
Logical Methods in Computer Science
Volume 17, Issue 3, 2021, pp. 28:1–28:33
https://lmcs.episciences.org/

Submitted Sep. 16, 2019
Published Sep. 24, 2021

W-TYPES IN SETOIDS

JACOPO EMMENEGGER

Matematiska institutionen, Stockholms unversitet, Sweden.
Current address: DIMA, Università degli Studi di Genova, 16146 Genova, Italy.
e-mail address: emmenegger@dima.unige.it

Abstract. We present a construction of W-types in the setoid model of extensional
Martin-Löf type theory using dependent W-types in the underlying intensional theory.
More precisely, we prove that the internal category of setoids has initial algebras for
polynomial endofunctors. In particular, we characterise the setoid of algebra morphisms
from the initial algebra to a given algebra as a setoid on a dependent W-type. We conclude
by discussing the case of free setoids. We work in a fully intensional theory and, in fact, we
assume identity types only when discussing free setoids. By using dependent W-types we
can also avoid elimination into a type universe. The results have been verified in Coq and
a formalisation is available on the author’s GitHub page.

1. Introduction

The present paper is a contribution to the study of models of extensional properties in
intensional type theories and is in particular concerned with W-types. The W-type con-
structor in Martin-Löf type theory [ML84, ML82] produces an inductive type whose terms
can be understood as well-founded trees. We provide a construction, verified in Coq, of
W-types in the setoid model of extensional Martin-Löf type theory using dependent W-types
in the underlying intensional theory. Although we work internally in intensional Martin-Löf
type theory, we present our results using the category-theoretic language. More precisely,
we consider a logical-framework presentation of a dependent type theory with unit type,∑

-types,
∏

-types and dependent W-types and we show in Theorem 4.20 that the internal
category of setoids has initial algebras for polynomial endofunctors. These were identified as
a category-theoretic counterpart of W-types by Moerdijk and Palmgren [MP00]. Initiality
of an algebra and the induction principle of the underlying type are related via the notion
of contractibility in [AGS17].

Dependent W-type were introduced by Petersson and Synek [PS89], see also [NPS90,
Chapter 16], to provide a constructor for general inductive data types, and are also known
as indexed W-types or tree types. The dependent W-type constructor produces a family
of mutually inductive types, as opposed to the single inductive type produced by the
ordinary W-type constructor. Indeed, ordinary W-types are type-theoretically equivalent

Key words and phrases: W-types, polynomial functors, Martin-Löf type theory, setoids.
This work was partially funded by EPSRC grant EP/T000252/1.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-17(3:28)2021
© Jacopo Emmenegger
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

28:2 Jacopo Emmenegger Vol. 17:3

to dependent W-types indexed over the unit type. Gambino and Hyland [GH04], see
also [GK13], formulated a dependent version of polynomial endofunctors and identified in
their initial algebras a category-theoretic counterpart of dependent W-types.

By setoid we mean a type equipped with a type-valued total equivalence relation.
That these form a model of extensional Martin-Löf type theory that interprets most type
constructors has been known for some time. Most type constructors, as only recently
Palmgren [Pal19] has provided us with a solution to the long standing problem of interpreting
a type universe, and in fact a whole hierarchy, in the setoid model. As to W-types, it was
again Palmgren who first showed how to construct W-types for setoids in intensional Martin-
Löf type theory, see [Bre15]. His approach uses extensively the elimination principle of
W-types into a type universe. The novelty of our approach consists in the use of dependent
W-types instead.

We use dependent W-types in two crucial steps. First, to define the (partial) equivalence
relation on a W-type that gives rise to the initial algebra setoid W . Second, to characterise
the setoid of morphisms of algebras from the (candidate) initial algebra to a given algebra.
After these steps, it only takes an easy induction to conclude initiality of W . To briefly
describe the steps where dependent W-types are used, let us recall that we may regard terms
of a W-type as well-founded trees: a canonical tree is recursively specified providing its root
and its immediate subtrees, i.e. other well-founded trees that are to be connected to the
root.

The relation that we define in 3.1 stipulates that two trees are matching if their roots
are equal and their immediate subtrees on equal branches are matching, where by equal we
mean the setoid equality. By using dependent W-types, this inductively defines a partial
relation on the underlying W-type, and we say that a tree is extensional if it is matching
with itself. Palmgren’s construction of W-types for setoids, as well as the other constructions
that we discuss below, use the same relation, but constructed in different ways. The initial
algebra will be the setoid of extensional trees with algebra map given by the constructor of
the W-type.

Given an algebra a on a setoid A, we then need to construct an algebra morphism f
from W to A, that is, a function commuting with the algebra maps, and to show that it is
the unique such. Commutativity tells us, roughly, that the action of f on an extensional
tree w is determined, via the algebra a, by the action of f on the immediate subtrees of w.
By using dependent W-types, we make precise in Definition 4.7 what it means for a function
on extensional trees to be determined by its action on immediate subtrees, and call these
functions telescopic. Actually, for the construction itself we find it more convenient to speak
of telescopic functions on immediate subtrees rather than on trees, but here we can safely
ignore the difference. In Theorem 4.18 we prove that a function on extensional trees is an
algebra morphism if and only if it is telescopic.

The characterisation in Theorem 4.18 allows us to reduce the problem of finding a unique
algebra morphism, to the problem of finding a unique telescopic function. To this aim,
and thanks to the inductive nature of telescopic functions, we directly use the elimination
principle of dependent W-types. In this sense, we believe that Theorem 4.18 makes explicit,
in the case of setoids, the connection between the commutativity condition for an algebra
morphism out of the initial algebra, and the inductive definition of the morphism itself.

In particular, a common aspect of arguments that construct W-types is the use of the
set, or setoid, of all subtrees of a tree, usually obtained as the transitive closure of the
immediate subtree relation. This set may have a complicated construction in categories

Vol. 17:3 W-TYPES IN SETOIDS 28:3

and in intensional type theories, but it is important for inductive arguments. We can avoid
dealing with transitive closures when proving Theorem 4.18 since the definition of telescopic
functions only involves the setoid of immediate subtrees of a tree, which has a natural and
straightforward definition as an image factorisation, see Definition 3.7 and Remark 3.8.

We also use dependent W-types to compare the setoid of extensional trees with respect
to discrete setoids to the discrete setoid on the W-type of the underlying types. In particular,
we see in Corollary 5.9 that every discrete tree with nodes from a 0-type, i.e. a type with
decidable equality, is extensional. It seems that, without further assumptions, not every
discrete tree is extensional. However, if function extensionality holds, then it is possible to
identify the setoid of extensional trees on discrete setoids with a subsetoid of discrete trees,
see Theorem 5.8.

The setoid construction that we consider is an instance of a quotient completion,
see [MR13, MR16]. The author is aware of two other constructions of W-types for quotient
completions. The first one, that we already mentioned, was formulated by Palmgren for the
setoid model in intensional Martin-Löf type theory and then adapted by Bressan [Bre15]
to minimalist type theory [Mai09]. The argument requires a ‘large’ elimination principle
for W-types, in the sense that it must be possible to eliminate into a type universe or
a universe of propositions. The second construction is due to van den Berg [Ber05] and
it applies to exact completions of categories with finite limits. In intensional Martin-Löf
type theory, the assumption of finite limits is met by the category of types assuming
function extensionality and Uniqueness of Identity Proofs, by its full subcategory on the
0-types assuming only function extensionality [UFP13, RS15], and by the e-category of types
assuming only UIP [EP20]. However, there is little hope that an internal category of types
in a fully intensional type theory would have ordinary finite limits. Setoids are also closely
related to groupoids. Vidmar has given a construction of initial algebras for polynomial
endofunctors on groupoids from initial algebras for polynomial endofunctors on sets [Vid18].

In the next section we discuss the preliminaries needed for the construction. Section 3
contains the construction of the algebra of extensional trees and the definition of the setoid
family of immediate subtrees. The proof of its initiality is in Section 4. We conclude the
paper with a discussion of the case of extensional trees over discrete setoids in Section 5.
Each section begins with a brief overview of the content.

The Coq formalisation of the present paper is available on the author’s GitHub
page [Emm18] and it includes Definitions 2.2 and 2.3 and all numbered definitions and
results in Sections 2.5 and 3 to 5, except for Proposition 2.9, a Coq proof of which can be
found at [Pal12a].

2. Preliminaries

We present the type theory we will be working with in Section 2.1; briefly review W-types
in Section 2.2 and their dependent verion in Section 2.3; and recall some basic facts and
definitions about setoid and setoid families in Section 2.4, and about polynomial functors in
Section 2.5.

2.1. The type-theoretic setting. We work in a logical framework formulation of Martin-
Löf type theory, see [NPS90, Part III], similar to the fragment of Coq that we used for the
formalisation. The logical framework consists of record types,

∏
-types and a universe à la

Russell U, which is the type Set in the Coq formalisation. Logic is interpreted according

28:4 Jacopo Emmenegger Vol. 17:3

to the propositions-as-types interpretation. When we wish to emphasise that a type is in
U we say that it is a small type. Judgemental equality is denoted ≡ and application of
function terms will usually be denoted by concatenation as in f b. However, in the presence
of multiple arguments we may adopt the notation with parenthesis as in ar(i, n, b).

The theory itself is then specified by declaring constants and equations. Specifically, we
require the universe U to be closed under

∏
-types, and to contain the unit type 1,

∑
-types,

and dependent W-types. Ordinary W-types are recovered as dependent W-types over the
unit type 1, but in the Coq formalisation these are assumed to be primitive for convenience.
In Figures 1 and 2 we spell out the constants and equations for (dependent) W-types in the
form of rules to increase readability. In these rules, the premises of W-FORM and DW-FORM
are left understood in the other rules. We might as well drop (some) subscripts if they are
clear from the context. The system has η-conversion only for

∏
-types.

Note that we do not require identity types. These will be assumed only in Section 5 for
discussing the case of discrete setoids. It is well-known that record types can be replaced
with

∑
-types at the expense of readability. In this case we would not need to assume that

these coincide with the
∑

-types in the theory.

2.2. W-types. W-types can be used to construct several inductive types, including natural
numbers and lists [Dyb97], and to give a constructive justifications of certain theories of
inductive definitions [Pal92]. More generally, W-types provide a predicative counterpart
to the notion of well-ordering. Furthermore, they are instrumental in Aczel’s model of
Constructive Zermelo-Fraenkel set theory [Acz78], in the form of the type of iterative sets,
where they also allow to interpret the Regular Extension Axiom which adds general inductive
definitions to CZF [Acz86]. The idea of a type of iterative sets is also central in Palmgren’s
interpretation of type universes in the setoid model [Pal19].

By elimination of W-types, there are function terms

node : WB → A and ist :
∏
w:WB

B (nodew)→WB

Figure 1: Rules for W-types.

A : U B : A→ U
W-FORM

WA,B : U

a : A f : B a→WA,B
W-INTRO

supA,B a f : WA,B

C : WA,B → U c :
∏
(a:A)

∏
(f :B a→WA,B)

(∏
b:B a

C (f b)

)
→ C (supA,B a f)

W-ELIM

recWA,B,C,c :
∏

w:WA,B

C w

a : A f : B a→WA,B
W-CONV

recWA,B,C,c (supA,B a f) ≡ c a f (λb.recWA,B,C,c (f b))

Vol. 17:3 W-TYPES IN SETOIDS 28:5

Figure 2: Rules for dependent W-types.

