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Abstract. The dot-depth hierarchy of Brzozowski and Cohen classifies the star-free
languages of finite words. By a theorem of McNaughton and Papert, these are also the
first-order definable languages. The dot-depth rose to prominence following the work of
Thomas, who proved an exact correspondence with the quantifier alternation hierarchy of
first-order logic: each level in the dot-depth hierarchy consists of all languages that can
be defined with a prescribed number of quantifier blocks. One of the most famous open
problems in automata theory is to settle whether the membership problem is decidable for
each level: is it possible to decide whether an input regular language belongs to this level?

Despite a significant research effort, membership by itself has only been solved for low
levels. A recent breakthrough was achieved by replacing membership with a more general
problem: separation. Given two input languages, one has to decide whether there exists a
third language in the investigated level containing the first language and disjoint from the
second. The motivation for looking at separation is threefold: (1) while more difficult, it
is more rewarding, as solving it requires a better understanding; (2) being more general,
it provides a more convenient framework, and (3) all recent membership algorithms are
actually reductions to separation for lower levels.

We present a separation algorithm for dot-depth two. A key point is that while dot-depth
two is our most prominent application, our theorem is more general. We consider a family
of hierarchies, which includes the dot-depth: concatenation hierarchies. They are built
through a generic construction process: one first chooses an initial class of languages, the
basis, which serves as the lowest level in the hierarchy. Further levels are built by applying
generic operations. Our main theorem states that for any concatenation hierarchy whose
basis consists of finitely many languages, separation is decidable for level one. In the special
case of the dot-depth, this can be lifted to level two using previously known results.

1. Introduction

Concatenation hierarchies. Many fundamental problems about regular languages raised
in the 70s [Pin17b] led to considerable advances, not only in automata theory but also in logic
and algebra, thanks to the discovery of deep connections between these areas. Even if some
of these questions are now well understood, a few others remain wide open, despite a wealth
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of research work spanning several decades. This is the case for the fascinating dot-depth
problem [Pin17a], which has two elementary formulations: a language-theoretic one and
a logical one. The language-theoretic one is the older of the two. It takes its roots in a
theorem of Schützenberger [Sch65] (see also [DKRH16, DG08]), which gives an algorithm to
decide whether a regular language is star-free, i.e., can be expressed using union, complement
and concatenation, but without the Kleene star operator. This celebrated result was highly
influential for three reasons:

• First, Schützenberger precisely formalized the objective of “understanding the expressive
power of a formalism” through a decision problem called membership, which asks whether
an input regular language belongs to the class under study.
• Next, he developed a methodology for tackling it, which he applied to membership for the
class of star-free languages.
• Finally, McNaughton and Papert [MP71] established that star-free languages are exactly
the first-order definable ones.

This work highlighted the robustness of the notion of regularity, underlining the ties between
automata theory and logic, and revealing new links with algebra. It also established
membership as the reference problem for investigating classes of languages.

Schützenberger’s theorem led Brzozowski and Cohen to define the dot-depth hierar-
chy [BC71], an infinite classification [BK78] of all star-free languages counting the number of
alternations between concatenations and complements needed to define them. This definition
is a particular instance of a generic construction process, which was formalized later and
named concatenation hierarchies. Any such hierarchy has a single parameter: a “level 0 class
of languages” (its basis). Then, one uses two operations, polynomial and Boolean closure, to
build two kinds of classes: half levels 1/2, 3/2, 5/2. . . and full levels 1, 2, 3. . . Given a class of
languages C, its polynomial closure Pol(C) is the least class of languages containing C that is
closed under union and marked concatenation (K,L 7→ KaL, where a is a letter). Its Boolean
closure Bool(C) is the least class containing C and closed under union and complement. For
any full level n, the next half and full levels are built as follows:

• Level n+ 1
2 is the polynomial closure of level n.

• Level n+ 1 is the Boolean closure of level n+ 1
2 .

Thus, a concatenation hierarchy is fully determined by its basis. Here, we are interested in
hierarchies with a finite basis, i.e., consisting of a finite number of regular languages.

The most prominent hierarchies of this kind in the literature are the dot-depth itself, as
well as the Straubing-Thérien hierarchy [Str81, Thé81]. They acquired this status when it
was discovered [Tho82, PP86] that each of them coincides with the quantifier alternation
hierarchy within an appropriate variant of first-order logic. These two variants have the same
overall expressiveness but slightly different signatures (which impacts the properties that one
can define at a given level of their quantifier alternation hierarchies).

These correspondences motivated a research program to solve membership for all levels
of both hierarchies, thus also characterizing the alternation hierarchies of first-order logic.
However, progress has been slow. Until recently, the classes that were solved for both variants
are only level 1/2 [Arf87, PW97], level 1 [Sim75, Kna83] and level 3/2 [Arf87, PW97, GS00].
See [DGK08] for a survey. Following these results, membership for level 2 remained open for
a long time and was named the “dot-depth 2 problem”.
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Separation. Recently [PZ19, Pla18], solutions were found for levels 2, 5/2 and 7/2. The
key ingredient is a new problem stronger than membership: separation. Rather than asking
whether an input language belongs to the class C under investigation, the C-separation
problem takes as input two languages, and asks whether there exists a third one from C
containing the first and disjoint from the second. While the interest in separation is recent,
it has quickly replaced membership as the central question. A first practical reason is that
separation proved itself to be a key ingredient in obtaining all recent membership results.
See [PZ15, PZ18b] for an overview. A striking example is provided by a crucial theorem
of [PZ19]. It establishes a generic reduction from Pol(C)-separation to C-membership which
holds for any class C. Combined with a separation algorithm for level 3/2 and a little extra
work, this yields a membership algorithm for level 5/2.

However, the main reason is deeper. The primary motivation for considering such
problems is to thoroughly understand the classes under investigation. In this respect, while
harder, separation is also far more rewarding than membership. On one hand, a membership
algorithm for a class C only applies to languages of C: it can detect them and build a
description witnessing membership. On the other hand, a separation algorithm for C is
universal: it applies to any language. Indeed, one may view separation as an approximation
problem: given an input pair (L1, L2) one wants to over-approximate L1 by a language in C,
and L2 serves to specify what a satisfying approximation is. This is why we look at separation:
it yields a more robust understanding of the classes of languages than membership does.

The state of the art for separation is the following: it was shown to be decidable for levels
1/2, 1, 3/2 and 5/2 in the Straubing-Thérien hierarchy [CMM13, PvRZ13, PZ19, Pla18].
These results can be lifted to dot-depth using a generic transfer theorem [PZ20]. Notice the
gap between levels 3/2 and 5/2: no algorithm is known for level 2. This is explained by the
fact that obtaining separation algorithms presents very different challenges for half levels and
for full levels. Indeed, it turns out that most separation algorithms rely heavily on closure
under marked concatenation, which holds for half levels by definition, but not for full levels.

Contributions. Our main result is a separation algorithm for level 2 in the Straubing-
Thérien hierarchy. Furthermore, by the aforementioned transfer theorem [PZ20], this can
be lifted to separation for dot-depth 2. A crucial point is that this separation result is
actually an instance of a generic theorem, which applies to any finite class C satisfying a few
standard properties (namely closure under Boolean operations and quotients). It states that
for such a class C, the class Bool(Pol(C)) has decidable separation. This has two important
consequences:

• In any hierarchy whose basis is such a class, level 1 has decidable separation.
• In the specific case of the Straubing-Thérien hierarchy, this extends to level 2, since it is
also level 1 of another finitely based concatenation hierarchy [PS85].

This generic result complements other recent results in a natural way. It has been shown
in [Pla18] that Pol(C)- and Pol(Bool(Pol(C)))-separation are decidable for any finite class C
satisfying the aforementioned hypotheses. Combined with our results, this implies that for
finitely based concatenation hierarchies, separation is decidable for all levels up to 3/2.

Our proof argument exploits a theorem of [Pla18] about the simpler class Pol(C).
However, the techniques that we use here are very different from the ones used in [Pla18], which
rely heavily on the fact that Pol(C) and Pol(Bool(Pol(C))) are closed under concatenation
(again, this is not the case for Bool(Pol(C))).
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Being generic, our approach yields separation algorithms for a whole family of classes.
Moreover, it serves to pinpoint the key hypotheses which are critical in order to solve
separation for dot-depth 2. Let us also stress that we obtain new direct proofs that separation
is decidable for level 1 in both the dot-depth and Straubing-Thérien hierarchies. This is of
particular interest for dot-depth 1 since the previous solution was indirect, as it relied on a
transfer result from [PZ20].

Finally, a key point is that all our results are stated and proved using a general framework
that was recently introduced in [PZ18a]. It is designed to handle the separation problem
and to present the solutions in an elegant manner. In fact, this framework considers a third
decision problem, which is even more general than separation: covering. Given a class C,
the C-covering problem takes two objects as input, a single regular language L and a finite
set of regular languages L. It asks whether there exists a C-cover of L (i.e., a finite set of
languages in C whose union includes L) such that no language in this C-cover intersects all
languages in L. It is simple to show that separation is the special case of covering when
the set L is a singleton. Our main theorem actually states that Bool(Pol(C))-covering is
decidable for any finite class C satisfying mild hypotheses.

Organization. The paper is organized as follows. Section 2 gives preliminary defini-
tions. In Section 3, we introduce concatenation hierarchies and state our generic theorem:
Bool(Pol(C))-covering is decidable for every finite quotient-closed Boolean algebra C. The
remainder of the paper is devoted to presenting the algorithm. In Section 4, we recall the
framework which was designed in [PZ18a] to handle the covering problem. We use this
framework in Section 5 to formulate our algorithm for Bool(Pol(C))-covering. The remaining
sections are devoted to proving that this algorithm is correct.

This is the journal version of [PZ17]. The main result (i.e., that Bool(Pol(C))-separation
is decidable for every finite quotient-closed Boolean algebra C) has been generalized to
Bool(Pol(C))-covering. Moreover, both its presentation and its proof have been completely
reworked. Our results are now formulated using the general framework introduced in [PZ18a],
designed to handle separation and covering problems.

2. Preliminaries

In this preliminary section, we provide standard definitions for the basic objects investigated
in the paper. Moreover, we present the separation and covering problems.

2.1. Words, languages and classes. For the whole paper, we fix an arbitrary finite
alphabet A. Recall that A∗ denotes the set of all words over A, including the empty word ε.
We let A+ = A∗ \ {ε}. If u, v ∈ A∗ are words, we write u · v or uv the word obtained by
concatenating u and v.

A subset of A∗ is called a language. We shall denote the singleton language {u} by u.
It is standard to generalize the concatenation operation to languages: given K,L ⊆ A∗, we
write KL for the language KL = {uv | u ∈ K and v ∈ L}. Moreover, we shall also consider
marked concatenation, which is less standard. Given K,L ⊆ A∗, a marked concatenation of
K with L is a language of the form KaL for some letter a ∈ A.

A class of languages is simply a set of languages. In the paper, we work with robust
classes, i.e., which satisfy standard closure properties:
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• A lattice is a class closed under finite union and finite intersection, and containing the
languages ∅ and A∗.
• A Boolean algebra is a lattice closed under complement.
• Finally, a class is quotient-closed when for every language L of the class and every word
w ∈ A∗, the following two languages also belong to the class:

w−1L
def
= {u ∈ A∗ | wu ∈ L} and Lw−1

def
= {u ∈ A∗ | uw ∈ L}.

In this paper, we often use the letter “D” to denote a lattice and the letter “C” to denote a
Boolean algebra (we also use C to denote any generic class). The results of the paper apply to
classes which are (at least) quotient-closed lattices. Moreover, they only apply to subclasses
of the class of regular languages. These are the languages that can be equivalently defined
by monadic second-order logic, finite automata or finite monoids. Let us briefly recall the
definition based on monoids, which we shall use.

A monoid is a set M equipped with an associative multiplication (usually denoted by
“·”) which has a neutral element (usually denoted by “1M ”). Recall that an idempotent within
a semigroup S is an element e ∈ S such that ee = e. Observe that A∗ is a monoid when
equipped with word concatenation as the multiplication (the neutral element is ε). Hence,
given a monoidM , we may consider morphisms α : A∗ →M . Given such a morphism, we say
that a language L ⊆ A∗ is recognized by α when there exists F ⊆M such that L = α−1(F ).
It is well-known that the regular languages are exactly those which can be recognized by a
morphism α : A∗ →M , where M is a finite monoid.

Remark 2.1. Whenever we consider a morphism α : A∗ →M in the paper, the monoid M
will be finite. For the sake of avoiding clutter, this will be implicit from now on.

2.2. Separation and covering. In this paper, we investigate specific classes of languages
which are part of concatenation hierarchies (introduced in Section 3). We do so by relying on
two decision problems: separation and covering. The former is standard while the latter was
introduced in [PZ18a]. Both of them are parameterized by an arbitrary class of languages C.
Let us start with the definition of separation.

Separation. Given three languages K,L1, L2, we say that K separates L1 from L2 if
L1 ⊆ K and L2∩K = ∅. Given a class of languages C, we say that L1 is C-separable from L2

if some language in C separates L1 from L2. Observe that when C is not closed under
complement, the definition is not symmetrical: L1 could be C-separable from L2 while L2 is
not C-separable from L1. The separation problem associated to a given class C is as follows:

INPUT: Two regular languages L1 and L2.
OUTPUT: Is L1 C-separable from L2?

Separation is meant to be used as a mathematical tool in order to investigate classes of
languages. Intuitively, obtaining a C-separation algorithm requires a solid understanding
of C.

Remark 2.2. The C-separation problem generalizes another classical decision problem:
C-membership, which asks whether a single regular language L belongs to C. Indeed, L ∈ C
if and only if L is C-separable from A∗ \ L.
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Covering. Our second problem is more general and was introduced in [PZ18a]. Given a
language L, a cover of L is a finite set of languages K such that:

L ⊆
⋃
K∈K

K.

We speak of universal cover to mean a cover of A∗. Moreover, if C is a class, a C-cover of L
is a cover K of L such that all K ∈ K belong to C.

Covering takes as input a language L and a finite set of languages L. A cover K of L is
separating for L if for every K ∈ K, there exists L′ ∈ L that satisfies K ∩ L′ = ∅. In other
words, no language of K may intersect all languages of L.

Figure 1 shows two covers of a language L: {K1,K2} (on the left of the picture) and
{K ′1,K ′2} (on the right). Let L = {L1, L2}. The cover {K1,K2} of L is separating for L,
since K1 ∩L2 = ∅ and K2 ∩L1 = ∅. On the other hand, the cover {K ′1,K ′2} is not separating
for L, as K ′1 intersects both L1 and L2.

K ′2

K ′1K1 K2

L1 L2

L

L1 L2

L

Figure 1: Two covers of L. The left one is separating for {L1, L2} and the right one is not.

Finally, given a class C, we say that the pair (L,L) is C-coverable when there exists a
C-cover of L which is separating for L.

The C-covering problem is now defined as follows:
INPUT: A regular language L and a finite set of regular languages L.

OUTPUT: Is (L,L) C-coverable?
Note that in the covering problem, we are interested in the existence of covers which are

separating (but notice that we do not keep this precision in the name of the problem itself, to
lighten the terminology). It is straightforward to prove that covering generalizes separation
provided that the class is a lattice, as stated in the following lemma (see Theorem 3.5
in [PZ18a] for the proof).

Lemma 2.3. Let D be a lattice and let L1, L2 be two languages. Then L1 is D-separable
from L2 if and only if (L1, {L2}) is D-coverable.

In the paper, we shall not work with covering directly. Instead, we use a framework
introduced in [PZ18a], which is designed to formulate and handle these problems in a more
convenient manner. We recall this framework in Section 4.
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2.3. Finite lattices. In the paper, we work with classes built from an arbitrary finite lattice
(i.e., one that contains finitely many languages) using generic two operations: polynomial
closure and Boolean closure (see Section 3). Let us present standard results about such classes.

Canonical preorder relations. Consider a finite lattice D. It is classical to associate a
canonical preorder relation over A∗ to D. Given w,w′ ∈ A∗, we write w 6D w′ if and only if
the following holds:

For all L ∈ D, w ∈ L ⇒ w′ ∈ L.
It is immediate from the definition that 6D is transitive and reflexive, making it a preorder.

Example 2.4. Consider the class D consisting of all unions of intersections of languages
of the form A∗aA∗, for a ∈ A. By definition, this class is a finite lattice. The associated
preorder 6D is defined by w 6D w′ if and only if every letter occurring in w also occurs
in w′.

We shall use several results about the relation 6D. We omit the proofs, which are simple
and available in [Pla18].

The first lemma is where we use the hypothesis that D is finite. We say that a language
L ⊆ A∗ is an upper set (for 6D) when for any two words u, v ∈ A∗, if u ∈ L and u 6D v,
then v ∈ L. Furthermore, given u ∈ A∗, we let ↑D u ⊆ A∗ be the least upper set containing u:
↑D u = {v ∈ A∗ | u 6D v}.

Lemma 2.5. Let D be a finite lattice. Then, for any L ⊆ A∗, we have L ∈ D if and only
if L is an upper set for 6D. In particular, 6D has finitely many upper sets.

Let us complete these definitions with a few additional useful results. First, as we
observed for AT in Example 2.7, when the finite lattice is actually a Boolean algebra, it turns
out that its canonical preorder is an equivalence relation. If C is such a Boolean algebra, we
shall denote this equivalence relation by ∼C (instead of 6C).

Lemma 2.6. Let C be a finite Boolean algebra. Then, for any alphabet A, the canonical
preorder 6C is an equivalence relation ∼C, which admits the following direct definition:

w ∼C w′ if and only if for all L ∈ C, w ∈ L ⇔ w′ ∈ L.

Thus, for any L ⊆ A∗, we have L ∈ C if and only if L is a union of ∼C-classes. In particular,
∼C has finite index.

