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Abstract. Coalgebras in a Kleisli category yield a generic definition of trace seman-
tics for various types of labelled transition systems. In this paper we apply this generic
theory to generative probabilistic transition systems, short PTS, with arbitrary (possibly
uncountable) state spaces. We consider the sub-probability monad and the probability
monad (Giry monad) on the category of measurable spaces and measurable functions.
Our main contribution is that the existence of a final coalgebra in the Kleisli category of
these monads is closely connected to the measure-theoretic extension theorem for sigma-
finite pre-measures. In fact, we obtain a practical definition of the trace measure for both
finite and infinite traces of PTS that subsumes a well-known result for discrete probabilis-
tic transition systems. Finally we consider two example systems with uncountable state
spaces and apply our theory to calculate their trace measures.

1. Introduction

Coalgebra [JR97, Rut00] is a general framework in which several types of transition sys-
tems can be studied (deterministic and non-deterministic automata, weighted automata,
transition systems with non deterministic and probabilistic branching, etc.). One of the
strong points of coalgebra is that it induces – via the notion of coalgebra homomorphism
and final coalgebra – a notion of behavioral equivalence for all these types of systems. The
resulting behavioral equivalence is usually some form of bisimilarity. However, [HJS07] has
shown that by modifying the category in which the coalgebra lives, one can obtain different
notions of behavioral equivalence, such as trace equivalence.

We will shortly describe the basic idea: given an endofunctor F on Set, the category
of sets and total functions, describing the branching type of the system, a coalgebra in the
category Set is a function α : X → FX, where X is a set. Consider, for instance, the
functor FX = Pfin(A×X + 1), where Pfin is the finite powerset functor and A is a given
alphabet. This setup allows us to specify finitely branching non-deterministic automata
where a state x ∈ X is mapped to a set of tuples of the form (a, y), for a ∈ A, y ∈ X,

2012 ACM CCS: [Mathematics of computing]: Probability and statistics—Stochastic processes—
Markov processes; [Theory of computation]: Formal languages and automata theory—Automata over
infinite objects.

Key words and phrases: probabilistic transition systems, Markov processes, coalgebra, trace semantics.
∗ This is an extended version of [KK12a] which was presented at CONCUR 2012.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(4:16)2013
c© Henning Kerstan and Barbara König
CC© Creative Commons

http://creativecommons.org/about/licenses


2 HENNING KERSTAN AND BARBARA KÖNIG

describing transitions. The set contains the symbol X (for termination) – the only element
contained in the one-element set 1 – if and only if x is a final state.

A coalgebra homomorphism maps the set of states of a coalgebra to the set of states of
another coalgebra, preserving the branching structure. Furthermore, the final coalgebra –
if it exists – is the final object in the category of coalgebras. Every coalgebra has a unique
homomorphism into the final coalgebra and two states of a transition system modelled as
coalgebra are mapped to the same state in the final coalgebra iff they are behaviorally
equivalent.

Now, applying this notion to the example above induces bisimilarity, whereas usually
the appropriate notion of behavioral equivalence for non-deterministic finite automata is
language equivalence. One of the ideas of [HJS07] is to view a coalgebra X → P(A×X+1)
not as an arrow in Set, but as an arrow X → A × X + 1 in Rel, the category of sets
and relations which is also the Kleisli category of the powerset monad. This induces trace
equivalence, instead of bisimilarity, with the underlying intuition that non-determinism is
a side-effect that is “hidden” within the monad. This side effect is not present in the final
coalgebra (which consists of the set A∗ with a suitable coalgebra structure), but in the
arrow from a state x ∈ X to A∗, which is a relation, and relates each state with all words
accepted from this state.

More generally, coalgebras are given as arrows X → TFX in a Kleisli category, where
a monad T describes implicit branching and an endofunctor F specifies explicit branching
with the underlying intuition that the implicit branching (for instance non-determinism
or probabilistic branching) is aggregated and abstracted away in the final coalgebra. For
several monads this yields a form of trace semantics. In [HJS07] a theorem gives sufficient
conditions for the existence of a final coalgebra for Kleisli categories over Set, which –
interestingly – can be obtained as initial F -algebra in Set.

In [HJS07] it is also proposed to obtain probabilistic trace semantics for the Kleisli cat-
egory of the (discrete) subdistribution monad D on Set. The endofunctor of that monad
maps a set X to the set D(X) of all functions p : X → [0, 1] satisfying

∑
x∈X p(x) ≤ 1.

Coalgebras in this setting are functions of the form X → D(A × X + 1) (modeling prob-
abilistic branching and termination), seen as arrows in the corresponding Kleisli category.
From the general result in [HJS07] mentioned above it again follows that the final coalgebra
is carried by A∗, where the mapping into the final coalgebra assigns to each state a discrete
probability distribution over its traces. In this way one obtains the finite trace semantics
of generative probabilistic systems [Sok05, vGSST95].

The contribution in [HJS07] is restricted to discrete probability spaces, where the prob-
ability distributions always have at most countable support [Sok11]. This might seem suffi-
cient for practical applications at first glance, but it has two important drawbacks: first, it
excludes several interesting systems that involve uncountable state spaces (see for instance
the examples in Section 4 or the examples in [Pan09]). Second, it excludes the treatment of
infinite traces, as detailed in [HJS07], since the set of all infinite traces is uncountable and
hence needs measure theory to be treated appropriately. This is an intuitive reason for the
choice of the subdistribution monad – instead of the distribution monad – in [HJS07]: for
a given state, it might always be the case that a non-zero “probability mass” is associated
to the infinite traces leaving this state, which – in the discrete case – cannot be specified
by a probability distribution over all words.

Hence, we generalize the results concerning probabilistic trace semantics from [HJS07]
to the case of uncountable state spaces, by working in the Kleisli category of the (continuous)
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sub-probability monad over Meas (the category of measurable spaces). Unlike in [HJS07]
we do not derive the final coalgebra via a generic construction (building the initial algebra
of the functor), but we construct the final coalgebra directly. Furthermore we consider the
Kleisli category of the (continuous) probability monad (Giry monad) and treat the case
with and without termination. In the former case we obtain a coalgebra over the set A∞
(finite and infinite traces over A) and in the latter over the set Aω (infinite traces), which
shows the naturality of the approach. For completeness we also consider the case of the
sub-probability monad without termination, which results in a trivial final coalgebra over
the empty set. In all cases we obtain the natural trace measures as instances of the generic
coalgebraic theory.

Since, to our knowledge, there is no generic construction of the final coalgebra for these
cases, we construct the respective final coalgebras directly and show their correctness by
proving that each coalgebra admits a unique homomorphism into the final coalgebra. Here
we rely on the measure-theoretic extension theorem for sigma-finite pre-measures and the
identity theorem.

In the conclusion we will further compare our approach to [HJS07] and discuss why we
took an alternative route.

1.1. Another paper? This paper is the extended version of the paper [KK12a] first pub-
lished at CONCUR 2012 and thus it necessarily contains all results of that paper. Due
to page limitations some of the proofs were omitted in the published version and hence
in the technical report [KK12b] we provided a version which is identical to the original
paper but contains an appendix with the missing proofs. In contrast to that, the paper at
hand contains all the proofs in place and also some corrections. Moreover, more details are
presented, mainly taken from [Ker11], which was the starting point for everything. Last
but not least the paper at hand includes the new Section 4 containing two examples with
uncountable state spaces and some additional theory needed in order to understand them.

2. Background Material and Preliminaries

We assume that the reader is familiar with the basic definitions of category theory. However,
we will provide a brief introduction to notation, measure theory and integration, coalgebra,
coalgebraic trace semantics and Kleisli categories – of course all geared to our needs.

2.1. Notation. By 1 we denote a singleton set, its unique element is X. For arbitrary sets
X,Y we write X \ Y for set complement, X × Y for the usual cartesian product and the
disjoint union X + Y is the set {(x, 0), (y, 1) | x ∈ X, y ∈ Y }. Whenever X ∩ Y = ∅ this
coincides with (is isomorphic to) the usual union X∪Y in an obvious way. For set inclusion
we write ⊂ for strict inclusion and ⊆ otherwise. The set of real numbers is denoted by R,
the set of extended reals is the set R := R ∪ {±∞} and R+ and R+ are their restrictions
to the non-negative (extended) reals. We require 0 · ±∞ = ±∞ · 0 = 0. For a function
f : X → Y and a set A ⊆ X the restriction of f to A is the function f |A : A→ Y .
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2.2. A Brief Introduction to Measure Theory. Within this section we want to give a
very brief introduction to measure theory. For a more thorough treatment there are many
standard textbooks as e.g. [Ash72, Els07]. Measure theory generalizes the idea of length,
area or volume. Its most basic definition is that of a σ-algebra (sigma-algebra). Given an
arbitrary set X we call a set Σ of subsets of X a σ-algebra iff it contains the empty set and
is closed under complement and countable union. The tuple (X,Σ) is called a measurable
space. We will sometimes call the setX itself a measurable space, keeping in mind that there
is an associated σ-algebra which we will then denote by ΣX . For any subset G ⊆ P (X) we
can always uniquely construct the smallest σ-algebra on X containing G which is denoted
by σX(G). We call G the generator of σX(G), which in turn is called the σ-algebra generated
by G. It is known (and easy to show), that σX is a monotone and idempotent operator.
The elements of a σ-algebra on X are called the measurable sets of X. Among all possible
generators for σ-algebras, there are special ones, so-called semirings of sets.

Definition 2.1 (Semiring of Sets). Let X be an arbitrary set. A subset S ⊆ P (X) is called
a semiring of sets if it satisfies the following three properties.
(a) S contains the empty set, i.e. ∅ ∈ S.
(b) S is closed under pairwise intersection, i.e. for A,B ∈ S we always require (A∩B) ∈ S.
(c) The set difference of any two sets in S is the disjoint union of finitely many sets in S,

i.e. for any A,B ∈ S there is an N ∈ N and pairwise disjoint sets C1, . . . , CN ∈ S such
that A \B = ∪Nn=1Cn.

It is easy to see that every σ-algebra is a semiring of sets but the reverse is false. Please
note that a semiring of sets is different from a semiring in algebra. For our purposes, we
will consider special semirings containing a countable cover of the base set.

Definition 2.2 (Countable Cover, Covering Semiring). Let S be a semiring. A countable
sequence (Sn)n∈N of sets in S such that ∪n∈NSn = X is called a countable cover of X (in
S). If such a countable cover exists we call S a covering semiring.

With these basic structures at hand, we can now define pre-measures and measures. A
non-negative function µ : S → R+ defined on a semiring S is called a pre-measure on X if it
assigns 0 to the empty set and is σ-additive, i.e. for a sequence (Sn)n∈N of pairwise disjoint
sets in S where (∪n∈NSn) ∈ S we must have

µ

⋃
n∈N

Sn

 =
∑
n∈N

µ (Sn) . (2.1)

A pre-measure µ is called σ-finite if there is a countable cover (Sn)n∈N of X in S such that
µ (Sn) < ∞ for all n ∈ N. Whenever S is a σ-algebra we call µ a measure and the tuple
(X,S, µ) a measure space. In that case µ is said to be finite iff µ(X) < ∞ and for the
special cases µ(X) = 1 (or µ(X) ≤ 1) µ is called a probability measure (or sub-probability
measure respectively). Measures are monotone, i.e. if A,B are measurable A ⊆ B implies
µ(A) ≤ µ(B) and continuous, i.e. for measurable A1 ⊆ A2 ⊆ . . . ⊆ An ⊆ . . . we always
have µ (∪∞n=1An) = limn→∞ µ(An) and for measurable B1 ⊇ B2 ⊇ . . . ⊇ Bn ⊇ . . . with
µ(B1) <∞ we have µ (∩∞n=1An) = limn→∞ µ(An) [Ash72, 1.2.5 and 1.2.7].

Given a measurable space (X,ΣX), a simple and well-known probability measure, is
the so-called Dirac measure, which we will use later. It is defined as δXx : ΣX → [0, 1], and
is 1 on S ∈ ΣX iff x ∈ S and 0 otherwise.
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The most significant theorems from measure theory which we will use in this paper are
the identity theorem and the extension theorem for σ-finite pre-measures, for which a proof
can be found e.g. in [Els07, II.5.6 and II.5.7].

Proposition 2.3 (Identity Theorem). Let X be a set, G ⊆ P (X) be a set which is closed
under pairwise intersection and µ, ν : σX(G)→ R+ be measures. If µ|G = ν|G and G contains
a countable cover (Gn)n∈N of X satisfying µ(Gn) = ν(Gn) <∞ for all n ∈ N then µ = ν.

Proposition 2.4 (Extension Theorem for σ-finite Pre-Measures). Let X be a set,
S ⊆ P (X) be a semiring of sets and µ : S → R+ be a σ-finite pre-measure. Then there
exists a uniquely determined measure µ̂ : σX(S)→ R+ such that µ̂|S = µ.

As we are only interested in finite measures, we provide a result, which can be derived
easily from the identity theorem.