I : U N : I → U

Br :
∏
i:I

N i→ U ar :
∏
(i:I)

∏
(n:N i)

Br(i, n)→ I

DW-FORM

DWBr,ar : I → U

i : I n : N i f :
∏

b:Br(i,n)

DWBr,ar ar(i, n, b)

DW-INTRO

dsupBr,ar(i, n, f) : DWBr,ar i

C :
∏
i:I

DWBr,ar i→ U

c :
∏
(i:I)

∏
(n:N i)

∏
(f :

∏
b:Br(i,n) DWBr,ar ar(i,n,b))

(∏
b:Br(i,n)

C(ar(i, n, b), f b)

)
→ C(i, dsupBr,ar(i, n, f))

DW-ELIM

recDWBr,ar,C,c :
∏
i:I

∏
w:DWBr,ar i

C(i, w)

i : I n : N i f :
∏

b:Br(i,n)

DWBr,ar (ar(i, n, b))

DW-CONV

recDWBr,ar,C,c(i, dsupBr,ar(i, n, f)) ≡ c(i, n, f, λb.recDWC,c (ar(i, n, b), f b))

such that node (sup a f) ≡ a and ist (sup a f) ≡ f . Henceforth, we write istw for istw.
We refer to terms of a W-type WB as trees, to terms a : A as nodes, to terms b : B a as

branches and, for every branch b : B a, to the term istw b as the immediate subtree of w on
branch b.

In the set-theoretic interpretation of type theory, W-types are sets of well-founded trees
with labelled nodes. The set A is the set of labels for the nodes and, for each a ∈ A, the set
Ba consists of the branches out of the node with name a. Trees are formed by providing
a node a ∈ A and attaching other trees to the branches in Ba. This procedure is formally
specified by functions f : Ba → WB which stipulate that the tree f(b) is attached to the
branch b ∈ Ba.

Figure 3 shows a tree in WB when A contains three elements a0, a1 and a2 such that Ba0
is empty and Ba1 = {0, 1} = Ba2 . The corresponding canonical element of WB is displayed
on the right-hand side together with the five functions mapping a branch to the tree attached
to it, among which occur the empty function f∅ into WB.

As it is well-known, these sets of trees can be characterised more abstractly as free
term algebras for infinitary single-sorted signatures. In this view, the set A contains the
function symbols of the signature, while (the cardinality of) B a is the arity of symbol a.
Terms are built out of function symbols according to composition instructions specified

28:6 Jacopo Emmenegger Vol. 17:3

Figure 3: Canonical term of a W-type.

•
a0

•
a0

•
a0

•
a2

a1•

sup a1

0 7→ sup a0 f∅

1 7→ sup a2

(
0 7→ sup a0 f∅

1 7→ sup a0 f∅

)

by functions f : Ba → WB which stipulate that, for b ∈ Ba, the term f(b) occurs as b-th
argument. The tree in Figure 3 is the term also written a1(a0, a2(a0, a0)), in a signature
with function symbols a0 with arity 0 and a1, a2 with arity 2.

2.3. Dependent W-types. In the same vein, dependent W-types can be understood as
free term algebras for infinitary multi-sorted signatures: sorts are elements of I, elements of
Ni are function symbols with codomain sort i and the arity of a function symbol a ∈ Ni is
given by the function ari,a : Bi,a → I that maps each b-th argument of a to its sort.

Figure 4 depicts an element of a dependent W-type. Compared to the graphical
representation of trees in Figure 3, the sort i of a function symbol a ∈ Ni appears as an
additional leg pointing downwards out of the node corresponding to a, and each branch
b ∈ Bri,a is labelled with the sort ar(i, a, b) ∈ I. The dependent tree in Figure 4 is a term
in the signature containing two sorts i0 and i1, and three function symbols, a0 of sort i0 and
a1, a2 of sort i1, such that a0 has empty arity, a1 has arity i0 and i1, and a2 has arity i0 and
i0. This is formally specified by requiring that i0, i1 ∈ I, a0 ∈ Ni0 , a1, a2 ∈ Ni1 , Bri0,a0 = ∅,
Bri1,a1 = {0, 1} = Bri1,a2 , ar(i0, a0) is the empty function into I, ar(i1, a1) maps 0 to i0 and
1 to i1 and ar(i1, a2) maps 0 and 1 to i0. A common presentation of the term in Figure 4 is
a1(a0, a2(a0, a0)) : i1.

Note that there must be at least one node with no branches, i.e. at least one constant,
in order for these trees to be well-founded. Indeed, in terms of signatures, these sets of
trees consist of closed terms. This is reflected in type theory: whenever B is a family of
non-empty types, WB is type-theoretically equivalent to the empty type 0, when the latter

Figure 4: Canonical term of a dependent W-type.

•
a0

•
a0

i0 i0

a2
•

a0
•

i0 i1
a1
•

i1

dsup i1 a1

0 7→ dsup i0 a0 f∅

1 7→ dsup i1 a2

(
0 7→ dsup i0 a0 f∅

1 7→ dsup i0 a0 f∅

)

Vol. 17:3 W-TYPES IN SETOIDS 28:7

is available. In order to make this precise, the meaning of ‘non-empty’ can be understood
either as

∏
a:A(B a → 0) → 0 or as

∏
a:A ||B a|| if propositional truncation is available, in

the sense that assuming either of them proves that WB is equivalent to 0.
Similarly to the non-dependent case, using the elimination rule of dependent W-types,

we obtain for every i : I two function terms

dnodei : DW i→ N i (2.1)

disti :
∏

(w:DW i)

∏
(b:Br(i,dnodei w))

DW ar(i, dnodeiw, b), (2.2)

such that dnodei dsup(i, n, f) ≡ n and disti dsup(i, n, f) ≡ f . We refer to I as the type of
indices or sorts, to N and Br as the node family and the branching family, respectively, and
to ar :

∏
i

∏
nBr(i, n)→ I as the arity function.

The following examples are just for the sake of illustrating the use of dependent W-types
and we do not use the definitions therein elsewhere in the paper.

Examples 2.1.

(1) Let X : U and Y : X → U. We can define a type of (root-to-leaf) paths in a tree w : WY

as a dependent W-type over WY as follows. Say that a path in w ≡ supx f is a branch
y : Y x together with a path in the immediate subtree f y.

The family PathY of paths in trees in WY is the dependent W-type on WY with node
and branching families

N := λw.Y (nodew) : WY → U, Br := λw, y.1 :
∏
w:WY

N w → U,

and with arity function ar := λw, y, .istw y :
∏
w

∏
y

∏
1WY . A canonical element of

PathY w consists of a branch y of w together with a function 1→ PathY (istw y), i.e. a
path in the immediate subtree istw y.

(2) If the theory has finite sums (in fact, the type 2 suffices) and the empty type 0, it
is possible to define a type of finite paths in a tree w : WY similarly to the previous
example. Say that a finite path in w ≡ supx f is either the empty path, or it is a branch
y : Y x together with a finite path in the immediate subtree f y : WY .

The family FinPathY : WY → U of finite paths in trees in WY is the dependent W-type
on WY with node and branching families

N := λw.Y (nodew) + 1, Br := λw, z.

{
z ≡ inl y 7→ 1

z ≡ inr t 7→ 0

and with arity function ar := λw, z, .

{
z ≡ inl y 7→ istw y

z ≡ inr t 7→ R0
:
∏
w

∏
z

∏
WY where R0 :

0→WY is the eliminator of the empty type.
A canonical element of FinPathY w consists either of a term t : 1 and a function

0 → WY , which we regard as ‘the’ empty path, or of a branch b of w and a function
1 → FinPathsY (istw y), i.e. a finite path in the immediate subtree istw y. Either this
path consists of a term of 1 and an empty function, in which case the path is over with
length one. Or it consists of a branch y′ and a finite path in istist y y

′.
The function term FinPathY w → N that maps each finite path to its length can be

easily defined using the elimination rule of dependent W-types in Figure 2.

28:8 Jacopo Emmenegger Vol. 17:3

2.4. Setoids and setoid families. A setoid is informally defined as a type together with
a type-theoretic equivalence relation on it. This can be made precise in various different
ways, e.g. considering partial relations, or Prop-valued relations if a type of proposition
is available, or instead 0-types and mere relations. See [BCP03] for a survey of possible
definitions. In our context we define a setoid as follows.

Definition 2.2. A setoid A is a list (|A|,≈A, rA, sA, tA) where |A| : U is a small type,
the type family ≈A: |A| → |A| → U is an equivalence relation with proofs of reflexivity,
symmetry and transitivity given by, respectively:

rA :
∏
a:|A|

a ≈A a, sA :
∏

a,a′:|A|

a ≈A a′ → a′ ≈A a,

tA :
∏

a,a′,a′′:|A|

a ≈A a′ → a′ ≈A a′′ → a ≈A a′′.

The type of setoids Std is defined as a record on the types of |A|,≈A, rA, sA and tA.
For a setoid A, we refer to the relation ≈A as the equality of A.

Since our theory has a unit type, every small type X gives rise to a setoid on X with
equality λa, a′.1, called the the codiscrete setoid on X.

In Section 5 we will have identity types available. In this case every small type X can be
equipped with the equality λx, x′.x =X x′ given by the identity type. This setoid is called
the discrete setoid on X. More generally, a setoid A is discrete or (free) if a ≈A a′ if and
only if a =|A| a

′ for every a, a′ : A.
In the category of setoids that we will define below, the codiscrete setoid over any

inhabited type is a terminal object, and it is isomorphic to the discrete setoid on 1 if identity
types are available.

Definition 2.3. Let A and B be setoids. A function term f : |A| → |B| is extensional (with
respect to ≈A and ≈B) if there is a term of type

ext f :=
∏

a,a′:|A|

a ≈A a′ −→ f a ≈B f a′. (2.3)

We will refer to extensional function terms as extensional functions, or simply as functions,
and we will write |f | for the underlying function term of an extensional function f .

The setoid A ⇒ B of extensional functions from A to B has the type of extensional
functions ∑

f :|A|→|B|

ext f

as underlying type and the equivalence relation

f ≈A⇒B g :=
∏
a:|A|

|f | a ≈B |g| a

as equality.

In fact, in the Coq implementation we find it more convenient to define the type of
extensional functions as a record rather than as a

∑
-type. However this makes no essential

difference.

Vol. 17:3 W-TYPES IN SETOIDS 28:9

Remark 2.4. Both type families ext and ≈A⇒B defined in 2.3 are instances of a more
general binary relation on the type |A| → |B|, namely

extgen(f, g) :=
∏

a,a′:|A|

a ≈A a′ −→ f a ≈B g a′.

It is easy to see that this is a partial equivalence relation on |A| → |B| whose domain,
i.e. the type of function terms f such that extgen(f, f), is the type of extensional function
|A⇒ B|. Furthermore, two extensional functions f and g are equal if and only if the type
extgen(|f |, |g|) is inhabited.

In the rest of the paper we write a : A for a setoid A, to mean a : |A|, and we often
not distinguish between an extensional function f : A ⇒ B and its underlying function
term |f | : |A| → |B|. We also write f �α : f a ≈B f a′ for the proof of extensionality of f
applied to α : a ≈A a′. Occasionally, we also find it convenient to drop the subscript from
the equality of a setoid. We do not expect these abuses of notation to lead to confusion.

Setoids provide us with a formulation of the notion of category without equality on
objects that was introduced by Aczel, who formalised it in Lego [Acz93]. See also [HS00] for
a formalisation in Coq that uses setoids with Prop-valued equalities.

