
Logical Methods in Computer Science
Volume 17, Issue 4, 2021, pp. 2:1–2:29
https://lmcs.episciences.org/

Submitted Jun. 12, 2020
Published Oct. 01, 2021

FOUNDATIONS OF REGULAR COINDUCTION

FRANCESCO DAGNINO

DIBRIS, University of Genova, Italy
e-mail address: francesco.dagnino@dibris.unige.it

Abstract. Inference systems are a widespread framework used to define possibly recursive
predicates by means of inference rules. They allow both inductive and coinductive interpre-
tations that are fairly well-studied. In this paper, we consider a middle way interpretation,
called regular, which combines advantages of both approaches: it allows non-well-founded
reasoning while being finite. We show that the natural proof-theoretic definition of the
regular interpretation, based on regular trees, coincides with a rational fixed point. Then,
we provide an equivalent inductive characterization, which leads to an algorithm which
looks for a regular derivation of a judgment. Relying on these results, we define proof
techniques for regular reasoning: the regular coinduction principle, to prove completeness,
and an inductive technique to prove soundness, based on the inductive characterization of
the regular interpretation. Finally, we show the regular approach can be smoothly extended
to inference systems with corules, a recently introduced, generalised framework, which
allows one to refine the coinductive interpretation, proving that also this flexible regular
interpretation admits an equivalent inductive characterisation.

1. Introduction

Non-well-founded structures, such as graphs and streams, are ubiquitous in computer science.
Defining and proving properties of this kind of structures in a natural way is a challenging
problem. Indeed, standard inductive techniques are not adequate, because they require to
reach a base case in finitely many steps, and this is clearly not guaranteed, since non-well-
founded structures are conceptually infinite. The natural way to deal with such structures is
by coinduction, the dual of induction, which allows non-well-founded reasoning.

A widespread approach to structure formal reasoning is by inference rules, which define
the steps we can do to prove judgements we are interested in. They support both inductive
and coinductive reasoning in a pretty natural way: in inductive reasoning we are only
allowed to use finite derivations, while in the coinductive one we can prove judgements by
arbitrary, finite or infinite, derivations, hence coinductive reasoning can properly handle
non-well-founded structures.

Coinductive reasoning is very powerful: it allows to derive judgements which require the
proof of infinitely many different judgements. For instance, consider the following inference

Key words and phrases: coinduction, inference systems, regular trees, fixed points.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-17(4:2)2021
© F. Dagnino
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2:2 F. Dagnino Vol. 17:4

rule used to prove that a stream contains only positive elements:

allPos(s)

allPos(x : s)
x > 0

To prove that the stream of all odd natural numbers contains only positive elements, we can
use the following infinite derivation:

...

allPos(5 : 7 : 9 : . . .)

allPos(3 : 5 : 7 : . . .)

allPos(1 : 3 : 5 . . .)

which is valid in coinductive reasoning and contains infinitely many different judgements.
However, there are cases where, even though we need an infinite derivation, this derivation

requires only the proof of finitely many different judgements. This is often the case when
dealing with cyclic structures, such as graphs or cyclic streams, since they are non-well-
founded, but finitely representable. For instance, if we want to prove that the stream of all
1’s contains only positive elements, we can use the following derivation:

...

allPos(1 : 1 : 1 : . . .)

allPos(1 : 1 : 1 : . . .)

allPos(1 : 1 : 1 : . . .)

which is infinite, but requires only the proof of allPos(1 : 1 : 1 : . . .).
Borrowing the terminology from trees [Cou83], we call a derivation requiring the proof of

finitely many different judgments regular (a.k.a. rational1), and we call regular coinduction
(or regular reasoning) the approach that allows only regular derivations.

Whereas inductive and coinductive reasoning have well-known semantic foundations and
proof principles, to our knowledge regular reasoning by means of inference rules has never
been explored at the same extent. The aim of this paper is to fill this gap, by providing
solid foundations also to the regular approach. Indeed, we believe that the regular approach
provides a very interesting middle way between induction and coinduction.

Indeed, inductive reasoning is restricted to finite derivations, but, in return, we implicitly
get an (abstract) algorithm, which looks for a derivation of a judgement. Such an algorithm is
sound and complete with respect to derivable judgements. That is, it may not terminate for
judgements that do not have a finite derivation, but it is guaranteed to successfully terminate,
finding a finite derivation, for all and only derivable judgments. Instead, coinductive reasoning
allows also infinite derivations, but there is no hope, in general, to find an algorithm which
succesfully terminates for derivable judgments, because, as we have seen, a derivation may
require infinitely many different judgements to be proved2.

Regular reasoning combines advantages of the two approaches: on one hand, it is not
restricted to finite derivations, going beyond limits of induction, but, on the other hand, it

1The terms regular and rational are synonyms. However we will mainly use the second one for the
model-theoretic approach, see Sect. 3.

2This is just an intuitive explaination. This fact has been proved for logic programs in [AD15], which are
a particular, syntactic, instance of general rule-based definitions considered in this paper.

Vol. 17:4 FOUNDATIONS OF REGULAR COINDUCTION 2:3

still has, like induction, a finite nature, hence it is possible to design an algorithm which
finds a derivation for all and only derivable judgments, as we will show in the following.

In detail, the contribution of this paper is the following.

• An equivalent model-theoretic characterization of judgements derivable by a regular proof
tree, showing it is an instance of the rational fixed point [AMV06]. This is important since
it provides a purely semantic view of regular coinduction. Moreover, from this we get a
proof principle, the regular coinduction principle, which can be used to prove completeness
of a set of inference rules against a set of valid judgements, that is, that all valid judgement
are derivable by a regular proof tree.
• An equivalent inductive characterization of judgements derivable by a regular proof

tree. Essentially, following the structure of the operational model of coinductive logic
programming [SMBG06, AD15], but in the more abstract setting of rule-based definitions,
we enrich judgements by a finite set of circular hypotheses, used to keep track of already
encountered judgements so that, when the same judgement is found again, it can be used
as an axiom. This nicely formalizes, by an abstract construction in the general setting of
rule-based definitions and a correcteness proof given once and for all, techniques used in
different specific cases for dealing with cyclic structures inductively, by detecting cycles to
ensure termination. Furthermore, this provides us with a sound and complete algorithm
to find a regular derivation for a judgment, if any. Finally, relying on the inductive
characterization, we define a proof technique to show soundness of a set of inference rules
against a set of valid judgements, that is, that all derivable judgements are valid.

Moreover, we show that all these results can be smoothly extended to a recently
introduced generalisation of coinductive reasoning, namely flexible coinduction [Dag17,
ADZ17b, Dag19]. Beside standard rules, this generalised framework allows also corules,
which are special rules used to validate infinite derivations. As a result, using corules, we
are able to filter out some undesired infinite derivations, having a much finer control on the
set of derivable judgements. Flexible coinduction smoothly extends standard coinduction,
subsuming it, that is, standard coinduction can be recovered by a specific choice of corules.
We will show this is the case also in the regular case, that is, flexible regular coinduction
subsumes standard regular coinduction.

The rest of the paper is organized as follows. In Sect. 2 we recall basic concepts on
inference systems and define the regular interpretation in proof-theoretic terms. In Sect. 3
we define the rational fixed point in a lattice-theoretic setting, and in Sect. 4 we prove
that the regular interpretation coincides with a rational fixed point. Sect. 5 provides the
equivalent inductive characterization of the regular interpretation and Sect. 6 discusses proof
techniques for regular reasoning. In Sect. 7 we extend all the previously presented results to
flexible coinduction. Finally, Sect. 8 discusses related work and Sect. 9 concludes the paper,
outlining future work.

Notations. Let X be a set, we denote by ℘(X) and ℘ω(X) its power-set and its finite
power-set, respectively. For a function f : X → Y , f! : ℘(X)→ ℘(Y) and f∗ : ℘(Y)→ ℘(X)
are the direct image and the inverse image along f , respectively, hat is, f!(A) = {y ∈ Y |
∃x ∈ A.y = f(x)} and f∗(B) = {x ∈ X | f(x) ∈ B}. We also denote by X? the set of finite
sequences on X, by ε the empty sequence and by αβ the concatenation of sequences α and
β.

2:4 F. Dagnino Vol. 17:4

2. Inference systems and regular derivations

In this section, we recall basic definitions about inference systems [Acz77, LG09, San11] and
their standard semantics, and define their regular interpretation.

Let us assume a universe U , which is a set, whose elements j are called judgements.
An inference system I is a set of (inference) rules, which are pairs 〈Pr , c〉, also written
Pr

c
, where Pr ⊆ U is the set of premises, while c ∈ U is the conclusion. A proof tree (a.k.a.

derivation) in I is a tree with nodes (labelled) in U and such that, for each node j with
set of children Pr , there is a rule 〈Pr , j 〉 in I. The inference operator FI : ℘(U)→ ℘(U) is
defined as follows:

FI(X) = {j ∈ U | ∃Pr ⊆ X. 〈Pr , j 〉 ∈ I}
A subset X ⊆ U is closed if, for all rules 〈Pr , j 〉 ∈ I, if Pr ⊆ X then, j ∈ X, that
is, FI(X) ⊆ X, it is consistent if, for all j ∈ X, there is a rule 〈Pr , j 〉 ∈ I, that is,
X ⊆ FI(X), and it is an interpretation, if it is both closed and consistent, namely, a fixed
point X = FI(X).

There are two main approaches to define interpretations of an inference system: the
model-theoretic and the proof-theoretic one. The two standard interpretations, the inductive
and the coinductive one, can be equivalently defined in proof-theoretic and in model-theoretic
style:

• the inductive interpretation µJIK is the set of judgements having a well-founded proof
tree, and also the least fixed point of FI , and
• the coinductive interpretation νJIK is the set of judgements having an arbitrary (well-

founded or not) proof tree, and also the greatest fixed point of FI .

In the following, we will write I `µ j for j ∈ µJIK and I `ν j for j ∈ νJIK.
In this paper, we assume inference systems to be finitary, that is, all rules have a finite

set of premises. Under this assumption, well-founded proof trees are always finite and infinite
proof trees are always non-well-founded3, hence we will use this simpler terminology.

In the coinductive interpretation, since we allow arbitrary proof trees, we can derive
judgements requiring infinitely many different judgements to be proved. However, there are
cases where we still need infinite derivations, but only of finitely many judgements. This idea
of an infinite proof tree containing only finitely many different judgements nicely corresponds
to a well-known class of trees: regular trees [Cou83]. We say that a tree is regular if it has a
finite number of different subtrees. Then, we can define another set of judgements:

Definition 2.1 (Regular interpretation). The regular interpretation of an inference system
I is the set ρJIK of judgements having a regular proof tree.

In the following we will write I `ρ j for j ∈ ρJIK. To ensure that the regular interpre-
tation is well-defined, we have to check it is indeed an interpretation, namely, it is a fixed
point of FI . We refer to Sect. 4 for this proof.

Let us illustrate regular proof trees by a couple of examples. Consider λ-terms, ranged
over by M,N , with the usual full β-reduction→. Denote by R(M) the set of terms reachable
from M , that is, R(M) = {N |M →? N}, where →? is the reflexive and transitive closure
of →, and by S(M) the subset of R(M) of those terms reachable in one step, that is,
S(M) = {N | M → N}. Note that S(M) is necessarily finite as the set of redexes in any
λ-term is finite, while R(M) may in general be infinite. We say that a term M is regularly

3This is an immediate consequence of the König’s lemma.

Vol. 17:4 FOUNDATIONS OF REGULAR COINDUCTION 2:5

a ++

��

bkk

��
d
yy

c

...

distG(a, c, 2) distG(c, c, 0)

distG(b, c, 1)

...

distG(d, c,∞)

distG(d, c,∞)

distG(a, c, 2)

Figure 1: On the left side a concrete graph G with nodes {a, b, c, d}, and on the right side
the regular derivation of the judgement distG(a, c, 2).

reducible if the set R(M) is finite. In other words, this means that its evaluation graph of M
is finite or, alternatively, its evaluation tree is regular, because the evaluation tree of M has
one different subtree for any term reachable from M . Obviously, all strongly normalising
terms are regularly reducible, but also some non-normalising terms are regularly reducible,
for instance, so is the term Ω = ∆ ∆, where ∆ = λx.x x, as it always reduces to itself.
Instead, a term like Ω1 = ∆1 ∆1, with ∆1 = λx.x xx, is not regularly reducible as it reduces
to larger and larger terms (Ω1 → Ω1 ∆1 → Ω1 ∆1 ∆1 → . . .).

