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Abstract. This paper is about reachability analysis in a restricted subclass of multi-
pushdown automata. We assume that the control states of an automaton are partially
ordered, and all transitions of an automaton go downwards with respect to the order.
We prove decidability of the reachability problem, and computability of the backward
reachability set. As the main contribution, we identify relevant subclasses where the
reachability problem becomes NP-complete. This matches the complexity of the same
problem for communication-free vector addition systems, a special case of stateless multi-
pushdown automata.

1. Introduction

This paper is about reachability analysis of multi-pushdown systems, i.e., systems with a
global control state and multiple stacks. The motivation for our work is twofold. On one
side, a practical motivation coming from context-bounded analysis of recursive concurrent
programs [28, 25, 3]. On the other side, a theoretical motivation coming from partially-
commutative context-free grammars, developed recently in [14, 15, 17].
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Context bounded analysis. Multi-pushdown systems may be used as an abstract model
of concurrent programs with recursive procedures. As multi-pushdown systems are a Turing-
complete model of computation, they are only applicable for verification under further
tractable restrictions. One remarkably successful restriction is imposing a bound on the
number of context switches; between consecutive context switches, the system may only
perform operations on one stack (local operations). In [28], the context-bounded reachabil-
ity has been shown decidable, by reduction to reachability of ordinary pushdown systems [7].
This line of research, with applications in formal verification, has been continued successfully,
e.g., in [8, 25, 3].

Weak control states. As our starting point we observe that if the number of context
switches is bounded, one may safely assume that the control state space is weak, in the sense
that there is a partial order on control states such that transitions go only downwards with
respect to the order. Indeed, the local state space of every thread may be eliminated using a
stack, and the global control state essentially enumerates context switches. Roughly speak-
ing, the model investigated in this paper extends the above one with respect to operations
allowed between two context switches, namely, we do not restrict these operations to one
stack only. Thus, if k is the number of stacks, we assume that transitions of a system are of
the following form:

q, X
a
−→ q′, α1, . . . , αk, (1.1)

to mean that in control state q, symbol X is popped from one of the stacks, and sequences
of symbols α1, . . . , αk, respectively, are pushed on stacks. Wlog. one may assume that the
symbols of different stacks are different.

Partially-commutative context-free grammars. A special case of the model investi-
gated in this paper is stateless multi-pushdown systems. This is still a quite expressible
model that subsumes, among the others, context-free graphs (so called Basic Process Al-
gebra [10]) and communication-free Petri nets (so called Basic Parallel Processes [10], or
commutative context-free graphs). In the stateless case, transitions (1.1) may be under-
stood as productions of a grammar, with the nonterminal symbols on the right-hand side
(stack symbols) subject to a commutativity law. More precisely, for any two symbols X and
Y from different stacks, we impose the commutativity law

XY = YX.

One easily observes that this is a special case of independence relation over nonterminal
symbols, as defined in trace theory [18]1. In multi-pushdown systems, the dependency re-

lation (the complement of independence relation) is always transitive. A general theory
of context-free grammars modulo dependency relation that is not necessarily transitive, has
been studied recently in [17]; complexity of bisimulation equivalence checking has been inves-
tigated in [14, 15]. The present paper complements these results by focusing on reachability
analysis.

1Note however that the independence is imposed on nonterminal symbols, and not on input letters, as
usually in trace theory.
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Contributions. We investigate the reachability problem for weak multi-pushdown automata
that asks, given two sets of configurations, namely the source and target set, whether there
is a sequence of transitions leading from some source configuration to some target one. For
finite representation of the source and target set, we restrict to regular sets of configurations
only. Roughly speaking, in this paper we present an almost complete map of decidability
and complexity results, with respect to natural restrictions of the source and target sets,
and of the control states of multi-pushdown automata.

The paper contains two main results and a few accompanying ones. As our first main
result, we prove decidability of reachability for weak multi-pushdown automata, in case
when target set is a singleton. Our argument is based on a suitable well order on the set of
configurations, that strongly depends on the assumption that the control states are weak.

As the second main result, we identify additional restrictions under which the problem is
NP-complete. One such restriction is stateless multi-pushdown systems; another restriction
is that in every control state, the stacks may be emptied without changing the state. Our
result subsumes (and gives a simpler nondeterministic polynomial time algorithm for) the
case of communication-free Petri nets, assuming that the source and target markings of a net
are given in unary. Reachability of communication-free Petri nets is NP-complete as shown
in [19], even when the source and target markings are presented in binary. NP-completeness
of reachability for stateless multi-pushdown automata is similar to NP-completeness of the
word problem for partially-commutative context-free grammars [21], where one asks if the
given input word is accepted. The reachability question is more difficult to answer, as no
input word is given in advance. In fact the main technical difficulty is to show the existence
of a polynomial witness for reachability.

As further results, we investigate forward and backward reachability sets, and prove that
the backward reachability set of a regular set of configurations is regular and computable,
while the forward reachability set needs not be regular in general. We also identify the
decidability border for reachability of weak multi-pushdown systems. Roughly speaking,
the problem becomes undecidable when the target set of configurations is an unrestricted
regular set, but is decidable if the target set is a singleton.

Finally, we prove a slightly surprising fact: reachability is decidable for multi-pushdown
automata, with unrestricted control states, under the assumption that in every state, the
stacks may be emptied without changing state.

The standard techniques useful for analysis of pushdown systems, such as pumping or
the automaton-based approach of [7], do not extend to the multi-pushdown setting. This
is why the proofs of our results are based on new insights. The NP-membership proofs
are, roughly speaking, based on polynomial witnesses obtained by careful elimination of
’irrelevant’ transitions. On the other hand, the decidability results are based on a suitable
well order on configurations.

Related research. Multi-pushdown systems are a fundamental model of recursive multi-
threaded programs. This is why different instantiations of the multi-pushdown paradigm
have been appearing in the literature recently, most often in the context of formal verifi-
cation. We only mention here a few relevant positions we are aware of, without claiming
completeness. All the papers cited below bring some restricted decidability results for reach-
ability or model checking.

Most often, a model has global control states, with stack operations subject to some
restriction. For instance, the author of [1] assumes that the stacks are ordered, and pop
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operation can only be performed on the first nonempty stack. Another example is the
model introduced in [9] and then further investigated e.g. in [8, 2, 6], that allows for
unbounded creation of new stacks; on the other hand, operations on each stack are local,
thus no communication between threads is allowed.

Another possible approach is to replace global state space with some communication
mechanism between threads. Some successful results on analysis of multi-threaded programs
communicating via locks, in a restricted way, has been reported in [23, 22, 11].

In [26] the algorithm for reachability over PA [10] graphs has been provided. The PA
class is a generalization of both BPA and BPP that allows, similarly like multi-pushdown
systems, both for sequential and concurrent (interleaved) behavior. Finally, in [24] the
reachability problem has been shown decidable for Process Rewrite Systems [27] extended
with weak control states.

Outline. In Section 2 we define the model we work with. Then in Section 3 we make explicit
the variants the reachability problem we investigate in the paper, and in Section 4 we state
all our results. To make the presentation more concise and easier to assimilate, the proofs of
all the results outlined in Section 4 are moved to remaining sections, namely Sections 5–8.

In Section 5 we prove the fundamental property that the source set of configurations
may be assumed to be a singleton without affecting complexity of the reachability problem.
This section introduces also some basic terminology used in the following sections. The
following three sections contain the proofs of the remaining results, grouped with respect
to complexity. In Section 6 we prove membership in NP, in Section 7 we show decidability,
and Section 8 contains undecidability proofs. In the last section we briefly discuss the cases
where the complexity of the reachabiltiy problem is still open.

A preliminary version of this paper has appeared in [16]. This paper is an improvement
of [16], extended with full proofs omitted there, and with few new results (for instance
Theorem 4.1 and Theorem 4.7). The content of this paper is included in the PhD thesis of
the first author [13].

2. Multi-pushdown automata

A multi-pushdown automaton (MPDA) is like a single-pushdown one. In a single step one
symbol is popped from one of stacks2, and a number of symbols are pushed on the stacks.
Assume there are k stacks. A transition of an automaton is thus of the form:

q, X
a
−→ q′, α1, . . . , αk, (2.1)

to mean that when an automaton reads a in state q, it pops X from one of the stacks, pushes
the sequence of symbols αi on the ith stack, for i = 1 . . . k, and goes to state q′. We allow
for silent transitions with a = ε. Observe that wlog. one may assume that stack alphabets
are disjoint.