Example 2.7. Consider the class AT of all Boolean combinations of languages A∗aA∗, for
a ∈ A (“AT” stands for “alphabet testable”: L ∈ AT if and only if membership of a word w
in L depends only on the letters occurring in w). Clearly, AT is a finite Boolean algebra—it
is the Boolean closure of the class from Example 2.4 (see Section 3.1 for the definition of
Boolean closure). In that case, 6AT is an equivalence relation ∼AT: w ∼AT w′ if and only if
w and w′ have the same alphabet (i.e., contain the same set of letters).

Another important and useful property is that when D is quotient-closed, the canonical
preorder 6D is compatible with word concatenation.

Lemma 2.8. A finite lattice D is quotient-closed if and only if its associated canonical
preorder 6D is compatible with word concatenation. That is, for any words u, v, u′, v′,

u 6D u
′ and v 6D v

′ ⇒ uv 6D u
′v′.
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C-compatible morphisms. We use these notions to define special monoid morphisms. We
fix a finite quotient-closed Boolean algebra C for the definition.

By Lemma 2.6, ∼C has finite index and the languages in C are exactly the unions of
∼C-classes. Moreover, since C is quotient-closed, we know from Lemma 2.8 that ∼C is a
congruence for word concatenation. It follows that the quotient set A∗/∼C is a finite monoid
and the map w 7→ [w]C is a morphism from A∗ to A∗/∼C . Consider an arbitrary morphism
α : A∗ →M . We say that α is C-compatible when, for every s ∈M , there exists a ∼C-class
denoted by [s]C such that α−1(s) ⊆ [s]C . In other words, [w]C = [s]C for every w ∈ A∗ such
that α(w) = s.

Remark 2.9. Let α : A∗ → M be a C-compatible morphism. Given s ∈ M , the ∼C-class
[s]C is determined by α when α−1(s) 6= ∅ ([s]C = [w]C for any w ∈ α−1(s)). If α−1(s) = ∅, we
may choose any ∼C-class as [s]C . When we consider a C-compatible morphism, we implicitly
assume that the map s 7→ [s]C is fixed.

We prove that we may assume without loss of generality that all the morphisms we work
with are C-compatible: any regular language is recognized by a C-compatible morphism.

Lemma 2.10. Let C be a finite quotient-closed Boolean algebra. Given a regular language
L ⊆ A∗, one can compute a C-compatible morphism α : A∗ →M recognizing L.

Proof. Since L is regular, we can compute a finite monoid N and a morphism β : A∗ → N
(not necessarily C-compatible) recognizing L. Since we know that the quotient set A∗/∼C
is a finite monoid, the Cartesian product M = N × (A∗/∼C) is a finite monoid for the
componentwise multiplication. It now suffices to define the morphism α : A∗ → M by
α(w) = (β(w), [w]C) for any w ∈ A∗. Clearly, α is a morphism which recognizes L and one
can verify that it is C-compatible.

3. Closure operations and main theorem

In this section, we define the family of classes that we investigate in the paper and present a
few results about them. Then, we state our main theorem and discuss its consequences.

3.1. Closure operations. Consider a class C. The Boolean closure of C, denoted by Bool(C),
is defined as the least Boolean algebra containing C. The next lemma follows from the
definitions (this amounts to verifying that quotients commute with Boolean operations, e.g.,
that for all languages K,L ⊆ A∗ and for all words w, we have w−1(K ∪ L) = w−1K ∪w−1L
and w−1(A∗ \ L) = A∗ \ (w−1L), and symmetrically for the other quotient operation).

Lemma 3.1. Let D be a quotient-closed lattice. Then, Bool(D) is a quotient-closed Boolean
algebra.

The second operation that we shall consider is slightly more involved. Given a class C,
the polynomial closure of C, denoted by Pol(C), is the least class containing C which is closed
under both union and marked concatenation:

for all K,L ∈ Pol(C) and a ∈ A, K ∪ L ∈ Pol(C) and KaL ∈ Pol(C).
While this is not obvious from the definition, when the input class C is a quotient-closed
lattice, its polynomial closure Pol(C) is a quotient-closed lattice as well. The difficulty is to
establish that Pol(C) is closed under intersection. This was originally proved by Arfi [Arf87],
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assuming additionally that C is closed under complement. The result was then extended to
quotient-closed lattices by Pin [Pin13] (see also [PZ18b]).

Theorem 3.2 (Arfi [Arf87], Pin [Pin13]). Let D be a quotient-closed lattice. Then, Pol(D)
is a quotient-closed lattice closed under concatenation and marked concatenation.

In the paper, we consider classes of the form Bool(Pol(C)) built by applying polynomial
closure and Boolean closure successively to some arbitrary quotient-closed Boolean algebra C.
For the sake of avoiding clutter, we shall write BPol(C) for Bool(Pol(C)). Note that by
Lemma 3.1 and Theorem 3.2, we have the following corollary.

Corollary 3.3. Let D be a quotient-closed lattice. Then, BPol(D) is a quotient-closed
Boolean algebra.

A key remark is that in general, classes built with Boolean closure (such as BPol(C))
are not closed under concatenation. This contrasts with polynomial closure in which closure
under (marked) concatenation holds by definition. This is an issue, as most of our techniques
designed for handling separation and covering rely heavily on concatenation. We cope with
this problem by using the following weak concatenation principle, which holds for any class
that is the Boolean closure of another class which is itself closed under concatenation.

Lemma 3.4. Let D be a lattice closed under concatenation. Consider L,L′ ∈ D and let
K,K′ be Bool(D)-covers of L and L′ respectively. Then, there exists a Bool(D)-cover H
of LL′ such that for every H ∈ H, we have H ⊆ KK ′ for some K ∈ K and K ′ ∈ K′.

Proof. Every language in K ∪K′ is a Boolean combination of languages in D and L,L′ ∈ D.
Therefore, there exists a finite lattice G ⊆ D satisfying the two following properties:
(1) L,L′ ∈ G and,
(2) every language K ∈ K ∪K′ belongs to Bool(G).
We define F as the least lattice such that HH ′ ∈ F for every H,H ′ ∈ G. Since G is finite, so
is F . Moreover, we know that G ⊆ D and D is a lattice closed under concatenation. Therefore,
F ⊆ D. It follows that Bool(F) is a finite Boolean algebra such that Bool(F) ⊆ Bool(D).

Consider the canonical equivalence ∼Bool(F) associated to Bool(F) (it relates words that
belong to the same languages of Bool(F), see Section 2). Since L,L′ ∈ G, it is immediate by
definition of F that we have LL′ ∈ F ⊆ Bool(F). Therefore, Lemma 2.6 implies that LL′
is a union of ∼Bool(F)-classes. We let H be the set consisting of all these ∼Bool(F)-classes.
By definition, H is a Bool(F)-cover of LL′ and therefore a Bool(D)-cover as well since
Bool(F) ⊆ Bool(D). It remains to prove that for every H ∈ H, we have H ⊆ KK ′ for some
K ∈ K and K ′ ∈ K′. We fix H ∈ H for the proof. We use the following fact.

Fact 3.5. Consider a finite language G ⊆ H. Then, there exists K ∈ K and K ′ ∈ K′ such
that G ⊆ KK ′.

Let us first admit Fact 3.5 and apply it to finish the main proof. For every n ∈ N, we let
Gn ⊆ H be the finite language containing all words of length at most n in H. Clearly, we
have,

H =
⋃
n∈N

Gn and Gn ⊆ Gn+1 for all n ∈ N.

For every n ∈ N, Fact 3.5 yields Kn ∈ K and K ′n ∈ K′ such that Gn ⊆ KnK
′
n. Since K

and K′ are finite sets, there exist K ∈ K and K ′ ∈ K′ such that Kn = K and K ′n = K ′ for
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infinitely many n. Since Gn ⊆ Gn+1 for all n, it follows that Gn ⊆ KK ′ for every n ∈ N.
Finally, since H =

⋃
n∈NGn, this implies H ⊆ KK ′, finishing the proof.

It remains to prove Fact 3.5. Consider a finite language G ⊆ H and let G = {w1, . . . , wn}.
We exhibit K ∈ K and K ′ ∈ K′ such that G ⊆ KK ′.

By definition, H is a ∼Bool(F)-class included in LL′. This implies that w1, . . . , wn ∈ LL′
and w1 ∼Bool(F) · · · ∼Bool(F) wn. Using these equivalences, we first prove the following claim
which involves the canonical preorder 6G associated to the finite lattice G.

Claim. For every u, v ∈ A∗ such that wn = uv, there exist u1, . . . , un, v1, . . . , vn ∈ A∗ such
that wi = uivi for every i ≤ n, u 6G u1 6G · · · 6G un and v 6G v1 6G · · · 6G vn.

Proof. We prove the existence of u1, v1 ∈ A∗ such that w1 = u1v1, u 6G u1 and v 6G v1 using
the hypothesis that wn = uv and wn ∼Bool(F) w1. One may then iterate the argument to
build u2, . . . , un ∈ A∗ and v2, . . . , vn ∈ A∗, using the fact that w1 ∼Bool(F) · · · ∼Bool(F) wn.

Consider the languages U = ↑G u and V = ↑G v (the upper sets of u and v for 6G).
By Lemma 2.5, we have U, V ∈ G. Therefore, we have UV ∈ F by definition of F .
Clearly, wn = uv ∈ UV . Therefore, wn ∼Bool(F) w1 implies that w1 ∈ UV . This yields
a decomposition w1 = u1v1 with u1 ∈ U and v1 ∈ V . By definition of U, V , this implies
u 6G u1 and v 6G v1, finishing the proof.

Since wn ∈ LL′, it admits at least one decomposition wn = uv with u ∈ L and v ∈ L′.
Therefore, we may apply the claim: there exist u1,1, . . . , un,1, v1,1, . . . , vn,1 ∈ A∗ such that
wi = ui,1vi,1 for every i ≤ n, u 6G u1,1 6G · · · 6G un,1 and v 6G v1,1 6G · · · 6G vn,1. Since
wn = un,1vn,1, one can repeat the argument any number of times, say m, to obtain words
ui,j , vi,j for 1 6 i 6 n and 1 6 j 6 m, such that for all such i, j, we have wi = ui,jvi,j , and:

u 6G u1,1 6G · · · 6G un,1 and v 6G v1,1 6G · · · 6G vn,1,
un,1 6G u1,2 6G · · · 6G un,2 and vn,1 6G v1,2 6G · · · 6G vn,2,

· · ·
un,m−1 6G u1,m 6G · · · 6G un,m and vn,m−1 6G v1,m 6G · · · 6G vn,m.

Moreover, since w1 is a finite word, it admits finitely many decompositions w1 = u1v1
with u1, v1 ∈ A∗. Therefore, the pigeonhole principle yields two integers j < k such that
u1,j = u1,k (and therefore v1,j = v1,k), which gives words u1, . . . , un, v1, . . . , vn ∈ A∗ such
that wi = uivi for every i ≤ n and,

u 6G u1 6G · · · 6G un 6G u1 v 6G v1 6G · · · 6G vn 6G v1.

One may verify from the definitions that for every x, y ∈ A∗, x 6G y and y 6G x imply that
x ∼Bool(G) y. Therefore, the above implies that,

u1 ∼Bool(G) · · · ∼Bool(G) un v1 ∼Bool(G) · · · ∼Bool(G) vn. (3.1)

Since u ∈ L, v ∈ L′ and L,L′ ∈ G by definition of G, we get that u1 ∈ L and v1 ∈ L′ by
definition of 6G . Therefore, since K and K′ are covers of L and L′ respectively, there exist
K ∈ K and K ′ ∈ K′ such that u1 ∈ K and v1 ∈ K ′.

By definition of G, both K and K ′ belong to Bool(G). It follows from (3.1) that
u1, . . . , un ∈ K and v1, . . . , vn ∈ K ′. Altogether, we obtain that G = {u1v1, . . . , unvn} ⊆
KK ′, finishing the proof.



Vol. 17:3 SEPARATION FOR DOT-DEPTH TWO 24:11

Finally, we shall need the following variant of Lemma 3.4, which considers marked
concatenation instead of standard concatenation. The proof is identical to the one of
Lemma 3.4 and left to the reader.

Lemma 3.6. Let D be a lattice closed under marked concatenation. Consider L,L′ ∈ D and
a ∈ A, and let K,K′ be Bool(D)-covers of L and L′ respectively. There exists a Bool(D)-
cover H of LaL′ such that for every H ∈ H, we have H ⊆ KaK ′ for some K ∈ K and
K ′ ∈ K′.

3.2. Main theorem. We may now state the main theorem of the paper: whenever C is a
finite quotient-closed Boolean algebra, BPol(C)-separation and BPol(C)-covering are both
decidable.

Theorem 3.7. Let C be a finite quotient-closed Boolean algebra. Then, separation and
covering are decidable for BPol(C).

Before we detail the applications of Theorem 3.7, let us make an important observation.
This result completes an earlier one presented in [Pla18] which applies to classes of the form
Pol(C) and Pol(BPol(C)) (when C is a finite quotient-closed Boolean algebra). Let us recall
this result.

Theorem 3.8 [Pla18]. Let C be a finite quotient-closed Boolean algebra. Then, separation
and covering are decidable for Pol(C) and Pol(BPol(C)).

An important point is that while BPol(C) is an intermediary class between Pol(C) and
Pol(BPol(C)), the proof of Theorem 3.7 involves ideas which are very different from those
used in [Pla18] to prove Theorem 3.8. This is not surprising and we already mentioned
the reason above: unlike Pol(C) and Pol(BPol(C)), the class BPol(C) is not closed under
concatenation in general. This difference is significant, since most of the techniques we have
for handling covering rely heavily on concatenation. In practice, this means that Boolean
closure is harder to handle than polynomial closure, at least with such techniques.

However, we do reuse a result of [Pla18] to prove Theorem 3.7. More precisely, it turns out
that the arguments for handling BPol(C) (in this paper) and Pol(BPol(C)) (in [Pla18]) both
exploit the same subresult for the simpler class Pol(C) (albeit in very different ways). This
subresult is stronger than the decidability of Pol(C)-covering and is proved in [Pla18]. We
recall it in Section 7. However, it is important to keep in mind that from this preliminary result
for Pol(C), the arguments for BPol(C) and Pol(BPol(C)) build in orthogonal directions.

Remark 3.9. This discussion might seem surprising. Indeed, by definition, Pol(BPol(C)) is
built from BPol(C) using polynomial closure. Hence, intuition suggests that one needs some
knowledge about the latter to handle the former. However, this is not the case as Boolean
closure can be bypassed in the definition of Pol(BPol(C)). Specifically, one may prove that
Pol(BPol(C)) = Pol(co-Pol(C)) where co-Pol(C) is the class containing all complements of
languages in Pol(C). This is exactly how the class Pol(BPol(C)) is handled in [Pla18].

The remaining sections of the paper are devoted to proving Theorem 3.7. We rely on a
framework which was designed in [PZ18a] for the specific purpose of handling the covering
problem. We recall it in Section 4. The algorithm for BPol(C)-covering is presented in
Section 5. The remaining sections are then devoted to the correction proof of this algorithm.
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However, let us first conclude the current section by detailing the important applications of
Theorem 3.7.

3.3. Applications of the main theorem. Classes of the form BPol(C) are important:
they are involved in natural hierarchies of classes of languages, called concatenation hierarchies.
Let us briefly recall what they are (we refer the reader to [PZ18b] for a detailed presentation).
A particular concatenation hierarchy depends on a single parameter: an arbitrary quotient-
closed Boolean algebra of regular languages C, called its basis. Once the basis is chosen, the
construction is uniform. Languages are classified into levels of two kinds: full levels (denoted
by 0, 1, 2,. . . ) and half levels (denoted by 1/2, 3/2, 5/2,. . . ):
• Level 0 is the basis (i.e., our parameter class C).
• Each half level n+ 1

2 , for n ∈ N, is the polynomial closure of the previous full level, i.e., of
level n.
• Each full level n+ 1, for n ∈ N, is the Boolean closure of the previous half level, i.e., of
level n+ 1

2 .
The generic process is depicted in the following figure.

0 1
2 1 3

2 2 5
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Hence, a reformulation of Theorem 3.7 is that for any concatenation hierarchy whose
basis is finite, separation is decidable for level one. There are two prominent examples of
finitely based hierarchies:
• The Straubing-Thérien hierarchy [Str81, Thé81], whose basis is the class {∅, A∗}.
• The dot-depth hierarchy of Brzozowski and Cohen [BC71], whose basis is the class
{∅, {ε}, A+, A∗}.

Consequently, Theorem 3.7 implies that separation and covering are decidable for level one
in these two hierarchies. These are not new results. By definition, level one in the Straubing-
Thérien hierarchy is exactly the class of piecewise testable languages. For this class, separation
has been solved in [CMM13, PvRZ13] and covering has been solved in [PZ18a]. For dot-depth
one, the decidability of covering and separation was originally obtained indirectly. Indeed,
it is known [PZ20] that separation and covering for any level in the dot-depth hierarchy
reduce to the same problem for the corresponding level in the Straubing-Thérien hierarchy.
Therefore, while the decidability of separation and covering for dot-depth one is not a new
result, an advantage of Theorem 3.7 is that we obtain a new direct proof of this result.

However, these are not the main applications of Theorem 3.7. It turns out that the
theorem also applies to level two in the Straubing-Thérien hierarchy. Indeed, it is known that
this level is also level one in another finitely based concatenation hierarchy. More precisely,
recall the class AT presented in Example 2.7: it consists of all Boolean combinations of
languages A∗aA∗, for some a ∈ A. It is straightforward to verify that AT is a finite quotient-
closed Boolean algebra. The following theorem was shown in [PS85] (see also [PZ18a] for a
recent proof).

Theorem 3.10 ([PS85]). Level two in the Straubing-Thérien hierarchy is exactly the class
BPol(AT).

In view of Theorem 3.10, we obtain the following immediate corollary of Theorem 3.7.
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Corollary 3.11. Separation and covering are decidable for level two in the Straubing-Thérien
hierarchy.

Finally, this result may be lifted to dot-depth two using again the generic transfer
theorem proved in [PZ20]. Hence, we obtain the following additional corollary.

Corollary 3.12. Separation and covering are decidable for dot-depth two.