Corollary 2.5 (Equality of Finite Measures on Covering Semirings). Let X be an arbitrary
set, S ⊆ P (X) be a covering semiring and µ, ν : σX(S) → R+ be finite measures. Then
µ = ν if and only if µ|S = ν|S .

Proof. Obviously we get µ|S = ν|S if µ = ν. For the other direction let (Sn)n∈N be a
countable cover of X. Then finiteness of µ and ν together with the fact that measures are
continuous and µ|S = ν|S yield µ(Sn) = ν(Sn) ≤ ν(X) < ∞ for all n ∈ N. Since S is a
semiring of sets, it is closed under pairwise intersection which allows us to apply the identity
theorem yielding µ = ν.

2.3. The Category of Measurable Spaces and Functions. LetX and Y be measurable
spaces. A function f : X → Y is called measurable iff the pre-image of any measurable set
of Y is a measurable set of X. The category Meas has measurable spaces as objects and
measurable functions as arrows. Composition of arrows is function composition and the
identity arrows are the identity functions.

The product of two measurable spaces (X,ΣX) and (Y,ΣY ) is the set X × Y endowed
with the σ-algebra generated by ΣX ∗ ΣY , the set of so-called “rectangles” of measurable
sets which is {SX × SY | SX ∈ ΣX , SY ∈ ΣY }. It is called the product σ-algebra of ΣX and
ΣY and is denoted by ΣX ⊗ ΣY . Whenever ΣX and ΣY have suitable generators, we can
also construct a possibly smaller generator for the product σ-algebra by taking only the
“rectangles” of the generators.

Proposition 2.6 (Generators for the Product σ-Algebra). Let X,Y be arbitrary sets and
GX ⊆ P (X) ,GY ⊆ P (Y ) such that X ∈ GX and Y ∈ GY . Then the following holds:

σX×Y (GX ∗ GY ) = σX(GX)⊗ σY (GY ) .

A proof of this proposition can be found in many standard textbooks on measure theory,
e.g. in [Els07]. We remark that there are (obvious) product endofunctors on the category
of measurable spaces and functions.

Definition 2.7 (Product Functors). Let (Z,ΣZ) be a measurable space. The endofunctor
Z × IdMeas maps a measurable space (X,ΣX) to (Z ×X,ΣZ ⊗ ΣX) and a measurable
function f : X → Y to the measurable function Z × f : Z ×X → Z × Y, (z, x) 7→ (z, f(x)).
The functor IdMeas × Z is constructed analogously.
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The coproduct of two measurable spaces (X,ΣX) and (Y,ΣY ) is the set X+Y endowed
with ΣX⊕ΣY := {SX + SY | SX ∈ ΣX , SY ∈ ΣY } as σ-algebra, the disjoint union σ-algebra.
Note that in contrast to the product no σ-operator is needed because ΣX ⊕ ΣY itself is
already a σ-algebra whereas ΣX ∗ΣY is usually no σ-algebra. For generators of the disjoint
union σ-algebra we provide and prove a comparable result to the one given above for the
product σ-algebra.
Proposition 2.8 (Generators for the Disjoint Union σ-Algebra). Let X,Y be arbitrary sets
and GX ⊆ P (X) ,GY ⊆ P (Y ) such that ∅ ∈ GX and Y ∈ GY . Then the following holds:

σX+Y (GX ⊕ GY ) = σX(GX)⊕ σY (GY ) . (2.2)
In order to prove this, we cite another result from [Els07, I.4.5 Korollar].
Lemma 2.9. Let X be an arbitrary set, G ⊆ P (X) and S ⊆ X. Then σS(G|S) = σX(G)|S
where G|S := {G ∩ S | G ∈ G} and analogously σX(G)|S := {G ∩ S | G ∈ σX(G)}.
Proof of Proposition 2.8. Without loss of generality we assume that X and Y are pairwise
disjoint. Hence for any subsets A ⊆ X, B ⊆ Y we have A∩B = ∅ and thus A+B ∼= A∪B.
In order to prove equation (2.2) we show both inclusions.
⊆ We have GX ⊕ GY ⊆ σX(GX) ⊕ σY (GY ) and thus monotonicity and idempotence of the
σ-operator immediately yield σX∪Y (GX ⊕ GY ) ⊆ σX(GX)⊕ σY (GY ).

⊇ Let G ∈ σX(GX)⊕ σY (GY ). Then G = GX ∪GY with GX ∈ σX(GX) and GY ∈ σY (GY ).
We observe that GX = (GX ⊕ GY )|X and by applying Lemma 2.9 we obtain that
σX∪Y (GX ⊕ GY )|X = σX(GX). Thus there must be a G′Y ∈ P (Y ) such that
GX ∪ G′Y ∈ σX∪Y (GX ⊕ GY ). Analogously there must be a G′X ∈ P (X) such that
G′X ∪GY ∈ σX∪Y (GX ⊕ GY ). We have Y = ∅ ∪ Y ∈ σX∪Y (GX ⊕ GY ) and hence we also
have X = (X ∪ Y ) \ Y ∈ σX∪Y (GX ⊕ GY ). Thus we calculate

G = GX ∪GY =
(
(GX ∪G′Y ) ∩X

)
∪
(
(G′X ∪GY ) ∩ Y

)
∈ σX∪Y (GX ⊕ GY )

and hence can conclude that σX∪Y (GX ⊕ GY ) ⊇ σX(GX)⊕ σY (GY ).
As before we have endofunctors for the coproduct, the coproduct functors.
Definition 2.10 (Co-Product Functors). Let (Z,ΣZ) be a measurable space. The endo-
functor IdMeas + Z maps a measurable space (X,ΣX) to (X + Z,ΣX ⊕ ΣZ) and a mea-
surable function f : X → Y to the measurable function f + Z : X + Z → Y + Z, (x, 0) 7→
(f(x), 0), (z, 1) 7→ (z, 1). The functor IdMeas + Z is constructed analogously.

For isomorphisms in Meas we provide the following characterization which we will need
later for our main result.
Proposition 2.11 (Isomorphisms in Meas). Two measurable spaces X and Y are isomor-
phic in Meas iff there is a bijective function ϕ : X → Y such that1 ϕ (ΣX) = ΣY . If ΣX is
generated by a set S ⊆ P (X) then X and Y are isomorphic iff there is a bijective function
ϕ : X → Y such that ΣY is generated by ϕ (S). In this case S is a (covering) semiring of
sets [a σ-algebra] iff ϕ(S) is a (covering) semiring of sets [a σ-algebra].

Again, we need a result from measure theory for the proof. This auxiliary result and
its proof can be found e.g. in [Els07, I.4.4 Satz].
Lemma 2.12. Let X,Y be sets, f : X → Y be a function. Then for every subset S ⊆ P (Y )
it holds that σX(f−1(S)) = f−1 (σY (S)).

1For S ⊆ P (X) and a function ϕ : X → Y let ϕ(S) = {ϕ (SX) | SX ∈ S} = {{ϕ(x) | x ∈ SX} | SX ∈ S}.
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Proof of Proposition 2.11. Since the identity arrows in Meas are the identity functions, we
can immediately derive that any isomorphism ϕ : X → Y must be a bijective function.
Measurability of ϕ and its inverse function ϕ−1 : Y → X yield ϕ (ΣX) = ΣY . The equality
σY (ϕ(S)) = ϕ (σX(S)) follows from Lemma 2.12 by taking f = ϕ−1. The last equivalence
is easy to verify using bijectivity of ϕ and ϕ−1.

2.4. Kleisli Categories and Liftings of Endofunctors. Recall that a monad on a cat-
egory C is a triple (T, η, µ) where T : C → C is an endofunctor together with two natural
transformations2 η : IdC ⇒ T and µ : T 2 ⇒ T such that the following diagrams commute
for all C-objects X.

TX
TηX

//

idT X &&

ηT X

��

T 2X

µX

��

T 3X
TµX

//

µT X

��

T 2X

µX

��

T 2X µX

// TX T 2X µX

// TX

Given a monad (T, η, µ) on a category C we can define a new category, the Kleisli category of
T , where the objects are the same as in C but every arrow in the new category corresponds
to an arrow f : X → TY in C. Thus, arrows in the Kleisli category incorporate side effects
specified by a monad [HJS07, ABH+12]. Formally we will use the following definition.

Definition 2.13 (Kleisli Category). Let (T, η, µ) be a monad on a category C. The Kleisli
category of T has the same objects as C. For any two such objects X and Y , the Kleisli
arrows with domainX and codomain Y are exactly the C-arrows f : X → TY . Composition
of Kleisli arrows f : X → TY and g : Y → TZ is defined as g ◦T f := µZ ◦ T (g) ◦ f , the
identity arrow for any Kleisli object X is ηX .

Given an endofunctor F on C, we want to construct an endofunctor F on K`(T ) that
“resembles” F : Since objects in C and objects in K`(T ) are the same, we want F to coincide
with F on objects i.e. we want FX = FX. It remains to define how F shall act on Kleisli
arrows f : X → TY such that it “resembles” F . Formally we require F to be a lifting of
F in the following sense: Given a monad (T, η, µ) and its Kleisli category K`(T ), there is a
canonical adjunction3 (

L : C→ K`(T )
)
a

(
R : K`(T )→ C

)
with unit η′ : IdC ⇒ RL and counit ε : LR⇒ IdK`(T ) giving rise to the monad, i.e. T = RL,
η = η′, µ = RεL. Then an endofunctor F on K`(T ) is called a lifting of F if it satisfies
FL = LF . We will use the fact that these liftings are in one-to-one correspondence with
distributive laws [Mul94].

Definition 2.14 (Distributive Law). Let (T, η, µ) be a monad on a category C and F be
an endofunctor on C. A natural transformation λ : FT ⇒ TF is called a distributive law if

2This is the second meaning of the symbol µ. Until now, µ was used as a symbol for a (pre-)measure.
3Explicitly: The left-adjoint L : C→ K`(T ) is given by LX = X for all C-objects X and L(f) = ηY ◦ f

for all C-arrows f : X → Y . The right-adjoint R : K`(T ) → C is given by RX = TX for all K`(T )-objects
X and R(f) = µY ◦ Tf for all K`(T )-arrows f : X → TY .
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for all C-objects X the following diagrams commute in C:

FX
FηX
//

ηF X ##

FTX

λX

��

FT 2X
λT X //

FµX

��

TFTX
TλX // T 2FX

µF X

��

TFX FTX
λX

// TFX

or equivalently λX ◦ FηX = ηFX and µFX ◦ TλX ◦ λTX = λX ◦ FµX .

Whenever we have such a distributive law we get the lifting of a functor as defined
above in the following way [Mul94].

Proposition 2.15 (Lifting via Distributive Law). Let (T, η, µ) be a monad on a category
C and F be an endofunctor on C with a distributive law λ : FT ⇒ TF . The distributive
law induces a lifting of F to an endofunctor F : K`(T )→ K`(T ) if we define FX = FX for
each object X of K`(T ) and F (f) := λY ◦ Ff for each Kleisli arrow f : X → TY .

2.5. Coalgebraic Trace Semantics. We first recall the central notions of coalgebra, coal-
gebra homomorphism and final coalgebra.

Definition 2.16 (Coalgebra, Coalgebra-Homomorphism, Final Coalgebra). For an end-
ofunctor F on a category D an F -coalgebra is a pair (X,α) where X is an object and
α : X → FX is an arrow of D. An F -coalgebra homomorphism between two F -coalgebras
(X,α), (Y, β) is an arrow ϕ : X → Y in D such that β ◦ ϕ = F (ϕ) ◦ α. We call an
F -coalgebra (Ω, κ) final if and only if for every F -coalgebra (X,α) there is a unique F -
coalgebra-homomorphism ϕα : X → Ω.

By choosing a suitable category and a suitable endofunctor, many (labelled) transition
systems can be modelled as F -coalgebras. The final coalgebra – if it exists – can be seen
as the “universe of all possible behaviors” and the unique map into it yields a behavioral
equivalence: Two states are equivalent iff they have the same image the final coalgebra.

Whenever transition systems incorporate side-effects, these can be “hidden” in a monad
T . This leads to the following setting: the category D of Definition 2.16 is K`(T ), i.e., the
Kleisli category for the monad T and a functor F : K`(T )→ K`(T ) is obtained by suitably
lifting a functor F of the underlying category (such that FX = FX on objects, see above).
Then coalgebras are defined as arrows α : X → FX in the Kleisli category, which can be
regarded as arrows X → TFX in the base category. As indicated in the introduction, the
monad can be seen as describing implicit branching (side effects), whereas F describes the
explicit branching structure.

In this setup the final coalgebra in the Kleisli category often yields a notion of trace
semantics [HJS07, Sok11]. The side effects specified via the monad are not part of the final
coalgebra, but are contained in the unique map into the final coalgebra (which is again a
Kleisli arrow).

In our case T is either the sub-probability or the probability monad on Meas (which
will be defined later), whereas F is defined as F = A× IdMeas + 1 or F = A× IdMeas for
a given finite alphabet A. That is, the monad T describes probabilistic branching, whereas
the endofunctor F specifies (explicitly observable) labels and possibly termination.
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2.6. Borel-Sigma-Algebras and the Lebesgue Integral. Before we can define the
probability and the sub-probability monad, we give a crash course in integration loosely
based on [Ash72, Els07]. For that purpose let us fix a measurable space X and a measure
µ on X. We want to integrate numerical functions f : X → R and in order to do that we
need a suitable σ-algebra on R to define measurability of such functions.