Formally, the ingredients of an MPDA are: a finite set of states Q, the number of stacks
k, pairwise-disjoint finite stack alphabets S1 . . . Sk, an input alphabet A, and a finite set of
transition rules:

−→ ⊆ Q× (
⋃

i≤k

Si)× (A ∪ {ε}) ×Q× S1
∗ × . . .× Sk

∗ (2.2)

2If we allowed for popping from more than one stack at a time, the model would clearly become Turing-
complete, even with one state only.
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written as in (2.1). A configuration of an MPDA is a tuple 〈q, β1, . . . , βk〉 ∈ Q×S1
∗×. . .×Sk

∗.
The transition rules (2.1) induce the transition relation over all configurations in a standard
way:

q, X
a
−→ q′, α1, . . . , αk X ∈ Si βi = Xβ

〈q, β1, . . . βi . . . , βk〉
a
−→ 〈q′, α1β1, . . . αiβ . . . , αkβk〉

thus defining the configuration graph of an MPDA. For a configuration 〈q, α1, . . . , αk〉, its
size is defined as the sum of lengths of the words αi, i ≤ k. The same applies to a right-hand

side of any transition rule q X
a
−→ q′ α1 . . . αk.

An MPDA is stateless if there is just one state (or equivalently no states). Transition
rules of an automaton are then of the form:

X
a
−→ α1, . . . , αk (2.3)

and configurations are of the form 〈β1, . . . , βk〉.
A less severe restriction on control states is the following one. We say that an automaton

is weak if there is a partial order ≤ on its states such that every transition (2.1) satisfies
q′ ≤ q. Clearly, every stateless automaton is weak.

Remark 2.1. Note that stateless one-stack automata are essentially context-free grammars
in Greibach normal form. Thus the configuration graphs are precisely context-free graphs,
called also BPA graphs [27, 10]. Another special case is many stacks with singleton alpha-
bets. The stacks are thus essentially counters without zero tests. In this subclass, stateless
automata corresponds to communication-free Petri nets [19], called also BPP [12], or com-
mutative context-free graphs [15]. The BPA and BPP classes are members of the Process
Rewrite Systems hierarchy of [27] that contains, among the others, unrestricted pushdown
systems and Petri nets.

Example 2.2. Assuming a distinguished initial state and acceptance by all stacks empty,
weak MPDAs can recognize non-context-free languages. For instance, the language

{anbncn : n ≥ 0} (2.4)

is recognized by an automaton described below. The automaton has two states q1, q2 and
two stacks. The alphabets of the stacks are {X,B,D} and {C}, respectively. The starting
configuration is (q1,XD, ε). Besides the transition rules, we also present the automaton in
a diagram, using push and pop operations with natural meaning.

q1 q2

a, pop X
push XB,C

ε,

pop X

b, pop B

c, pop C

ε, pop D

q1, X
a
−→ q1, XB, C

q1, X
ε
−→ q1, ε, ε

q1, B
b
−→ q1, ε, ε

q1, D
ε
−→ q2, ε, ε

q2, C
c
−→ q2, ε, ε

The automaton is weak and uses ε-transitions, which may be however easily eliminated.
Acceptance by empty stacks may be easily simulated using acceptance by states. The
language (2.4) is not recognized by a stateless automaton, as shown in [17].
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Example 2.3. Non-context-free languages are recognized even by stateless MPDAs with
singleton stack alphabets. The class of languages recognized by this subclass is called com-

mutative context-free languages [21], see also [17]. One example is the commutative closure
of the language of the previous example: the set of all words with the same number of
occurrences of a, b and c.

In the sequel we do not care about initial states nor about acceptance condition, as we will
focus on the configuration graph of an automaton. Furthermore, as we only consider reach-
ability problems, the labeling of transitions with input alphabet letters will be irrelevant,

thus we write −→ instead of
a
−→ from now on.

Using a standard terminology, we say that an MPDA is normed if for any state q and
any configuration 〈q, α1, . . . , αk〉, there is a path to the empty configuration

〈q, α1, . . . , αk〉 −→ . . . −→ 〈p, ε, . . . , ε〉

for some state p. In general, whenever an MPDA is not assumed to be normed we call it
unnormed for clarity. Note that in all examples above the automata were normed. In fact
normedness is not a restriction as far as languages are considered. In the sequel we will
however analyze the configuration graphs, and then normedness will play a role.

Further, we say that an MPDA is strongly normed if for any state q and any configuration
〈q, α1, . . . , αk〉, there is a path to the empty configuration

〈q, α1, . . . , αk〉 −→ . . . −→ 〈q, ε, . . . , ε〉

containing only transitions that do not change state. Intuitively, whatever is the state q

we start in, any top-most symbol X in any stack may „disappear”. For stateless automata,
strong normedness is the same as normedness.

3. Regular sets and reachability problem

Regular sets. We will consider various reachability problems in the configuration graph of
a given MPDA. Therefore, we need a finite way of describing infinite sets of configurations.
A standard approach is to consider regular sets. Below we adapt this approach to the multi-
stack scenario we deal with. Namely, instead of languages of words we consider languages
of tuples of words, one word per stack.

Consider the configurations of a stateless MPDA, S = S∗1 × . . .× S∗k. There is a natural
monoid structure in S, with pointwise identity 〈ε, . . . , ε〉 and multiplication

〈α1, . . . , αk〉 · 〈β1, . . . , βk〉 = 〈α1 β1, . . . , αk βk〉.

Call a subset L ⊆ S regular if there is a finite monoid M and a monoid morphism γ : S → M

that recognizes L, which means that L = γ−1(N) for some subset N ⊆ M . It is well-known
(see for instance [4] and references therein) that a language L is regular iff it is a finite union
of languages of the form

L1 × . . .× Lk,

where Li is a regular word language over Si, for i = 1 . . . k. Thus one may assume, without
loss of generality, that the monoid M is a product of finite monoids

M = M1 × . . . ×Mk,
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and that
γ = γ1 × . . .× γk where γi : S

∗
i → Mi for i = 1 . . . k.

Thus we may use an equivalent but more compact representation of regular sets, based on
automata: a regular set L is given by a tuple of (nondeterministic) finite automata B1 . . .Bk

over alphabets S1 . . . Sk, respectively, together with a set

F ⊆ Q1 × . . .×Qk

of accepting tuples of states, where Qi denotes the state space of automaton Bi.
Unless stated otherwise, in the sequel we always use such representations of regular sets

of configurations. If there is more than one state, we assume a representation for every
state. In particular, when saying ”polynomial wrt. L”, for a regular language L, we mean
polynomial wrt. the sum of sizes of automata representing L.

Remark 3.1. Clearly, the cardinality of the set F of accepting tuples may be exponential
wrt. the cardinalities of state spaces of automata Bi. However, complexities we derive in the
sequel will never depend on cardinality of F .

Example 3.2. Assume that there are two stacks. An example of properties we can define
is: „odd number of elements on the first stack and symbol A on the top of the second stack,
or an even number of the elements on the first stack and the odd number of elements on
the second stack". On the other hand, ”all stacks have equal size" is not a regular property
according to our definition.

Remark 3.3. We have deliberately chosen a notion of regularity of languages of tuples of
words. Another possible approach could be to consider regular languages of words, over the
product alphabet (S1 ∪⊥)× . . .× (Sk ∪⊥), where the additional symbol ⊥ is necessary for
padding. This would yield a larger class, for instance the last language from Example 3.2
would be regular. The price to pay would be however undecidability of the reachability
problems. The undecidability will be established in Theorem 4.9.

Remark 3.4. The notion of regularity for languages of tuples of words we work with is
known in the literature also under the name recognizable languages, see for instance [4, 5].
We prefer to stick to name regular, in order to place emphasis on the fact that the sets of
configurations are assumed to be represented by tuples of finite automata.

Reachability. In this paper we consider the following reachability problem:

Input: an MPDA A and two regular sets of configurations L,K ⊆ S.
Question: is there a path in the configuration graph from L to K?

We will write L ❀A K if a path from L to K exists in the configuration graph of an
automaton A. The sets L and K we call source and target sets, respectively. We will
distinguish special cases, when either L or K or both the sets are singletons, thus obtaining
four different variants of reachability altogether. For brevity we will use symbol ’1 ’ for a
singleton, and symbol ’reg’ for a regular set, and speak of 1❀reg reachability (when L is
a singleton), reg❀reg reachability (the unrestricted case), and likewise for reg❀1 and
1❀1.

Before stating the results, we note that all the problems we consider here are NP-hard:
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Lemma 3.5. The 1❀1 reachability is NP-hard for strongly normed stateless MPDAs, even

if all stack alphabets are singletons.

The above fact follows immediately from NP-completeness of the reachability problem
for communication-free Petri nets, see [19] for details.

4. Summary of results

In this section we merely state all our results without any proofs. The proofs occupy all the
following sections. Our results come in three groups, each dealing with one of the following
questions:

• What is the complexity of the reachability problem in various variants mentioned above?
Where the decidability border lies?

• Is the set of forward/backward reachable configurations regular and computable?
• What changes if the relaxed notion of regularity is assumed?

The three groups are discussed in details in Sections 4.1, 4.2 and 4.3, respectively.
Most of our results apply only to weak MPDAs, or even only to stateless MPDAs. There

are however few exceptions: decidability of reachability (in Theorem 4.1) and regularity of
backward reachability set (in Theorem 4.7), where we consider unrestricted state spaces.
We want to emphasise that the results for unrestricted state spaces are rather accidental,
and are not the most interesting; the core part of the paper is devoted to weak state spaces.

