))

= (0p ®p 9) ©p (f B 0)

= (0p®Bg) @B f (Lemma 3.2.iii)
=0p®p(9+f) (Lemma 3.2.iv)

By [F.3], @p is right-injective and we conclude that f 4+ g =g+ f. ]

We use the action of the change action structure to define the infinitesimal extension.
So for a map f: A — B in Flat,, define (f) : A — B as follows:

e(f)=@®po(0pola, f)=0&5f
As such, we may rewrite [F.4] as follows:
A[f] o (z,e(y)) = e(8f]) o (x,y)
which is Lemma 4.8.i.
Lemma 4.18. ¢ is an infinitesimal extension for Flat,,.
Proof. We show that ¢ satisfies [E.1], [E.2], [E.3]. Starting with [E.1], we compute that:
e(0)= 0®p50
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=0 (Lemma 3.2.iii)

So £(0) = 0. Next following the same idea as in the proof of Lemma 4.17, we obtain the
following:

0p@pe(f+g) =0 (0@ (f+9g))

=0 @B ((0®p f)®B9) (Lemma 3.2.iv)
=0p @ (e(f) ©B 9) (Lemma 3.2.iv)
= (0p@B0) ®p (c(f) ®B 9) (Lemma 3.2.iii)
=®po(0p®p0,e(f) @B 9)
=@po ((0B,e(f)) ®B(0,9)) (Lemma 3.5.1)
= (@B o (0B,(f))) @B (0[®B] ° ((0B,2(f)), (0,9))) [CAD.1]
= (0@ e(f)) ©p (9[@B] © ((08,£(f)), (0, 9)))
= (0p®e(f)) @p (@pom o ((0p,e(f)), (0, 9))) [F.2]
= (0p@e(f)) @B (BB o (0,9)) [F.2]
= (0p®e(f)) &B (0®BY)
= (0p@Be(f)) @B elg)
=0p @ (e(f) +B2(9)) (Lemma 3.2.iv)

Then by [F.3], it follows that e(f + ¢g) = €(f) + €(g). So [E.1] holds. Next, it is easy to
show that ¢ is compatible with composition:
e(gof)=0&c (gof)

= (0o f)®c(gof)
=0®cg)of (Lemma 3.2.v)

=e(g)of
So [E.2] holds. Finally, for the projections we compute:
e(m) =0® m;
= @ao (040laxp, ™)
=® 0 (m004xBolaxn, ™) (Lemma 3.5.iii)
= @40 (m x m) o (0axpolaxs, laxs)
=m0 Daxp ©(0axpolaxn, Laxs)
=mo(0®1laxn)
=mioe(laxn)
So [E.3] holds. Thus we conclude that ¢ is an infinitesimal extension. []

Next, we observe that for a flat object, the action can be expressed in terms of the
infinitesimal extension.

Lemma 4.19. For any maps f,g: A — B in Flat,, the following equality holds:

f@pg=[+elg)
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Proof. The proof is a straightforward consequence of linearity of addition:

f+elg)=f+(0epg)

=(feB0)+ (085 g) (Lemma 3.2.iii)
=+po((f®B0,08p59))

=+5° ((f,0) ®BxB (0,9)) (Lemma 3.5.1)
= (+Bo(f.0)) ®B (8[+s8] o ((£,0),(0,9))) [CAD.1]

= (f+0) @B (d[+5] ° ((f,0),(0,9)))
= @B (9[+5] 0 ((£,0),(0,9)))

= f@p (+pomo((f,0),(0,9))) [F.2]
=f&B(+B°(0,9))
=f&B(0+yg)
=f®ByYg
Thus we conclude that the desired equality holds. []

The difference combinator for Flat, is defined in the obvious way, that is, @[f] is defined
as the second component of «(f).

Proposition 4.20. Let (X, « : X — CAct(X)) be a change action model. Then Flat, is a
Cartesian difference category.

Proof. [C.0] and [Cd.2] are simply a restatement of [CAD.1] and [CAD.2]. [C3.3]
and [C9.4] follow immediately from the fact that « preserves finite products and from the
structure of products in CAct(X), while [C9.5] follows from the definition of composition
in CAct(X). So it remains to show that [Cd.1], [C9.6], and [CH.7] hold. We start by
proving [Cd.1], for which it suffices to calculate and apply [F.2]:

[f +g]= 0[+o(f, 9]

= O[+B] o ((f,9) om0, (B[], Blg])) [C8.5]
= +om o ((f,g)cm,(8[f],Bg])) [CH.2]
= +0(9[f],0l9])

= 9[f] + 8]

It is not hard to show that @[0] = 0 and 9[e(f)] = €(8][f]). For the first property, on one
hand we have:

Oo@o(x,y)y =0=do(0ox,00(x,y))
On the other hand, applying [CAD.1]:
Oo&o(z,y) =@o(00x,d[0]o (z,y))

Hence by [F.3] we have 9[0] o (x,y) = 00 (z,y) for any choice of x and y. In particular,
9]0] = 00] o (mp, m1) = 00 (mp, m1) = 0 as desired. For the infinitesimal extension, we simply
apply the chain rule and the equation 9[0] = 0:
Ae(f)] = 8[@p 0 (0, )]
= 0[] o ((0, f) o mo, B[(0, f)]) [C8.5]
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= @p 0 9[(0, f)]

So we conclude that [C8.1] holds.

Vol. 17:3

[F.2]
[CO.4]
(0[0] = 0)

We proceed to prove axioms [Cd.6.a] and [CH.7.a] — which, per Lemma 4.7, is
equivalent to, and easier to prove than [C8.6] and [Cd.7]. Starting with [Cd.6.a], as

before, we pick arbitrary =,y : A — B and calculate:

0@ 8%[f] o ((2,0),(0,9)) = (B[f] o (x,0)) & (8%[f] o ((x,0), (0, y)))

= 0[f] o ((2,0) (0, 9))
=0[fle((z®0,0®y))
=0[flo(z,00y)
=0®9[f]o(z,y)

Hence by [F.3], 8*[f] o {({x,0),(0,%)) = 8[f] o (x,y) as desired.

[CO.2]
[CAD.1]

(Lemma 3.5.1)
(Lemma 3.2.iii)

[F.4]

Finally, for [Cd.7.a], first observe that by Lemma 4.19 we can compute the following

equality for any suitable maps:

(fogaehak)= (f+e(lg)® (h+ek)) (Lemma 4.19)
f+elg) +e(h+e(k)) (Lemma 4.19)

= f+elg) +e(h) + (k) [E.1]

= f4e(h) +e(g) +%(k) (by commutativity of +)
=f+e(h)+e(g+elk)) [E.1]

=(f+eh) ®(g+ek)) (Lemma 4.19)

Thus we have the following identity:
(fegeheok)=(foh) e(gok)

Alternatively, we could have computed the following for any suitable maps:

(feg e (heok)= (f+e(g) & (h+e(k)
=f+e(g) +e(h+e(k))
= f+¢(g) +e(h) + (k)
=f+e(g+h+ek))
=f@(g+h+ek))
=fe((g+h) ek

Thus we also have the following identity:
(fegehek)=fa((g+h) ok)

Then we compute the following for suitable maps:

fo(lzoy)®(z0w) =(fo(zrdy)®(B[flofrDy,z0w))

(4.2)

(Lemma 4.19)
(Lemma 4.19)
[E.1]
[E.1]
(Lemma 4.19)
(Lemma 4.19)

(4.3)

[CAD.1]
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= ((foz)®(8[f]o(z,9)) ®(8f] o (x DY,z Dw)) [CAD.1]
= ((foz) ®(8[f] o (2,9))) @ (Bf] o ({, 2) © (y, w)))

= ((fox)® ([f] o (z,y) @ ((B[f] o (z,2)) ® (&°[f] o {(w,2), (y,w))))  [CAD.1]
= (fox)® (((Blfl o (x,y)) + (BIf] o (w,2))) @ (8°[f] o {(z, 2), (y, w)))) (4.3)

So we have the following identity:
folzay @ (z0w) =
(fox)® (((BLf] o {x,y)) + (Blf] o (z,2))) & (8°[f] o ((x, 2), (y,w))))

However, by swapping the middle two arguments on the left hand side using (4.2) we
compute:

(4.4)

(fox)® ((BLf]o (x,4)) + (BUf] o (2,2))) & (B[] o ({2, 2), (3, w))))

— follz@y) ® (= ®w)) (4.4)
= follz®2)® (yow) (4.2)
= (foa)® ((B1f]o (,2)) + (Bf] o (,9))) @ (811 o {(a ), (2, w)))) (4.4)
= (fou) @ (((BUf] o (x.m)) + (Bf] o (2, 2))) ® (8°[f] o ((a.y). (z.w)))) (by com. of +)

So we have that:

(fox)® (((BLf] o (z,y)) + (8f] o (z,2))) @ (8%[f] o {{x, 2), (y, w))))
= (fox)® (((Blf] o {z,y)) + (Bf] o {x,2))) ® (8%[f] o ({z, 9), (2,w))))
By applying [F.3], we obtain that:

((BLf] 0 {w,y)) + (Blf] o (w, 2))) @ (8°[f] o {(, 2), (y, w)))
= ((8Lf] o (@, y)) + (BIf] o (x,2))) ® (8°[f] o {(z, ), (z,w)))

By applying [F.3] again we finally obtain 8%[f] ((z,v), (z,w)) = 8?[f] ({z,2), (y,w)) as
desired. So we conclude that Flat, is a Cartesian difference category. []

4.5. Linear Maps and e-Linear Maps. An important subclass of maps in a Cartesian
differential category is the subclass of linear maps [BCS09, Definition 2.2.1]. One can also
define linear maps in a Cartesian difference category by using the same definition.

