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Abstract. Resolution refinements called w-resolution trees with lemmas (WRTL) and
with input lemmas (WRTI) are introduced. Dag-like resolution is equivalent to both
WRTL and WRTI when there is no regularity condition. For regular proofs, an exponential
separation between regular dag-like resolution and both regular WRTL and regular WRTI
is given.

It is proved that DLL proof search algorithms that use clause learning based on unit
propagation can be polynomially simulated by regular WRTI. More generally, non-greedy
DLL algorithms with learning by unit propagation are equivalent to regular WRTI. A
general form of clause learning, called DLL-Learn, is defined that is equivalent to regular
WRTL.

A variable extension method is used to give simulations of resolution by regular WRTI,
using a simplified form of proof trace extensions. DLL-Learn and non-greedy DLL algo-
rithms with learning by unit propagation can use variable extensions to simulate general
resolution without doing restarts.

Finally, an exponential lower bound for WRTL where the lemmas are restricted to short
clauses is shown.

1. Introduction

Although the satisfiability problem for propositional logic (SAT) is NP-complete, there
exist SAT solvers that can decide SAT on present-day computers for many formulas that
are relevant in practice [23, 21, 20, 3, 4, 5]. The fastest SAT solvers for structured problems
are based on the basic backtracking procedures known as DLL algorithms [9], extended
with additional techniques such as clause learning.
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DLL algorithms can be seen as a kind of proof search procedure since the execution of
a DLL algorithm on an unsatisfiable CNF formula yields a tree-like resolution refutation
of that formula. Conversely, given a tree-like resolution refutation, an execution of a DLL
algorithm on the refuted formula can be constructed whose runtime is roughly the size of the
refutation. By this exact correspondence, upper and lower bounds on the size of tree-like
resolution proofs transfer to bounds on the runtime of DLL algorithms.

This paper generalizes this exact correspondence to extensions of DLL by clause learn-
ing. To this end, we define natural, rule-based resolution proof systems and then prove
that they correspond to DLL algorithms that use various forms of clause learning. The
motivation for this is that the correspondence between a clause learning DLL algorithm
and a proof system helps explain the power of the algorithm by giving a description of
the space of proofs which is searched by it. In addition, upper and lower bounds on proof
complexity can be transferred to upper and lower bounds on the possible runtimes of large
classes of DLL algorithms with clause learning.

We introduce, in Section 3, tree-like resolution refinements using the notions of a
resolution tree with lemmas (RTL) and a resolution tree with input lemmas (RTI). An
RTL is a tree-like resolution proof in which every clause needs only to be derived once and
can be copied to be used as a leaf in the tree (i.e., a lemma) if it is used several times. As
the reader might guess, RTL is polynomially equivalent to general resolution.

Since DLL algorithms use learning based on unit propagation, and since unit propaga-
tion is equivalent to input resolution (sometimes called “trivial resolution” [2]), it is useful
to restrict the lemmas that are used in a RTL to those that appear as the root of input
subproofs. This gives rise to proof systems based on resolution trees with input lemmas
(RTI). Somewhat surprisingly, we show that RTI can also simulate general resolution.

A resolution proof is called regular if no variable is used as a resolution variable twice
along any path in the tree. Regular proofs occur naturally in the present context, since
a backtracking algorithm would never query the same variable twice on one branch of its
execution. It is known that regular resolution is weaker than general resolution [14, 1], but
it is unknown whether regular resolution can simulate regular RTL or regular RTI. This
is because, in regular RTL/RTI proofs, variables that are used for resolution to derive a
clause can be reused on paths where this clause appears as a lemma.

For resolution and regular resolution, the use of a weakening rule does not increase
the power of the proof system (by the subsumption principle). However, for RTI and
regular RTL proofs, the weakening rule may increase the strength of the proof system
(this is an open question, in fact), since eliminating uses of weak inferences may require
pruning away parts of the proof that contain lemmas needed later in the proof. Accordingly,
Section 3 also defines proof systems regWRTL and regWRTI that consist of regular RTL and
regular RTI (respectively), but with a modified form of resolution, called “w-resolution”,
that incorporates a restricted form of the weakening rule.