Definition 2.5. A (locally small) e-category A consists of a type of objects ObjA and a
family of setoids HomA : ObjA → ObjA → Std, of arrows, together with function terms for
identity and composition, where the latter is extensional, in the sense that it has type∏

a,b,c:ObjA

HomA(b, c)⇒ HomA(a, b)⇒ HomA(a, c),

and with identity and associativity axioms formulated using equalities of the family of setoids
HomA.

An e-functor between two e-categories A and B consists of a function term F : ObjA →
ObjB together with a term of type∏

a,a′:ObjA

HomA(a, a′)⇒ HomB(F a, F a′)

and proof terms witnessing that it is functorial with respect to the equalities of the family
of setoids HomB.

An e-natural transformation between two e-functors F,G : A→ B consists of a term

n :
∏

a:ObjA

HomB(F a,Ga)

whose action on a : ObjA we denote as na, together with a term of type∏
a,a′:ObjA

∏
f :a⇒a′

Gf ◦ na ≈ na′ ◦ F f,

where ≈ is the equality of HomB(F a,Ga′).

The names ‘e-category’, ‘e-functor’, etc. were introduced to distinguish these concepts
from the standard ones. However, since these are the only formulations that appear in the
present paper, we will just say ‘category’ to mean ‘e-category’ and similarly for the others.

For a setoid A, the discrete category A# on A is defined as follows. Its type of objects
is |A| and, for a, a′ : A, its setoid of arrows from a to a′ is the codiscrete setoid on the type

28:10 Jacopo Emmenegger Vol. 17:3

a ≈A a′. Since ≈A is symmetric, the category A# is a groupoid, i.e. a category where every
arrow is invertible.

Functors between two categories A and B and natural transformations between them
form a category Fun(A,B). We denote the action of a functor F on an arrow α : HomA(a, a′)
as Fα : HomB(F a, F a′).

Setoids and extensional functions form a category [PW14].

Definition 2.6. The category of setoids is defined as follows. The type of objects is the type
of setoids Std and the family of arrows is the family λA,B.A⇒ B of setoids of extensional
functions. Identity and composition are defined in the obvious way, the latter will be denoted
as g ◦ f . We abuse notation and denoted this category also as Std.

For a setoid A, we define

FamA := Fun(A#, Std)

and call a functor B : FamA a setoid family over A. We refer to the action of B on an arrow
α : a ≈A a′ of A# as transport along α. For b : B a and b′ : B a′ we define

b ≈α b′ := Bα b ≈B a′ b′. (2.4)

For every extensional function f : A′ ⇒ A and every setoid family B : FamA, there
is a setoid family f∗B : FamA′ defined by (f∗B) a := B (f a) and (f∗B)α := B(f �α). This
action extends to a functor from FamA to FamA′.

Remark 2.7. Besides the standard functoriality conditions on identities and composites,
setoid families enjoy an additional coherence. Indeed, for every α, α′ : a ≈A a′, it is α ≈ α′
as arrows in A#. It follows by extensionality of B on arrows that

Bα ≈(B a⇒B a′) Bα′

for every α and α′ as above. Indeed, setoid families in this sense are the proof-irrelevant
setoid families studied in [Pal12b]. In particular, for every α, α′ : a ≈A a′, b : B a and
b′ : B a′, it is

b ≈α b′ ←→ b ≈α′ b′ (2.5)

and, for every α : a ≈A a and b, b′ : B a, it is

b ≈B a b′ ←→ b ≈α b′. (2.6)

In fact, setoid families are formalised in [Emm18] directly as a record on the types of
function terms and their functoriality and proof-irrelevance properties.

It is an important feature of the category of sets in set theory that the slice over a set A
is equivalent to families of sets indexed over A. The same holds for the category of setoids in
the fragment of intensional Martin-Löf type theory that we are considering, see Section 2.1.

Theorem 2.8. For a setoid A, the slice category Std/A is equivalent to the category of
setoid families FamA.

Proof. We describe the two functors, leaving the straightforward verification of the equiva-
lence to the reader.

Every setoid family B : FamA gives rise to a setoid (
∑

a:AB a,≈) where the equality is

(a, b) ≈ (a′, b′) :=
∑

α:a≈Aa′
b ≈α b′.

Vol. 17:3 W-TYPES IN SETOIDS 28:11

The projection into A is extensional, with extensionality proof also given by the first
projection. This defines an extensional function into A.

A natural transformation n from B to C is mapped to the extensional function with
underlying term λ(a, b).(a, na b). Its extensionality follows, for every (α, β) : (a, b) ≈ (a′, b′),
from

Cα(na b) ≈C a′ na′ (Bαb) ≈C a′ na′ b′

which holds by naturality of n and extensionality of na′ .
Conversely, let f : B ⇒ A be a function. Consider, for every a : A, the subsetoid of B

on those b such that f b ≈A a, i.e. the type∑
b:B

f b ≈A a

with equality (b,) ≈ (b′,) := b ≈B b′. This assignment extends to a setoid family whose
transport along α : a ≈A a′ maps a pair (b, β) to the pair (b, β′), where β′ : f b ≈A a′ is the
concatenation of β and α.

An arrow in Std/A from f to some g : C ⇒ A is a function k : B ⇒ C such that g◦k ≈ f .
This gives rise to a natural transformation as follows. For a : A, the underlying function
term maps (b, β) to (k b, β′), where β′ : g (k b) ≈A a is the concatenation of β : f b ≈A a
with the proof of g ◦ k ≈ f applied to b. This function term is clearly extensional as k is.
As transport along α : a ≈A a′ does not modify the first component, naturality in a : A is
trivial.

2.5. Polynomial functors and W-types. Recall that a category is locally cartesian closed
if it has a terminal object and all its slices are cartesian closed, that is, have all binary
products and exponentials. Theorem 2.8 may be used to prove the following result, another
proof can be found in [EP20].

Proposition 2.9. The category of setoids Std is locally cartesian closed.

In a locally cartesian closed category C, for every arrow f : B → A, the pullback functor
f∗ has a left adjoint f!, defined by post-composition with f , and a right adjoint f∗, as below.

C/B f∗oo

f!

//

f∗ //
C/A (2.7)

When f is the unique arrow B → 1 to the terminal object, the above functors become

C/B (−)×Boo

B!

//

(−)B //
C.

It follows that every arrow f : B → A in C gives rise to a functor Pf : C→ C, the polynomial
endofunctor associated to f , defined as the composite

C
(−)×B // C/B

f∗ // C/A
A! // C. (2.8)

A polynomial endofunctor is then defined to be an endofunctor on C which is naturally
isomorphic to Pf for some f in C.

28:12 Jacopo Emmenegger Vol. 17:3

An algebra for a polynomial endofunctor P is given by an object X and an arrow
s : PX → X, called algebra map. Such an algebra is initial if for any algebra t : PY → Y ,
there is h : X → Y such that t ◦ (P h) = h ◦ s and h is the unique such. It is a well-known
result by Lambek that the algebra map of an initial algebra is invertible.

In extensional type theory with one universe, the category of small types and function
terms is locally cartesian closed if the universe has 1, identity types,

∑
and

∏
types. Hence

we may consider polynomial endofuctors for each function term f : B → A. An initial
algebra is then given by the W-type of the type family f−1 := λa.

∑
b:B f(b) =A a, with

algebra map defined by

(a, k) :
∑
a:A

(
f−1(a)→Wf−1

)
7−→ sup(a, k) : Wf−1 .

It is not difficult to see that initiality of (Wf−1 , sup) is logically equivalent to the recursion
principle of Wf−1 [MP00].

In Std, we take advantage of Theorem 2.8 and formulate the notion of polynomial functor
for setoid families.

Definition 2.10. Let B : FamA be a setoid family over a setoid A. The polynomial
endofunctor associated to B is the functor Std→ Std defined on X : Std by

PBX :=
(∑
a:A

(B a⇒ X), ≈PBX

)
, where (a, k) ≈PBX (a′, k′) :=

∑
α:a≈a′

k ≈ k′ ◦Bα

and on f : X ⇒ Y by

(PBf)(a, k) := (a, f ◦ k).

We say that an endofunctor on Std is polynomial if it is naturally isomorphic to a polynomial
functor associated to a setoid family B.

In fact, the formalisation [Emm18] only contains the definition of the action of PB on
setoids and functions.

We need to make sure that this definition does coincide with the standard one in (2.8)
for an arbitrary locally cartesian closed category.

Let us begin by unfolding the definition of Pf in (2.8) for an extensional function
f : B ⇒ A. Recall that the three adjoint functors in (2.7) are constructed using

∑
-types

and
∏

-types. More precisely, the first functor in (2.8) maps a setoid X to the projection
pr2 : X×B ⇒ B, and the last one maps a function x : X ⇒ A to its domain X. To describe
the action of the functor f∗ : Std/B → Std/A on a function y : Y ⇒ B, let us say that a
pair (a, g) in ∑

a:A

S(f) a⇒ Y

is a local section of y if, for every (b,) : S(f) a, it is y (g (b,)) ≈B b. Two local sections
(a, g) and (a′, g′) are equal if there is α : a ≈A a′ such that g ≈ g′ ◦ S(f)α. This defines a
setoid LSy of local sections of y, and the function f∗ y : LSy ⇒ A is the obvious projection.

Let us now denote by S(f) the setoid family constructed from the extensional function
f in the proof of Theorem 2.8. Unfolding the definitions, one sees that, for every X, the
setoid PfX is in bijection with PS(f)X, and that the bijection is natural in X. If we denote
by E the inverse construction to S from the same proof, it also follows that for every setoid
family B : FamA the functor PE(B) is naturally isomorphic to PB.

Vol. 17:3 W-TYPES IN SETOIDS 28:13

Definition 2.11. Let B : FamA be a setoid family.

(1) An algebra for PB in Std is a setoid X together with an extensional function PBX ⇒ X.
(2) Let x : PBX ⇒ X and y : PBY ⇒ Y be algebras for PB. The setoid Alg(x, y) of algebra

morphisms from x to y consists of functions h : X ⇒ Y such that h ◦ x ≈ y ◦ PBh. In
formulas:

|Alg(x, y)| :=
∑

h:W⇒C
h ◦ x ≈ y ◦ (PBh)

and (h,) ≈Alg(x,y) (h′,) := h ≈ h′.

Definition 2.12. Let B : FamA be a setoid family and C a setoid. A family of extensional
functions F :

∏
x:|A|B x⇒ C is coherent with respect to B if, for every a, a′ : A, if α : a ≈A a′

then F a ≈ F a′ ◦Bα.
Let the type

isCohB F :=
∏

(a,a′:A)

∏
(α:a≈a′)

F a ≈ F a′ ◦Bα

be the type of proofs that F is coherent.

Lemma 2.13. Let f : A′ ⇒ A be an extensional function and let B : FamA be a setoid
family over A. For every family F :

∏
x:|A′|B (f x) ⇒ C of extensional functions, the

following are equivalent.

(1) The family F is coherent with respect to f∗B : FamA′.
(2) The function term λx.(f x, F x) : A′ → PBC is extensional.

Proof. Let α′ : a ≈A′ a′. Then (f a, F a) ≈ (f a′, F a′) if and only if there is α : f a ≈A f a′
such that F a ≈ F a′ ◦ Bα. Thus it clearly follows from coherence of F taking α := f �α′.
The converse is a direct consequence of proof irrelevance of B, see (2.5) in Remark 2.7.