Definition 4.21. In a Cartesian difference category, a map f is linear if the following
equality holds: 9[f] = f om.

Using element-like notation, a map f is linear if 8[f](z,y) = f(y). Linear maps in a
Cartesian difference category satisfy many of the same properties found in [BCS09, Lemma
2.2.2).

Lemma 4.22. In o Cartesian difference category,
(i) If f : A — B is linear then e(f) = foe(1la).
(ii) If f : A — B is linear, then f is additive.
(iii) Identity maps, projection maps, and zero maps are linear.
(iv) The composite, sum, pairing, and product of linear maps are linear.
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(v) If f: A— B and k : C — D are linear, then for any map g : B — C':
Olkogo fl=Fkodlglo(f x f)

(vi) If an isomorphism is linear, then its inverse is linear.
(vii) For any object A, ©®4 and +4 are linear.

Proof. Most of the above results are either immediate or admit a similar proof to the ones
in [BCS09, Lemma 2.2.2]. We will prove i, as it differs from the differential setting:

foe(la)= fo(0+e(1a))

= fo0+&(0[f]o(0,14)) [C8.0]
— fomo(0,0)+<(dlf]o(0,14)
= 0[f]0(0,0) +&(f om 0(0,14)) (f is linear)
= 0+e(foly) [CO.2]
= (/)

Soe(f)=foe(la). []

Using element-like notation, the first point of the above lemma says that if f is linear
then f(e(x)) = e(f(x)). It is important to note that while all linear maps are additive,
the converse is not necessarily true, see [BCS09, Corollary 2.3.4]. That said, an immediate
consequence of the above lemma is that the subcategory of linear maps of a Cartesian
difference category has finite biproducts.

Another interesting subclass of maps is the subclass of e-linear maps, which are maps
whose infinitesimal extension is linear.

Definition 4.23. In a Cartesian difference category, a map f is e-linear if (f) is linear.

Lemma 4.24. In a Cartesian difference category,
(i) If f: A — B is e-linear then fo (z+e(y)) = fox+e(f)oy;

(ii) Ewvery linear map is e-linear;

(iii) The composite, sum, and pairing of e-linear maps is e-linear;

(iv) If an isomorphism is e-linear, then its inverse is again e-linear.

(v) If € is nilpotent (.i.e for every f there exists a k € N such that e*(f) = 0), then for
every map f, O[f] 0(0,1) is linear.

Proof. The first four (i) through (iv) are straightforward and so we leave them as an
exercise for the reader. For (v), suppose that e is nilpotent. We need to show that

A[e(8[f] 0 (0,1))] = e(8][f] 0 (0,1)) o 1. So we compute:
9[e(8[f] 0 (0,1))] = £(8[3[f] (0, 1)]) [CH.1]
= £(9[0[f]] o ({0,1) x (0,1))) (Lemma 4.22.v)
= €(81[8[f]] o ((0,m0), (0,71)))
£ (BLf] 0 (0 + £(mo), m1)) Co.6]
= €(0[f] o (e(mo),m1))
= €(8[f] o ((0,m1) + {e(m0), 0)))
e (8[f] o ((0,m1) + {e(m0),£(0)))) [E.1]
= € (9[f] o ({0,m1) + £((m0, 0)))) (Lemma 4.3)
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= €(8[f](0,m) 4+ (8[8[f]]  ((0,m1), (m0,0)))) [C8.0]
= €(d[f] o (0,m1)) +* (8[8If]] o ({0,71), (w0, 0))) [E.1]
= € ([f]) 0 (0, m1) +* (8[BIf]]) o ({0, 71), (m0,0)) [E.2]
= £(8f]) 0 (0,m1) + £ (BIBf]) 0 ({0, 1), (mo, 0))

(Iterating Lemma 4.8.iii)
= < (8f]) 0 (0,m1) + AAI" (£)]] o ({0, m1), (mo,0)) ([Ca.1])
= ¢(8][f]) o (0,m1) + 8[0[0]] o ({0, 1), (mp, 0)) (¢ is nilpotent)
= ¢(9[f]) o (0,m1) + 00 ({0, 71), (m0,0)) [CO.1]

e(0[f1) 0 {0,m) +0
= €(8[f]) 0 (0,1) om
= €(8[f]c(0,1))om [E.2]
So we conclude that (9[f]) o (0,1) is linear and hence 9[f] o (0,1) is e-linear. []

Using element-like notation, the first point of the above lemma says that if f is e-
linear then f(x +e(y)) = f(z) +(f(y)). So e-linear maps are additive on “infinitesimal”
elements (i.e. those of the form e(y)). For a Cartesian differential category, linear maps in
the Cartesian difference category sense are precisely the same as the Cartesian differential
category sense [BCS09, Definition 2.2.1], while every map is e-linear since ¢ = 0.

5. EXAMPLES OF CARTESIAN DIFFERENCE CATEGORIES

5.1. Smooth Functions. As we have shown in Proposition 4.10, every Cartesian differential
category is a Cartesian difference category where the infinitesimal extension is zero. As a
particular example, we consider the category of real smooth functions which, as mentioned
above, can be considered to be the canonical (and motivating) example of a Cartesian
differential category.

Definition 5.1. Let R denote the set of real numbers. The category SMOOTH is the
category whose objects are Euclidean spaces R™ (including the point RY = {x}), and whose
maps are smooth functions F' : R® — R™.

SMOOQOTH is a Cartesian left additive category where the product structure is given
by the standard Cartesian product of Euclidean spaces and where the additive structure
is defined by point-wise addition, (F' + G)(Z) = F(Z) + G(Z) and 0(Z) = (0, ...,0), where
Z € R®. SMOOTH is a Cartesian differential category where the differential combinator
is defined by the directional derivative of smooth functions. Explicitly, for a smooth
function F' : R™ — R™, which is in fact a tuple of smooth functions F' = (fi,..., f,) where
fi :R" - R, D[F] : R" x R™ — R™ is defined as follows:

) " Ofn

where @ = (1,...,2,),7 = (y1,- .. ,yn) € R™. Alternatively, D[F] can also be defined in
terms of the Jacobian matrix of F. Therefore SMOOTH is a Cartesian difference category
with infinitesimal extesion € = 0 and with difference combinator D. Since £ = 0, the induced
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action is simply Z @ ¢ = Z. A smooth function is linear in the Cartesian difference category
sense precisely if it is R-linear in the classical sense, and every smooth function is e-linear
since £(f) = 0 is linear.

5.2. Calculus of Finite Differences. The calculus of finite differences [JJ65, Gle05] is a
field which aims to apply methods from differential calculus to discrete settings. It does so
by introducing a “discrete derivative” or “finite difference” operator A which, when applied
to an integer-valued function f :Z — Z, gives the function A(f) defined by

A(f)(z) = flz+1) — f(z)

Here we show that a generalization of the finite difference operator gives an example of a
Cartesian difference category (but not a Cartesian differential category). This example was
the main motivating example for developing Cartesian difference categories. The behaviour
of the calculus of finite differences, as well as some of its generalizations (notably, the
Boolean differential calculus [Tha81, SP09]) is captured by the category of abelian groups
and arbitrary set functions between them, equipped with a suitable Cartesian difference
structure.

Definition 5.2. Ab is the category whose objects are abelian groups G (where we use
additive notation for group structure) and where a map f: G — H is simply an arbitrary
function between them (and therefore does not necessarily preserve the group structure).

Proposition 5.3. Ab is a Cartesian left additive category where the product structure is
given by the standard Cartesian product of sets and where the additive structure is again
given by point-wise addition, (f + g)(z) = f(z) + g(x) and 0(x) = 0. Furthermore, Ab is
a Cartesian difference category where the infinitesimal extension is given by the identity,
that is, (f) = f, and and where the difference combinator 8 is defined as follows for a map
f:G—H:
Ol y) = f(z +y) ~ (x)
On the other hand, note that @ is not a differential combinator for Ab since it does not

satisfy [CD.6] and part of [CD.2]. Indeed, since f is not necessarily a group homomor-
phism, [CD.2] fails to hold as:

Ofl(z,y +2) = fle+y+2) - flz)
is not necessarily equal to:
Ofl(z,y) + 0[fl(x,2) = f(x +y) — f(2) + f(z + 2) — f(x)
0 does satisty [C8.2] and [C.6], as well as [CD.0]. which in this case are respectively:

Ofl(z,y + 2) = Bfl(z,y) + O[fl(z + y, 2)

A[0[f1 ((x,y),(0,2)) = B[f)(x +y, 2)

flz+y) = f(z) + 0[f(x,y)
However, as noted in [BLR18], it is interesting to note that 8 does satisfy [CD.1], the second
part of [CD.2], [CD.3], [CD.4], [CD.5], [CD.7], and [C8.6.a]. It is worth emphasizing
that in [BLR18], the goal was to drop the addition and develop a “non-additive” version
of Cartesian differential categories, whereas the current presentation keeps the additive
structure while suitably relaxing the differential combinator to a difference combinator.
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In Ab, since the infinitesimal operator is given by the identity, the induced action is
simply the addition, 2@y = x+y. On the other hand, the linear maps in Ab are precisely the
group homomorphisms. Indeed, f is linear if 9[f](x,y) = f(y). But by [C8.0] and [Cd.2],
we get that:

fz+y) = fz) +0fl(z,y) = f(x) + f(y) f(0) = 8[f](x,0) =0

So f is a group homomorphism. Conversely, whenever f is a group homomorphism:

Olfl(z,y) = fx+y) — f(z) = f(z) + fly) — f(z) = f(y)

So f is linear. Since e(f) = f, the e-linear maps are precisely the linear maps.