Recall that a topological space is a tuple (Y, T ), where Y is a set and T ⊆ P (Y ) is a
set containing the empty set, the set Y itself and is closed under arbitrary unions and finite
intersections. The set T is called the topology of Y and its elements are called open sets. The
Borel σ-algebra on Y , denoted B(Y ), is the σ-algebra generated by the open sets T of the
topology, i.e. B(Y ) = σY (T ). Thus the Borel σ-algebra provides a connection of topological
aspects and measurability. For the set of real numbers, it can be shown ([Els07, I.4.3 Satz])
that the Borel σ-algebra B(R) is generated by the semiring of all left-open intervals

B(R) = σR({ (a, b] | a, b ∈ R, a ≤ b}).

With this definition at hand, we now equip the set R of extended reals with its Borel
σ-algebra which can be defined as

B(R) = σR({B ∪ E | B ∈ B(R), E ⊆ {−∞,∞}}).

A function f : X → R is called (Borel-)measurable if it is measurable with with respect to
this Borel σ-algebra. Given two Borel-measurable functions f, g : Y → R and real num-
bers α, β also αf + βg is Borel-measurable [Els07, III.4.7] and thus are all finite linear
combinations of Borel-measurable functions. Moreover, if (fn)n∈N is a sequence of Borel-
measurable functions fn : X → R converging pointwise to a function f : X → R, then also
f is Borel-measurable [Ash72, 1.5.4]. In the remainder of this section we will just consider
Borel-measurable functions.

We call f simple iff it attains only finitely many values, say f(X) = {α1, . . . , αN}. The
integral of such a simple function f is then defined to be the µ-weighted sum of the αn,
formally

∫
f dµ =

∑N
n=1 αnµ(Sn) where Sn = f−1(αn) ∈ ΣX . Whenever f is non-negative

we can approximate it from below using non-negative simple functions. In this case we
define the integral to be∫

f dµ := sup
{∫

s dµ | s non-negative and simple s.t. 0 ≤ s ≤ f
}
.

For arbitrary Borel-measurable f we decompose it into its positive part f+ := max {f, 0}
and negative part f− := max {−f, 0} which are both non-negative and Borel-measurable.
We note that f = f+− f− and consequently we define the integral of f to be the difference∫
f dµ :=

∫
f+ dµ −

∫
f− dµ if not both integrals on the right hand side are +∞. In the

latter case we say that the integral does not exist. Whenever it exists and is finite we call
f a µ-integrable function or simply an integrable function if the measure µ is obvious from
the context.

For every measurable set S ∈ ΣX its characteristic function χS : X → R, which is
1 if x ∈ S and 0 otherwise, is µ-integrable and for µ-integrable f the product χS · f is also
µ-integrable and we write ∫

S
f dµ :=

∫
χS · f dµ .
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Instead of
∫
Sf dµ we will sometimes write

∫
Sf(x) dµ(x) or

∫
x∈Sf(x) dµ(x) which is useful if

we have functions with more than one argument or multiple integrals. Note that this does
not imply that singleton sets are measurable.

Some useful properties of the integral are that it is linear, i.e. for µ-integrable functions
f, g : X → R and real numbers α, β we have∫

αf + βg dµ = α

∫
f dµ+ β

∫
g dµ

and the integral is monotone, i.e. f ≤ g implies
∫
f dµ ≤

∫
g dµ. We will state one result

explicitly which we will use later in our proofs. This result and its proof can be found e.g.
in [Ash72, Theorem 1.6.12].
Proposition 2.17 (Image Measure). Let X,Y be measurable spaces, µ be a measure on X,
f : Y → R be a Borel-measurable function and g : X → Y be a measurable function. Then
µ◦g−1 is a measure4 on Y , the so-called image-measure and f is (µ◦g−1)-integrable iff f ◦g
is µ-integrable and in this case we have

∫
Sf d(µ ◦ g−1) =

∫
g−1(S)f ◦ g dµ for all S ∈ ΣY .

2.7. The Probability and the Sub-Probability Monad. We will now introduce the
probability monad (Giry monad) and the sub-probability monad as e.g. presented in [Gir82]
and [Pan09]. First, we take a look at the endofunctors of these monads.
Definition 2.18 (The Sub-Probability and the Probability Functor). The sub-probability-
functor S : Meas → Meas maps a measurable space (X,ΣX) to the measurable space(
S(X),ΣS(X)

)
where S(X) is the set of all sub-probability measures on ΣX and ΣS(X) is the

smallest σ-algebra such that for all S ∈ ΣX the evaluation maps:
pS : S(X)→ [0, 1], pS(P ) = P (S) (2.3)

are Borel-measurable. For any measurable function f : X → Y between measurable spaces
(X,ΣX), (Y,ΣY ) the arrow S(f) maps a probability measure P to its image measure:

S(f) : S(X)→ S(Y ), S(f)(P ) := P ◦ f−1. (2.4)
If we take full probabilities instead of sub-probabilities we get another endofunctor, the
probability functor P, analogously.

Both the sub-probability functor S and the probability functor P are functors of monads
with the following unit and multiplication natural transformations.
Definition 2.19 (Unit and Multiplication). Let T be either the sub-probability functor S
or the probability functor P. We obtain two natural transformations η : IdMeas ⇒ T and
µ : T 2 ⇒ T by defining for every measurable space (X,ΣX):

ηX : X → TX, ηX(x) = δXx (2.5)

µX : T 2X → TX, µX(P )(S) :=
∫
pS dP for S ∈ ΣX (2.6)

where δXx : ΣX → [0, 1] is the Dirac measure and pS is the evaluation map (2.3) from above.
If we combine all the ingredients we obtain the following result which also guarantees

the soundness of the previous definitions.
Proposition 2.20 ([Gir82, Pan09]). (S, η, µ) and (P, η, µ) are monads on Meas.

4This notation is a bit lax, if we wanted to be really precise we would have to write µ ◦
(
g−1|ΣY

)
.
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2.8. A Category of Stochastic Relations. The Kleisli category of the sub-probability
monad (S, η, µ) is sometimes called category of stochastic relations [Pan09] and denoted
by SRel. Let us briefly analyze the arrows of this category: Given two measurable spaces
(X,ΣX), (Y,ΣY ) a Kleisli arrow h : X → SY maps each x ∈ X to a sub-probability measure
h(x) : ΣY → [0, 1]. By uncurrying we can regard h as a function h : X × ΣY → [0, 1].
Certainly for each x ∈ X the function S 7→ h(x, S) is a (sub-)probability measure and one
can show that for each S ∈ ΣY the function x 7→ h(x, S) is Borel-measurable. Any function
h : X × ΣY → [0, 1] with these properties is called a Markov kernel or a stochastic kernel
and it is known [Dob07b, Proposition 2.7] that these Markov kernels correspond exactly to
the Kleisli arrows h : X → SY .

We will later need the following, simple result about Borel-measurable functions and
Markov kernels:

Lemma 2.21. Let (X,ΣX) and (Y,ΣY ) be measurable spaces, g : Y → [0, 1] be a Borel-
measurable function and h : X × ΣY → [0, 1] be a Markov kernel. Then the function
f : X → [0, 1], f(x) :=

∫
y∈Y g(y) dh(x, y) is Borel-measurable.

Proof. If g is a simple and Borel-measurable function, say g(Y ) = {α1, ..., αN}, then
f(x) =

∑N
n=1 αnh(x,An) where An = g−1({αn}) and hence f is Borel-measurable as a linear

combination of Borel-measurable functions. If g is an arbitrary, Borel-measurable function
we approximate it from below with simple functions si, i ∈ N and define fi : X → [0, 1] with
fi(x) =

∫
y∈Y si(y) dh(x, y). Then by the monotone convergence theorem ([Ash72, 1.6.2])

we have f(x) =
∫
y∈Y limi→∞ si(y) dh(x, y) = limi→∞ fi(x). As shown before, each of the fi

is Borel-measurable and thus also the function f is Borel-measurable as pointwise limit of
Borel-measurable functions.

3. Main Results

3.1. Continuous Probabilistic Transition Systems. There is a big variety of prob-
abilistic transition systems [Sok11, vGSST95]. We will deal with four slightly different
versions of so-called generative PTS. The underlying intuition is that, according to a sub-
probability measure, an action from the alphabet A and a set of possible successor states
are chosen. We distinguish between probabilistic branching according to sub-probability
and probability measures and furthermore we treat systems without and with termination.

Definition 3.1 (Probabilistic Transition System). A probabilistic transition system, short
PTS, is a tuple (A, X, α) where A is a finite alphabet (endowed with P (A) as σ-algebra), X
is the state space, an arbitrary measurable space with σ-algebra ΣX and α is the transition
function which has one of the following forms and determines the type5 of the PTS.

Transition Function α Type � of the PTS
α : X → S(A×X) 0
α : X → S(A×X + 1) ∗
α : X → P(A×X) ω
α : X → P(A×X + 1) ∞

5The reason for choosing these symbols as type-identifiers will be revealed later in this paper.
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For every symbol a ∈ A we define a Markov kernel Pa : X × ΣX → [0, 1] where
Pa (x, S) := α(x)({a} × S) . (3.1)

Intuitively, Pa (x, S) is the probability of making an a-transition from the state x ∈ X to
any state y ∈ S. Whenever X is a countable set and ΣX = P (X) we call the PTS discrete.
The unique state X ∈ 1 – whenever it is present – denotes termination of the system.

We will now take a look at a small example∞-PTS before we continue with our theory.
Example 3.2 (Discrete PTS with Finite and Infinite Traces). Let A = {a, b}, X = {0, 1, 2},
ΣX = P (X) and α : X → P(A×X + 1) such that we obtain the following system.

0 1

2

Xb, 1
b, 1/3

a, 1/3

1/3

a, 2/3
1/3

As stated in the definition, X is the unique final state. It has only incoming transitions
bearing probabilities and no labels. The intuitive interpretation of these transitions can be
stated as follows: “From state 1 the system terminates immediately with probability 1/3”.

3.2. Towards Measurable Sets of Words: Cones and Semirings. In order to define
a trace measure on these probabilistic transition systems we need suitable σ-algebras on the
sets of words. While the set of all finite words, A∗, is rather simple – we will take P (A∗) as
σ-algebra – the set of all infinite words, Aω, and also the set of all finite and infinite words,
A∞, needs some consideration. For a word u ∈ A∗ we call the set of all infinite words that
have u as a prefix the ω-cone of u, denoted by uAω, and similarly we call the set of all finite
and infinite words having u as a prefix the ∞-cone [Pan09, p. 23] of u and denote it with
uA∞. Sometimes, e.g. in [BK08], these sets are also-called “cylinder sets”.

A cone can be visualized in the following way: For a given alphabet A 6= ∅ we consider
the undirected, rooted and labelled tree given by T := (V,E, ε, l) with infinitely many
vertices V := A∗, edges E := {{u, ua} | u ∈ A∗, a ∈ A}, root ε ∈ A∗ and edge-labeling
function l : E → A, {u, ua} 7→ a. For A = {a, b, c} the first three levels of the tree can be
depicted as follows:

ε
a

b
c

a
a

b
c

b
a

b
c

c
a

b
c

aa ab ac ba bb bc ca cb cc

Given a finite word u ∈ A∗, the ω-cone of u is represented by the set of all infinite paths6

that begin in ε and contain the vertex u and the ∞-cone of u is represented by the set of
all finite and infinite paths that begin in ε and contain the vertex u (and thus necessarily
have a length which is greater or equal to the length of u).

6Within this paper a path of an undirected graph (V,E) is always considered to be simple, i.e. any two
vertices in a path are different.
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Definition 3.3 (Cones). Let A be a finite alphabet and let v⊂ A∗ × A∞ denote the
usual prefix relation on words. For u ∈ A∗ we define its ω-cone to be the set uAω :=
{v ∈ Aω | u v v} and analogously we define uA∞ := {v ∈ A∞ | u v v}, the ∞-cone of u.

With this definition at hand, we can now define the semirings we will use to generate
σ-algebras on ∅, A∗, Aω and A∞.

Definition 3.4 (Semirings of Sets of Words). Let A be a finite alphabet. We define
S0 := {∅} ⊂ P (∅) ,
S∗ := {∅} ∪ {{u} | u ∈ A∗} ⊂ P (A∗) ,
Sω := {∅} ∪ {uAω | u ∈ A∗} ⊂ P (Aω) ,
S∞ := {∅} ∪ {{u} | u ∈ A∗} ∪ {uA∞ | u ∈ A∗} ⊂ P (A∞) .

For the next proposition the fact that A is a finite alphabet is crucial.

Proposition 3.5. The sets S0, S∗, Sω and S∞ are covering semirings of sets.