We can define a judgement reg-red(M) characterising regularly reducible terms as the
regular interpretation of the following rule:

(step)
reg-red(N1) . . . reg-red(Nk)

reg-red(M)
S(M) = {N1, . . . , Nk}

Indeed, the proof tree for reg-red(M) coincides with the evaluation tree of M , hence
judgements derivable by regular proof trees coincides with regularly reducible terms.

As another example, assume that we want to define the judgement distG(v , u, δ), where
G is a graph, v and u are nodes in G and δ ∈ [0,∞], stating that the distance from v to u
in G is δ. We represent a graph by its accessibility function G : V → ℘(V), where V is
the finite set of nodes. The judgement is defined by the following (meta-)rules, where we
assume min ∅ =∞:

(empty)
distG(v , v , 0)

(adj)
distG(v1, u, δ1) . . . distG(vn, u, δn)

distG(v , u, 1 + min{δ1, . . . , δn})
v 6= u
G(v) = {v1, . . . , vn}

Of course the inductive interpretation is not enough: it can only deal with acyclic graphs,
because, in presence of cycles, we cannot reach a base case (an axiom) in finitely many steps.
Hence, we need infinite derivations to handle cycles, and, since the set of nodes is finite,
to compute the distance, we need only finitely many judgements, thus regular derivations
should be enough. Fig. 1 shows a concrete example of this feature of derivations in the
above inference system.

As we said, standard inductive and coinductive interpretations are fixed points of the
inference operator. In the next few sections, we will show that this is the case also for the
regular interpretation.

3. The rational fixed point

In this section we define the rational fixed point in a lattice-theoretic setting, which will be
the basis for the fixed point characterisation of the regular interpretation. The construction

2:6 F. Dagnino Vol. 17:4

we present in Def. 3.1 and Theorem 3.2 is an instance of analogous constructions [AMV06,
MPW16, MPW19] developed in a more general category-theoretic setting. We work in the
lattice-theoretic setting, since it is enough for the aim of this paper and definitions and
proofs are simpler and understandable by a wider audience.

First, we report some basic definitions on lattices, for details we refer to [DP02]. A
complete lattice is a partially ordered set 〈L, v〉 where all A ⊆ L have a least upper bound
(a.k.a. join), denoted by

⊔
A. In particular, in L there are both a top element > =

⊔
L

and a bottom element ⊥ =
⊔
∅. Furthermore, it can be proved that all A ⊆ L have also a

greatest lower bound (a.k.a. meet), denoted by
d
A. In the following, for all x, y ∈ L, we

will write xt y for the binary join and xu y for the binary meet. The paradigmatic example
of complete lattice is the power-set ℘(X) of a set X, ordered by set inclusion, where least
upper bounds are given by unions.

An element x ∈ L is compact if, for all A ⊆ L such that x v
⊔
A, there is a finite subset

B ⊆ A such that x v
⊔
B. We denote by C(L) the set of compact elements in L. It is easy

to check that C(L) is closed under binary joins, that is, if x, y ∈ L are compact, then xt y is
compact as well. In the power-set lattice, compact elements are finite subsets.

An algebraic lattice is a complete lattice 〈L, v〉 where each x ∈ L is the join of all
compact elements below it, that is, x =

⊔
{y ∈ C(L) | y v x}. In other words, an algebraic

lattice is generated by the set of its compact elements, since each element can be decomposed
as a (possibly infinite) join of compact elements. The power-set lattice is algebraic, since
each element can be decomposed as a union of singletons, which are obviously compact.

Given a function F : L→ L and an element x ∈ L, we say that x is a pre-fixed point if
F (x) v x, a post-fixed point if x v F (x), and a fixed point if x = F (x). We are interested
in a special class of functions, called finitary functions (a.k.a. Scott-continuous functions),
defined below. A subset A ⊆ L is directed if, for all x, y ∈ A, there is z ∈ A such that
x v z and y v z, then a finitary function F : L→ L is a function preserving the joins of all
directed subsets of L, that is, for each directed subset A ⊆ L, F (

⊔
A) =

⊔
F!(A). A finitary

function is also monotone: if x v y then the set {x, y} is directed and its join is y, hence we
get F (y) = F (x) t F (y), that is, F (x) v F (y). Monotone functions over a complete lattice
have an important property: thanks to the Knaster-Tarski theorem [Tar55], we know that
they have both least and greatest fixed points, that we denote by µF and νF , respectively.
We will show that for a finitary function over an algebraic lattice we can construct another
fixed point lying between the least and the greatest one. In the following we assume an
algebraic lattice 〈L, v〉.

Definition 3.1. Let F : L→ L be a finitary function. The rational fixed point of F , denoted
by ρF , is the join of all compact post-fixed points of F , that is, if RF = {x ∈ C(L) | x v F (x)},

ρF =
⊔
RF

Note that, since both compact elements and post-fixed points are closed under binary
joins, we have that, for all x, y ∈ RF , x t y ∈ RF , but, in general, ρF is not compact,
because it is the join of an infinite set.

The following theorem ensures that the rational fixed point is well-defined, that is, it is
indeed a fixed point. Such result is a consequence of a general category-theoretic analysis
[AMV06], we rephrase the proof in our more specific setting as it is much simpler.

Theorem 3.2. Let F : L→ L be a finitary function, then ρF is a fixed point of F .

Vol. 17:4 FOUNDATIONS OF REGULAR COINDUCTION 2:7

Proof. Since ρF is defined as the least upper bound of a set of post-fixed points, it is
post-fixed as well. Hence, we have only to check that F (ρF) v ρF .

First, since L is algebraic we have F (ρF) =
⊔
{x ∈ C(L) | x v F (ρF)}, hence it is enough

to prove that, for all x ∈ C(L) such that x v F (ρF), we have x v ρF . Consider x ∈ C(L) such
that x v F (ρF). Note that RF is a directed set, indeed, if X ⊆ RF is finite, then

⊔
X ∈ RF ,

hence, since F is finitary, we have F (ρF) = F (
⊔
RF) =

⊔
F!(RF). Therefore, x v

⊔
F!(RF)

and, since x is compact, there is a finite subset W ⊆ RF such that x v
⊔

F!(W). Set
w =

⊔
W , since F is monotone, we get x v

⊔
F!(W) v F (

⊔
W) = F (w). By definition,

w ∈ RF , namely, it is compact and post-fixed, hence we get x t w v F (w) v F (x t w),
since F is monotone. Finally, x t w is compact, as it is the join of compact elements, hence
x t w ∈ RF , and this implies x v x t w v ρF , as needed.

As for least and greatest fixed points, as an immediate consequence of Def. 3.1, we get a
proof principle to show that an element is below ρF .

Proposition 3.3. Let F : L → L be a finitary function and z ∈ L, then, if there is a set
X ⊆ C(L) such that

• for all x ∈ X, x v F (x), and
• z v

⊔
X,

then z v ρF .

Proof. If these conditions hold, then we have X ⊆ RF , hence z v
⊔
X v

⊔
RF = ρF .

4. Fixed point semantics for regular coinduction

In this section, we prove that the regular interpretation ρJIK of a (finitary) inference system
I (Def. 2.1) coincides with the rational fixed point of the inference operator FI . Rather than
giving an ad-hoc proof, we present a general framework where to express in a uniform and
systematic way the equivalence between proof-theoretic and model-theoretic semantics, and
then prove such equivalence for the regular case. To do this, we need a more formal account
of proof trees. These definitions work for any inference system, even non-finitary ones.

A formal account of proof trees. To carry out the proof, we need a more formal account of
proof trees (see [Dag19] for details).

A tree language on a set A is a non-empty and prefix-closed subset L ⊆ A?, that is,
such that, for all α ∈ A? and x ∈ A, if αx ∈ L then α ∈ L, hence, in particular, the empty
sequence belongs to any tree language.

A tree τ on a set A is a pair 〈r, L〉 where L is a tree language on A and r ∈ A is the root
of the tree. We set N(τ) = L and r(τ) = r. Intuitively, a sequence α ∈ L represents a node
of the tree labelled by τ(α), defined as the last element of the sequence r(τ)α. Therefore,
a tree τ on A induces a partial function from A? to A whose domain is a tree language.
Differently from the literature [Cou83, AAMV03], our definition forces trees to be unordered
and, more importantly, it ensures there cannot be two sibling nodes with the same label, we
refer to [Dag19], where these trees are called children injective, for a detailed comparison.
These two additional requirements will be essential to prove a crucial result of this section,
Theorem 4.7, and are reasonable to define proof trees as we will see below.

Given a tree τ and a node α ∈ N(τ), we denote by τ|α the subtree of τ rooted at α,
defined as the pair 〈τ(α), {β ∈ A? | αβ ∈ L}〉. Hence τ is regular iff the set SubTr(τ) =

2:8 F. Dagnino Vol. 17:4

{τ|α | α ∈ N(τ)} is finite. We also define chlτ (α) = {τ|β | ∃x ∈ A.β = αx, β ∈ N(τ)} the set

of children of α in τ and dst(τ) = chlτ (ε) the set of direct subtrees of τ , which are the children
of the root of τ . Note that, for all α ∈ N(τ), we have τ(α) = r(τ|α) and chlτ (α) = dst(τ|α).

Having these notations, we say that a tree τ on the universe U is a proof tree in I iff, for
all nodes α ∈ N(τ), we have 〈r!(chlτ (α)), τ(α)〉 ∈ I. In the following, as it is customary, we
often represent proof trees using stacks of rules, that is, if 〈Pr , c〉 ∈ I and T = {τi | i ∈ I}
is a collection of trees such that r!(T) = Pr and r(τi) = r(τj) implies i = j, we denote by
T

c
the proof tree τ = 〈c, N(τ)〉 where

N(τ) = {ε} ∪
⋃
i∈I

r(τi)N(τi)

Finally, we say that a tree τ is a proof tree for a judgement j ∈ U if it is a proof tree rooted
in j , that is, r(τ) = j .

Relating proof-theoretic and model-theoretic semantics. We now present a systematic ap-
proach to define and relate proof-theoretic and model-theoretic semantics of inference systems.
Let T I be the set of all (well-founded or not) proof trees in I and, abusing a bit the notation,
let r : T I → U be the function that maps a proof tree to its root. Then the direct image
and the inverse image along r are r! : ℘(T I) → ℘(U) and r∗ : ℘(U) → ℘(T I), respectively.
There is an adjunction r! a r∗, that is, for all X ⊆ T I and Y ⊆ U , r!(X) ⊆ Y iff X ⊆ r∗(Y).
In other words, r! behaves as an abstraction function [CC77]. We define the tree inference
operator TI : ℘(T I)→ ℘(T I) as follows:

TI(X) = {τ ∈ T I | dst(τ) ⊆ X and 〈r!(dst(τ)), r(τ)〉 ∈ I}

It is easy to check that TI is monotone. This function behaves the same way as FI , but
keeps track of the trees used to derive the premises of the rule. More formally, FI and TI are
related by the following proposition, which is an immediate consequence of their definitions.

Proposition 4.1. r! ◦ TI = FI ◦ r! and TI ◦ r∗ ⊆ r∗ ◦ FI .

Corollary 4.2. Let X ⊆ T I and Y ⊆ U , then

• if X ⊆ TI(X) then r!(X) ⊆ FI(r!(X)),
• if TI(X) ⊆ X then FI(r!(X)) ⊆ r!(X), and
• if FI(Y) ⊆ Y then TI(r

∗(Y)) ⊆ r∗(Y).

It can be proved4 that µTI is the set of well-founded proof trees, while νTI is the set
of all proof trees. Then, the correspondence between proof-theoretic and model-theoretic
approaches in the standard inductive and coinductive cases can be succinctly expressed by
the equalities: µJIK = r!(µTI) = µFI and νJIK = r!(νTI) = νFI .

4We omit the proofs because the focus of the paper is on regular trees.

Vol. 17:4 FOUNDATIONS OF REGULAR COINDUCTION 2:9

The regular case. First of all, we state a fundamental property of finitary inference systems:

Proposition 4.3. If I is finitary, then FI and TI are finitary.

Proof. We do the proof for TI . Let X ⊆ ℘(U) be a directed subset. Since TI is monotone, we
have

⋃
TI !(X) ⊆ TI(

⋃
X), hence we have only to check the other inclusion. If τ ∈ TI(

⋃
X),

dst(τ) ⊆
⋃
X and, since dst(τ) is finite, as τ is a proof tree and I is finitary, there is a finite

subset Y ⊆ X such that dst(τ) ⊆
⋃
Y . Then, since X is directed, there is A ∈ X such that⋃

Y ⊆ A, thus dst(τ) ⊆ A, and so τ ∈ TI(A) ⊆
⋃

TI !(X), as needed.

