
Logical Methods in Computer Science
Volume 17, Issue 4, 2021, pp. 3:1–3:29
https://lmcs.episciences.org/

Submitted Jan. 26, 2021
Published Oct. 25, 2021

MODAL FUNCTIONAL (“DIALECTICA”) INTERPRETATION

DAN HERNEST a AND TRIFON TRIFONOV b

a Romanian Institute of Science and Technology, Cluj-Napoca, Romania

e-mail address: danhernest@gmail.com

b Faculty of Mathematics and Informatics, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria

e-mail address: triffon@fmi.uni-sofia.bg

Abstract. We adapt our light Dialectica interpretation to usual and light modal formulas

(with universal quantification on boolean and natural variables) and prove it sound for

a non-standard modal arithmetic based on Gödel’s T and classical S4. The range of this

light modal Dialectica is the usual (non-modal) classical Arithmetic in all finite types (with

booleans); the propositional kernel of its domain is Boolean and not S4. The ‘heavy’ modal

Dialectica interpretation is a new technique, as it cannot be simulated within our previous

light Dialectica. The synthesized functionals are at least as good as before, while the

translation process is improved. Through our modal Dialectica, the existence of a realizer

for the defining axiom of classical S5 reduces to the Drinking Principle (cf. Smullyan).

Functional interpretations derived from Gödel’s computability adaptation [Göd58] of

Aristotle’s insights have been continuously developed over the years for constructive purposes.

Modelizations and unified presentations abound [DO21], as well as practical mathematical

results from Kohlenbach’s Proof Mining [Koh08] continuation of Kreisel’s Unwinding of

Proofs. When it comes to employing such proof interpretations for the synthesis of concrete

computer code (certified by construction), only the quasi-direct reading of programs from

already constructive proofs of input-output specifications has enjoyed a good measure of

social success in academia (e.g., [Let08]), while the industrial applications rather fall into the

proof-carrying code paradigm (e.g., [MPMU04]). Yet a good number of prototype examples

have been worked out under the general umbrella of program extraction from classical proofs

(e.g., [Raf04, RT12]).

In [Tri09], the second author thoroughly presented how Gödel’s Dialectica interpretation

can be completely deconstructed from its full computational essence down to a symbolic

Key words and phrases: Kreisel implication, extractive Proof Theory, quantified modal logic, automatic

program synthesis, code-carrying classical proofs, Proof Mining .

The first author acknowledges support by the European Regional Development Fund and the Romanian

Government through the Competitiveness Operational Programme 2014–2020, project ID P 37 679, MySMIS

code 103319, contract no. 157/16.12.2016 .

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-17(4:3)2021
© D. Hernest and T. Trifonov
CC© Creative Commons

https://lmcs.episciences.org/
danhernest@gmail.com
triffon@fmi.uni-sofia.bg
http://creativecommons.org/about/licenses

3:2 D. Hernest and T. Trifonov Vol. 17:4

null transformation1. However, the flag apparatus for decorating2 both quantifiers and

implications (throughout the input proofs) tends to become too complex for human operators

(so that Oliva’s detour to the linear logic substructure [Oli12] may seem a better alternative).

Here we propose a middle path between removing computational content of (‘computa-

tionally correct’) proofs via the second author’s “deep annotation” mechanism and Oliva’s

“shallow annotation” equivalent approach (cf. Section 6 of [Tri09]). We will thus use � , a

single switch, directly at the level of natural proofs. Although � cannot be simulated within

our previous light Dialectica (hence is a strict addition to our previous light Arithmetic), it

certainly is implementable within either of Trifonov’s or Oliva’s systems.

The purpose of our approach has been the rapid implementation in the actual Minlog

system (cf. [Sea] and Chapter 7 of [SW11], in particular Section 7.4). Indeed, � was

implemented (cf. [HT]) as “syntactic sugar” over the ‘non-computational’ implication -->

seen as Kreisel implication.

Our modal systems are normal according to the definition from [Fit07], and non-standard

since the normality scheme AxK is (syntactically) derivable from the axiom scheme AxT.

1. Introduction

The present work supersedes the functional synthesis technique outlined in our previous

paper [HT10] by adding a useful device for (homogeneously) combining the effect of previous

optimizations by partly and fully uniform quantifiers in a compact releaser of constructive

potential, namely the modal operator � (and its weak co-modality ♦̃ ≡ ¬ � ¬). Proofs

which are not necessarily prima facie constructive may yet potentially contain constructive

content; in order to make use of this constructive ‘charge’ contained in a (non-constructive)

proof, various ‘release’ instruments have been created over the past decades.

We will prove that � is not “syntactic sugar” over the functional interpretation of

[HT10], but a genuinely new device (albeit synthesized out of previous works), cf. Section 4.3.

We also bring the following result (cf. Theorem 4.2): while the modal propositional axioms

of system S4 are realizable, the defining axiom of S5 is not realizable, in general, under the

modal functional interpretation, by primitive recursive functionals of finite type.

The use and interpretation of modal operators in this paper were inspired by the work of

Oliva (partly joint with the first author, see [HO08]) at the linear logic level, see [Oli07, Oli12].

It is no coincidence that, at formula level, our interpretation of �A is syntactically the same

as Oliva’s modified realizability interpretation of !A in intuitionistic linear logic. However, a

certain detour would be needed in order to simulate �A in terms of !A, which may be less

suitable for the processing of natural proofs by humans (see Remark 1.23 in [Gir87]).

The second author independently noticed the possibility of using the same supra-linear

modal operators for light program extraction in [Tri09], see also [Tri12]. However, the

1See also Chapter 5 of [Tri12] for a more comprehensive exposition, in particular Section 5.5.1, page 129.
2Note that in [Tri12] (±) characterizes full lack of computational content and corresponds to (∅) here, (+)
stands for partial content from the negative side and corresponds to (−) here, and (−) from [Tri12] denotes
partial content from the positive side hence corresponds to (+) here. Basically polarities were reversed by
the second author (already since [Tri09]) due to his reconstructive approach which is otherwise dual (for
quantifiers) to our constructive approach here. See also Footnote 2 on page 6 of [Tri09].

Vol. 17:4 MODAL FUNCTIONAL (“DIALECTICA”) INTERPRETATION 3:3

initiative of studying the full employment of � for more efficient functional synthesis in the

formal context of the negative fragment of first-order modal logic (cf. Schütte [Sch68] and

Prawitz [Pra65]) is due to the first author. As we will see, for our extractive purposes it is

useful to depart from Schütte’s original semantics for quantified modal logic. For example,

the propositional fragment of our first-order modal systems is not modal, but purely boolean,

as �p ≡ p ≡ ♦̃p for propositional atoms p.

We thus design two non-standard modal arithmetics, NAm ⊂ NAml , for functional

program synthesis. The soundness of these input systems is syntactically given via our (light)

modal functional interpretation by the target system, namely classical decidable-predicate

Arithmetic with higher-type functionals, in a Natural Deduction presentation.3

For an easier exposition we will give up the ‘non-standard’ prefix. Throughout the

paper, our modal Arithmetics are non-standard (relative to the conservative extensions of S4
due to Prawitz and Schütte) but they resulted in a natural manner relative to the Dialectica

interpretation. It turns out that NAm intrinsically relates to the modally closed subset of

Prawitz’s C′S5 (cf. [Pra65], page 77); see also Remark 4.4.

Note that there was some attention to formalizing Quantified Modal Logic stemming

from Artificial Intelligence (cf. [FHD12]) and there is a dedicated Chapter 12 in [NvP11].

2. Arithmetical systems for light and /or modal Dialectica extraction

We build upon functional arithmetical systems NA and (the light annotated) NAl from

[HT10]. While the verifying system NA basically is the Arithmetic Z of Berger, Buchholz

and Schwichtenberg [BSB02] in a slightly different presentation which is more suitable for

light functional synthesis and features classical logic (without strong existence) and full

extensionality4, its light counterpart NAl is only partly classical.

Moreover, the input system NAl is weakly extensional and its contraction (and hence

also induction) rule is restricted for soundness of the (light) functional interpretation of

NAl into NA . In computing terms, the program synthesis algorithm provided by the light

Dialectica (of [HT10], as inherited from the one5 of [Her06]) produces correct output only

modulo the above-mentioned restrictions on Extensionality and Contraction6. If not for the

weak extensionality, NAl were a conservative extension of NA .

For (light) modal functional synthesis we will use the same verifying system NA .

The simpler input system NAm is obtained by adding � to a restricted variant of NA .

This (weakly extensional) modal Arithmetic will be proved sound via the modal Dialectica

3Note that soundness of Schütte’s predicate modal logics (e.g., S?
4) is proved non-constructively, using models,

see [Sch68] (cf. Chapter I, §4).
4As inherited from system Z, our NA is mostly a Natural Deduction presentation of the so-called ‘negative
arithmetic’ from [Tro73], basically a Gödel-Gentzen embedding of classical into Heyting Arithmetic HAω .
5The restriction on extensionality is at its turn inherited from Gödel’s functional interpretation (cf. [AF98],
see also [Göd58]), whereas the restriction on contraction was initially added by the first author in [Her06], as
it was imposed by the necessity of decidability of the translation of light contraction formulas.
6These restrictions are more relaxed than those from the first author’s PhD thesis and weaker than Gödel’s
restriction on extensionality, Kreisel’s avoidance of contraction in his Modified Realizability [Kre59] and
Girard’s total elimination of contraction in his original Linear Logic [Gir87].

3:4 D. Hernest and T. Trifonov Vol. 17:4

interpretation. The fully-fledged input system NAml adds to NAm all light universal

quantifiers and is a modal extension of NAl ; its soundness will be given by the light modal

Dialectica interpretation. Together with our new systems NAm and NAml we will also

present the relevant details of arithmetics NA and NAl . Nonetheless for the full picture7 we

refer the reader to [HT10] (see also [Tri09] for a more complete picture).

We will use the same kind of Natural Deduction (“ND”) presentation8 of our systems,

where proofs are represented as sequents Γ ` B , meaning that formula B is the root of the

ND tree whose leaves Γ are typed assumption variables (“avars”) a :A . Here formula A is

the type of the avar a and Γ is a multiset (since there may be more leaves labeled with the

same a :A , cf. [Pra65]-Appendix C-§2, “Variants of Gentzen-type systems”).

The sets of finite types T , terms T (of Gödel’s T), formulas F (of NA) and Fl (of

NAl), and, with the addition of � , formulas Fm of NAm and Fml of NAml are defined as

follows:

T ρ, σ ::= N | B | (ρ σ)

T s, t ::= xρ | T B | F B | 0 N | S N N | If B ρ ρ ρ | R N ρ(N ρ ρ)ρ | (λxρ . tσ)ρ σ | (tρ σ sρ)σ

F A,B ::= at(tB) | A→ B | A ∧ B | ∀xρA ⊥ :≡ at(F) , ¬A :≡ A→ ⊥

Fl A,B ::= at(tB) | A→ B | A ∧ B | ∀xρA | ∀{∅,+,−}xρA ∃̃xρA :≡ ¬ ∀xρ ¬A

Fm A,B ::= at(tB) | A→ B | A ∧ B | ∀xρA | �A ♦̃A :≡ ¬ � ¬A

Fml A,B ::= at(tB) | A→ B | A ∧ B | ∀xρA | �A | ∀{∅ ,+ ,−}xρA

For simplicity we employ two basic types: integers N and booleans B , and use ρ σ τ

for (ρ (σ τ)) . Building blocks for terms are the constructors for booleans [T , F] (true

and false, both of type B), integers [0 , S] (zero, of type N and successor, of type N N),

T -polymorphic case distinction If and T -polymorphic Gödel recursion R .

Atomic formulas at(tB) are decidable by definition, as they are identified with boolean

terms tB . In particular, we have decidable falsity ⊥ :≡ at(F) and truth > :≡ at(T) .