Proof. For S0 = {∅} nothing has to be shown. Obviously we have ∅ ∈ S∗ and for elements
{u} , {v} ∈ S∗ we remark that {u}∩{v} is either {u} iff u = v or ∅ else. Moreover, {u}\{v}
is either ∅ iff u = v or {u} else. We proceed with the proof for S∞, the proof for Sω can be
carried out almost analogously (in fact, it is simpler). By definition we have ∅ ∈ S∞. An
intersection uA∞ ∩ vA∞ is non-empty iff either u v v or v v u and is then equal to vA∞
or to uA∞ and thus an element of S∞. Similarly an intersection uA∞ ∩ {v} is non-empty
iff u v v and is then equal to {v} ∈ S∞. As before we have {u} ∩ {v} = {u} for u = v and
{u} ∩ {v} = ∅ else. For the set difference uA∞ \ vA∞ we denote that this is either ∅ (iff
v v u) or uA∞ (iff v 6v u and u 6v v) or otherwise (u v v) the following union7 of finitely
many disjoint sets in S∞:

uA∞ \ vA∞ =

 ⋃
v′∈A|v|\{v},uvv′

v′A∞
 ∪

 ⋃
v′∈A<|v|, uvv′

{
v′
} .

As before we get {u}\{v} = ∅ iff u = v and {u}\{v} = {u} else. For {u}\vA∞ we observe
that this is either {u} iff v 6v u or ∅ else. Finally, uA∞ \ {v} is either uA∞ (iff u 6v v) or
(u v v) the following union of finitely many disjoint sets in S∞:

uA∞ \ {v} =

 ⋃
v′∈A|v|\{v},uvv′

v′A∞
 ∪

 ⋃
v′∈A<|v|, uvv′

{
v′
} ∪ ( ⋃

a∈A
vaA∞

)

which completes the proof that the given sets are semirings. The countable (and even
disjoint) covers are: ∅ = ∅, A∗ = ∪u∈A∗ {a}, Aω = εAω and A∞ = εA∞.

We remark that many interesting sets will be measurable in the σ-algebra generated
by these cones. The singleton-set {u} will be measurable for every u ∈ Aω because {u} =⋂
vvu vAω =

⋂
vvu vA∞ which are countable intersections, and (for ∞-cones only) the set

A∗ = ∪u∈A∗ {u} and consequently also the set Aω = A∞ \ A∗ will be measurable. The
latter will be useful to check to what “extent” a state of a ∞-PTS accepts finite or infinite
behavior.

7For n ∈ N we define A<n := {u ∈ A | |u| < n}.
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3.3. Measurable Sets of Words. Let us now take a closer look at the σ-algebras gener-
ated by the semirings which we defined in the last section. We obviously obtain the trivial
σ-algebra σ∅(S0) = {∅}. Since A is finite, A∗ is countable and we can easily conclude
σA∗(S∗) = P (A∗). The other two cases need a more thorough treatment. For the remain-
der of this section let thus � ∈ {ω,∞}. We will use the concepts of transfinite induction
(cf. e.g. to [Dud89] for an introduction) to extend the semi-ring S� to the σ-algebra it
generates. A similar construction is well-known and presented e.g. in [Els07]. Usually this
explicit construction is not needed but for our proofs it will turn out to be useful.

Definition 3.6. For any set X and G ⊆ P (X) let U (G) and I (G) be the closure of G under
countable unions and intersections. We defineR�(0) :=

{
∪Nn=1Sn | N ∈ N, Sn ∈ S� disjoint

}
,

R�(α + 1) := U (I (R�(α))) for every ordinal α and R�(γ) := ∪α<γR�(α) for every limit
ordinal γ.

Obviously we have R�(α) ⊆ R�(β) for all ordinals α < β. Since S� is a semiring of
sets, is easy to see that R�(0) is an algebra, i.e. it contains the base set A�, is closed under
complement and binary (and hence all finite) unions and intersections.

Lemma 3.7. A ∈ R�(γ) =⇒ A� \A ∈ R�(γ) for every limit ordinal γ.

Proof. We will show that A ∈ R�(α) =⇒ A� \ A ∈ I (R�(α)) for every ordinal α. This
is true for the algebra R�(0). Now let α be an ordinal satisfying the implication and let
A ∈ R�(α + 1). Then A = ∪∞m=1 ∩∞n=1 Am,n with Am,n ∈ R�(α) and by deMorgan’s
rules A� \ A = ∩∞m=1 ∪∞n=1 A� \ Am,n where by hypothesis A� \ Am,n ∈ I (R�(α)), thus
∪∞n=1A� \Am,n ∈ U (I (R�(α))) = R�(α+ 1) and therefore A� \A ∈ I (R�(α+ 1)). Finally,
let γ be a limit ordinal and suppose the implication holds for all ordinals α < γ. For any
B ∈ R�(γ) there is a β < γ such that B ∈ R�(β). Hence we have B ∈ I (R�(β)) ⊆
I (R�(γ)) ⊆ R�(γ).

Lemma 3.8. A,B ∈ R�(α) =⇒ A ∪B,A ∩B ∈ R�(α) for every ordinal α.

Proof. This is true for the algebra R�(0). Let α be an ordinal satisfying the implication and
A,B ∈ R�(α+1), then A = ∪∞k=1∩∞l=1Ak,l andB = ∪∞m=1∩∞n=1Bm,n withAk,l, Bm,n ∈ R�(α).
Obviously A ∪ B = ∪∞k,m=1 ∩∞l,n=1 (Ak,l ∪ Bm,n) and A ∩ B = ∪∞k,m=1 ∩∞l,n=1 (Ak,l ∩ Bm,n)
where by hypothesis Ak,l ∪Bm,n, Ak,l ∩Bm,n ∈ R�(α). Let γ be a limit ordinal and suppose
the statement is true for all α < γ and let A,B ∈ R�(γ). There must be ordinals α, β < γ
such that A ∈ R�(α) and B ∈ R�(β). Assume wlog α ≤ β then A ∈ R�(β), hence
A ∪B,A ∩B ∈ R�(β) ⊆ R�(γ) which completes the proof.

Lemma 3.9. A,B ∈ I (R�(α)) =⇒ A ∪B ∈ I (R�(α)) for every ordinal α.

Proof. Let A,B ∈ I (R�(α)) then A := ∩∞m=1Am and B := ∩∞n=1Bn with Am, Bn ∈ R�(α).
Then A ∪ B = ∩∞m,n=1(Am ∪ Bn) where Am ∪ Bn ∈ R�(α) by Lemma 3.8 and thus
A ∪B ∈ I (R�(α)).

Proposition 3.10. σA�(R�(0)) = R�(ω1) where ω1 is the smallest uncountable limit ordi-
nal.

Proof (adapted from [Els07]). We first show R�(ω1) ⊆ σX(R�(0)). We know that
R�(0) ⊆ σX(R�(0)). For an ordinal α with R�(α) ⊆ σX(R�(0)) let A ∈ R�(α + 1).
Then A = ∪∞m=1 ∩∞n=1 Am,n with Am,n ∈ R�(α) yielding A ∈ σX(R�(0)). If γ is a limit
ordinal with R�(α) ⊆ σX(R�(0)) for all ordinals α < γ then for any A ∈ R�(γ) there
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must be an ordinal α < γ such that A ∈ R�(α) and hence A ∈ σX(R�(0)). In order
to show R�(ω1) ⊇ σX(R�(0)) it suffices to show that R�(ω1) is a σ-algebra. We have
X ∈ R(0) ⊆ R(ω1) and Lemma 3.7 yields closure under complements. Let An ∈ R�(ω1)
for n ∈ N. Then for each An we have an αn such that An ∈ R�(αn). Since ω1 is the first
uncountable ordinal, we must find an α < ω1 such that αn < α for all n ∈ N. Hence we
have An ∈ R�(α) for all n ∈ N. Thus ∪∞n=1An ∈ R�(α+ 1) ⊆ R�(ω1).

3.4. The Trace Measure. We will now define the trace measure which can be understood
as the behavior of a state: it measures the probability of accepting a set of words.

Definition 3.11 (The Trace Measure). Let (A, X, α) be a �-PTS. For every state x ∈ X
we define the trace (sub-)probability measure tr(x) : σA�(S�)→ [0, 1] as follows: In all four
cases we require tr(x)(∅) = 0. For � ∈ {∗,∞} we define

tr(x)({ε}) = α(x)(1) (3.2)
and

tr(x)
(
{au}

)
:=
∫
x′∈X

tr(x′)({u}) dPa
(
x, x′

)
(3.3)

for all a ∈ A and all u ∈ A∗. For � ∈ {ω,∞} we define
tr(x)(εA�) = 1 (3.4)

and

tr(x)
(
auA�

)
:=
∫
x′∈X

tr(x′)(uA�) dPa
(
x, x′

)
(3.5)

for all a ∈ A and all u ∈ A∗.

We need to verify that everything is well-defined and sound. In the next proposition
we explicitly state what has to be shown.

Proposition 3.12. For all four types � ∈ {0, ∗, ω,∞} of PTS the equations in Defini-
tion 3.11 yield a σ-finite pre-measure tr(x) : S� → [0, 1] for every x ∈ X. Moreover, the
unique extension of this pre-measure is a (sub-)probability measure.

Before we prove this proposition, let us try to get a more intuitive understanding of
Definition 3.11 and especially equation (3.3). First we check how the above definition
reduces when we consider discrete systems.

Remark 3.13. Let (A, X, α) be a discrete8 ∗-PTS, i.e. X is a countable set with
σ-algebra P (X) and the transition probability function is α : X → S(A × X + 1). Then
tr(x)(ε) := α(x)(X) and (3.3) is equivalent to

tr(x)(au) :=
∑
x′∈X

tr(x′)(u) ·Pa
(
x, x′

)
(3.6)

for all a ∈ A and all u ∈ A∗ which in turn is equivalent to the discrete “trace distribution”
presented in [HJS06] for the sub-distribution monad D on Set.

8If Z is a countable set and µ : P (Z)→ [0, 1] is a measure, we write µ(z) for µ({z}).



16 HENNING KERSTAN AND BARBARA KÖNIG

Having seen this coincidence with known results, we proceed to calculate the trace
measure for our example (Example 3.2) which we can only do in our more general setting
because this ∞-PTS is a discrete probabilistic transition system which exhibits both finite
and infinite behavior.

Example 3.14 (Example 3.2 continued.). We calculate the trace measures for the ∞-PTS
from Example 3.2. We have tr(0) = δA

∞
bω because

tr(0)({bω}) = tr(0)
( ∞⋂
k=0

bkA∞
)

= tr(0)
(
A∞ \

∞⋃
k=0

(
A∞ \ bkA∞

))

= tr(0) (A∞)− tr(0)
( ∞⋃
k=0

(
A∞ \ bkA∞

))
≥ 1−

∞∑
k=0

tr(0)
(
A∞ \ bkA∞

)
= 1−

∞∑
k=0

(
1− tr(0)

(
bkA∞

))
= 1−

∞∑
k=0

(1− 1) = 1

Thus we have tr(0)(A∗) = tr(0) (∪u∈A∗ {u}) = 0 and tr(0)(Aω) = 1. By induction we can
show that tr(2)(

{
ak
}

) = (1/3) · (2/3)k and thus tr(2)(A∗) = 1 because

1 ≥ tr(2)(A∗) = tr(2)
( ∞⋃
u∈A∗

{u}
)
≥ tr(2)

( ∞⋃
k=0

{
ak
})

= 1
3 ·

∞∑
k=0

(2
3

)k
= 1

and hence tr(2)(Aω) = 0. Furthermore we calculate tr(1)({bω}) = 1/3, tr(1)(aA∞) = 1/3
and tr(1)({ε}) = 1/3 yielding tr(1)(A∗) = 2/3 and tr(1)(Aω) = 1/3.

Recall, that we still have to prove Proposition 3.12. In order to simplify this proof, we
provide a few technical results about the sets S∗, Sω, S∞. For all these results remember
again that A is required to be a finite alphabet. This is a crucial point, particularly in the
next lemma.

Lemma 3.15 (Countable Unions). Let (Sn)n∈N be a sequence of pairwise disjoint sets in
Sω or in S∞ such that their union, ∪n∈NSn, is itself an element of Sω or S∞. Then Sn = ∅
for all but finitely many n.