5.3. Module Morphisms. Here we provide a simple example of a Cartesian difference
category whose difference combinator is also a differential combinator, but where the
infinitesimal extension is neither zero nor the identity.

Definition 5.4. Let R be a commutative semiring. We define the category MODpg as the
category whose objects are all R-modules and whose maps are all the R-linear maps between
them.

MODpg, has finite biproducts and is, therefore, a Cartesian additive (in particular, left
additive) category. Every r € R induces an infinitesimal extension " defined by scalar
multiplication, " (f)(m) = rf(m). For any choice of r, the category MODp, is a Cartesian
difference category with the infinitesimal extension " and its difference combinator 8 defined
as:

o[f](m,n) = f(n)

R-linearity of f assures that [C9.0] holds, while the remaining Cartesian difference axioms
hold trivially. In fact, 8 is also a differential combinator and therefore MODp is also a
Cartesian differential category, but note that the Cartesian difference structure of MODp is
(whenever R is non-zero) different than the Cartesian difference structure that corresponds
to this differential structure. The induced action is given by m @& n = m + rn. By definition
of 8, every map in MODg, is linear, and by definition of ¢” and R-linearity, every map is
also e-linear.

5.4. Stream calculus. It is common knowledge that streams, i.e. infinite sequences of
values, can be studied using methods from differential calculus. For example, in [Rut05],
a notion of stream derivative operator is introduced, and streams are characterized as the
solutions of stream differential equations involving stream derivatives. More recent work in
the setting of causal functions between streams of real numbers [SJ19, SK19] has focused on
extending the “classical” notion of the derivative of a real-valued function to stream-valued
functions.

We seek now to show that causal functions between streams are indeed endowed with
the structure of a Cartesian difference category, the corresponding difference combinator
capturing the change of the stream over time. For this we will introduce an idempotent
infinitesimal extension on streams that plays a similar role in this setting as Rutten’s stream
derivative operator [Rut05], which is given by discarding the head of the stream. On the
other hand, our work is more closely related to Sprunger et al.’s work [SJ19, SK19] as it
focuses on the differentiation of functions between streams, rather than the description of
single streams in terms of differential equations.
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For a set A, let A“ denote the set of infinite sequences of elements of A. We write
[a;] for the infinite sequence [a;] = (ag, a1, as,...) and a;y, for the (infinite) subsequence
(@i, aiq1,...). A function f: AY — B“ is causal whenever the n-th element f ([a;]), of the
output sequence only depends on the first n elements of [a;]. More formally, the function f
is causal if and only if, whenever ag., = bo.n, then f ([a;])g., = f ([0i])g.p-

We will restrict ourselves to considering streams over abelian groups’, so let Ab” be the
category whose objects are all the abelian groups and where a morphism from G to H in
Ab” is a causal map from G¥ to H*. Ab” is a Cartesian left-additive category, where the
product is given by the standard product of abelian groups and where the additive structure
is lifted point-wise from the structure of Ab.

More concretely, whenever G, H are abelian groups, the hom-set W(G, H) is endowed
with the additive structure that comes from setting

(f +9) ([ai]),, = f ([a]),, + g ([ai]),, 0 ([a]),, =0

At this point, one might think that the “natural” choice of an infinitesimal extension in
this setting would be something akin to Rutten’s stream derivative operator, which is given
by dropping the first element of the stream, that is, ([a;])’ = ([ai]);.,,.- This, however, is not

a causal function and so it does not exist in the category Ab”. That said, it is possible to
construct a larger category where this operator is used for differentiation, it however fails
to satisfy [CH.6]. We instead an define infinitesimal extension for Ab” as the truncation
operator z.

Definition 5.5. For an abelian group A, define the truncation operator z4 : AY — A¥
as follows:

(z[ai])g =0 (z[ail)j11 = ajn
Note that z4 is a monoid homomorphism according to the pointwise monoid structure

on A“. Thus it is straightforward to see that we obtain an infinitesimal extension z for Ab .

Theorem 5.6. The category Ab” is a Cartesian difference category, with the infinitesimal
extension e(f) = zo f and a difference operator defined as:

Olf]([ai], [bi])g = f ([ai] + [bi])g — £ ([ail)g
O[f] ([ai], [bi]) iy = £ ([ai] +2([bi])) g — f (i) i1

Proof. We leave it to the reader to check for themselves that z is an infinitesimal exten-
sion. [Cd.0] is satisfied because of causality. Indeed, since f is causal, f([a;] + z([b;]))
depends only on ([a;] + z([bi])),, but note that, by definition of z, this term is precisely
equal to ag. Hence we obtain the following:

(f(lai]) + 2z (B[f1([ad] , [bi]))g = f ([ai])o = [ ([ai] + =([bi]))g
For any other index, we have that:
(f([ai]) + 2 (B[f([ad] , [bi])))i1 = f(lai])iyr + 2 (B[F1([ai] , [bi]))s 14
= f([ail)s1 + Of] (laa] , [bi])i 14
= f(lai])isr + f (lad] + 2([b:]) i1 — f(lai])i
LA similar approach to the one in [SK19] is possible where we consider streams on arbitrary difference

categories, and lift the difference operator of the underlying category to its category of streams, although it
would complicate the presentation of this section without gaining clarity.
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= [ (lai] + 2([bi])) 4

We also explicitly prove the part of [C8.1] concerning the infinitesimal extension z:

o[z ([ai], [bi])g = 2 ([ai] + [bi])g — 2([ai])g = 0 = z([bi]),
0lz] ([a], [bi]) 11 = z ([as] + 2([b:])) 11 — 2([@i]) 1 = bnt1 = 2([bi]) 141

Finally, we show that [C8.3] holds for the identity map, which is a matter of simple
calculation as well (linearity of the projection maps follows by an almost identical argument).
However, as we remark later, this property would fail to hold if we had chosen a more
“natural” candidate for the difference operator.

A1) ([ai] ; [bil)g = a0 +bo — a0 = bo
O] (ail, [bi])ng1 = ([ai] +2([bi]) gy = ant1 = b

The remaining axioms can be shown to hold by similar pointwise reasoning; the corresponding
calculations are very similar to the case of Ab. []

Remark 5.7. One might expect the difference operator in Ab~ to be given by the simpler
expression

Olf](lail, [bi]) = f(lai] + 2([b])) — f([ai])
While this satisfies some of the Cartesian difference axioms (notably [C9.0]) it does not
satisfy all of them: for example, [C8.3] fails to hold since 8[1] ([as], [bi]) = z([b:]) # [bi]-

Note the similarities between the difference combinator on Ab and that on Ab”. The
induced action can be computed out to be:

([al] D [bl])o = ap ([al] D [bi])n+1 = apy1 + bpy1 (E Gp+1 @ bn—i—l)

The linear maps (in the Cartesian difference category sense) in Ab” are precisely those
maps f that are group homomorphisms (when the set of streams G* is equipped with the
structure lifted pointwise from the group G) satisfying the additional property that whenever
[aily., = [bily, then f([ai]),, = f([bi]), 1, but this is far from evident. The reader can
easily verify that any such homomorphism is linear, we prove here the converse.

Proposition 5.8. Any linear map f in Ab” is a group homomorphism. Furthermore,
whenever [ag]y.,, = [bi]y,,, the map f satisfies f([ai]), 1 = f([0i])pga-

Proof. The first part of the proposition is simply a corollary of Lemma 4.22.ii, according to
which every linear map in Ab” is additive and, therefore, a group homomorphism. For the
second property, since f is linear, we have:

F(biD)nga = Bl ([ail, [bil)yy = f([ai] + 2([0i])) 41 — fl@i])ia

Therefore f ([a;] +z([bi])), .1 = f ([ai]), 11 + f ([6i]) .41 By setting [a;] = [0] in the above
equation, and since f preserves the identity element, we establish f (z([b:])),, .1 = f ([bi]), 11
from which the second part of the desired property follows as an immediate corollary. []

On the other hand, since every map of the form f oz verifies this second property of
“insensitivity” to the initial element of the stream, it follows that for a map f to be e-linear
it is sufficient (and necessary) that f oe be a group homomorphism.
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6. TANGENT BUNDLES IN CARTESIAN DIFFERENCE CATEGORIES

In this section, we show that the difference combinator of a Cartesian difference category
induces a monad, called the tangent bundle monad. This construction is a generalization of
the tangent bundle monad for Cartesian differential categories [CC14, Man12b]. Furthermore,
we show that a full subcategory of the Eilenberg-Moore category and the Kleisli category of
the tangent bundle monad is again a Cartesian difference category. The general intuition
of these categories for the tangent bundle monad are more or less the same as explained
in [CC14, Section 3.2]. The maps of the Kleisli category are generalized vector fields, while
the considered full subcategory of the Eilenberg-Moore category consists of objects equipped
with a linear map which associates tangent vectors to points.