Remark 2.14. The value of the polynomial functor PB on a setoid C can be described as
the total setoid of the setoid family λx.B x⇒ C over A. Accordingly, Definition 2.12 and
Lemma 2.13 can be phrased (and proved) in greater generality. However we do not need
that generality here.

3. The algebra of extensional trees

Let B : FamA be a setoid family over a setoid A. In this section we construct an algebra
from the W-type W|B| on the underlying type family |B| : |A| → U. We keep A and B fixed
throughout the section and we drop the subscript B in the polynomial functor PB.

The underlying setoid of the algebra is constructed in Section 3.1. Before showing that
sup lifts to an algebra map in Section 3.3, we introduce the setoid family of immediate
subtrees in Section 3.2. Section 3.3 contains also a proof that the algebra map is invertible.

28:14 Jacopo Emmenegger Vol. 17:3

3.1. The setoid of extensional trees. To construct an algebra, we first need a setoid of
trees, that is, an equivalence relation on W|B|. However, we should not expect W|B| to be
the underlying type of our setoid of trees though or, in other words, we should not expect
our relation to be total on W|B|. Consider in analogy the situation described in Remark 2.4
with function terms: the domain of the equivalence relation extgen on the function type
consists precisely of the extensional functions.

In order to find sufficient conditions for defining a suitable relation, let us suppose that
such a partial equivalence relation ≈W : W|B| → W|B| → U does exist. This means that, if we
denote by W : Std the setoid induced by ≈W on its domain |W | :=

∑
w:W|B|

w ≈W w, there is

an initial algebra s : PW ⇒W whose underlying function term |s| : (
∑

a:AB a⇒W)→ |W |
is a lift of sup :

(∑
a:A |B| a→W|B|

)
→ W|B|. Since s must be a bijection by Lambek’s

Theorem, for every tree w ≡ sup a f such that w ≈W w there is g : B a ⇒ W such that
s(a, g) ≈W w. This can be equivalently stated as follows.

If sup a f ≈W sup a f , then for every b, b′ : B a, if b ≈B a b′ then f b ≈W f b′. (W1)

Equivalently, for every tree w in the domain of ≈W the immediate-subtree function term
istw is extensional. Second, again because s is a bijection, and by definition of P in 2.10, it
must be

sup a f ≈W sup a′ f ′ if and only if

{
there is α : a ≈A a′ such that

f b ≈W f ′ (Bα b) for every b : B a.
(W2)

Let us now try to use (W1-2) to define ≈W . In condition (W2) the relation ≈W occurs
on the right-hand side only between immediate subtrees. This feature makes (W2) a possible
candidate for the inductive step in an inductive definition of the relation ≈W . However,
it does not seem possible to derive (W1) from (W2). Instead, we combine them in the
following definition. Note that in 3.1.2 below the equality between b and b′ is over the term
α as in (2.4).

Definition 3.1. Let a, a′ : A, f : |B| a → W|B| and f ′ : |B| a′ → W|B|. Two trees
w ≡ sup a f and w′ ≡ sup a′ f ′ are matching if

(1) the nodes are equal, i.e. there is α : a ≈A a′, and
(2) for every b : B a and b′ : B a′, if b ≈α b′ then the immediate subtrees f b and f ′ b′ are

matching.

A tree that is matching itself will be called self-matching or extensional.
Accordingly, we define the type family Wper

B : W|B| → W|B| → U of proofs that two trees
are matching as the (curried version of) the dependent W-type on W|B| ×W|B| with family
of nodes

N := λ(w,w′).nodew ≈A nodew′ : W|B| ×W|B| → U

branching family

Br := λ(w,w′), α.
∑
b,b′

b ≈α b′ :
∏
I

N (w,w′)→ U

and arity function

ar := λ(w,w′), α, (b, b′, β).(istw b, istw′ b
′) :
∏
I

∏
N

Br((w,w′), α)→ I.

Vol. 17:3 W-TYPES IN SETOIDS 28:15

The matching relation satisfies (W1) and (W2): for the former take α in 3.1.1 to be
reflexivity on a, and for the latter take b′ := Bα b and reflexivity on b′ in 3.1.2.

Remark 3.2. For two trees w,w′ : W|B|, a proof term of 3.1.1 is

α : nodew ≈A nodew′

and a proof term of 3.1.2 is

φ :
∏

b:B (nodew)

∏
b′:B (nodew′)

(
b ≈α b′ −→Wper

B (istw b) (istw′ b
′)
)
.

If we have two such terms, then a proof that w and w′ are matching is

dsup (w,w′)αφ : Wper
B ww′.

Conversely, if w and w′ are matching with proof γ, then α is obtained by applying the
dependent node function dnode(w,w′) from (2.1) to γ, and φ by evaluating the dependent
branching function dist(w,w′) from (2.2) on γ.

Proposition 3.3. The type family Wper
B : W|B| → W|B| → U is a partial equivalence relation

on W|B|, that is, the following types are inhabited:∏
w,w′:W|B|

Wper
B ww′ →Wper

B w′w,

∏
w,w′,w′′:W|B|

Wper
B ww′ →Wper

B w′w′′ →Wper
B ww′′.

Proof. The proof terms are obtained from straightforward applications of the elimination rule
for dependent W-types. Alternatively, one may use Remark 3.2 and recursion on W|B|.

We can now form the setoid of extensional trees.

Definition 3.4. Define the setoid WB of extensional trees as the pair (|WB|,≈WB
) : Std,

where |WB| is the type of extensional (or self-matching) trees, and two terms in |WB| are
equal if their underlying trees are matching. In formulas:

|WB| :=
∑

w:W|B|

Wper
B ww and (w,) ≈WB

(w′,) := Wper
B ww′.

We often leave the proof term in Wper
B ww implicit, drop the subscript B when it is clear

from context, and write w : W to mean w : W|B| and w extensional.

Similarly to the situation described in Remark 2.4, to prove that a tree w is extensional
it is sufficient to consider an instance of the type of φ in Remark 3.2, namely the one where
α is reflexivity at the node of w.

Lemma 3.5. A tree w ≡ sup a f is extensional if and only if for every b, b′ : B a, if b ≈ b′
then the trees f b and f b′ are matching.

In particular, every immediate subtree of an extensional tree is extensional and f lifts
to an extensional function B a⇒W .

Proof. If w is extensional the conclusion follows by (W1). The converse follows from
Remark 3.2 choosing reflexivity as α.

28:16 Jacopo Emmenegger Vol. 17:3

The function term node : W|B| → |A| lifts to an extensional function node : W ⇒ A,
with proof of extensionality given by α in Remark 3.2. By Lemma 3.5, for every extensional
tree w the function term istw : |B| (nodew) → W|B| lifts to an extensional function istw :
B (nodew)⇒W . So we have a family

ist :
∏
w:W

B (nodew)⇒W (3.1)

of extensional functions. We continue writing istw for istw and we will do the same also for
others dependent function terms on W . As the subscript will always be a tree in W , no
confusion should arise with the action of setoid families on equalities.

Also to prove that two extensional trees are matching it is enough to consider just an
instance of the type of φ in Remark 3.2, as for extensional functions in Remark 2.4.

Lemma 3.6. Two extensional trees w ≡ sup a f and w′ ≡ sup a′ f ′ are matching if and only
if there is α : a ≈A a′ such that f ≈ f ′ ◦Bα.

Equivalently, for every w,w′ : W , it is w ≈W w′ if and only if there are

α : nodew ≈A nodew′ and ψ : istw ≈ istw′ ◦Bα.
Proof. If w and w′ are matching, the conclusion follows by (W2). Conversely, by Remark 3.2
it is enough to construct a term

φ :
∏
b,b′

b ≈α b′ → f b ≈W f ′ b′.

By Lemma 3.5 we may assume that the function f ′ is extensional. It follows that for every
b : B a, b′ : B a′, if β : b ≈α b′, then f b ≈W f ′ b′ using ψ b : f b ≈W f ′ (Bα b) and f ′ �β.

3.2. Setoid families on extensional trees. Extensionality of node : W ⇒ A yields, for
every γ : w ≈W w′ between extensional tree, a function

Bnode � γ : B (nodew)⇒ B (nodew′) (3.2)

where node � γ denotes the proof of extensionality (2.3) of node applied to γ. Since B is a
setoid family, the family of setoids λw.B (nodew) : W → Std is a setoid family with the
functions in (3.2) as transports. We refer to this setoid family as the family of branches of
trees.

There is also another natural setoid family on extensional trees which will turn out to
be instrumental in the characterisation of algebra morphisms in Section 4.

Definition 3.7. Let w ≡ sup a f be an extensional tree. An immediate subtree of w is a
subtree index b : B a, and two immediate subtrees b and b′ of w are equal if the corresponding
trees f b and f b′ are matching.

Accordingly, the setoid of immediate subtrees of w, denoted ISTreesw, has |B| (nodew)
as underlying type, and

s ≈ISTreesw s
′ := istw s ≈W istw s

′

as equality.
For s : ISTreesw and γ : w ≈W w′, the assignment

ISTreesγ s := Bnode � γ s : ISTreesw′

defines transport maps for ISTrees. Hence we obtain a setoid family ISTrees : FamW , the
family of immediate subtrees.

Vol. 17:3 W-TYPES IN SETOIDS 28:17

Remark 3.8. The category of setoids Std is exact and, assuming the identity type, it is the
exact completion of its subcategory of discrete setoids. We refer to [EP20] for details but
see also [BM18]. Being exact, every function has a factorisation as a regular epi followed by
a mono, called image factorisation. Being an exact completion, every function f : X ⇒ Y
has a canonical such factorisation. Briefly: the setoid Z has |X| as underlying type and
λx, x′. (f x ≈Y f x′) as equality; the regular epi X ⇒ Z has λx.x as underlying function
term, which is extensional because f is; and the mono Z ⇒ Y has |f | as underlying function
term, which is extensional by definition of Z. In fact, this canonical factorisation exists also
when identity types are not assumed.

By applying this factorisation to the function istw : B (nodew) ⇒ W we recover the
setoid of immediate subtrees of w:

B (nodew)

ew #+

istw +3 W

ISTreesw

mw

6>

where ew := (id, istw �) and mw := (|istw|, id) denote the regular epi and the mono, respectively,
arising from the factorisation of istw.

These form in turn two families of extensional functions

e :
∏
w:W

B (nodew)⇒ ISTreesw and m :
∏
w:W

ISTreesw ⇒W. (3.3)

The family e is coherent in the sense that

ISTreesγ ◦ ew ≈ ew′ ◦Bnode � γ (3.4)

holds since ISTreesγ and Bnode � γ have the same function term. The family m is coherent in
the sense of Definition 2.12 by Remark 3.9.

Remark 3.9. By (W2), the family of functions ist from (3.1) is coherent with respect to
the setoid family ISTrees in the sense of Definition 2.12, i.e. for every γ : w ≈W w′ there is

ist-coh γ : istw ≈ istw′ ◦ ISTreesγ .
The proof term ist-coh γ is obtained instantiating φ in Remark 3.2 with b′ := ISTreesγ b and
reflexivity on b′.

Similarly, the family of functions m from (3.3) is coherent with respect to the setoid
family ISTrees in the sense of Definition 2.12, i.e. for every γ : w ≈W w′ there is

m-coh γ : mw ≈ mw′ ◦ ISTreesγ . (3.5)

The proof term m-coh γ is obtained from ist-coh using (3.4) and the fact that ew is a
(canonical regular) epi.

3.3. Construction of the algebra map. We construct the algebra map by showing that
the function term sup lifts to an extensional function s : PW ⇒W .