4.1. Complexity of reachability. In presence of states, the 1❀1 reachability problem is
obviously undecidable, because the model is Turing powerful. Undecidability holds even for
normed MPDAs. The problem becomes decidable under the assumption of strong normed-
ness:

Theorem 4.1. The reg❀reg reachability is decidable for strongly normed MPDAs.

The idea behind this result is that the model is similar to lossy FIFO systems, and hence
is susceptible to the same proof methods. We exploit a well ordering of configurations, along
the lines of [20].

All our complexity results are outlined in Table 1. The table distinguishes variants of
the reachability problem for strongly normed/normed/unnormed MPDAs, and restrictions
on control states: stateless/weak/unrestricted. For clarity, we do not distinguish stateless
strongly normed case from stateless normed one, as these two cases obviously coincide.

[ reg❀1]
strongly normed normed unnormed

reg❀reg

stateless NP-compl. (Thm. 4.4)
[ NP-compl. (Thm. 4.5) ]
undecidable (Thm. 4.3)

weak NP-compl. (Thm. 4.4)
[ decidable ] [ decidable (Thm. 4.6) ]

undecidable (Thm. 4.3) undecidable

unrestrictred decidable (Thm. 4.1) undecidable undecidable

Table 1: Summary of complexity results
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The remainder of Section 4.1 is devoted to weak state spaces only. We start by observing
that out of four combinations of the reachability problem, it is sufficient to consider only
two, namely the reg❀1 and reg❀reg cases. Indeed, as far as complexity is concerned,
we observe the following collapse:

1❀1 = reg❀1 1❀reg = reg❀reg (4.1)

independently of a restriction on automata. The first equality follows from our first result,
that says that for a given target configuration, there is a source configuration, witnessing
reachability, of polynomial size:

Lemma 4.2 (Polynomial source configuration). Suppose A is a weak unnormed MPDA. Let

L be a regular set of configurations of A and let t be a configuration of A. Then

L ❀A t =⇒ s ❀A t for some s ∈ L of size polynomial wrt. A, L and t .

Indeed, the reduction from reg❀1 to 1❀1 is by nondeterministic guessing of a source
configuration of polynomial size. The second equality (4.1) will follow from our results listed
below.

The collapse (4.1) significantly simplifies the summary of results in Table 1. Each entry
of the table contains the complexity of reg❀reg reachability problem. Additionally, the
complexity of reg❀1 reachability problem is given in cases it is different from the complexity
of reg❀reg reachability.

Now we discuss the results in detail. We first observe an apparent decidability frontier
witnessed by stateless unnormed MPDAs and weak normed MPDAs:

Theorem 4.3. The 1❀reg reachability is undecidable for stateless unnormed MPDAs and

for weak normed MPDAs.

The proof is by reduction of the nonemptiness of intersection of context-free languages
and uses three stacks. The case of two stacks remains open.

Thus lack of strong normedness combined with a regular target set yields undecidability
in case of weak automata. Surprisingly, restricting additionally:

• either the automaton to be strongly normed,
• or the target set to a singleton,

makes a dramatical difference for complexity of the problem, as summarized in Theorems 4.4,
4.5 and 4.6 below. In the first theorem we only assume strong normedness:

Theorem 4.4. The reg❀reg reachability is NP-complete for strongly normed weak MP-

DAs.

Theorem 4.4 is the main result of this paper. It is proved by showing that reachability
is always witnessed by a polynomial witness, obtained by careful elimination of ’irrelevant’
transitions.

In the following two theorems we do not assume strong normedness, thus according to
Theorem 4.3 we have to restrict target set to singleton. Under such a restriction, we are able
to prove NP-completeness only in the class of stateless MPDAs, while for all weak MPDAs
we merely state decidability:

Theorem 4.5. The reg❀1 reachability is NP-complete for stateless unnormed MPDAs.

Theorem 4.6. The reg❀1 reachability is decidable for weak unnormed MPDAs.
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Theorem 4.5 is shown similarly to Theorem 4.4, while the proof of Theorem 4.6 is based
on a well order, the point-wise extension of a variant of Higman ordering.

Open questions. Except for two few entries in the summarizing table above, where we
merely prove decidability, we know the exact complexity of the reachability problem. The
remaining open question are summarized in Section 9.

4.2. Reachability set. Now we consider the problem of computing the whole reachability
set. For a given automaton A, and a set L of configurations, we consider forward and
backward reachability sets of L, defined as:

{s : L ❀A s} and {s : s ❀A L},

respectively. It turns out that the backward reachability set is regular, whenever L is regular,
under the strong normedness assumption, even for unrestricted state spaces.

Theorem 4.7. For strongly normed MPDAs, the backward reachability set of a regular set

is regular.

Roughly speaking, we show that the backward reachability set is upward closed with
respect to the point-wise extension of a suitable variant of Higman ordering. Note that we
do not claim however that the reachability set may be effectively computed.

On the other hand, the forward reachability set needs not be regular, even in the case
of strongly normed stateless automata, as shown in the following example.

Example 4.8. Consider a strongly normed stateless automaton with two stacks, over al-
phabets {A,X} and {B}, and the following transition rules:

X −→ XA, B X → ε, ε A → ε, ε B → ε, ε.

The set of configurations reachable from the configuration (X, ε) is not regular:

{(Ai,Bj) : i, j ∈ N} ∪ {(XAk,Bl) : k ≥ l}.

4.3. Relaxed regularity. The relaxed definition of regularity, as discusses in Remark 3.3,
makes the reachability problem intractable in all cases. The following theorem is shown by
reduction from the Post Correspondence Problem:

Theorem 4.9. The 1❀reg reachability is undecidable for stateless strongly normed MP-

DAs, under the relaxed notion of regularity.

Furthermore, the backward reachability set of a relaxed regular set is not necessarily
regular, even in stateless strongly normed MPDAs, as illustrated by the following example.

Example 4.10. The automaton uses two stacks, with alphabets {A,X,B} and {C}. Every
symbol has a disappearing rule: A −→ ε, ε, and likewise for X, B and C. Additionally there
is a transition rule B −→ C. Consider the relaxed regular language

L = {(XAn,Cn) : n ≥ 0}

and its backward reachability set. Denote by K the subset of the backward reachability set
consisting of configurations with the second stack empty. We claim that the projection of
K on the alphabet of the first stack is a word language which is not regular. Indeed, as the
only non-disappearing rule is B −→ C, configurations from K have on the first stack a word
of the form wXAn, with at least n occurrences of B in w.
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The remaining sections contain proofs of all the results announced Section 4. For
Reader’s convenience, every result is restated before its proof.

5. Proof of the polynomial source configuration property

Lemma 4.2. Suppose A is a weak unnormed MPDA. Let L be a regular set of configura-
tions of A and let t be a configuration of A. Then

L ❀A t =⇒ s ❀A t for some s ∈ L of size polynomial wrt. A, L and t .

Proof. Consider an MPDA A and a regular set L of configurations of A. Let s ∈ L be
source configuration and let t be an arbitrary target configuration. Suppose s ❀A t . We
will show that the size of s may be reduced, while preserving membership in L. The crucial
but simple idea of the proof will rely on an analysis of relevance of symbol occurrences, to
be defined below.

Symbol occurrences. Suppose that there is a path π from s to t , consisting of consecutive
transitions s −→ s1 −→ s2 . . . −→ sn = t . We will consider all individual occurrences of
symbols that appear in the configurations. For instance, in the following exemplary sequence
of two-stack configurations

〈q,AA,C〉 −→ 〈q,BBA,DC〉 −→ 〈q,ABBA,DC〉 (5.1)

there are altogether 14 symbol occurrences: 3 in the first configuration, 5 in the second one
and 6 in the third one.

Recall that every transition si −→ si+1 is induced by some transition rule q1, X −→ q2, α

of the automaton. Then there is a distinguished occurrence of symbol X in si that is involved
in the transition. In the sequel we use the term symbol occurrence involved in a transition.

Precisely one occurrence of symbol in si is involved in the transition si −→ si+1; for every
other occurrence of a symbol in si there is a corresponding occurrence of the same symbol
in si+1. (Note that we always make a difference between corresponding symbol occurrences
from different configurations.) All remaining occurrences of symbols in si+1 are created by
the transition; we call these occurrences fresh.

We define the descendant relation as follows. All fresh symbol occurrences in si+1 are
descendants of the symbol occurrence in si involved in the transition si −→ si+1. Moreover, a
symbol occurrence in si+1 corresponding to a symbol occurrence in si is its descendant too.
We will use term descendant for the reflexive-transitive closure of the relation defined above
and the term ancestor for its inverse relation. In particular, every symbol occurrence in t

is descendant of a unique symbol occurrence in s. The descendant relation is a forest, i.e.,
a disjoint union of trees.