We abbreviate A→ ⊥ by ¬A . The partially light universal quantifiers ∀+ , ∀− (partly

computational) and ∀∅ (non-computational) are inherited from [HT10].

The universal quantifier ∀ , axiomatized as usual in Natural Deduction, will have full

computational content in the input systems. The weak existential quantifier ∃̃ is defined

for formulas in all our systems as ∃̃xρA :≡ ¬ ∀xρ ¬A . The weak co-modality operator

♦̃ is defined for formulas in Fm and Fml as ♦̃A :≡ ¬ � ¬A .

7In this paper we give a more detailed treatment of induction for numbers and we correct the typo in the
definition of CMP: on page 1382 of [HT10], it is s instead of x and t instead of y, cf. (2.1) and Section 2.4.
8A similar presentation style was employed by de Paiva in her categorical approach to linear logic (with
modalities, see Sections 1.5 and 4.6 of [dP91]), as imported from [GL87].

Vol. 17:4 MODAL FUNCTIONAL (“DIALECTICA”) INTERPRETATION 3:5

We purposefully avoid specifying types for terms insofar they can be deduced from

the meta-context. In all our systems, the meta-operator FV (·) will return the set of free

variables of its argument, which can be a term or a formula.

Term system T . Computation in our systems is expressed by means of the usual β-

reduction rule (λx.t)s ↪→ t[x 7→ s] , together with the rewrite rules defining the computational

meaning of If and R :

If T s t ↪→ s R 0 s t ↪→ s

If F s t ↪→ t R (Sn) s t ↪→ t n (R n s t)

Since this typed term system is confluent and strongly normalizing (cf. Section 6.2.5 of

[SW11]), we are free not to fix a particular evaluation strategy.

For simplicity, we will assume that all terms occurring in our formal proofs automatically

get into normal form, as normalization is necessary only when matching terms in formulas.

We thus avoid introducing equality axioms like in [Her06] and skip the corresponding easy

applications of extensionality. In conclusion, some computations get to be carried out

implicitly when building proofs in our systems9.

Using recursion at higher types we can define any provably total function of ground

arithmetic, including decidable predicates such as equality Eq B for booleans and Eq N for

natural numbers:

Eq B
B B B :≡ λx. If x (λy . y) (λy . If y F T)

Eq N
N N B :≡ λx. R x

(
λy . R y T (λn, qB . F)

) (
λm, pN B , y . R y F (λn, qB . p n)

)

2.1. The verifying system NA . The logical rules of system NA are presented in Table 2,

with the usual restriction on ∀i (universal quantifier introduction) that

z 6∈ FV (Γ) :≡
⋃
a :A ∈ Γ FV (A)

At →i , [a :A] denotes the unique occurrence of a :A in the multiset of assumptions of

the premise sequent of →i . Thus a :A 6∈ Γ , hence a :A is no longer an assumption in the

conclusion sequent of →i . In the usual tree representation of Natural Deduction proofs, the

leaf labeled “a :A” gets inactivated10, after (possibly) multiple of its copies had (all) been

equalized to it via instances of the contraction anti-rule (henceforth called “contractions”).

While for NA itself one could allow that all contractions be handled implicitly at →i ,

in relationship with the architecture of light input systems (e.g.,NAl , cf. Section 2.2) we

are compelled to introduce for NA the contraction anti-rule C in association with the

corresponding Cl (of, e.g.,NAl , cf. Table 4).

We refer to contraction as “anti-rule”, rather than “rule” because, despite the sequent-

like representation of our calculi, in fact our formalisms are ND and in the ND directed tree

9This is just Minlog’s mechanism, cf. [Sea], see also [HT] for our personalized distribution.
10Or “discharged”, as one usually says in Natural Deduction terminology.

3:6 D. Hernest and T. Trifonov Vol. 17:4

CmpAx: ` x =ρ y → A(x) → A(y)

TruAx: ` at(T)

Γ	 l̀ s =ρ t
CMPρ

Γ	 l̀ B(s)→ B(t)

Table 1: Basic axioms, with CmpAx replaced by CMP rule in NAl , see (2.1) and Section 2.4

a :A ` A (id)
Γ , [a :A] ` B

→i

Γ ` A→ B

Γ ` A ∆ ` A→ B
→e

Γ , ∆ ` B

Γ ` A
∀i

Γ ` ∀z A

Γ ` A ∧ B
∧e0

Γ ` A

∆ ` A ∧B
∧e1

∆ ` B

Γ ` A ∆ ` B
∧i

Γ , ∆ ` A ∧B

Γ ` ∀z A
∀e

Γ ` A[z 7→ t]

Table 2: Logical rules, with z 6∈ FV (Γ) at ∀i and contractions due to →e and ∧i
explicitated as anti-rules, see Table 4; no implicit contractions at →i

Γ l̀ A
∀i�

Γ l̀ ∀� z A
and

Γ l̀ ∀� z A
∀e�

Γ l̀ A[z 7→ t]
for � ∈ {∅ , + , −}

Table 3: Additional rules for NAl , with extra restrictions on ∀i+ , ∀i− and ∀i∅ , see (+), (−)
and (∅) in Section 2.2

∆ , a :A, a :A ` B
C

∆ , a :A ` B

∆ , a :A, a :A l̀ B
Cl

∆ , a :A l̀ B

Table 4: Contraction anti-rules C for NA and (F-restricted) Cl for NAl , see Remark 2.1

Γ ` A(T) ∆ ` A(F)
Ind B

Γ , ∆ ` A(b)

Γ ` A(0) ∆ ` A(n)→ A(Sn)
Ind N

Γ , ∆ ` A(n)

Γ l̀ A(0) ∆ l̀ A(n) → A(Sn)
Ind N

l
Γ] ∆ l̀ A(n)

Table 5: Induction rules, with Γ] ∆ instead of ‘ Γ , ∆ ’and ∆ restricted via F at the
induction over numbers of NAl , i.e., Ind N

l , see Section 2.5

Vol. 17:4 MODAL FUNCTIONAL (“DIALECTICA”) INTERPRETATION 3:7

the representation of explicit contractions is by convergent arrows that go in the direction

which is reverse to the direction of all the other rules11.

We find it convenient to introduce induction for booleans and numbers as the rules

presented in Table 5. Here we assume that the induction variables bB and respectively nN

do not occur freely in Γ , nor ∆ , and that they do occur in the formula A .

The at(·) construction allows us to view boolean programs as decidable predicates.

Given Ind B , its logical meaning is settled by the truth axiom TruAx , see Table 1. In this

way we can define predicate equality at base types as

s =σ t :≡ at(Eqσ s t) for σ ∈ { B , N }

and further at higher types, extensionally, as

s =ρ τ t :≡ ∀xρ (sx =τ tx)

It is straightforward to prove by induction on ρ that =ρ is reflexive, symmetric and

transitive at any type ρ .

To complete our system, we include in NA also the compatibility (i.e., extensionality)

axiom CmpAx , see Table 1. Note that ex falso quodlibet (EFQ) ⊥ → A and stability (Stab)

¬¬A → A are fully provable in NA (cf. Section 1.4 of [Tri12], by induction on the logical

structure of A , using TruAx and Ind B , see also Chapter 1 of [SW11] or [Sea]–10.6).

2.2. Input system NAl . Light formulas Fl were built over usual formulas F of NA

by adding three12 light universal quantifiers: the non-computational ∀∅ and the two semi-

computational ∀+ and ∀− (see also Footnote 2).

Thus, system NAl refined the adaptation of NA (with CMP for CmpAx and Cl for C) with

introduction and elimination rules for the light quantifiers (see Table 3). These are copies

of the regular ND rules ∀e and ∀i , but with the usual restriction on ∀i that z 6∈ FV (Γ)

enhanced with the following conditions13 referring to the interpretation of Γ l̀ A :

(+) in the ∀i+ rule, z may be used computationally only positively, i.e., z must not be free

in the challengers of the translation of Γ (basically z 6∈ ∪ni=1FV (t i), cf. Statement 2.3)

(−) in the ∀i− rule, z may be used computationally only negatively, i.e., z must not be free

in the witnesses of the translation of A (cf. Example 2.2; basically z 6∈ FV (t0))

(∅) in the ∀i∅ rule, z may not be used computationally at all, i.e., both (+) and (−).

11Sequentwise though, contraction is a rule, cf. pages 90,91 of [Pra65]-A-§1,§2.
12For the universal quantification with combined positive/negative computational content we here use ∀
instead of the more verbose ∀± from [HT10], as it should be clear from the meta-context whether an actual
instance of ∀ is in an input proof (hence part of NAl) or a verifying proof (thus part of NA).
13Restrictions (+), (−) and (∅) assume in-depth knowledge of subproofs, so that input proofs are defined
inductively in parallel with the extraction of part of their computational content (namely free variables of
already synthesized terms).

3:8 D. Hernest and T. Trifonov Vol. 17:4

Classes of realization irrelevant A⊕ and refutation irrelevant A	 formulas14 are defined

as follows (below t denotes no thing):

A⊕ , B⊕ ::= at(t) | A⊕ ∧ B⊕ | A	 → B⊕ | ∀�x A⊕ for � ∈ {∅,+,−,t}

A	 , B	 ::= at(t) | A	 ∧ B	 | A⊕ → B	 | ∀�x A	 for � ∈ {∅,+}

Since Dialectica is unable to interpret full extensionality (cf. [Koh01, Tro73]) one has

to replace CmpAx with a weak compatibility rule. We thus employ an upgraded variant of

the T -polymorphic CMP rule from [Her06] (herewith called light extensionality):

Γ	 l̀ s =ρ t
CMPρ

Γ	 l̀ B(s)→ B(t)
(2.1)

where all formulas in Γ	 are refutation irrelevant, i.e., the negative (challenge) position in

their translation (cf. Section 2.3 below) is empty.

The computationally irrelevant contractions of NAl (i.e., whose formula is refutation

irrelevant) can15 be handled implicitly at →i . The situation is different for those contractions

whose formula is refutation relevant (i.e., the computationally relevant contractions), as we

wanted to automatically ensure that their translation is decidable (instead of leaving the

task of decidability check to the user, as we shall for the upcoming modal systems).

The decidability of their translation is necessary for attaining soundness.

Remark 2.1 (restriction F on relevant contractions). We achieve a decidable translation

by including in NAl the contraction anti-rule Cl (see Table 4) where F: all formulas A that

are refutation relevant must not contain any ∀+ , nor ∀∅ . This triggered the addition to NA

of an explicit (unrestricted) contraction anti-rule C which is needed in the construction of

the verifying proof (it only applies to quantifier-free formulas |A |).

We thus ensured that all contraction formulas that require at least one challenger term

for their light interpretation would have quantifier-free (hence decidable) translations16. In

[HT10], in order to avoid having to deal with any computationally relevant contractions

implicitly at →i , we had constrained the deduction rules of NAl to disallow multiple

occurrences of refutation relevant assumptions in any of the premise sequents17.

We here no longer need such an explicit constraint, given the stronger (yet equivalent)

implicit constraint imposed by the requirement at →i that the cancelled assumption a :A is

a singleton. It is thus left to the implementation to lean towards lazy handling of contractions

(all gathered just before →i , suitable for parallel execution within eager environments, as

hinted by [Her06]) or the second author’s [Tri12] eager handling of contractions (so that

14A formula is realization irrelevant iff its tuple of witness variables is empty. A formula is refutation irrelevant
iff its tuple of challenge variables is empty. See the equivalent Remark 1 in Section 3 of [HT10].
15This was an instrumental compromise between the first author’s implementation with tuples (cf. [Her06])
and the second author’s implementation with pairs (cf. [Sea, Tri12], see also Section 7.4 of [SW11]).
16For the (light) modal Dialectica we will upgrade this purely syntactical criterion used in [HT10] (as inherited
from [Her06]), see Definition 3.6 at the end of Section 3.
17Thus, whenever a double occurrence of a refutation relevant assumption were created in a conclusion
sequent by one of the binary rules of NAl , such sequent could not be directly a premise for the application
of an(other) NAl rule: the anti-rule Cl had to be applied first, in order to eliminate the critical double.