Proof. We have several cases to consider.
Case 1: If ∪n∈NSn = ∅ ∈ S� for � ∈ {ω,∞}, we have Sn = ∅ for all n ∈ N.
Case 2: If ∪n∈N = {u} ∈ S∞ with suitable u ∈ A∗ we get Sn = ∅ for all but one n ∈ N
since the Sn are disjoint.
Case 3: Let ∪n∈NSn = uA� with a suitable u ∈ A∗ for � ∈ {ω,∞}. Suppose there are
infinitely many n ∈ N such that Sn 6= ∅. Without loss of generality we can assume Sn 6= ∅
for all n ∈ N and thus there is an infinite set U := {un | n ∈ N} of words such that for
each n ∈ N we either have Sn = {un} (only for � = ∞) or Sn = unA� (for � ∈ {ω,∞}).
Necessarily we have u v un for all n ∈ N. We will now revive our tree metaphor from
Section 3.2: The prefix-closure pref(U) = {v ∈ A∗ | ∃n ∈ N : v v un} of U is the set of
vertices contained in the paths from the root ε (via u) to un. We consider the subtree
T ′ = (pref(U), E′, ε, l|E′) with E′ = {{u, ua} | a ∈ A, u, ua ∈ pref(U)}. Since the set U and
hence also pref(U) is infinite, we have thus constructed an infinite, connected graph where
every vertex has finite degree (because A is finite). By König’s Lemma [Kön36, Satz 3]
there is an infinite path starting at the root ε. Let v ∈ Aω be the unique, infinite word
associated to that path (which we get by concatenating all the labels along this path). Since
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u @ v we must have v ∈ uA�. Moreover, we know that uA� = ∪n∈NSn and due to the
fact that the Sn are pairwise disjoint we must find a unique m ∈ N with v ∈ Sm. This
necessarily requires Sm to be a cone of the form Sm = umA� with um ∈ U and um @ v.
Again due to the fact that the Sn are disjoint we know that there cannot be a u′ ∈ U with
um @ u′ and hence there also cannot be a u′ ∈ pref(U) with um @ u′. Thus the vertex
um is a leaf of the tree T ′ and therefore the finite path from ε to um is the only path from
ε that contains um. This contradicts the existence of v because this path is infinite and
contains um. Hence our assumption must have been wrong and there cannot be infinitely
many n ∈ N with Sn 6= ∅.
Lemma 3.16. Any map µ : S∗ → R+ where µ(∅) = 0 is σ-additive and thus a pre-measure.
Proof. Let (Sn)n∈N be a family of disjoint sets from S∗ with (∪n∈NSn) ∈ S∗, then we have
Sn = ∅ for all but at most one n ∈ N.
Lemma 3.17. A map µ : Sω → R+ where µ(∅) = 0 is σ-additive and thus a pre-measure if
and only if the following equation holds for all u ∈ A∗.

µ (uAω) =
∑
a∈A

µ (uaAω) (3.7)

We omit the proof of this lemma as it is very similar to the proof of the following lemma.
Lemma 3.18. A map µ : S∞ → R+ where µ(∅) = 0 is σ-additive and thus a pre-measure
if and only if the following equation holds for all u ∈ A∗.

µ (uA∞) = µ ({u}) +
∑
a∈A

µ (uaA∞) (3.8)

Proof. Obviously σ-additivity of µ implies equality (3.8). Let now (Sn)n∈N be a family
of disjoint sets from S∞ with (∪n∈NSn) ∈ S∞. Using Lemma 3.15 we know that (after
resorting) we can assume that there is an N ∈ N such that Sn 6= ∅ for 1 ≤ n ≤ N and
Sn = ∅ for n > N . For non-trivial cases (trivial means Sn = ∅ for all but one set) there
must be a word u ∈ A∗ such that uA∞ =

(
∪Nn=1Sn

)
. Because u is an element of uA∞ there

must be a natural number m with u ∈ Sm which is unique because the family is disjoint.
Without loss of generality we assume that u ∈ S1. By construction of S∞ and the fact that
∪Nn=1Sn = uA∞ there are two cases to consider: either S1 = {u} or S1 = uA∞. The latter
cannot be true since this would imply Sn = ∅ for n ≥ 2 which we explicitly excluded. Thus
we have S1 = {u}. We remark that⋃

a∈A
uaA∞ = uA∞ \ {u} =

(
N⋃
n=2

Sn

)
.

Again by construction of S∞ we must be able to select sets Sak ∈ {Sn | 2 ≤ n ≤ N} for all
a ∈ A and all k where 1 ≤ k ≤ Ka < N for a constant Ka such that ∪Ka

k=1S
a
k = uaA∞.

This selection is unique in the following manner: For a, b ∈ A where a 6= b and 1 ≤
k ≤ Ka, 1 ≤ l ≤ Kb we have Sak 6= Sbl . Additionally it is complete in the sense that
{Sak | a ∈ A, 1 ≤ k ≤ Ka} = {Sn | 2 ≤ n ≤ N}. We apply our equation (3.8) to get

µ

(
N⋃
n=1

Sn

)
= µ (uA∞) = µ (S1) +

∑
a∈A

µ

(
Ka⋃
k=1

Sak

)

and note that we can repeat the procedure for each of the disjoint unions ∪Ka
k=1S

a
k . Since

Ka < N for all a this procedure stops after finitely many steps yielding σ-additivity of µ.
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Using these results, we can now finally prove Proposition 3.12.

Proof of Proposition 3.12. We will look at the different types of PTS separately. For � = 0
nothing has to be shown because σ∅({∅}) = {∅} and tr(x) : {∅} → [0, 1] is already uniquely
defined by tr(x)(∅) = 0. For � = ∗ Lemma 3.16 yields immediately that the equations
define a pre-measure. For � =∞ we have to check validity of equation (3.8) of Lemma 3.18.
We will do so using induction on the length of the word u ∈ A∗ in that equation. We have

tr(x)(εA∞) = 1 = α(x)(A×X + 1) = α(x)(1) +
∑
a∈A

Pa (x,X)

= tr(x)({ε}) +
∑
a∈A

∫
x′∈X

1 dPa
(
x, x′

)
= tr(x)({ε}) +

∑
a∈A

∫
x′∈X

tr(x′)(εA∞) dPa
(
x, x′

)
= tr(x)({ε}) +

∑
a∈A

tr(x)(aεA∞) = tr(x)({ε}) +
∑
a∈A

tr(x)(εaA∞)

for all x ∈ X. Now let us assume that for all x ∈ X and all words u ∈ A≤n of length less
or equal to a fixed n ∈ N the induction hypothesis

tr(x)(uA∞) = tr(x)({u}) +
∑
b∈A

tr(x)(ubA∞)

is fulfilled. Then for all x ∈ X, all a ∈ A and all u ∈ A≤n we calculate

tr(x)(auA∞) =
∫
x′∈X

tr(x′)(uA∞) dPa
(
x, x′

)
=
∫
x′∈X

tr(x′)({u}) +
∑
b∈A

tr(x′)(ubA∞)

 dPa
(
x, x′

)
=
∫
x′∈X

tr(x′)({u}) dPa
(
x, x′

)
+
∑
b∈A

∫
x′∈X

tr(x′)(ubA∞) dPa
(
x, x′

)
= tr(x)({au}) +

∑
b∈A

tr(x)(aubA∞)

and hence also for au ∈ A≤n+1 equation (3.8) is fulfilled and by induction we conclude that
it is valid for all u ∈ A∗. The only difficult case is � = ω where we will, of course, apply
Lemma 3.17. Let u = u1 . . . um with uk ∈ A for every k ∈ N with k ≤ m, then multiple
application of the defining equation (3.3) yields

tr(x)
(
uAω

)
=

∫
x1∈X

. . .

∫
xm∈X

1 dPum (xm−1, xm) . . . dPu1 (x, x1)

and for arbitrary a ∈ A we obtain analogously:

tr(x)
(
uaAω

)
=

∫
x1∈X

. . .

∫
xm∈X

Pa (xm, X) dPum (xm−1, xm) . . . dPu1 (x, x1) .
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All integrals exist and are bounded above by 1 so we can use the linearity and monotonicity
of the integral to exchange the finite sum and the integrals. Using the fact that∑

a∈A
Pa (xm, X) =

∑
a∈A

α(xm)({a} ×X) = α(xm)(A×X) = 1

we obtain that indeed the necessary and sufficient equality
tr(x)

(
uAω

)
=
∑
a∈A

tr(x)
(
uaAω

)
is valid for all u ∈ A∗ and thus Lemma 3.17 yields that also tr(x) : Sω → R+ is σ-additive
and thus a pre-measure.

Now let us check that the pre-measures for � ∈ {∗, ω,∞} are σ-finite and that their
unique extensions must be (sub-)probability measures. For � ∈ {ω,∞} this is obvious and
in these cases the unique extension must be a probability measure because by definition we
have tr(x)(Aω) = 1 and tr(x)(A∞) = 1 respectively. For the remaining case (� = ∗) we
will use induction. We have tr(x)({ε}) = α(x)(1) ≤ 1 for every x ∈ X. Let us now assume
that for a fixed but arbitrary n ∈ N the inequality tr(x)({u}) ≤ 1 is valid for all x ∈ X and
all words u ∈ A≤n with length less or equal to n. Then for any word u′ ∈ An+1 of length
n+ 1 we have u′ = au with a ∈ A and u ∈ An. We observe that

tr(x)({au}) =
∫
x′∈X

tr(x′)({u})︸ ︷︷ ︸
≤1

dPa
(
x, x′

)
≤
∫

1 dPa
(
x, x′

)
= Pa (x,X) ≤ 1

and conclude by induction that tr(x)({u}) ≤ 1 is valid for all u ∈ A∗ and all x ∈ X. Due
to the fact that A∗ = ∪u∈A∗{u} this yields that tr is σ-finite.

Again by induction we will show that tr is bounded above by 1 and thus a sub-
probability measure. We have tr(x)

(
A≤0) = tr(x)({ε}) ≤ 1 for all x ∈ X. Suppose

that for a fixed but arbitrary n ∈ N the inequality tr(x)
(
A≤n−1) ≤ 1 holds for all x ∈ X.

We conclude with the following calculation

tr(x)
(
A≤n

)
= tr(x) (∪u∈A≤n{u}) =

∑
u∈A≤n

tr(x) ({u})

= tr(x)({ε}) +
∑
a∈A

∑
u∈A≤n−1

tr(x) ({au})

= α(x)(1) +
∑
a∈A

∑
u∈A≤n−1

∫
tr(x′) ({u}) dPa

(
x, x′

)
= α(x)(1) +

∑
a∈A

∫ ∑
u∈A≤n−1

tr(x′)({u}) dPa
(
x, x′

)
= α(x)(1) +

∑
a∈A

∫ (
tr(x′)

(
A≤n−1

))
︸ ︷︷ ︸

≤1

dPa
(
x, x′

)

≤ α(x)(1) +
∑
a∈A

∫
1 dPa

(
x, x′

)
= α(x)(1) +

∑
a∈A

Pa (x,X)

= α(x)(1) +
∑
a∈A

α(x)({a} ×X) = α(x)(A×X + 1) ≤ 1

using the linearity and monotonicity of the integral which can be applied here since A is
finite which in turn implies that A≤n−1 is finite and all the integrals

∫
tr(x′) ({u}) dPa (x, x′)
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exist because tr(x′) ({u}) is bounded above by 1. By induction we can thus conclude that

∀x ∈ X ∀n ∈ N0 : tr(x)
(
A≤n

)
≤ 1

which is equivalent to

∀x ∈ X sup
n∈N0

(
tr(x)

(
A≤n

))
≤ 1 .

Since tr(x) is a measure (and thus non-negative and σ-additive), the sequence given by(
tr(x)

(
A≤n

))
n∈N0

is a monotonically increasing sequence of real numbers bounded above
by 1. Furthermore, tr(x) is continuous from below as a measure and we have A≤n ⊆ A≤n+1

for all n ∈ N0 and thus we obtain

tr(x) (A∗) = tr(x)
( ∞⋃
n=1
A≤n

)
= lim

n→∞
tr(x)

(
A≤n

)
= sup

n∈N0

tr(x)
(
A≤n

)
≤ 1 .

3.5. The Trace Function is a Kleisli Arrow. Now that we know that our definition
of a trace measure is mathematically sound, we remember that we wanted to show that it
is “natural”, meaning that it arises from the final coalgebra in the Kleisli category of the
(sub-)probability monad. We start by showing that the function tr : X → TA� we get from
Definition 3.11 is a Kleisli arrow by proving that it is a Markov kernel. Since tr(x) is a
sub-probability measure for each x ∈ X by Proposition 3.12 we just have to show that for
each S ∈ σA�(S�) the function x 7→ tr(x)(S) is Borel-measurable. This is easy for elements
S of the previously defined semirings:

Lemma 3.19. For every S ∈ S� the function x 7→ tr(x)(S) is Borel-measurable.

Proof. For � = 0 nothing has to be shown. For the other cases we will use induction on the
length of a word u. For � ∈ {∗,∞}measurability of x 7→ tr(x)({ε}) follows from measurabil-
ity of x 7→ α(x)(1) and for � ∈ {ω,∞} the function x 7→ tr (x)(εA�) is the constant function
with value 1 and thus is measurable. Suppose now that for an n ∈ N we have established
that for all u ∈ An the functions x 7→ tr(x)({u}) and x 7→ tr(x)(uA�) (whenever they are
meaningful) are measurable. Then for all a ∈ A and all u ∈ An we have tr(x)({au}) =∫
x′∈Xtr(x′)({u}) dPa(x, x′) and also tr(x)(auA�) =

∫
x′∈Xtr(x′)(uA�) dPa(x, x′) and by ap-

plying Lemma 2.21 we get the desired measurability.
Without any more complicated tools we get the complete result for any ∗-PTS:

Proposition 3.20. For every S ∈ P (A∗) the function x 7→ tr(x)(S) is Borel-measurable.