Example 5.1. As an example, consider again the sequence of transitions (5.1), with symbol
occurrences identified by subscripts 1 . . . 14:

〈q,A1A2,C3〉 −→ 〈q,B4B5A6,D7C8〉 −→ 〈q,A9B10B11A12,D13C14〉 (5.2)

Say the transitions are induced by the following two transition rules:

q, A −→ q, BB, D q, D −→ q, A, D

The descendant relation can be presented as the following forest:
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A1

B4

B5

D7

B10

B11 A9

D13 C3 C8 C14

A2 A6 A12

The symbol occurrences involved in the two transitions (5.2) are A1 in the first configuration
and D7 in the second one. The fresh symbol occurrences are B4, B5 and D7 in the second
configuration, and A9 and D13 in the third one.

Relevant symbol occurrences. As the automaton A is weak, the number of transitions
in π that change state is bounded by the number of states of A. All remaining transitions
in π do not change state.

Consider all the occurrences of all symbols in all configurations along the path π, in-
cluding configurations s and t themselves. A symbol occurrence is called relevant if some
of its descendants:

• belongs to the target configuration t ; or
• is involved in some transition in π that changes state.

Otherwise, a symbol occurrence is irrelevant. In particular, all symbol occurrences in t

are relevant. Referring back to our example, all symbol occurrences appearing in (5.2) are
relevant.

Note that if t is not the empty configuration then every configuration in π contains at
least one relevant symbol occurrence. On the other side, in every configuration, the number
of relevant occurrences is always bounded by the sum of the size of t and the number of
states of A.

Small source configuration. So prepared, we are ready to prove that there is a configu-
ration s

′ ∈ L of polynomial size with s
′
❀A t . We will rely on the following lemma:

Lemma 5.2. For any configuration s
′ obtained from s by removing some irrelevant symbol

occurrences, it holds s
′
❀A t .

The lemma follows from the following two observations: (1) all the transitions in π

involving symbol occurrences remaining in s
′ and their descendants may be re-done; (2) the

resulting configuration will be exactly t , as only irrelevant symbol occurrences have been
removed from s.

Recall that the language L is represented by a tuple B1 . . .Bk of deterministic finite
automata, one automaton per stack. Consider the content of a fixed ith stack in s, say
w ∈ A∗

i . Let n be the number of states of Bi. The run of the automaton Bi over w labels
every position of w by some state. We will use a standard pumping argument to argue that
every block of consecutive irrelevant symbol occurrences in s may be reduced in length to
at most n. Indeed, upon every repetition of a state of Bi, the word w may be shortened by
removing the induced infix, while preserving membership in L. By repeating the pumping
argument for all blocks of consecutive irrelevant symbol occurrences in all stacks in s, one
obtains a configuration s

′, still belonging to L, of quadratic size. By Lemma 5.2 we know
that s

′
❀ t , as required.
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6. NP-completeness

In this section we prove the following two theorems of Section 4:

Theorem 4.4. The reg❀reg reachability is NP-complete for strongly normed weak MP-
DAs.

Theorem 4.5. The reg❀1 reachability is NP-complete for stateless unnormed MPDAs.

NP-hardness in both cases follows from Lemma 3.5. Concerning Theorem 4.4, the proof
of membership in NP relies on the following two core lemmas:

Lemma 6.1. The 1❀1 reachability problem is in NP for strongly normed weak MPDAs.

Lemma 6.2. Let A be a strongly normed weak MPDA and let L,K be regular sets of

configurations. If L ❀ K then s ❀ t for some s ∈ L and t ∈ K of size polynomial wrt. the

sizes of A, L and K.

Indeed, the two lemmas easily yield a decision procedure for reg❀reg reachability:
guess configurations s ∈ L and t ∈ K of size bounded by a polynomial deduced from the
proof of Lemma 6.2, and then apply the procedure of Lemma 6.1 to check if s ❀ t .

Concerning Theorem 4.5, membership in NP follows easily by Lemma 4.2 together with
the following:

Lemma 6.3. The 1❀1 reachability problem is in NP for stateless unnormed MPDAs.

The proof of Lemma 6.3 is similar to the proof of Lemma 6.1, as the irrelevant sym-
bol occurrences must necessarily be normed, because they do not contribute to the target
configuration. We thus skip this proof, and devote the rest of this section to the proofs of
Lemmas 6.1 and 6.2.

Proof of Lemma 6.1. Consider an MPDA A and two configurations s and t . We will
define a nondeterministic polynomial-time decision procedure for s ❀A t .

Stateless assumption. For simplicity, we assume that both s and t have the same control
state. Thus we can treat transitions that lead from s to t as stateless transitions. At the
very end of the proof, we will discuss how to generalize it to the general case of strongly
normed weak MPDAs.

Polynomial witness. Our aim is to show that if there is a path from s to t then there is
a path of polynomial length. So stated, the above claim may not be verbally true, even in
the case of context-free graphs, as witnessed by the following simple example.

X1 −→ X2X2 X2 −→ X3X3 . . . Xn−1 −→ XnXn Xn −→ ε (6.1)

The example scales with respect to n, and thus the shortest path from the configuration X1

to Xn is of exponential length. As a conclusion, one must use some subtle analysis in order
to be able to reduce the length of a witness of existence of the path as required. Note that
X1 is relevant and thus can not be simply omitted.
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Proof idea. As a first step towards a polynomial bound on the witness of the path from
s to t , we will modify the notion of transition. Intuitively speaking, our aim is to consider
exclusively relevant symbol occurrences.

By a subword we mean any subsequence of a given word. For instance, aaccbc is a
subword of aacabbcbcbc. Further, by a subtransition of X −→ α1 . . . αk we mean any
X −→ β1 . . . βk such that the following conditions hold:

• subword : βi is a subword of αi, for all i ∈ {1 . . . k}; and
• nonemptiness: β1 . . . βk 6= ε, i.e., at least one of words βi is nonempty.

Note that relying on the notion of relevance one easily deduces that whenever there is a
sequence of transitions from s to t , then there is also sequence of subtransitions. Indeed, it
is sufficient to remove irrelevant symbol occurrences in all transitions along the path from s

to t .
Clearly, the converse implication is not true in general. For instance, if we add symbols

X0, A and transitions X0 −→ X1A, A −→ ε to the example (6.1), there is a sequence of
subtransitions from the configuration X0 to Xn, but no sequence of transitions from X0

to Xn. Our aim now it to modify the notion of subtransition in such a way that the
converse implication does hold as well, i.e., that existence of a sequence of subtransitions
implies existence of a sequence of transitions. This requires certain amount of laborious
book-keeping, as defined in detail below.

Marked subtransitions. We will need an additional copy of every stack alphabet Ai,
denoted by Āi, for i = 1 . . . k. Thus for every a ∈ Ai there is a corresponding marked symbol
ā ∈ Āi. Formally, let the ith stack alphabet be Ai ∪ Āi.

A marked subword of a word w ∈ A∗
i is any word in (Ai ∪ Āi)

∗ that may be obtained
from w by the following marking procedure:

• color arbitrary occurrences in w (the idea is to color irrelevant symbol occurrences);
• choose a prefix of w and mark every occurrence in this prefix; the prefix should contain

all occurences that are followed by some colored occurrence;
• and finally remove colored occurrences.

For instance, the following four words are all the marked subwords of AACABBCBCBC,
with respect to the coloring AACABBCBCBC:

ĀĀC̄CBC ĀĀC̄C̄BC ĀĀC̄C̄B̄C ĀĀC̄C̄B̄C̄. (6.2)

Recall that a word w ∈ A∗
i represents a content of the ith stack, with the left-most symbol

being the top-most. Intuitively, the idea behind the notion of marked subword is to keep
track of removed occurrences that are covered by other symbols on the stack. For technical
reasons in the second point above we allow additionally marking some further symbols that
are not followed by a colored occurrence.

A notion of marked subtransition is a natural adaptation of the notion of subtransition.
Compared to subtransitions, there are two differences: ’subword’ is replaced with ’marked
subword’; and whenever the left-side symbol is marked, then it may only put marked symbols
on its stack. Formally, a marked subtransition of X −→ α1 . . . αk is any X −→ β1 . . . βk such
that the following conditions hold:

• subword : βi is a marked subword of αi, for all i ∈ {1 . . . k};
• nonemptiness: β1 . . . βk 6= ε, i.e., at least one of words βi is nonempty; and
• marking inheritance: if X is marked, say X ∈ Āi, then all symbols in βi are marked.
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Observe that in the marking inheritance condition we exploit possibility to mark additional
occurrences (in fact all occurrences, cf. (6.2)). As an example, consider a transition:

A −→ AACABBCBCBC, DDED

for {A,B,C} and {D,E} the alphabets of the two stacks. Then according to the colorings

AACABBCBCBC and DDED,

there are two marked subtransitions with Ā the left-side symbol:

Ā −→ ĀĀC̄C̄B̄C̄, D̄D and Ā −→ ĀĀC̄C̄B̄C̄, D̄D̄.