Remark 3.13. Logical characterizations of these two hierarchies are known (see [Tho82]
for the dot-depth hierarchy and [PP86] for the Straubing-Thérien hierarchy). Each of them
corresponds to a quantifier alternation hierarchy within a particular variant of first-order logic
over words. The two variants differ by the set of predicates which are allowed in sentences
(they have the same overall expressive power, but this changes the levels in their respective
quantifier alternation hierarchies). We refer the reader to [PZ18b] for details and a recent
proof of these results.

In particular, level two in the Straubing-Thérien hierarchy corresponds to a logic denoted
by BΣ2(<) and dot-depth two corresponds to another logic denoted by BΣ2(<,+1). Hence,
our results also imply that covering and separation are decidable for these two logics.

4. Framework: rating maps and optimal covers

In this section, we present the framework which we use to formulate our covering algorithm
for BPol(C) (when C is a finite quotient-closed Boolean algebra) announced in Theorem 3.7.
The framework itself was designed and applied to several specific classes in [PZ18a]. Moreover,
it was also used in [Pla18] to formulate algorithms for Pol(C)- and Pol(BPol(C))-covering.
Here, we recall the part of this framework that we shall actually need in the paper. We refer
the reader to [PZ18a] for a complete and detailed presentation.

Let D be a lattice. In D-covering, the input is a pair (L,L) where L is a regular language
and L a finite set of regular languages: we have to decide whether there exists a D-cover
of L which is separating for L. We design a two-step approach for tackling this problem.

The first step is to transform this decision problem into the following computational
problem. Given an input (L,L), we compute a D-cover of L, which is optimal with respect
to L in the following sense: for every subset H of L, this optimal cover is separating for H
if and only if (L,H) is D-coverable. Thus, this single object encapsulates all answers to
the D-covering problem for inputs of the form (L,H), with H ⊆ L. Such an optimal cover
always exists when D is a lattice. The set L can be viewed as a parameter constraining this
optimal cover, or dually, as a measure of the quality of this cover.

The second step in the approach of [PZ18a] consists in replacing the set L by a (more
general) algebraic object called a rating map. Intuitively, rating maps play the same role as
the set of languages L from the above paragraph. Thus, they are also designed to measure
the quality of D-covers. Given a rating map ρ and a language L, we use ρ to rank the
existing D-covers of L.

We are then able to reformulate D-covering with these notions. Instead of deciding
whether (L,L) is D-coverable, we compute an optimal D-cover for L for a rating map ρ that
we build from L. An advantage of this approach is that it yields elegant formulations for the
covering algorithms which are formulated with it. We refer the reader to [PZ18a] and [Pla18]
for examples (in addition to BPol(D), which is presented in this paper). Another important
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motivation for using this framework is that in order to handle BPol(D), we require a result
for the simpler class Pol(D) which is stronger than the decidability of covering (this result is
proved in [Pla18]). The framework of [PZ18a] is designed to formulate this result.

We start by defining rating maps. Then, we explain how they are used to measure the
quality of a cover and define optimal covers. Finally, we connect these notions to the covering
problem. Let us point out that several statements presented here are without proof. We
refer the reader to [PZ18a] for these proofs.

4.1. Rating maps. Rating maps involve commutative and idempotent monoids. We shall
write such monoids (R,+): we call the binary operation “+” addition and denote the neutral
element by 0R. Being idempotent means that for all r ∈ R, we have r + r = r. Observe that
for every commutative and idempotent monoid (R,+), we may define a canonical ordering
≤ over R:

For all r, s ∈ R, r ≤ s when r + s = s.

It is straightforward to verify that ≤ is a partial order which is compatible with addition.
Moreover, we have the following fact which is immediate from the definitions.

Fact 4.1. Let (R,+) and (Q,+) be two commutative and idempotent monoids. Moreover,
let γ : (R,+)→ (Q,+) be a morphism. Then, γ is increasing: for every s, t ∈ R such that
s ≤ t, we have γ(s) ≤ γ(t).

Example 4.2. For any set E, it is immediate that (2E ,∪) is an idempotent and commutative
monoid. The neutral element is ∅. Moreover, the canonical ordering is set inclusion.

When manipulating the subsets of a commutative and idempotent monoid (R,+) we
shall often need to apply a downset operation. Given S ⊆ R, we write ↓RS for the set,

↓RS = {r ∈ R | r ≤ s for some s ∈ S}.

We extend this notation to Cartesian products of arbitrary sets with R. Given some set X
and a subset S ⊆ X ×R, we write ↓RS for the set,

↓RS = {(x, r) ∈ X ×R | there exists q ∈ R such that r ≤ q and (x, q) ∈ S}.

We may now define rating maps. A rating map is a morphism ρ : (2A
∗
,∪) → (R,+)

where (R,+) is a finite idempotent and commutative monoid called the rating set of ρ. That
is, ρ is a map from 2A

∗ to R satisfying the following properties:
(1) ρ(∅) = 0R.
(2) For all K1,K2 ⊆ A∗, ρ(K1 ∪K2) = ρ(K1) + ρ(K2).

For the sake of improved readability, when applying a rating map ρ to a singleton set
K = {w}, we shall write ρ(w) for ρ({w}). Additionally, we write ρ∗ : A∗ → R for the
restriction of ρ to A∗: for every w ∈ A∗, we have ρ∗(w) = ρ(w) (this notation allows us to
write ρ−1∗ (r) ⊆ A∗ for the language of all words w ∈ A∗ such that ρ(w) = r).

Most of the statements involved in our framework make sense for arbitrary rating maps.
However, we shall often have to work with special rating maps which satisfy additional
properties. We present them now.

Nice rating maps. A rating map ρ : 2A
∗ → R is nice when, for every language K ⊆ A∗,

there exist finitely many words w1, . . . , wn ∈ K such that ρ(K) = ρ(w1) + · · ·+ ρ(wk).
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Observe that in this case, ρ is characterized by the canonical map ρ∗ : A∗ → R. Indeed,
for every language K, we may consider the sum of all elements ρ(w) for w ∈ K: while it
may be infinite, it boils down to a finite one since R is commutative and idempotent. The
hypothesis that ρ is nice implies that ρ(K) is equal to this sum.

Multiplicative rating maps. A rating map ρ : 2A
∗ → R is multiplicative when its rating

set R has more structure: it needs to be an idempotent semiring. Moreover, ρ has to satisfy
an additional property connecting this structure to language concatenation. Namely, it has
to be a morphism of semirings.

A semiring is a tuple (R,+, ·) where R is a set and “+” and “·” are two binary operations
called addition and multiplication, such that the following axioms are satisfied:
• (R,+) is a commutative monoid (the neutral element is denoted by 0R).
• (R, ·) is a monoid (the neutral element is denoted by 1R).
• Multiplication distributes over addition: r ·(s+t) = (r ·s)+(r ·t) and (r+s)·t = (r ·t)+(s·t)
for all r, s, t ∈ R.
• The neutral element of (R,+) is a zero for (R, ·): 0R · r = r · 0R = 0R for all r ∈ R.
We say that a semiring R is idempotent when r + r = r for every r ∈ R, i.e., when the
additive monoid (R,+) is idempotent (on the other hand, there is no additional constraint
on the multiplicative monoid (R, ·)).

Example 4.3. A key example of an infinite idempotent semiring is the set 2A
∗ of all languages

over A. Union is the addition (with ∅ as neutral element) and language concatenation is the
multiplication (with {ε} as neutral element).

Clearly, any finite idempotent semiring (R,+, ·) is in particular a rating set: (R,+) is
an idempotent and commutative monoid. In particular, one may verify that the canonical
ordering “≤” on R, is compatible with multiplication as well.

We may now define multiplicative rating maps: as expected they are semiring morphisms.
Let ρ : 2A

∗ → R be a rating map. By definition, this means that the rating set (R,+) is
a finite idempotent commutative monoid and that ρ is a monoid morphism from (2A

∗
,∪)

to (R,+). We say that ρ is multiplicative when the rating set R is equipped with a second
binary operation “·” such that (R,+, ·) is an idempotent semiring and ρ is also a monoid
morphism from (2A

∗
, ·) to (R, ·). In other words, the two following additional axioms hold:

(3) ρ(ε) = 1R.
(4) For all K1,K2 ⊆ A∗, we have ρ(K1K2) = ρ(K1) · ρ(K2).

Remark 4.4. An important point is that the rating maps which are both nice and multi-
plicative are finitely representable. As we explained above, a nice rating map ρ : 2A

∗ → R is
characterized by the canonical map ρ∗ : A∗ → R. Moreover, when ρ is multiplicative as well,
ρ∗ is finitely representable: it is a morphism from A∗ into the finite monoid (R, ·). Thus, we
may consider algorithms taking nice multiplicative rating maps as input. Let us point out
that the rating maps which are not nice and multiplicative remain important. We often deal
with them in our proofs.

4.2. Imprints and optimal covers. We now explain how we use rating maps to measure
the quality of covers. This involves an additional notion: “imprints”. Consider a rating map



24:16 Thomas Place and Marc Zeitoun Vol. 17:3

ρ : 2A
∗ → R. For any finite set of languages K, the ρ-imprint of K, denoted by I[ρ](K), is

the following subset of R:

I[ρ](K) = ↓R{ρ(K) | K ∈ K}
= {r ∈ R | there exists K ∈ K such that r ≤ ρ(K)}.

When using this notion, we shall have some language L ⊆ A∗ in hand: our goal is to find
the “best possible” cover K of L. Intuitively, ρ-imprints measure the “quality” of candidate
covers K (the smaller the ρ-imprint, the better the quality).

This leads to the notion of optimality. Let D be an arbitrary lattice. Given a language L,
an optimal D-cover of L for ρ is a D-cover of L which has the smallest possible ρ-imprint
(with respect to inclusion). That is, K is an optimal D-cover of L for ρ if and only if,

I[ρ](K) ⊆ I[ρ](K′) for every D-cover K′ of L.
Furthermore, in the special case when L = A∗, we speak of optimal universal D-cover for ρ.

If D is a lattice, one can show that there always exists at least one optimal D-cover of L
for ρ (see [PZ18a, Lemma 4.15]). In general, there are actually infinitely many of them.

Lemma 4.5. Let D be a lattice. Then, for any rating map ρ : 2A
∗ → R and any language

L ⊆ A∗, there exists an optimal D-cover of L for ρ.

It is important to note that the proof of Lemma 4.5 is non-constructive: given L and
ρ : 2A

∗ → R, computing an actual optimal D-cover of L for ρ is a difficult problem in general.
As we shall see below, getting such an algorithm (in the special case when ρ is nice and
multiplicative) yields a procedure for D-covering. Before we can establish this connection
precisely, we require a key observation about optimal D-covers.
Optimal imprints. By definition, given a language L, all optimal D-covers of L for ρ have
the same ρ-imprint. Hence, this unique ρ-imprint is a canonical object for D, L and ρ. We
call it the D-optimal ρ-imprint on L and we denote it by ID [L, ρ]:

ID [L, ρ] = I[ρ](K) ⊆ R for every optimal D-cover K of L for ρ.

Additionally, in the particular case when L = A∗, we shall speak of D-optimal universal
ρ-imprint and write ID [ρ] for ID [A∗, ρ].

We complete these definitions with a few properties of optimal imprints. We start with a
straightforward fact which compares the optimal imprints on languages which are comparable
with inclusion. The proof is available in [PZ18a, Fact 4.17].

Fact 4.6. Consider a rating map ρ : 2A
∗ → R and a lattice D. Let H,L be two languages

such that H ⊆ L. Then, ID [H, ρ] ⊆ ID [L, ρ].

More precisely, the following fact connects optimal imprints with union of languages.

Fact 4.7. Let ρ : 2A
∗ → R be a rating map and consider two languages H,L. Then, for

every lattice D, we have ID [H ∪ L, ρ] = ID [H, ρ] ∪ ID [L, ρ].

Proof. We already know that ID [H, ρ] ⊆ ID [H ∪ L, ρ] and ID [L, ρ] ⊆ ID [H ∪ L, ρ] by
Fact 4.6. Therefore, the inclusion ID [H, ρ] ∪ ID [L, ρ] ⊆ ID [H ∪ L, ρ] is immediate. We
prove the converse one. Let r ∈ ID [H ∪ L, ρ]. We let KH and KL be optimal D-covers of H
and L respectively (for ρ). Clearly, KH ∪KL is a cover H ∪ L. Therefore, r ∈ ID [H ∪ L, ρ]
implies that r ∈ I[ρ](KH ∪KL). Hence, there exists K ∈ KH ∪KL such that r ≤ ρ(K).
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Then, either K ∈ KH which implies r ∈ I[ρ](KH) = ID [H, ρ] or K ∈ KL which implies
r ∈ I[ρ](KL) = ID [L, ρ]. Altogether, we get r ∈ ID [H, ρ]∪ID [L, ρ], finishing the proof.

4.3. Connection with the covering problem. Finally, we explain how rating maps are
used for handling the covering problem.

Given a lattice D, it turns out that the D-covering problem reduces to another problem
whose input is a nice multiplicative rating map. Let us point out that two reductions of this
kind are presented in [PZ18a]. The first one is simpler but restricted to Boolean algebras.
On the other hand, the second one applies to any lattice, but requires working with more
involved objects.

In the paper, we investigate classes of the form BPol(D), which are Boolean algebras.
Hence, we shall mostly work with the first variant whose statement is as follows.

Proposition 4.8 [PZ18a]. Let C be a Boolean algebra. Assume that there exists an algorithm
for the following computational problem:

Input: A nice multiplicative rating map ρ : 2A
∗ → R.

Output: Compute the C-optimal universal ρ-imprint, IC [ρ].
Then, C-covering is decidable.

Proof sketch. The proof builds on several simple steps. The first one is the observation that
when C is a Boolean algebra, deciding whether a pair (L,L) is C-coverable reduces to the
case where L = A∗. Indeed, one may check that (L,L) is C-coverable if and only if so is
(A∗,L ∪ {L}). We are left to show that one can decide whether a pair (A∗,L) is C-coverable.

Second, observe that (2L,∪, ∅) is a rating set. One may verify that the function
ρL : 2A

∗ → 2L defined by ρL(K) = {L ∈ L | K ∩ L 6= ∅} is a nice rating map. Furthermore,
for any subset H of L, one may prove that (A∗,H) is C-coverable if and only if H ∈ IC [ρL].

The third step is to reduce the computation of IC [ρL] to that of IC [ρ′L], where ρ′L
is a multiplicative nice rating map that we can build from ρL. By the hypothesis of the
statement, this last set is computable. We refer the reader to [PZ18a, Theorem 5.21] for
more details.

Additionally, we shall need in Section 6 to apply a theorem of [Pla18] for classes of
the form Pol(C) (which are lattices but not Boolean algebras) as a sub-result. Thus, we
also recall the terminology associated to the generalized reduction which holds for arbitrary
lattices, since we need it to state this theorem.

When working with an arbitrary lattice, one needs to consider slightly more involved
objects. Given a lattice D, a map α : A∗ →M into a finite set M (in practice, α will be a
monoid morphism but this is not required for the definition) and a rating map ρ : 2A

∗ → R,
we write PαD[ρ] for the following set,

PαD[ρ] = {(s, r) ∈M ×R | r ∈ ID
[
α−1(s), ρ

]
} ⊆M ×R.

We call PαD[ρ] the α-pointed D-optimal ρ-imprint. Clearly, it encodes all sets ID
[
α−1(s), ρ

]
for s ∈M .

The following statement is [Pla18, Proposition 5.18] (see also [PZ18a, Proposition 7.2]).

Proposition 4.9. Consider a lattice D and some finite quotient-closed Boolean algebra C.
Assume that there exists an algorithm for the following computational problem:
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Input: A C-compatible morphism α : A∗ →M and
a nice multiplicative rating map ρ : 2A

∗ → R.
Output: Compute the α-pointed D-optimal ρ-imprint, PαD[ρ].

Then, D-covering is decidable.

5. Characterization of BPol(C)-optimal imprints

We present a generic characterization of BPol(C)-optimal imprints which holds when C is a
finite quotient-closed Boolean algebra. For the sake of avoiding clutter, we assume that the
finite quotient-closed Boolean algebra C is fixed for the whole section.

Given a nice multiplicative rating map ρ : 2A
∗ → R, we want to characterize the set

IBPol(C) [ρ] ⊆ R. An important point is that we do not work directly with this set. Instead,
we characterize the family of all sets IBPol(C) [D, ρ] ⊆ R where D ⊆ A∗ is a ∼C-class. Note
that this family of sets record more information than just the set IBPol(C) [ρ]. Indeed, by
Fact 4.7, we have,

IBPol(C) [ρ] = IBPol(C) [A∗, ρ] =
⋃

D∈A∗/∼C

IBPol(C) [D, ρ] .

For the sake of convenience, we shall encode this family as a set of pairs in (A∗/∼C) × R.
Given a multiplicative rating map ρ : 2A

∗ → R, we define:

PCBPol(C)[ρ] = {(D, r) ∈ (A∗/∼C)×R | r ∈ IBPol(C) [D, ρ]}.

When ρ is nice, we characterize PCBPol(C)[ρ] as the greatest subset of R satisfying specific
properties. From the statement, it is straightforward to obtain a greatest fixpoint procedure
for computing PCBPol(C)[ρ] from ρ. In turns, this allows to compute IBPol(C) [ρ] using the
above equality. By Proposition 4.8, this yields an algorithm for BPol(C)-covering, thus
proving our main result: Theorem 3.7.

Remark 5.1. This characterization is rather unique among the results that have been
obtained for other classes in [PZ18a] and [Pla18]. Typically, optimal imprints are characterized
as least subsets, not greatest ones.

Notation. In our statements, we shall frequently manipulate subsets of (A∗/∼C)×R. When
doing so, the following notation will be convenient. Given S ⊆ (A∗/∼C)×R and D ∈ A∗/∼C ,
we write,

S(D) = {r ∈ R | (D, r) ∈ S}
In particular, observe that PCBPol(C)[ρ](D) = IBPol(C) [D, ρ] by definition.