Vol. 17:4 MODAL FUNCTIONAL (“DIALECTICA”) INTERPRETATION 3:9

assumptions basically form a set) that turned out to be better suited for the lazy evaluation

paradigm, or anything in-between18.

While EFQ : ⊥ → A remains fully provable also in NAl (for all formulas A ∈ Fl) the

situation changes for Stab : ¬¬A → A in the case of many formulas A that feature light

quantifiers in certain places19.

On the other hand, Stab is provable in NAl for A ∈ F or A conjunction-free.

2.3. Light functional interpretations. Any formula A of an input system is translated

to a not necessarily quantifier-free formula |A | xy of NA so that x , y are tuples of fresh

(not appearing in A) variables. The x in the superscript are the witness variables, while

subscript variables y are the challenge variables.

Terms t substituting witness variables (like |A | ty) are called realizing terms or

“witnesses” and terms s substituting challenge variables (like |A | xs) are called refuting

terms or “challengers”. The interpretation of specification A can be seen as a game20 in

which Eloise (∃) first and then Abelard (∀) make one move each by playing objects t and

s of corresponding types for the tuples x and respectively y .

Formula |A | xy specifies the not necessarily decidable (as it were for Gödel’s Dialectica)

“adjudication relation”. Eloise wins iff NA ` |A | ts .

Example 2.2 (Definition of light Dialectica translation of formulas, from [HT10]).

The interpretation preserves atomic formulas, i.e., | at(tB) | :≡ at(tB) . Assuming

|A | xy and |B | uv are already defined,

|A ∧ B | x , u
y , v

:≡ |A | x
y
∧ |B | u

v
and |A→ B | f , g

x , v
:≡ |A | x

f x v
→ |B | g x

v

The interpretation of the four universal quantifiers is (upon renaming, we assume that

quantified variables occur uniquely in a formula):

| ∀z A(z) | h
z, y

:≡ |A(z) | hz
y

| ∀+ z A(z) | h
y

:≡ ∀z |A(z) | hz
y

| ∀− z A(z) | x
z, y

:≡ |A(z) | x
y

| ∀∅ z A(z) | x
y

:≡ ∀z |A(z) | x
y

Since | ⊥ | ≡ ⊥ we get | ¬B | V
u
≡ ¬ |B | u

V u
hence | ¬¬A |X

Y
≡ ¬¬ |A |X Y

Y (X Y)
and also

| ¬ ∀z A(z) | Z , Y
h

≡ ¬ |A(Zh) | h (Z h)
Y h

| ¬ ∀− z A(z) | Z , Y
x

≡ ¬ |A(Zx) | x
Y x

| ¬ ∀+ z A(z) | Y
h

≡ ¬ ∀z |A(z) | h z
Y h

| ¬ ∀∅ z A(z) | Y
x

≡ ¬ ∀z |A(z) | x
Y x

18A monotone variant (cf. [Koh92], see also [Koh08]) would not care much of where to handle relevant
contractions, as it benefits from their easy realization via simple (default, or at most user provided) majorants.
19As outlined in Section 3.1 of [HT10] and noted already in [Her06], the usual proof in NA of Stab (constructed
by induction on A) unavoidably makes use of contractions over ¬¬(B ∧ C) for subformulas (B ∧ C) of A ,
and these are subject to the F restriction for refutation relevant B ∧ C . Even when such subformulas do
obey F, they may lead to the failure of restrictions (+), (−) or (∅).
20We acquired the game semantics interpretation (originating in [Bla92]) from works of Oliva.

3:10 D. Hernest and T. Trifonov Vol. 17:4

It is straightforward to compute (for weak existential counterparts ∃̃� x :≡¬ ∀�x¬ with

� ∈ { ∅ , + , − , }) that

| ∃̃ z A(z) | Z,H
Y

≡ ¬¬ | A(ZY) |H Y
Y (ZY) (H Y)

| ∃̃+ z A(z) |H
Y
≡ ∃̃z |A(z) |H Y

Y z (H Y)

| ∃̃− z A(z) | Z,H
Y

≡ ¬¬ | A(ZY) |H Y
Y (H Y)

| ∃̃∅ z A(z) |H
Y
≡ ∃̃z |A(z) |H Y

Y (H Y)

The length and types of the witnessing and challenging tuples are uniquely determined for a

given formula. [Note that cf. Definition 3.1, | � ∀z A(z) | h ≡ ∀z, y |A(z) | hz
y

]

Eloise will have a winning move whenever specification A is provable in the input system:

the light interpretation will explicitly provide it from the proof of A , as a tuple of witnesses

t [such that FV (t) ⊆ FV (A)] together with the verifying proof in NA of ∀y |A | ty
(Eloise wins by t regardless of the instances s for Abelard’s y).

The following parameterized statement gives a practical pattern in which soundness

theorems for Dialectica-based interpretations can uniformly be expressed in a ND setting.

The metavariables ISys and VSys below stand for input and respectively verifying systems.

Statement 2.3 (generic soundness for Dialectica interpretations [ISys, VSys]). Let

A0 , A1 , . . . , An be a sequence of formulas of ISys with w all their free variables. If the

sequent a1 :A1 , . . . , an :An l̀ A0 is provable in ISys , then terms t 0 , . . . , t n can be

automatically synthesized from its formal proof, such that the translated sequent

a1 : |A1 |
x1

t1
, . . . , an : |An |

xn

tn
` |A0 |

t0
x0

is provable in VSys , and the following free variable condition (c) holds: x0 6∈ FV (t0) and

FV (t i)⊆{w , x0, . . . , xn} . Here x0, . . . , xn are tuples of fresh variables, such that equal

avars share a common such tuple.

In [HT10] the above was thoroughly proved for ISys ≡ NAl and VSys ≡ NA , except for

the interpretation of CMP which we present below. Further in the sequel we also give a more

detailed treatment of the induction rule for numbers, in order to motivate the introduction

of the modal induction rule in Section 4.1.

2.4. Light Extensionality. We here give the interpretation of (2.1). By definition of

equality at higher types, s =ρ r is ∀z . sz = rz , hence a purely universal formula. We

are given that

a1 : |A1 |
x1

t1
, . . . , an : |An |

xn

tn
` |A0 |

t0
x0

,

where | Γ	 | ≡ {a1, . . . , an } , t0 ≡ t1 ≡ . . . tn ≡ t (empty tuple), A0 is s =ρ r and x0

corresponds to z , thus the above is more conveniently rewritten as

a1 : |A1 |
x1 , . . . , an : |An |

xn ` s x0 = r x0

To this we can apply the generalization rule, as x0 are not free in the translated context

| Γ	 | . Indeed, x 0 are fresh variables and they could have appeared free only via terms

t1 , . . . , tn , were these not empty tuples (hence the need for restricting the original context).

Vol. 17:4 MODAL FUNCTIONAL (“DIALECTICA”) INTERPRETATION 3:11

We thus obtain | Γ	 | ` s = r and further apply CmpAx to get | Γ	 | ` |B |(s)→ |B |(r) .

Note that the axiom is required here, as | Γ	 | may contain general21 formulas.

With g :≡ λ u . u and f :≡ λ u , v . v we have thus constructed a verifying proof

a1 : |A1 |
x1 , . . . , an : |An |

xn ` |B(s) | u
f u v

→ |B(r) | gu
v

[
≡ |B(s)→ B(r) | f , g

u , v

]
The new realizing terms f , g are closed, hence the free variable condition trivially holds.

Note that f and g may at most depend on the type ρ (they do not depend on concrete

terms s, r), see also the first example in Section 4.2.

2.5. Numbers. Since the induction rule (for numbers, see Table 5) corresponds to an

unbounded number of contractions of each assumption from the step context ∆ (cf. [Her06]),

its clone in the system NAl is subject to a restriction like the one of Cl. Namely, we need to

require that all refutation relevant avars in ∆ satisfy F (cf. Remark 2.1).

Moreover, since the contractions on a ∈ Γ ∩ ∆ will be handled differently than for

simple binary rules like →e or ∧i , it is more convenient to require that induction over

numbers in NAl implicitly contracts all its refutation relevant assumptions (instead of using

the explicit Cl). We will use the notation Γ] ∆ for a special multiset union in which

refutation relevant assumptions appear only once, even if they appear in both Γ and ∆ .

Thus the Ind N
l rule of NAl is finally obtained by replacing ‘Γ , ∆’ with ‘Γ] ∆’ in the

conclusion sequent of Ind N . For the verifying proof, we are given

| Γ | u
γ [y]

` |A(0) | r
y

(2.2)

| ∆ | z
δ [x ; v]

` |A(n) | x
t x v

→ |A(Sn) | s x
v

(2.3)

We show that

∀ v
(
| Γ] ∆ | u] z

ζ [n] v
→ |A(n) | t

′ [n]
v

)
(2.4)

is a theorem of NA , where

t′[n] :≡ R n r (λn. s) (2.5)

for every corresponding pair 〈 r ∈ r /s ∈ s 〉 and ζ [n] will be constructed as functional

terms depending on v . We here intentionally use the same variable n that occurs freely in

s and t . Implicitly, just t′ denotes t′ [n] . Also ζ will be constructed as the collection of all

ζ′ (corresponding to Γ \ ∆) and ζ′′ (corresponding to ∆). Here u] z denotes the tuple

union corresponding to the multiset union Γ] ∆, i.e., witness variables corresponding to

refutation relevant assumptions in Γ ∩ ∆ appear only once.

Let b :B be a refutation relevant avar in Γ] ∆ . Let γ′ ∈ γ and / or δ′ ∈ δ be the

challengers for b in Γ and / or ∆ . If b appears only in Γ (hence not in ∆) we define

ζ′ [n] :≡ R n (λ v . γ′ [v])
(
λ n, p, v . p (t t′ v)

)
(2.6)

If b appears in ∆ , then the decidability of |B | is needed at each recursive step to

equalize the terms p (t t′ v) obtained by the recursive call with the corresponding terms

21The verification in a VSys with Spector’s rule of extensionality (instead of axiom), employed as CMP in our
framework, would already fail for Π0

1 assumptions in Γ	 , as first discovered by Kohlenbach in [Koh01].

3:12 D. Hernest and T. Trifonov Vol. 17:4

δ′ . Thus the right stop point of the backwards construction is provided. In fact an implicit

contraction over b happens at each inductive step and F guarantees that |B | is decidable.

For b ∈ Γ ∩ ∆ let

ζ′′ [n] :≡ R n
(
λ v . γ′ [v]

) (
λ n, p, v . If (|B | z

′

δ′ [t′ ; v]
)
(
p(t t′ v)

)
δ′ [t′ ; v]

)
(2.7)

and for b ∈ ∆ \ Γ we define its ζ′′ [n] by replacing in (2.7) the γ′ with canonical zeros.

Here z′ are the challenge variables corresponding to formula B . Notice that

` t′ [S n] = s t′ [n] (2.8)

` ζ′ [S n] v = ζ′ [n] (t t′ v) (2.9)

` ζ′′ [S n] v = If (|B | z
′

δ′ [t′ ; v]
)
(
ζ′′ [n] (t t′ v)

)
δ′ [t′ ; v] (2.10)

We attempt to extend (2.9) to the whole ζ by proving from (2.10) the following

|B | z
′

ζ′′ [S n] v
` ζ′′ [S n] v = ζ′′ [n] (t t′ v) (2.11)

We obtain this as an immediate consequence of

|B | z
′

ζ′′ [S n] v
` |B | z

′

δ′ [t′ ; v]
(2.12)

Assuming ¬|B | z
′

δ′ [t′ ; v]
, by (2.10) we get

ζ′′ [S n] v = δ′ [t′ ; v] , hence ¬|B | z
′

ζ′′ [S n] v

and thus (2.12) follows via Stab (which is fully available in the verifying system).