Note that there are exponentially many different marked subtransitions, but each one is of
polynomial size. Finally, note that every subtransition is obtained from some transition by
the marking procedure as above, applied to every stack separately.

By the nonemptiness assumption on marked subtransitions we obtain a simple but
crucial observation:

Lemma 6.4. Along a sequence of marked subtransitions, the size of configuration can not

decrease.

A marked subconfiguration of a configuration 〈α1, . . . , αk〉 is any tuple 〈β1, . . . , βk〉 such
that βi is a marked subword of αi for all i ∈ {1 . . . k}.

Lemma 6.5. For two configurations s and t , the following conditions are equivalent:

(1) there is a sequence of transitions from s to t ,

(2) there is a sequence of marked subtransitions from u to t , for some marked subconfigura-

tion u of s.

Proof. The implication from (1) to (2) follows immediately. The sequence of marked sub-
transitions is obtained by application of the marking procedure to all transitions. For every
transition, color in the marking procedure precisely those symbol occurrences that are irrel-
evant.

Now we show the implication from (2) to (1). The proof uses strong normedness.
Assume a sequence π of marked subtransitions from u to t , for some marked subconfig-

uration u of s. Recall that each subtransition in π has its original transition of A. We claim
that there is a sequence of transitions from s to t, that contains the original transitions of
all the marked subtransitions appearing in π, and canceling sequences

q X −→ . . . −→ 〈q, ε, . . . , ε〉 (6.3)

for some stack symbols X, existing due to strong normedness assumption.
The sequence of transitions from s to t is constructed by reversing the marking proce-

dure. For the ease of presentation, beside letters from Ai, we will also use colored letters.
Start with the configuration s, and choose any coloring of symbol occurrences in s that

induces u as the outcome of the marking procedure. Then consecutively apply the following
rule:

• If the top-most symbol X on some stack is colored, apply a canceling sequence for X.
• Otherwise, apply the original transition of the next subtransition from π, using again some

coloring that could have been used in the marking procedure.

For correctness, we need to show that all colored occurrences of symbols are eventually
canceled out, as this guarantees that the final configuration is precisely t.
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Let’s inspect π. As no symbol in t is marked, every marked symbol occurrence eventually
disappears as a result of firing of some subtransition. Recall that marking of a symbol X̄
disappears only if the subtransition pushes nothing on the stack of X̄. As a consequence,
every colored symbol occurrence will eventually appear on the top of its stack. Thus the
canceling sequence for X will eventually be applied.

Lemma 6.6. For two configurations u and v , if there is a sequence of marked subtransitions

from u to v , then there is such a sequence of polynomial length wrt. the sizes of u, v and A.

Proof. From now on, we will write ’subtransitions’ instead of ’marked subtransitions’. As
we will primarily work with subtransitions, we will use the stack alphabets Ai ∪ Āi for
i ∈ {1 . . . k}.

The number of subtransitions that change state is bounded by the number of states of A,
as A is assumed to be weak. Thus it is sufficient to prove the lemma under the assumption
that the subtransitions do not change state. In other words, wlog. we may assume A to be
stateless.

The size of the right-hand side of a marked subtransition is at least 1. Distinguish
subtransitions with the size of the right-hand side equal 1, and call them singleton subtran-

sitions. Clearly, the number of non-singleton subtransitions appearing in the sequence in
the above claim is at most equal to the size of v , thus it is sufficient to concentrate on the
following claim:

Claim 6.7. If there is a sequence of singleton subtransitions from a configuration u to v

then there is such a sequence of polynomial length.

Note that the sizes of u and v in the above claim are necessarily the same.
Now we analyze in more detail the singleton subtransitions. Note that they have the

form
X −→ Y (6.4)

as the right-hand sides contain precisely one occurrence of a symbol. Consider the strongly
connected components in the induced graph, with symbols as vertices, and singleton sub-
transitions (6.4) as edges.

Distinguish those singleton subtransitions (6.4) that stay inside one strongly connected
component (in other words, such that there is a sequence of subtransitions from Y back to
X) and call them inner singleton subtransitions. Note that the number of non-inner sub-
transitions that appear in the sequence of the last claim is polynomial (at most quadratic),
thus the last claim is equivalent to the following one:

Claim 6.8. If there is a sequence of inner singleton subtransitions from a configuration u

to v then there is such a sequence of polynomial length.

The rest of the proof is devoted to showing the last claim.
We start by doing a sequence of simplifying assumption without losing generality.
First, wlog. we may assume that the relation (6.4) is transitive, as we only care about the

length of the sequence of subtransitions up to a polynomial. Thus every strongly connected
component is a directed clique.

By the type of a clique we mean the set of stacks that are represented in the clique, i.e.,
the stacks that have at least one symbol in the alphabet that belongs to the clique. We may
assume that there is no clique of singleton type. Indeed, otherwise the stack is essentially
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inactive along the path, except for the top-most symbol, and thus may be ignored in our
analysis.

Further, wlog. we may also assume that every clique has at most one symbol belonging
to every stack alphabet. Indeed, two different symbols from the same clique and the same
stack alphabet can easily mutate from one into the other, when being the top-most symbol
of the stack. And every symbol X may be easily made top-most by popping all symbols
above X to other stacks (this can be done due to the assumption that type of cliques are
not singletons).

The simplifications lead us to the following reformulation of the last claim. Let k ≥ 1
be an integer. Assume a finite set of symbols A, each symbol X ∈ A coming with its
type type(X) ⊆ {1 . . . k} of cardinality at least 2. Consider the set of k-tuples of stacks
(A∗)k satisfying the following consistency condition: if X appears in the ith sequence then
i ∈ type(X). Consider the following transition rules: the top-most letter of some stack may
be moved to the top of some other stack, as long as the consistency is preserved.

Claim 6.9. If there is a sequence of transitions from some configuration u ∈ (A∗)k to some
configuration v ∈ (A∗)k, then there is such a sequence of polynomial length.

So formulated, the claim is not so hard.
We will show a polynomial sequence of transitions that starts in u and ends in a config-

uration u
′ that has the same bottom-most symbol as v on some stack. This is sufficient, as

the same thing may be done for all other occurrences of symbols in v (formally, an induction
over stack depth is involved here).

Note that we do not assume that different symbols have different types. Two symbols
we call siblings if they have the same type and this type has two elements (thus the symbols
may be placed only on two stacks).

Choose an arbitrary stack that is nonempty in v , say the ith stack, with the bottom-
most symbol X. We may assume wlog. that X does not appear in u on the ith stack
(otherwise, i.e., if some occurrences of X in u are on the ith stack, move all the occurrences
of X, together with all other symbols above them, to arbitrary other stacks).

Let the jth stack in u contain an occurrence of symbol X, for some j 6= i.
The sequence of steps from u to u

′ is the following:

(1) Move all symbols above the chosen occurrence of X from the jth stack to other stacks.
(2) Move all symbols from the ith stack to other stacks such that X is still on the top of the

jth stack.
(3) Move the chosen occurrence of symbol X to the destination ith stack.

Clearly step 1. may be always done. We will show that step 2. may be always done as well.
We distinguish two cases.

If the symbol X is not a sibling, every other symbol may be moved, from the ith stack,
to a stack different than the ith one, in such a way that after this operation X will be still
on the top of the jth stack. Indeed, assume that a symbol Y is on the top of the ith stack.
If Y can be moved to a stack different than the jth one, we are done. Otherwise, Y can only
occur on the ith and jth stacks. According to the assumption, X and Y are not siblings,
thus there is another kth stack to which X can be moved. Then we proceed as follows: X is
moved from jth to the kth stack, next Y is moved from the ith stack to the jth stack, and
finally X is moved back from the kth stack to the jth stack.

As the second case, assume that X is a sibling. Assume that the top-most occurrence
of X on the jth stack has been chosen. As j 6= i, and there is a sequence of steps from u to
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v , one easily observes that no sibling of X may occur in u either on the ith stack, or above
X on the jth stack. Thus step 2. clearly can be done.

This completes the proof of Lemma 6.6 and thus also the proof of Lemma 6.1, under
the stateless assumption.

Decision procedure. Now we drop the stateless assumption. Note that the notion of
marked subconfiguration and marked subtransition may be easily adapted to transitions that
change state. We do not impose however the nonemptiness condition on transitions that
change state, which is in accordance with the intuition that irrelevant symbol occurrences
are removed in the marking procedure. Using Lemmas 6.4, 6.5 and 6.6 we will define the
nondeterministic decision procedure for strongly normed weak MPDAs.