Given a multiplicative rating map ρ : 2A
∗ → R, we define a notion of BPol(C)-saturated

subset of (A∗/∼C)× R (for ρ). Our theorem then states that when ρ is nice, the greatest
such subset is exactly PCBPol(C)[ρ].

Remark 5.2. The definition of BPol(C)-saturated sets makes sense regardless of whether ρ
is nice. However, we need this hypothesis for the greatest one to be PCBPol(C)[ρ].

The definition is based on an intermediary notion. With every set S ⊆ (A∗/∼C) × R,
we associate another set RρS ⊆ (A∗/∼C) × R × 2R. For the definition, we need to recall a
few properties. Given a word w ∈ A∗, we denote its ∼C class by [w]C . Moreover, since C
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is closed under quotients, Lemma 2.8 yields that the equivalence ∼C is a congruence. We
denote by “•” the multiplication of ∼C-classes in the monoid A∗/∼C . Additionally, since R is
a semiring, 2R is one as well for union as addition and the natural multiplication lifted from
the one of R (for U, V ∈ 2R, UV = {qr | q ∈ U and r ∈ V }).

We may now present our definition. Consider a set S ⊆ (A∗/∼C)×R. We define RρS as
the least subset of (A∗/∼C)×R× 2R (with respect to inclusion) which satisfies the following
properties:
• Trivial elements. For every w ∈ A∗, we have ([w]C , ρ(w), {ρ(w)}) ∈ RρS .
• Extended downset. For every (C, q, U) ∈ RρS and V ⊆ ↓RU , we have (C, q, V ) ∈ RρS .
• Multiplication. For every (C, q, U), (D, r, V ) ∈ RρS , we have (C •D, qr, UV ) ∈ RρS .
• S-restricted closure. For every triple of idempotents (E, f, F ) ∈ RρS , we have

(E, f, F · S(E) · F ) ∈ RρS .
We are ready to define the BPol(C)-saturated subsets of (A∗/∼C)×R. Consider a set

S ⊆ (A∗/∼C)×R. We say that S is BPol(C)-saturated for ρ if the following property holds:

for every (D, r) ∈ S, there exist r1, . . . , rk ∈ R such that,
r ≤ r1 + · · ·+ rk and (D, ri, {r1 + · · ·+ rk}) ∈ RρS for every i ≤ k (5.1)

We now state our characterization of BPol(C)-optimal imprints in the following theorem.

Theorem 5.3. Let ρ : 2A
∗ → R be a nice multiplicative rating map. Then, PCBPol(C)[ρ] is

the greatest BPol(C)-saturated subset of (A∗/∼C)×R for ρ.

Given as input a nice multiplicative rating map ρ : 2A
∗ → R, Theorem 5.3 yields an

algorithm to compute IBPol(C) [ρ]. Indeed, computing the greatest BPol(C)-saturated subset
of (A∗/∼C) × R is achieved with a greatest fixpoint algorithm. One starts from the set
S0 = (A∗/∼C) × R and computes a sequence S0 ⊇ S1 ⊇ S2 ⊇ · · · of subsets. For every
n ∈ N, Sn+1 is the set of all pairs (D, r) ∈ Sn satisfying (5.1) for S = Sn. That is,

there exist r1, . . . , rk ∈ R such that,
r ≤ r1 + · · ·+ rk and (D, ri, {r1 + · · ·+ rk}) ∈ RρSn for every i ≤ k

Clearly, Sn+1 ⊆ Sn for every n ∈ N. Therefore, the computation eventually reaches a fixpoint
which is the greatest BPol(C)-saturated subset of (A∗/∼C)×R by definition. Let us point
out that the computation of Sn+1 from Sn involves computing RρSn , which is achieved with
a least fixpoint procedure by definition.

Altogether, it follows that Theorem 5.3 yields an algorithm for computing PCBPol(C)[ρ]

(and therefore, IBPol(C) [ρ] as well by Fact 4.7) which alternates between a greatest fixpoint
and a least fixpoint.

Remark 5.4. The hypothesis that ρ is nice in Theorem 5.3 is mandatory: the result fails
otherwise. This is actually apparent on the definition of BPol(C)-saturated sets. One may
verify from the definition of RρS that for every triple (D, q, U) ∈ RρS , there exists a word
w ∈ A∗ such that D = [w]C and q = ρ(w). Therefore, it follows from (5.1) that for every
(D, r) ∈ (A∗/∼C) × R belonging to a BPol(C)-saturated subset, its second component r
must satisfy r ≤ ρ(w1) + · · ·+ ρ(wk) for some words w1, . . . , wk ∈ A∗. Intuitively, this means
that BPol(C)-saturated subsets only depend on the image of singletons. Therefore, using
the notion only makes sense when ρ is characterized by these images: this is exactly the
definition of nice rating maps.
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This might seem to be a minor observation. Indeed, by Proposition 4.8, being able
to compute IBPol(C) [ρ] from a nice multiplicative rating map suffices to meet our goal:
getting an algorithm for BPol(C)-covering. Actually, it does not even make sense to speak
of an algorithm which takes arbitrary multiplicative rating maps as input since we are not
able to finitely represent them. However, from a theoretical point of view, the fact that
we only manage to get a description of IBPol(C) [ρ] when ρ is nice is significant. In the
proof of Theorem 5.3, we use a theorem of [Pla18] as a subresult. Specifically, this theorem
is a characterization of Pol(C)-optimal pointed imprints: given a C-compatible morphism
α : A∗ →M and a multiplicative rating map τ : 2A

∗ → Q, it describes the set PαPol(C)[τ ]. A
key point is that this characterization does not require τ to be nice. This is crucial: in the
proof of Theorem 5.3, we consider auxiliary rating maps built from ρ which need not be nice.

In summary, we are able to handle Pol(C) for all multiplicative rating maps, including
those that are not nice, which is crucial in order be able to handle BPol(C). However, at this
level, we are only able to deal with nice multiplicative rating maps (the situation is actually
similar for Pol(BPol(C)) as shown in [Pla18]). This explains why the results presented in
this paper and in [Pla18] cannot be lifted to higher levels in concatenation hierarchies (at
least not in a straightforward manner).

We turn to the proof of Theorem 5.3. It spans the remaining four sections of the paper.
Given a nice multiplicative rating map ρ : 2A

∗ → R, we have to show that PCBPol(C)[ρ] is the
greatest BPol(C)-saturated subset of (A∗/∼C)×R for ρ. The main argument involves two
directions which are proved independently. They correspond to soundness and completeness
of the greatest fixpoint algorithm computing PCBPol(C)[ρ].

• The soundness argument shows that PCBPol(C)[ρ] contains every BPol(C)-saturated subset
(this implies that the greatest fixpoint procedure only computes elements of PCBPol(C)[ρ]).
We present it in Section 8.
• The completeness argument shows that PCBPol(C)[ρ] itself is BPol(C)-saturated (this implies
that the greatest fixpoint procedure computes all elements of PCBPol(C)[ρ]). We present it
in Section 9.

When put together, these two results yield as desired that PCBPol(C)[ρ] is the greatest BPol(C)-
saturated subset of R, proving Theorem 5.3.

However, before presenting the main argument, we require some additional material
about rating maps. For both directions, we shall introduce auxiliary rating maps (built
from ρ) and apply a characterization of Pol(C)-optimal imprints to them (taken from [Pla18]).
These auxiliary rating maps are built using generic constructions which are not specific to
Theorem 5.3. We present them in Section 6. Then, we recall the theorem characterizing
Pol(C)-optimal imprints from [Pla18] in Section 7 (actually, we slightly generalize it, since
we shall apply it for rating maps that are more general than the ones considered in [Pla18]).

6. Nesting of rating maps

In this section, we present two generic constructions. Each of them builds a new rating map
out of an already existing one and a lattice D. The constructions are new: they do not
appear in [PZ18a] (however, one of them generalizes and streamlines a technical construction
used in [Pla18]).
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Remark 6.1. As announced, we shall later rely on these constructions in the proof of
Theorem 5.3 (we use them in the special cases when D is either Pol(C) or BPol(C)).
However, this section is independent from Theorem 5.3: all definitions are presented in a
general context.

We first present the constructions and then investigate the properties of the output
rating maps they produce.

6.1. Definition. We present two constructions. The first one involves two objects: a lattice
D and a rating map ρ : 2A

∗ → R. We build a new rating map ξD[ρ] whose rating set is
(2R,∪), and which associates to a language its optimal D-optimal ρ-imprint.

ξD[ρ] : (2A
∗
,∪) → (2R,∪)

K 7→ ID [K, ρ]

The fact that ξD[ρ] is indeed a rating map is shown below in Proposition 6.2. The
second construction involves an additional object: a map α : A∗ → M where M is some
arbitrary finite set (in practice, α will be a monoid morphism, but this is not required for
the definition). We build a new rating map ζαD[ρ] with rating set (2M×R,∪):

ζαD[ρ] : (2A
∗
,∪) → (2M×R,∪)

K 7→ {(s, r) | r ∈ ID
[
α−1(s) ∩K, ρ

]
}.

Let us prove that these two maps are indeed rating maps. We state this result in the following
proposition.

Proposition 6.2. Consider a lattice D, a map α : A∗ →M into a finite set M and a rating
map ρ : 2A

∗ → R. Then, ξD[ρ] and ζαD[ρ] are rating maps.

Proof. We start with ξD[ρ]. It is immediate that ξD[ρ](∅) = ID [∅, ρ] = ∅. Moreover, we
obtain from Fact 4.7 that for every H,L ⊆ A∗,

ξD[ρ](H ∪ L) = ID [H ∪ L, ρ] = ID [H, ρ] ∪ ID [L, ρ] = ξD[ρ](H) ∪ ξD[ρ](L).

We conclude that ξD[ρ] is indeed a rating map. We turn to ζαD[ρ]. Clearly,

ζαD[ρ](∅) = {(s, r) | r ∈ ID [∅, ρ]} = {(s, r) | r ∈ ∅} = ∅.
Moreover, given H,L ⊆ A∗,

ζαD[ρ](H ∪ L) = {(s, r) | r ∈ ID
[
α−1(s) ∩ (H ∪ L), ρ

]
}.

By Fact 4.7, this yields,

ζαD[ρ](H ∪ L) = {(s, r) | r ∈ ID
[
α−1(s) ∩H, ρ

]
∪ ID

[
α−1(s) ∩ L, ρ

]
}

This exactly says that ζαD[ρ](H ∪ L) = ζαD[ρ](H) ∪ ζαD[ρ](L), finishing the proof that ζαD[ρ] is
a rating map.

A crucial observation is that the rating maps ξD[ρ] and ζαD[ρ] are not nice in general,
even when the original rating map ρ is. Let us present a counter-example.

Example 6.3. Let D be the Boolean algebra consisting of all languages which are either
finite or co-finite (i.e., their complement is finite). Moreover, let T = {0, 1} and R = 2T .
We define a nice rating map ρ : 2A

∗ → R as follows (actually, it is simple to verify from the
definition that ρ is also multiplicative). Since we are defining a nice rating map, it suffices to
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specify the evaluation of words: for any w ∈ A∗, we let ρ(w) = {0} if w has even length and
ρ(w) = {1} if w has odd length. We show that the rating map ξD[ρ] : 2A

∗ → 2R is not nice.
By definition, ξD[ρ](A∗) = ID [A∗, ρ]. Recall that D contains only finite and co-finite

languages. Moreover, covers may only contain finitely many languages. Hence, it is immediate
that if K is an optimal D-cover of A∗ for ρ, then there exists K ∈ K containing a word of
even length and a word of odd length. Therefore ρ(K) = {0, 1} by definition of ρ, whence
ξD[ρ](A∗) = I[ρ](K) = {{0, 1}, {0}, {1}, ∅} = R.

Now observe that for any w ∈ A∗, {w} ∈ D by definition (it is a finite language). Hence,
{{w}} is a D-cover of {w} and since ξD[ρ](w) = ID [{w}, ρ], we know that ξD[ρ](w) = {{0}, ∅}
if w has even length and ξD[ρ](w) = {{1}, ∅} if w has odd length. Altogether, we obtain
that, ⋃

w∈A∗
ξD[ρ](w) = {{0}, {1}, ∅} 6= ξD[ρ](A∗)

We conclude that ξD[ρ] is not nice.

Another important question is whether ξD[ρ] and ζαD[ρ] are multiplicative. The remainder
of the section is devoted to discussing this point.

6.2. Multiplication. If α : A∗ →M is a morphism into a finite monoid and ρ : 2A
∗ → R

is a multiplicative rating map, (M, ·) is a monoid and (R,+, ·) is an idempotent semiring.
We may lift the multiplication of R to 2R in the natural way: given U, V ∈ 2R, we let
UV = {qr | q ∈ U and r ∈ V }. One may verify that (2R,∪, ·) is an idempotent semiring.
Similarly, we may lift the componentwise multiplication on M ×R to 2M×R and (2M×R,∪, ·)
is an idempotent semiring. Whenever we consider semiring structures for 2R and 2M×R,
these are the additions and multiplications that we shall use.

Unfortunately, even though 2R and 2M×R are semirings, neither ξD[ρ] : 2A
∗ → 2R nor

ζαD[ρ] : 2A
∗ → 2M×R are multiplicative: they are not monoid morphisms for multiplication.

However, it turns out that they behave almost as multiplicative rating maps when the class
D satisfies appropriate properties related to closure under concatenation. We formalize this
with a new notion: quasi-multiplicative rating maps.

Quasi-multiplicative rating maps. Let ρ : (2A
∗
,∪) → (R,+) be a rating map whose

rating set is equipped with a multiplication “·” such that (R,+, ·) is a semiring (however, ρ is
not required to be multiplicative for this multiplication). Finally, let µρ be an endomorphism
of the additive monoid (R,+) (i.e., µρ(0R) = 0R and for all r, s ∈ R, µρ(r+s) = µρ(r)+µρ(s)).
We say that ρ is quasi-multiplicative for µρ when the following axioms are satisfied:
(1) For every q, r, s ∈ R, µρ(qµρ(r)s) = µρ(qrs).
(2) For every K1,K2 ⊆ A∗, we have ρ(K1K2) = µρ(ρ(K1) · ρ(K2)).
For the sake of improved readability, we often abuse terminology and simply say that “the
rating map ρ is quasi-multiplicative”, assuming implicitly that the endomorphism µρ is
defined and fixed. Note however that this is slightly ambiguous as there might be several
endomorphisms of (R,+) satisfying the above axioms for the same rating map ρ.

Remark 6.4. Since µρ is an endomorphism of (R,+), it preserves the canonical order on R.
Given q, r ∈ R such that q ≤ r, we have µρ(q) ≤ µρ(r). Indeed, by definition, q ≤ r means
that q + r = r. Therefore, since µρ is a morphism, µρ(q) + µρ(r) = µρ(r) which means that
µρ(q) ≤ µρ(r). We use this property implicitly in proofs.



Vol. 17:3 SEPARATION FOR DOT-DEPTH TWO 24:23

Remark 6.5. Clearly, a true multiplicative rating map is always quasi-multiplicative. Indeed,
in this case, it suffices to choose µρ as the identity; µρ(r) = r for all r ∈ R.

We have the following useful fact about quasi-multiplicative rating maps.

Fact 6.6. Let ρ : 2A
∗ → R be a quasi-multiplicative rating map. For every language H ⊆ A∗,

we have ρ(H) = µρ(ρ(H)).

Proof. Axiom 2 in the definition yields ρ(H) = µρ(ρ(H) · ρ(ε)). Thus, Axiom 1 yields
µρ(ρ(H)) = µρ(µρ(ρ(H) · ρ(ε))) = µρ(ρ(H) · ρ(ε)) = ρ(H). This concludes the proof.

Additionally, we shall need the following lemma which is a straightforward adaptation of
a result proved in [PZ18a, Lemma 5.8] to quasi-multiplicative rating maps.

Lemma 6.7. Let D be a quotient-closed lattice and ρ : 2A
∗ → R be a quasi-multiplicative

rating map. For every H,L ⊆ A∗, q ∈ ID [H, ρ] and r ∈ ID [L, ρ], we have µρ(qr) ∈
ID [HL, ρ].

Proof. Let q ∈ ID [H, ρ] and r ∈ ID [L, ρ]. By definition, it suffices to prove that for every
D-cover K of HL, we have µρ(qr) ∈ I[ρ](K). Let K be a D-cover of HL, we have to
find K ∈ K such that µρ(qr) ≤ ρ(K). We use the following claim which is based on the
Myhill-Nerode theorem.

Claim. There exists a language G ∈ D which satisfies the following two properties:
(1) For all u ∈ H, there exists K ∈ K such that G ⊆ u−1K.
(2) r ≤ ρ(G)

Proof of the claim. For every u ∈ H, we let Qu = {u−1K | K ∈ K}. Clearly, Qu is a
D-cover of L since K is a cover of HL and D is closed under quotients. Moreover, we know
by hypothesis on D that all languages in K are regular. Therefore, it follows from the
Myhill-Nerode theorem that they have finitely many quotients. Thus, while there might be
infinitely many words u ∈ H, there are only finitely many distinct sets Qu. It follows that
we may use finitely many intersections to build a D-cover Q of L such that for every Q ∈ Q
and every u ∈ H, there exists K ∈ K satisfying Q ⊆ u−1K. This means that all Q ∈ Q
satisfy the first item in the claim, we now pick one which satisfies the second one as well.

Since r ∈ ID [L, ρ], and Q is a D-cover of L, we have r ∈ I[ρ](Q). Thus, we get G ∈ Q
such that r ≤ ρ(G) by definition. This concludes the proof of the claim.

We may now finish the proof of Lemma 6.7. Let G ∈ D be as defined in the claim and
consider the following set:

G =

{⋂
v∈G

Kv−1 | K ∈ K

}
.