In Section 4 we propose a general framework for DLL algorithms with clause learning,
called DLL-L-UP. The schema DLL-L-UP is an attempt to give a short and abstract
definition of modern SAT solvers and it incorporates all common learning strategies, in-
cluding all the specific strategies discussed by Beame et al. [2]. Section 5 proves that, for
any of these learning strategies, a proof search tree can be transformed into a regular WRTI
proof with only a polynomial increase in size. Conversely, any regular WRTI proof can be
simulated by a “non-greedy” DLL search tree with clause learning, where by “non-greedy”
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is meant that the algorithm can continue decision branching even after unit propagation
could yield a contradiction.

In Section 6 we give another generalization of DLL with clause learning called DLL-

Learn. The algorithm DLL-Learn can simulate the clause learning algorithm DLL-L-

UP. More precisely, we prove that DLL-Learn p-simulates, and is p-simulated by, regular
WRTL. The DLL-Learn algorithm is very similar to the “pool resolution” algorithm that
has been introduced by Van Gelder [25] but differs from pool resolution by using the
“w-resolution” inference in place of the “degenerate” inference used by Van Gelder (the
terminology “degenerate” is used by Hertel et al. [16]). Van Gelder has shown that pool
resolution can simulate not only regular resolution, but also any resolution refutation which
has a regular depth-first search tree. The latter proof system is the same as the proof
system regRTL in our framework, therefore the same holds for DLL-Learn. It is unknown
whether DLL-Learn or DLL-L-UP can p-simulate pool resolution or vice versa.

Sections 4-6 prove the equivalence of clause learning algorithms with the two proof
systems regWRTI and regWRTL. Our really novel system is regWRTI: this system has the
advantage of using input lemmas in a manner that closely matches the range of clause
learning algorithms that can be used by practical DLL algorithms. In particular, the
regWRTI proof system’s use of input lemmas corresponds directly to the clause learning
strategies of Silva and Sakallah [23], including first-UIP, relsat, and other clauses based
on cuts, and including learning multiple clauses at a time. Van Gelder [25] shows that
pool resolution can also simulate these kinds of clause learning (at least, for learning single
clauses), but the correspondence is much more natural for the system regWRTI than for
either pool resolution or DLL-Learn.

It is known that DLL algorithms with clause learning and restarts can simulate full
(non-regular, dag-like) resolution by learning every derived clause, and doing a restart
each time a clause is learned [2]. Our proof systems, regWRTI and DLL-Learn, do not
handle restarts; instead, they can be viewed as capturing what can happen between restarts.
Another approach to simulating full resolution is via the use of “proof trace extensions”
introduced by Beame et al. [2]. Proof trace extensions allow resolution to be simulated by
clause learning DLL algorithms, and a related construction is used by Hertel et al. [16] to
show that pool resolution can “effectively” p-simulate full resolution. These constructions
require introducing new variables and clauses in a way that does not affect satisfiability,
but allow a clause learning DLL algorithm or pool resolution to establish non-satisfiability.
However, the constructions by Beame et al. [2] and the initially circulated preprint of Hertel
et al. [16] had the drawback that the number of extra introduced variables depends on the
size of the (unknown) resolution refutation.

Section 7 introduces an improved form of proof trace extensions called “variable ex-
tensions”. Theorem 7.3 shows that variable extensions can be used to give a p-simulation
of full resolution by regWRTI (at the cost of changing the formula that is being refuted).
Variable extensions are simpler and more powerful than proof trace extensions. Their main
advantage is that a variable extension depends only on the number of variables, not on
the size of the (unknown) resolution proof. The results of Section 7 were first published in
the second author’s diploma thesis [17]; the subsequently published version of the article
of Hertel et al. [16] gives a similarly improved construction (for pool resolution) that does
not depend on the size of the resolution proof and, in addition, does not use degenerate
resolution inferences.
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One consequence of Theorem 7.3 is that regWRTI can effectively p-simulate full res-
olution. This improves on the results of Hertel et al. [16] since regWRTI is not known to
be as strong as pool resolution. It remains open whether regWRTI or pool resolution can
p-simulate general resolution without variable extensions.