Let us denote by RI the set of regular proof trees in I. Thanks to Prop. 4.3 and
Theorem 3.2, we know that ρFI and ρTI are both well-defined. Then, the theorem we have
to prove is the following:

Theorem 4.4. ρJIK = r!(ρTI) = ρFI .

The first step of the proof is to show that the set of regular proof trees coincides with the
rational fixed point of TI . To this end, we have the following characterization of post-fixed
points of TI .

Lemma 4.5. Let X ⊆ T I be a set of proof trees, then X ⊆ TI(X) if and only if

X =
⋃
τ∈X

SubTr(τ)

Proof. We start from the left-to-right implication. The inclusion ⊆ is trivial, since τ ∈
SubTr(τ) for any tree τ . To prove the other inclusion, set τ ∈ X, we have to show that, for
all α ∈ N(τ), τ|α ∈ X. The proof is by induction on α.

Base: If α is empty, then τ|α = τ ∈ X by hypothesis.
Induction: If α = βj , then τ|βj = (τ|α)|j and τ|α ∈ X by induction hypothesis. Since

X ⊆ TI(X), we have (τ|α)|j ∈ dst(τ|α) ⊆ X, as needed.

The other implication is trivial: if τ ∈ X, dst(τ) ⊆ X by hypothesis and
r!(dst(τ))

r(τ)
∈ I, as

τ is a proof tree, hence τ ∈ TI(X).

Lemma 4.6. RI = ρTI .

Proof. To prove RI ⊆ ρTI , let τ be a regular tree, then SubTr(τ) is finite and, by Lemma 4.5,
it is a post-fixed point. Hence, τ ∈ SubTr(τ) ⊆ ρTI , by Prop. 3.3, as needed.

To prove ρTI ⊆ RI , let X ⊆ T I be a finite post-fixed point of TI , then we have to show
that X ⊆ RI . Let τ ∈ X, then, by Lemma 4.5, we have SubTr(τ) ⊆ X, hence SubTr(τ) is
finite, that is, τ is regular, as needed.

Thanks to Lemma 4.6 and Def. 2.1, we trivially get the first equality: ρJIK = r!(ρTI).
To prove the second equality of Theorem 4.4, we need a general property of regular

trees, which is a stronger version of a result proved in [Dag19]. To this end, assume a set A
and denote by TA and RA the sets of all trees and regular trees on A, respectively. Note
that functions dst : TA → ℘(TA) and r : TA → A, mapping a tree to its direct subtrees and
to its root, respectively, are well-defined and restrict to RA, because subtrees of a regular
tree are regular as well. Basically, we show that, starting from a graph structure on a subset
of A, for each node of the graph there is a unique way to construct a tree coherent with the
graph structure, and, moreover, if this subset is finite, all the constructed trees are regular.

2:10 F. Dagnino Vol. 17:4

In this context a graph is a function g : X → ℘(X), modelling the adjacency function, that
is, X is the set of nodes and, for all x ∈ X, g(x) is the set of adjacents of x.

Theorem 4.7. Let g : X → ℘(X) be a function and v : X → A be an injective function.
Then, there exists a unique function p : X → TA such that the following diagram commutes:

X
p //

〈g, v〉
��

TA
〈dst, r〉
��

℘(X)×A
p!×idA// ℘(TA)×A

furthermore, if X is finite, then p corestricts to RA, that is, the following diagram commutes:

X
p //

〈g, v〉
��

RA
〈dst, r〉
��

℘(X)×A
p!×idA// ℘(RA)×A

Finally, p is injective.

Proof. For all x ∈ X, we define the set Lx,n of paths of length n starting from x and the set
Lx of all paths starting from x as follows:

Lx =
⋃
n∈N

Lx,n

Lx,0 = {ε}
Lx,n+1 =

⋃
y∈g(x)

{v(y)α | α ∈ Ly,n}

Trivially we have, for all x ∈ X, Lx ⊆ A?. We show, by induction on n, that for all n ∈ N,
x ∈ X, α ∈ A? and a ∈ A, if αa ∈ Lx,n+1 then α ∈ Lx,n.

Base: Since αa ∈ Lx,1, we have α = ε ∈ Lx,0, as needed.
Induction: We prove the thesis for n+ 1. Since αa ∈ Lx,n+2, by definition of Lx,n+2, we

have α = v(y)β, for some y ∈ g(x), and βa ∈ Ly,n+1. By induction hypothesis, we get
β ∈ Ly,n, then, by definition of Lx,n+1, we get α = v(y)β ∈ Lx,n+1, as needed.

This implies that Lx is prefix-closed, thus a tree language, and so 〈x, Lx〉 is a tree on A. We
define p(x) = 〈x, Lx〉.

To prove that the diagram commutes, we have to show that, for all x ∈ X and τ ∈ TA,
r(p(x)) = v(x), which is true by construction of p, and τ ∈ dst(p(x)) iff τ = p(y) for some
y ∈ g(x). First of all, note that, for all y ∈ g(x) and α ∈ A?, we have v(y)α ∈ Lx iff α ∈ Ly:
if α ∈ Ly then α ∈ Ly,n, for some n ∈ N, thus v(y)α ∈ Lx,n+1 ⊆ Lx, and, if v(y)α ∈ Lx
then v(y)α ∈ Lx,n+1, for some n ∈ N, thus there is z ∈ g(x) such that v(z) = v(y) and
α ∈ Lz,n ⊆ Lz, but, since v is injective, we get z = y and so α ∈ Ly. From this fact we
immediately get that p(y) ∈ dst(p(x)), for all y ∈ g(x). On the other hand, if τ ∈ dst(p(x)),
then τ = p(x)|a , for some a ∈ A, that is, τ = 〈a, {α ∈ A? | aα ∈ Lx}〉. In particular, we
have a ∈ Lx,1 ⊆ Lx, hence a = v(y), for some y ∈ g(x). Therefore, again thanks to the fact
above, we get τ = 〈v(y), Ly〉 = p(y), as needed.

To prove uniqueness, consider a function q : X → TA making the diagram commute.
Then, r(q(x)) = v(x) = r(p(x)), hence we have only to show that N(q(x)) = Lx. Therefore,
we prove by induction on α ∈ A? that, for all x ∈ X, α ∈ N(q(x)) iff α ∈ Lx.

Base: The thesis is trivial.

Vol. 17:4 FOUNDATIONS OF REGULAR COINDUCTION 2:11

Induction: We prove the thesis for aα. We have aα ∈ N(q(x)) iff α ∈ N(q(x)|a) and, since
the diagram commutes, hence q(x)|a = q(y), for some y ∈ g(x), this is equivalent to
a = r(q(x)|a) = r(q(y)) = v(y) and α ∈ N(q(y)), for some y ∈ g(x). By induction
hypothesis, this is equivalent to a = v(y) and α ∈ Ly, which is equivalent to aα ∈ Lx.

To prove that p corestricts to RA, we just have to show that, if X is finite, then p(x) is
regular, for all x ∈ X. We prove, by induction on α, that, for all α ∈ N(p(x)), there exists
y ∈ X such that p(x)|α = p(y).

Base: We have p(x)|ε = p(x), as needed.
Induction: We prove the thesis for βa. We have p(x)|βa = (p(x)|β)|a and by induction

hypothesis, there is z ∈ X such that p(x)|β = p(z). Therefore, we have p(x)|α =

p(z)|a ∈ dst(p(z)), hence, since the diagram commutes, there is y ∈ g(z) ⊆ X such
that p(z)|a = p(y), as needed.

Finally, we note that p is injective: if p(x) = p(y) then v(x) = r(p(x)) = r(p(y)) = v(y),
hence x = y because v is injective.

This result looks like a final coalgebra theorem for the functor mapping a set X to
℘(X)×A, but it is not. Indeed, such a functor cannot have a final coalgebra, because this
would imply the existence of a bijection between a set Z, the carrier of such a final coalgebra,
and ℘(Z) × A, which is not possible for cardinality reasons. Here we manage to have a
unique function making the diagram commute, because we additionally require the function
v : X → A to be injective.

We can now prove Theorem 4.4.

Proof of Theorem 4.4. By Lemma 4.6 we get r!(RI) = r!(ρTI). Recall that in ℘(T I),
compact elements are finite subsets, hence the set of all compact elements is ℘ω(T I). Then,
by definition of the rational fixed point and since r! preserves arbitrary unions (it is a left
adjoint), we get r!(ρTI) =

⋃
{r!(X) | X ∈ ℘ω(T I) and X ⊆ TI(X)}. Hence, if X ∈ ℘ω(T I)

and X ⊆ TI(X), r!(X) is obviously finite and, by Corollary 4.2, it is also post-fixed.
Therefore, by definition of the rational fixed point, we get r!(X) ⊆ ρFI , and this proves
r!(ρTI) ⊆ ρFI .

To conclude the proof, we show that ρFI ⊆ r!(RI). To this end, we just have to prove
that, given a finite set X ∈ ℘ω(U) such that X ⊆ FI(X), each judgement j ∈ X has a regular
proof tree. Since X ⊆ FI(X), for each j ∈ X, there is Pr j ⊆ X such that 〈Pr j , j 〉 ∈ I.
Hence, applying Theorem 4.7, where g maps j to Pr j and v is the restriction of the identity on
U to X, we get an injective function p : X → RU . We have still to prove that p(j) is a proof
tree. It is easy to prove by induction on α that, for all α ∈ N(p(j)), there is j ′ ∈ X such that
p(j)|α = p(j ′). Therefore,

〈
r!(dst(p(j)|α)), r(p(j)|α)

〉
= 〈r!(dst(p(j ′))), r(p(j ′))〉 =

〈
Pr j ′ , j ′

〉
,

because dst ◦ p = p! ◦ g and r ◦ p = v, by Theorem 4.7. This proves that p(j) is a proof tree
in I, as

〈
Pr j ′ , j ′

〉
∈ I by hypothesis.

5. An inductive characterization

Although the regular interpretation is essentially coinductive, as it allows non-well-founded
derivations, it has an intrinsic finite nature, because it requires proof trees to be regular,
that is, to have only finitely many subtrees. Given this finiteness, a natural question is the
following: is it possible to find a finite presentation of derivations for judgements belonging
to the regular interpretation? f a

2:12 F. Dagnino Vol. 17:4

In this section we show this is the case, by providing an inductive characterization of
the regular interpretation.

The idea behind such an inductive characterisation is simple. Regular trees are basically
cyclic structures. Usually, to deal with cyclic structures inductively, we need to use auxiliary
structures to detect cycles, to ensure termination. For instance, in order to perform a
visit of a graph, we detect cycles by marking already encountered nodes. The inductive
characterization described below models such cycle detection mechanism in an abstract and
canonical way, in the general setting of inference systems. The idea is the following: during
the proof, we keep track of already encountered judgements and, if we find again the same
judgement, we can use it as an axiom.

This approach is intuitively correct, since in a regular proof tree there are only finitely
many subtrees, hence infinite paths must contain repeated judgements, and this mechanism
is designed precisely to detect such repetitions.

We now formally define the construction and prove its correctness. Let I be a finitary
inference system on the universe U . We consider judgements of shape H . j where H ⊆ U is
a finite set of judgements, called circular hypotheses, and j ∈ U is a judgement. Then, we
have the following definition.

Definition 5.1. The inference system I	 consists of the following rules:

(hp)
H . j

j ∈ H (unfold)
H ∪ {j} . j1 . . . H ∪ {j} . jn

H . j
〈{j1, . . . , jn}, j 〉 ∈ I

Therefore, in the system I	, we have the same rules as in I, that, however, extend
the set of circular hypotheses by adding the conclusion of the rule as an hypothesis in
the premises. Furthermore, I	 has also an additional axiom that allows to apply circular
hypotheses.

The correctness of the construction in Def. 5.1 is expressed by the fact that, a judgement
j has a regular proof tree in I if and only if it has a finite derivation in I	 without circular
hypotheses, as formally stated by the next theorem.

Theorem 5.2. I	 `µ ∅ . j iff I `ρ j .

We prove a more general version of the theorem. First of all, if X ⊆ U , we denote by
I⊕X the system obtained from I by adding an axiom for each element of X, hence we have
FI⊕X (Y) = FI(Y) ∪X, for all Y ⊆ U . Then, the left-to-right implication of Theorem 5.2 is
an immediate consequence of the following lemma:

Lemma 5.3. If I	 `µ H . j then I⊕H `ρ j .