6.1. The Tangent Bundle Monad. If only to introduce notation, recall that a monad
on a category X is a triple (T, u,n) consisting of an endofunctor T : X — X, and two natural
transformations y: T2 = T and 7 : 1x = T (where 1x : X — X is the identity functor), such
that the following equalities hold for all objects A € X:

paonray = Iy = pao T(na) fra © pit(a) = fra © T(pa) (6.1)
Now let X be a Cartesian difference category with infinitesimal extension € and difference
combinator @. Define the functor T : X — X as follows:
T(A)=AxA T(f) = (f om0, 0[f])
and define the natural transformations 7 : 1x = T and p : T2 = T as follows:

na = (14,0) pa = (oo, T10 + To1 + £(m11))

where m;; = m; o mj. Before providing the proof that (T, u,n) is indeed a monad for any
Cartesian difference category, let us provide some examples for intuition.

Example 6.1. For a Cartesian differential category, since ¢ = 0, the induced monad
is precisely the monad induced by its tangent category structure [CC14, Manl2b]. For
example, in the Cartesian differential category SMOOTH (as defined in Section 5.1), one
has that T(R™) = R™ x R™, which is in fact the classical tangent bundle over R" from
differential geometry, and also that T(F)(Z,7) = (F(&),D[F](Z,7)), nr~(Z) = (&,0), and
prn ((Z,9), (2,4)) = (7,7 + 2).

Example 6.2. In the Cartesian difference category Ab (as defined in Section 5.2), the
monad is given by T(G) = G x G T(f)(z,y) = (f(z), f(z +y) — f(x)), na(z) = (,0), and
NG((xv y)? (z,w)) = (‘Ta y+z+w).

We now show that the above construction is indeed a monad.

Proposition 6.3. Let X be a Cartesian difference category with infinitesimal extension e
and difference combinator @. Then (T, u,n), as defined above, is a monad on X.

Proof. That T is a functor follows from the fact that the change action model a : X — CAct(X)
from Proposition 4.14 is a functor. Specifically, T is the second component of a. Next we
show the naturality of n and u. For n we have:

T(f)ona= (fom,d[f])ona
= (fomoona,d[f] ona)
= (fomo(la,0),0[f]o(14,0))
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T2(f) =
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and therefore we compute:
pp o T2(f) = (mo0, ™10 + o1 + e(m11)) o T2(f)

{100 0 T2(£), (10 + o1 + €(m11)) 0 T2(£))

{100 0 T2(f),m10 0 T?(f) + mo1 o T2(f) + e(m11) o T*(f))

{100 0 T2(f),m10 0 T?(f) + mo1 o T2(f) + e(m11 0 T2(£)))

So n and p are natural transformations.
identities (6.1

(f om0, 0
(f om0, 0
(f om0, O[f]
(f om0, O[f]

= T(f)opa

@)

@)

{
{
{

[
(f o mon, B[f] o (mo x mo) +
[f] o (o0, To1) +
)+

00, 701

= (£,0)

<]-B7 O> o f
nsof
For the naturality of pu, first it is straightforward to check that:

((f o m00, BLf] © mo), (DI f]

7T0 X 7T0) 82[f]>>

flomo+ 8[f] o (mo x mo) +<(8°[f]))

(B[] o mo +e(8%f])))
(B[] © (mo0, T10) + € (8%[f] © {(m00, T10), (o1, 711)))))

af] o

(moo + (mo1), T10 + £(711)))

700, To1 + m10 + €(m11)))
(f omo, B[f]) o (moo, mo1 + 10 + £(m11))

pa°nray = {(moo, 0 + To1 + (711)) © N1 (4)

00 © N7 (A)s (10 + 701 + €(711)) © 77T(A)>

Next we check that j14 0 T(na) = 11(4). First note that T(na) =

00 © TIT(A

(
(
= <7T00 °NT(A
(
(
(

= (mo,m1)

= lr

compute:

paoT(na) =

(
(
(
(
(
(

)s 10 © TT(4) + To1 © 1 (4) + €(T11) © N7 (4))
), 10 © 17 (A4) + 701 © N7 (4) + €(m11 0 77T(A))>

O> 7r100<1T ,0) + mo1 o<1T(A),O>+€(7r110<1T(A
o, T1 + 0 + £(0))
mo, 1 + 0)

700, o1 + 710 + £(711)) © T(nA)

700 © T(na), (mo1 + w10 + (m11)) © T(na))

mo0 © T(na), mo1 © T(na) + m0 © T(na) +&(m11) 0 T(na))
mo0 © T(na), mo1 © T(na) + mo° T(na) + & (m11 0 T(na)))

70, ™1 + 0+ €(0))

T, M1 —I—O)
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[C8.2]

[E.2]

[Cd.0]
[Ca.2]

Now we show that p and 7 satisfy the monad
). Starting with pa ona = ly(ay:

[E.2]

1,0)))

[E.1]

({(m0,0), (71,0)). Then we

[E.2]

[B.1]
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= (mo,m1)
= 11
For the last of the monad laws, we first note that, since x is linear, it follows that T(u) = X p.
Then it suffices to compute:
a0 T(pa) = prao (pa X pra)
= (mo0, m10 + o1 + €(m11)) © (pa X pa)
= (moo 0 (A X pa), (w0 + mo1 + &(m11)) o (LA X p1a))
= (oo © (1A X pra),m10 © (HA X f1a) + o1 © (Ha X pa) +&(m11) © (HA X f14))
= (o0 © (1A X pra), m10 © (HA X pra) + o1 © (Ha X pra) +&(m1 0 (pa X pa)))  [E.2]
= (T O pta 0 T, ™1 © fg © Ty + T O pua 0T + €(m1 © frg 0 71))
= (m000, T100 + To10 + €(7110) + To01 + € (7101 + To11 + £(7111)))
= (mo o o, 1 © Moo + o © (m10 + To1 + £(m11)) + € (71 © (w10 + To1 + £(711))))
= (mo0, m10 + mo1 + €(711)) © (o0, 710 + To1 + £(711))
= KA ©C HT(A)
So we conclude that (T, u,n) is a monad. []
Those familiar with monads may wonder if the Kleisli triple approach might have
simplified the above proof. Recall that for a category X, a Kleisli triple is a triple (T, 7, (,)ﬁ)
consisting of a function on object T, A+ T(A), a family of maps indexed by the objects

of X, n={na: A— T(A)| A eX}, and an operator (_)* which for any map f: A — T(B)
results in a map f*: T(A) — T(B), and such that the following equalities hold:

Foma=f  wh=lrw  (Foff=gof
There is a bijective correspondence between monads and Kleisli triples. So for the tangent
bundle monad, we could have instead defined its associated Kleisli triple and prove 3
equations instead of the functoriality of T, the naturality of x and n, and the 3 monad
identities. However, we find the operator (,)ti slightly more complicated to work with. As
such, we elected to work out the monad identities directly, since while there are more
identities to prove, we find the computations simpler and the proof easier to follow. That
said, it is still interesting to work out the (,)ti for the tangent bundle monad. In general, for
amap f:A— T(B), f*:T(A) — T(B) is equal to the composite T(f) = up o T(f). In the
case of the tangent bundle monad, note that a f : A — T(B) would be a pair f = (fo, f1),
and so we obtain that (which we leave an excercise for the reader to compute for themselves):

f* = (fo o mo, f1 o mo + [ fo] + £ (3 f1]))

We next observe that the tangent bundle functor T preserves finite products up to
isomorphism. Indeed, note that T(A x B) = T(A) x T(B) via the canonical natural
isomorphism:

dap:T(Ax B) = T(A) x T(B) dap = (T(m),T(m1)) (6.2)
By [C0.3], it follows that ¢4 p = (mg X mp, ™1 X 71) and its inverse ngZ}B : T(A) x T(B) —

T(A x B) is defined in the same way, that is, gb;‘lB = (mp X mp,m X 7m1). Expanding this
out, we can see that ¢4 p: (A x B) x (A x B) = (A x A) x (B x B) swaps the middle two
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arguments, and so does qSATlB. The following lemma will be extremely useful in many proofs
throughout the remainder of this section.
Lemma 6.4. In a Cartesian difference category:

(i) u, n, and ¢ are linear;
(ii) T(f +9) = T(f) + T(g) and T(0) = 0;
(iii) If f is linear then T(f) is linear and T(f) = f x f;
(iv) T(mi) = mio¢ and g0 T((f,9)) = (T(f), T(9)) and ¢ o T(h x k) = (T(h) x T(k)) o ¢;
(v) T(BLf]) = B[T(f)] 0 ¢ and T(e(f)) = (T(f));
(vi) e(pua) = paoe(lriay), ema) =naoe(la), and e(¢aB) = daB o e(lraxn))

Proof. The first three are mostly straightforward. Indeed, (i) follows immediately from
Lemma 4.22 and by construction of u, 1, and ¢, while (ii) follows from [Cd.1], and (iii)
follows from the definition of T and linear maps. Next, we compute the identities of (iv),
the first two follow from [C8.3] and [C8.4]. We first show T(m;) = m; o ¢:

T(m) = (m omo, Om;])
= (m; o my, T 0 M) [C.3]
= mog
Next we compute that ¢ o T((f,g)) = (T(f), T(9)):
¢oT((f,9)) = ¢o((f,9)°m,d((f 9)])
= ¢o((fom,gom),(B[f],0]g])) [CH.4]
= (mo x mo,m x m1) o ((f om0, g0 70), (D[], Blg]))
((mo x mo) o ({f om0, g 0m0), (Bf],Bg])), (1 x 71) o ({f ©m0, g ©m0), (D[]
= ((mo o (f o mo, g ©m), 0 © (8[f],Blg])), (w1 o (f om0, 9 0m0), m 0 ([f], Blg]
((f om0, B[f]), (g © m0, Blg]))
= (T(), T(9))
For the remaining identity, ¢ o T(h x k) = (T(h) x T(k)) o ¢, we use the previous one:
poT(hxk)= ¢poT((homy,kom))

-~

= (T(hom), T(kom)) (Lem.6.4.iv)
= (T(h) o T(mo), T(k) o T(m1)) (T is a functor)
= (T(h) o (mo x mp), T(k) o (m1 x 7)) (Lem.6.4.iii)
= (T(h)omgo g, T(k)om og)

= (T(h)om, T(k)om)oop

= (T(h) x T(k)) o @

Next we compute the two identities of (v). First we show T(9[f]) = 9[T(f)] o ¢:
AT(f)le¢= Ol(fom,d[f)]o¢

= (8[f om0}, °[f]) 0 ¢ [C.4]
= ([f] o (w0 x m0), &[f]) 0 ¢ (Lem.4.22)
= (8[f] o (w0 x ) © ¢, 8*[f] © )
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= <8[f] o (mg X mg) o {my X o, T X 71), O[f] 0 (Mo X Ty, 71 X 71'1>>
= (O[] o (mo(mo x mo), 0 © (w1 x m1)), B*[f] o {{mg 0 w0, ™o © m1), (w1 0 M0, T O T1)))
= (0|[f] o (w1 0wy, m o mg), B[] o ({mg © 7m0, M 0 1), (M1 © Mo, 71 © 7))
= (8[f] o (m o mo, w1 0 7o), B2[f] o ({mg 0 mo, T1 © M), (Mo © T, T © L)) [CO.7.4]
= (9[f] o m, &[f])
= T(8[f])
Next we show T(e(f)) =e(T(f))
T(e(f) = (e(f) omo, Ble(f)])
= (e(f om),e(d[f])) [E.2] + [CO.1]
= e({(f om, A[f])) (Lem.4.3)
= e(T(f))
Lastly (vi) follows from the fact we have shown that u, n, and ¢ are linear and so by
Lemma 4.22.i, the desired equalities hold. L]

6.2. The Eilenberg-Moore Category of T. Recall that a T-algebra of the monad (T, u, )
is a pair (A, v) consisting of an object A and a map v : T(A) — A such that vonyg = 14 and
voT(v) =voua, and that a T-algebra morphism f: (A,v) — (B,w) isamap f: A— B
such that w o T(f) = f owv. The Eilenberg-Moore category of (T, u,n) is the category
of T-algebras, that is, the category X' whose objects are T-algebras and whose maps are
T-algebra morphisms. It is well known that for any monad on a category with finite products,
the Eilenberg-Moore category also has finite products. Indeed, in this case, for T-algebras
(A,v) and (B, w), their product is defined as:

(A, v) x (B,w) == (A X B, (v xw)opap)

while the projection maps and the pairing of maps are the same as in the base category.
The terminal object in X7 is defined as (T, 0).

Therefore, it may be tempting to think that the Eilenberg-Moore category of the
tangent bundle monad is also a Cartesian difference category. Unfortunately, there are
two problems with this: the sum of a T-algebra morphism is not necessarily a T-algebra
morphism and the differential of a T-algebra may not necessarily be a T-algebra. Indeed, let
fy9:(A,v) — (B,w) be T-algebra morphism. On the one hand, since T(f+g) = T(f)+T(g)
we have that:

woT(f4+9g)=wo(T(f)+T(9) =woT(f)+woT(g)=fov+gov

However, if v is not additive then f o v + g o v may not be equal to (f + g) o v. As such,
one solution could be to consider the subcategory of additive T-algebras. While this full
subcategory of additive T-algebras will be a Cartesian left additive category, this does not
solve the problem of the differential of a T-algebra morphism. For a T-algebra morphism
f:(A,v) = (B,w), its derivative 8[f] : A x A — B should be a T-algebra morphism of type
(A,v) x (A,v) = (B,w). However one cannot get very far in trying to show that 9[f] is a
T-algebra morphism. The solution to this problem is instead to consider the full subcategory
of linear T-algebras.
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Define X?;.n as the category of linear T-algebra, that is, the category whose objects are
T-algebras (A, v) such that v is linear and whose maps are arbitrary T-algebra morphisms
between them. In particular, note that a map in X;';n need not be linear. Like the Eilenberg-
Moore category, there is an obvious forgetful functor U : X;n — X defined as U(A,v) = A
and U(f) = f. A linear T-algebra structure should be interpreted as a map which linearly
modifies a point by a tangent vector. Unfortunately, as mentioned in [CC14], the Eilenberg-
Moore category of the tangent bundle monad has yet to be studied in full, even in classical

differential geometry.

Example 6.5. For the tangent bundle monad on the Cartesian differential category
SMOOTH (Example 6.1), a linear T-algebra is a pair (R"™,v) such that v(Z,y) = & + ty
for some fixed t € R. Therefore, SMOOTH?Z—-n is equivalent to the category whose objects
are pairs (R",t), with ¢t € R, where a map F : (R",t) — (R™,s) is a smooth function
F :R™ — R™ such that F (& + ty) = F(Z) + sD[F|(Z, ).

Example 6.6. For the tangent bundle monad on the Cartesian differential category Ab
(Example 6.2), a linear T-algebra is a pair (G, v) such that v(z,y) = = + e(y) for some group
endomorphism e : G — G. Therefore, Ab is equivalent to the category whose objects are
pairs (G, e), with G an abelian group and e : G — G a group endomorphism, where a map

f:(G,e) = (H,¢) is a function f: G — H such that
flate() = flx)+e (flz+y) —(f(2))

We will now explain how X?Z—-n is a Cartesian difference category. Simply put, the
Cartesian difference structure of Xﬁn is the same as X, and therefore we say that the
forgetful functor preserves the Cartesian difference structure strictly. Starting with the
Cartesian left additive structure: the finite product structure of Xﬁn is defined in the same
way as X', while the sum of T-algebra morphisms and zero T-algebra morphisms are defined

as the sum and zero maps in X. Of course, we must check that this is well-defined.

T
Lemma 6.7. X,

is a Cartesian left additive category.

Proof. We must first check that if (A,v) and (B,w) are linear T-algebras, then so is their
product (A4,v) x (B,w), that is, we must show that (v x w) o ¢4 p is linear. However, since
v, w, and ¢4 p are linear, it follows from Lemma 4.22.iv that (v x w) o ¢4 p is also linear.
Therefore, the product of linear T-algebras is also a linear T-algebra. Next, since zero maps
are linear, (T,0) is also a linear T-algebra. Therefore X;';n has finite products since it is a
full subcategory of XT. Next, we show that if f: (A,v) — (B,w) and g : (A,v) = (B,w)
are T-algebra morphisms between linear T-algebras, then their sum f + ¢ : (4,v) = (B,w)
is also a T-algebra morphism. This follows from the fact that linear maps are additive

(Lemma 4.22.i):

woT(f+g)= wo(T(f)+T(g) (by Prop.6.4.ii)
= woT(f)+woT(g)
= fov+4gov (by T-alg. morph. def.)
= (ftg)ov (v is additive)

So we have that f + g is a T-algebra morphism. Similarly, we must show that zero maps
between linear T-algebras (A,v) and (B,w) are T-algebra morphisms:

woT(0)= wo0 (by Prop.6.4.ii)
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=0
= Oov (v is additive)

Therefore 0 : (A,v) — (B, w) is a T-algebra morphism. And Clearly, the remaining Cartesian
left additive structure axioms hold since composition in le is the same as in X. So we
conclude that X is a Cartesian left additive category. []

lin

Similarly, the infinitesimal extension and the difference combinator of Xgn are defined
in the same way as in X. Once again, while the infinitesimal extension and difference
combinator axioms will automatically hold, we will have to check that this is all well-defined.

Proposition 6.8. For a Cartesian difference category X, the category of linear T- algebms
X is a Cartesian difference category such that the obvious forgetful functor U : XTI — X

lin
preserves the Cartesian difference structure strictly.

lin

Proof. We first show that if f : (A,v) — (B,w) is a T-algebra morphism between linear
T-algebras, then so is £(f):

woT(e(f)) = woe(T(f)) (by Prop.6.4.v)
= e(woT(f)) (by Lem.4.22.1)
= e(fo V) (by T-alg. morph. def.)
= e(f)o (by & def.)