Observe that all languages in G belong to D. Indeed, by hypothesis on D, every K ∈ K
is regular. Thus, it has finitely many right quotients by the Myhill-Nerode theorem and
the language

⋂
v∈H Kv

−1 is the intersection of finitely many quotients of languages in D.
By closure under intersection and quotients, it follows that

⋂
v∈GKv

−1 ∈ D. Moreover,
G is a D-cover of H. Indeed, given u ∈ H, we have K ∈ K such that G ⊆ u−1K by the
first assertion in the claim. Hence, for every v ∈ G, we have u ∈ Kv−1 and we obtain that
u ∈

⋂
v∈GKv

−1, which is an element of G.
Therefore, since q ∈ ID [H, ρ] by hypothesis, we have q ∈ I[ρ](G) and we obtain G′ ∈ G

such that q ≤ ρ(G′). Hence, since r ≤ ρ(G) by the second item in the claim, we have



24:24 Thomas Place and Marc Zeitoun Vol. 17:3

qr ≤ ρ(G′) · ρ(G). Since ρ is quasi-multiplicative over D and G,G′ ∈ D, it follows from
Axiom 2 in the definition of quasi-multiplicative rating maps that,

ρ(G′G) = µρ(ρ(G′) · ρ(G))

Moreover, since µρ is an endomorphism of (R,+) and qr ≤ ρ(G′) · ρ(G), we have by Fact 4.1:

µρ(qr) ≤ µρ(ρ(G′) · ρ(G))

Altogether, we get µρ(qr) ≤ ρ(G′G). Finally, observe that G′G ⊆ K for some K ∈ K.
Indeed, if w ∈ G′G, we have w = uv with u ∈ G′ and v ∈ G. Moreover, G′ =

⋂
v∈GKv

−1

for some K ∈ K by definition of G. Hence, u ∈ Kv−1 which yields w = uv ∈ K. Altogether,
we get that µρ(qr) ≤ ρ(G′G) ≤ ρ(K), which concludes the proof.

We now prove that when D is a quotient-closed lattice closed under concatenation, the
rating map ζαD[ρ] is quasi-multiplicative provided that α is a morphism and ρ is already
quasi-multiplicative (actually, this is also true for ξD[ρ] but we do not need this result). This
result is tailored to the situation in which we shall later use ζαD[ρ]: D = Pol(C).

Lemma 6.8. Let D be a quotient-closed lattice closed under concatenation, α : A∗ → M
be a morphism and ρ : 2A

∗ → R be a quasi-multiplicative rating map. Then, ζαD[ρ] is
quasi-multiplicative for the following associated endomorphism µζαD[ρ] of (2M×R,∪):

µζαD[ρ](T ) = ↓R{(s, µρ(r)) | (s, r) ∈ T} for every T ∈ 2M×R.

Proof. We already know from Proposition 6.2 that ζαD[ρ] is a rating map. Hence, we have to
prove that the axioms of quasi-multiplicative rating maps hold for the endomorphism µζαD[ρ]
of (2M×R,∪) described in the lemma (it is clear from the definition that this is indeed an
endomorphism). For the sake of avoiding clutter, we write µ for µζαD[ρ].

We start with the first axiom. Consider T,U, V ∈ 2M×R. We have to show that
µ(Tµ(U)V ) = µ(TUV ). Assume first that (s, r) ∈ µ(Tµ(U)V ). By definition of µ, this
yields (s1, r1) ∈ T , (s2, r2) ∈ µ(U) and (s3, r3) ∈ V such that s = s1s2s3 and r ≤ µρ(r1r2r3).
Since (s2, r2) ∈ µ(U), we have (s2, r

′
2) ∈ U such that r2 ≤ µρ(r

′
2). It follows that r1r2r3 ≤

r1µρ(r
′
2)r2 and since µρ is an endomorphism of (R,+), we obtain,

r ≤ µρ(r1r2r3) ≤ µρ(r1µρ(r′2)r2).

Since ρ is quasi-multiplicative, the first axiom in the definition yields that µρ(r1µρ(r′2)r2) =
µρ(r1r

′
2r3) and we get r ≤ µρ(r1r′2r3). Since (s1, r1) ∈ T , (s2, r

′
2) ∈ U and (s3, r3) ∈ V . This

yields (s, r) = (s1s2s3, r) ∈ µ(TUV ).
Conversely, assume that (s, r) ∈ µ(TUV ). By definition of µ, we get (s1, r1) ∈ T ,

(s2, r2) ∈ U and (s3, r3) ∈ V such that s = s1s2s3 and r ≤ µρ(r1r2r3). The first axiom in the
definition of quasi-multiplicative rating maps yields that µρ(r1µρ(r2)r2) = µρ(r1r2r3). There-
fore, r ≤ µρ(r1µρ(r2)r3). Moreover, since (s2, r2) ∈ U , it is immediate that (s2, µρ(r2)) ∈
µ(U) by definition of µ. Altogether, this implies that (s, r) ∈ µ(Tµ(U)V ).

It remains to establish that ζαD[ρ] fulfills the Axiom 2. Let K1,K2 ⊆ A∗. We show that,

ζαD[ρ](K1K2) = µ(ζαD[ρ](K1) · ζαD[ρ](K2)). (6.1)

We start with the right to left inclusion. Consider (s, r) ∈ µ
(
ζαD[ρ](K1) · ζαD[ρ](K2)

)
. By

definition of µ we have (s1, r1) ∈ ζαD[ρ](K1) and (s2, r2) ∈ ζαD[ρ](K2) such that s = s1s2
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and r ≤ µρ(r1r2). By definition of ζαD[ρ], this means that r1 ∈ ID
[
K1 ∩ α−1(s1), ρ

]
and

r2 ∈ ID
[
K2 ∩ α−1(s2), ρ

]
. Since D is a quotient-closed lattice, Lemma 6.7 yields that:

µρ(r1r2) ∈ ID
[
(K1 ∩ α−1(s1)) · (K2 ∩ α−1(s2)), ρ

]
.

Observe that (K1∩α−1(s1))·(K2∩α−1(s2)) ⊆ K1K2∩α−1(s1)α−1(s2). Moreover, since α is a
morphism, it is clear that α−1(s1)α−1(s2) ⊆ α−1(s1s2) = α−1(s). Altogether, this means that
we have (K1 ∩ α−1(s1)) · (K2 ∩ α−1(s2)) ⊆ K1K2 ∩ α−1(s). Thus, Fact 4.6 yields µρ(r1r2) ∈
ID
[
K1K2 ∩ α−1(s), ρ

]
. Since r ≤ µρ(r1r2), this implies r ∈ ID

[
K1K2 ∩ α−1(s), ρ

]
, which

exactly says that (s, r) ∈ ζαD[ρ](K1K2), concluding the proof for the left to right inclusion.
We turn to the converse inclusion. This is where we need D to be closed under con-

catenation. Let (s, r) ∈ ζαD[ρ](K1K2). We show that (s, r) ∈ µ
(
ζαD[ρ](K1) · ζαD[ρ](K2)

)
. By

definition, we have r ∈ ID
[
K1K2 ∩ α−1(s), ρ

]
. For every t ∈ M and i ∈ {1, 2}, we define

Hi,t as an optimal D-cover of Ki ∩ α−1(t). Consider the following finite set of languages H,

H = {H1H2 | there exist s1, s2 ∈M such that s1s2 = s, H1 ∈ H1,s1 and H2 ∈ H2,s2}.
We prove that H is a D-cover of K1K2 ∩ α−1(s). Clearly all languages in H belong to D
since D is closed under concatenation by Theorem 3.2. Let us show that H is a cover of
K1K2 ∩ α−1(s). Consider w ∈ K1K2 ∩ α−1(s), we exhibit H ∈ H such that w ∈ H. Since
w ∈ K1K2, we have w = w1w2 with w1 ∈ K1 and w2 ∈ K2. Let s1 = α(w1) and s2 = α(w2).
Altogether, this means that w1 ∈ K1 ∩ α−1(s1) and w2 ∈ K2 ∩ α−1(s2). Therefore, we have
H1 ∈ H1,s1 and H2 ∈ H2,s2 such that w1 ∈ H1 and w2 ∈ H2. This yields w ∈ H1H2. Finally,
s1s2 = α(w) = s which yields that H1H2 ∈ H by definition.

We may now finish the argument and show that (s, r) ∈ µ(ζαD[ρ](K1) · ζαD[ρ](K2)). Recall
that r ∈ ID

[
K1K2 ∩ α−1(s), ρ

]
. Thus, since H is a D-cover of K1K2 ∩ α−1(s), we have

r ∈ I[ρ](H). It follows that there exists H ∈ H such that r ≤ ρ(H). By definition
of H, we have H = H1H2 with H1 ∈ H1,s1 and H2 ∈ H2,s2 where s1, s2 ∈ M satisfy
s1s2 = s. Let r1 = ρ(H1) and r2 = ρ(H2). Since H1,s1 and H2,s2 are optimal D-covers
of K1 ∩ α−1(s1) and K2 ∩ α−1(s2) respectively, we have r1 ∈ ID

[
K1 ∩ α−1(s1), ρ

]
and

r2 ∈ ID
[
K2 ∩ α−1(s2), ρ

]
. It follows that (s1, r1) ∈ ζαD[ρ](K1) and (s2, r2) ∈ ζαD[ρ](K2).

Consequently, (s, r1r2) = (s1s2, r1r2) ∈ ζαD[ρ](K1) · ζαD[ρ](K2). Finally, by hypothesis and
since ρ is quasi-multiplicative, we have,

r ≤ ρ(H) = ρ(H1H2) = µρ(ρ(H1) · ρ(H2)) = µρ(r1r2).

By definition of µ, this yields(s, r) ∈ µ(ζαD[ρ](K1) · ζαD[ρ](K2)), concluding the proof.

We present a second result for rating maps of the form ξBool(D)[ρ] : 2A
∗ → 2R. As

expected, we shall consider the case D = Pol(C). In that case, we are not able to prove that
ξD[ρ] is quasi-multiplicative (the issue being that Bool(D) is not closed under concatenation
in general). We deal with this problem using two separate results. First, we show that
when D is a quotient-closed lattice of regular languages closed under concatenation, while
ξBool(D)[ρ] might not be quasi-multiplicative itself, it coincides with a quasi-multiplicative
rating map over languages in D. Note that this result is where we use the weak concatenation
principle that we presented for Boolean closure in Lemma 3.4.

Lemma 6.9. Let D be a quotient-closed lattice closed under concatenation and ρ : 2A
∗ → R

a multiplicative rating map. There exists a rating map τ : 2A
∗ → 2R which satisfies the two

following conditions:
(1) τ is quasi-multiplicative for the endomorphism µτ : U 7→ ↓RU of (2R,∪), and,
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(2) for every K ∈ D, we have τ(K) = ξBool(D)[ρ](K).

Proof. We first define τ : 2A
∗ → 2R. For every K ⊆ A∗, we let,

τ(K) =
⋂

{L∈D|K⊆L}

ξBool(D)[ρ](L)

It is immediate by definition that when K ∈ D, we have τ(K) = ξBool(D)[ρ](K). We have to
verify that τ is a quasi-multiplicative rating map. We need the following fact.

Fact 6.10. For all K ⊆ A∗, there exists L ∈ D such that K ⊆ L and τ(K) = ξBool(D)[ρ](L).

Proof. Since 2R is finite, there are finitely many languages L1, . . . , Ln ∈ D such that
K ⊆ Li for every i ≤ n and τ(K) = ξBool(D)[ρ](L1) ∩ · · · ∩ ξBool(D)[ρ](Ln). Since D is
a lattice by hypothesis, we have L = L1 ∩ · · · ∩ Ln ∈ D. Clearly, K ⊆ L which implies
τ(K) ⊆ ξBool(D)[ρ](L) by definition of τ . Finally, since L ⊆ Li for every i, we obtain that
ξBool(D)[ρ](L) ⊆ ξBool(D)[ρ](L1)∩ · · · ∩ ξBool(D)[ρ](Ln) = τ(K). Altogether, we conclude that
τ(K) = ξBool(D)[ρ](L).

Let us first prove that τ is a rating map. Clearly, τ(∅) = ξBool(D)[ρ](∅) = ∅. Let
K1,K2 ⊆ A∗, we prove that τ(K1 ∪K2) = τ(K1) ∪ τ(K2). Clearly, every H ∈ D containing
K1 ∪ K2 contains K1 and K2 as well. Thus, τ(K1) ∪ τ(K2) ⊆ τ(K1 ∪ K2) by definition
of τ . For the converse inclusion, Fact 6.10 yields L1, L2 ∈ D such that Ki ⊆ Li and
τ(Ki) = ξBool(D)[ρ](Li) for i = 1, 2. Since ξBool(D)[ρ] is a rating map by Proposition 6.2, we
get τ(K1)∪ τ(K2) = ξBool(D)[ρ](L1 ∪L2). Since K1 ∪K2 ⊆ L1 ∪L2, the definition of τ then
yields τ(K1 ∪K2) ⊆ τ(K1) ∪ τ(K2).

It remains to prove that τ is quasi-multiplicative for the endomorphism µτ : U 7→ ↓RU of
(2R,∪). Axiom 1 is immediate: for every T,U, V ∈ 2R, we have ↓R(T (↓RU)V ) = ↓R(TUV ).

We turn to Axiom 2. For K1,K2 ⊆ A∗, we prove that τ(K1K2) = ↓R(τ(K1) ·τ(K2)). We
start with the right to left inclusion. Let r ∈ ↓R(τ(K1) · τ(K2)). We show that r ∈ τ(K1K2).
By definition, this boils down to proving that r ∈ ξBool(D)[ρ](H) for every H ∈ D such that
K1K2 ⊆ H. We fix H for the proof. Consider the two following languages,

U1 =
⋂
v∈K2

Hv−1 and U2 =
⋂
u∈U1

u−1H.

Since D is a quotient-closed lattice of regular languages andH ∈ D, we have U1, U2 ∈ D (recall
that a regular language has finitely many quotients by the Myhill-Nerode theorem). Since
K1K2 ⊆ H, one may verify that Ki ⊆ Ui for i = 1, 2. This yields τ(Ki) ⊆ ξBool(D)[ρ](Ui) by
definition of τ . Therefore, since we have r ∈ ↓R(τ(K1) · τ(K2)), we obtain ri ∈ ξBool(D)[ρ](Ui)
(i.e. ri ∈ IBool(D) [Ui, ρ]) for i = 1, 2 such that r ≤ r1r2. By Lemma 3.1, Bool(D) is a
quotient-closed Boolean algebra. Thus, since ρ is a multiplicative rating map, Lemma 6.7
yields r1r2 ∈ IBool(D) [U1U2, ρ]. Since r ≤ r1r2, we obtain r ∈ IBool(D) [U1U2, ρ] by definition
of imprints. Finally, we have U1U2 ⊆ H by definition of U2. Hence, Fact 4.6 yields
r ∈ IBool(D) [H, ρ] = ξBool(D)[ρ](H).

We turn to the converse inclusion. Let r ∈ τ(K1K2). We show that r ∈ ↓R(τ(K1)·τ(K2)).
For i = 1, 2, Fact 6.10 yields Li ∈ D such thatKi ⊆ Li and τ(Ki) = ξBool(D)[ρ](Li). We letHi

as an optimal Bool(D)-cover (for ρ) of Li. By definition, I[ρ](Hi) = ξBool(D)[ρ](Li) = τ(Ki).
Since L1, L2 ∈ D, we may apply Lemma 3.4 to build a Bool(D)-cover H of L1L2 such
that for every H ∈ H, there exist H1 ∈ H1 and H2 ∈ H2 such that H ⊆ H1H2. By
hypothesis r ∈ τ(K1K2). Moreover, we have K1K2 ⊆ L1L2 and L1L2 ∈ D since D is
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closed under concatenation. Thus, r ∈ ξBool(D)[ρ](L1L2) by definition of τ . It follows that
r ∈ IBool(D) [L1L2, ρ] and since H is a Bool(D)-cover of L1L2, we get H ∈ H such that
r ≤ ρ(H). By definition of H, there exist H1 ∈ H1 and H2 ∈ H2 such that H ⊆ H1H2. This
implies that r ≤ ρ(H1) · ρ(H2). Finally, ρ(Hi) ∈ τ(Ki) for i = 1, 2 by definition of Hi. Thus,
we get r ∈ ↓R(τ(K1) · τ(K2)) which concludes the proof.

We complete Lemma 6.9 with another statement which requires that D is closed under
marked concatenation (this will be the case in practice since we apply these results for
D = Pol(C)). In this case as well, we use our weak concatenation principle for classes of the
form Bool(D). Specifically, we apply the variant for marked concatenation (i.e. Lemma 3.6).

Lemma 6.11. Let D be a quotient-closed lattice closed under marked concatenation and
ρ : 2A

∗ → R a multiplicative rating map. For every K1,K2 ∈ D and a ∈ A, we have,

ξBool(D)[ρ](K1aK2) = ↓R(ξBool(D)[ρ](K1) · {ρ(a)} · ξBool(D)[ρ](K2))

Proof. For the sake of avoiding clutter, we write ξ for ξBool(D)[ρ]. We start with the right to left
inclusion. Let r ∈ ↓R(ξ(K1) · {ρ(a)} · ξ(K2)). We show that r ∈ ξ(K1aK2). By definition, we
have ri ∈ ξ(Ki) for i = 1, 2 such that r ≤ r1ρ(a)r2. We have ri ∈ IBool(D) [Ki, ρ] by definition
of ξ = ξBool(D)[ρ]. Clearly, we also have ρ(a) ∈ IBool(D) [{a}, ρ]. By Lemma 3.1, Bool(D) is
a quotient-closed Boolean algebra. Thus, since ρ is a multiplicative rating map, Lemma 6.7
yields r1ρ(a)r2 ∈ IBool(D) [K1aK2, ρ]. Since r ≤ r1ρ(a)r2, we get r ∈ IBool(D) [K1aK2, ρ]. By
definition, this exactly says that r ∈ ξ(K1aK2). We turn to the converse inclusion.