Proof. The proof is by induction on rules in I	. There are two types of rules, hence we
distinguish two cases:

(hp): we have j ∈ H , hence 〈∅, j 〉 ∈ I⊕H , thus I⊕H `ρ j .
(unfold): we have a rule 〈{j1, . . . , jn}, j 〉 ∈ I and, by induction hypothesis, we get I⊕H∪{j} `ρ

ji, for all i ∈ 1..n. Since ρJI⊕H∪{j}K is a rational fixed point (Theorem 4.4), for all
i ∈ 1..n, there is a finite set Xi such that ji ∈ Xi ⊆ FI⊕H∪{j}(Xi) = FI⊕H

(Xi) ∪ {j}.
Set X =

⋃n
i=1Xi, then X is finite, X ⊆ FI⊕H

(X) ∪ {j}, as FI⊕H
is monotone, and

j ∈ FI(X), because, by construction, {j1, . . . , jn} ⊆ X. Thus, we get X ∪ {j} ⊆
FI⊕H

(X) ∪ {j} = FI⊕H
(X), because j ∈ FI(X) ⊆ FI⊕H

(X), hence X ∪ {j} is a post-
fixed point of FI⊕H

, since it is monotone. Therefore, since X ∪{j} is a finite post-fixed
point, by Prop. 3.3 and Theorem 4.4, we get I⊕H `ρ j .

Vol. 17:4 FOUNDATIONS OF REGULAR COINDUCTION 2:13

The proof of the other implication relies on an auxiliary family of functions indexed over
finite subsets of U and finite graphs g : X → ℘(X), with X ∈ ℘ω(U), mapping a judgement
j ∈ X and a subset S ⊆ X to a tree whose nodes are judgements of shape H ′ . j ′. This
function is recursively defined as follows:

trH〈X, g〉(j , S) =


H ∪ S . j

j ∈ H ∪ S

trH〈X, g〉(j1, S ∪ {j}) . . . trH〈X, g〉(jn, S ∪ {j})
H ∪ S . j

j /∈ H ∪ S
g(j) = {j1, . . . , jn}

The function trH〈X, g〉 enjoys the following properties:

Proposition 5.4. For all H ∈ ℘ω(U), g : X → ℘(X) with X ∈ ℘ω(U), j ∈ X and S ⊆ X,
trH〈X, g〉(j , S) is defined.

Proof. Denote by c(S) the cardinality of the set X \ (H ∪ S). We prove that, for all n ∈ N
and S ⊆ X, if c(S) = n then trH〈X, g〉(j , S) is defined. The proof is by induction on n.

Base: If c(S) = n = 0, then X ⊆ H ∪ S, hence j ∈ H ∪ S hence trH〈X, g〉(j , S) =
H ∪ S . j

.

Induction: If c(S) = n+1, if j ∈ H ∪S then trH〈X, g〉(j , S) is defined as before; otherwise, we

have j /∈ H∪S and, if g(j) = {j1, . . . , jk}, then, for all i ∈ 1..n, trH〈X, g〉(ji, S∪{j}) = τi by

induction hypothesis, as c(S∪{j}) = n since j /∈ S, hence trH〈X, g〉(j , S) =
τ1 . . . τn
H ∪ S . j

,

as needed.

Proposition 5.5. For all H ∈ ℘ω(U), g : X → ℘(X) with X ∈ ℘ω(U), j ∈ X and S ⊆ X,
if 〈g(j ′), j ′〉 ∈ I, for all j ′ ∈ X \H , then trH〈X, g〉(j , S) is a finite proof tree for H ∪ S . j in

I	.

Proof. The proof is a straightforward induction on the definition of trH〈X, g〉.

We can now prove the following lemma, which concludes the proof of Theorem 5.2.

Lemma 5.6. If I⊕H `ρ j then I	 `µ H . j .

Proof. If j ∈ ρJI⊕H K, since ρJI⊕H K = ρFI⊕H
(Theorem 4.4), we have that there exists a

finite set X ⊆ U such that j ∈ X ⊆ FI⊕H
(X) = FI(X)∪H . Then, for each j ′ ∈ X \H , there

is Pr j ′ ⊆ X such that
〈
Pr j ′ , j ′

〉
∈ I. Define g : X → ℘(X) by g(j ′) = Pr j ′ , if j ′ ∈ X \ H ,

and g(j ′) = ∅ otherwise. Therefore, by Prop. 5.4, trH〈X, g〉(j , ∅) is defined and, by Prop. 5.5, it

is a finite proof tree for H . j in I	, hence we get I	 `µ H . j , as needed.

We conclude the section by discussing a more operational aspect of Def. 5.1. In this
definition, we aimed at being as liberal as possible, hence, the two types of rules are not
mutually exclusive: for a judgement H . j with j ∈ H we can either apply the circular
hypothesis or use a rule from I. Since here we are only interested in derivability, this aspect
is not that relevant, however, it becomes more interesting from an algorithmic perspective.
Indeed, we can consider an alternative definition, where we allow the second type of rule
only if j /∈ H , in other words, we apply circular hypotheses as soon as we can.

In this way we would have less valid proof trees in I	, but the set of derivable judgements
remains the same. Indeed, Lemma 5.3 ensures soundness also of the deterministic version,
because any proof tree in the deterministic version is also a proof tree in the non-deterministic

2:14 F. Dagnino Vol. 17:4

one. On the other hand, Lemma 5.6 ensures completeness of the deterministic version,
because the functions trH〈X, g〉 build a proof tree in the deterministic version, since they

perform the additional check j /∈ H to apply rules from I.

6. Regular reasoning

In this section we discuss proof techniques for regular reasoning, which can be defined thanks
to the results proved in Sect. 4 and Sect. 5.

Let I be a finitary inference system on the universe U . We are typically interested in
comparing the regular interpretation of I to a set of judgements S ⊆ U (specification). In
particular, we focus on two properties:

soundness: all derivable judgements belong to S, that is, ρJIK ⊆ S,
completeness: all judgements in S are derivable, that is, S ⊆ ρJIK.

For completeness proofs, we rely on the fixed point characterization of ρJIK (Theorem 4.4).
Indeed, since ρJIK = ρFI , from Prop. 3.3 we get a proof principle, which we call the regular
coinduction principle, expressed by the following proposition:

Proposition 6.1 (Regular coinduction). Let S ⊆ U be a set of judgements, then if, for all
j ∈ S, there is a finite set X ⊆ U such that

• X ⊆ FI(X), and
• j ∈ X,

then, S ⊆ ρJIK.

Proof. Immediate from Prop. 3.3.

This is very much like the usual coinduction principle, but it additionally requires X to
be finite. The condition X ⊆ FI(X) can be equivalently expressed as follows: for all j ∈ X,
there is a rule 〈Pr , j 〉 ∈ I such that Pr ⊆ X.

Example 6.2. To show how proofs by regular coinduction work, as first example we consider
the introductory one: the definition of the judgement allPos(s), where s is a stream of natural
numbers, which, intuitively, should hold when s is positive, that is, it contains only positive
elements. We report here the inference system I>0 defining this predicate:

allPos(s)

allPos(x:s)
x > 0

The specification S>0 is the set of judgements allPos(s), where s is rational, meaning that it
has finitely many different substreams, and positive. Then, the completeness statement is
the following:

If s is rational and positive, then I>0 `ρ allPos(s).
To prove the result, let s be a rational stream containing only positive elements and set
Xs = {allPos(s′) | s = x1: . . . :xn:s′}. Clearly, Xs is finite, because s is rational, and
allPos(s) ∈ Xs, hence we have only to prove that it is consistent. Let allPos(s′) ∈ Xs,
then s′ = x:s′′, thus s = x1: . . . :xn:x:s′′, and so x > 0, because it is an element of s, and
allPos(s′′) ∈ Xs, by definition of Xs, and this proves that Xs is a post-fixed point. Therefore,
by the regular coinduction principle we get the thesis.

Vol. 17:4 FOUNDATIONS OF REGULAR COINDUCTION 2:15

Let us now focus on the soundness property. If we interpreted I inductively, we would
prove soundness by induction on rules, but in the regular case this technique is not available,
since it is unsound. However, in Theorem 5.2, we proved that j ∈ ρJIK if and only if ∅ . j is
derivable in I	, which is interpreted inductively. Therefore, we can exploit the induction
principle associated with I	 to prove soundness, as the following proposition states:

Proposition 6.3. Let S ⊆ U be a set of judgements, then, if there is a family (SH)H∈℘ω(U)
such that SH ⊆ U and S∅ ⊆ S, and, for all H ∈ ℘ω(U),

• H ⊆ SH , and
• for all rules 〈Pr , j 〉 ∈ I, if Pr ⊆ SH∪{j} then j ∈ SH ,

then ρJIK ⊆ S.

Proof. By induction on I	, we immediately get that I	 `µ H . j implies j ∈ SH . Therefore,
if j ∈ ρJIK, by Theorem 5.2, we have I	 `µ ∅ . j , hence j ∈ S∅ ⊆ S.

In other words, given a specification S ⊆ U , to prove soundness we have first to generalize
the specification to a family of specifications, indexed over finite sets of judgements, in order
to take into account circular hypotheses. Then, we reason by induction on rules in the
equivalent inductive system (see Def. 5.1) and, since S∅ ⊆ S, we get soundness.

Example 6.4. We illustrate the technique again on the definition of allPos(s). The soundness
statement is the following:

If I>0 `ρ allPos(s), then s is rational and positive.

The first step is to generalize the specification to a family of sets S>0
H , indexed over finite

subsets of judgements H .

allPos(s) ∈ S>0
H iff either s is rational and positive, or s = x1: . . . :xn:s′ with

xi > 0, for all i ∈ 1..n, and allPos(s′) ∈ H .

It is easy to see that S>0
∅ ⊆ S>0 and, for all H ∈ ℘ω(U), H ⊆ S>0

H , by definition of S>0
H .

Hence, we have only to check that the sets S>0
H are closed with respect to the rule, as

formulated in Prop. 6.3.
Let us assume allPos(s) ∈ S>0

H ′ , with H ′ = H ∪ {allPos(x:s)} and x > 0. We have the
following cases:

• If s is rational and positive, this is true for x:s as well, because x > 0 by hypothesis.
• If s = x1: . . . :xn:s′ with xi > 0, for all i ∈ 1..n, and allPos(s′) ∈ H ′, then, if allPos(s′) ∈ H ,

since x:s = x:x1: . . . :xn:s′ and x > 0, we have the thesis; if s′ = x:s then x:s =
x:x1: . . . :xn:x:s, thus it is rational and positive, as x > 0.

We now consider a more complex example: the definition of the distance in a graph (see
page 5), proving it is sound and complete with respect to the expected meaning.

Example 6.5. For the reader’s convenience, we report here the rules defining this judge-
ment:

(empty)
distG(v , v , 0)

(adj)
distG(v1, u, δ1) . . . distG(vn, u, δn)

distG(v , u, 1 + min{δ1, . . . , δn})
v 6= u
G(v) = {v1, . . . , vn}

We denote by Idist the above inference system. We recall for the reader’s convenicence a
few definitions we need in the proof. Let us assume a graph G : V → ℘(V). An edge in G
is a pair 〈v , u〉 such that u ∈ G(v), often written vu. We denote by E the set of edges in G .
A path from v0 to un in G is a non-empty finite sequence of nodes α = v0 . . . vn with n ≥ 0,

2:16 F. Dagnino Vol. 17:4

such that, for all i ∈ 1..n, vi−1vi ∈ E . The empty path starting from the node v to itself
is the sequence v . If α is a path in G , then we denote by ‖α‖ the length of α, that is, the
number of edges in α, and we write v ∈ α when the node v occurs in α, that is, the path α
traverses v . The distance from a node v to a node u, denoted by δ(v , u), is the least length
of a path from v to u, that is, δ(v , u) = min{‖α‖ | α is a path from v to u}, hence, if there
is no path from v to u, δ(v , u) = min ∅ = ∞. We say a path α = v0 . . . vn is simple if it
visits every node at most once, that is, vi = vj implies i = j, for all i, j ∈ 0..n. Note that the
empty path is trivially simple. It is also important to note that δ(v , u) is the least length of
a simple path from v to u. Then, the specification D is the set of judgements distG(v , u, δ)
with δ = δ(v , u).

We can now state that the definition of distG(v , u, δ) is sound and complete with respect
to the specification D.

Idist `ρ distG(v , u, δ) iff δ = δ(v , u).