Proof. We know from Lemma 3.19 that x 7→ tr(x)(S) is measurable for every S ∈ S∗.
Recall that σA∗(S∗) = P (A∗) and every S ∈ P (A∗) is at most countably9 infinite, say
S := {u1, u2, . . .} and we have the trivial, disjoint decomposition S = ∪∞n=1 {un}. If we define
TN := ∪Nn=1 {un} we get an increasing sequence of sets converging to S. Hence by continuity
of the sub-probability measures S′ 7→ tr(x)(S′) we get tr(x)(S) = limN→∞ tr(x)(TN ) =
limN→∞

∑N
n=1 tr(x, {un}). Thus x 7→ tr(x)(S) is the pointwise limit of a finite sum of

measurable functions and therefore measurable.
9For finite S the proof works analogously but simpler!
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From here until the rest of this subsection we restrict � to be either ω or ∞ if not
indicated otherwise. As before, we will rely on transfinite induction for our proof.
Lemma 3.21. For every S ∈ R�(0) the function x 7→ tr(x)(S) is measurable.
Proof. We know from Lemma 3.19 that x 7→ tr(x)(S) is measurable for every S ∈ S�.
Let S ∈ R�(0) then S = ∪Nn=1Sn with Sn ∈ S� disjoint for 1 ≤ n ≤ N ∈ N. We have
tr(x)(S) =

∑N
n=1 tr(x, Sn) which is measurable as a finite sum of measurable functions.

Lemma 3.22. Let α be an ordinal s.t. the function x 7→ tr(x)(S) is measurable for each
S ∈ R�(α). Then x 7→ tr(x)(S) is measurable for each S ∈ I (R�(α)).
Proof. Let S ∈ I (R�(α)) then S = ∩∞n=1Sn with Sn ∈ R�(α). We define TN := ∩Nn=1Sn
for all N ∈ N, then TN ∈ R�(α) by Lemma 3.8. We have TN ⊇ TN+1 for all N ∈ N
and S = ∩∞N=1TN . Continuity of S′ 7→ tr(x)(S′) for every x ∈ X yields tr(x)(S) =
limN→∞ tr(x) (TN ). Hence x 7→ tr(x)(S) is measurable as pointwise limit of measurable
functions.
Lemma 3.23. Let α be an ordinal s.t. the function x 7→ tr(x)(S) is measurable for each
S ∈ I (R�(α)). Then x 7→ tr(x)(S) is measurable for each S ∈ R�(α+ 1).
Proof. Let S ∈ R�(α + 1) then S = ∪∞n=1Sn with Sn ∈ I (R�(α)). We define TN :=
∪Nn=1Sn for all N ∈ N. Then we know that TN ∈ I (R�(α)) by Lemma 3.9. We have
TN ⊆ TN+1 for all N ∈ N and S = ∪∞N=1TN . Continuity of the sub-probability measures
S′ 7→ tr(x)(S′) yields for every x ∈ X that tr(x)(S) = limN→∞ tr (x)(TN ). Hence the
function x 7→ tr(x)(S) is measurable as pointwise limit of measurable functions.
Lemma 3.24. Let γ be a limit ordinal s.t. for all ordinals α < γ the function x 7→ tr(x)(S)
is measurable for each S ∈ R�(α). Then x 7→ tr(x)(S) is measurable for each S ∈ R�(γ).
Proof. Let S ∈ R�(γ), then there is an α < γ such that S ∈ R�(α) and hence x 7→ tr(x)(S)
is measurable for this S.

By using the characterization σA�(S�) = R�(ω1) of Proposition 3.10 and combining the
four preceding lemmas we get the desired result:
Proposition 3.25. For every S ∈ σA�(S�) the function x 7→ tr(x)(S) is measurable.

Finally, combining this result with Proposition 3.12 and the fact that Markov kernels
are in one-to-one correspondence with Kleisli arrows [Dob07b, Proposition 2.7] yields:
Proposition 3.26. Let � ∈ {0, ∗, ω,∞} and (T, η, µ) be the (sub-)probability monad. Then
the function tr : X → TA� given by Definition 3.11 is a Kleisli arrow.

3.6. The Trace Measure and Final Coalgebra. Before stating the next proposition
which presents a close connection between the unique existence of the map into the final
coalgebra and the unique extension of a family of σ-finite pre-measures, we first give some
intuition: in order to show that a coalgebra is final it is enough to show that every other
coalgebra admits a unique homomorphism into it. Commutativity of the square underlying
the homomorphism and uniqueness have to be shown for every element of a σ-algebra and
one of our main contributions is to reduce the proof obligations to a smaller set of generators,
which form a covering semiring. This proposition will later be applied to our four types
of transition systems by using the semirings defined earlier and showing that there can be
only one way to assign probabilities to their elements.
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Proposition 3.27. Let (T, η, µ) be either the sub-probability monad (S, η, µ) or the proba-
bility monad (P, η, µ), F be an endofunctor on Meas with a distributive law λ : FT ⇒ TF
and (Ω, κ) be an F -coalgebra where ΣFΩ = σFΩ(SFΩ) for a covering semiring SFΩ. Then
the following statements are equivalent:
(1) (Ω, κ) is a final F -coalgebra in K`(T ).
(2) For every F -coalgebra (X,α) in K`(T ) there is a unique Kleisli arrow tr : X → TΩ

satisfying the following condition:

∀x ∈ X,∀S ∈ SFΩ :
∫

Ω
pS ◦ κ dtr(x) =

∫
FX

pS ◦ λΩ ◦ F (tr) dα(x) . (3.9)

Proof. We consider the final coalgebra diagram in K`(T ).

X
α //

tr
��

FX

F (tr)=λΩ◦F (tr)
��

Ω κ // FΩ
By definition (Ω, κ) is final iff for every F -coalgebra (X,α) there is a unique Kleisli arrow
tr : X → TΩ making the diagram commute. We define

g := µFΩ ◦ T (κ) ◦ tr (down, right) and h := µFΩ ◦ T
(
F (tr)

)
◦ α (right, down)

and note that commutativity of the final coalgebra diagram is equivalent to
∀x ∈ X,∀S ∈ SFΩ : g(x)(S) = h(x)(S) (3.10)

because SFΩ is a covering semiring and for all x ∈ X both g(x) and h(x) are sub-probability
measures and thus finite measures which allows us to apply Corollary 2.5. We calculate

g(x)(S) = (µFΩ ◦ T (κ) ◦ tr)(x)(S) = µFΩ (T (κ)(tr(x))) (S)

= µFΩ
(
tr(x) ◦ κ−1

)
(S) =

∫
pS d

(
tr(x) ◦ κ−1

)
=
∫
pS ◦ κdtr(x)

and if we define ρ := F (tr) = λΩ ◦ F (tr) : FX → TFΩ we obtain

h(x)(S) = (µFΩ ◦ T (ρ) ◦ α)(x)(S) = µFΩ (T (ρ)(α(x))) (S) = µFΩ
(
α(x) ◦ ρ−1

)
(S)

=
∫
pS d

(
α(x) ◦ ρ−1

)
=
∫
pS ◦ ρdα(x) =

∫
pS ◦ λΩ ◦ F (tr) dα(x)

and thus (3.10) is equivalent to (3.9).
We immediately obtain the following corollary.

Corollary 3.28. Let in Proposition 3.27 κ = ηFΩ ◦ ϕ, for an isomorphism ϕ : Ω→ FΩ in
Meas, and let SΩ ⊆ P (Ω) be a covering semiring such that ΣΩ = σΩ(SΩ). Then equation
(3.9) is equivalent to

∀x ∈ X,∀S ∈ SΩ : tr(x)(S) =
∫
pϕ(S) ◦ λΩ ◦ F (tr) dα(x) . (3.11)

Proof. Since ϕ is an isomorphism in Meas we know from Proposition 2.11 that ΣFΩ =
σFΩ(ϕ(SΩ)). For every S ∈ SΩ and every u ∈ Ω we calculate

pϕ(S) ◦ κ(u) = pϕ(S) ◦ ηFΩ ◦ ϕ(u) = δFΩ
ϕ(u)(ϕ(S)) = χϕ(S)(ϕ(u)) = χS(u)

and hence we have
∫
pϕ(S) ◦ κdtr(x) =

∫
χS dtr(x) = tr(x)(S).
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Since we want to apply this corollary to sets of words, we now define the necessary
isomorphism ϕ using the characterization given in Proposition 2.11.

Proposition 3.29. Let A be an arbitrary alphabet and let
ϕ : A∞ → A×A∞ + 1, ε 7→ X, au 7→ (a, u) . (3.12)

Then ϕ, ϕ|A∗ : A∗ → ϕ(A∗) and ϕ|Aω : Aω → ϕ(Aω) are isomorphisms in Meas because
they are bijective functions10 and we have

σA×Aω (ϕ(Sω)) = P (A)⊗ σAω (Sω) , (3.13)
σA×A∗+1(ϕ(S∗)) = P (A)⊗ σA∗(S∗)⊕ P (1) , (3.14)

σA×A∞+1(ϕ(S∞)) = P (A)⊗ σA∞(S∞)⊕ P (1) . (3.15)

Proof. Bijectivity is obvious. We will now show validity of (3.15), the other equations can
be verified analogously.11 Let SA := {∅}∪ {{a} | a ∈ A}∪{A}, then it is easy to show that
we have σA(SA) = P (A) and Propositions 2.6 and 2.8 yield that

P (A)⊗ σA∞(S∞)⊕ P (1) = σA×A∞+1(SA ∗ S∞ ⊕ P (1)) .
We calculate ϕ (∅) = ∅, ϕ ({ε}) = 1, ϕ (εAω) = A × Aω, ϕ (εA∞) = A × A∞ + 1, and for
all a ∈ A and all u ∈ A∗ we have ϕ ({au}) = {(a, u)} and also ϕ (auA∞) = {a} × uA∞.
This yields

ϕ(S∞) = {∅, ∅+ 1,A×A∞ + 1} ∪ {{a} × {u}+ ∅, {a} × uA∞ + ∅ | a ∈ A, u ∈ A∗}
and furthermore we have

SA ∗ S∞ ⊕ P (1) = {∅, ∅+ 1} ∪ {{a} × {u}+ ∅, {a} × uA∞ + ∅ | a ∈ A, u ∈ A∗}
∪ {{a} × {u}+ 1, {a} × uA∞ + 1 | a ∈ A, u ∈ A∗}
∪ {A × {u}+ ∅,A × uA∞ + ∅ | u ∈ A∗}
∪ {A × {u}+ 1,A × uA∞ + 1 | u ∈ A∗} .

Due to the fact that A×A∞ + 1 = A× εA∞ + 1 we have ϕ(S∞) ⊆ SA ∗ S∞ ⊕ P (1) and
the monotonicity of the σ-operator yields

σA×A∞+1(ϕ(S∞)) ⊆ σA×A∞+1(SA ∗ S∞ ⊕ P (1)) .
For the other inclusion we remark that

{a} × {u}+ 1 = ({a} × {u}+ ∅) ∪ (∅+ 1)
{a} × uA∞ + 1 = ({a} × uA∞ + ∅) ∪ (∅+ 1)

and together with the countable decomposition A = ∪a∈A {a} it is easy to see that
SA ∗ S∞ ⊕ P (1) ⊆ σA×A∞+1(ϕ(S∞))

and monotonicity and idempotence of the σ-operator complete the proof.
10Note that we restrict not only the domain of ϕ here but also its codomain.
11For proving (3.14) we can use Proposition 2.6 because σA∗ (S∗) = σA∗ (S∗ ∪ {A∗}).
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We recall that – in order to get a lifting of an endofunctor on Meas – we also need a
distributive law for the functors and the monads we are using to define PTS. In order to
define such a law we first provide two technical lemmas.

Lemma 3.30. Let A be an alphabet and (X,ΣX) be a measurable space.
(1) The sets P (A) ∗ ΣX and P (A) ∗ ΣX ⊕ P (1) are covering semirings of sets.
(2) P (A)⊗ ΣX = σA×X(P (A) ∗ ΣX).
(3) P (A)⊗ ΣX ⊕ P (1) = σA×X+1(P (A) ∗ ΣX ⊕ 1).

Proof. Showing property (1) is straightforward and will thus be omitted. The rest follows
by Propositions 2.6 and 2.8.

Lemma 3.31 (Product Measures). Let A be an alphabet, a ∈ A and (X,ΣX) be a measur-
able space with a sub-probability measure P : ΣX → [0, 1]. Then the following holds:
(1) The product measure δAa ⊗ P : P (A) ⊗ ΣX → R+ of δAa and P which is the unique

extension of the pre-measure satisfying
(δAa ⊗ P )(SA × SX) := δAa (SA) · P (SX) (3.16)

for all SA×SX ∈ P (A)∗ΣX is a sub-probability measure on A×X. If P is a probability
measure on X, then also δAa ⊗ P is a probability measure on A×X.

(2) The measure δAa � P : P (A)⊗ ΣX ⊕ P (1)→ R+ which is defined via the equation
(δAa � P )(S) := (δAa ⊗ P ) (S ∩ (A×X)) (3.17)

for all S ∈ P (A) ⊗ ΣX ⊕ P (1) is a sub-probability measure on A ×X + 1. If P is a
probability measure on X, then also δAa � P is a probability measure on A×X + 1.