Section 8 proves a lower bound that shows that for certain hard formulas, the pigeonhole
principle PHPn, learning only small clauses does not help a DLL-algorithm. We show that
resolution trees with lemmas require size exponential in n log n to refute PHPn when the
size of clauses used as lemmas is restricted to be less than n/2. This bound is asymptotically
the same as the lower bound shown for tree-like resolution refutations of PHPn [18]. On the
other hand, there are regular resolution refutations of PHPn of size exponential in n [7], and
our results show that these can be simulated by DLL-L-UP. Hence the ability of learning
large clauses can give a DLL-algorithm a superpolynomial speedup over one that learns
only short clauses.

2. Preliminaries

Propositional logic. Propositional formulas are formed using Boolean connectives ¬, ∧, and
∨. However, this paper works only with formulas in conjunctive normal form, namely
formulas that can be expressed as a set of clauses. We write x for the negation of x, and x
denotes x. A literal l is defined to be either a variable x or a negated variable x. A clause C
is a finite set of literals, and is interpreted as being the disjunction of its members. The
empty clause is denoted ✷. A unit clause is a clause containing a single literal. A set F
of clauses is interpreted as the conjunction of its clauses, i.e., a conjunctive normal form
formula (CNF).

An assignment α is a (partial) mapping from the set of variables to {0, 1}, where we
identify 1 with True and 0 with False. The assignment α is implicitly extended to assign
values to literals by letting α(x) = 1 − α(x), and the domain, dom(α), of α is the set of
literals assigned values by α. The restriction of a clause C under α is the clause

C|α =







1 if there is a l ∈ C with α(l) = 1
0 if α(l) = 0 for every l ∈ C
{ l ∈ C | l 6∈ dom(α) } otherwise

The restriction of a set F of clauses under α is

F |α =







0 if there is a C ∈ F with C|α = 0
1 if C|α = 1 for every C ∈ F
{ C|α | C ∈ F } \ {1} otherwise

If F |α = 1, then we say α satisfies F .
An assignment is called total if it assigns values to all variables. We call two CNFs F

and F ′ equivalent and write F ≡ F ′ to indicate that F and F ′ are satisfied by exactly the
same total assignments. Note, however, that F ≡ F ′ does not always imply that they are
satisfied by the same partial assignments.

If ǫ ∈ {0, 1} and x is a variable, we define xǫ by letting x0 be x and x1 be x.
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Resolution. Suppose that C0 and C1 are clauses and x is a variable with x ∈ C0 and x ∈ C1.
Then the resolution rule can be used to derive the clause C = (C0 \ {x}) ∪ (C1 \ {x}). In
this case we write C0, C1 ⊢x C or just C0, C1 ⊢ C.

A resolution proof of a clause C from a CNF F consists of repeated applications of
the resolution rule to derive the clause C from the clauses of F . If C = ✷, then F is
unsatisfiable and the proof is called a resolution refutation.

We represent resolution proofs either as graphs or as trees. A resolution dag (RD) is
a dag G = (V,E) with labeled edges and vertices satisfying the following properties. Each
node is labeled with a clause and a variable, and, in addition, each edge is labeled with a
literal. There must be a single node of out-degree zero, labeled with the conclusion clause.
Further, all nodes with in-degree zero are labeled with clauses from the initial set F . All
other nodes must have in-degree two and are labeled with a variable x and a clause C such
that C0, C1 ⊢x C where C0 and C1 are the labels on the the two immediate predecessor
nodes and x ∈ C0 and x ∈ C1. The edge from C0 to C is labeled x, and the edge from C1

to C is labeled x. (The convention that that x ∈ C0 and x is on the edge from C0 might
seem strange, but it allows a more natural formulation of Theorem 2.4 below.)

A resolution dag G is x-regular iff every path in G contains at most one node that is
labeled with the variable x. G is regular (or a regRD) if G is x-regular for every x.

We define the size of a resolution dag G = (V,E) to be the number |V | of vertices in
the dag. Var(G) is the set of variables used as resolution variables in G. Note that if G is
a resolution proof rather than a refutation, then Var(G) may not include all the variables
that appear in clause labels of G.

A resolution tree (RT) is a resolution dag which is tree-like, i.e., a dag in which every
vertex other then the conclusion clause has out-degree one. A regular resolution tree is
called a regRT for short.