Completeness proof. The proof is by regular coinduction. Let us consider a judgement
distG(v , u, δ(v , u)). Let Rv ⊆ V be the set of nodes reachable from v and let us define Xv =
{distG(v ′, u, δ(v ′, u)) | v ′ ∈ Rv}. This set is clearly finite and, moreover, distG(v , u, δ(v , u)) ∈
Xv , because v is reachable from itself. Hence, we have only to prove that Xv is a post-fixed
point. Let v ′ ∈ Rv , then we have to find a rule with conclusion distG(v ′, u, δ(v ′, u)) and
whose premises are in Xv . We have two cases:

• If v ′ = u, then δ(v ′, u) = 0 and so we have the thesis by rule (empty).
• If v ′ 6= u, then we have δ(v ′, u) = 1 + min{δ(v ′′, u) | v ′′ ∈ G(v ′)}, hence, since G(v ′) ⊆ Rv ,

all the premises distG(v ′′, u, δ(v ′′, u)), for v ′′ ∈ G(v ′), belong to Xv , as needed.

Soundness proof. To apply Prop. 6.3, we generalize the specification D to a family of sets
DH , indexed over finite sets of judgements, defined below.

(?)distG(v , u, δ) ∈ DH iff there is a set of paths P and a function f : P →
N ∪ {∞} such that
(1) for all α ∈ P , either α goes from v to u and f(α) = 0, or α goes from v

to v ′ and distG(v ′, u, f(α)) ∈ H ;
(2) for each simple path β from v to u, there is α ∈ P such that β = αβ′;
(3) δ = min{‖α‖+ f(α) | α ∈ P}.

First, we have to check that D∅ ⊆ D. Let distG(v , u, δ) ∈ D∅, then, by Item 3 of (?),
δ = min{‖α‖ + f(α) | α ∈ P}, for some set of paths P and function f : P → N ∪ {∞}.
Since H is empty, by Item 1 of (?), we have that, for all α ∈ P , α is a path from v to u and
f(α) = 0, hence δ(v , u) ≤ ‖α‖+ f(α) for all α ∈ P and so δ(v , u) ≤ δ. To prove the other
inequality, let β be a simple path from v to u, then, by Item 2 of (?), there is α ∈ P such
that β = αβ′, but, by Item 1 of (?), α goes from v to u and f(α) = 0, hence β = α, because
it cannot traverse twice u; thus we have δ ≤ ‖β‖ = ‖α‖+ f(α), for any simple path β, and
so δ ≤ δ(v , u).

The fact that H ⊆ DH is immediate because, if distG(v , u, δ) ∈ H , then, to get the
thesis, it is enough to take as P the set containing only the empty path with f(v) = δ, which
trivially satisfies all conditions in (?).

Then, we have only to check that all sets DH are closed with respect to the rules (empty)

and (adj), as formulated in Prop. 6.3.

Vol. 17:4 FOUNDATIONS OF REGULAR COINDUCTION 2:17

(empty): If v = u and δ = 0, then it is enough to take as P the set containing only the
empty path, with f(v) = 0.

(adj): We have v 6= u, G(v) = {v1, . . . , vn} and, for all i ∈ 1..n, distG(vi, u, δi) ∈ DH ′ with
H ′ = H ∪ {distG(v , u, δ)}. If n = 0, then G(v) is empty, δ = min ∅ =∞ and there is
no path from v to u. Hence, the thesis follows by taking P = ∅.

Then, let us assume n ≥ 1. By hypothesis, δ = 1 + min{δ1, . . . , δn} = 1 + δk, for
some k ∈ 1..n, since we are considering rule (adj). Since distG(vi, u, δi) ∈ DH ′ , for all
i ∈ 1..n, there are Pi and fi : Pi → N ∪ {∞} satisfying (?), in particular, by Item 3,
we have that δi = min{‖α‖+ fi(α) | α ∈ Pi}. We define P as the set of paths vα with
α ∈ Pi such that, if α ends in v , then fi(α) 6= δ, and f : P → N ∪ {∞} is defined by
f(vα) = fi(α) when α ∈ Pi. Clearly, P satisfies Item 1 of (?)with respect to H . To
check that Item 2 holds, let β be a simple path from v to u, then β = vviβ

′, for some
i ∈ 1..n. Hence, viβ

′ is a simple path from vi to u and v /∈ viβ
′, thus, by Item 2 of

(?)applied to Pi, there is α′ ∈ Pi such that viβ
′ = α′γ, and v /∈ α′, because v /∈ viβ

′.
Therefore, vα′ ∈ P and vα′γ = vviβ

′ = β, as needed.
We now prove Item 3 of (?), that is, δ = min{‖α‖+f(α) | α ∈ P}. Let α = vviα

′ ∈ P ,
for some i ∈ 1..n, then viα

′ ∈ Pi, hence, δk ≤ δi ≤ ‖viα′‖+ fi(viα
′), thus

δ = 1 + δk ≤ 1 + ‖viα′‖+ fi(viα
′) = ‖α‖+ f(α)

and this implies δ ≤ min{‖α‖ + f(α) | α ∈ P}. To conclude, we have to prove the
other inequality, hence we distinguish the following cases:
• if δk =∞, then δ =∞ and this proves the thesis, since ∞ ≥ x for all x ∈ N ∪ {∞};
• otherwise, δk = ‖α′‖ + fk(α

′), for some α′ ∈ Pk. If α′ ends in v and fk(α
′) = δ,

then δk = ‖α′‖+ δ = ‖α′‖+ 1 + δk, which implies δk =∞ that is absurd. Otherwise,
vα′ ∈ P and f(vα′) = fk(α

′), thus

min{‖α‖+ f(α) | α ∈ P} ≤ ‖vα′‖+ f(vα′) = 1 + ‖α′‖+ fk(α
′) = 1 + δk = δ

as needed.

7. Flexible regular coinduction

Infinite derivations are a very powerful tool, which make it possible to deal with a variety of
situations that cannot be handled by only finite derivations. However, in some cases, they
have an unexpected behaviour, allowing the derivation of intuitively incorrect judgements.
The same issue affects also regular derivations. Let us explain this by an example. Consider
the following rules, defining the judgement min(x, l), where x is an integer and s is a rational
stream, stating that x is the minimum of the stream s.

min(y, s)

min(z, x:s)
z = min{x, y}

In Fig. 2 we report three infinite regular derivations, thus valid for the regular interpretation
of the above rules, where, however, only the first one is intuitively correct: judgements
min(0, 2:2: . . .) and min(1, 2:2: . . .) should not be derivable, as 0 and 1 do not belong to the
stream.

Inference systems with corules [ADZ17b, Dag19] have been recently designed precisely
to address this issue for the coinductive interpretation, where arbitrary infinite derivations
are allowed. Beside standard inference rules, they introduce special rules, called corules,

2:18 F. Dagnino Vol. 17:4

...

min(2, 2:2:2: . . .)

min(2, 2:2:2: . . .)

min(2, 2:2:2: . . .)

...

min(1, 2:2:2: . . .)

min(1, 2:2:2: . . .)

min(1, 2:2:2: . . .)

...

min(0, 2:2:2: . . .)

min(0, 2:2:2: . . .)

min(0, 2:2:2: . . .)

Figure 2: Some infinite regular derivation for the judgement min(x, s).

which allow one to refine the coinductive interpretation, by filtering out some, undesired,
infinite derivations. More precisely, an inference system with corules, or generalised inference
system, is a pair 〈I, Ico〉 where I and Ico are inference systems, whose elements are called

rules and corules, respectively. A corule is also denoted by
Pr

c
, very much like a rule, but

with a thicker line.
The semantics of such a pair, denoted by νJI, IcoK, is constructed in two steps:

• first, we take the inductive interpretation of the union I ∪ Ico, that is, µJI ∪ IcoK,
• then, we take the coinductive interpretation of I restricted to µJI ∪ IcoK.
In symbols, we have νJI, IcoK = νJI|µJI∪IcoK

K, where I|X is the inference system obtained

from I by keeping only rules with conclusion in X ⊆ U .
In terms of proof trees, νJI, IcoK is the set of judgements with an arbitrary (finite or

not) proof tree in I, whose nodes all have a finite proof tree in I∪Ico. In [Dag19], νJI, IcoK
is proved to be an interpretation of I, that is, a fixed point of FI .

In this section, we show that the results previously given for regular coinduction smoothly
extend to generalised inference systems. The technical development in the following is partly
repetitive; this could have been avoided by presenting the results in the generalized framework
since the beginning. However, to have separation of concerns, we preferred to first give a
presentation using only standard notions, limiting to this section non-standard ones.

We start by defining the regular interpretation of an inference system with corules.

Definition 7.1. Let 〈I, Ico〉 be an inference system with corules. The regular interpretation
ρJI, IcoK of 〈I, Ico〉 is defined by ρJI, IcoK = ρJI|µJI∪IcoK

K.

As we will see later in this section (Corollary 7.7), but it is not difficult to be convinced
of it, in proof-theoretic terms this is equivalent to say that ρJI, IcoK is the set of judgements
with a regular proof tree in I, whose nodes all have a finite proof tree in I ∪ Ico. In this
way, we can filter out some, undesired, regular derivations. In the following, we will write
〈I, Ico〉 `ρ j for j ∈ ρJI, IcoK.

Coming back to the example, using corules, we can provide a correct definition of the
judgement min(x, s) as follows:

min(y, s)

min(z, x:s)
z = min{x, y}

min(x, x:s)

The additional constraint, imposed by the coaxiom, allows us to build regular infinite
derivation using only judgements min(x, s) where x belongs to s; thus filtering out the
second and third incorrect proof trees in Fig. 2, since they involve judgements with no finite
derivation using also the coaxiom.

All the results discussed so far for the regular interpretation can be smoothly extended
to the regular interpretation of an inference system with corules. We will now develop all

Vol. 17:4 FOUNDATIONS OF REGULAR COINDUCTION 2:19

the tecnical machinery needed for this, adapting constructions in [ADZ17b, Dag19] to the
regular case.

7.1. Bounded rational fixed point. To construct such a fixed point, we come back to
the lattice-theoretic setting of Sect. 3. Let us assume an algebraic lattice 〈L, v〉.

Let F ,G : L→ L be two functions, we write F tG for the pointwise join of F and G ,
and, for all z ∈ L, Fuz for the function defined by Fuz(x) = F (x) u z. It is easy to see that,
if F and G are monotone, then F tG is monotone as well, hence, by the Tarski theorem, it
has a least fixed point µ(F tG). It is also easy to check that if z ∈ L is a pre-fixed point of
F tG , then it is a pre-fixed point of F as well, because F (z) v F (z) tG(z) v z; this will
be crucial for the following construction.

We can now define the bounded rational fixed point:

Definition 7.2. Let F : L→ L be finitary and G : L→ L be monotone. The rational fixed
point bounded by G , ρ[F ,G] is defined by

ρ[F ,G] = ρFuµ(FtG)

In other words, ρ[F ,G] is the least upper bound of all compact elements below the least
fixed point of F tG , that is,

ρ[F ,G] =
⊔
{x ∈ C(L) | x v F (x), x v µ(F tG)}

To see that ρ[F ,G] is well-defined, that is, it is indeed a fixed point of F , we have the
following propositions:

Proposition 7.3. If F : L→ L is finitary, then, for all z ∈ L, Fuz is finitary as well.

Proof. Let D ⊆ L be a directed set. Since F is finitary, it is monotone, hence Fuz is monotone
as well, therefore we get

⊔
(F!(D) u z) v F (

⊔
D) u z. To prove the other inequality, it is

enough to show that, for any compact element y v F (
⊔
D) u z, y v

⊔
(F!(D) u z), because

the lattice is algebraic. Since F is finitary, we have F (
⊔
D) =

⊔
F!(D). We know that y v z

and y v F (
⊔
D) =

⊔
F!(D) and, since y is compact, there is a finite subset W ⊆ D such

that y v
⊔

F!(W). Since D is directed and W is finite, there is w ∈ D such that
⊔
W v w,

hence
⊔

F!(W) v F (w) v
⊔

F!(D), because F is monotone and w ∈ D. Therefore, we get
y v F (w) u z v

⊔
(F!(D) u z), as needed.

Proposition 7.4. Let F : L→ L be finitary and G : L→ L be monotone, then ρ[F ,G] is a
fixed point of F .