Let r ∈ ξ(K1aK2). We show that r ∈ ↓R(ξ(K1)·{ρ(a)}·ξ(K2)). For i = 1, 2, we let Hi as
an optimal Bool(D)-cover (for ρ) of Ki for i = 1, 2. By definition, we have I[ρ](Hi) = ξ(Ki).
Since K1,K2 ∈ D, we may apply Lemma 3.6 to build a Bool(D)-cover H of K1aK2 such that
for every H ∈ H, there exist H1 ∈ H1 and H2 ∈ H2 such that H ⊆ H1aH2. By hypothesis,
r ∈ ξ(K1aK2) = IBool(D) [K1aK2, ρ]. Therefore, since H is a Bool(D)-cover of K1aK2, we
have r ≤ ρ(H) for some H ∈ H. The definition of H then yields H1 ∈ H1 and H2 ∈ H2

such that H ⊆ H1aH2. This implies that r ≤ ρ(H1) · ρ(a) · ρ(H2). Finally, ρ(Hi) ∈ ξ(Ki)
for i = 1, 2 by definition of Hi. This yields r ∈ ↓R(ξ(K1) · {ρ(a)} · ξ(K2)) which concludes
the proof.

7. Characterization of Pol(C)-optimal imprints

In this section, we recall the theorem of [Pla18] for classes of the form Pol(C) (when C is
a finite quotient-closed Boolean algebra). It states a characterization of Pol(C)-optimal
imprints: for a C-compatible morphism α : A∗ → M and a multiplicative rating map
ρ : 2A

∗ → R, PαPol(C)[ρ] is characterized as the least subset of M × R satisfying specific
properties. When used in the special case when ρ is nice, one obtains a least fixpoint procedure
for computing PαPol(C)[ρ] from α and ρ. By Proposition 4.9, this yields an algorithm for
solving Pol(C)-covering. However, deciding Pol(C)-covering is not our motivation here: we
need this characterization in order to use it as a subresult when proving Theorem 5.3.

Unfortunately, there are technical complications. When we apply the characterization as a
subresult, we shall do so for rating maps which are not multiplicative, only quasi-multiplicative
(as expected, we build them using the constructions presented in Section 6). This case is
not covered by the statement of [Pla18], which only deals with (true) multiplicative rating
maps. Consequently, we have to generalize this statement. We avoid redoing the whole
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proof, by obtaining the generalized statement as a corollary of the original one from [Pla18].
Additionally, we take this opportunity to slightly tweak the original statement in order to
better accommodate our use of the theorem in Sections 8 and 9.

We first present the theorem and then focus on its proof. We fix an arbitrary finite
quotient-closed Boolean algebra C for the presentation.

7.1. Statement. Consider a C-compatible morphism α : A∗ → M and a rating map
ρ : 2A

∗ → R which is quasi-multiplicative (there is no other constraint on ρ, in particular,
it need not be nice). Recall that since α is C-compatible, we know that for every s ∈ M ,
[s]C is well-defined as a ∼C-class containing α−1(s). We say that a subset S ⊆ M × R is
Pol(C)-saturated (for α and ρ) when it satisfies the following properties:
(1) Trivial elements: For every w ∈ A∗, (α(w), ρ(w)) ∈ S.
(2) Downset: We have S = ↓RS.
(3) Multiplication: For every (s1, r1), (s2, r2) ∈ S, we have (s1s2, r1r2) ∈ S.
(4) Pol(C)-closure: For every pair of (multiplicative) idempotents (e, f) ∈ S, we have:

(e, f · ρ([e]C) · f) ∈ S.

We prove the following statement as a corollary of [Pla18, Theorem 6.5].

Theorem 7.1. Consider a C-compatible morphism α : A∗ →M and a quasi-multiplicative
rating map ρ : 2A

∗ → R. Moreover, let S be the least Pol(C)-saturated subset of M × R.
Then,

PαPol(C)[ρ] = ↓R
{

(s, µρ(r)) | (s, r) ∈ S
}
.

Recall that a (true) multiplicative rating map ρ : 2A
∗ → R is also quasi-multiplicative

for the endomorphism µρ defined as the identity on R (see Remark 6.5). Thus, in this case,
Theorem 7.1 yields that PαPol(C)[ρ] = ↓RS = S where S is the least Pol(C)-saturated subset of
M ×R. This is the original statement of [Pla18]. When ρ is a nice multiplicative rating map,
it is clear that one may compute the least Pol(C)-saturated subset of M ×R with a least
fixpoint algorithm. Therefore, we get an algorithm for Pol(C)-covering by Proposition 4.9.

Remark 7.2. There is a difference between Theorem 7.1 for Pol(C) and Theorem 5.3 for
BPol(C): the latter is restricted to nice rating maps while this is not the case for the former.
As explained in Remark 5.4, while it is easy to miss, this difference is crucial.

7.2. Proof of Theorem 7.1. We fix a C-compatible morphism α : A∗ → M and a quasi-
multiplicative rating map ρ : 2A

∗ → R. Since ρ is quasi-multiplicative, we have a semiring
structure (R,+, ·) on R and an endomorphism µρ of (R,+) satisfying the appropriate axioms.
Finally, we let S as the least Pol(C)-saturated subset of M ×R for α and ρ. We show that
PαPol(C)[ρ] = ↓R

{
(s, µρ(r)) | (s, r) ∈ S

}
.

We first prove that the surjective restriction of ρ is a true multiplicative rating map (for
a new multiplication on the rating set which is distinct from “·”). This allows us to apply the
theorem of [Pla18].

We define a new multiplication on R that we denote by “�”. For every q, r ∈ R, we
define q � r = µρ(qr). It is immediate from Axiom 1 in the definition of quasi-multiplicative
rating maps that “�” is associative. Moreover, since µρ is an endomorphism of (R,+), one
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may verify that “�” distributes over addition and that the element 0R is a zero for “�”. Yet,
note that (R,+,�) need not be a semiring: “�” might not have a neutral element.

Axiom 2 in the definition of quasi-multiplicative rating maps solves this issue. It implies
that for K1,K2 ⊆ A∗, we have ρ(K1K2) = ρ(K1) � ρ(K2). Thus, the rating map ρ is a
semigroup morphism from (2A

∗
, ·) to (R, ·). Let Q = ρ(2A

∗
) ⊆ R and let τ : 2A

∗ → Q be the
surjective restriction of ρ. It follows that (Q,+,�) is an idempotent semiring (the neutral
element is ρ(ε) = τ(ε) ∈ Q) and τ : (2A

∗
,∪, ·) → (Q,+,�) is a semiring morphism, i.e. a

multiplicative rating map. Additionally, since we defined τ as the surjective restriction of ρ,
it is immediate that,

PαPol(C)[ρ] = ↓R
(
PαPol(C)[τ ]

)
Moreover, since τ is a true multiplicative rating map, we may apply the theorem of [Pla18]. Let
T be the least Pol(C)-saturated of M ×Q for α and τ . We obtain from [Pla18, Theorem 6.5]
that PαPol(C)[τ ] = T . Hence, it now suffices to prove that,

↓RT = ↓R{(s, µρ(r)) | (s, r) ∈ S}. (7.1)

Indeed, this clearly implies PαPol(C)[ρ] = ↓R
{

(s, µρ(r)) | (s, r) ∈ S
}
which concludes the proof

of Theorem 7.1.

Remark 7.3. We are dealing with two strongly connected Pol(C)-saturated sets. Namely,
S ⊆ M × R and T ⊆ M ×Q ⊆ M × R. However, there is a subtle difference between the
two. By definition, S is Pol(C)-saturated for α and ρ. This notion depends on the original
multiplication “·” of R. On the other hand, T is Pol(C)-saturated for α and τ . By definition
of τ , this notion depends on the new multiplication “�” of Q.

It now remains to prove (7.1). We handle the two inclusions separately. First, we
show that ↓RT ⊆ ↓R{(s, µρ(r)) | (s, r) ∈ S}. This boils down to proving that for every
(s, q) ∈ T , we have r ∈ R such that (s, r) ∈ S and q ≤ µρ(r). By definition, T is the least
Pol(C)-saturated subset of M ×Q for α and τ . Therefore, every pair (s, q) ∈ T is built from
trivial elements using downset, multiplication and Pol(C)-closure (here, the multiplication is
“�” on Q, see Remark 7.3). We proceed by induction on this construction.

If (s, q) is a trivial element, we have w ∈ A∗ such that s = α(w) and q = τ(w) = ρ(w).
We have (s, q) ∈ S since S is Pol(C)-saturated for α and ρ. Moreover, q = µρ(q) by Fact 6.6
since q = ρ(w) which concludes this case. We turn to downset: we have q′ ∈ R such that
(s, q′) ∈ T and q ≤ q′. Induction yields r ∈ R such that (s, r) ∈ S and q′ ≤ µρ(r). Thus,
q ≤ µρ(r) which concludes this case. We turn to multiplication. In that case, we have
(s1, q1), (s2, q2) ∈ T such that s = s1s2 and q = q1 � q2. For i = 1, 2, induction yields ri ∈ R
such that (si, ri) ∈ S and qi ≤ µρ(ri). Since S is Pol(C)-saturated for α and ρ, we obtain
(s, r1r2) ∈ S. Moreover, Axiom 1 in the definition of quasi-multiplicative rating maps yields,

q = q1 � q2 = µρ(q1q2) ≤ µρ(µρ(r1)µρ(r2)) = µρ(r1r2)

This concludes the proof for this case. It remains to handle Pol(C)-closure. In that case, we
have a pair of idempotents (e, f) ∈ T such that s = e and q = f � τ([e]C)� f (here, f is an
idempotent of (R,�) since T is Pol(C)-saturated for α and τ). Induction yields r ∈ R such
that (e, r) ∈ S and f ≤ µρ(r). Since (R, ·) is a finite monoid, there exists a number p ≥ 1
such that rp is an idempotent of (R, ·). Since S is Pol(C)-saturated for α and ρ, we obtain
from closure under multiplication that (e, rp) ∈ S. Together with Pol(C)-closure, this yields
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(e, rpρ([e]C)r
p) ∈ S. Since f ≤ µρ(r) and f is an idempotent of (R,�), we obtain,

f � τ([e]C)� f = f � ρ([e]C)� f ≤ µρ(rpρ([e]C)r
p)

This concludes the proof for the inclusion ↓RT ⊆ ↓R{(s, µρ(r)) | (s, r) ∈ S} in (7.1).

We turn to the converse inclusion: ↓R{(s, µρ(r)) | (s, r) ∈ S} ⊆ ↓RT . It suffices to
show that for every (s, r) ∈ S, we have (s, µρ(r)) ∈ ↓RT . By definition, S is the least
Pol(C)-saturated subset of M × R for α and ρ. Hence, every pair (s, r) ∈ S is built from
trivial elements using downset, multiplication and Pol(C)-closure (here, the multiplication is
“·” on R, see Remark 7.3). We proceed by induction on this construction.

If (s, r) is a trivial element, we have w ∈ A∗ such that s = α(w) and r = ρ(w) = τ(w). By
Fact 6.6, we have µρ(r) = ρ(w). Thus, (s, µρ(r)) ∈ T ⊆ ↓RT since T is Pol(C)-saturated for α
and τ . We turn to downset: we have r′ ∈ R such that (s, r′) ∈ T and r ≤ r′. Induction yields
(s, µρ(r

′)) ∈ ↓RT . Thus, since µρ(r) ≤ µρ(r′), we get (s, µρ(r)) ∈ ↓R↓RT = ↓RT as desired.
We turn to multiplication. In that case, we have (s1, r1), (s2, r2) ∈ S such that s = s1s2 and
r = r1r2. By induction, we obtain that (si, µρ(ri)) ∈ ↓RT for i = 1, 2. This yields q1, q2 ∈ Q
such that (si, qi) ∈ T and µρ(ri) ≤ qi for i = 1, 2. Since T is Pol(C)-saturated for α and τ ,
it follows that (s, q1 � q2) ∈ T by closure under multiplication. Moreover,

µρ(r) = µρ(r1r2) = µρ(µρ(r1)µρ(r2)) ≤ µρ(q1q2) = q1 � q2

Altogether, we obtain (s, µρ(r)) ∈ ↓RT as desired. It remains to handle Pol(C)-closure. We
have a pair of multiplicative idempotents (e, f) ∈ S such that s = e and r = f · ρ([e]C) · f
(here, f is an idempotent of (R, ·) since S is Pol(C)-saturated for α and ρ). By induction,
we have (e, µρ(f)) ∈ ↓RT . Thus, we obtain q ∈ Q such that (e, q) ∈ T and µρ(f) ≤ q. Since
(R,�) is a finite semigroup, there exists a number p ≥ 1 such the multiplication of p copies
of q with “�” is an idempotent of (R,�). We write g ∈ R for this idempotent. Since T is
Pol(C)-saturated for α and τ , we obtain from closure under multiplication that (e, g) ∈ T .
Together with Pol(C)-closure, this yields (e, g � τ([e]C)� g) ∈ T . Since µρ(f) ≤ q and f is
an idempotent of (R, ·), one may verify that,

µρ(f · ρ([e]C) · f) = µρ(f · τ([e]C) · f) ≤ g � τ([e]C)� g

Altogether, we obtain (s, µρ(r)) = (e, µρ(f · ρ([e]C) · f)) ∈ ↓RT as desired. This concludes
the proof.

8. Soundness in Theorem 5.3

We may now start the proof of Theorem 5.3. In this section, we establish that the statement
is sound. The proof is divided in two parts. First, we present a preliminary result, which
applies to the Boolean closure operation in general, i.e., to classes of the form Bool(D)
when D is an arbitrary lattice. Then, we apply this preliminary result in the special case
when D = Pol(C) (for C a finite quotient-closed Boolean algebra) to establish the soundness
direction in Theorem 5.3.
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8.1. Preliminary result. We first introduce terminology that we need to state our result.
We fix a lattice D. Moreover, we let ρ : 2A

∗ → R be a rating map. Let us recall the definition
of the rating map ζαD[ρ], defined page 21, which also depends on a map α : A∗ →M :

ζαD[ρ] : (2A
∗
,∪) → (2M×R,∪)

K 7→
{

(s, r) | r ∈ ID
[
α−1(s) ∩K, ρ

] }
.

Using induction, we define a rating map τn : 2A
∗ → Qn for every n ∈ N. When n = 0,

the rating set Q0 is (2R,∪) and τ0 is defined as follows,

τ0 : (2A
∗
,∪) → (2R,∪)

K 7→ {ρ(w) | w ∈ K}.
It is immediate by definition that τ0 is indeed a rating map (i.e., a monoid morphism).

Assume now that n ≥ 1 and that τn−1 : 2A
∗ → Qn−1 is defined. Recall that ρ∗ : A∗ → R

denotes the canonical map associated to the rating map ρ. We define τn as:

τn = ζρ∗D [τn−1].

By Proposition 6.2, τn is indeed a rating map. By definition, this means that for all n ≥ 1,
the rating set Qn of τn is

Qn = (2R×Qn−1 ,∪).

We complete this definition with maps fn : Qn → 2R for n ∈ N, defined by induction on n.
• For n = 0, let T ∈ Q0 = 2R. We define:

f0(T ) = ↓R{r1 + · · ·+ rk | r1, . . . , rk ∈ T}.
• For n ≥ 1, let T ∈ Qn = 2R×Qn−1 . We define:

fn(T ) = ↓R
{
r1 + · · ·+ rk |

there exist (r1, T1), . . . , (rk, Tk) ∈ T such that
r1 + · · ·+ rk ∈ fn−1(Ti) for every i ≤ k

}
.

The following fact is immediate from the definition.

Fact 8.1. For every n ∈ N and U,U ′ ∈ Qn such that U ⊆ U ′, we have fn(U) ⊆ fn(U ′).

We may now state the preliminary result that we shall use in our soundness direction of
Theorem 5.3.

Proposition 8.2. Consider a language L ∈ D. Then, the following inclusion holds:⋂
n∈N

fn(τn(L)) ⊆ IBool(D) [L, ρ] .

Proof. The proof is based on the following more involved statement which is proved by
induction on n ∈ N.

Lemma 8.3. Let n ∈ N and L,K0, . . . ,Kn, H0, . . . ,Hn ∈ D such that {Ki \Hi | i ≤ n} is
a cover of L. Then, for every s ∈ f2n(τ2n(L)), there exists j ≤ n such that s ≤ ρ(Kj \Hj).

Before proving the lemma, let us use it to prove the first property described in Proposi-
tion 8.2. Let L ∈ D be a language. We write S for the set,

S =
⋂
n∈N

fn(τn(L)).

We show that S ⊆ IBool(D) [L, ρ]. First, we prove the following fact which describes a special
optimal Bool(D)-cover of L for ρ.
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Fact 8.4. There exist n ∈ N and K0, . . . ,Kn, H0, . . . ,Hn ∈ D such that {Ki \Hi | i ≤ n} is
an optimal Bool(D)-cover of L for ρ.

Proof. Let H be an arbitrary optimal Bool(D)-cover of L for ρ. Each V ∈ H is the Boolean
combination of languages in D. We put it in disjunctive normal form. Each disjunct is
an intersection languages belonging to D, or whose complement belongs to D. Since D is
lattice, both D and the complement class co-D are closed under intersection. Therefore,
each disjunct in the disjunctive normal form of V is actually of the form K \H, where K,H
both belong to D. We let K as the set of all languages K \H which are a disjunct in the
disjunctive normal form of some V ∈ H. Clearly, K remains a Bool(D)-cover of L since H
was one. Moreover, it is immediate that I[ρ](K) ⊆ I[ρ](H) since every language in K is
included in a language of H. Hence, K remains an optimal Bool(D)-cover of L for ρ since
H was one.

We let n ∈ N and K0, . . . ,Kn, H0, . . . ,Hn ∈ D be as defined in Fact 8.4. We may now
prove that S ⊆ IBool(D) [L, ρ]. Let s ∈ S. By hypothesis on S, we have s ∈ f2n(τ2n(L)).
Therefore, since {Ki\Hi | i ≤ n} is by definition a cover of L, it is immediate from Lemma 8.3
that there exists j ≤ n such that s ≤ ρ(Kj \ Hj). Since {Ki \ Hi | i ≤ n} is an optimal
Bool(D)-cover of L for ρ, this implies that s ∈ IBool(D) [L, ρ] which concludes the main proof.

We turn to the proof of Lemma 8.3. The argument is an induction on n ∈ N. We start
with the base case n = 0.