Proof. Before proving the statement, we check that the two equations yield unique measures.
(1) Existence and uniqueness of the product measure is a well known fact from measure

theory and follows immediately by Proposition 2.4 because equation (3.16) defines a
σ-finite pre-measure on P (A) ∗ΣX which by Lemma 3.30 is a covering semiring of sets
and a generator for the product-σ-algebra.

(2) We obviously have non-negativity and (δAa � P )(∅) = 0. Let (Sn)n∈N be a family of
pairwise disjoint sets in P (A)⊗ ΣX ⊕ P (1). Then the following holds

(δAa � P )

⋃
n∈N

Sn

 = (δAa ⊗ P )

⋃
n∈N

(Sn ∩ (A×X))


=
∑
n∈N

(δAa ⊗ P )(Sn ∩ (A×X)) =
∑
n∈N

(δAa � P ) (Sn)

and hence δAa � P as defined by equation (3.17) is σ-additive and thus a measure.
For the proof of the Lemma we observe that

(δAa � P )(A×X + 1) = (δAa ⊗ P )(A×X) = δAa (A) · P (X) = P (X)
which immediately yields that both measures are sub-probability measures and if P is a
probability measure they are probability measures.
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With the help of the preceding lemmas, we can now state and prove the distributive
laws for the endofunctors A × IdMeas, A × IdMeas + 1 on Meas and the sub-probability
monad and the probability monad.

Proposition 3.32 (Distributive Laws). Let (T, η, µ) be either the sub-probability monad
(S, η, µ) or the probability monad (P, η, µ) and A be an alphabet with σ-algebra P (A).
(1) Let F = A× IdMeas. For every measurable space (X,ΣX) we define

λX : A× TX → T (A×X), (a, P ) 7→ δAa ⊗ P . (3.18)
Then λ : FT ⇒ TF is a distributive law.

(2) Let F = A× IdMeas + 1. For every measurable space (X,ΣX) we define
λX : A× TX + 1→ T (A×X + 1)
(a, P ) 7→ δAa � P, X 7→ δA×X+1

X . (3.19)
Then λ : FT ⇒ TF is a distributive law.

Proof. In order to show that the given maps are distributive laws we have to check com-
mutativity of the following three diagrams

FTY
λY //

FTf
��

TFY

TFf
��

FX
FηX
//

ηF X ##

FTX

λX

��

FT 2X
λT X //

FµX

��

TFTX
TλX // T 2FX

µF X

��

FTX
λX // TFX TFX FTX

λX

// TFX

for all measurable spaces (X,ΣX), (Y,ΣY ) and all measurable functions f : Y → X. By
Lemma 3.30 we know that P (A) ∗ ΣX and P (A) ∗ ΣX ⊕ P (1) are covering semirings of
sets and that they are generators for the σ-algebras P (A)⊗ ΣX and P (A)⊗ ΣX ⊕ P (1).
Moreover, we know from Lemma 3.31 that the measures assigned in equations (3.18) and
(3.19) are sub-probability measures and thus finite. We can therefore use Corollary 2.5 to
check the equality of the various (sub-)probability measures. We will provide the proofs for
the second distributive law only, the proofs for the first law are simpler and can in fact be
derived from the given proofs. Let S := SA × SX + S1 ∈ P (A) ∗ ΣX ⊕ P (1).
(1) Let f : Y → X be a measurable function. For (a, P ) ∈ A× TY we calculate

(TFf ◦ λY )(a, P )(S) = (δAa � P )
(
(Ff)−1(S)

)
= (δAa � P )(SA × f−1(SX) + S1)

= δAa (SA) · P
(
f−1(SX)

)
= (δAa � (P ◦ f−1))(SA × SX + S1)

= (λX ◦ FTf)(a, P )(S)
and analogously we obtain

(TFf ◦ λY )(X)(S) = δA×Y+1
X

(
(Ff)−1(S)

)
= δA×Y+1

X

(
SA × f−1(SX) + S1

)
= δA×X+1

X (S) = (λX ◦ FTf)(X)(S) .

(2) For (a, x) ∈ A×X we calculate
ηFX(a, x)(S) = δFX(a,x)(SA × SX + S1) = δAa (SA) · δXx (SX)

= (δAa � δXx )(S) = λX(a, δXx )(S) =
(
λX ◦ FηX

)
(a, x)(S)
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and also
ηFX(X) = δFXX = λX(X) = λX (FηX(X)) =

(
λX ◦ FηX

)
(X) .

(3) For (a, P ) ∈ FT 2X we calculate

(λX ◦ FµX) (a, P )(S) = (λX (a, µX(P ))) (S) =
(
δAa � µX(P )

)
(S)

= δAa (SA) · µX(P )(SX) = δAa (SA) ·
∫
pSX

dP

and
(µFX ◦ TλX ◦ λTX)(a, P )(S) = µFX

((
δAa � P

)
◦ λ−1

X

)
(S)

=
∫
TFX

pS d
((
δAa � P

)
◦ λ−1

X

)
=
∫
λ−1

X (TFX)
pS ◦ λX d

(
δAa � P

)
=
∫
{a}×TX

pS ◦ λX d
(
δAa � P

)
=
∫
P ′∈TX

(
δAa ⊗ P ′)(S) dP (P ′)

=
∫
P ′∈TX

δAa (SA) · P ′(SX) dP (P ′) = δAa (SA) ·
∫
pSX

dP .

Analogously we obtain
(λX ◦ FµX) (X) = λX(X) = δA×X+1

X

and
(µFX ◦ TλX ◦ λTX) (X)(S) = µFX

(
δA×TX+1
X ◦ λ−1

X

)
(S)

=
∫
TFX

pS d
(
δA×TX+1
X ◦ λ−1

X

)
=
∫
λ−1

X (TFX)
pS ◦ λX dδA×TX+1

X

= (pS ◦ λX)(X) = δA×X+1
X (S) .

With this result at hand we can finally apply Corollary 3.28 to the measurable spaces ∅, A∗,
Aω, A∞, each of which is of course equipped with the σ-algebra generated by the covering
semirings S0, S∗, Sω, S∞ as defined in Proposition 3.5, to obtain the final coalgebra and
the induced trace semantics for PTS as presented in the following theorem.

Theorem 3.33 (Final Coalgebra and Trace Semantics for PTS). Let (T, η, µ) be either the
sub-probability monad (S, η, µ) or the probability monad (P, η, µ) and F be either A×IdMeas
or A × IdMeas + 1. A PTS (A, X, α) is an F -coalgebra (X,α) in K`(T ) and vice versa.
In the following table we present the (carriers of) final F -coalgebras (Ω, κ) in K`(T ) for all
suitable choices of T and F (depending on the type of the PTS).

Type � Monad T Endofunctor F Carrier Ω
0 S A× IdMeas (∅, {∅})
∗ S A× IdMeas + 1 (A∗, σA∗(S∗))
ω P A× IdMeas (Aω, σAω (Sω))
∞ P A× IdMeas + 1 (A∞, σA∞(S∞))

where for � ∈ {∗, ω,∞} we have κ = ηFΩ ◦ ϕ where ϕ is the isomorphism as defined in
Proposition 3.29 and for � = ∅ we take κ = ηF∅ ◦ ϕ with ϕ being the empty function
ϕ : ∅ → ∅. The unique arrow into the final coalgebra is the map tr : X → TΩ given by
Definition 3.11.
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Proof. For the whole proof we always assume that the combinations of the type � of the
PTS, the monad T , the endofunctor F and the carrier (Ω,ΣΩ) are chosen as presented in the
table given in the corollary. Thus e.g. � = ∗ automatically yields T = S, F = A×IdMeas+1,
Ω = A∗, ΣΩ = σA∗(S∗) and we automatically work in the Kleisli category K`(S) of the sub-
probability monad. The first statement of the theorem is obvious by construction of the
transition function α. For � ∈ {∗, ω,∞} we remark that the preconditions of Corollary 3.28
are fulfilled and aim at applying this corollary, and especially at evaluating equation (3.11)
for the covering semirings S∗,Sω,S∞. Let us carry out these calculations in various steps
to obtain all the equations of Definition 3.11. For all (b, x′) ∈ A×X we calculate

(λΩ ◦ F (tr))(b, x′) =
{
δAb ⊗ tr(x′), � = ω

δAb � tr(x′), � ∈ {∗,∞} .
Now suppose S is chosen as S = {au}, S = auAω or S = auA∞ respectively for an
arbitrary a ∈ A and an arbitrary u ∈ A∗. Then ϕ(S) = {a} × S′ with S′ = {u}, S′ = uAω
or S′ = uA∞ respectively and hence we obtain

(pϕ(S) ◦ λΩ ◦ F (tr))(b, x′) = δAb ⊗ tr(x′)({a} × S′)
= δAb ({a}) · tr(x′)(S′) = χ{a}×X(b, x′) · tr(x′)(S′) .

Using this, we evaluate equation (3.11) of Corollary 3.28 for these sets and get

tr(x)(S) =
∫

(b,x′)∈{a}×X
tr(x′)(S′) dα(x) =

∫
x′∈X

tr(x′)(S′) dPa
(
x, x′

)
which yields equations (3.3) and (3.5) of Definition 3.11. For � ∈ {∗,∞} we calculate

(λΩ ◦ F (tr))(X) = δA×Ω+1
X

and conclude that for z ∈ A × X + 1 we have (pϕ({ε}) ◦ λΩ ◦ F (tr))(z) = 1 if and only if
z = X. Hence evaluating equation (3.11) in this case yields

tr(x)({ε}) =
∫
pϕ({ε}) ◦ λΩ ◦ F (tr) dα(x) =

∫
χ1 dα(x) = α(x)(1)

which is equation (3.2). For � ∈ {ω,∞} we have tr(x)(A�) = 1 due to the fact that tr(x)
must be a probability measure. This is already equation (3.4) because A� = εA�. Moreover
ϕ(εA�) = ϕ(Ω) = FΩ and since also λΩ ◦ F (tr) must be a probability measure evaluating
(3.11) yields the same:

tr(x)(εA�) =
∫
pϕ(εA�) ◦ λΩ ◦ F (tr) dα(x) =

∫
1 dα(x) = α(x)(FX) = 1 .

Finally, for � = 0 we remark, that the K`(S)-object (∅, {∅}) is the unique final object of
K`(S): Given any K`(S)-object (X,ΣX), the unique map into the final object is given as
f : X → S(∅) = {(p : {∅} → [0, 1], p(∅) = 0)} mapping any x ∈ X to the unique element of
that set. Moreover, (∅, {∅}) together with κ = ηF∅ ◦ ϕ, where the map ϕ : ∅ → A× ∅ is the
obvious and unique isomorphism (∅,P (∅)) ∼= (A × ∅,P (A) ⊗ P (∅)), is a F -coalgebra and
thus final.

In all cases we have obtained exactly the equations from Definition 3.11 which by
Proposition 3.12 yield a unique function tr : X → TA�. From Proposition 3.26 we know
that this function is indeed a Kleisli arrow.
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4. Examples

In this section we will define and examine two truly continuous probabilistic systems and
calculate their trace measures or parts thereof. However, in order to deal with these systems,
we first need to provide some additional measure theoretic results and tools. At first, we
will explain the counting measure on countable sets and also the Lebesgue measure as this is
“the” standard measure on the reals. Afterwards we will take a quick look into the theory
of measures with densities. With these tools at hand we can finally present the examples.
All of the presented results should be contained in any standard textbook on measure and
integration theory. We use [Els07] as our primary source for this short summary.
Definition 4.1 (Counting Measure). Let X be a countable set. The counting measure on
(X,P (X)) is the cardinality map

#: P (X)→ R+, A 7→ |A| (4.1)
assigning to each finite subset of X its number of elements and ∞ to each infinite subset
of X. It is uniquely defined as the extension of the σ-finite pre-measure on the set of all
singletons (and ∅) which is 1 on every singleton and 0 on ∅.

4.1. Completion and the Lebesgue Measure. The (one-dimensional) Lebesgue-Borel
measure is the unique measure λ′ on the reals equipped with the Borel σ-algebra B(R)
satisfying λ′ ((a, b]) = b − a for every a, b ∈ R, a ≤ b. In order to obtain the Lebesgue
measure, we will refine both the measure and the set of measurable sets by completion. We
call a measure space (X,Σ, µ) complete if every subset of a µ-null-set (i.e. a measurable
set S ∈ Σ such that µ(S) = 0) is measurable (and necessarily also a µ-null-set). For
any measure space (X,Σ, µ) there is always a smallest complete measure space (X, Σ̃, µ̃)
such that Σ ⊆ Σ̃ and µ̃|Σ = µ called the completion ([Els07, II. §6]). The completion of
the Lebesgue-Borel measure yields the Lebesgue σ-algebra L and the Lebesgue measure12

λ : L → R. For the Lebesgue measure we will use the following notation for integrals:∫ b

a
f dx :=

∫
[a,b]

f dλ .