So we have that ¢(f) : (A4,v) = (B,w) is a T-algebra morphism. Next, we check that the
derivative 9[f] : A x A — B is a T-algebra morphism of type (4,v) x (4,v) — (B,w).

woT(9[f]) = wod[T(f)|odaa (by Prop.6.4.v)
= OwoT(f)]odaa (by Lem.4.22.v since w is linear)
= O[fovlogaa (by T-alg. morph. def.)
= O[flo(vxv)odaa (by Lem.4.22.v since v is linear)

So we have that 9[f] : (A,v) x (A,v) = (B, ) is a T-algebra morphism. Since composition
and the Cartesian left additive structure of le is the same as X, it automatically follows
that e is an infinitesimal extension and @ is a difference combinator on Xﬁn. Therefore,
we conclude that X;';n is a Cartesian difference category, and clearly the forgetful functor
preserves the Cartesian difference structure strictly. []

6.3. The Kleisli Category of T. The construction found here is different from the one
found in the conference paper [APL20]. Indeed, the proposed infinitesimal extension and
difference combinator in [APL20] were based on the ones that appeared in [APO19]. Unfor-
tunately, we have found that said proposed infinitesimal extension and difference combinator
failed to satisfy [C@.2] and therefore both of the aforementioned results in [APL20, APO19]
are incorrect. We rectify this mistake here by changing the infinitesimal extension to the
correct one, while keeping the difference combinator the same.

Recall that the Kleisli category of the monad (T, u,n) is defined as the category Xt
whose objects are the objects of X, and where a map A — B in Xy isamap f: A — T(B)
in X, which would be a pair f = (fy, fi) where f; : A — B. The identity map in Xt is
the monad unit 74 : A — T(A), while composition of Kleisli maps f : A — T(B) and
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g: B — T(C) is defined as the composite puc o T(g) o f. To distinguish between composition
in X and X1, we denote the Kleisli composition as follows:

gol f=ucoT(g)of (6.3)
If f = (fo, f1) and g = (g0, g1), then their Kleisli composition can be worked out to be:

go' f=1{go.g1) 0" {fo, f1) = (g0 fo,8[g0] © (fo, f1) + g10 (fo® f1)) (6.4)

Kleisli maps can be understood as “generalized” vector fields. Indeed, T(A) should be
thought of as the tangent bundle over A, and therefore a vector field would be a map
(1, f) : A— T(A), which is of course also a Kleisli map. For more details on the intuition
behind this Kleisli category see [CC14]. Furthermore, in general, the Kleisli category of a
monad is equivalently to a full subcategory of the Eilenberg-Moore consisting of the free
algebras. In this case, note that every free T-algebra (T(A),p4) is also an object in X[
since 4 is linear. Therefore, Xt is equivalent to the full subcategory of free T-algebras of
XL
Example 6.9. For the tangent bundle monad on the Cartesian differential category
SMOOTH (Example 6.1), a Kleisli map is a smooth function F' : R” — R™ x R™, which
is interpreted as a pair of smooth functions F' = (Fp, F1) where F; : R" — R™. The
composition of Kleisli maps F' = (Fy, F1) and G = (Gy,G1) is computed out to be
(G o F)(%) = (Go(Fo(Z)), D[Go)(Fo(F), F1 (%)) + G1(Fo(%)). Among these Kleisli maps
are the vector fields on R™, which are precisely the Kleisli maps of the form F' = (1gn, f),
for some smooth function f : R™ — R"™.

Example 6.10. For the tangent bundle monad on the Cartesian differential category Ab
(Example 6.2), a Kleisli map is a function f : G — H x H, which is interpreted as a pair of
functions f = (fo, f1) where f; : G — H. In this case, the composition of Kleisli maps f =

(fo, /1) and g = {go, 1) is (907 9)(x) = (90(g0(2)), 90 (fo(=) + f1(2)) — go(fo(2)) + g1(fo(=)).

We now wish to explain how the Kleisli category Xt is again a Cartesian difference
category. We begin by exhibiting the Cartesian left additive structure of the Kleisli category
Xt. Generally, the Kleisli category does not automatically inherit the product structure of
the base category, even if the Eilenberg-Moore category does. However, since T preserves
finite products up to isomorphism, it follows that its Kleisli category has finite products. As
such, the product of objects in Xt is defined as A x B with projections 7] : A x B — T(A)
and 7] : A x B — T(B) defined respectively as 7l = (m,0) and ] = (r,0), and the
pairing of Kleisli maps f = (fo, f1) and g = (go, g1) is defined as:

(f.9)" =0 "o (f.g9) = ({fo.90). {f1.91)) (6.5)

where recall ¢~ : T(A) x T(B) — T(A x B) is the inverse of ¢ as defined in (6.2). The
terminal object is again T and where the unique map to the terminal object is !; = (0. The
sum of Kleisli maps f = (fo, f1) and g = (go, g1) is defined as:

f+Tg=Ff+g="{fo+g0. fr+g1)

and the zero Kleisli maps is simply 0T = 0 = (0,0). Therefore we conclude that the Kleisli
category of the tangent monad is a Cartesian left additive category.

Lemma 6.11. Xy s a Cartesian left additive category.
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Proof. As explained above, by Lemma 6.4, T preserves the finite product structure, and thus
it follows that the Kleisli category Xt is a Cartesian category. So it remains to show that X+t
is a left additive category and that the projection maps are additive. We start by showing
that the proposed additive structure is compatible with Kleisli composition. This follows
from the fact that T preserves the additive structure by Lemma 6.4.(ii) and Lemma 4.22.ii,
that p is linear and therefore also additive.

(f+"g)ota= (f+g)o'=
= poT(f+g)ox
= po(T(f)+T(g))ox
= po(T(f)ox+T(g9)ox)
= poT(f)ox+puoT(g)ox
= foTx—}—goTx

— foTa4Tgo

0Tox= 00"z
= poT(0)ox
= polox
= 0oz
=0

(Lem6.4.ii)

(u is additive)

(Lem6.4.ii)
(u is additive)

So we have that Xt is a left additive category. Next we show that the projection maps are
additive. Note that m] =7 om; and that by Lemma6.4.(iii), T(m;) = m; x 7; is linear and

therefore al

T
7T,L‘O

so additive. So we have that:
T(w+y)= (mom)o' (x+y)

= poT(nom)o(z+y)

= poT(n)oT(m)o (z+y)

= T(m)o(z+y)

= T(m)ox+T(m)oy

= poT(m)oT(m)ox+poT(n)oT(m)oy

= poT(nom)ox+puoT(nom)oy

= (nom)oTx—l—(nom)oTy

T T T T
;g o r+m oy

=
ﬂ';roTOT: (nom)oTO

— WoT(om)o0

= poT()oT(m)o0

= T(m)o0

=0

(T is a functor)
(Monad identities)
(T(m;) is additive)
(Monad identities)

)

(T is a functor

(T is a functor)
(Monad identities)
(T(m;) is additive)
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So we conclude that Xt is a Cartesian left additive category. []

The infinitesimal extension €' for the Kleisli category is the same as the infinitesimal
extension of the base category, that is, for a Kleisli map f = (fo, f1):

eT(f) = e(f) = e((fo, 1) = (e(fo)e(f1))

where the last equality is due to Lemma 4.3. It is important to note that this is the major
correction made from the conference paper version. Indeed, the infinitesimal extension
suggested in [APL20] was based on the change action structure suggested in [APO19].
However, it unfortunately turns out that a result in [APO19] was incorrect, since [CAD.2]
actually fails, and therefore the infinitesimal extension and difference combinator suggested
in [APL20] do not satisfy [C.2]. Luckily, the infinitesimal extension provide in this paper
does work, as we carefully prove below.

Lemma 6.12. €' is an infinitesimal extension on Xt.
Proof. We check that ¢! satisfies [E.1], [E.2], and [E.3]. For [E.1], we compute:
e'(f+Tg) =" (f+g)
= e(f+9)
= e(f) +e(g) [E.1]
= e(f) + T (9)
= e'(f)+7<"(9)

et(o") =
[E.1]

Next for [E.2], we compute:
elgo’ f)=

Lastly for [E.3], recall again that ] = 7o m;, so we can compute:

eT(m,

T

7

) =

e(m;)

= c(nom)

= &(T(mi)on)

[E.2]
(Lem.6.4.(vi))

(Lem.6.4.(v))

(Nat. of n)
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= e(T(m))on [E.2]
= T(e(m))on (Lem.6.4.(v))
= T(mioe(l))on [E.3]
= T(m)oT(e(1)) on (T is a functor)
= T(m)onoe(l) (Nat. of 1)
= T(mi)oen) (Lem.6.4.(vi))
= poT(n)oT(m)oe(n) (Monad identities)
= poT(nom)oe(n) (T is a functor)

= (nom) o" e(n)

= (nom)o’ &' (n)
T T.T
=m o € (n)
So we conclude that €7 is an infinitesimal extension on Xr. O]

To define the difference combinator for the Kleisli category, first note that difference
combinators by definition do not change the codomain. That is, if f : A — T(B) is a Kleisli
map, then the type of its derivative should be A x A — T(B), which coincides with the
type of its derivative in X. Therefore, the difference combinator &' for the Kleisli category
is defined to be the difference combinator of the base category, that is, for a Kleisli map
f = {fo, f1), its derivative is defined as:

a'[f] = 8lf] = (dlfol, 8If1)) (6.6)

where the last equality is due to [C8.4]. We note that this difference combinator was the
one suggested in [APL20] and is the derivative underlying the change action model structure
suggested in [APO19]. However, as mentioned above, the difference combinator with the
infinitesimal extension or change action suggested in those papers does not satisfy [C9.2]
or [CAD.2]. Luckily, we are able to correct this and still obtain a positive result by carefully
proving that the proposed infinitesimal extension and difference combinator in this paper
does provide a Cartesian difference structure on the Kleisli category.