For a : A and f : B a ⇒ W , let f0 := pr1f : |B| a → W|B|. The tree w := sup a f0 is
extensional by Lemma 3.5, so there is a function term

s : PW →W. (3.6)

Given explicitly by
s (a, f) := (sup a f0, dsup (w,w) (ρ a) ε′f) : W (3.7)

28:18 Jacopo Emmenegger Vol. 17:3

where ρ is reflexivity of A, εf is obtained uncurrying f � :
∏
b,b′ b ≈B a b′ → f b ≈W f b′ and

dsup (w,w) (ρ a) εf : Wper
B ww is a proof that w is extensional.

Lemma 3.10. The function term s : PW →W is extensional.

Proof. By Definition 2.10, to have two equal elements in the domain is to have a, a′ : A,
f : B a⇒ W , f ′ : B a′ ⇒ W , and a term α : a ≈ a′such that f ≈ f ′ ◦Bα. Lemma 3.6 and
Definition 3.1 yield the claim.

We conclude this section with a proof that the algebra map s : PW ⇒W is invertible.

Proposition 3.11. There is us : W ⇒ PW such that s ◦ us ≈ idW and us ◦ s ≈ idPW .

Proof. The function us maps an extensional tree w ≡ sup a f0 to the pair (a, f) : PW , where
f : B a⇒W is the extensional function of w from Lemma 3.5. In formula

usw := (nodew, istw) : PW.

It is extensional because node is extensional, and because ist is coherent by Remark 3.9.
The equation us ◦ s ≈ idPW is straightforward from the definitions. For s ◦ us ≈ idW use
Lemma 3.6.

4. Initiality of the algebra of extensional trees

This section is mainly devoted to the characterisation of algebra morphisms as telescopic
functions in Theorem 4.18. The existence of W-types in Std follows in Theorem 4.20.

4.1. Characterisation of algebra morphisms. Throughout this section we fix setoids
A and C, a setoid family B : FamA and a PB-algebra aC : PBC ⇒ C. As in the previous
section, we drop the index B from the polynomial functor PB and the algebra of extensional
trees WB.

We begin with a simple observation. Recall from Definition 2.11.2 that Alg(s, aC) denotes
the setoid of algebra morphisms from s : PW ⇒ W to aC : PC ⇒ C, i.e. those functions
h : W ⇒ C such that

h ◦ s ≈ aC ◦ Ph. (4.1)

Every function h : W ⇒ C gives rise to a family

F :
∏
w:W

ISTreesw ⇒ C (4.2)

defined by Fw := h ◦mw. It follows from (4.1) that the function h is an algebra morphism if
and only if, for every w ≡ s(a, f),

hw ≈ aC(a, Fw ◦ ew). (4.3)

In particular, the value of the algebra morphism h at the tree w is obtained by “glueing” the
values of h on the immediate subtrees of w, collected in Fw, according to the algebra aC .

Note that the right-hand side of (4.3) makes sense for any family F as in (4.2). Let us
say that a function k : ISTreesw ⇒ C is a glueing datum in C for w, and that a family F as
in (4.2) is a family of glueing data in C. Two families F and F ′ of glueing data are equal if,
for every w : W , the glueing data for w are equal, i.e. Fw ≈ F ′w. Given a family F of glueing
data in C as in (4.2), we can use (4.3) to define a function term h : W → C. Proposition 4.3
isolates conditions on F for this term to be extensional and, further, an algebra morphism.

Vol. 17:3 W-TYPES IN SETOIDS 28:19

The problem of constructing an element of Alg(s, aC) could thus be reduced to the
problem of finding a suitable family of glueing data in C and to prove that it is the unique
such. We do so in Theorem 4.18, where we prove that Alg(s, aC) is in bijection with a
subsetoid of families of glueing data in C that we name, in Definition 4.7, telescopic families.
In Proposition 4.19 we construct a telescopic family by direct induction on the underlying
W-type W|B| of W . Its uniqueness is in Corollary 4.12. It follows that Alg(s, aC) is a singleton.
This is in accordance with the result in [AGS17], that an algebra a is equivalent to a W-type
if and only if the type of morphisms of algebras out of a is contractible, once we observe
that, in the setoid interpretation, a type is contractible precisely when the corresponding
setoid is a singleton.

There is no reason, at this stage, to prefer families of functions on immediate subtrees
as in (4.2) over families of functions B (nodew)⇒ C on branches of trees, but our strategy
does not seem to work with the latter. One motivation is discussed in Remark 4.6.

First, we give names to the two constructions outlined above.

Definition 4.1. Let h : W ⇒ C be an extensional function. The restriction of h to
(immediate) subtrees is the family of glueing data

restr h := λw.h ◦mw :
∏
w:W

ISTreesw ⇒ C. (4.4)

Let F :
∏
w:W ISTreesw ⇒ C be a family of glueing data. The glueing of F (along aC)

is the function term

glueF := λw.aC(nodew,Fw ◦ ew) : W → C. (4.5)

We need one more definition to state the next result. Coherence for a family of extensional
functions was defined in 2.12.

Definition 4.2. Let us denote by GlueD the setoid of families of glueing data in C. The
underlying type is

∏
w:W ISTreesw ⇒ C and the equality between two families F and F ′ is

F ≈ F ′ :=
∏
w:W

Fw ≈(ISTreesw⇒C) F
′
w.

The subsetoid of GlueD on the coherent families of glueing data is denoted CohGlueD
and has underlying type

|CohGlueD| :=
∑

F :GlueD

isCohISTrees F.

Proposition 4.3.

(1) For every function h : W ⇒ C, the family of glueing data restr h defined in (4.4) is
coherent.

(2) For every coherent family of glueing data F , the function glueF defined in (4.5) is
extensional.

(3) The function restr : (W ⇒ C)→ CohGlueD is extensional.
(4) The function glue : CohGlueD→ (W ⇒ C) is extensional.
(5) For every h : W ⇒ C

glue (restr h) ≈ h ←→ h ◦ s ≈ aC ◦ Ph.
(6) For every coherent family F :

∏
w:W ISTreesw ⇒ C of glueing data

restr (glueF) ≈ F −→ glueF ◦ s ≈ aC ◦ P(glueF).

28:20 Jacopo Emmenegger Vol. 17:3

Proof. (1) For every γ : w ≈W w′, it is h ◦mw ≈ h ◦mw′ ◦ ISTreesγ since mw is coherent by
(3.5) in Remark 3.9, and h is extensional.

(2) This is Lemma 2.13 together with extensionality of aC .
(3) If h ≈ h′, then for every w : W it is h ◦mw ≈ h′ ◦mw by extensionality of h.
(4) Let ϕ : F ≈ F ′. If Fw ≈ F ′w, then by extensionality of aC and proof irrelevance of B

from (2.6) it is

aC(a, Fw) ≈C aC(a, F ′w).

(5) The claim follows from the fact that, for every w ≡ s(a, f), it is

glue (restr h)w ≡ aC(a, h ◦mw ◦ ew)

≈ aC(a, h ◦ f)

≈ aC ◦ Ph(a, f)

≈ aC ◦ Ph ◦ usw

(4.6)

by, in order, (4.4) and (4.5), Remark 3.8, definition of polynomial functor in 2.10 and
definition of us in Proposition 3.11.

(6) Unfolding the right hand side for w ≡ s(a, f) yields

aC(a, Fw ◦ ew) ≈C aC(a, λb.aC(node (f b), F(f b) ◦ e(f b)))

By extensionality of aC and proof irrelevance (2.6), this holds if for every b : B a it is

Fw b ≈C aC(node (f b), F(f b) ◦ e(f b)).

Now, by definitions (4.4) and (4.5) it is

restr (glueF)w b ≡ aC(node (f b), F(f b) ◦ e(f b))
and the claim follows.

Corollary 4.4. The functions restr and glue establish a bijection between the setoid Alg(s, aC)
and those coherent families F of glueing data in C such that restr (glueF) ≈ F .

Proof. Proposition 4.3.5 entails that restr (glue (restr h)) ≈ restr h for every algebra mor-
phism h. Conversely, If F is such that restr (glueF) ≈ F , then glueF is in Alg(s, aC) by
Proposition 4.3.6.

The bijection in Corollary 4.4 suggests a recursive characterisation of algebra morphisms
into C as those morphisms obtained by glueing a coherent family of glueing data in C,
such that each component Fw is itself obtained by glueing a suitable family, and so on. In
order to make this intuition precise, we need to bring coherent families of glueing data
and glueing one “subtree level” up. We do not need to go any higher thanks to dependent
W-types, which will cover the other cases for us in Definition 4.7, see also Remark 4.9. The
characterisation is accomplished in Theorem 4.18.

For w an extensional tree, we say that a family

G :
∏

s:ISTreesw

ISTrees (mw s)⇒ C.

is a family of glueing subdata for w in C. We write Gs for Gs as we do for families of glueing
data on subtrees, and we refer to terms of type ISTrees (mw s) as 2-subtrees of w.

By extensionality of mw, the family of setoids λb.ISTrees (mw b) over ISTreesw is a setoid
family in the same way as for the family of subtrees ISTrees in Definition 3.7. We can thus

Vol. 17:3 W-TYPES IN SETOIDS 28:21

form the setoid CohGlueSubDw of coherent families of glueing subdata for w, as we did in
Definition 4.2 for coherent families of glueing data of subtrees.

In fact, CohGlueSubD is another setoid family over W , whose transport function

CohGlueSubDγ : CohGlueSubDw → CohGlueSubDw′

for γ : w ≈W w′ is defined on G and s : ISTreesw′ as

CohGlueSubDγ Gs := G(ISTreesγ−1 s) ◦ ISTrees(m-coh γ−1 s′) (4.7)

where m-coh γ−1 s′ : m s′ ≈ m (ISTreesγ−1 s′). It follows that

G ≈γ G′ ←→
∏

s:ISTreesw

Gs ≈ G′(ISTreesγ s) ◦ ISTrees(m-coh γ s) (4.8)

for all G : CohGlueSubDw and G′ : CohGlueSubDw′.
As in (4.5) for every family G of glueing subdata for w there is a function term

subgluewG : ISTreesw → C

defined on s : ISTreesw by

subgluewGs := aC
(
node (mw s), Gs ◦ e(mw s)

)
. (4.9)

Lemma 4.5.

(1) For every coherent family of glueing subdata G : CohGlueSubDw, the function subgluewG
defined in (4.9) is extensional.

(2) For every w : W , the function subgluew : CohGlueSubDw → (ISTreesw ⇒ C) is
extensional.

(3) For every γ : w ≈W w′, G : CohGlueSubDw and G′ : CohGlueSubDw′ there is

subglue-coh γ : G ≈γ G′ −→ subgluewG ≈ subgluew′ G
′ ◦ ISTreesγ .

Proof. (1) It follows from Lemma 2.13 and extensionality of aC .
(2) It follows from (3) with reflexivity as γ.
(3) Let γ, G and G′ be as above, and let ϕ : G ≈γ G′ and s : ISTreesw. Using

extensionality of aC , it is enough to show

(node (mw s), Gs) ≈
(
node (mw′ (ISTreesγ s)), G

′
(ISTreesγ s)

)
.

For the first component we may take α := node �(m-coh γ) from Remark 3.9. It remains to
show that, for every s : ISTreesw,

Gs ≈ G′(ISTreesγ s) ◦ ISTrees(m-coh γ).

By (4.8) it is enough to use ϕ.