4.2. Densities. When dealing with measures on arbitrary measurable spaces – especially
in the context of probability measures – it is sometimes useful to describe them using so-
called densities. We will give a short introduction into the theory of densities here which
is sufficient for understanding the upcoming examples. Given a measurable space (X,ΣX)
and measures µ, ν : ΣX → R+ we call a Borel-measurable function f : X → R satisfying

ν(S) =
∫
S
f dµ (4.2)

for all measurable sets S ∈ ΣX a µ-density of ν. In that case µ(S) = 0 implies ν(S) = 0
for all measurable sets S ∈ ΣX and we say that ν is absolutely continuous with respect to
µ and write ν � µ. Densities are neither unique nor do they always exist. However, if ν
has two µ-densities f, g then f = g holds µ-almost everywhere, i.e. there is a µ null set
N ∈ ΣX such that for all x ∈ X \ N we have f(x) = g(x). Moreover, any such µ-density
uniquely defines the measure ν. If µ = λ, i.e. µ is the Lebesgue-measure, and (4.2) holds

12This is the second meaning of the symbol λ. Until here, λ was used as symbol for a distributive law.



COALGEBRAIC TRACE SEMANTICS FOR CONTINUOUS PTS 29

for a measure ν and a function f , then f is called Lebesgue density of ν. For our examples
we will make use of the following Proposition which can be found e.g. in [Els07, IV.2.12
Satz].

Proposition 4.2 (Integration and Measures with Densities). Let (X,ΣX) be a measurable
space and let µ, ν : ΣX → R+ be measures such that ν has a µ-density f . If g : X → R+ is
ν-integrable, then

∫
g dν =

∫
gf dµ.

4.3. Examples. With all the previous results at hand, we can now present our two con-
tinuous examples using densities to describe the transition functions.

Example 4.3. We will first give an informal description of this example as a kind of one-
player-game which is played in the closed real interval [0, 1]. The player, who is in any point
z ∈ [0, 1], can jump up and will afterwards touch down on a new position x ∈ [0, 1] which
is determined probabilistically. After a jump, the player announces, whether he is left “L”
or right “R” of his previous position. The total probability of jumping from z to the left is
z and the probability of jumping to the right is 1− z. In both cases, we have a continuous
uniform probability distribution. As we are within the set of reals, the probability of hitting
a specific point x0 ∈ [0, 1] is always zero. Let us now continue with the precise definition
of our example. Let A := {L,R}. We consider the PTS ({L,R} , [0, 1], α) where [0, 1]
is equipped with the Lebesgue σ-algebra of the reals, restricted to that interval denoted
L([0, 1]). The transition probability function α : [0, 1]→ P([0, 1]) is given as

α(z)(S) =
∫
S
fz d(#⊗ λ)

for every z ∈ [0, 1] and all sets S ∈ P ({L,R})⊗ L([0, 1]) with the (#⊗ λ)-densities
fz : {L,R} × [0, 1]→ R+, (a, x) 7→ χ{L}×[0,z](a, x) + χ{R}×[z,1](a, x) .

We observe that S 7→ PL (z, S) , S 7→ PR (z, S) : L([0, 1]) → R+ thus have Lebesgue-
densities

PL (z, S) =
∫
S
χ[0,z] dλ =

∫
S
χ[0,z](x) dx, PR (z, S) =

∫
S
χ[z,1] dλ =

∫
S
χ[z,1](x) dx .

with the following graphs (in the real plane)

1

0 z 1

χ[0,z]

χ[z,1]

χ[z,1]

χ[0,z]

Evaluating these measures on [0, 1] yields

PL (z, [0, 1]) =
∫ z

0
1 dx = z, PR (z, [0, 1]) =

∫ 1

z
1 dx = 1− z .



30 HENNING KERSTAN AND BARBARA KÖNIG

With these preparations at hand we calculate the trace measure on some cones.
tr(z)(εAω) = 1

tr(z)(LAω) =
∫

[0,1]
1 dPL

(
z, z′

)
= PL (z, [0, 1]) = z

tr(z)(RAω) =
∫

[0,1]
1 dPR

(
z, z′

)
= PR (z, [0, 1]) = 1− z

tr(z)(LLAω) =
∫

[0,1]
x dPL (z, x) =

∫ 1

0
x · χ[0,z](x) dx =

∫ z

0
x dx =

[1
2x

2
]z

0
= 1

2z
2

tr(z)(LRAω) =
∫

[0,1]
1− x dPL (z, x) =

∫ z

0
(1− x) dx =

[
x− 1

2x
2
]z

0
= z − 1

2z
2

tr(z)(RLAω) =
∫

[0,1]
x dPR (z, x) =

∫ 1

0
x · χ[z,1](x) dx =

∫ 1

z
x dx =

[1
2x

2
]1

z
= 1

2 −
1
2z

2

tr(z)(RRAω) =
∫

[0,1]
1− x dPR (z, x) =

∫ 1

z
(1− x) dx =

[
x− 1

2x
2
]1

z
= 1

2 − z + 1
2z

2

Thus for any word u ∈ A∗ of length n there is a polynomial pu ∈ R[Z] in one variable Z
with degree deg(pu) = n. Evaluating this polynomial for an arbitrary z ∈ [0, 1] yields the
value of the trace measure tr(z) on the cone uAω generated by u, i.e. tr(z)(uAω) = pu(z).

While the previous example provides some understanding on how to describe a con-
tinuous PTS and also on how to calculate its trace measure, we are interested in trace
equivalence. The second example will thus be a system which is trace equivalent to a finite
state system.

Example 4.4. As before, we will give an informal description as a kind of one-player-
game first. There is exactly one player, who starts in any point z ∈ R, jumps up and
touches down somewhere on the real line announcing whether he is left “L” or right “R”
of his previous position or has landed back on his previous position “N”. The probability
of landing is initially given via a normal distribution centered on the original position z.
Thus, the probability of landing in close proximity of z, i.e. in the interval [z − ε, z + ε],
is high for sufficiently big ε ∈ R+ \ {0} whereas the probability of landing far away, i.e.
outside of that interval, is negligible. The player has a finite amount of energy and each
jump drains that energy so that after finitely many jumps he will not be able to jump again
resulting in an infinite series of “N” messages. Before that the energy level determines the
likelihood of his jump width, i.e. the standard deviation of the normal distributions. Now
let us give a formal description of such a system. Recall that the density function of the
normal distribution with expected value13 µ ∈ R and standard deviation σ ∈ R+ \ {0} is
the Gaussian function

ϕµ,σ : R→ R+, ϕµ,σ(x) = 1
σ
√

2π
· exp

(
−1

2

(
x− µ
σ

)2
)

with the following graph (in the real plane), often called the “bell curve".
13This is the third meaning of µ. Until here, µ was used as symbol for a measure and also as a symbol

for the multiplication natural transformation of a monad.
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z

ϕ

Let now the finite “energy level” or “time horizon” (which is the maximal number of jumps)
T ∈ N, T ≥ 2 be given. We consider the PTS with alphabet A := {L,N,R}, state space
(N0 × R,P (N0) ⊗ L) and transition probability function α : N0 × R → P (A× N0 × R)
which we define in two steps. For all (t, z) ∈ N0 × R with t < T and all measurable sets
S ∈ P (A)⊗ P (N0)⊗ L we set

α(t, z)(S) :=
∫
S
f(t,z) d(#⊗#⊗ λ)

where the (#⊗#⊗ λ)-density f(t,z) is

f(t,z) : A× N0 × R→ R+, (a, t′, x) 7→


χ(−∞,z](x) · ϕz,1/(t+1)(x), a = L ∧ t′ = t+ 1
χ[z,+∞)(x) · ϕz,1/(t+1)(x), a = R ∧ t′ = t+ 1
0, else.

Thus in the first two cases the density is the left (or right) half of the Gaussian density
function with expected value µ = z and standard deviation σ = 1/(t+ 1) and the constant
zero function in all other cases. For the remaining (t, z) ∈ N0 ×R with t ≥ T we define the
transition probability function to be

α(t, z) := δA×N0×R
(N,t+1,z) .

We observe that for (t, z) ∈ N0 × R with t < T we have PN ((t, z),N0 × R) = 0 and

PL ((t, z),N0 × R) =
∫ z

−∞
ϕz,1/(t+1)(x) dx = 1

2 =
∫ ∞
z
ϕz,1/(t+1)(x) dx = PR ((t, z),N0 × R) .

For t ≥ T we have PN ((t, z),N0 × R) = 1 and PL ((t, z),N0 × R) = PR ((t, z),N0 × R) = 0.
When we combine these results we obtain the trace measure. For t < T we get

tr(t, z) =
∑

u∈{L,R}T−t

(1
2

)T−t
· δAω

uNω

and for t ≥ T the trace measure is tr(t, z) = δA
ω

Nω . Obviously the trace measure does not
depend on z, i.e. tr(t, z1) = tr(t, z2) for all t ∈ N and all z1, z2 ∈ R. Moreover, there is a
simple finite state system which is trace equivalent to this system. The finite system has the
same alphabet A, its state space is ({0, . . . , T} ,P ({0, . . . , T})), and the transition function
α : {0, . . . , T} → P (A × {0, . . . , T}) is given as follows

0 1 2 T − 1 T

L, 1/2

R, 1/2

L, 1/2

R, 1/2

L, 1/2

R, 1/2

N, 1
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i.e. for t < T we define

α(t) = 1
2 ·
(
δ
A×{0,...,T}
(L,t+1) + δ

A×{0,...,T}
(R,t+1)

)
and for t = T we define α(t) = δ

A×{0,...,T}
(N,T ) .

5. Conclusion, Related and Future Work

We have shown how to obtain coalgebraic trace semantics for generative probabilistic tran-
sition systems in a general measure-theoretic setting, thereby allowing uncountable state
spaces and infinite trace semantics. Especially we have presented final coalgebras for four
different types of probabilistic systems.

There is a huge body of work on Markov processes and probabilistic transition systems,
but only part of it deals with behavioral equivalences, as in our setting. Even when the focus
is on behavioral equivalences, so far usually bisimilarity and related equivalences have been
studied (see for instance [LS89]), neglecting the very natural notion of trace equivalence.
Furthermore many papers restrict to countable state spaces and discrete probability theory.

Our work is clearly inspired by [HJS07], which presents the idea to obtain trace equiva-
lence by considering coalgebras in suitable Kleisli categories, generalizing their instantiation
of generative probabilistic systems to a general measure-theoretic setting and considering
new types of systems. Different from the route we took in this paper, another option might
have been to extend the general theorem (Theorem 3.3) of [HJS07]. The theorem gives
sufficient conditions under which a final coalgebra in a Kleisli category coincides with an
initial algebra in the underlying category Set. This theorem is given for Kleisli categories
over Set and requires that the Kleisli category is Cppo-enriched, i.e., each homset carries
a complete partial order with bottom and some additional conditions hold. This theorem
is non-trivial to generalize. First, it would be necessary to extend it to Meas and second –
and even more importantly – the requirement of the Kleisli category being Cppo-enriched
is quite restrictive. For the case of the sub-probability monad a bottom elements exist (the
arrow which maps everything to the constant 0-measure), but this is not the case for the
probability monad, which is the more challenging part, giving rise to infinite words. Hence
we would require a different approach, which can also be seen by the fact that in the case
of the probability monad the final coalgebra is not the initial algebra in Meas.

The study of probabilistic systems using coalgebra is not a new approach. An extensive
survey on the coalgebraic treatment of these systems can be found in [Sok11] including
an overview of various different types of transition systems containing probabilistic effects
alongside user-input, non-determinism and termination, extensions that we did not consider
in this paper (apart from termination).

A thorough consideration of coalgebras and especially theorems guaranteeing the ex-
istence of final coalgebras for certain functors on Meas is given in [Vig05] but since all
these are coalgebras in Meas and not in the Kleisli category over a suitable monad, the
obtained behavioral equivalence is probabilistic Larsen-Skou [LS89] bisimilarity instead of
trace equivalence and the results do not directly apply to our setting.

Also, in [Dob07a] and [Pan09] a very thorough and general overview of properties of
labelled Markov processes including the treatment of and the evaluation of temporal logics
on probabilistic systems is given. However, the authors do not explicitly cover a coalgebraic
notion of trace semantics.
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Infinite traces in a general coalgebraic setting have already been studied in [Cîr10].
However, this generic theory, once applied to probabilistic systems, is restricted to coalge-
bras with countable carrier while our setting, which is undoubtedly specific and covers only
certain functors and branching types, allows arbitrary carriers for coalgebras of probabilistic
systems.

As future work we plan to apply the minimization algorithm introduced in [ABH+12]
and adapt it to this general setting, by working out the notion of canonical representatives
for probabilistic transition system. We are especially interested in comparing this to the
canonical representatives for weak and strong bisimilarity presented recently in [EHS+13].

Furthermore we plan to define and study a notion of probabilistic trace distance, similar
to the distance measure (for bisimilarity) considered in [vBW05a, vBW05b]. We are also
interested in algorithms for calculating this distance, perhaps similar to what has been
proposed in [CvBW12] for probabilistic bisimilarity or the more recent on-the-fly algorithm
presented in [BBLM13].
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