Let the two given configurations s and t have control states q and p, respectively. In the
first step, the algorithm guesses a number of marked subconfigurations t1 . . . tn−1, where n

is not greater than the number of states of A, and marked subtransitions that change state:

t1 −→ s1 t2 −→ s2 . . . tn−1 −→ sn−1

such that si and ti+1 have the same control states for i ∈ {0 . . . n− 1}. Note that size of all
configurations si and ti is necessarily bounded by size(t)+ |A|, as the size of a configuration
along the run may be decreased only during the change of state and even then only by one.
For convenience, we write s0 instead of s and tn instead of t . In particular, we assume that
the control state of t1 is q, and the control state of sn−1 is p. Relying on Lemma 6.4, it is
sufficient to consider configurations of sizes satisfying the following inequalities:

size(si) ≤ size(ti+1) for i ∈ {1 . . . n− 1}. (6.5)

In the second phase, the algorithm guesses, for i ∈ {0 . . . n−1}, a sequence of subtransi-
tions from si to ti+1 of length bounded by polynomial derived from the proof of Lemma 6.6;
and checks that the respective sequences of subtransitions lead from si to ti+1, as required
by Lemma 6.5.

Proof of Lemma 6.2. Suppose A is a strongly normed weak MPDA. Let L, K be regular
sets of configurations of A and let π be a sequence of transitions from some configuration
s ∈ L to some configuration t ∈ K. We will demonstrate existence of configurations s

′ ∈ L

and t
′ ∈ K such that t

′ is of polynomial size and s
′
❀ t

′. Importantly, we do not have to
provide any bound on the size of s ′, as the polynomial bound follows by Lemma 4.2.

Recall the coloring discipline used in the proof of Lemma 6.1. There we used just one
color; here we will use an unbounded number of different colors, as described below.

The coloring discipline will apply to all configurations appearing in π. We start by
coloring all symbol occurrences in the first configuration s with different colors. Then, for
every transition s1 −→ s2 in π, assumed that s1 has already been colored, we stipulate the
following coloring rule for s2 (recall that symbol occurrences in s2 are divided into those
corresponding to symbol occurrences in s1, and fresh ones):

• If a symbol occurrence corresponds to a symbol occurrence in s1, its color is the same as
the color of corresponding symbol occurrence.

• Let c be the color of the unique occurrence of symbol in s1, say symbol X, that is involved
in the transition. All fresh symbol occurrences in s2 that appear on the same stack as
X are colored with c; we say that they inherit the color from X. All other fresh symbol
occurrences in s2 are colored by new fresh colors: one for each other stack. Thus at most
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k− 1 new fresh colors is needed for coloring fresh occurrences on other stacks, where k is
the number of stacks.

For any color used, and for any fixed configuration, the set of all symbol occurrences colored
with that color we call line. Note that a line is always a subset of symbol occurrences on a
single stack. However, there are typically many lines sharing their color, but this happens
only to lines from different configurations. Further, note that the cardinality of a line is not
bounded in principle, due to the inheritance of color.

We now aim at reducing the size of the destination configuration t
′. Roughly speaking,

we will prove that s ′ ❀ t
′, for some s ′ ∈ L and t

′ ∈ K such that both the number of different
lines in t

′, and the cardinality of all lines in t
′, are polynomially bounded.

For convenience, we split colors into two disjoint subsets. A color c is called active if
some symbol occurrence labeled by c:

• either is involved in some transition in π,
• or is a fresh symbol occurrence created by some transition in π.

Otherwise, a color is called inactive, i.e., occurrences of this color are present in s and are not
involved in any transition during the run. Likewise, a line is also called active or inactive,
according to its color. Note that inactive colors label suffixes of stacks in every configuration
in π, and these suffixes do not change along π. Inactive lines are clearly singletons.

Bounding the number of active lines. Consider content of some stack, say the ith stack,
in the destination configuration t ∈ K. Denote by w ∈ A∗

i its prefix colored by active colors.
Every active line on the ith stack corresponds to an infix of w, and thus the coloring induces
a factorization

w = w1 · w2 · . . . · wm

determined by some m− 1 positions in w.
Recall that the language K is represented by a tuple B1 . . .Bk of finite automata, one

automaton per stack. A run of the automaton Bi over the ith stack of t labels each of the
m − 1 distinguished positions in w by a state. By a standard pumping argument, there
is a subword w′ of w, obtained by removing a number of lines from w, that contains at
most as many lines as the number of states of Bi, and such that Bi reaches the same state
after reading w and w′. By repeating the pumping argument for all stacks, one obtains
a configuration t

′ still belonging to K, that contains only a polynomial (in fact, at most
quadratic) number of active lines, as required.

We only need to show that s ❀ t
′. In this part of the proof we will use the canceling

sequences (6.3), available due to strong normedness. Observe that every active line that
appears in π appears as the top-most one on its stack at some configuration in π. We
apply the canceling sequence for all symbol occurrences in every active line not appearing
in t

′. In order to keep the reachability s ❀ t
′, we apply the canceling sequence in the last

configuration in π where this line is the top-most one. Thus the disappearance of a line has
no effect for the remaining lines.

Bounding the number of inactive lines. We repeat a pumping argument similar to the
above one. Let L and K be represented by A1 . . .Ak and B1 . . .Bk, respectively. Consider
some i ≤ k and runs of automata Ai and Bi over the inactive suffix of the ith stack of t ′

(or t). The runs label every position by a pair of states of Ai and Bi, respectively. Upon a
repetition of the same pair of states, a standard pumping applies. Thus the length of every
inactive suffix in v may be reduced to at most quadratic.
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Bounding the cardinalities of active lines. Consider the configuration t
′ obtained by

now, and a single active line on some ith stack in this configuration. Let v ∈ A∗
i be the word

representing the line. Thus the ith stack in t
′ is of the form:

w1v w2

for some words w1, w2. Similarly as before, we aim at applying pumping inside v, to reduce
its length.

Let’s focus on symbol occurrences in v in configuration t
′ and on the corresponding

symbol occurrences in other configurations in π. Observe that all symbol occurrences in v

satisfy the following condition:

the corresponding symbol occurrence in some previous configuration was freshly

created in some transition.

Some of the above-mentioned transitions have created new lines, and some not. Among
symbols in v, distinguish a subset containing only those occurrences that satisfy the following
strengthened condition:

the corresponding symbol occurrence in some previous configuration was freshly

created in some transition that created a new line that is represented in t
′.

The distinguished symbol occurrences call non-local, the others call local.
The overall number of lines in t

′ is polynomially bounded, thus the same bound applies
to the number of non-local symbol occurrences in v . We thus obtain:

Claim 6.10. There is only polynomially many non-local symbol occurrences in v.

Thus, it is sufficient to reduce the length of any block of local occurrences in v. From
now on we focus on a single maximal infix u of v that contains only local symbol occurrences.

Those transitions in π that involve a symbol occurrence corresponding to a symbol
occurrence in u use only the ith stack. Thus this set of transitions is essentially a stateless
pushdown automaton. We will use a well-known fact (see for instance [7]):

Claim 6.11. For a pushdown automaton one can construct a finite automaton of polynomial
size that recognizes the language of all reachable configurations of the pushdown automaton.

We will now use a standard pumping to reduce the length of u. As said above, a run of
Bi over the ith stack of v labels each position of u with a state. Likewise for the automaton
of the above claim. Upon a repetition of a pair of states, a standard pumping applies, as
usual. This completes the proof of Lemma 6.2.

7. Decidability

In this section we provide proofs of Theorems 4.6, 4.7 and 4.1.

Theorem 4.6. The reg❀1 reachability is decidable for weak unnormed MPDAs.

Proof. By virtue of Lemma 4.2 we may focus on the 1❀1 reachability only. Fix an MPDA
A and two configurations s and t . We will describe an algorithm to decide whether s ❀A t .
Roughly speaking, our approach is to define a suitable well order compatible with tran-
sitions, and then apply a standard algorithm for reachability of a downward-closure of a
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configuration3. However, to apply the standard framework we need to introduce some addi-
tional structure in configurations. This additional structure will be intuitively described as
coloring of symbols, similarly as marking in the proof of Lemma 6.1.

Recall the notion of relevant symbol occurrences, introduced in Section 5. The idea of
the proof will be based on the observation that removing some irrelevant symbol occurrences
has no impact on reachability of a fixed target configuration (cf. Lemma 5.2 from Section 5).

Fix the target configuration t . We will define colored configurations and modified tran-
sitions between colored configurations. The basic intuition is that irrelevant symbol oc-
currences will be colored. Note however that we don’t know in advance which symbol
occurrences in a given configuration s are relevant and which are not, as we do not even
know if s ❀ t . Thus a coloring will have to be guessed.

Let n be the number of states of A and let m be the size of t . By a colored configuration

we mean a configuration with some symbol occurrences colored, such that the number of
uncolored symbol occurrences is smaller than n + m. Formally, coloring is implemented
by extending the alphabet of every stack with its colored copy. We define an ordering on
colored configurations: r

′ � r if r
′ is obtained from r by removing some colored symbol

occurrences. (In particular, if r ′ � r then both configurations are identical, when restricted
to uncolored symbols. Thus an uncolored configuration corresponds to a downward-closed
set.) As the number of uncolored occurrences is bounded, the number of blocks of colored
occurrences is bounded likewise. The ordering � is like a Higman ordering on words (i.e.,
a word v is smaller than a word w if v can be obtained from w by removing some letters),
extended in the point-wise manner to blocks of colored occurrences. Thus one easily shows,
using Higman’s lemma:

Claim 7.1. The ordering � is a well order on colored configurations, i.e. for any infinite
sequence of configurations s1s2 . . . there are indices i < j such that si � sj .