Remark 4.6. Lemma 4.5 is the reason for choosing to work with the setoid family of
immediate subtrees instead of the setoid family of branches of trees from Section 3.2.

Indeed, Proposition 4.3 works equally well with immediate subtrees replaced by branches
of trees, in the sense that there are function terms between extensional functions W ⇒ C
and families of glueing data on branches satisfying the same properties, mutatis mutandis,
of restr and glue. Problems arise at the next subtree level.

If we say that, for an extensional tree w, a term of type∏
b:B (nodew)

B (node (istw b))⇒ C

28:22 Jacopo Emmenegger Vol. 17:3

is a family of glueing subdata on branches for w in C, we can then form, for every w : W ,
the setoid CBw of coherent families of glueing subdata on branches for w. Nevertheless, it
seems that transport of families of glueing subdata on branches over γ : w ≈W w′ does not
preserve coherence. It follows that, contrary to CohGlueSubD, the family λw.CBw is not a
setoid family on W . In particular, there is no function term like CohGlueSubDγ from (4.7),
which is needed, together with Lemma 4.5.3, in a crucial step in the proof of Lemma 4.13.
The issue seems to arise because branches, contrary to subtrees, do not form a subsetoid
of W .

Note that there is no version of restr for 2-subtrees: a function k : ISTreesw ⇒ C cannot
be restricted to ISTrees (mw s) for some s : ISTreesw simply because an immediate subtree
of mw s is not an immediate subtree of w, that is, being an immediate subtree is not a
transitive property. This entails that, in order to say that k is a glueing, we need to assume
that a coherent family of glueing subdata for w exists.

Definition 4.7. Let w ≡ s(a, f) be an extensional tree. A function k : ISTreesw ⇒ C is
telescopic over w if

(1) the function k is the glueing of a coherent family of glueing subdata G : CohGlueSubDw,
i.e. k ≈ subgluewG, and

(2) for every s : ISTreesw, the function Gs : ISTrees (f s)⇒ C is telescopic over f s.

Accordingly, we define the type family

isTelescopic :

(∑
w:W

ISTreesw ⇒ C

)
→ U

of proofs that a function on immediate subtrees is telescopic as the dependent W-type on
I :=

∑
w:W (ISTreesw ⇒ C) with family of nodes

N := λ(w, k).
∑

G:CohGlueSubDw

k ≈ subgluewG :

(∑
w:W

ISTreesw ⇒ C

)
→ U

branching family

Br := λ(w, k), (G,).ISTreesw :
∏

(w,k):I

N (w, k)→ U

and arity function

ar := λ(w, k), (G,), s.(mw s,Gs) :
∏
I

∏
N

ISTreesw →

(∑
w:W

ISTreesw ⇒ C

)
.

Henceforth we write isTelescopicw k for isTelescopic (w, k) and we may drop the subscript
w if it is clear from context.

Definition 4.8. A family F of glueing data in C is telescopic if each of its components is a
telescopic function over w, that is, if∏

w:W

isTelescopicFw

is inhabited. We say ‘telescopic family’ to mean ‘telescopic family of glueing data in C’.
Telescopic families of glueing data form a subsetoid TelGlueD of GlueD.

Vol. 17:3 W-TYPES IN SETOIDS 28:23

Remark 4.9. If we say, similarly, that a family G of glueing subdata for w is telescopic over
w if each component Gs is telescopic over the immediate subtree mw s, then Definition 4.7
can be phrased as: a function is telescopic over w if it is the glueing of a telescopic family of
glueing subdata for w.

The canonical components of a proof that a function k : ISTreesw ⇒ C is telescopic are
as follows, see also Figure 2. From the dependent node function (2.1) we obtain, for every
T : isTelescopicw k, a coherent family of glueing subdata

csfam k T : CohGlueSubDw (4.10)

and a proof

isglue k T : k ≈ subgluew (csfam k T), (4.11)

that k is a glueing of the family csfam k T . The dependent subtree function (2.2) yields a
proof

telsfam k T :
∏

(s:ISTreesw)

isTelescopic(mw s) (csfam k T s). (4.12)

that every function in the family csfam k T is telescopic, that is, the family csfam of glueing
subdata is itself telescopic, see Remark 4.9.

Clearly, terms in (4.10) and (4.11) are proof terms for 4.7.1, and the term in (4.12) is a
proof term for 4.7.2.

As we will extensively use the elimination principle in Figure 2 of the dependent W-type
of telescopic functions from Definition 4.7, let us unfold its inductive hypothesis too. Let
V :

∏
w,k isTelescopic k → U be a (small) type family. The inductive hypothesis tells us that,

for T ≡ dsup (w, k)GE : isTelescopic k and for every s : ISTreesw, there is a term

IH s : V (mw s)Gs (E s) (4.13)

where G ≡ csfamT is the coherent family of glueing subdata obtained from T as in (4.10),
and the term E ≡ telsfamT is the proof (4.12) that every Gs is telescopic over mw s.

The fact that functions ISTreesw ⇒ C cannot be restricted to families of glueing subdata,
discussed right before Definition 4.7, does not prevent us from showing that restrictions of
algebra morphisms are telescopic, since a function W ⇒ C can be restricted to any “subtree
level”. In particular, to immediate subtrees and 2-subtrees.

Lemma 4.10. Let h : W ⇒ C be an algebra morphism. Then for every w : W , the function

restr hw := h ◦mw : ISTreesw ⇒ C

defined in (4.4) is telescopic over w.

Proof. The proof is by W-elimination on w : W|B| into the type

Wper
B ww −→ isTelescopic (h ◦mw).

Note that, whenever we wish to apply the inductive hypothesis to a subtree index of w,
we have to provide a proof that the subtree is extensional. Such a proof will always be
available since w is extensional by assumption and immediate subtrees of extensional trees
are extensional by Lemma 3.5. So we may assume without loss of generality that all the
trees that we will be dealing with are extensional.

Let then w ≡ sup a f . By Definition 4.7, in order to apply dsup, we first need to provide a
coherent family of glueing subdata G : CohGlueSubDw and a proof that h◦mw ≈ subgluewG.

28:24 Jacopo Emmenegger Vol. 17:3

The family G of glueing subdata consists of the restrictions of h to 2-subtrees of w,
namely

Gs := h ◦m(m s) : ISTrees (mw s)⇒ C

for every s : ISTreesw. Its coherence follows as in 4.3.1 from coherence of m and extensionality
of h. For every s : ISTreesw it is

h (mw s) ≈ aC ◦ (Ph) ◦ us (mw s)

≈ aC (node (mw s), h ◦m(m s))

≈ subgluewGs

by the fact that h is an algebra morphism, definition of us and P, and definition of subglue
in 4.9.

The inductive hypothesis witnesses that each restriction h ◦m(m s) is telescopic.

It follows from this lemma that the function restr : (W ⇒ C) ⇒ GlueD from Proposi-
tion 4.3.3 restricts to a function

restr : Alg(s, aC)⇒ TelGlueD (4.14)

that maps an algebra morphism to its family of restrictions as defined in (4.4). Because
of the bijection in Corollary 4.4, to see this we could have equally well proved that every
coherent family F of glueing data such that restr (glueF) ≈ F is a telescopic family. Our
choice is justified by the fact that functions and their restrictions are simpler objects than
families of glueing data and their restrictions. The fact that every such F is telescopic is an
immediate consequence of the Lemma above and Proposition 4.3.6.

Our aim is now to prove that glue lifts to an inverse of restr. To do so we need to prove
that a telescopic family is coherent. Then by Proposition 4.3.6 it will be enough to show
that a telescopic family is the restriction of its own glueing.

First we need some technical lemmas about telescopic functions. We begin by showing
that any two functions which are telescopic over the same w are necessarily equal. A more
general version is in Lemma 4.14.

Lemma 4.11. Let w : W and k, k′ : ISTreesw ⇒ C. Then

isTelescopic k → isTelescopic k′ → k ≈ k′.

Proof. This is proven by induction on T ≡ dsup (w, k)GE : isTelescopic k into the type∏
k′

isTelescopic k′ → k ≈ k′.

Let G′ := csfamw k′ T ′ be the coherent family of glueing subdata given by the assumption
T ′ that k′ is telescopic, as in (4.10). Since k and k′ are the glueing of G and G′, respectively,
it is enough to show that

subgluewG ≈ subgluewG
′.

Using extensionality of subgluew from Lemma 4.5.2 this reduces to show that the two families
G and G′ of glueing subdata are equal, namely that for every s : ISTreesw

Gs ≈ G′s.

This is the inductive hypothesis (4.13) applied to the right-hand function and the proof
from (4.12) that it is telescopic.

Vol. 17:3 W-TYPES IN SETOIDS 28:25

Corollary 4.12. The setoid TelGlueD is a subsingleton, that is, F ≈ F ′ for any two
telescopic families F and F ′.

Proof. Straightforward from Definition 4.8 and Lemma 4.11.

The next lemma shows that telescopic functions are stable under transport over W .

Lemma 4.13. Let γ : w ≈W w′ and k : ISTreesw ⇒ C. Then

isTelescopicw k → isTelescopicw′ (k ◦ ISTreesγ−1).

Proof. This is proven by induction on T ≡ dsup (w, k)GE : isTelescopic k into the type∏
(w′:W)

∏
(γ:w≈w′)

isTelescopicw′ (k ◦ ISTreesγ−1)

and we work towards applying dsup, that is conditions (1) and (2) in Definition 4.7.
Since k is obtained applying subgluew to G by (4.11), it is

k ◦ ISTreesγ−1 ≈ subgluew′ (CohGlueSubDγ G)

by Lemma 4.5.3. It remains to provide a branching function to establish condition 4.7.2.
This amounts to show that, for each s′ : ISTreesw′, the function

CohGlueSubDγ Gs′ ≡ Gs ◦ ISTrees(m-coh γ−1 s′) : ISTrees (mw′ s
′)⇒ C

from (4.7) is telescopic, where s := ISTreesγ−1 s′ : ISTreesw. This is the inductive hypothesis
in (4.13) applied to

(m-coh γ−1 s′)−1 : mw s ≈ mw′ s
′

from Remark 3.9.

Lemma 4.14. Let γ : w ≈W w′, k : ISTreesw ⇒ C and k′ : ISTreesw′ ⇒ C. Then

isTelescopicw k → isTelescopicw′ k
′ → k ≈ k′ ◦ ISTreesγ .

Proof. Straightforward from Lemmas 4.11 and 4.13.

Recall that a family of glueing data is telescopic if each of its components is a telescopic
function. We see in particular that:

Corollary 4.15. Telescopic families are coherent, that is, the setoid TelGlueD is a subsetoid
of CohGlueD.

In the following two results we make sure that glue maps telescopic families to algebra
morphisms.

Lemma 4.16. Let F be a telescopic family. Then the family restr (glueF) of glueing data
is also telescopic.

Proof. We need to show that, for every w : W , the function

restr (glueF)w ≡ (glueF) ◦mw : ISTreesw ⇒ C

is telescopic, and we do so by proving that it satisfies conditions (1) and (2) in Definition 4.7.

28:26 Jacopo Emmenegger Vol. 17:3

As family of glueing subdata for w we can take the family G defined by Gs := F(mw s).
Its coherence follows as for Corollary 4.15 from Lemma 4.14 and the fact that F is telescopic.
For s : ISTreesw it is

restr (glueF)w s ≡ (glueF) (mw s)

≡ aC(node (mw s), F(mw s))

≡ subgluewG

by definition of glue in (4.5) and definition of subglue in (4.9). Since for every w, the function
Fw is telescopic, this is the case in particular for Gs ≡ Fmw s for every s : ISTreesw.