Proof. Set z = µ(F t G) and note that F (z) v F (z) t G(z) = z, as z is a fixed point
of F t G . By Prop. 7.3, Fuz is finitary, hence, by Def. 7.2 and Theorem 3.2 we have
ρ[F ,G] = F (ρ[F ,G]) u z, and from this we derive ρ[F ,G] v z and F (ρ[F ,G]) v F (z) v z.
Therefore, we get ρ[F ,G] = F (ρ[F ,G]) u z = F (ρ[F ,G]), as needed.

In [ADZ17b, Dag19] the authors show that the least and the greatest fixed point are
instances of the bounded fixed point. Analogously, we show that the least and the rational
fixed point are instances of the rational fixed point bounded by a function G , that is, they
can be recovered for specific choices of G . In the following, for all z ∈ L, we write Kz : L→ L
for the constant function, that is, Kz(x) = z, for all x ∈ L.

2:20 F. Dagnino Vol. 17:4

Proposition 7.5. Let F : L→ L be a finitary function, then the following hold:

(1) µF = ρ[F ,K⊥], and
(2) ρF = ρ[F ,K>].

Proof. To prove 1, note that µF v ρ[F ,K⊥], as ρ[F ,K⊥] is a pre-fixed point, and ρ[F ,K⊥] v
µF , as µ(F tK⊥) = µF and ρ[F ,K⊥] = F (ρ[F ,K⊥]) u µF v µF . To prove 2, note that
µ(F tK>) = >, hence we have Fuµ(FtK>) = F , thus ρ[F ,K>] = ρF , as needed.

7.2. Fixed point semantics. Let 〈I, Ico〉 be an inference system with corules where I is
finitary. We have two goals: first we want to justify the proof-theoretic characterisation
provided at the beginning of this section and, second, we want to prove that the rational
interpretation generated by corules is indeed an interpretation of the first inference system.

To get the proof-theoretic characterisation, it is enough to observe the following property:

Proposition 7.6. Let X ⊆ U , then τ ∈ RI|X iff τ ∈ RI and, for all α ∈ N(τ), τ(α) ∈ X.

Proof. By definition we have I|X ⊆ I, hence RI|X ⊆ RI , and, all rules in I|X have conlcusion
in X. Then, the thesis is immediate since, by definition, all nodes of a proof tree are labelled
by the conclusion of some rule.

Recall that we have described ρJI, IcoK in proof-theoretic terms as the set of judgements
having a regular proof tree in I, whose nodes all have a finite proof tree in I ∪Ico. Formally,
we have the following corollary:

Corollary 7.7. 〈I, Ico〉 `ρ j iff there is τ ∈ RI such that r(τ) = j and, for all α ∈ N(τ),
τ(α) ∈ µJI ∪ IcoK.

Proof. Set X = µJI ∪ IcoK. From Theorem 4.4 and Def. 7.1, we get ρJI, IcoK = ρJI|X K =

r!(ρT(I|X)) = ρF(I|X) = r!(RI|X). Applying Prop. 7.6 with X = µJI ∪ IcoK, we get the

thesis.

Towards the second goal, we show that the regular interpretation of 〈I, Ico〉 coincides
with the rational fixed point of FI bounded by FIco (see Def. 7.2), which is an immediate
consequence of the following proposition:

Proposition 7.8. ρJI, IcoK = ρ[FI ,FIco].

Proof. By Def. 7.1 and Theorem 4.4, we know that ρJI, IcoK = ρF(I|µJI∪IcoK
). By Def. 7.2,

we have ρ[FI ,FIco] = ρ(FI)uµ(FI∪FIco)
and, by definition of the inference operator, we have

FI∪Ico = FI ∪ FIco , hence µJI ∪ IcoK = µ(FI ∪ FIco) and (FI)uµ(FI∪FIco)
= (FI)uµJI∪IcoK.

Therefore, as proved in [Dag19], we have F(I|µJI∪IcoK
) = (FI)uµJI∪IcoK, which implies the

thesis.

Then, this proposition, together with Prop. 7.4, in particular ensures that ρJI, IcoK is
indeed a fixed point of FI , that is, an interpretation of I.

An important property of inference systems with corules is that standard interpretations
(the inductive and the coinductive one) are particular cases. Analogously, the inductive and
the regular interpretations are particular cases of the regular interpretation generated by
corules. Let us denote by IU the inference system containing one axiom for each j ∈ U , that
is, 〈Pr , j 〉 ∈ IU iff Pr = ∅. We have the following proposition:

Vol. 17:4 FOUNDATIONS OF REGULAR COINDUCTION 2:21

Proposition 7.9. Let I be an inference system, then µJIK = ρJI, ∅K and ρJIK = ρJI, IUK.

Proof. It follows from Prop. 7.5, because ρJI, IcoK = ρ[FI ,FIco], by Prop. 7.8, and we have
FIU (X) = U and F∅(X) = ∅, for all X ⊆ U .

In other words, when the set of corules is empty, we allow only rules with conclusion
in µJI ∪ ∅K = µJIK, hence we cannot derive anything outside µJIK, and, on the other hand,
when the set of corules is IU , we do not remove any rule, because µJI ∪ IUK = U , thus we
get exactly the regular interpretation of I.

7.3. Cycle detection for corules. As the standard regular interpretation, also the regular
interpretation of an inference system with corules has a sound and complete algorithm to
find a derivation for a judgment, if any, and may not terminate otherwise.

Let us assume an inference system with corules 〈I, Ico〉. Since its regular interpretation
is defined as the regular interpretation of I|µJI∪IcoK

, which is the inference system obtained

from I by keeping only rules with conclusion in µJI ∪ IcoK, we could get an inductive
characterisation of ρJI, IcoK by applying the construction in Def. 5.1 to the inference system
I|µJI∪IcoK

. This provides us with a sound and complete algorithm to find a derivation for a

judgement which belongs to ρJI, IcoK, which works the same way as the one introduced in
Sect. 5, but, in addition, each time we apply the rule (unfold) with 〈Pr , j 〉 ∈ I, we have to
check that j ∈ µJI ∪ IcoK. However, we will see that this additional check is necessary only
to apply circular hypotheses, thus defining a cleaner procedure.

To this end we construct the inference system I	Ico as follows:

Definition 7.10. The inference system I	Ico consists of the following rules:

(b-hp)
H . j

j ∈ H
j ∈ µJI ∪ IcoK

(b-unfold)
H ∪ {j} . j1 . . . H ∪ {j} . jn

H . j
〈{j1, . . . , jn}, j 〉 ∈ I

This definition is basically the same as Def. 5.1, except the additional side condition
in rule (b-hp) j ∈ µJI ∪ IcoK, which enforces the additional check. We have the following
fundamental properties:

Proposition 7.11. If I	Ico `µ H . j then j ∈ µJI ∪ IcoK.

Proof. By induction on rules of I	Ico : the case for rule (b-hp) is trivial, for the rule (b-unfold),
by Def. 7.10, we have a rule 〈{j1, . . . , jn}, j 〉 ∈ I and, by induction hypothesis, we know that
jk ∈ µJI ∪ IcoK, for all k ∈ 1..n, hence j ∈ µJI ∪ IcoK, as µJI ∪ IcoK is closed with respect to
I.

Proposition 7.12. If H ⊆ µJI ∪ IcoK, then I	Ico `µ H . j iff I	|µJI∪IcoK
`µ H . j .

Proof. The proof of the left-to-right implication is by induction on rules in I	Ico .
(b-hp): By hypothesis j ∈ µJI ∪ IcoK, then the thesis follows by rule (hp).
(b-unfold): By Def. 7.10, we have a rule 〈{j1, . . . , jn}, j 〉 ∈ I and by Prop. 7.11 we have

j ∈ µJI ∪ IcoK, hence H ∪{j} ⊆ µJI ∪ IcoK and 〈{j1, . . . , jn}, j 〉 ∈ I|µJI∪IcoK
. Therefore,

by induction hypothesis, we get I	|µJI∪IcoK
`µ H ∪ {j} . jk, for all k ∈ 1..n, then the

thesis follows by rule (unfold). Therefore, we get the thesis applying rule (unfold).

The proof of the right-to-left implication is by induction on rules in I	|µJI∪IcoK
.

(hp): Immediate by rule (b-hp), as j ∈ H ⊆ µJI ∪ IcoK.

2:22 F. Dagnino Vol. 17:4

(unfold): By Def. 5.1, we have a rule 〈{j1, . . . , jn}, j 〉 ∈ I|µJI∪IcoK
⊆ I, hence j ∈ µJI ∪ IcoK,

and so H ∪ {j} ⊆ µJI ∪ IcoK. Therefore, by induction hypothesis, we get I	Ico `µ
H ∪ {j} . jk, for all k ∈ 1..n, then the thesis follows by rule (b-unfold).

Then, we get the following result, proving that the inductive characterisation is correct,
that is, sound and complete, with respect to the regular interpretation of 〈I, Ico〉.

Corollary 7.13. I	Ico `µ ∅ . j iff 〈I, Ico〉 `ρ j .

Proof. It is immediate by Prop. 7.12 and Theorem 5.2.

The resulting algorithm behaves as follows: we start from a judgement j with an empty
set of circular hypotheses, then we try to build a regular derivation for j using rules in I,
exactly the same way as for standard regular coinduction; but, this time, when we find a
cycle, say for a judgement j ′, we trigger another procedure, which looks for a finite derivation
for j ′ in µJI ∪ IcoK.

7.4. Flexible regular reasoning. We now adapt proof techniques presented in Sect. 6
to this generalised setting. For completeness proofs, in [ADZ17b, Dag19], the standard
coinduction principle is extended to generalised inference systems, by adding an additional
constraint, which takes into account corules. The regular coinduction principle (Prop. 6.1)
can be smoothly extended to this generalised setting following the same strategy, as expressed
in the next proposition. We call the resulting principle the bounded regular coinduction
principle.

Proposition 7.14 (Bounded regular coinduction). Let S ⊆ U be a set of judgements, then
if, for all j ∈ S, there is a finite set X ⊆ U such that

• X ⊆ µJI ∪ IcoK,
• X ⊆ FI(X), and
• j ∈ X,

then, S ⊆ ρJI, IcoK.

This proposition immediately follows from Prop. 3.3, as ρJI, IcoK is a rational fixed point
by Prop. 7.8 and Def. 7.2. The additional constraint S ⊆ µJI ∪ IcoK, named boundedness,
reflects the fact that, using corules, we are only allowed to build proof trees using judgements
in µJI ∪ IcoK. Note that, when Ico = IU , thus ρJI, IcoK = ρJIK, the additional constraint is
trivially true, because it requires S ⊆ U , hence we recover the regular coinduction principle
in Prop. 6.1.

We illustrate this technique on our running example: the definition of min(x, s), which
should hold when x is the minimum of the rational stream of integers s. We denote by
Smin the set of judgements min(x, s) where x is indeed the minimum of s. We prove, using
Prop. 7.14, the following statement:

if min(x, s) ∈ Smin then it has a regular derivation with corules

Proof. Let min(x, s) ∈ Smin and define X as the set of judgements min(z, r) ∈ Smin such that
r is a substream of s. Trivially min(x, s) ∈ X and, since s is rational, it has finitely many
different substreams, hence X is finite. The boundedness condition, that is, if min(z, r) ∈ X
then it has a finite proof tree using also the coaxioms, is easy to check, because, if y is the
minimum of r, then y occurs somewhere in r, hence we can prove the thesis by induction on
the least position of y in r. In order to check that X is consistent, consider min(z, r) ∈ X,

Vol. 17:4 FOUNDATIONS OF REGULAR COINDUCTION 2:23

with r = y:r′ Since z is the minimum of r and r′ is a substream of r, z is a lower bound
of r′, thus it has a minimum, say y′, and so min(y′, r′) ∈ X. To conclude, we have to show
that z = min{y, y′}. The inequality z ≤ min{y, y′} is trivial, for the other inequality, since
z belongs to r, we have two cases: if z = y, then min{y, y′} ≤ z, otherwise z belongs to r′

and so y′ ≤ z, thus min{y, y′} ≤ z.

Differently from the standard coinductive interpretation, for the regular interpretation we
have also defined a proof technique to show soundness (Prop. 6.3). Such a technique relies on
the inductive characterisation of the regular interpretation. As also the regular interpretation
of an inference system with corules has an inductive characterisation (Corollary 7.13), we
can provide a proof technique to show soundness also in this generalised setting, which
smoothly extends the one of standard regular coinduction.

Proposition 7.15. Let S ⊆ U be a set of judgements, then, if there is a family (SH)H∈℘ω(U)
such that SH ⊆ U and S∅ ⊆ S, and, for all H ∈ ℘ω(U),

• H ∩ µJI ∪ IcoK ⊆ SH , and
• for all rules 〈Pr , j 〉 ∈ I, if Pr ⊆ SH∪{j} then j ∈ SH ,

then ρJI, IcoK ⊆ S.