We now prove (2.4) by an assumptionless induction on n . Let ζ∗ be the collection of

all ζ′ and those ζ′′ corresponding to Γ ∩ ∆ . For n ≡ 0 it is sufficient that

| Γ | u
ζ∗ [0] v

` |A(0) | t
′ [0]
v

which follows from (2.2) since by definition (2.5) we have ` t′ [0] = r and by definitions

(2.6) and (2.7) we have ` ζ∗ [0] = λ v . γ [v] . Now given (2.4) we want to prove

| Γ] ∆ | u] z
ζ [Sn] v

` |A(Sn) | t
′ [Sn]
v

(2.13)

To (2.4) we apply ∀e[v 7→ t t′ v] and via easy deductions in NA we get

| Γ] ∆ | u] z
ζ [n] (t t′ v)

` |A(n) | t
′ [n]
t t′ v

(2.14)

With (2.9) and (2.11) we can rewrite (2.14) to

| Γ] ∆ | u] z
ζ [S n] v

` |A(n) | t
′ [n]
t t′ v

(2.15)

In (2.3) we substitute x 7→ t′ [n] and get

| ∆ | z
δ [t′ ; v]

` |A(n) | t
′ [n]
t t′ v

→ |A(Sn) | s t
′ [n]

v

which gives (2.13) by means of easy NA deductions using (2.8), (2.12) and (2.15).

Vol. 17:4 MODAL FUNCTIONAL (“DIALECTICA”) INTERPRETATION 3:13

2.6. Motivation for the modal induction rule. We have treated the most general

situation, with all context sets Γ \ ∆ , Γ ∩ ∆ and ∆ \ Γ inhabited by refutation relevant

assumptions, and conclusion formula A accepting both witnesses and challengers.

Many particular situations amount to easier treatments, with simpler extracted terms.

These can be obtained as simplifications of the general witnesses and challengers presented

above, by means of the reduction properties of the empty tuple ε (practically the same as

for the isomorphic nullterm from Section 7.2.4 of [SW11], also denoted ε).

We outline below only those particular cases which are relevant in connection with the

modal induction rule IndmN (cf. Section 4.1):

• If Γ ∪ ∆ contains no refutation relevant assumption, but A(n) is refutation relevant,

then terms t are not part of the realizers for the conclusion sequent, in this case only

t′ . Hence t would be redundantly produced and a mechanism is needed to prevent their

construction. This is ensured by � in front of the step A(n) at IndmN .

• If A(n) is refutation relevant, ∆ has no refutation relevant element but Γ is refutation

relevant inhabited, then δ and ζ′′ are empty. Yet ζ∗ ≡ ζ′ has to be produced as (2.6)

and includes t [n] ; this no longer will be the case for IndmN (cf. technical details at the

end of Section 4.1 further in the sequel; challengers γ simply are preserved for | Γ |).
• If A(n) is refutation irrelevant then v , t and t t′ v are empty tuples. Thus ζ′ ≡ γ′

and (2.7) simplifies to

[recall that n 6∈ FV (γ′) , n ∈ FV (t′) , and possibly n ∈ FV (δ′)]

ζ′′ [n] ≡ R n γ′
(
λ n, p . If

(
|B | z

′

δ′ [t′]

)
p δ′ [t′]

)

3. Modal system NAm and light modal system NAml

The usual propositional restriction on the introduction rule for the necessity operator is that

all contextual assumptions had been discharged prior to the rule application (which amounts

to forcing Γ≡∅ at standard �i). In the natural deduction presentation of standard modal

logic, �i cannot be unrestricted or A→ �A becomes a theorem, thus all occurrences of

� becoming redundant.

Our restriction on �i is strictly weaker, as, e.g., allows any context Γ whose formulas

are all refutation irrelevant (this is akin to Prawitz’s ‘first version’ in [Pra65]VI.§1) and any

context at all if the conclusion is refutation irrelevant. Thus, A→ �A not only is more

generally possible in our quantified modal systems, it even defines a quite interesting class

of formulas, see Definition 4.3.

We polymorphically use the ‘proof gate’ `m for both NAm and NAml , and use `ml to

stress that the proof belongs to NAml . The constraints outlined below the tables on page 6

smoothly adapt to the insertion of � (into the input system NAl , through �i and AxT),

eventually followed by the removal of ∀− , ∀+ and ∀∅ , and also to the upgrade from F to z,

as described in the sequel (cf. new tables on page 15, with Cm for Cl and Ind N
m for Ind N

l).

3:14 D. Hernest and T. Trifonov Vol. 17:4

For the necessity operator � we have the following enhanced introduction rule, which

admits many more premise sequents than usual (as the context Γ may be inhabited):

�i :
Γ `m A

Γ `m �A
,

where Γ is restricted depending on the (light) modal translation of the proof of A from Γ,

in a way that is akin to the condition (+) on the ∀i+ rule from page 7; see Definition 3.2

further below.

The following axioms of modal propositional logic S4 (cf. [Sch68], Chapter VII; see also

Chapter 9 of [TS00]) are part of NAm and NAml :

AxT : �A→ A AxTc : A→ ♦̃A

Ax4 : �A→ � �A Ax4c : ♦̃ ♦̃A→ ♦̃A

AxK : [�(A→ B) ∧ �A]→ �B
In fact only AxT is needed as an axiom of our non-standard modal systems. Of course,

AxTc and Ax4c had been syntactically deducible from AxT and respectively Ax4 already in

the propositional modal system S4 , only using minimal logic (the proof of Ax4c also uses

AxK and the empty-context �i). It turns out that also Ax4 and AxK are easily deducible in

NAm / NAml just from AxT (and only using minimal logic), given our very liberal necessity

introduction rule, see Definition 3.2 below.

Note that Stability ¬¬B → B needs to be restricted already for NAm , due to the

necessary restriction on Contraction, cf. Definition 3.6 in the sequel, see also Remark 4.4.

We denote by A→kB :≡ �A→ B the so called ‘Kreisel implication’22, since its

translation by (light) modal Dialectica is akin to its Modified Realizability interpretation.

Basically, if A is a formula in which all implications are Kreisel ones, then the modal

Dialectica interpretation of �A is logically equivalent (provably in NA) to the modified

realizability interpretation of A; see Lemma 3.2 of [Oli06b] and also [Oli15].

Note that even though our Kreisel implication looks similar to the so-called ‘lax impli-

cation’ (cf. [PD01], Section 7), here we are not concerned with a standard (intuitionistic)

modal logic (see Remark 4.4 at the end of Section 4). Ditto for the (classical) translation of

� under the Curry-Howard-style modal functional interpretation of De Queiroz and Gabbay

(cf. [dG97], see also Section 7 of [ddG11] for an updated survey).

Definition 3.1 (modal Dialectica interpretation — translation of formulas).

The interpretation does not change atomic23 formulas, i.e., | at(tB) | :≡ at(tB) .

22See Section 3.2 of [Oli12] for a sketch of this construct and its design difficulties within the multi-modal
linear setting. See also [Pra65], Chapter VII “some other concepts of implication” for a discussion on notions
of stronger implication which appeared since early research on modal logic.
23Any decidable formula can (and should) be given via its associated boolean term, e.g., one should rather use
at(Odd(x)) instead of the more verbose ∀y (2y 6= x) , which is refutation relevant in a somewhat artificial
and probably unintended way.

Vol. 17:4 MODAL FUNCTIONAL (“DIALECTICA”) INTERPRETATION 3:15

AxT: `m �A→ A

TruAx: `m >

Γ	 `m s =ρ t
CMPρ

Γ	 `m B(s)→ B(t)

Table 6: Axioms of NAm and NAml , and light extensionality (2.1) adapted cf. Remark 3.4

a :A `m A (id)
Γ , [a :A] `m B

→i

Γ `m A→ B

Γ `m A ∆ `m A→ B
→e

Γ , ∆ `m B

Γ `m A
∀i

Γ `m ∀z A

Γ `m A ∧ B
∧e0

Γ `m A

∆ `m A ∧B
∧e1

∆ `m B

Γ `m A ∆ `m B
∧i

Γ , ∆ `m A ∧B

Γ `m ∀z A
∀e

Γ `m A[z 7→ t]

Table 7: Logical rules of NAm and NAml , with z 6∈ FV (Γ) at ∀i and contractions due to
→e and ∧i explicitated as anti-rules, see Table 9; no implicit contractions at →i

Γ `ml A ∀i�
Γ `ml ∀� z A

and
Γ `ml ∀� z A ∀e�

Γ `ml A[z 7→ t]
for � ∈ {∅ , + , −}

Table 8: Additional (relative to NAm) rules for NAml with the (adapted, cf. Remark 3.4)
extra restrictions on ∀i+ , ∀i− and ∀i∅ as in Section 2.2, cf. (+), (−) and (∅)

Γ `m A
�i

Γ `m �A

∆ , a :A, a :A `m B
Cm

∆ , a :A `m B

Table 9: Necessity introduction rule with Γ restricted via Definition 3.2 and contraction
anti-rule Cm with A z -restricted through Definition 3.6, for NAm and NAml

Γ `m A(T) ∆ `m A(F)
Ind B

Γ , ∆ `m A(b)

Γ `m A(0) ∆ `m A(n) → A(Sn)
Ind N

m
Γ] ∆ `m A(n)

Table 10: Induction rules of NAm and NAml , with ∆ of Ind N
m restricted via the z upgrade

(cf. Definition 3.6) of F (cf. Remark 2.1), see Sections 2.5, 2.6 and 4.1

3:16 D. Hernest and T. Trifonov Vol. 17:4

Assuming |A | x
y

and |B | u
v

are already defined,

|A ∧ B | x , u
y , v

:≡ |A | x
y
∧ |B | u

v
| ∀z A(z) | h

z , y
:≡ |A(z) | hz

y

|A→ B | f , g
x , v

:≡ |A | x
f x v

→ |B | g x
v

| �A | x :≡ ∀y |A | x
y

As an immediate consequence,

| � ∀zA(z) | h ≡ ∀z , y |A(z) | h z
y

, | ¬�B |
u
≡ ¬∀ v |B | u

v

and further

| ♦̃A ≡ (¬ � ¬A) |
f

≡ ∃̃ x |A | x
f x

|A→kB ≡ (�A→ B) | g
x , v

≡ ∀y |A | x
y
→ |B | g x

v

| ¬ � ∀zA(z) |
h

≡ ¬∀z , y |A(z) | h z
y

Recall from Example 2.2 in Section 2.3 that [recall that ∃̃z A(z) :≡ ¬ ∀z ¬A(z)]

| ∃̃ z A(z) | Z,H
Y

≡ ¬¬ | A(ZY) |H Y
Y (ZY) (H Y)

which we can compare with | ∃̃ z � A(z) | z , x ≡ ¬¬ |A(z) | x ↔ NA |A(z) | x

or even

| � ∃̃ z A(z) | Z,H ≡ ∀ Y ¬¬ | A(ZY) |H Y
Y (ZY) (H Y)

↔ NA ∀ Y | A(ZY) |H Y
Y (ZY) (H Y)

Definition 3.2 (Necessity Introduction). The restriction on �i is relative to programs

synthesized from the proof of the premise A of this Natural Deduction rule, unless all

formulas in the context Γ are refutation irrelevant or A is refutation irrelevant. Namely,

with Γ ≡ { a1 :A1 , . . . , an :An } and A ≡ A0, the restriction is that x 0 6∈ ∪ni=1 FV (t i) in

the translated premise sequent a1 : |A1 |
x1

t1
, . . . , an : |An |

xn

tn
` |A0 |

t0
x0

.

Thus admissible input proofs are inductively defined together with their extracted

programs and their corresponding translated (verifying) proofs. Note that � could be

defined in terms of →k as �A ≡ (A→k⊥)→ ⊥ , since NA features full stability Stab.