Corollary 4.17. For every telescopic family F , it is

restr (glueF) ≈ F
and the function glueF is in Alg(s, aC), that is

glueF ◦ s ≈ aC ◦ P(glueF).

Proof. The first equality follows from Lemma 4.16 and Lemma 4.11. So the function glueF
is an algebra morphism by Proposition 4.3.6.

It follows that the function glue : CohGlueD⇒ (W ⇒ C) defined in (4.5) restricts to a
function

glue : TelGlueD⇒ Alg(s, aC) (4.15)

from telescopic families to algebra morphisms.

Theorem 4.18. The functions restr from (4.14) and glue from (4.15)

Alg(s, aC)
restr +3

TelGlueD
glue

ks

establish a bijection between the setoid of algebra morphisms from s to aC and the setoid of
telescopic families of glueing data in C.

Proof. Proposition 4.3.5 yields that glue (restr h) ≈ h for every h : Alg(s, aC). The other
equality is in Corollary 4.17.

As an immediate consequence, we see from Corollary 4.12 that the setoid of algebra
morphisms is a subsingleton. It is then clear that Alg(s, s) is a singleton, and that the only
telescopic family in this case is m. It only remains to construct an inhabitant in the general
case.

Proposition 4.19. There is a telescopic family of glueing data in C, i.e. a term

telfam : TelGlueD.

Proof. Given an extensional tree w : W , we need to show that there is a telescopic function

telfamw : ISTreesw ⇒ C.

The proof is by W-elimination on w : W|B| into the type

Wper
B ww −→

∑
k:ISTreesw⇒C

isTelescopic k.

As in the proof of Lemma 4.10, we may assume without loss of generality that all the trees
in the proof are extensional.

Vol. 17:3 W-TYPES IN SETOIDS 28:27

We have a tree of the form w ≡ sup a f and the inductive hypothesis consists, for every
s : ISTreesw, of a telescopic function

Gs : ISTrees (mw s)⇒ C.

This is the same as a telescopic family G of glueing subdata for w, see Remark 4.9.
It follows from Lemma 4.14 that G is coherent, so we may define

telfamw := subgluewG : ISTreesw ⇒ C

as the glueing of a telescopic family G of glueing subdata for w. It is a telescopic function
by definition.

4.2. Initiality. We have finally reached our main result.

Theorem 4.20. For every setoid family B over a setoid A, the associated polynomial
endofunctor P has an initial algebra.

It follows that the category of setoids Std has initial algebras for polynomial endofunctors.

Proof. Given a setoid family B over A, the initial algebra for the polynomial functor P is
the algebra sB : PW ⇒ W of extensional trees constructed in Section 3.1. It follows by
Theorem 4.18 that, for every algebra aC , the only morphism of algebras from s to aC is the
function glue(telfam) : W ⇒ C, where glue : TelGlueD⇒ Alg(sB, aC) is the glueing function
from Theorem 4.18 and telfam is the only telescopic family of glueing data in C, that we
constructed in Proposition 4.19 and proved unique in Corollary 4.12.

It is straightforward to verify that every polynomial functor P on Std has initial algebra
sB ◦ iW : PW ⇒W , where i is a natural isomorphism from P to P as in Definition 2.10.

Gambino and Hyland have proved that, in a locally cartesian closed category, dependent
W-types can be constructed from non-dependent ones, thus providing justification for
an analogous result in extensional type theory claimed in [PS89]. As a consequence of
Theorem 4.20, we expect that setoids have dependent W-types too, i.e. that the category of
Std has initial algebras for dependent polynomial endofunctors.

5. Trees on discrete setoids

In this section we work with the additional assumption that our theory has identity
types [NPS90, Chapter 20.4], see also [UFP13, Chapter 1.12]. We unfold the definition of
the setoid of extensional trees in the case of a discrete setoid family, i.e. a setoid family
coming from an extensional function between discrete setoids. We then compare it to the
discrete setoid on the W-type of the underlying type family. The main result is Theorem 5.8.

In comparing the two, we will also make use of function extensionality. This is because
the functions of immediate subtrees of two matching trees are only required to be pointwise
equal, as in the right-hand side of (W2). Therefore, rather than to compare the two directly,
we prefer to identify another (total) equivalence relation on W|B|, which is logically equivalent
to the identity type on W|B| in the presence of function extensionality, and to compare it to

Wper
B in the general case.

Recall that x =X x′ denotes the identity type of two terms x, x′ : X. For a type family
Y : X → U, we denote as Yξ : Y x → Y x′ the transport function term given by identity
elimination on ξ : x =X x′, and we write y =ξ y

′ for the identity type Yξ y =(Y x′) y
′.

28:28 Jacopo Emmenegger Vol. 17:3

5.1. Discrete setoid families. We begin by identifying those setoid families that corre-
spond, under Theorem 2.8, to functions between discrete setoids.

Definition 5.1. A setoid family B : FamX over the discrete setoid on X is discrete over
X if, for every x : X and b, b′ : B x,

b ≈B x b′ ←→
∑

l:x=Xx

|B|l b =B x b
′

where |B|ξ : B x → B x is the transport function of the underlying type family |B| of B
given by elimination of the identity type.

The equivalence in Theorem 2.8 restricts to an equivalence between the full subcategory
of Std/X on the functions into X from a discrete setoid, and the full subcategory of FamX
on the discrete setoid families over X.

It follows in particular that every type family Y : X → U gives rise to a discrete setoid
family over X, by equipping each fibre Y x with the equality

y ≈ y′ :=
∑

ξ:x=Xx

Yξ y = y′

where Yξ : Y x→ Y x is the transport function given by elimination of the identity type.

5.2. Pointwise equality of trees. Next, we look for an equivalent characterisation of the
discrete setoid on a W-type in the presence of function extensionality.

Definition 5.2. Let Y : X → U be a family of small types. Two trees w ≡ supx f and
w′ ≡ supx′ f ′ in WY are pointwise equal if ξ : x =X x′ and, for every y ∈ Y x and y′ : Y x′,
if y =ξ y

′ then the immediate subtrees f y and f ′ y′ are pointwise equal.
The type family ptEqY : WY → WY → U of proofs that w and w′ are pointwise is

defined as the (curried version of the) dependent W-type on I := WY ×WY with family of
nodes

N := λ(w,w′).nodew =X nodew′ : WY ×WY → U

branching family

Br := λ(w,w′), p.
∑
y,y′

y =ξ y
′ :
∏
I

N (w,w′)→ U

and arity function

ar := λ(w,w′), p, (y, y′, q).(istw y, istw′ y
′) :
∏
I

∏
N

Br((w,w′), p)→ U.

It is possible to show that ptEqY is a symmetric and transitive relation on WY as for
Wper
B in Proposition 3.3. Reflexivity follows from the following lemma.

Lemma 5.3. For every w,w′ : WY

w =WY
w′ −→ ptEqY ww

′.

Thus we have a setoid W̃Y of pointwise-equal trees, that is the type WY with ptEq as
equality, together with an extensional function

qY : WY ⇒ W̃Y (5.1)

from the discrete setoid on WY which is in fact a (canonical) quotient map in Std, cf.
Remark 3.8.

Vol. 17:3 W-TYPES IN SETOIDS 28:29

Proof of Lemma 5.3. The proof is by induction on w ≡ supx f and the inductive hypothesis
tells us that if a tree is equal to an immediate subtree of w, then it is pointwise equal to it.

By induction on r : w = w′, it is enough to show that ptEqY ww. A canonical term
is given taking the canonical proof of x =X x and proving that, for every y, y′ : Y x, if
y =(Y x) y

′ then the trees f y and f y′ are pointwise equal. This follows from the inductive
hypothesis using the fact that every function term—f in particular, is extensional with
respect to the identity type.

Unsurprisingly, it is for the converse that we need function extensionality.

Lemma 5.4. Assume that the theory has function extensionality, i.e. that there is a constant
funext as given in the rule below.

X,Y : U f, g : X → Y H :
∏
x:X

f x =Y g x

funextH : f =(X→Y) g

(5.2)

Then for every w,w′ : WY

ptEqY ww
′ −→ w =WY

w′.

Proof. Let w ≡ supx f and w′ ≡ supx′ f ’. The proof is by induction on the term E :
ptEqww′. To conclude w = w′ it is enough to show that there is ξ : x =X x′ such that
f = f ′ ◦ Yξ. The existence of p follows by definition of ptEqww′. By function extensionality
and the inductive hypothesis it is then enough to show that, for every y : Y x, the immediate
subtrees f y and f ′ (Yξ y) are pointwise equal. This also follows by definition of ptEqww′.

It follows that, in the presence of function extensionality, the discrete setoid on WY is

isomorphic to the setoid W̃Y of pointwise-equal trees via the function qY in (5.1).

5.3. Equivariant trees. Now we look for a characterisation of the setoid WB of extensional

trees of a discrete setoid family B as subsetoid of W̃|B|, i.e. as a setoid of pointwise equal
trees.

Definition 5.5. Let Y : X → U be a type family. A tree w ≡ supx f : WY is equivariant if,
for every l : x =X x and every y : Y x, the immediate subtrees f (Yl y) and f y are pointwise
equal, and every immediate subtree of w is equivariant.

The type family isEquivariant : WY → U of proofs that a tree is equivariant is defined as
the dependent W-type in I := WY with families of nodes and branches

N := λw.
∏

(l:nodew=Xnodew)

∏
(y:Y (nodew))

ptEqY (f (Yl y), f y), Br := λw, .Y (nodew)

and arity function

ar := λw, , y.istw y.

Let EqvTreesY be the subsetoid of W̃Y on the equivariant trees, that is to say, two
equivariant trees are equal in EqvTreesY if they are pointwise equal.

Let also EqvTrees=Y be the subsetoid of WY on the equivariant trees, that is, two
equivariant trees w and w′ ar equal in EqvTrees=Y if w =WY

w′.

28:30 Jacopo Emmenegger Vol. 17:3

Let B : FamX be a discrete setoid family over the discrete setoid on X : U. Note first
that, by its very definition, for every ξ : x =X x′ and every b : B x, there is l′ : x′ =X x′ such
that

|B|l′ (Bξ b) =B x′ |B|ξ b. (5.3)

Recall that we write Bξ for the transport of the setoid family B, and |B|ξ for the transport
of the underlying type family |B|—the former being given by definition and the latter by
elimination of the identity type. The matching relation Wper

B was defined in 3.1.

Lemma 5.6. Let B : FamX be a discrete setoid family over the discrete setoid on X : U.

(1) For every w,w′ : W|B|,

Wper
B ww′ −→ ptEq|B|ww

′.

(2) Every extensional tree is equivariant, i.e. for every w : W|B|,

Wper
B ww −→ isEquivariantw.

Proof. (1) The proof is by induction on w ≡ supx f : W|B| and the inductive hypothesis
tells us that if a tree is matching with an immediate subtree f b of w, then it is pointwise
equal to f b.

Let then w′ ≡ supx′ f ′ be a tree an suppose that w and w′ are matching. To prove that
w and w′ are pointwise equal we need first to provide a proof ξ : x =X x′, which is given by
α in Remark 3.2. We then need to show that for every b : B x and b′ : B x′, if Bξ b ≈B x′ b′,
then the immediate subtrees f b and f ′ b′ are pointwise equal. By the inductive hypothesis,
it is enough to show that the trees f b and f ′ b′ are matching, which holds by definition.