Proof. By a straightforward induction on rules in I	Ico , we get that if I	Ico `µ H . j , then
j ∈ SH ; thus, the thesis follows from Corollary 7.13.

Again, this proof principle is almost the same as Prop. 6.3, but with an additional
constraint, this time on sets of circular hypothesis, which takes into account corules.

We illustrate this technique proving that the definition of min(x, s) is sound, that is,

if min(x, s) has a regular derivation with corules then x is the minimum of s.

Proof. First of all, we note that, if min(x, s) has a finite proof tree using also the coaxiom,
then x belongs to s. Then, we define Smin

H as follows: min(x, s) ∈ Smin
H iff x is the minimum of

s or s = x1: . . . :xn:r, min(y, r) ∈ H , min(y, r) has a finite proof tree using also the coaxiom
and x = min{x1, . . . , xn, y}. We have trivialy that Smin

∅ ⊆ Smin.
Assume a finite set of judgements H . Clearly, if min(x, s) ∈ H has a finite proof tree

using also the coaxiom, then min(x, s) ∈ Smin
H . Now, suppose s = x:r, H ′ = H ∪ {min(z, s)},

min(y, r) ∈ Smin
H ′ and z = min{x, y}, then we have two cases:

• if y is the minimum of r, then z is the minimum of s = y:r, hence min(z, s) ∈ Smin
H ;

• if r = x1: . . . :xn:r′, min(y′, r′) ∈ H ′, min(y′, r′) has a finite proof tree using also the coaxiom
and y = min{x1, . . . , xn, y′}, then s = x:r = x:x1: . . . :xn:r′ and z = min{x, x1, . . . , xn, y′}.
We distinguish two subcases:
– if min(y′, r′) ∈ H , then min(z, s) ∈ Smin

H by definition, and
– if y′ = z and r′ = s, then s = x:x1: . . . :xn:s and min(z, s) has a finite proof tree using

also the coaxiom, thus z belongs to s and z = min{x, x1, . . . , xn, z}, that is, z is the
minimum of s.

We now consider a more involved example.

Example 7.16 (Addition of rational numbers). It is well-known that real numbers in [0, 1]
can be represented as, not necessarily rational, streams of digits in some basis. Let N>0 be
the set of positive natural numbers and assume a basis b ∈ N>0. A digit d is a natural number
in 0..b − 1, then, given a stream r = (di)i∈N>0 of digits, the series

∑∞
i=1 dib

−i converges
and its limit is the real number represented by r and denoted by JrK. It is also well-known

2:24 F. Dagnino Vol. 17:4

that every real number x ∈ [0, 1] has at most two different representations as a stream, for
instance, with b = 10, the number 1/2 can be represented as either 5:0 or 4:9, where, for
any digit d, d is the stream d:d:d:

Consider the following inference system with corules, defining the judgement add(r1, r2, r, c),
where c is an integer representing the carry, and which should hold when Jr1K+ Jr2K = JrK+c.

add(r1, r2, r, c)

add(d1:r1, d2:r2, (x mod b):r, x÷ b)
x = d1 + d2 + c

add(r1, r2, r, c)
c ∈ −1..2

In [ADZ17b, Dag19] it is proved that this definition is correct. It is also well-known that
rational streams of digits represent rational numbers, that is, if r is a rational stream of digits,
then JrK is a rational number. We show here that the regular interpretation of the above
inference system with corules is correct with respect to the addition of rational numbers.

Define the set Sadd of correct judgements as follows: add(r1, r2, r, c) ∈ Sadd iff r1, r2 and
r are rational and Jr1K + Jr2K = JrK + c. We start by proving completeness, stated below:

for rational streams r1, r2, r, if Jr1K + Jr2K = JrK + c then add(r1, r2, r, c) has
a regular derivation with corules.

We use the bounded regular coinduction principle. First of all, note that, since JrK ∈ [0, 1]
for any stream r, if add(r1, r2, r, c) ∈ Sadd, then c = Jr1K + Jr2K − JrK, hence c ≥ −1 and
c ≤ 2. Therefore, we immediately have that all judgements in Sadd have a finite proof tree
using also the coaxiom.

Assume add(r1, r2, r, c) ∈ Sadd and define X as follows: add(s1, s2, s, c
′) ∈ X iff

Js1K + Js2K = JsK + c′ and s1 and s2 are substreams of r1 and r2, respectively. Trivially,
add(r1, r2, r, c) ∈ X and X is finite because, since r1 and r2 are rational, they have finitely
many different substreams, and c′ can assume only four values, hence JsK = Js1K + Js2K− c′
can assume only finitely many values, and so there are finitely many s satisfying that
equation. Now we have to check that X is consistent. Assume add(d1:s1, d2:s2, d:s, c′) ∈ X,
then we have Jd1:s1K + Jd2:s2K = Jd:sK + c′. It is easy to check that, for any stream t and
digit d, bJd:tK = d+ JtK. Hence, we get Js1K + Js2K = JsK + c′′, with c′′ = bc′ + d− d1 − d2.
Since s1 and s2 are still substream of r1 and r2, respectively, we get add(s1, s2, s, c

′′) ∈ X,
as needed.

We now prove soundness, as stated below:

if add(r1, r2, r, c) has a regular derivation with corules, then Jr1K + Jr2K =
JrK + c and r1,r2 and r are rational stream.

For any finite set H , we define SaddH as follows: add(r1, r2, r, c0) ∈ SaddH iff r1 = d11: . . . :d1n:s1,
r2 = d21: . . . :d2n:s2, r = d1: . . . :dn:s and, there are c1, . . . , cn ∈ −1..2 such that, for all
i ∈ 1..n, d1i+d2i+ ci = bci−1 +di, and either add(s1, s2, s, cn) ∈ H or s1 = r1, s2 = r2, s = r
and c0 = cn. The two closure properties in Prop. 7.15 are easy to check. Hence, to conclude
it is enough we show that Sadd∅ ⊆ Sadd. To this end, assume add(r1, r2, r, c0) ∈ Sadd∅ , then,
by definition, we have r1 = d11: . . . :d1n:r1, r2 = d21: . . . :d2n:r2, r = d1: . . . :dn:r and, there
are c1, . . . , cn ∈ −1..2 such that, for all i ∈ 1..n, d1i + d2i + ci = bci−1 + di. This implies
that r1 = (d1i)i∈N>0 , r2 = (d2i)i∈N>0 and r = (di)i∈N>0 are rational streams and, for all
i ∈ N>0, d1i + d2i + cj+1 = bcj + di where j = i mod n. Hence, we have only to check that

Jr1K+Jr2K = JrK+c0. We define sequences (xk)k∈N>0 and (yk)k∈N>0 as xk =
∑k

i=1(d1i+d2i)b
−i

and yk =
∑k

i=1 dib
−i. Then we have to show that limxk−lim yk = lim(xk−yk) = c0, because

Jr1K+ Jr2K = limxk and JrK = lim yk. As, for all k ∈ N>0 we have d1k +d2k + cj+1 = bcj +dk

Vol. 17:4 FOUNDATIONS OF REGULAR COINDUCTION 2:25

with j = k mod n, we get c0 − (xk − yk) = c0 + yk − xk = cj+1b
−k, that, when k tends to

∞, converges to 0, hence we get lim(xk − yk) = c0.

8. Related work

The regular approach has been adopted in many different contexts, notably to define proof
systems for several kinds of logics, and to define operational models of programming languages
supporting cyclic structures.

Concerning proof systems allowing regular proofs, usually called circlar proofs, we find
proposals in [San02, FS13, Dou17] for logics with fixed point operators, and in [Bro05, BS11]
for classical first order logic with inductive definitions. In both cases, regular proofs allow to
naturally handle the unfolding of fixed point and recursive definitions, respectively. However,
regular proofs allow the derivation of wrong sequents, such as the empty one; hence, to
solve this issue, they have to impose additional constraints on regular proofs, such as parity
conditions in [FS13], thus filtering out undesired derivations. These additional requirements
on regular proofs are expressed at the meta-level and typically require some condition to
hold infinitely often in the regular proof. As inference systems with corules have been
designed precisely to filter out undesired infinite derivations, and they seem pretty good at
capturing requirements that should hold infinitely often in the proof, it would be interesting
to investigate whether these additional constraints can be enforced by an appropriate set of
corules.

In [BKL19], the authors present a proof system supporting coinductive reasoning with
Horn clauses. Such a system allows only finite derivations, enabling coinduction thanks to
a cycle detection mechanism similar to the one we use in the context of inference systems.
However, in their setting, they have to perform an additional ‘productivity” check, that is,
they have to ensure that a cycle is closed only after the application of a clause, otherwise
they would fall in inconsistency. This check is not required in our setting, as our derivations
are built only using rules.

Even though all these proof systems are tightly related to our work, there is an important
difference: we study regular reasoning by itself, without fixing a specific syntax. In this way,
we can work abstractly, focusing only on the essential feature of regularity, thus providing a
common abstract and simple background to all these proof systems.

The other context where we can find applications of regular coinduction is in programming
languages supporting cyclic structures. In this case, we use the term regular corecursion
for a semantics of recursive definitions which detects cycles, analogously to the inductive
characterization of the regular interpretation in Sect. 5.

We can find proposals of language constructs for regular corecursion in all common
programming paradigms: logic [SMBG06, SBMG07, AD15], functional [JKS13, JKS17] and
object-oriented [AZ12]. There are also proposals, inspired by corules, supporting a flexible
form of regular corecursion in the logic [ADZ17a, DAZ20] and object-oriented [ABDZ20]
paradigms.

The approach proposed in the logic paradigm is particularly interesting. Indeed, logic
programs can be regarded as particular, syntactic instances of inference systems: judgments
are ground atoms, and inference rules are ground instances of clauses.

The declarative semantics of logic programs turns out to be defined exactly the same
way as that of the underlying inference systems, as fixed point of the associated inference
operator. Moreover, in coinductive logic programming, the resolution procedure, called

2:26 F. Dagnino Vol. 17:4

coSLD resolution [SMBG06, SBMG07, AD15], keeps track of already encountered goals, so
that, if it finds again the same goal, up-to unification, it can accept it. This mechanism
looks very similar to our inductive characterization of the regular interpretation, hence,
the analogy with inference systems holds also at the operational level. The same analogies
hold between generalised inference systems and logic programs with coclauses introduced in
[DAZ20].

Basing on this correspondence, in [DAZ20] soundness and completeness of the resolution
procedure with respect to the regular declarative semantics are proved, rather than in an
ad-hoc way, by relying on the inductive characterisation of the regular interpretation given in
this paper (Theorem 5.2 and Corollary 7.13). That is, it is enough to show that the resolution
procedure is equivalent to the inductive characterisation of the regular interpretation.

9. Conclusion

Inference systems [Acz77, San11] are a widely used framework to define and reason on
several kinds of judgements (small-step and big-step operational semantics, type systems,
proof systems, etc.) by means of inference rules. They naturally support both inductive and
coinductive reasoning: in the former approach only finite derivations are allowed, while in
the latter one, arbitrary derivations (finite or not) can be used.

In this paper, we have considered regular reasoning, an interesting middle way between
induction and coinduction, combining advantages of both approaches: it is not restricted
to finite derivations, thus overcoming limitations of the inductive approach, but it still
has a finite nature, as a regular derivation can only contain finitely many judgements.
We started from a natural proof-theoretic definition of the regular interpretation of an
inference system, as the set of judgements derivable by a regular proof tree. After presenting
the construction of the rational fixed point in a lattice-theoretic setting, we proved that
the regular interpretation coincides with the rational fixed point of the inference operator
associated with the inference system. Then, we showed that the regular interpretation has
an equivalent inductive characterization, which provides us with an algorithm to find a
derivation for a judgment, if any. Relying on these results, we discussed proof techniques for
regular reasoning: from the fact that the regular interpretation is a rational fixed point, we
got the regular coinduction principle, which allows us to prove completeness, while, from
the inductive characterization, we derived a proof technique to show soundness.

Finally, we focused on inference systems with corules [ADZ17b, Dag19], a recently
introduced generalisation of inference systems, allowing refinements of the coinductive
interpretation. We showed that all results presented for regular coinduction can be smoothly
extended to this generalised framework, thus providing a flexible approach also to regular
reasoning.