Definition 3.3 (light modal Dialectica translation of formulas). The following are added

to the above Definition 3.1 (the deduced translation of ∃̃∅ z is outlined below for use at the

end of Section 4.2; see also the proposed intuitionistic extension in Section 5):

| ∀+ z A(z) | h
y

:≡ ∀z |A(z) | hz
y

| ∀− z A(z) | x
z, y

:≡ |A(z) | x
y

| ∀∅ z A(z) | x
y

:≡ ∀z |A(z) | x
y

| ∃̃∅ z B(z) | U
V

≡ ∃̃z |B(z) | U V
V (U V)

Remark 3.4. The light modal translation of formulas only adds | �A | x :≡ ∀y |A | xy to

our light translation from [HT10] (cf. Section 2 of this paper, in particular Example 2.2).

Vol. 17:4 MODAL FUNCTIONAL (“DIALECTICA”) INTERPRETATION 3:17

Formula A is realization relevant also under (light) modal Dialectica if the tuple of

witness variables x of its translation |A | xy is not empty and similarly A is refutation

relevant if the tuple of challenge variables y is not empty (see also Footnote 14).

Correspondingly, A is realization irrelevant if it is not realization relevant (i.e., x is

an empty tuple), and A is refutation irrelevant if it is not refutation relevant (i.e., y is an

empty tuple). [See also the more technical definition in Section 2.2]

Remark 3.5 (restriction violation for �i). In an automatized interactive search for modal

input proofs of some given specification, we can temporarily allow unrestricted (or lesser

restricted) instances of �i and postpone the validity check for when the proof of its premise

is fully constructed. This approach would be similar to the so-called ‘computationally correct

proofs’ mechanism of [Tri12], or ‘nc-violations’ check since pre-decorate Minlog versions.

For efficiency reasons, we recommend the use of modal operators whenever possible

instead of the above partly (or non) computational quantifiers ∀+ , ∀− , ∀∅ and ∃̃∅ . It thus

makes sense to study the (pure) modal Dialectica in itself, as the use of such light quantifiers

may not be needed in many cases of interest.

It should be easier to construct a strictly modal (i.e., without light quantifiers) input

proof, also for a (semi) automated proof-search algorithm. Nevertheless, it is the light

variant of modal Dialectica which provides the larger range of possibilities, particularly for

situations where the simpler, ‘heavier’ modal Dialectica would not suffice.

Definition 3.6 (Contraction restriction z). We upgrade the F restriction (cf. Re-

mark 2.1) on the computationally relevant contractions (those over refutation relevant open

assumptions A), such that the interpretation |A | must be decidable (rather than strictly

quantifier-free). This applies to contexts ∆ of Ind N
l as well, cf. Section 2.5.

In the new modal context one needs to take into account also the translation of the

necessity operator, as this introduces new quantifiers. These may alter the decidability of

the translated formula (relative to the corresponding non-modal formula obtained by wiping

out all instances of �).

Examples 3.7. Let T (x, y, z) be a decidable predicate such that H(x, y) :≡ ∃̃z T (x, y, z)

is not decidable24. Then P (x) :≡ ∀y ∀z ¬T (x, y, z) can be a contraction formula, whereas

P � (x) :≡ ∀y � ∀z ¬T (x, y, z) cannot, as its translation is ∀z ¬T (x, y, z), an undecidable

formula, since
NA ` |P � (x) |

y
↔ ¬H(x, y)

On the other hand, both ∀z (3z 6= x) ∧ ∀y (2y 6= x) and ∀z (3z 6= x) ∧ � ∀y (2y 6= x) can

be contraction formulas, as ∀y (2y 6= x) is decidable.

Thus, given that there is no generic algorithm for the decidability of first-order formulas

over N , the user needs to supply a boolean term and a proof that the respective term is

equivalent to the translation of the contraction formula. E.g., add ∀y (2y 6= x)↔ at(Odd(x))

as global assumption (cf. [Sea]), see also Footnote 23.

24E.g., take Kleene’s T predicate which is expressible in Peano Arithmetic, hence also in NA , so that H
expresses the Halting Problem “program with code x halts on input y”.

3:18 D. Hernest and T. Trifonov Vol. 17:4

4. Modal and light modal functional interpretations

We prove below that Statement 2.3 (generic soundness) is valid for parameter instances

[NAm , NA] (modal Dialectica) and [NAml , NA] (light modal Dialectica), which share

the same VSys ≡ NA . Recall from Definition 3.2 of �i that the restriction on the premise

sequent is that x0 6∈ ∪ni=1FV (t i) in its (light) modal functional translation

a1 : |A1 |
x1

t1
, . . . , an : |An |

xn

tn
` |A0 |

t0
x0

.

This ensures that the introduction rule ∀i can be applied for variables x0 and thus the

conclusion sequent a1 :A1 , . . . , an :An `m �A0 is witnessed by exactly the same realizers

as those constructed for the premise sequent Γ `m A0 .

Lemma 4.1 (interpretation of S4 modal axioms). Axioms AxT, AxTc, Ax4, Ax4c and AxK

are realizable in NA under the (light) modal Dialectica translation.

Proof. The translation of AxT is | �A→ A | g
x , y

≡ ∀v |A | x
v
→ |A | g x

y
and we can take

g to be the identity λ x . x . Similarly, the translation of AxTc is

|A→ ♦̃A | f
x , y

≡ |A | x
f x y

→ ∃̃ u |A | u
y

and we can take f to be the projection λ x y . y . For Ax4 and Ax4c it is immediate that

| �A | ≡ | � �A | and also | ♦̃A | ≡ | ♦̃ ♦̃A | , thus the realizer is again the identity in both

cases. In the translation of AxK below, we take U :≡ λ f , g , x . g x , which can easily be

proved to be a realizer.

| AxK | U
f , g , x′

≡ [�(A→ B) ∧ �A]
f , g , x′ → | �B | U (f , g , x′) ≡

≡ ∀ x , v (|A | x
f x v

→ |B | g x
v

) ∧ ∀ y |A | x
′

y
→ ∀ v′ |B | U (f , g , x′)

v′

From Lemma 4.1 and the comment above it, we obtain soundness of modal Dialectica

as Statement 2.3 [NAm , NA] and soundness of light modal Dialectica as Statement 2.3

[NAml , NA] . The next result pictures the actual limits of our modal adaptation of Gödel’s

functional interpretation.

Theorem 4.2 (T−unrealizability of S5 defining axiom). Axiom Ax5 : ♦̃A→ � ♦̃A is not

realizable (in general) under the (light) modal Dialectica translation (by primitive recursive

functionals of finite type).

Proof. The translation of Ax5 is a formula of shape B(z)→ ∀zB(z) for which we would

need to construct terms tA ∈ T so that B(tA) → ∀zB(z) is (classically) valid25. We

25The statement of existence of a (light) modal Dialectica realizer for Ax5 amounts to the Drinker’s Paradox, a
showcase example for a non-constructive principle (made popular by Smullyan in pp. 209–211 of [Smu78]–14C–
250 and taken by Barendregt in the context of computer-assisted proofs, cf. [Bar96]–Section 4.5, pp. 54–55).
It should therefore be unsurprising that Ax5 is not generally realizable by an interpretation of computational
nature.

Vol. 17:4 MODAL FUNCTIONAL (“DIALECTICA”) INTERPRETATION 3:19

assume z is not empty (or else Ax5 required no realizer at all) and note that Statement 2.3

forces z 6∈ FV (tA). Marginally, any such type-corresponding terms are good for the

case when ∀ zB(z), i.e., ∀z∃x |A | x
z x

, holds (in Peano Arithmetic PAω). Whenever

B(z) amounts to a predicate falsified for a set of values corresponding to z , any such

constructible inhabitants would realize Ax5 by invalidating the premise of its translation

(e.g., for A ≡ ∀z(z =N 0) , B(z) ≡ z =N 0 , with any non-zero number a realizer).

Many instances of Ax5 are nonetheless unrealizable, like whenever A is a universal formula

whose negation cannot be witnessed constructively. For example, take A :≡ ∀z¬T (x, y, z)

with Kleene’s T predicate: Ax5 then translates to ¬T (x, y, z)→ ∀z¬T (x, y, z), equivalent

to H(x, y)→ T (x, y, z). A realizer tA [x, y] for z cannot be expressed in T , as that would

imply such an Universal Turing Machine (UTM) existed, while the mere existence of a total

UTM enfolds decidability of the Halting Problem H (cf. Examples 3.7).

Notice that ♦̃ ∃̃xA is akin to Berger’s uniform existence {∃x}A from [Ber93], where

one does not care about the witness for ∃x (which is actually deleted from the extraction).

We can thus see ♦̃ as an extension of Berger’s appliance to more general formulas than just

existential ones.

On the other hand there are situations when � and ♦̃ are too general contrivances and

separate annotations for each quantifier are a better answer for the problem at hand. In

some of these cases it may still be possible to use the modal operators if one changes the

input specification and its proof.

Definition 4.3 (necessary formulas). Formulas A such that `m A→ �A (is provable).

Also due to AxT, it follows that `m A ↔ �A for any necessary formula: placing � in front

of such A would be logically redundant (this is akin to Prawitz’s “essentially modal” formulas

in [Pra65]VI.§2, ‘second version’, see Section 2 of [MM08] for a concurrent approach).

We say that an occurrence of � is meaningful (i.e., non-redundant) in front of any

formula that is not necessary cf. Definition 4.3.

Note that all refutation irrelevant formulas are necessary formulas. It is easy to see that

some of the refutation relevant formulas are necessary, e.g., ∀x⊥ and ∀x> (in fact any A

s.t. `m A or `m ¬A in NAm or NAml). However, even if such formulas syntactically do

require challengers, these functionals turn out to be redundant and can soundly be discarded

by a � , without the need to change any other component of the input proof. In fact, a

formula A is necessary iff it can be proved equivalent (in NAm or NAml) to a refutation

irrelevant formula B. Indeed, for a necessary A take B :≡ �A . For the converse we can

use the long implication A→ B → �B → �A , where for the last implication a contextless

�i together with AxK was used. [see also [Pra65]VI.§2 for modally closed formulas]

Therefore, the ‘necessary’ class captures those formulas whose negative computational

content can always be erased regardless of the context in which they are used. On the other

hand, there are cases when � can soundly be applied to a non-necessary formula, leading

to cleaner (and thus better) extracted programs (see Section 4.2 below).

Remark 4.4 (non-standard modal). It would appear that our Arithmetic NAm is able to

prove new modal theorems and even sentences that are invalid in Schütte’s semantics. On

3:20 D. Hernest and T. Trifonov Vol. 17:4

the other hand, our z restriction is not present in the usual first-order modal logic systems,

thus some of the classical modal theorems will no longer be theorems of NAm .

Yet we suspect we are not far from Prawitz’s VI.§4 ‘fourth version’ for C′S5 with discharge

function for normalization.

The Barcan formula ∀z�A(z)→ � ∀zA(z) is inadmissible in our modal systems (it is

T -unrealizable in general, similar to Ax5); although invalid in Schütte’s S?4 (cf. Anmerkung

at the end of [Sch68].I.§3), it is provable in Prawitz’s CS5 for modally closed A (see page

78 of [Pra65]VI.§2). However, the Converse Barcan formula � ∀z A(z) → ∀z�A(z) is

admissible (it is bluntly realizable, similar to AxT). We thus suspect that some form of an

increasing domain semantics will be suitable for our systems; see Sections 2.5, 2.9 of [BG07].

4.1. Modal induction rule. As first argued in [HO08], induction (for numbers, but more

generally also for lists, as algebra N is a particular case of inductively defined lists) should

rather be treated in a Modified Realizability style whenever possible under Dialectica

extraction. In our non-standard modal context we can introduce the following modal

induction rule for NAm and NAml , which is defined with a Kreisel implication at the step:

Γ ` �A(0) �∆ ` �A(n) → A(Sn)
IndmN

Γ , �∆ ` �A(n)

This is an upgrade of the similar rule from [HO08] (given at the linear logic level, see also

[Oli12]), as it allows for non-empty contexts. While the base context Γ is unrestricted, the

step context �∆ is made entirely of refutation irrelevant assumptions of shape �D.