Proposition 6.13. For a Cartesian difference category X, the Kleisli category Xt is a
Cartesian difference category with infinitesimal extension €' and difference combinator 8" .

Proof. We first note that we can easily compute the following:

flo" (x,y)" = o T(AY[f]) o (z,y)"

(9[f1)
Jopog ' o(z,y) (by Prop.6.4.v)
]

So we have that @T[f] o" (x,y>T = po 9[T(f)] o (x,y). This will help simplify many of
the calculations to follow, since T(9[f]) appears everywhere due to the definition of Kleisli
composition. We now prove the Cartesian difference category axioms.

[C8.0] fol (z+TeT(y)) = fola+TeT (8T[f]oT (z,9)T)
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First note that u is linear and therefore additive. Then we compute that:

fola+Tem (87IfeT (@y)T) = folate(aT[floT (,y)T)

= poT(f)ox+e(nod[T(f)]o(z,y))

= poT(f)ox+e(n)od[T(f)]o(z,y) [E.2]
= poT(f)ox+ poe(lyay) o d[T(f)]o(z,y) (Lemma 6.4.vi)
= poT(f)ox+puoe(8[T(f)] o(x,y)) (Lemma 4.2)
= po(T(f)ox+e(O[T(f)] o (z,y))) (p is additive)
= poT(f)o(z+e(y)) [Co.0]
= fo' (z+¢(y))

= fol (z+"e"(y))

[CO.1] OT[f +T g] = B"[f] +T 8'[g], [0T[0T] = BI0], and 8T [(f)] =T (8"[f])

Since both the sum, zero maps, infinitesimal extension, and differential combinator in
the Kleisli category are the same as in the base category, by [Cd.1] it easily follows that:

'+ g)=0[f +9]=08[f] +8lg] =8"[f] +T 8"[g]
aT0T|=a0]=0=0"
OTET(N) = Bl=()] = = (81f)) =T (9711

[C0.2] 8T [f] o™ (z,y +T 2)T = 8T[f]oT (x,5)T + 8T [f] o7 (z +T(y),2)T
and AT [f] o (z,0T)T =0T

o717 oT (xy+72) = pod T(No(zy+72)

= uoa[ ()l oz, y+2)
= po(0[T(f
= uoa[ () oz, y)+pod

]

]

o (z,y) +0[T(f)le(x+ey) 2)) [Co.2]

H [T(f) o (z+ey),z) (uis additive)
)] [T(/)

= pod[T(N] o fw,y) +ued[T(N]o (v +TT(y), 2)
= T[flo" (w.y)T + 8T [foT (w+eT(y),2)T

AT[f]o" <x 0T>T = 8"[f]o" (x,0)7

= pod[T(f) o (z,0)
) [Ca.2]
= 0F

[CB.3] 8"[n] =] and &' [r]] = 7] oT 7]
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Recall that 7r;-r =nom and so 77;.'- ol 771'— =nom; om. Then since 7 is linear, we have that:
d"[n = [n]
= nom (n is linear)
-
= 7'('1

d'[n]] = d[n]]

7

= O[nomi]
= no 9] (1 linear and Lem.4.22.v)
= Nom;om [063]

[CO.4] 8T((f,9)T] = (8T[f],87[g])T

First note that since ¢ is linear, so it its inverse ¢—!. Then we have that:
a'(f,9)"] = BIf, 9>T]
a[o " o (f.9)]

= (;5 Lo d[(f,9)] (¢! linear and Lem.4.22.v)
— 5710 (8111, 0lg)) [Co.4
= ( 11, 8la))T
= (8T[f,07[g])"

[CO.5] 8T[goT f]=8"[g]oT (fol ng,0T[f])T

First note that since 776'— = nom, it easily follows that f ol 77(-)'— = f om (using the

monad identities and the naturality of 7). Therefore, we compute that:

dTlgloT (fol mg,8T[f)T = nod[T(g)lo(fol n,07[f])
= nod[T(g)] o (f omo,d|f])
= pod[T(g)o f] [CH.5]
= O[puoT(g)of] (u linear and Lem.4.22.v)
= 8lgo’ f]
= 8'[go" f]

For the remaining two axioms, we will instead prove [C9.6.a] and [C8.7.a]. Before we do
so, we first compute the following:

o7 [7171] o7 (te)T (2 w) ) = o [T@TIA)] o (9T, (2 u)T)
= pod[T@[MN]o (s o (x,y),¢ " o (z,w))
= 1o d[T@I)e (67" x 67" o (w1, (2 w))
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= pod[T(B[f]) oo '] o (z,w)) (¢! linear and Lem.4.22.v)
= pod[9[T(f)logod™ 1] <(9E y), (z,w)) (by Prop.6.4.v)
= po & [T(f) o {(z,y), (z,w))

Therefore we have that &' [BT (A1) o7 {{z,y)T, (2, w>T>T = o d*[T(f)] o ({z,y), (z,w)).

[C.6.a] 8T [8T[f]] o7 ((x,0T)T, (0T, 1) ") = 8T[f] 0" (2. )T

o7 [07(f] o (0T T AT )T) = o2 [T(1)]0 { (x.07). (07 0))
= 1o & [T(f)] o ({20}, (0,1))
= pod[T(f)]o

[CO.7.a] 8T [AT[f]] o {{z, )T, (z,w)T)

o [07171] o7 {{a )T e w)T) = o B T(] o (), (2.10)

= pod[O[T(f)] o ((x,2), (y, w)) [CO.7.a]
T
= 0" [97f]] o (2.2, ()T
So we conclude that the Kleisli category is a Cartesian difference category. []

We also point that in the case of a Cartesian differential category, since € = 0, it follows
that e/ = 0. Therefore we have that the Kleisli category of the tangent bundle monad of a
Cartesian differential category is again a Cartesian differential category. To the knowledge
of the authors, this is a novel observation.

Corollary 6.14. For a Cartesian differential category X, the Kleisli category Xt is a
Cartesian differential category with differential combinator DT = D.

We conclude this section by briefly taking a look at the linear maps and the e'-linear
maps in the Kleisli category. A Kleisli map f = (fo, f1) is linear in the Kleisli category if
A'[f] = f o' «], which amounts to requiring that:

(O[fo], O[f1]) = (foom, from)

Therefore a Kleisli map is linear in the Kleisli category if and only if it is the pairing of
maps which are linear in the base category. Similarly, a Kleisli map is e"-linear if and only
if is the pairing of e-linear maps.

7. DIFFERENCE A\-CATEGORIES

Categorical models of the differential A-calculus [ER03] are known as differential \-cate-
gories [BEM10]. However, a differential \-category is not simply a Cartesian differential
category which is Cartesian closed. In a differential A-category, both the additive structure
and the differential structure must be compatible with the curry operator. The same is
true of Cartesian difference categories. In this section, we introduce difference A-categories.
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Briefly, a difference A-category is a Cartesian difference category which is Cartesian closed
and such that the Cartesian difference structure and the curry operations are compatible.

For a Cartesian closed category X, we denote the exponential as A = B, the evaluation
map asev : (A= B)x A — B, and the curry of amap f: Ax B — Cas A(f): A — (B =
(), that is, A(f) is the unique map such that ev o (A(f) x 1) = f. Conversly, given a map
of type g: A — (B = C), define A~1(g) : Ax B— C as A"1(g) = evo(gx1p). Of course,
A and A™! are inverses of each other, that is, A (A™!(g)) = g and A~* (A(f)) = f. Another
useful map will be the canonical natural isomorphism sw : (A x B) x C — (Ax C) x B
which swaps the last arguments, that is, sw is defined as follows:

sw := ((moo, 1), T10)

where recall that 7;; = m; o ;. Note that sw is its own inverse, that is, sw o sw = 1.

Definition 7.1. A Cartesian closed left additive category is a Cartesian left additive
category X such that X is Cartesian closed and such that the curry operator preserves the
additive structure, that is, A(f 4+ g) = A(f) + A(g) and A(0) = 0.

Definition 7.2. A difference A-category is a Cartesian difference category X, with
difference combinator @ and infinitesimal extension €, such that X is a Cartesian closed left
additive category and the following additional axioms hold:

[COA.1] B[A(f)] = A(B[f] o ((mo x 1), (m1 x 0)))

[COA.2] A(e(f)) =& (A(S))

The first axiom [COA.1] is identical to its differential combinator analogue in a differential
A-category. As such, it follows the same broad intuition. First note that [COA.1] can also
equivalently written in terms of sw as follows:

AN = A(B[f] o ((1 x1) x(1,0)) o sw)

which will be useful for many calculations in this section. Now given a map f: A x B — C,
we usually understand the composite:

A[f]o (laxp x (14,0))osw: (Ax A)x B—=C

as the partial derivative of f with respect to its first argument A. Hence, [CON.1] states
that the derivative of a curried function is precisely the curry of the partial derivative of the
function with respect to its first argument. On the other hand, [CO\.2] simply says that
the curry of an infinitesimal extension of a function is the infinitesimal extension of the curry
of the function. Using A-calculus notation, this implies that A\x.e(f(t,y)) = e(Az.f(t,y)).