Concerning future work, an interesting direction is the development of more sophisticated
proof techniques for regular reasoning. Indeed, several enhanced coinductive techniques have
been proposed, such as parametrized coinduction [HNDV13] and coinduction up-to [BPPR17],
which have been proved to be effective in several contexts. Adapting such techniques to the
(flexible) regular case would provide us with powerful tools to support regular reasoning. A
further development in this direction would be to provide support to regular reasoning in
proof assistants, which usually provide primitives only for plain induction and coinduction.
To this end, we could start from existing approaches [Spa16, UV17] to implement regular
terms in proof assistants. Finally, it would be interesting to apply results in this paper to

Vol. 17:4 FOUNDATIONS OF REGULAR COINDUCTION 2:27

build, in a principled way, abstract and operational models of languages supporting regular
corecursion, going beyond the logic paradigm.

References

[AAMV03] Peter Aczel, Jiŕı Adámek, Stefan Milius, and Jiri Velebil. Infinite trees and completely iterative
theories: a coalgebraic view. Theoretical Computer Science, 300(1-3):1–45, 2003. doi:10.1016/
S0304-3975(02)00728-4.

[ABDZ20] Davide Ancona, Pietro Barbieri, Francesco Dagnino, and Elena Zucca. Sound regular corecursion
in coFJ. In 34nd European Conference on Object-Oriented Programming, ECOOP 2020, volume
166 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2020. doi:10.4230/LIPIcs.
ECOOP.2020.1.

[Acz77] Peter Aczel. An introduction to inductive definitions. In Jon Barwise, editor, Handbook of
Mathematical Logic, volume 90 of Studies in Logic and the Foundations of Mathematics, pages
739 – 782. Elsevier, 1977.

[AD15] Davide Ancona and Agostino Dovier. A theoretical perspective of coinductive logic programming.
Fundamenta Informaticae, 140(3-4):221–246, 2015. doi:10.3233/FI-2015-1252.

[ADZ17a] Davide Ancona, Francesco Dagnino, and Elena Zucca. Extending coinductive logic programming
with co-facts. In Ekaterina Komendantskaya and John Power, editors, Proceedings of the First
Workshop on Coalgebra, Horn Clause Logic Programming and Types, CoALP-Ty 2016, volume
258 of Electronic Proceedings in Theoretical Computer Science, pages 1–18. Open Publishing
Association, 2017. doi:10.4204/EPTCS.258.1.

[ADZ17b] Davide Ancona, Francesco Dagnino, and Elena Zucca. Generalizing inference systems by coaxioms.
In Hongseok Yang, editor, Programming Languages and Systems - 26th European Symposium on
Programming, ESOP 2017, volume 10201 of Lecture Notes in Computer Science, pages 29–55.
Springer, 2017. doi:10.1007/978-3-662-54434-1_2.

[AMV06] Jiŕı Adámek, Stefan Milius, and Jiri Velebil. Iterative algebras at work. Mathematical Structures
in Computer Scienc, 16(6):1085–1131, 2006. doi:10.1017/S0960129506005706.

[AZ12] Davide Ancona and Elena Zucca. Corecursive Featherweight Java. In Wei-Ngan Chin and Aquinas
Hobor, editors, Proceedings of the 14th Workshop on Formal Techniques for Java-like Programs,
FTfJP 2012, pages 3–10. ACM Press, 2012. doi:10.1145/2318202.

[BKL19] Henning Basold, Ekaterina Komendantskaya, and Yue Li. Coinduction in uniform: Foundations
for corecursive proof search with horn clauses. In Lúıs Caires, editor, Programming Languages and
Systems - 28th European Symposium on Programming, ESOP 2019, volume 11423 of Lecture Notes
in Computer Science, pages 783–813. Springer, 2019. doi:10.1007/978-3-030-17184-1_28.

[BPPR17] Filippo Bonchi, Daniela Petrisan, Damien Pous, and Jurriaan Rot. A general account of coinduc-
tion up-to. Acta Informatica, 54(2):127–190, 2017. doi:10.1007/s00236-016-0271-4.

[Bro05] James Brotherston. Cyclic proofs for first-order logic with inductive definitions. In Bernhard
Beckert, editor, Automated Reasoning with Analytic Tableaux and Related Methods, International
Conference, TABLEAUX 2005, volume 3702 of Lecture Notes in Computer Science, pages 78–92.
Springer, 2005. doi:10.1007/11554554_8.

[BS11] James Brotherston and Alex Simpson. Sequent calculi for induction and infinite descent. Journal
of Logic and Computation, 21(6):1177–1216, 2011. doi:10.1093/logcom/exq052.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Robert M. Graham,
Michael A. Harrison, and Ravi Sethi, editors, The 4th ACM Symposium on Principles of
Programming Languages, POPL ’77, pages 238–252. ACM, 1977. doi:10.1145/512950.512973.

[Cou83] Bruno Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science, 25:95–
169, 1983. doi:10.1016/0304-3975(83)90059-2.

[Dag17] Francesco Dagnino. Generalizing inference systems by coaxioms. Master’s thesis, DIBRIS, Uni-
versity of Genova, 2017. Best italian master thesis in Theoretical Computer Science 2018. URL:
http://eatcs.org/images/it/theses/Dagnino_thesis.pdf.

[Dag19] Francesco Dagnino. Coaxioms: flexible coinductive definitions by inference systems. Logical
Methods in Computer Science, 15(1), 2019. doi:10.23638/LMCS-15(1:26)2019.

https://doi.org/10.1016/S0304-3975(02)00728-4
https://doi.org/10.1016/S0304-3975(02)00728-4
https://doi.org/10.4230/LIPIcs.ECOOP.2020.1
https://doi.org/10.4230/LIPIcs.ECOOP.2020.1
https://doi.org/10.3233/FI-2015-1252
https://doi.org/10.4204/EPTCS.258.1
https://doi.org/10.1007/978-3-662-54434-1_2
https://doi.org/10.1017/S0960129506005706
https://doi.org/10.1145/2318202
https://doi.org/10.1007/978-3-030-17184-1_28
https://doi.org/10.1007/s00236-016-0271-4
https://doi.org/10.1007/11554554_8
https://doi.org/10.1093/logcom/exq052
https://doi.org/10.1145/512950.512973
https://doi.org/10.1016/0304-3975(83)90059-2
http://eatcs.org/images/it/theses/Dagnino_thesis.pdf
https://doi.org/10.23638/LMCS-15(1:26)2019

2:28 F. Dagnino Vol. 17:4

[DAZ20] Francesco Dagnino, Davide Ancona, and Elena Zucca. Flexible coinductive logic programming.
Theory and Practice of Logic Programming, 20(6):818–833, 2020. Issue for ICLP 2020. doi:

10.1017/S147106842000023X.
[Dou17] Amina Doumane. On the infinitary proof theory of logics with fixed points. (Théorie de la

démonstration infinitaire pour les logiques à points fixes). PhD thesis, Paris Diderot University,
France, 2017. URL: https://tel.archives-ouvertes.fr/tel-01676953.

[DP02] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and Order. Cambridge University
Press, 2 edition, 2002. doi:10.1017/CBO9780511809088.

[FS13] Jérôme Fortier and Luigi Santocanale. Cuts for circular proofs: semantics and cut-elimination.
In Simona Ronchi Della Rocca, editor, Computer Science Logic 2013, CSL 2013, volume 23
of LIPIcs, pages 248–262. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013. doi:

10.4230/LIPIcs.CSL.2013.248.
[HNDV13] Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. The power of parameterization

in coinductive proof. In Roberto Giacobazzi and Radhia Cousot, editors, The 40th Annual ACM
Symposium on Principles of Programming Languages, POPL ’13, pages 193–206. ACM Press,
2013. doi:10.1145/2429069.2429093.

[JKS13] Jean-Baptiste Jeannin, Dexter Kozen, and Alexandra Silva. Language constructs for non-
well-founded computation. In Matthias Felleisen and Philippa Gardner, editors, Program-
ming Languages and Systems - 22nd European Symposium on Programming, ESOP 2013, vol-
ume 7792 of Lecture Notes in Computer Science, pages 61–80. Springer, 2013. doi:10.1007/
978-3-642-37036-6_4.

[JKS17] Jean-Baptiste Jeannin, Dexter Kozen, and Alexandra Silva. Cocaml: Functional programming
with regular coinductive types. Fundamenta Informaticae, 150(3-4):347–377, 2017. doi:10.3233/
FI-2017-1473.

[LG09] Xavier Leroy and Hervé Grall. Coinductive big-step operational semantics. Information and
Computation, 207(2):284–304, 2009. doi:10.1016/j.ic.2007.12.004.

[MPW16] Stefan Milius, Dirk Pattinson, and Thorsten Wißmann. A new foundation for finitary corecursion
- the locally finite fixpoint and its properties. In Bart Jacobs and Christof Löding, editors,
Foundations of Software Science and Computation Structures - 19th International Conference,
FOSSACS 2016, volume 9634 of Lecture Notes in Computer Science, pages 107–125. Springer,
2016. doi:10.1007/978-3-662-49630-5_7.

[MPW19] Stefan Milius, Dirk Pattinson, and Thorsten Wißmann. A new foundation for finitary corecursion
and iterative algebras. Information and Computation, page 104456, 2019. doi:10.1016/j.ic.
2019.104456.

[San02] Luigi Santocanale. A calculus of circular proofs and its categorical semantics. In Mogens Nielsen
and Uffe Engberg, editors, Foundations of Software Science and Computation Structures - 5th
International Conference, FOSSACS 2002, volume 2303 of Lecture Notes in Computer Science,
pages 357–371. Springer, 2002. doi:10.1007/3-540-45931-6_25.

[San11] Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University Press,
USA, 2011.

[SBMG07] Luke Simon, Ajay Bansal, Ajay Mallya, and Gopal Gupta. Co-logic programming: Extending
logic programming with coinduction. In Lars Arge, Christian Cachin, Tomasz Jurdzinski, and
Andrzej Tarlecki, editors, Automata, Languages and Programming, 34th International Colloquium,
ICALP 2007, volume 4596 of Lecture Notes in Computer Science, pages 472–483. Springer, 2007.
doi:10.1007/978-3-540-73420-8_42.

[SMBG06] Luke Simon, Ajay Mallya, Ajay Bansal, and Gopal Gupta. Coinductive logic programming.
In Sandro Etalle and Miroslaw Truszczynski, editors, Logic Programming, 22nd International
Conference, ICLP 2006, volume 4079 of Lecture Notes in Computer Science, pages 330–345.
Springer, 2006. doi:10.1007/11799573_25.

[Spa16] Régis Spadotti. A mechanized theory of regular trees in dependent type theory. (Une théorie
mécanisée des arbres réguliers en théorie des types dépendants). PhD thesis, Paul Sabatier
University, Toulouse, France, 2016. URL: https://tel.archives-ouvertes.fr/tel-01589656.

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5(2):285–309, 1955.

https://doi.org/10.1017/S147106842000023X
https://doi.org/10.1017/S147106842000023X
https://tel.archives-ouvertes.fr/tel-01676953
https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.4230/LIPIcs.CSL.2013.248
https://doi.org/10.4230/LIPIcs.CSL.2013.248
https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1007/978-3-642-37036-6_4
https://doi.org/10.1007/978-3-642-37036-6_4
https://doi.org/10.3233/FI-2017-1473
https://doi.org/10.3233/FI-2017-1473
https://doi.org/10.1016/j.ic.2007.12.004
https://doi.org/10.1007/978-3-662-49630-5_7
https://doi.org/10.1016/j.ic.2019.104456
https://doi.org/10.1016/j.ic.2019.104456
https://doi.org/10.1007/3-540-45931-6_25
https://doi.org/10.1007/978-3-540-73420-8_42
https://doi.org/10.1007/11799573_25
https://tel.archives-ouvertes.fr/tel-01589656

Vol. 17:4 FOUNDATIONS OF REGULAR COINDUCTION 2:29

[UV17] Tarmo Uustalu and Niccolò Veltri. Finiteness and rational sequences, constructively. Journal of
Functional Programming, 27:e13, 2017. doi:10.1017/S0956796817000041.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

https://doi.org/10.1017/S0956796817000041

	1. Introduction
	2. Inference systems and regular derivations
	3. The rational fixed point
	4. Fixed point semantics for regular coinduction
	5. An inductive characterization
	6. Regular reasoning
	7. Flexible regular coinduction
	7.1. Bounded rational fixed point
	7.2. Fixed point semantics
	7.3. Cycle detection for corules
	7.4. Flexible regular reasoning

	8. Related work
	9. Conclusion
	References