Thus the step context restriction as for Ind N
m is satisfied by default, since it only

concerned refutation relevant assumptions26. Note that if D already is refutation irrelevant,

placing � in front of D is somewhat redundant. We could refine IndmN by splitting the step

context into ∆′ which consists of refutation irrelevant assumptions not of shape �D and

∆′′ ≡ �∆. Nonetheless such ∆′ would only contain necessary formulas (cf. Definition 4.3).

The treatment of IndmN under (light) modal Dialectica is much easier than the one of

Ind N
m . In fact IndmN is a good simplification of Ind N

m for situations when the whole context

is made entirely of refutation irrelevant assumptions but A(n) is a refutation relevant

formula. The challenger for A(n) in the step conclusion would be unneededly produced

during the treatment of such Ind N
m , as it becomes no part of any of the witnesses for the

conclusion sequent. Placing � in front of the negatively positioned A(n) thus ensures a

minimal optimization brought by IndmN , in this particular case simply by elimination of

redundancy: the conclusion witnessing terms are the same as for Ind N
l (cf. Section 2.6).

A more serious optimization concerns the challengers of |C | for refutation relevant

assumptions C from the Γ context. These are simply preserved by IndmN , while under

Ind N
m they would include the challengers for the step A(n) . If A(n) were refutation

26The decidability of their translations in NA were needed for case distinction in their corresponding challenge
realizers, cf. Section 2.5 for Ind N

l , which is the same for Ind N
m , only with term-equivalent |B | by default

provided by the user at (2.7).

Vol. 17:4 MODAL FUNCTIONAL (“DIALECTICA”) INTERPRETATION 3:21

irrelevant, it would still make sense to use IndmN instead of Ind N
m , if one is not interested in

the challengers for the refutation relevant assumptions from the step context.

While for such particular instances of Ind N
m we already have the preservation of

challengers for refutation relevant assumptions strictly from Γ , still challengers for the

refutation relevant step assumptions are more complex in the conclusion sequent (they

include a meaningful Gödel recursion, even though here a challenger for the step negative

A(n) is no longer comprised since it does not exist). Thus IndmN can bring an improvement

over Ind N
m by wiping out the step challengers altogether, should these not be needed in the

global construction of the topmost realizers for the goal specification.

It turns out that IndmN strictly optimizes Ind N
m in many (if not most) situations. Yet

Ind N
m will be employed whenever IndmN simply cannot be applied for the goal at hand.

Modal induction rule — technical details. We are given both the following

| Γ | u
γ

` ∀ y |A(0) | r
y

(4.1)

| �∆ | z ` ∀ y′ |A(n) | x
y′
→ |A(Sn) | s x

v

Since v 6∈ FV (| �∆ | z) and v 6∈ FV (∀y′ |A(n) | x
y′

) from the latter we easily obtain

| �∆ | z ` ∀ y′ |A(n) | x
y′
→ ∀ v |A(Sn) | s x

v
(4.2)

With t [n] :≡ R n r (λn. s) for every corresponding pair 〈r ∈ r /s ∈ s 〉 we show

by induction on n in NA with base context | Γ | uγ and step context | �∆ | z that

| Γ | u
γ

, | �∆ | z ` ∀ v |A(n) | t [n]
v

As t [0] ≡ r the base is given by (4.1) and the step follows from (4.2) with x 7→ t [n]

since t [Sn] ≡ s t [n] . Thus challengers γ are simply preserved for | Γ | and witnesses

t [n] are easily constructed for | �A(n) | in the conclusion sequent of IndmN .

Remark 4.5. Our modal induction rule is equivalent to a special case of Ind N , since a

� can be placed in front of A(Sn) from the step sequent of IndmN . The equivalence of the

two formulations for the step sequent can easily be proved using AxT, Ax4, AxK and �i.

Extracted terms are the same and the verifying proof only gets more direct.

4.2. Revisited examples. The weak extensionality of modal input systems NAm and

NAml can be expressed by means of the following modal compatibility axiom (the usual

compatibility axiom, but with the outward implication changed to a Kreisel implication; see

[Oli12]–Introduction for the akin formulation in linear logic using a ‘Kreisel modality’ !k)

CmpAxm : � (x =ρ y) → B(x) → B(y)

By straightforward calculations, it is easy to see that CmpAxm is realizable under (light) modal

Dialectica by simple projection functionals, with the verification in the fully extensional NA

3:22 D. Hernest and T. Trifonov Vol. 17:4

given by the corresponding compatibility axiom CmpAx . The realizing terms are same f , g

as for CMPρ at the end of Section 2.4, here just grouped in tuples.

In [HO08] the following class of examples was considered: theorems of the form

∀x A → ∀y B → ∀z C (4.3)

possibly with parameters, where the negative information on x is irrelevant, while the one

on y is of our interest. Then it must be possible to adapt the proof of (4.3) to a proof

in NAm or NAml of (� ∀xA) → ∀y B → ∀z C . As noticed by Oliva in [Oli12], the

Fibonacci example first treated with Dialectica in [Her07] falls into this category. Oliva

also suggested an interesting example, which motivated the definition of our positively

computational quantifier ∀+ (cf. Example 2.2 and Definition 3.3): “Any infinite decidable

set P of natural numbers contains elements which are arbitrarily far apart”. The claim can

be formalized (in an extension of NA with proper predicate symbols) as follows:

∀x ∃̃y
(
y > x ∧ P (y)

)
→ ∀d ∃̃ n1 , n2

(
n2 > n1 + d ∧ P (n1) ∧ P (n2)

)
This statement can be proved only via a contraction on the premise, and as a result (the

negative universally quantified) x gets refuted by a term involving case distinction on |P | .
If nonetheless only the witnesses of n1 and n2 are needed, then the redundant challenge

for x can simply be discarded by means of a � in front of the premise, effectively applying

a Kreisel implication. This example is of the form (4.3) and was extensively treated in

Section 4 of [HT10]. It can even be treated with the hybrid Dialectica from [HO08]; we here

only bring the more instrumental solution.

The example can be extended so that the premise becomes more involved (cf. [Tri12],

Example 5.3 on page 114):

∀m
(
∃̃n Q(n,m) → ∃̃n1 Q(n1, Sm)

)
→

(
∃̃n0 Q(n0, 0) → ∃̃n2 Q(n2, S S 0)

)
(4.4)

Again, a contraction must be used, and two semi-computational quantifiers need to be applied

in order to erase the negative computational content. The light specification corresponding

to (4.4) would then be written as:

∀+m
(
∃̃+n Q(n,m) → ∃̃ n1 Q(n1, Sm)

)
→ ∃̃ n0 Q(n0, 0) → ∃̃ n2 Q(n2, S S 0)

This solution is withal not desirable, as the light annotations would only apply to a special

class of binary relations Q for which the witness n1 for Q(n1, S m) does not depend

computationally on the witness n for Q(n,m) for any m , hence reducing the generality of

the claim. A fix would then be to extend the light annotations to implications, as in [Tri12].

However, a much simpler and more elegant approach is to use a Kreisel implication, by

placing � in front of ∀m
(
∃̃nQ(n,m) → ∃̃n1Q(n1, Sm)

)
at (4.4). The negative content

of the main premise will thus be fully erased and the positive one will be fully preserved,

achieving a Modified Realizability effect. We also mention a proof for the ‘integer root

example’ (first considered in [BS95]): “every unbounded integer function has an integer root

function”. The statement can be formalized (in negative arithmetics) as follows:

∀x ∃̃y
(
f(y) > x

)
→ ∀m

(
f(0) ≤ m → ∃̃n

(
f(n) ≤ m < f(Sn)

))
(4.5)

Vol. 17:4 MODAL FUNCTIONAL (“DIALECTICA”) INTERPRETATION 3:23

The claim can be proved by contradiction using n-induction for the formula f(n) ≤ m .

In addition to computing the integer root, Gödel’s Dialectica also extracts a complex recursive

counterexample for x , with a case distinction on each step (cf. [Tri12], section 3.2). This

term challenges the outermost premise ∀x ∃̃y (f(y) > x) which actually constitutes the

refutation relevant context shared by both the base and the step formulas of the induction.

The undesired negative content can be erased by ‘Kreisel-izing’ the outermost implication

of (4.5), thus converting the context to a necessary one, hence allowing for the application

of the modal induction rule. As a result, only the integer root gets synthesized (the realizer

for n as function of m) and additional artifacts are omitted.

Note that, in contrast to the previous two examples, this proof is intrinsically classical,

so Modified Realizability alone is not applicable in this case. Using ∀+x would nevertheless

still achieve the same cleaning effect (cf. [Tri12], section 5.6.1).

4.3. Proof that � is a strict addition to the light system. The (modal) translation

of an input schemata
(
∀n ∃̃mA(m,n)→ ∀n ∃̃mB(m,n)

)
→k ¬ ∀kC(k) with decidable

predicates A,B,C is ∀h, n [A(h(ghn), ghn) → B(fhn, n)] → ¬C(Kfg) , where K is the

witness variable and f, g are challenge variables.

Such specification cannot be produced by means of light quantifier decorations of the

schemata
(
∀n ∃̃mA(m,n)→ ∀n ∃̃mB(m,n)

)
→ ¬ ∀kC(k) .

Below is the small Minlog program that was used to carry out the modal translation;

the raw Minlog output has been processed for readability. [@@ binds a pair of types]

(load "C:\\minlog\\initDan.scm") ; initial system load, adapted to Windows pathnames

(load "C:\\minlog\\etsmdA.scm") ; library for modal Dialectica that adapts src/etsd.scm

(libload "nat.scm") ; library for numbers that also defines n, m, k of type ‘nat’

(add-predconst-name "A" "B" (make-arity (py "nat") (py "nat")))

(add-predconst-name "C" (make-arity (py "nat"))) ; no computational vars for predconsts

;; (add-var-name "f" "g" (py "((nat=>nat)=>nat=>nat)"))

;; (add-var-name "h" (py "nat=>nat")) ; below ‘F’ is Minlog’s decidable falsum

(define oG (pf "(all n ex m A m n -> all n ex m B m n) --> (all k C k -> F) "))

(define mdoG (formula-to-md-formula oG)) ; (pretty-print mdoG)

; (add-var-name "K" (py "(((nat=>nat)=>nat=>nat)@@((nat=>nat)=>nat=>nat)=>nat)"))

;;; ex K all f,g { all h,n [A(h (g h n) , g h n) -> B(f h n, n)] -> C (K f g) -> F }

4.4. Illustrative example: finitary Infinite Pigeonhole Principle (cf. [RT12]). In

his PhD thesis (cf. Chapter 5 of [Tri12], in particular Section 5.6.2) the second author explains

that, under the light Dialectica of [Her06]27, three uniform quantifiers need to be inserted

in order to remove the negative computational content from three universally quantified

27The second author’s adaptation of the first author’s archived code in [Sea] is a structural permutation of
equivalent complexity. It lacks the semi-computational quantifiers, considered for a future upgrade of [HT].

3:24 D. Hernest and T. Trifonov Vol. 17:4

formulas inside the proof28. It turns out that this can be achieved by inserting a single � in

the formulation of the corollary he is proving (Unbounded Pigeonhole Principle)29.

The treatment of the example now becomes simpler, with the same synthesized term as

the one displayed by the second author in his thesis. The advantage of modal Dialectica is

that in the input proof one only needs to check the uniformity condition once for the �
(logically pushed in front of Decr(l, n) ∧̃Col(l, n) from the intermediate lemma) rather than

two times for ∀∅ introductions. The paradigm here is that one can outline the optimizations

“en masse” rather than piece by piece.