Base case. Consider L,K0, H0 ∈ D such that {K0\H0} is a cover of L and let s ∈ f0(τ0(L)).
We have to show that s ≤ ρ(K0 \H0). By definition of f0, we get r1, . . . , rk ∈ τ0(L) such
that s ≤ r1 + · · ·+ rk. Moreover, the definition of τ0 yields that for every i ≤ k, ri = ρ(wi)
for some wi ∈ L. Therefore, ri ≤ ρ(L) for every i ≤ k and since R is idempotent for addition,
s ≤ r1 + · · ·+ rk ≤ ρ(L). Finally, since {K0 \H0} is a cover of L, we have L ⊆ K0 \H0 and
we get s ≤ ρ(K0 \H0), finishing the argument for the base case.

Inductive step. We now assume that n ≥ 1. Let L,K0, . . . ,Kn, H0, . . . ,Hn ∈ D such that
{Ki \Hi | i ≤ n} is a cover of L and let s ∈ f2n(τ2n(L)). We have to exhibit j ≤ n such that
s ≤ ρ(Kj \Hj). Using the hypothesis that s ∈ f2n(τ2n(L)), we prove the following fact.

Fact 8.5. There exists (r, U) ∈ τ2n(L) such that s ∈ f2n−1(U).

Proof. By definition of f2n, the hypothesis that s ∈ f2n(τ2n(L)) yields (r′1, U
′
1), . . . , (r′k, U

′
k) ∈

τ2n(L) such that r′1 + · · · + r′k ∈ f2n−1(U ′i) for every i ≤ k and s ≤ r′1 + · · · + r′k. We let
(r, U) = (r′1, U

′
1) ∈ τ2n(L). We have r′1 + · · ·+ r′k ∈ f2n−1(U) and s ≤ r′1 + · · ·+ r′k. Hence,

since f2n−1(U) is closed under downset (by definition), this implies s ∈ f2n−1(U).

Recall that by definition, τ2n is the rating map ζρ∗D [τ2n−1]. Hence, (r, U) ∈ τ2n(L) means
that:

U ∈ ID
[
ρ−1∗ (r) ∩ L, τ2n−1

]
,

which yields, by Fact 4.6, that,
U ∈ ID [L, τ2n−1] .

Since {Ki \Hi | i ≤ n} is a cover of L, L,K1, . . . ,Kn ∈ D and D is a lattice, it follows that
{L ∩Ki | i ≤ n} is a D-cover of L. Therefore, since U ∈ ID [L, τ2n−1], we obtain some ` ≤ n
such that U ⊆ τ2n−1(L ∩K`).

Furthermore, since s ∈ f2n−1(U), we may unravel the definition of f2n−1 which yields
(r1, U1), . . . , (rk, Uk) ∈ U such that r1 + · · · + rk ∈ f2(n−1)(Um) for every m ≤ k and
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s ≤ r1 + · · ·+ rk. Note that by definition of f2(n−1), this also implies that s ∈ f2(n−1)(Um)
for every m ≤ k. We now distinguish two sub-cases.

Sub-case 1: Assume that for every m ≤ k, we have,

ρ−1∗ (rm) ∩ (K` \H`) 6= ∅

This means that for every m ≤ k, we have wm ∈ K`\H` such that ρ(wm) = rm. In particular,
rm = ρ(wm) ≤ ρ(K` \H`) for every m ≤ k. Finally, since R is idempotent for addition, we
get r1 + · · ·+ rk ≤ ρ(K` \H`). Since s ≤ r1 + · · ·+ rk, we get s ≤ ρ(K` \H`) and Lemma 8.3
holds for j = ` in this case.

Sub-case 2: Conversely, assume that there exists m ≤ k such that,

ρ−1∗ (rm) ∩ (K` \H`) = ∅

This implies that K` ∩ ρ−1∗ (rm) ⊆ K` ∩ H`. Recall that (rm, Um) ∈ U and that U ⊆
τ2n−1(L ∩K`). Since τ2n−1 is the rating map ζρ∗D [τ2(n−1)] by definition, it follows that,

Um ∈ ID
[
ρ−1∗ (rm) ∩ L ∩K`, τ2(n−1)

]
Combined with the inclusion K` ∩ ρ−1∗ (rm) ⊆ K` ∩H` and Fact 4.6, this yields that,

Um ∈ ID
[
L ∩K` ∩H`, τ2(n−1)

]
Since D is a lattice, it is clear that {L ∩K` ∩H`} is a D-cover of L ∩K` ∩H`. Thus, we
obtain that Um ⊆ τ2(n−1)(L ∩K` ∩H`). Therefore, since s ∈ f2(n−1)(Um) by definition of
Um, we obtain from Fact 8.1 that,

s ∈ f2(n−1)(τ2(n−1)(L ∩K` ∩H`))

Finally, since {Ki \Hi | i ≤ n} was a cover of L, it is clear that {Ki \Hi | i ≤ n and i 6= `}
(of size n− 1) is a cover of L∩K` ∩H`. Therefore, it follows by induction on n in Lemma 8.3
that there exists j ≤ n (with j 6= `) such that s ≤ ρ(Kj \Hj), finishing the proof.

8.2. Soundness proof for Theorem 5.3. We may now come back to our main objec-
tive: soundness in Theorem 5.3. We fix a finite quotient-closed Boolean algebra C and a
multiplicative rating map ρ : 2A

∗ → R. We show that for every BPol(C)-saturated subset
S ⊆ (A∗/∼C)×R (for ρ), we have S ⊆ PCBPol(C)[ρ].

Remark 8.6. Note that we do not use the hypothesis that ρ is nice for this direction. This
is only needed for completeness.

By Theorem 3.2, Pol(C) is a lattice. Therefore, we may instantiate the definitions and
results presented at the beginning of the section for our nice multiplicative rating map
ρ : 2A

∗ → R in the special case when D = Pol(C). We keep using the same notation: we
have the rating maps τn : 2A

∗ → Qn (as we prove below, they are now quasi-multiplicative
since D = Pol(C) and ρ is multiplicative) and the maps fn : Qn → 2R.

We complete Proposition 8.2 with another statement specific to this special case. In
fact, the proof of this second proposition is based on Theorem 7.1, the characterization of
Pol(C)-optimal imprints (we apply it to the rating maps τn). Together, these two results
imply soundness in Theorem 5.3.
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Proposition 8.7. Consider S ⊆ (A∗/∼C)×R which is BPol(C)-saturated for ρ. Then, the
following inclusion holds for every D ∈ A∗/∼C,

S(D) ⊆
⋂
n∈N

fn(τn(D)).

When put together, Proposition 8.2 and Proposition 8.7 imply soundness in Theorem 5.3.
Indeed, consider a BPol(C)-saturated set S ⊆ (A∗/∼C)×R. We show that S ⊆ PCBPol(C)[ρ].
This amounts to proving that for every D ∈ A∗/∼C , we have,

S(D) ⊆ PCBPol(C)[ρ](D) = IBPol(C) [D, ρ] .

It is immediate from Proposition 8.7 that,

S(D) ⊆
⋂
n∈N

fn(τn(D)).

Moreover, since D ∈ A∗/∼C , we have D ∈ C, which implies that D ∈ Pol(C). Therefore,
Proposition 8.2 yields that, ⋂

n∈N
fn(τn(D)) ⊆ IBPol(C) [D, ρ] .

Altogether, we get the desired inclusion: S(D) ⊆ IBPol(C) [D, ρ]. This concludes the soundness
proof.

It remains to prove Proposition 8.7. We start with a few additional results about
the rating maps τn that we are able to prove using our new hypotheses (i.e., that ρ is
multiplicative and D = Pol(C)).
Preliminaries. Recall that ρ is multiplicative. Hence, R is a semiring (R,+, ·). Since
Q0 = 2R and Qn = 2R×Qn−1 for all n ≥ 1, we may lift the multiplication of R to all the rating
sets Qn in the natural way. It is simple to verify that (Qn,∪, ·) is a semiring for every n ∈ N.
We first show that the rating maps τn are quasi-multiplicative for these multiplications.

Lemma 8.8. The rating map τ0 : 2A
∗ → Q0 is multiplicative. Moreover, for every n ≥ 1,

the rating map τn : 2A
∗ → Qn is quasi-multiplicative for the following endomorphism µτn of

(Qn,∪):

µτn(T ) = ↓Qn−1{(r, µτn−1(V )) | (r, V ) ∈ T} for every T ∈ Qn = 2R×Qn−1 .

Proof. Recall that Q0 = 2R and τ0(K) = {ρ(w) | w ∈ K} for every language K. It is
immediate that τ0 is multiplicative since ρ is multiplicative by hypothesis. The result for
the rating maps τn for n ≥ 1 is then immediate from Lemma 6.8 using induction on n since
Pol(C) is a quotient-closed lattice closed under concatenation by Theorem 3.2.

We complete this result with two lemmas which connect the hypothesis that the rating
maps τn are quasi-multiplicative with the maps fn : Qn → 2R.

Lemma 8.9. For every n ∈ N and T ∈ Qn, we have fn(T ) ⊆ fn(µτn(T )).

Proof. We proceed by induction on n ∈ N. When n = 0, τ0 is multiplicative and the endomor-
phism µτ0 of (Q0,∪) is the identity on Q0. Hence, the lemma is immediate. Assume now that
n ≥ 1. Consider T ∈ Qn. Let r ∈ fn(T ) ⊆ R. By definition, we have (r1, T1), . . . , (rk, Tk) ∈ T
such that r1 + · · · + rk ∈ fn−1(Ti) for every i ≤ k and r ≤ r1 + · · · + rk. By definition of
µτn in Lemma 8.8, we have (r1, µτn−1(T1)), . . . , (rk, µτn−1(Tk)) ∈ µτn(T ). Moreover, since
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r1 + · · · + rk ∈ fn−1(Ti) for every i ≤ k it is immediate by induction hypothesis that
r1 + · · ·+ rk ∈ fn−1(µτn−1(Ti)) for every i ≤ k. Altogether, we obtain that r ∈ fn(µτn(T )),
finishing the proof of the lemma.

Lemma 8.10. For every n ∈ N and T, T ′ ∈ Qn, we have fn(T ) · fn(T ′) ⊆ fn(T · T ′).

Proof. We proceed by induction on n ∈ N. We first handle the case n = 0. Let r ∈
f0(T ) · f0(T ′). We have s ∈ f0(T ) and s′ ∈ f0(T ′) such that r = ss′. By definition, this
yields r1, . . . , rk ∈ T and r′1, . . . , r′k′ ∈ T ′ such that s ≤ r1 + · · ·+ rk and s′ ≤ r′1 + · · ·+ r′k′ . It
follows that ss′ ≤

∑
i≤k
∑

j≤k′ rir
′
j . Since rir

′
j ∈ T · T ′ for every i ≤ k and j ≤ k′, it follows

that ss′ ∈ f0(T · T ′).
Assume now that n ≥ 1. Let r ∈ fn(T ) ·fn(T ′). We have s ∈ fn(T ) and s′ ∈ fn(T ′) such

that r = ss′. By definition, this yields (r1, T1), . . . , (rk, Tk) ∈ T and (r′1, T
′
1), . . . , (r

′
k′ , T

′
k′) ∈

T ′ such that,
• s ≤ r1 + · · ·+ rk and r1 + · · ·+ rk ∈ fn−1(Ti) for every i ≤ k.
• s′ ≤ r′1 + · · ·+ r′k′ and r

′
1 + · · ·+ r′k′ ∈ fn−1(T ′j) for every j ≤ k′.

Clearly, we have ss′ ≤
∑

i≤k
∑

j≤k′ rir
′
j . Moreover, for every i ≤ k and j ≤ k′, we have,∑

i≤k

∑
j≤k′

rir
′
j ∈ fn−1(Ti) · fn−1(T ′j).

By induction hypothesis, this yields,∑
i≤k

∑
j≤k′

rir
′
j ∈ fn−1(Ti · T ′j).

Finally, it is immediate that for every i ≤ k and j ≤ k′, we have (rir
′
j , Ti · T ′j) ∈ T · T ′.

Altogether, this yields ss′ ∈ fn(T · T ′) by definition.

Proof of Proposition 8.7. We now turn to the main argument. We fix S ⊆ (A∗/∼C)×R
which is BPol(C)-saturated (for ρ). We have to show that S(D) ⊆ fn(τn(D)) for every
n ∈ N and D ∈ A∗/∼C . The argument is an induction on n ∈ N.
Base case. Assume that n = 0 and let D ∈ A∗/∼C . We show that S(D) ⊆ f0(τ0(D)). Let
r ∈ S(D), i.e., (D, r) ∈ S. Since S is BPol(C)-saturated, we get from (5.1) that there exist
r1, . . . , rk ∈ R such that r ≤ r1 + · · ·+ rk and (D, ri, {r1 + · · ·+ rk}) ∈ RρS for every i ≤ k.
For i ≤ k, one may verify from the definition of RρS that since (D, ri, {r1 + · · ·+ rk}) ∈ RρS ,
we have wi ∈ A∗ such that [wi]C = D and ρ(wi) = ri. In particular, w1, . . . , wk ∈ D and it is
therefore immediate from the definition of τ0 that r1, . . . , rk ∈ τ0(D). Since r ≤ r1 + · · ·+ rk,
we obtain r ∈ f0(τ0(D)) by definition of f0, which concludes the proof.
Inductive step. We now assume that n ≥ 1. The argument is based on the following lemma,
which is where we use the characterization of Pol(C)-optimal imprints (i.e. Theorem 7.1):
we apply it to the quasi-multiplicative rating map τn−1. Moreover, this is also where we
apply induction on n in Proposition 8.7.

Lemma 8.11. For all (D, q, U) ∈ RρS, we have T ∈ Qn−1 satisfying the following properties:

T ∈ IPol(C)
[
ρ−1∗ (q) ∩D, τn−1

]
and U ⊆ fn−1(T ).

We start by explaining how Lemma 8.11 can be applied to complete the main proof.
Consider D ∈ A∗/∼C . We show that S(D) ⊆ fn(τn(D)). Let r ∈ S(D) (i.e., (D, r) ∈ S).
We prove that r ∈ fn(τn(D)).
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Since S is BPol(C)-saturated, we get from (5.1) that there exist r1, . . . , rk ∈ R such
that r ≤ r1 + · · ·+ rk and (D, ri, {r1 + · · ·+ rk}) ∈ RρS for every i ≤ k. Lemma 8.11 then
yields Ti ∈ Qn−1 such that Ti ∈ IPol(C)

[
ρ−1∗ (ri) ∩D, τn−1

]
and r1 + · · ·+ rk ∈ fn−1(Ti) for

every i ≤ k. By definition, τn is the rating map ζρ∗Pol(C)[τn−1] : 2A
∗ → 2R×Qn−1 . Thus, if we

unravel the definition, the hypothesis that Ti ∈ IPol(C)
[
ρ−1∗ (ri) ∩D, τn−1

]
exactly says that,

(ri, Ui) ∈ τn(D).

Since we also have r ≤ r1 + · · · + rk and r1 + · · · + rk ∈ fn−1(Ti) for every i ≤ k, it is
immediate by definition of fn that r ∈ fn(τn(D)), finishing the proof of Proposition 8.7. It
remains to prove Lemma 8.11.

Proof of Lemma 8.11. We first apply Theorem 7.1 and then use the result to prove the
lemma. Clearly, the Cartesian product (A∗/∼C) × R is a monoid when equipped with
the componentwise multiplication. Let α : A∗ → (A∗/∼C) × R be the morphism defined
by α(w) = ([w]C , ρ(w)). Clearly, α is a C-compatible morphism: for every pair (D, r) ∈
(A∗/∼C)×R, it suffices to define [(D, r)]C = D. Consequently, since we also know that τn−1
is quasi-multiplicative by Lemma 8.8, we may apply Theorem 7.1 to obtain a description of
the set PαPol(C)[τn−1] ⊆ (A∗/∼C)×R×Qn−1. Consider the least Pol(C)-saturated subset X
of (A∗/∼C)×R×Qn−1 for α and τn−1. Theorem 7.1 yields that,

PαPol(C)[τn−1] = ↓Qn−1

{
(D, q, µτn−1(P )) | (D, q, P ) ∈ X

}
. (8.1)

The proof of Lemma 8.11 is now based on the following lemma which we shall prove by
induction on the construction of an element of RρS .

Lemma 8.12. For every (D, q, U) ∈ RρS. There exists P ∈ Qn−1 such that (D, q, P ) ∈ X
and U ⊆ fn−1(P ).

Let us first use Lemma 8.12 to conclude the proof of Lemma 8.11. Let (D, q, U) ∈ RρS .
We have to exhibit T ∈ Qn−1 such that (D, q, T ) ∈ PαPol(C)[τn−1] and U ⊆ fn−1(T ).

Using Lemma 8.12, we get P ∈ Qn−1 such that (D, q, P ) ∈ X and U ⊆ fn−1(P ). In
view of (8.1), this yields,

(D, q, µτn−1(P )) ∈ PαPol(C)[τn−1].
By definition of the set PαPol(C)[τn−1] and of the morphism α, this exactly says that,

µτn−1(P ) ∈ IPol(C)
[
ρ−1∗ (q) ∩D, τn−1

]
.

Moreover, Lemma 8.9 yields that U ⊆ fn−1(P ) ⊆ fn−1(µτn−1(P )). Hence, the desired
property holds for T = µτn−1(P ) and we are finished.

It remains to prove Lemma 8.12. Consider (D, q, U) ∈ RρS . By definition of RρS , we know
that (D, q, U) ∈ RρS is built from trivial elements using three operations: extended downset,
multiplication and S-restricted closure. We proceed by induction on this construction. There
are four cases depending on the last operation used to build (D, q, U) ∈ RρS .
Base case: trivial elements. In that case, there exists w ∈ A∗ such that D = [w]C ,
q = ρ(w) and U = {ρ(w)}. Since X is Pol(C)-saturated for ρ∗ and τn−1, we know that
([w]C , ρ(w), τn−1(w)) ∈ X. Hence, it remains to prove that U = {ρ(w)} ⊆ fn−1(τn−1(w)). It
will then be immediate that Lemma 8.12 holds for P = τn−1(w). This is immediate from the
following fact.