Now we define the transition rules for colored configurations. Consider any original
transition rule δ of A. This transition rule will give rise to a number of new transition
rules that will be applicable to colored configurations. One new transition is obtained by
coloring all symbols in δ, i.e., both the left-hand side symbol and all the right-hand side
symbol occurrences. In all other new transitions arising from δ, the left-hand side symbol
is kept uncolored. On the other hand, an arbitrary subset of the right-hand side symbol
occurrences may be colored, under the following restriction:

if the transition δ does not change state then at least one of right-hand side
symbols must be kept uncolored.

This corresponds to the intuition that uncolored symbol occurrences correspond to relevant
ones.

We have thus now two transition systems: the original transition system and the colored
one. The relationship between reachability in these two systems is stated in the following
claim (recall that the configuration t is fixed and contains no colored symbols):

Claim 7.2. For any configuration s, s ❀ t if and only if there is some coloring s
′ of s such

that s
′
❀ t .

3The algorithm works actually in any well-structured transition system under suitable assumptions,
see [20]. Theorem 4.6 is in fact a special case of Theorem 5.5 in [20].
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Indeed, the only if direction is obtained by coloring precisely irrelevant symbol occur-
rences in s. The if direction also follows immediately, by replacing the colored transitions
with their uncolored original transitions.

Basing on the above claim, the algorithm for s ❀ t simply guesses a coloring s
′ of s

and then checks if s ′ ❀ t in the colored transition system. It thus only remains to show
that the latter problem is decidable. For this we will need a compatibility property of the
colored transitions with respect to the well order:

Claim 7.3. For every colored configurations r
′, r and u, if r ′ � r −→ u then

• either there is a colored configuration u
′ with r

′ −→ u
′ � u,

• or r
′ � u.

In other words, � is a variant of backward simulation with respect to −→. Indeed, if the
symbol occurrence involved in r −→ u is uncolored, the transition may be also fired from r

′.
Otherwise, suppose that the symbol occurrence involved in r −→ u is colored (recall that in
this case all fresh symbol occurrences are colored). If this occurrence appears also in r

′, it
may be fired similarly as above. On the other hand, if this occurrence does not appear in
r
′, we have r

′ � u, as required.
Using the last claim we easily show decidability. The algorithm explores exhaustively a

portion of the tree of colored configurations reachable from s
′, with the following termination

condition. As the ordering � is a well order, we know that on every path eventually two
colored configurations appear, say u

′ and u, such that u
′ precedes u and u

′ � u. Such
a pair we call domination pair. Whenever a domination pair is found on some path, the
algorithm stops lengthening this path. The well order guarantees thus that the algorithm
terminates, after computing a finite tree of colored configurations (finiteness of the tree
follows by König’s lemma). The algorithm answers ’yes’ if the configuration t appears in
the tree.

Now we prove correctness of the algorithm. Towards contradiction, suppose t is reach-
able from s

′ but t is not found in the tree. Consider the shortest path π from s
′ to t , and

the domination pair u
′ � u on that path. Thus u ❀ t . Using the compatibility condition,

we deduce that u ❀ t implies u
′
❀ t

′ for some t
′ � t , along a path not longer that the

path from u to t . By the definition of � we obtain t
′ = t . Thus the fragment of path π

from s
′ to u

′, composed with the path from u
′ to t yields a path strictly shorter than π, a

contradiction.

Theorem 4.7. For strongly normed MPDAs, the backward reachability set of a regular set
is regular.

Proof. Consider a strongly normed MPDA, and a regular set L of configurations. Denote by
B the backward reachability set of L. We aim at proving that B is regular. We do not claim
however that a representation of this regular set may be effectively computed in general.

The proof is in two steps. In the first one we introduce and justify a simplification of
the problem. As the second step, we prove regularity of the backward reachability in the
simplified case.
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Restriction to fully active paths. Let Lq (resp. Bq) denote restrictions of L (resp. B) to
configurations with control state q. It is enough to prove regularity of the set

Bp,q = {s ∈ Bp : s ❀ Lq}

for every pair of states p, q, due to the following equalities:

Bp =
⋃

q

Bp,q B =
⋃

p

Bp

and closure of regular languages under finite unions. Fix two control states p and q from
now on. Denote by Sq the set of all configurations with the control state q.

Recall that the set Lq is recognized by some monoid homomorphism, i.e., there is h :
Sq → M for some finite monoid M and for every q, Lq = h−1(Nq) for some subset Nq ⊆ M .
Note that, formally speaking, the state q is a part of every configuration of Lq, hence the
domain of the homomorphism are all configurations with state q. Thus formally speaking
the homomorphism respects the multiplication of configurations defined as:

〈q, α1, . . . , αk〉 · 〈q, β1, . . . , βk〉 = 〈q, α1β1, . . . , αkβk〉,

for k the number of stacks. As Lq is recognized by h, we have

Lq =
⋃

m,n

h−1(m)h−1(n), (7.1)

where m and n range over pairs of elements of M satisfying m · n ∈ Nq.
A path from a configuration s to some target configuration is fully active if some de-

scendant of every symbol occurrence in s is involved in some transition. For m ∈ M , denote
by Fm the set of all configurations s with control state p such that there is a fully active
path from s to some configuration t in h−1(m) (the control state of t is necessarily q, by
the definition of h). We claim that the set Bp,q is equal to the following union:

Bp,q =
⋃

m,n

Fm h−1(n),

with m,n ranging over all pairs m,n ∈ M such that m · n ∈ Nq, similarly as in (7.1).
Indeed, if a configuration s belongs to Fm h−1(n) for some m ·n ∈ Nq, then it can reach

a configuration in h−1(m)h−1(n) ⊆ Lq. On the other side, if some configuration s with
control state p can reach a configuration t ∈ Lq, we can split s and t into two parts

s = s1 · u t = t1 · u

such that

• considering the transitions on the path s ❀ t , they form a fully active path from s1 to t1,
• the symbol occurrences appearing in u do not make any transition.

Therefore, for m = h(t1) we obtain s1 ∈ Fm. In consequence s ∈ Fm h−1(n) for some
m,n ∈ M such that m · n ∈ Nq, as required.

We have thus demonstrated that we can safely restrict to fully active paths.
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The proof for fully active paths. Under the restriction to fully active paths, the proof
is fairly easy. Let A be an MPDA and let L be a regular set of configurations.

The bottom-fixed Higman ordering over words relates w′ and w if the words have the
same last letter (recall that the last letter corresponds to the bottom element of a stack),
and the remaining prefixes of w′ and w are related by the ordinary Higman ordering. Order
the configurations as follows: the order, denoted by �, relates two configurations if

• the control states are the same, and
• the stack contents are related by the point-wise extension of the bottom-fixed Higman

ordering.

Observe that this order is a well order.

Claim 7.4. Under the restriction to fully active paths, the backward reachability set of a
regular set L is upward closed with respect to �.

Indeed, assuming s
′ � s and s

′
❀ t ∈ L, one deduces s ❀ t by applying the canceling

sequences. These sequences are applicable to some descendant of every symbol occurrence
in s, as the path is fully active. (It is here where the strong normedness assumption is
needed.) Note the reason why we have chosen the bottom-fixed variant of Higman ordering:
this prevents s to have some additional symbols below some bottom symbol of s ′.

By the above claim, the backward reachability set is determined by the minimal con-
figurations with respect to �. As � is a well order there is only finitely many minimal
configurations, and thus the backward reachability set is regular.

Theorem 4.1. The reg❀reg reachability is decidable for strongly normed MPDAs.

Proof. We are going to use Theorem 4.7. Consider two regular sets L,K of configurations.
The decision procedure for L ❀ K runs two partial procedures. The positive semi-procedure
searches for a witness for reachability, by an exhaustive enumeration of all finite paths
starting in some configuration of L and ending in some configuration of K. The core of the
difficulty lies in the negative semi-procedure, to be described below.

The negative semi-procedure searches for a separator. Knowing that the backward
reachability set of K is regular, we define separator as any regular set M of configurations
satisfying the following conditions:

• K ⊆ M ,
• L ∩M = ∅,
• M is backward closed: whenever s −→ M then s ∈ M .

Clearly, if L 6❀ K then the backward reachability set of K satisfies all the three conditions
above. By Theorem 4.7 we know that the backward reachability set is regular, and thus

L 6❀ K iff there is some separator M.

The negative semi-procedure enumerates all regular sets M , and for every of them checks
the three conditions above. The first two are easily shown decidable as boolean operations
on regular languages yield regular languages and are effectively computable. Decidability
of the third condition follows from an observation that if M is regular than the predecessor
set {s : s −→ M} is also regular, and may be effectively constructed.
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8. Undecidability

Here we provide proofs of Theorems 4.3 and 4.9.