Note that the program (manually) extracted by the second author basically is the same

as the one described by Kohlenbach in Section 11.4 of [Koh08] by means of Oliva’s finite

bar recursion, cf. Section 2.1 of [Oli06a], see also [GK10]. The first author carried out the

implementation in Minlog by means of the Kreisel implication and automatically obtained

the bettered Scheme program from Figure 5.3 of [Tri12], see the Appendix sections in [HT21].

5. Conclusion and future directions

Modal Dialectica provides the means of using both Modified Realizability and Gödel’s

Dialectica at the same time for more efficient program synthesis. This was already the

case for the hybrid Dialectica of [HO08], but here we avoid the detour to the linear logic

substructure. Disregarding the light quantifiers, modal Dialectica represents (directly at

the supra-linear level) a good combination of the original proof interpretations, with the

possibility of carrying out both in a sound way on certain input proofs, insofar as some

implications of the input specification can be ‘Kreisel-ized’. At the extreme, Modified

Realizability is obtained from Dialectica, see also the comments above Definition 3.1. E.g.,

| (A→kB)→kC |
H
g , p

≡ ∀ x , v |A→kB |
g
x , v

→ |C |H g
p

≡ ∀ x , v
(
∀ y |A | x

y
→ |B | g x

v

)
→ |C |H g

p
(5.1)

Why not invoke a Modified Realizability (MR) extraction procedure for B → C instead

of processing B →kC ? Per se, MR requires strong existential quantification; even in

combination with (refined) A-translation (cf. [BSB02]), restrictions are in place for the shape

of the goal formula. Thus it is modal Dialectica that provides the fully modular approach.

28Note that the term in Figure 5.3 of [Tri12] is a hand-compiled version of the expression of Table 5.3. The
term and the expression denote one and the same program, but in Table 5.3 the extraction of the program
is shown in a stepwise manner, so that every step can be related to the proof and to the interpretation.
Figure 5.3 represents an operationally cleaner Scheme program. No normalization is happening between
Table 5.3 and Figure 5.3: the second author avoided it, as (uncontrolled) normalization can produce a slower
program.
29In front of the conjunction Decr(l, n) ∧̃Same(l, n) , see Corollary 3.6 on page 63 of [Tri12]. At the time of
writing of [Tri12] the Minlog implementation of ∀∅ was not operational for proofs involving case distinction
(for numbers) like the one produced by the second author for comparison with the A-translation approach (cf.
[Sea]–14.1, [SW11]–7.3). To address this problem, the first author rearranged the input specification in [HT]
so that two → can be rewritten as →k , otherwise the modal input proof essentially is equivalent to the
proof used by the second author in [Tri12]. The case distinction treatment of ∀∅ was subsequently fixed in
Minlog and thus any of the two versions of the proof (modal, or light-only) may now be used.

Vol. 17:4 MODAL FUNCTIONAL (“DIALECTICA”) INTERPRETATION 3:25

E.g., the Dialectica extracted term from the (classical) proof of IPP (Infinite Pigeonhole

Principle) can be (re)used further in the synthesis of programs that employ IPP as lemma

(such as the Unbounded Pigeonhole Principle).

A natural continuation of the work reported in this paper concerns the addition to

our input systems of strong (intuitionistic) elements. Besides the strong ∃ and its light

associated ∃ ∅ (originally from [Her06] where it was denoted ∃ , see also [Tri12]), strong

possibility ♦ also needs to be considered as the intuitionistic dual of necessity � .

The following clauses would then be added to Definition 3.1 for getting the strong modal

Dialectica interpretation | ∃ z A(z) | z, fy :≡ |A(z) | fy and | ♦A | y :≡ ∃x |A | xy , and

further | ∃∅ z A(z) | xy :≡ ∃z |A(z) | xy to Definition 3.3 in order to obtain the strong light

modal Dialectica interpretation.

Intuitionistic (light) modal arithmetical systems will first be considered at input for

‘strong’ program synthesis. Then their enhanced classical counterparts will be interpreted,

modulo some negative translation. Such systems will soundly extend NAm with ♦ and ∃ ,

and NAml also with ∃∅ . Nevertheless, certain restrictions may need to be applied on NAm

and / or NAml before attempting such extensions with intuitionistic elements30.

In Section 3.2 of [Oli12] Oliva suggested labelled contexts in order to deal with the

technical difficulties of having both the Kreisel and the usual (Gödel) implications in

intuitionistic logic ILω . Our implementation in Minlog of →k identifies those “Kreisel”

assumptions as the ones discharged at --> introduction; they are marked so that no realizer

is extracted for their negative side. In the modal language, we can say that they are “boxed”

by means of � , which acts as a “Kreisel” label. The restriction from Definition 3.2 then

has to be checked for the proof of the premise of an --> elimination.

It is straightforward that the hybrid system with →k is fully expressible in NAm ; the

question is whether NAm could nicely be expressed in a system with the Kreisel implication

as primitive, given that | �A | ↔ NA |(A→k⊥)→ ⊥| . Perhaps a Kreisel negation ¬k were

more suitable, with | ¬kA | ↔ NA |(A→k⊥) | .
The design of the monotone variant of modal Dialectica is under construction, since it

has been known for some time that a (heterogeneous) combination of modified realizability

and classical Dialectica was successfully used by Leuştean for proof mining (cf. [Koh08])

an exceptional approximation result in metric fixed-point theory (cf. [Leu14, Leu10]). See

also [Her09] for a synthetic analysis of the impact of the precursor of � into Kohlenbach’s

advanced framework for Proof Mining; note that our base logical framework is equivalent

to the one used by the proof miners, cf. Section 1.1.11 of [Tro73], see also [Luc73]. Recent

works by Powell [Pow20] and Şipoş [Şip] would be suitable for implementation in [HT], as

indicated by Kohlenbach.

Last but not least, the interplay between proofs and programs in our non-standard

modal systems may be suitable for the discovery approach of DreamCoder [EWN+20].

Instead of incrementally building (by intervention of human operators) an information

30See [MM08] for weak normalization of standard first-order classical S5 (with strong existence and strong
possibility) and Chapters 4 and 7 of [Sim94] for an intuitionistic account of intuitionistic modal logic.

3:26 D. Hernest and T. Trifonov Vol. 17:4

system associating realizers to (admissible) proofs of Lemmata (as building blocks for the

semi-automated search of programs from prima facie non-constructive proofs of Theorems)

we could then have the machine (re)discover Minlog and upgrade it to its modal variant.

Our Minlog variant and implementation of modal Dialectica may be found at:

https: // triffon. github. io/ mlfd

Acknowledgment

Our first reading of predicate modal logic was [Sch68], a rare small and complete (at the

time of its writing) presentation of the topic, recommended by Helmut Schwichtenberg.

Thanks to Diana Raţiu and Iosif Petrakis for logistic support and to Paulo Oliva for valuable

comments on early drafts of this paper. We also thank the anonymous reviewers which

contributed throughout the making of this paper by pertinent remarks.

References

[AF98] J. Avigad and S. Feferman. Gödel’s functional (“Dialectica”) interpretation. In S. R. Buss, editor,

Handbook of Proof Theory, volume 137 of Studies in Logic and the Foundations of Mathematics,

chapter V, pages 337–405. North Holland, Amsterdam, 1998.

[Bar96] Henk P. Barendregt. The quest for correctness. In Arjeh Marcel Cohen, editor, Images of SMC

research 1996, pages 39–58. Amsterdam: Stichting Mathematisch Centrum, 1996.

[BDL08] Arnold Beckmann, Costas Dimitracopoulos, and Benedikt Löwe, editors. Logic and Theory

of Algorithms, 4th Conference on Computability in Europe, CiE 2008, volume 5028 of LNCS.

Springer, Berlin, Heidelberg, 2008.

[Ber93] Ulrich Berger. Program extraction from normalization proofs. In M. Bezem, editor, Typed

Lambda Calculi and Applications TLCA’93, volume 664 of LNCS, pages 91–106. Springer, Berlin,

Heidelberg, 1993. https://doi.org/10.1007/BFb0037100.

[BG07] Torben Braüner and Silvio Ghilardi. First-order modal logic. In P. Blackburn, J. Van Benthem, and

F. Wolter, editors, Handbook of Modal Logic, volume 3 of Studies in Logic and Practical Reasoning,

chapter 9, pages 549 – 620. Elsevier, 2007. https://doi.org/10.1016/S1570-2464(07)80012-7.

[Bla92] Andreas Blass. A game semantics for linear logic. Annals of Pure and Applied Logic, 56(1):183 –

220, 1992. https://doi.org/10.1016/0168-0072(92)90073-9.

[BS95] Ulrich Berger and Helmut Schwichtenberg. Program extraction from classical proofs. In Daniel

Leivant, editor, Logic and Computational Complexity LCC’94, volume 960 of LNCS, pages 77–97.

Springer Verlag, 1995. https://doi.org/10.1007/3-540-60178-3_80.

[BSB02] Ulrich Berger, Helmut Schwichtenberg, and Wilfried Buchholz. Refined program extraction from

classical proofs. Annals of Pure and Applied Logic, 114(1–3):3–25, 2002.

https://doi.org/10.1016/S0168-0072(01)00073-2.

[ddG11] Ruy J. G. B. de Queiroz, Anjolina G. de Oliveira, and Dov M. Gabbay. The Functional

Interpretation of Logical Deduction, volume 5 of Advances in Logic. World Scientific, 2011.

https://doi.org/10.1142/8215.

[dG97] Ruy J. G. B. de Queiroz and Dov M. Gabbay. The functional interpretation of modal necessity.

In Maarten de Rijke, editor, Advances in Intensional Logic, volume 7 of Applied Logic Series,

pages 61 – 91. Springer Netherlands, 1997. https://doi.org/10.1007/978-94-015-8879-9_3.

[DO21] Bruno Dinis and Paulo Oliva. A parametrised functional interpretation of Heyting arithmetic.

Annals of Pure and Applied Logic, 172(4):102940, 2021.

https://doi.org/10.1016/j.apal.2020.102940.

https://triffon.github.io/mlfd
https://doi.org/10.1007/BFb0037100
https://doi.org/10.1016/S1570-2464(07)80012-7
https://doi.org/10.1016/0168-0072(92)90073-9
https://doi.org/10.1007/3-540-60178-3_80
https://doi.org/10.1016/S0168-0072(01)00073-2
https://doi.org/10.1142/8215
https://doi.org/10.1007/978-94-015-8879-9_3
https://doi.org/10.1016/j.apal.2020.102940

Vol. 17:4 MODAL FUNCTIONAL (“DIALECTICA”) INTERPRETATION 3:27

[dP91] Valeria C. V. de Paiva. The Dialectica categories. Technical Report UCAM-CL-TR-213, University

of Cambridge, Computer Laboratory, January 1991. https://doi.org/10.48456/tr-213.

[EWN+20] Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lucas Morales, Luke

Hewitt, Armando Solar-Lezama, and Joshua B. Tenenbaum. DreamCoder: Growing generalizable,

interpretable knowledge with wake-sleep Bayesian program learning, 2020.

https://arxiv.org/pdf/2006.08381.

[FHD12] Tim French, James Colin Hales, and Rowan Davies. Refinement quantified logics of knowledge

and belief for multiple agents. In Advances in Modal Logic, volume 9, pages 317–338. College

Publications, 2012. http://www.aiml.net/volumes/volume9/Hales-French-Davies.pdf.

[Fit07] Melvin Fitting. Modal proof theory. In Patrick Blackburn, Johan Van Benthem, and Frank

Wolter, editors, Handbook of Modal Logic, volume 3 of Studies in Logic and Practical Reasoning,

chapter 2, pages 85 – 138. Elsevier, 2007. https://doi.org/10.1016/S1570-2464(07)80005-X.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.

https://doi.org/10.1016/0304-3975(87)90045-4.

[GK10] Jaime Gaspar and Ulrich Kohlenbach. On Tao’s “finitary” infinite pigeonhole principle. Journal

of Symbolic Logic, 75(1):355 – 371, 2010. https://arxiv.org/abs/1009.5684.