(2) The proof is again by induction on w : W|B|, into the type

Wper
B ww −→ isEquivariantw.

By the inductive hypothesis and the fact that every subtree of an extensional subtree is
extensional 3.5, it follows that every immediate subtree of w is equivariant. To prove that
w is equivariant, it only remains to show that for every l : x =X x and every b : B x, the
subtrees f (|B|l b) and f b are pointwise equal. By (1) just proved and the fact that f is
extensional 3.5, it is enough to prove that |B|l b ≈B x b. This is immediate by Definition 5.1
and standard properties of transport along identity proofs.

It follows from Lemma 5.6 that there is an extensional function

jB : WB ⇒ EqvTrees|B| (5.4)

which is the identity on the underlying trees. The next lemma proves that jB is injective.

Lemma 5.7. Let B : FamX be a discrete setoid family over the discrete setoid on X : U,
and let w,w′ : W|B| be equivariant trees. Then

ptEq|B|ww
′ −→Wper

B ww′.

Proof. This is proven by induction on the proof E that w ≡ supx f is equivariant, into the
type ∏

w′:WY

isEquivariantw′ → ptEq|B|ww
′ →Wper

B ww′.

Let then w′ ≡ supx′ f ′ be equivariant and suppose that w and w′ are pointwise equal. In
particular, there is ξ : x =X x′. So to prove that w and w′ are matching it is enough to
show that for every b : B x and b′ : B x′, if Bξ b ≈B x′ b′ then the immediate subtrees f b

Vol. 17:3 W-TYPES IN SETOIDS 28:31

and f ′ b′ are matching. This follows by the inductive hypothesis once we know that f ′ b′ is
equivariant, and that f b and f ′ b′ are pointwise equal.

The former condition follows by Definition 5.5. For the latter we have

f b ≈ptEq f
′(|B|ξ b)

≈ptEq f
′ (Bξ b)

≈ptEq f
′ b′

using, in order, the fact that subtrees of w and w′ are pointwise equal by Definition 5.2;
condition (5.3), Lemma 5.3 and equivariance of w′; and Definition 5.1, Lemma 5.3 and
equivariance of w′.

Theorem 5.8. Let B : FamX be a discrete setoid family over the discrete setoid on X.

(1) The function jB in (5.4) is a bijection between the setoid of extensional trees WB and
the setoid of equivariant trees EqvTrees|B| on the underlying type family |B|.

(2) Assuming function extensionality (5.2), the setoid of extensional trees WB on B is in
bijection with the subsetoid EqvTrees=Y of the (discrete setoid on the) W-type W|B|.

Proof. (1) This is immediate from Lemmas 5.6 and 5.7.
(2) By Lemmas 5.3 and 5.4, the discrete setoid of trees W|B| is isomorphic to the setoid

W̃|B| of pointwise-equal trees. Now the claim follows by (1) since the setoid of equivariant

trees EqvTrees|B| is a subsetoid of W̃|B| by definition.

Even if assuming function extensionality does not seem to ensure, in general, that the
setoid WB of extensional trees with respect to a discrete setoid family B is discrete, this
happens whenever the base type is a 0-type, i.e. a type with decidable equality.

Corollary 5.9. Let B : FamX be a discrete setoid family over the discrete setoid on X,
and suppose that the type X is a 0-type.

(1) Every tree in W|B| is extensional with respect to B. In particular, the setoid WB of

extensional trees is in bijection with the setoid W̃|B| of pointwise-equal trees.
(2) Assuming function extensionality (5.2), the setoid WB of extensional trees is in bijection

with the discrete setoid on the W-type W|B|.

Proof. We only need to prove that every tree is extensional, as all the other claims follow
from Theorem 5.8.

A tree is extensional if and only if it is equivariant by Lemmas 5.6 and 5.7, and it is
straightforward to prove that every tree in W|B| is equivariant, by induction on the tree and
using the assumption that X is a 0-type.

Acknowledgements

The work described in this paper would have not been possible without the support of my
supervisor Erik Palmgren and, in particular, his Coq library on setoids and setoid families.
The main result of this paper was presented at the Workshop on Types, Homotopy Type
Theory, and Verification, held at the Hausdorff Research Institute for Mathematics in Bonn
in June 2018, and a first version was completed while I was hosted at the same Institute in
July 2018. I thank the organisers of the workshop for giving me the opportunity to speak,
the participants for valuable feedback and the Institute for excellent working conditions.

28:32 Jacopo Emmenegger Vol. 17:3

Financial support from the Royal Swedish Academy of Sciences and the K&A Wallenberg
Foundation is also acknowledged. I am grateful to Peter Dybjer for bibliographic advice and
to the anonymous referees for extremely useful comments. Prooftrees were typeset using
Paul Taylor’s macros package.

References

[Acz78] P. Aczel. The type theoretic interpretation of constructive set theory. In A. MacIntyre, L. Pacholski,
and J. Paris, editors, Logic Colloquium ’77, volume 96 of Studies in Logic and the Foundations of
Mathematics, pages 55–66. North-Holland, Amsterdam, 1978.

[Acz86] P. Aczel. The type theoretic interpretation of constructive set theory: Inductive definitions. In
Ruth Barcan Marcus, Georg J.W. Dorn, and Paul Weingartner, editors, Logic, Methodology and
Philosophy of Science VII, volume 114 of Studies in Logic and the Foundations of Mathematics,
pages 17–49. Elsevier, 1986.

[Acz93] P. Aczel. Galois: A theory development project. A report on work in progress, for the Turin meeting
on the Representation of Mathematics in Logical Frameworks, January 20–23, 1993.

[AGS17] S. Awodey, N. Gambino, and K. Sojakova. Homotopy-initial algebras in type theory. J. ACM,
63(6):51:1–51:45, 2017.

[BCP03] G. Barthe, V. Capretta, and O. Pons. Setoids in type theory. J. Funct. Program., 13(2):261–293,
2003.

[Ber05] B. van den Berg. Inductive types and exact completion. Annals of Pure and Applied Logic,
134(2):95–121, 2005.

[BM18] B. van den Berg and I. Moerdijk. Exact completion of path categories and algebraic set theory. Part
I: Exact completion of path categories. Journal of Pure and Applied Algebra, 222(10):3137–3181,
2018.

[Bre15] L. Bressan. An extension of the Minimalist Foundation. Master’s thesis, Università degli Studi di
Padova, 2015.

[Dyb97] P. Dybjer. Representing inductively defined sets by wellorderings in Martin-Löf’s type theory.
Theoretical Computer Science, 176(1):329–335, 1997.

[Emm18] J. Emmenegger. W-types in setoids formalised in Coq. GitHub repository, 2018. Available at:
https://github.com/j-emmen/W-types-in-setoids.

[EP20] J. Emmenegger and E. Palmgren. Exact completion and constructive theories of sets. Journal of
Symbolic Logic, 85(2), 2020.

[GH04] N. Gambino and M. Hyland. Wellfounded trees and dependent polynomial functors. In Types for
proofs and programs, volume 3085 of Lecture Notes in Computer Science, pages 210–225. Springer,
2004.

[GK13] N. Gambino and J. Kock. Polynomial functors and polynomial monads. Mathematical Proceedings
of the Cambridge Philosophical Society, 154(1):153–192, 2013.

[HS00] G. Huet and A. Säıbi. Constructive Category Theory. In G. Plotkin, C. Stirling, and M. Tofte,
editors, Proof, Language and Interaction: Essays in honour of Robin Milner. MIT press, 2000.

[Mai09] M.E. Maietti. A minimalist two-level foundation for constructive mathematics. Annals of Pure and
Applied Logic, 160(3):319–354, 2009.

[ML82] Per Martin-Löf. Constructive mathematics and computer programming. In L. Jonathan Cohen,
Jerzy Loś, Helmut Pfeiffer, and Klaus-Peter Podewski, editors, Logic, Methodology and Philosophy
of Science VI, volume 104 of Studies in Logic and the Foundations of Mathematics, pages 153 –
175. Elsevier, 1982.

[ML84] P. Martin-Löf. Intuitionistic type theory. Notes by G. Sambin of a series of lectures given in Padua,
June 1980. Studies in Proof Theory. Bibliopolis, Napoli, 1984.

[MP00] I. Moerdijk and E. Palmgren. Wellfounded trees in categories. Annals of Pure and Applied Logic,
104(1):189–218, 2000.

[MR13] M.E. Maietti and G. Rosolini. Quotient completion for the foundation of constructive mathematics.
Logica Universalis, 7(3):371–402, 2013.

https://github.com/j-emmen/W-types-in-setoids

Vol. 17:3 W-TYPES IN SETOIDS 28:33

[MR16] M.E. Maietti and G. Rosolini. Relating quotient completions via categorical logic. In P. Schuster
and D Probst, editors, Concepts of Proof in Mathematics, Philosophy, and Computer Science,
pages 229–250. De Gruyter, 2016.

[NPS90] B. Nordström, K. Petersson, and J.M. Smith. Programming in Martin-Löf ’s type theory. An
introduction. Oxford University Press, Oxford, 1990.

[Pal92] E. Palmgren. Type-theoretic interpretation of iterated, strictly positive inductive definitions. Archive
for Mathematical Logic, 32(2):75–99, 1992.

[Pal12a] E. Palmgren. LCC setoids in Coq. GitHub repository, 2012. Available at: https://github.com/

erikhpalmgren/LCC_setoids_in_Coq.
[Pal12b] E. Palmgren. Proof-relevance of families of setoids and identity in type theory. Archive for Mathe-

matical Logic, 51(1):35–47, 2012.
[Pal19] E. Palmgren. From type theory to setoids and back. Preprint. arXiv:1909.01414, 2019.
[PS89] K. Petersson and D. Synek. A set constructor for inductive sets in Martin-Löf’s type theory. In

Proceedings of the 1989 Conference on Category Theory and Computer Science, Manchester, U.K.,
volume 389 of Lecture Notes in Computer Science, pages 128–140. Springer-Verlag, 1989.

[PW14] E. Palmgren and O. Wilander. Constructing categories and setoids of setoids in type theory. Logical
Methods in Computer Science, 10(3), 2014.

[RS15] E. Rijke and B. Spitters. Sets in homotopy type theory. Mathematical Structures in Computer
Science, 25(5):1172–1202, 2015.

[UFP13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations in Mathemat-
ics. Institute for Advanced Studies, Princeton, 2013. Available at: http://homotopytypetheory.

org/book/.
[Vid18] J. Vidmar. Polynomial Functors and W -Types for Groupoids. PhD thesis, University of Leeds,

2018.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

https://github.com/erikhpalmgren/LCC_setoids_in_Coq
https://github.com/erikhpalmgren/LCC_setoids_in_Coq
http://homotopytypetheory.org/book/
http://homotopytypetheory.org/book/

	1. Introduction
	2. Preliminaries
	2.1. The type-theoretic setting
	2.2. W-types
	2.3. Dependent W-types
	2.4. Setoids and setoid families
	2.5. Polynomial functors and W-types

	3. The algebra of extensional trees
	3.1. The setoid of extensional trees
	3.2. Setoid families on extensional trees
	3.3. Construction of the algebra map

	4. Initiality of the algebra of extensional trees
	4.1. Characterisation of algebra morphisms
	4.2. Initiality

	5. Trees on discrete setoids
	5.1. Discrete setoid families
	5.2. Pointwise equality of trees
	5.3. Equivariant trees

	Acknowledgements
	References