Theorem 4.3. The 1❀reg reachability is undecidable for stateless unnormed MPDAs and
for weak normed MPDAs.

Proof. We start by considering stateless unnormed MPDAs. We reduce the problem of
checking if the intersection of two context-free languages is empty.

Assume two context-free grammars in Greibach Normal Form over an input alphabet
A. We will construct an MPDA with three stacks. Two stacks will be used to simulate
derivations of the two grammars, and the other third stack will be used for storage of the
input word. Formally, the alphabet of the first and second stack are the nonterminals of
the two grammars, and the alphabet of the third stack contains two symbols a1 and a2 for
every terminal symbol a of the grammars. For every production

X → aα (8.1)

of the first grammar, there will be a transition

X −→ α, ε, a1

that drops α on the first stack and a on the third one. Likewise, for every production (8.1)
of the second grammar, there is a transition

X −→ ε, α, a2.

The initial configuration is 〈X1,X2, ε〉, where Xi is the initial symbol of the ith grammar.
Finally, the regular language L of target configurations constraints the first two stacks to
be empty, and the third one to:

{a1a2 : a ∈ A}∗.

One easily verifies that the intersection of the two grammars is nonempty if and only if some
configuration from L is reachable from the initial configuration.

Now we turn to weak normed MPDAs. It turns out that normedness assumption does
not make reachability problem easier, in case of weak automata. Indeed, the case of stateless
unnormed MPDAs easily reduces to the case of weak normed MPDAs. It is sufficient to
add an additional sink state, and for every symbol X two additional transitions, to enforce
normedness. The first one allows X to change state to the sink state. The other one allows
X to disappear in the sink state. (This is in fact a reduction of the whole case of weak
unnormed MPDAs.)

Theorem 4.9. The 1❀reg reachability is undecidable for stateless strongly normed MP-
DAs, under the relaxed notion of regularity.

Proof. The proof is by reduction from the Post Correspondence Problem (PCP). For a given
instance of PCP, consisting of a finite set of pairs (si, ti) of words, i ∈ {1 . . . n}, we construct
a stateless strongly normed MPDA A and a relaxed-regular set L such that the PCP instance
has a solution

si1 si2 . . . sik = ti1 ti2 . . . tik (ij ∈ {1 . . . n} for j ∈ {1 . . . k})
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if and only if there exists a path from the initial configuration of A to L. Roughly speaking,
a run of A will simply guess a PCP solution, and the target language L will be used to check
its correctness.

The main difficulty to overcome is the strong normedness requirement, which implies
that every symbol may always disappear and not contribute to the target configuration.

Half-solution. We start by restricting to only the left-hand side words si of the PCP in-
stance. We will construct an MPDA A1, and a relaxed-regular language L1 of configurations,
so that the reachable configurations of A1 belonging to L1 are essentially of the form (two
stacks):

(i1 i2 . . . ik, si1 si2 . . . sik). (8.2)

In other words, one of stacks contains the sequence of indexes, and the other one contains
the concatenation of the corresponding words si.

For technical reasons we will however need four stacks and few auxiliary nonterminal
symbols. The nonterminals of A1 are following (superscripts indicate the stack number of
every nonterminal):

• G1 and G4, used for ’guarding’ symbols on their stacks, as described below;
• i1 and i2, for i ∈ {1 . . . n}, representing the ith word si;
• a3 and a4, for a ∈ Σ, representing alphabet letters of the PCP instance.

The initial configuration is (G1, ε, ε, G4).
For a word w = a1a2 . . . am ∈ Σ∗, we write w3 to mean the word a31a

3
2 . . . a

3
m. Likewise

for w4. The transition rules of A1 are the following. For i ∈ {1 . . . n}, there are rules:

G1 −→ G1 i1, ε, s3i , ε G4 −→ ε, i2, ε, G4 s4i .

Additionally, to fulfill the strong normedness restriction we add disappearing transition rules

of the form X −→ ε, ε, ε, ε for all nonterminal symbols.
The target set L1 is defined to contain all configurations of the form

(G1 α1, α2, α3, G4 α4),

with α1 almost equal to α2 and α3 almost equal to α4. By ’almost equal’ we mean equality
modulo (ignoring) the superscripts. The set L1 is clearly relaxed-regular.

Let’s analyze possible ways of reaching a configuration from L1. Surely G1 and G4

cannot fire the disappearing transitions, because their presence is required by L1. As G1

and G4 are always top-most on their stacks, all other symbols on these stacks are ’guarded’
– they can not fire a disappearing transition neither. A key observation is that no symbol
from other two stacks could fire a disappearing transition:

Lemma 8.1. Every path from the initial configuration to L contains no disappearing tran-

sitions.

Proof. The precise proof of this fact needs a certain effort. Let us define the weight of a
nonterminal. The intuition behind this notion is that it counts for how many letters in words
si the particular nonterminal is responsible. The definition is the following:

• weight(G1) = weight(G4) = 0
• weight(i1) = weight(i2) = length(si)
• weight(a3) = weight(a4) = 1
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Weight of a word is defined as the sum of weights of its letters. Note now that any config-
uration α = (G1 α1, α2, α3, G4 α4) reachable from (G1, ε, ε, G4) satisfies the following
inequalities:

SInv1(α) = weight(α1)− weight(α3) ≥ 0

SInv2(α) = weight(α4)− weight(α2) ≥ 0.

To see this it is enough to observe this both semi-invariants SInv1 and SInv2 equal 0 in
the initial configuration and that they never decrease due to performing a transition. In
particular, every disappearing transition on the second or third stack increases one of the
semi-invariants. Finally, every configuration α ∈ L satisfies the equality:

SInv1(α) + SInv2(α) = 0,

as weight(α1) = weight(α2) and weight(α3) = weight(α4). Therefore both semi-invariants
are necessary equal to 0, and thus there is no possibility for disappearing transitions to be
fired.

As a conclusion we obtain:

Corollary 8.2. Consider any configuration in L1 that is reachable from the initial configu-

ration, and suppose that its first and forth stacks have the form:

G1 i11 . . . i
1
k G4 a41 . . . a

4
m.

Then it holds:

si1 . . . sik = a1 . . . am.

Complete solution. Similarly as above, one may construct an MPDA A2 and a language
L2 for the right-hand side words ti from the PCP instance. Essentially (i.e., ignoring the
technical details) the reachable configurations of A2 intersected with L2 are (cf. (8.2)):

(i1 i2 . . . ik, ti1 ti2 . . . tik).

Our final solution is to appropriately combine both MPDAs and both languages.
The MPDA A is obtained by merging A1 and A2, but the first stacks are identified.

Thus A will have seven stacks altogether. In particular, symbols i1 and i2 represent now the
ith pair (si, ti). All transitions are exactly as described above, however with a different num-
bering of stacks. The language L imposes the requirements of L1 and L2, and additionally
requires that the fourth stack of A1 is almost equal to the fourth stack of A2.

For describing the missing details we have to fix a new numbering of stacks. Let the
first four stacks correspond to the stacks of A1, and the remaining three stacks correspond
to the stacks of A2 different than the first one. The initial configuration of A is

(G1, ε, ε, G4, ε, ε, G7).

Except for the disappearing transitions, A has the following transition rules:

G1 −→ G1 i1, ε, s3i , ε, ε, t6i , ε

G4 −→ ε, i2, ε, G4 s4i , ε, ε, ε

G7 −→ ε, ε, ε, ε, i5, ε, G7 t7i .

The language L contains configurations of the form:

(G1 α1, α2, α3, G4 α4, α5, α6, G7 α7)



28 W. CZERWIŃSKI, P. HOFMAN, AND S. LASOTA

satisfying the following almost equalities:

α1 = α2 = α5 α3 = α4 = α6 = α7.

One can easily observe that L is reachable from the initial configuration if and only if the
PCP instance has a solution, using exactly the same techniques as before.

9. Conclusions

In this paper we have investigated decidability and complexity of the reachability problem
for multi-stack pushdown automata. As the model is undecidable in general, we have mostly
focused on the case of weak control states. We have provided an almost complete map of
complexity results for the reachability problem, depending on the natural restrictions of
source and target sets of configurations, and on normedness assumption. Few remaining
open cases are listed below:

• The most interesting open question is the exact complexity of 1❀1 reachability problem
for (normed and unnormed) weak MPDAs. We only know that the problem is NP-hard.
Note that the reg❀1 reachability has the same complexity.

• Another interesting question is whether three stacks are necessary for undecidability of
1❀reg reachability problem for normed weak MPDA. In other words, we do not know
the status of the problem when there are just two stacks.

• A similar question is still open for the cases when reachability is in NP: is the problem
still NP-complete if one restricts the number of stacks to two?

• We do not know exact complexity of reachability for strongly normed MPDA.
• Finally, we do not know whether the construction of backward reachability set of a regular

set for strongly normed MPDAs, even in the weak case, could be performed effectively.
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