[GL87] Jean-Yves Girard and Yves Lafont. Linear logic and lazy computation. In H. Ehrig, R. Kowalski,

G. Levi, and U. Montanari, editors, TAPSOFT 1987, volume 250 of LNCS. Springer, Berlin,

Heidelberg, 1987. https://doi.org/10.1007/BFb0014972.

[Göd58] Kurt Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica,

12:280–287, 1958. https://doi.org/10.1111/j.1746-8361.1958.tb01464.x.

[Her06] Mircea-Dan Hernest. Optimized programs from (non-constructive) proofs by the light (monotone)

Dialectica interpretation. PhD Thesis, École Polytechnique X and Universität München, 2006.

https://doi.org/10.5281/zenodo.5258447.

[Her07] Mircea-Dan Hernest. Light Dialectica program extraction from a classical Fibonacci proof.

Electronic Notes in Theoretical Computer Science, 171(3):43–53, 2007.

https://doi.org/10.1016/j.entcs.2006.10.050.

[Her09] Mircea-Dan Hernest. Light monotone Dialectica methods for Proof Mining. Mathematical Logic

Quarterly, 55(5):551–561, October 2009. https://doi.org/10.1002/malq.200710093.

[HO08] Mircea-Dan Hernest and Paulo Oliva. Hybrid functional interpretations. In Beckmann et al.

[BDL08], pages 251–260. https://doi.org/10.1007/978-3-540-69407-6_29.

[HT] Dan Hernest and Trifon Trifonov. Minimal logic for Dialectica interpretation.

https://triffon.github.io/mlfd/.

[HT10] Mircea-Dan Hernest and Trifon Trifonov. Light Dialectica revisited. Annals of Pure and Applied

Logic, 161(11):1379–1389, 2010. https://doi.org/10.1016/j.apal.2010.04.008.

[HT21] Dan Hernest and Trifon Trifonov. Appendix of Modal Functional (Dialectica) Interpretation,

August 2021. https://doi.org/10.5281/zenodo.5336751.

[Koh92] Ulrich Kohlenbach. Effective bounds from ineffective proofs in analysis: An application of

functional interpretation and majorization. Journal of Symbolic Logic, 57(4):1239 – 1273, 1992.

https://doi.org/10.2307/2275367.

[Koh01] Ulrich Kohlenbach. A note on Spector’s quantifier-free rule of extensionality. Archive for Mathe-

matical Logic, 40:89–92, 2001. https://doi.org/10.1007/s001530000048.

[Koh08] Ulrich Kohlenbach. Applied Proof Theory: Proof Interpretations and Their Use in Mathematics.

Springer Monographs in Mathematics., 2008. https://doi.org/10.1007/978-3-540-77533-1.

[Kre59] Georg Kreisel. Interpretation of analysis by means of constructive functionals of finite types. In

A. Heyting, editor, Constructivity in Mathematics, pages 101–128. North Holland, Amsterdam,

1959. MR0106838.

[Let08] Pierre Letouzey. Coq Extraction, an Overview. In Beckmann et al. [BDL08], pages 359–369.

https://doi.org/10.1007/978-3-540-69407-6_39.

https://doi.org/10.48456/tr-213
https://arxiv.org/pdf/2006.08381
http://www.aiml.net/volumes/volume9/Hales-French-Davies.pdf
https://doi.org/10.1016/S1570-2464(07)80005-X
https://doi.org/10.1016/0304-3975(87)90045-4
https://arxiv.org/abs/1009.5684
https://doi.org/10.1007/BFb0014972
https://doi.org/10.1111/j.1746-8361.1958.tb01464.x
https://doi.org/10.5281/zenodo.5258447
https://doi.org/10.1016/j.entcs.2006.10.050
https://doi.org/10.1002/malq.200710093
https://doi.org/10.1007/978-3-540-69407-6_29
https://triffon.github.io/mlfd/
https://doi.org/10.1016/j.apal.2010.04.008
https://doi.org/10.5281/zenodo.5336751
https://doi.org/10.2307/2275367
https://doi.org/10.1007/s001530000048
https://doi.org/10.1007/978-3-540-77533-1
https://doi.org/10.1007/978-3-540-69407-6_39

3:28 D. Hernest and T. Trifonov Vol. 17:4

[Leu10] Laurenţiu Leuştean. Nonexpansive iterations in uniformly convex W -hyperbolic spaces. In

Nonlinear Analysis and Optimization I: Nonlinear Analysis, volume 513, chapter 7, pages

193–210. American Mathematical Society, January 2010. http://arxiv.org/abs/0810.4117.

[Leu14] Laurenţiu Leuştean. An application of proof mining to nonlinear iterations. Annals of Pure and

Applied Logic, 165(9):1484–1500, 2014. https://doi.org/10.1016/j.apal.2014.04.015.

[Luc73] Horst Luckhardt. Extensional Gödel Functional Interpretation: A Consistency Proof of Classical

Analysis, volume 306 of Lecture Notes in Mathematics. Springer, Berlin, 1973.

https://doi.org/10.1007/BFb0060871.

[MM08] Ana Teresa Martins and Lilia Ramalho Martins. Full classical S5 in natural deduction with weak

normalization. Annals of Pure and Applied Logic, 152(1):132–147, 2008.

https://doi.org/10.1016/j.apal.2007.11.007.

[MPMU04] Claude Marché, Christine Paulin-Mohring, and Xavier Urbain. The Krakatoa tool for cer-

tification of Java/JavaCard programs annotated in JML. Journal of Logic and Algebraic

Programming, 58(1–2):89–106, 2004. http://krakatoa.lri.fr.

[NvP11] Sara Negri and Jan von Plato. Proof analysis (A Contribution to Hilbert’s Last Problem).

Cambridge University Press, September 2011.

[Oli06a] Paulo Oliva. Understanding and using Spector’s bar recursive interpretation of classical analysis.

In Arnold Beckmann, Ulrich Berger, Benedikt Löwe, and JohnV. Tucker, editors, Logical

Approaches to Computational Barriers. 2nd CiE, volume 3988 of LNCS, pages 423–434. Springer,

2006. https://doi.org/10.1007/11780342_44.

[Oli06b] Paulo Oliva. Unifying functional interpretations. Notre Dame Journal of Formal Logic, 47(2):263–

290, 2006. https://doi.org/10.1305/ndjfl/1153858651.

[Oli07] Paulo Oliva. Modified realizability interpretation of classical linear logic. In Proceedings of the

Twenty-Second Annual IEEE Symposium on Logic in Computer Science (LICS), pages 431–442.

IEEE Computer Society Press, 2007. https://doi.org/10.1109/LICS.2007.32.

[Oli12] Paulo Oliva. Hybrid functional interpretations of linear and intuitionistic logic. Journal of Logic

and Computation, 22(2):305–328, 2012. https://doi.org/10.1093/logcom/exq007.

[Oli15] Paulo Oliva. Unifying functional interpretations: Past and future. In Logic, Methodology and

Philosophy of Science. Proceedings of the Fourteenth International Congress (Nancy), pages 97 –

122. College Publications, January 2015. http://arxiv.org/pdf/1410.4364.

[PD01] F. Pfenning and R. Davies. A judgmental reconstruction of modal logic. Mathematical Structures

in Computer Science, 11(4):511 – 540, 2001. https://doi.org/10.1017/S0960129501003322.

[Pow20] Thomas Powell. A unifying framework for continuity and complexity in higher types. Logical

Methods in Computer Science, Volume 16, Issue 3, 2020. https://lmcs.episciences.org/6769.

[Pra65] Dag Prawitz. Natural deduction: a proof-theoretical study. PhD thesis, Almqvist & Wiksell, 1965.

[Raf04] Christophe Raffalli. Getting results from programs extracted from classical proofs. Theoretical

Computer Science, 323(1):49–70, 2004. https://doi.org/10.1016/j.tcs.2004.03.006.

[RT12] Diana Raţiu and Trifon Trifonov. Exploring the computational content of the Infinite Pigeonhole

Principle. Journal of Logic and Computation, 22(2):329–350, 2012.

https://doi.org/10.1093/logcom/exq011.

[Sch68] Kurt Schütte. Vollständige Systeme modaler und intuitionistischer Logik. Springer Verlag, 1968.

https://doi.org/10.1007/978-3-642-88664-5.

[Sea] Helmut Schwichtenberg and et al. Minlog 5.0 reference manual. http://www.minlog-system.de.

[Sim94] Alex K. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis,

University of Edinburgh, 1994. https://era.ed.ac.uk/handle/1842/407.

[Şip] Andrei Şipoş. Rates of metastability for iterations on the unit interval.

https://arxiv.org/abs/2008.03934.

[Smu78] Raymond M. Smullyan. What Is the Name of This Book? The Riddle of Dracula and Other Logical

Puzzles. Prentice-Hall, 1978. https://archive.org/details/WhatIsTheNameOfThisBook.

http://arxiv.org/abs/0810.4117
https://doi.org/10.1016/j.apal.2014.04.015
https://doi.org/10.1007/BFb0060871
https://doi.org/10.1016/j.apal.2007.11.007
http://krakatoa.lri.fr
https://doi.org/10.1007/11780342_44
https://doi.org/10.1305/ndjfl/1153858651
https://doi.org/10.1109/LICS.2007.32
https://doi.org/10.1093/logcom/exq007
http://arxiv.org/pdf/1410.4364
https://doi.org/10.1017/S0960129501003322
https://lmcs.episciences.org/6769
https://doi.org/10.1016/j.tcs.2004.03.006
https://doi.org/10.1093/logcom/exq011
https://doi.org/10.1007/978-3-642-88664-5
http://www.minlog-system.de
https://era.ed.ac.uk/handle/1842/407
https://arxiv.org/abs/2008.03934
https://archive.org/details/WhatIsTheNameOfThisBook

Vol. 17:4 Modal Functional (“Dialectica”) Interpretation 3:29

[SW11] Helmut Schwichtenberg and Stanley S. Wainer. Proofs and Computations. Perspectives in Logic.

Cambridge University Press, 2011. https://doi.org/10.1017/CBO9781139031905.

[Tri09] Trifon Trifonov. Dialectica interpretation with fine computational control. In Klaus Ambos-

Spies, Benedikt Löwe, and Wolfgang Merkle, editors, Mathematical Theory and Computational

Practice: 5th CiE, volume 5635 of LNCS, pages 467–477. Springer, Berlin, Heidelberg, 2009.

https://doi.org/10.1007/978-3-642-03073-4_48.

[Tri12] Trifon Trifonov. Analysis of methods for extraction of programs from non-constructive proofs.

PhD thesis, Ludwig-Maximilians-Universität München, February 2012.

https://doi.org/10.5282/edoc.14030.

[Tro73] Anne S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and Analysis,

volume 344 of Lecture Notes in Mathematics. Springer-Verlag, 1973.

https://doi.org/10.1007/BFb0066739.

[TS00] Anne S. Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cambridge University Press,

Cambridge (2nd edition), 2000. https://doi.org/10.1017/CBO9781139168717.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

https://doi.org/10.1017/CBO9781139031905
https://doi.org/10.1007/978-3-642-03073-4_48
https://doi.org/10.5282/edoc.14030
https://doi.org/10.1007/BFb0066739
https://doi.org/10.1017/CBO9781139168717

	1. Introduction
	2. Arithmetical systems for light and / or modal Dialectica extraction
	Term system T
	2.1. The verifying system NA
	2.2. Input system NAl
	2.3. Light functional interpretations
	2.4. Light Extensionality
	2.5. Numbers
	2.6. Motivation for the modal induction rule

	3. Modal system NAm and light modal system NAml
	4. Modal and light modal functional interpretations
	4.1. Modal induction rule
	4.2. Revisited examples
	4.3. Proof that Box is a strict addition to the light system
	4.4. Illustrative example: finitary Infinite Pigeonhole Principle

	5. Conclusion and future directions
	Acknowledgment
	References