Example 7.3. Every differential A-category [BEM10] is precisely a difference A-category
such that e = 0.

Example 7.4. The category Ab (as defined in Section 5.2) is a difference M-category.
Given abelian groups GG, H, the exponential G = H is defined as the abelian group of all
functions between G and H, where the group structure is defined point-wise. The remaining
Cartesian closed structure is defined in the standard way, that is, for an arbitrary function
f:GxH— K, A(f)(z)(y) = f(z,y). We leave it to the reader to check for themselves
that Ab is indeed a Cartesian closed left additive category. Since ¢ = 1, clearly [CON.2]
holds automatically. So it remains to verify that the other axiom [COA.1] also holds:

ANz, u)(y) = AS) (@ +u)(y) — Af)(@)(y)
= flz+uy) - flz,y)



Vol. 17:3 CARTESIAN DIFFERENCE CATEGORIES 23:45

= [z, 9) + (u,0)) = f(z,9)

= O[f)(x,y,u,0)

= (Olf1o (1 x1) x(1,0)) o sw)(z,u,y)
= A(@[f] o (1 x 1) x (1,0)) o sw)(x,u)(y)

Therefore, Ab is indeed a difference A-category.

A central property of differential A-categories is a deep correspondence between dif-
ferentiation and the evaluation map. As one would expect, the partial derivative of the
evaluation map gives a first-class derivative operator, see for example [BEM10, Lemma 4.5],
which provides an interpretation for the differential substitution operator in the differential
A-calculus. This property still holds in difference A-categories, although its formulation is
somewhat more involved.

Lemma 7.5. In a difference \-category, for maps g : Ax B — C and f : A — B, the
following identities hold:

(i) lev o (A(g), f)] = ev o (B[A(g)], f o mo) + Dy
(i) dlev o (A(g), f)] = ev o (B[A(g)], f o mo + (]

Proof. For (i), we compute:

dlev o (Alg), f)] = Blgo(1a, f)]
A,

J o ({mo +&(m1), f om0, (0, Bf]))
fD) + 8lgl o {{mo, f o m0), (0, B[f]))

= Oglo ({14, f) om0, 8[(1a, f)]) [C8.5]
= 9g] o ((mo, f o mo), (w1, OLf])) [C8.3]+[CH.4]
= 0lg] o ({mo, f o m0), (m1,0) + (0, B[f]))
= 0lg] o ({mo, f o m0), (m1,0)) + Blg] o ({mo, f © o) +&((m1,0)), (0, B[f])) [CH.2]
= 0lg] o ({mo, f o m0), (m1,0)) + Blg] o ({mo, f © o) + (¢(m1),0), (0, B[f]))

(Lem 4.3 + [E.1])
— Blg] o ({mo, £ o 7o), m1, 0)) + Bl o {{mo + =(m), f o 7o), (0, BF])
= a[g] o(my X 1,71 x 0) o (1, fomy) + 8g] o ((mo + &(m1), f o m), (0, B[f]))
= AN (A(Blg) o (mo x 1, m1 x 0))) o (L, f omo) + Blg] o ((mo +e(m1), f o mo), (0, Bf]))
— AN @[Al]) o (1. f o mo) + Olglo ((mo +e(m), fom). (0.00f))  (by [COA1])
— evo ([Alg]] x 15) o {1, f o mo) + Blg] o ({mo + (1), f o o), (0, DL])
— evo (3[Algl], f o mo) + Blg] o {{mo + e(m), f o mo), (0, D))

On the other hand, for (ii), we compute:
dlevo (A(g), )]l = Olgo(la, f)]

= Olg]o ({14, f) om0, 0[(1a, f)]) [C8.5]
= 0lg] o {{mo, f o m0), (w1, B[f])) [C8.3]+[C8.4]
= 8lg] o ((mo, f o m0), (0, B[f]) + (71,0))

= 9lg o ({mo, f o m0), (0, 8[f])) + Blg] o ((mo, f © m0) +£((0, Bf])), (m1,0)) [C5.2]
= 9lgl o ({mo, f o m0), (0, 8[f])) + Blg] o ((mo, f © m0) +(0,£(8[f])), (m1,0))

(Lem 4.3 + [E.1])
= 8lg] o ({mo, f om0), {0, 8[f])) + Blg] o ((mo, f o 70 +£(B]])), (m1,0)
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= 9[g] o {{mo, f o m0),(0,8[f])) + Blg] o (mo x 1, m1 x 0) o (1, f o m + £(D[[]))
= 8] o ((mo, f om0, (0,8[f])) + A~ (A (B[g] o (mo x 1, m1 x 0))) 0 (1, f o mo + (B[f]))
8lg) o ((mo, f o mo), (0,8Lf1)) + A~ (B[A[g]]) o (1, f om0 + £(BIf])) (by [COA.1])
= 9[g] o {{mo, f o m0), (0, 8[f])) + ev o (B[A[g]] x 1) o (1, f 0w +£(I[[]))
= 9[g] o {{mo, f o m0),(0,8[f])) + ev o (I[A[g]], f om0 + £(8[f]))
= evo (9[A[g]], f omo +(8[f])) + Blg] o {(mo, f © m0), (0, B[f]))
Thus the desired identities hold. ]

8. CONCLUSIONS AND FUTURE WORK

We have presented Cartesian difference categories, which generalize Cartesian differential
categories to account for more discrete definitions of derivatives while providing additional
structure that is absent in change action models. We have also exhibited important examples
and shown that Cartesian difference categories arise quite naturally from considering tangent
bundles in any Cartesian differential category. We claim that Cartesian difference categories
can facilitate the exploration of differentiation in discrete spaces, by generalizing techniques
and ideas from the study of their differential counterparts. For example, Cartesian differential
categories can be extended to allow objects whose tangent space is not necessarily isomor-
phic to the object itself [Crul7]. The same generalization could be applied to Cartesian
difference categories — with some caveats: for example, the equation defining a linear map
(Definition 4.21) becomes ill-typed, but the notion of e-linear map remains meaningful.

Perhaps the most important topic for further research is identifying and cataloguing more
instances of Cartesian difference categories. There is a number of very natural candidates for
such; among those, we would like to single out synthetic differential geometry [Koc06] and
non-standard analysis [Keil3], both of which feature a notion of “infinitesimal elements”.
In either case, multiplying by a suitably chosen infinitesimal € would be an obvious choice
of an infinitesimal extension. As suggested by one of the anonymous reviewers, the case of
non-standard analysis based on hyperreal numbers might be of particular interest: since they
contain invertible infinitesimals (as opposed to the nilpotent infinitesimals from SDG), one
could define the derivative of a function f as 8[f](x,y) = e~ ! (f(x + ey) — f(z)) (assuming
a choice of an “infinitesimal unit” ¢). With an infinitesimal extension being defined by
multiplication by the above infinitesimal unit e, most of the axioms of a Cartesian difference
category can be proven by a suitable generalisation of the proofs for the calculus of finite
differences (Section 5.2), although more work would be needed to prove [C8.7]. Lie groups,
and Lie algebras, have also been suggested by one of the anonymous reviewers as a potential
source of models, but work in this direction is at a less mature stage.

Another relevant path to consider is developing the analogue of the “tensor” story
for Cartesian difference categories. Indeed, an important source of examples of Cartesian
differential categories are the coKleisli categories of a tensor differential category [BCS06,
BCS09]. A similar result likely holds for a hypothetical “tensor difference category”, but it
is not immediately clear how these should be defined: [Cd.2] implies that derivatives in
the difference sense are non-linear and therefore their interplay with the tensor structure
will be much different. As suggested by one of the anonymous reviewers, a potential leading
example of a “tensor difference category” is Ab, the category of abelian groups and group



Vol. 17:3 CARTESIAN DIFFERENCE CATEGORIES 23:47

homomorphisms between them, which is a model of linear logic via a linear-non-linear
adjunction between Ab and SET, the category of sets and arbitrary set functions between
them [Ben94|. The induced comonad (which models the exponential modality of linear logic)
on Ab is given by mapping an abelian group G to the free abelian group over the underlying
set of G. Even more interesting is the fact that the coKleisli category of this comonad is
isomorphic to Ab, as defined in Section 5.2, which is one of our main examples of a Cartesian
difference category. As such, this is a pretty convincing argument that Ab will indeed be
a prime candidate for an example of a “tensor difference category” and help guide us in
constructing the correct definition.

A further generalization of Cartesian differential categories, categories with tangent
structure [CC14] are defined directly in terms of a tangent bundle functor rather than
requiring that every tangent bundle be trivial (that is, in a tangent category it may not
be the case that TA = A x A). Some preliminary research on change actions has already
shown that, when generalized in this way, change actions are precisely internal categories,
but the consequences of this for change action models (and, a fortiori, Cartesian difference
categories) are not understood. More recently, some work has emerged about differential
equations using the language of tangent categories [CC17]. We believe similar techniques
can be applied in a straightforward way to Cartesian difference categories, where they might
be of use to give an abstract formalization of discrete dynamical systems and difference
equations.
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