Fact 8.13. For every m ∈ N, we have ρ(w) ∈ fm(τm(w)).
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Proof. This is a simple induction on m. When m = 0, we have ρ(w) ∈ τ0(w) by definition
of τ0. It follows that ρ(w) ∈ f0(τ0(w)) by definition of f0. Assume now that m ≥ 1. Recall
that τm is ζρ∗Pol(C)[τm−1] : 2A

∗ → 2R×Qm−1 by definition. Therefore,

τm(w)(ρ(w)) = IPol(C)
[
ρ−1∗ (ρ(w)) ∩ {w}, τm−1

]
= IPol(C) [{w}, τm−1]

Thus, τm−1(w) ∈ τm(w)(ρ(w)). Moreover induction yields ρ(w) ∈ fm−1(τm−1(w)). Therefore,
by definition of fm, we have ρ(w) ∈ fm(τm(w)).

Inductive case 1: extended downset. We have (D, r, U ′) ∈ RρS and such that U ⊆ ↓RU ′.
By induction, we obtain P ∈ Qn−1 such that (D, r, P ) ∈ X and U ′ ⊆ fn−1(P ). Clearly,
this implies U ⊆ ↓Rfn−1(P ). Moreover, ↓Rfn−1(P ) = fn−1(P ) by definition. Therefore,
U ⊆ fn−1(P ) which concludes this case.

Inductive case 2: multiplication. We have (D1, r1, U1) ∈ RρS and (D2, r2, U2) ∈ RρS
such that D = D1 •D2, q = r1r2 and U = U1U2. By induction, we obtain P1, P2 ∈ Qn−1
such that (D1, r1, P1), (D2, r2, P2) ∈ X, U1 ⊆ fn−1(P1) and U2 ⊆ fn−1(P2). Since X is
Pol(C)-saturated, it is closed under multiplication and we get,

(D, q, P1P2) = (D1 •D2, r1r2, P1P2) ∈ X

Moreover, Lemma 8.10 yields that,

U = U1U2 ⊆ fn−1(P1) · fn−1(P2) ⊆ fn−1(P1P2)

Altogether, it follows that Lemma 8.12 holds for P = P1P2.

Inductive case 3: S-restricted closure. In that case, we have idempotents (E, f, F ) ∈ RρS
such that D = E, q = f and U = F · S(E) · F .

By induction, we get V ∈ Qn−1 such that (E, f, V ) ∈ X and F ⊆ fn−1(V ). Since Qn−1
is a finite monoid, there exists a number n ≥ 1 such that V n is a multiplicative idempotent of
Qn−1. Since (E, f, V ) ∈ X, and X is closed under multiplication (as it is Pol(C)-saturated),
we obtain (E, f, V n) ∈ X. We may again use the hypothesis that X is Pol(C)-saturated to
apply Pol(C)-closure and obtain,

(E, f, V n · τn−1(E) · V n) ∈ X.

SinceD = E and q = f , it now remains to show that U = F ·S(E)·F ⊆ fn−1(V n·τn−1(E)·V n).
It will then be immediate that Lemma 8.12 holds for P = V n · τn−1(E) · V n. It is immediate
by induction in Proposition 8.7 that,

S(E) ⊆ fn−1(τn−1(E)).

Moreover, since we already know that F ⊆ fn−1(V ) is an idempotent by definition, it follows
from Lemma 8.10 that,

F · S(E) · F = Fn · S(E) · Fn ⊆ fn−1(V n · τn−1(E) · V n).

This concludes the proof of Lemma 8.12.
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9. Completeness in Theorem 5.3

In this section, we prove the completeness direction in Theorem 5.3. As for the soundness
proof, the section is divided in two parts. We start with a preliminary result which applies
to Boolean closure in general, i.e., to classes of the form Bool(D) when D is an arbitrary
lattice. We then use it in the special case D = Pol(C) to prove the completeness direction of
Theorem 5.3.

9.1. Preliminary result. We fix a lattice D. Moreover, we let ρ : 2A
∗ → R be a nice

rating map. Given a language L ∈ D, we characterize the set IBool(D) [L, ρ] ⊆ R using
D-optimal ξBool(D)[ρ]-imprints when ξBool(D)[ρ] : 2A

∗ → 2R is the rating map introduced in
Proposition 6.2.

Proposition 9.1. Let L ∈ D. For all s ∈ IBPol(C) [L, ρ], we have r1, . . . , rk ∈ R such that
s ≤ r1 + · · ·+ rk and for every i ≤ k, we have {r1 + · · ·+ rk} ∈ ID

[
L ∩ ρ−1∗ (ri), ξBool(D)[ρ]

]
.

Proof. We fix L ∈ D and s ∈ IBPol(C) [L, ρ] for the proof. For every q ∈ R, we let Hq be an
optimal D-cover of L ∩ ρ−1∗ (q) for τ . We have the following fact.

Fact 9.2. There exists a Bool(D)-cover K of L such that for every K ∈ K and every q ∈ R
such that K ∩ ρ−1∗ (q) 6= ∅, there exists H ∈ Hq such that K ⊆ H.

Proof. Let H =
⋃
q∈RHq and consider the following equivalence ∼ defined on L. For every

u, v ∈ L, we let u ∼ v when u ∈ H ⇔ v ∈ H for every H ∈ H. Let K be the partition of L
into ∼-classes. By definition, K is a cover of L. Moreover, it is a Bool(D)-cover. Indeed,
by definition, K only contains Boolean combinations of L ∈ Bool(D) with languages in H
(which are in D ⊆ Bool(D)). It remains to show that K satisfies the property of the fact.

Let q ∈ R and assume that there exists w ∈ K ∩ ρ−1∗ (q). By definition of K, we have
K ⊆ L which means that w ∈ L ∩ ρ−1∗ (q). Therefore, since Hq is a cover of L ∩ ρ−1∗ (q) by
definition, we have H ∈ Hq such that w ∈ H. Consequently, K ∩H 6= ∅. Finally, since K is
a ∼-class by definition of K, it follows from the definition of ∼ that K ⊆ H.

We let K be the Bool(D)-cover of L described in Fact 9.2. By definition, we have
L ⊆

⋃
K∈KK. Hence, it follows from Lemma 4.7 that,

IBool(D) [L, ρ] ⊆
⋃
K∈K

IBool(D) [K, ρ]

Consequently, since s ∈ IBool(D) [L, ρ], we get some K ∈ K such that s ∈ IBool(D) [K, ρ]. We
let V be an optimal Bool(D)-cover of K for ρ. Since K ∈ Bool(D), we may choose V such
that V ⊆ K for all V ∈ V. By definition of V, we have I[ρ](V) = IBool(D) [K, ρ] and we
obtain that s ∈ I[ρ](V). Therefore, there exists V ∈ V such that s ≤ ρ(V ).

Since ρ is nice by hypothesis, we have w1, . . . , wk ∈ V such that ρ(V ) = ρ(w1)+· · ·+ρ(wk).
We let ri = ρ(wi) for every i ≤ k. by definition, we have s ≤ r1 + · · · + rk. Therefore, it
remains to show that {r1 + · · ·+ rk} ∈ ID

[
L ∩ ρ−1∗ (ri), ξBool(D)[ρ]

]
for every i ≤ k.

We fix i ≤ k for the proof. By definition, ρ(wi) = ri and wi ∈ V ⊆ K. Hence,
wi ∈ K ∩ ρ−1∗ (ri) and it follows from the definition of K in Fact 9.2 that there exists
a language H ∈ Hri such that K ⊆ H. Recall that r1 + · · · + rk = ρ(V ). Moreover,
ρ(V ) ∈ I[ρ](V) and we have I[ρ](V) = IBool(D) [K, ρ]. Consequently, by Fact 4.6,

r1 + · · ·+ rk ∈ IBool(D) [K, ρ] ⊆ IBool(D) [H, ρ]
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By definition of the rating map ξBool(D)[ρ], we have IBool(D) [H, ρ] = ξBool(D)[ρ](H). Thus,
the above can be rephrased as follows:

{r1 + · · ·+ rk} ⊆ ξBool(D)[ρ](H)

Consequently, since H ∈ Hri , we have {r1 + · · ·+ rk} ∈ I[ξBool(D)[ρ]](Hri). Recall that we
defined Hri as an optimal D-cover of L ∩ ρ−1∗ (ri) for ξBool(D)[ρ]. Hence, we obtain,

{r1 + · · ·+ rk} ∈ ID
[
L ∩ ρ−1∗ (ri), ξBool(D)[ρ]

]
This concludes the proof of Proposition 9.1.

9.2. Completeness proof for Theorem 5.3. We may now come back to our main objec-
tive: completeness in Theorem 5.3. We fix a finite quotient-closed Boolean algebra C and a
nice multiplicative rating map ρ : 2A

∗ → R. We prove that PCBPol(C)[ρ] is BPol(C)-saturated
for ρ. Since we already showed in the previous section that every BPol(C)-saturated subset is
included in PCBPol(C)[ρ], Theorem 5.3 will follow: PCBPol(C)[ρ] is the greatest BPol(C)-saturated
subset of R. For the sake of avoiding clutter, we write S for PCBPol(C)[ρ].

Remark 9.3. Contrary to the soundness direction, we do need the hypothesis that ρ is nice.
This is required for applying the above preliminary result, Proposition 9.1.

By Theorem 3.2, Pol(C) is a lattice. Therefore, we may instantiate Proposition 9.1 for
our nice multiplicative rating map ρ : 2A

∗ → R in the special case when D = Pol(C). We
complete it with another result specific to this special case. As for the soundness direction,
its proof is based on Theorem 7.1: the characterization of Pol(C)-optimal imprints. Together,
these two results imply that S = PCBPol(C)[ρ] is BPol(C)-saturated for ρ.

Proposition 9.4. Let D ∈ A∗/∼C and r ∈ R. For all U ∈ IPol(C)
[
D ∩ ρ−1∗ (r), ξBPol(C)[ρ]

]
,

we have (D, r, U) ∈ RρS.

We first combine Proposition 9.1 and Proposition 9.4 to prove that S is BPol(C)-
saturated for ρ and finish the completeness proof. We have to show that (5.1) is satisfied.
That is, given (D, r) ∈ S, we have to exhibit r1, . . . , rk ∈ R such that r ≤ r1 + · · ·+ rk and
(D, ri, {r1 + · · ·+ rk}) ∈ RρS for every i ≤ k.

Since D ∈ A∗/∼C , we have D ∈ C ⊆ Pol(C). Moreover, since S = PCBPol(C)[ρ] and
(D, r) ∈ S, we have r ∈ IBPol(C) [D, ρ]. Thus, Proposition 9.1 yields r1, . . . , rk ∈ R such that
r ≤ r1+· · ·+rk and {r1+· · ·+rk} ∈ IPol(C)

[
D ∩ ρ−1∗ (ri), τ

]
for every i ≤ k. Then, we obtain

from Proposition 9.4 that (D, r, {r1 + · · ·+ rk}) ∈ RρS for every i ≤ k. Altogether, this is
exactly the property stated in (5.1). This concludes the completeness proof for Theorem 5.3.
It remains to prove Proposition 9.4.

Proof of Proposition 9.4. The argument is based on Theorem 7.1. Clearly, the Cartesian
product (A∗/∼C)×R is a monoid when equipped with the componentwise multiplication.
Let α : A∗ → (A∗/∼C) × R be the morphism defined by α(w) = ([w]C , ρ(w)). Clearly,
α is a C-compatible morphism: for every pair (D, r) ∈ (A∗/∼C) × R, it suffices to define
[(D, r)]C = D.

Moreover, Pol(C) is a quotient-closed lattice closed under concatenation and ρ : 2A
∗ → R

is a multiplicative rating map. Thus, Lemma 6.9 yields a rating map τ : 2A
∗ → 2R which is

quasi-multiplicative for the endomorphism µτ : U 7→ ↓RU of (2R,∪) and such that for every
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K ∈ Pol(C), we have τ(K) = ξBPol(C)[ρ](K). We have the following key lemma which we
need to apply Theorem 7.1.

Lemma 9.5. The set RρS ⊆ (A∗/∼C)×R× 2R is Pol(C)-saturated for α and τ .

Let us first use the lemma to conclude the proof of Proposition 9.4. Let D ∈ A∗/∼C and
r ∈ R. Consider U ∈ IPol(C)

[
D ∩ ρ−1∗ (r), ξBPol(C)[ρ]

]
. We show that (D, r, U) ∈ RρS . Since

τ(K) = ξBPol(C)[ρ](K) for every K ∈ Pol(C), it is immediate that,

IPol(C)
[
D ∩ ρ−1∗ (r), τ

]
= IPol(C)

[
D ∩ ρ−1∗ (r), ξBPol(C)[ρ]

]
Thus U ∈ IPol(C)

[
D ∩ ρ−1∗ (r), τ

]
which means that (D, r, U) ∈ PαPol(C)[τ ] by definition.

Moreover, RρS is Pol(C)-saturated for α and τ by Lemma 9.5. Hence, since τ : 2A
∗ → 2R is

a quasi-multiplicative rating map for µτ : U 7→ ↓RU , it follows from Theorem 7.1 that,

PαPol(C)[τ ] ⊆ ↓2R
{

(D′, r′, ↓RV ) | (D′, r′, V ) ∈ RρS
}
.

Altogether, we get V ∈ 2R such that (D, r, V ) ∈ RρS and U ⊆ ↓RV . By closure under
extended downset in the definition of RρS , this yields (D, r, U) ∈ RρS as desired.

It remains to prove Lemma 9.5: RρS is Pol(C)-saturated for α and τ . We have four
conditions to check. We leave the trivial elements for last as we need the other properties
to handle them. It is immediate that RρS is closed under downset and multiplication as
stated in the definition of Pol(C)-saturated subsets. This is implied by the closure under
extended downset and multiplication in the definition of RρS . We turn to Pol(C)-closure. Let
(E, f, F ) ∈ RρS be a triple of multiplicative idempotents. We prove that (E, f, F · τ(E) ·F ) ∈
RρS . We may use S-restricted closure in the definition ofRρS to obtain (E, f, F ·S(E)·F ) ∈ RρS .
Moreover, S = PCBPol(C)[ρ] by definition and τ(E) = ξBPol(C)[ρ](E) = IBPol(C) [E, ρ] since
E ∈ C ⊆ Pol(C). Thus, S(E) = τ(E). We obtain (E, f, F · τ(E) · F ) ∈ RρS as desired.

We turn to the trivial elements. For w ∈ A∗, we show that ([w]C , ρ(w), τ(w)) ∈ RρS . First,
we consider the special case w = ε. By definition of RρS , we have ([ε]C , ρ(ε), {ρ(ε)}) ∈ RρS .
Since this is a triple of multiplicative idempotents and we already established that RρS satisfies
Pol(C)-closure, this implies ([ε]C , ρ(ε), τ([ε]C)) ∈ RρS . It then follows from closure under
downset that ([ε]C , ρ(ε), τ(ε)) ∈ RρS since τ(ε) ⊆ τ([ε]C). We now consider the case when
w = a for some a ∈ A. We already established that ([ε]C , ρ(ε), τ([ε]C)) ∈ RρS . Moreover, we
know that ([a]C , ρ(a), {ρ(a)}) ∈ RρS by definition of RρS . Using closure under multiplication
and extended downset, we get,

([a]C , ρ(a), ↓R (τ([ε]C) · {ρ(a)} · τ([ε]C))) ∈ RρS
We know that Pol(C) is a quotient-closed lattice of regular languages closed under marked
concatenation by Theorem 3.2. Therefore, since τ and ξBPol(C)[ρ] coincide over languages in
Pol(C), we obtain from Lemma 6.11 that,

τ([ε]Ca[ε]C) = ↓R (τ([ε]C) · {ρ(a)} · τ([ε]C))

Altogether, we obtain ([a]C , ρ(a), τ([ε]Ca[ε]C)) ∈ RρS . Moreover, we have τ(a) ⊆ τ([ε]Ca[ε]C).
Thus, we obtain from closure under downset that ([a]C , ρ(a), τ(a)) ∈ RρS as desired. Finally,
assume that w = a1 · · · an for n ≥ 2 and a1, . . . , an ∈ A. We already established that
([ai]C , ρ(ai), τ(ai)) ∈ RρS for every i ≤ n. Therefore, closure under multiplication and
extended downset yield,

([w]C , ρ(w), ↓R (τ(a1) · · · τ(an))) ∈ RρS
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Since τ is quasi-multiplicative for the endomorphism µτ : U 7→ ↓RU of (2R,∪), this yields
([w]C , ρ(w), τ(w)) ∈ RρS , concluding the proof.

10. Conclusion

We proved that separation and covering are decidable for all classes of the form BPol(C)
when C is a finite quotient-closed Boolean algebra. This yields separation and covering
algorithms for a whole family of classes. Arguably, the most important one is the level two
in the Straubing-Thérien hierarchy (which corresponds to the logic BΣ2(<)). Additionally,
this result can be lifted to depth-two using an effective reduction of [PZ20] to the level two
in the Straubing-Thérien hierarchy.

An interesting consequence of our results is that since we proved the decidability of
separation for the level two in the Straubing-Thérien hierarchy, the main theorem of [PZ19]
is an immediate corollary: membership for this level is decidable. However, the algorithm
of [PZ19] was actually based on a characterization theorem: languages of level two in the
Straubing-Thérien hierarchy are characterized by a syntactic property of a canonical recognizer
(i.e., their syntactic monoid). It turns out that one can also deduce this characterization
theorem from our results (this does require some combinatorial work however). In fact, one
may generalize it to all classes BPol(C) when C is a finite quotient-closed Boolean algebra.

Finally, the main and most natural follow-up question is much harder: can our results be
pushed to higher levels within concatenation hierarchies? For now, we know that given any
finite quotient-closed Boolean algebra C, Pol(C), BPol(C) and Pol(BPol(C)) have decidable
covering (the former and the latter are results of [Pla18]). Consequently, the next relevant
levels are BPol(BPol(C)) and Pol(BPol(BPol(C))).
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