The notion of (p-)simulation is an important tool for comparing the strength of proof
systems. If Q and R are refutation systems, we say that Q simulates R provided there
is a polynomial p(n) such that, for every R-refutation of a CNF F of size n there is a
Q-refutation of F of size ≤ p(n). If the Q-refutation can be found by a polynomial time
procedure, then this called a p-simulation. Two systems that simulate (resp, p-simulate)
each other are called equivalent (resp, p-equivalent). Some basic prior results for simulations
of resolution systems include:

Theorem 2.1.

(a) [24] Regular tree resolution (regRT) p-simulates tree resolution (RT).
(b) [14, 1] Regular resolution (regRD) does not simulate resolution (RD).
(c) [6] Tree resolution (RT) does not simulate regular resolution (regRD).

Weakening and w-resolution. The weakening rule allows the derivation of any clause C ′ ⊇ C
from a clause C. However, instead of using the weakening rule, we introduce a w-resolution
rule that essentially incorporates weakening into the resolution rule. Given two clauses C0

and C1, and a variable x, the w-resolution rule allows one to infer C = (C0\{x})∪(C1\{x}).
We denote this condition C0, C1 ⊢

w
x C. Note that x ∈ C0 and x ∈ C1 are not required for

the w-resolution inference.
We use the notations WRD, regWRD, WRT, and regWRT for the proof systems

that correspond to RD, regRD, RT, and regRT (respectively) but with the resolution rule



6 S. R. BUSS, J. HOFFMANN, AND J. JOHANNSEN

replaced with the w-resolution rule. That is, given a node labeled with C, an edge from C0 to
C labeled with x̄ and an edge from C1 to C labeled with x, we have C = (C0\{x})∪(C1\{x}).

Similarly, we use the notations RDW and RTW for the proof systems that correspond to
RD and RT, but with the general weakening rule added. In an application of the weakening
rule, the edge connecting a clause C ′ ⊇ C with its single predecessor C does not bear any
label.

The resolution and weakening rules can certainly p-simulate the w-resolution rule, since
a use of the w-resolution rule can be replaced by weakening inferences that derive C0 ∪ {x}
from C0 and C1∪{x} from C1, and then a resolution inference that derives C. The converse
is not true, since w-resolution cannot completely simulate weakening; this is because w-
resolution cannot introduce completely new variables that do not occur in the input clauses.
According to the well-known subsumption principle, weakening cannot increase the strength
of resolution though, and the same reasoning implies the same about w-resolution; namely,
we have:

Proposition 2.2. Let R be a WRD proof of C from F of size n. Then there is an RD
proof S of C ′ from F of size ≤ n for some C ′ ⊆ C. Furthermore, if R is regular, so is S,
and if R is a tree, so is S.

Proof. The proof of the theorem is straightforward. Writing R as a sequence
C0, C1, . . . , Cn = C, define clauses C ′

i ⊆ Ci by induction on i so that the new clauses
form the desired proof S. For Ci ∈ F , let C ′

i = Ci. Otherwise Ci is inferred by w-resolution
from Cj and Ck w.r.t. a variable x. If x ∈ Cj and x ∈ Ck, let C ′

i be the resolvent of C ′
j

and C ′
k as obtained by the usual resolution rule; if not, then let C ′

i be C ′
j if x /∈ C ′

j , or C
′
k

if x /∈ C ′
k. It is easy to check that each C ′

i ⊆ Ci and that, after removing duplicate clauses,
the clauses C ′

j form a valid resolution proof S. If R is regular, then so is S, and if R is a
tree so is S.

Essentially the same proof shows the same property for the system with the full
weakening rule:

Proposition 2.3. Let R be a RDW proof of C from F of size s. Then there is an RD
proof S of C ′ from F of size ≤ s for some C ′ ⊆ C. Furthermore, if R is regular, so is S,
and if R is a tree, so is S.

There are several reasons why we prefer to work with w-resolution, rather than with
the weakening rule. First, we find it to be an elegant way to combine weakening with
resolution. Second, it works well for using resolution trees (with input lemmas, see the next
section) to simulate DLL search algorithms. Third, since weakening and resolution together
are stronger than w-resolution, w-resolution is a more refined restriction on resolution.
Fourth, for regular resolution, using w-resolution instead of general weakening can be a
quite restrictive condition, since any w-resolution inference C0, C1 ⊢

w
x C “uses up” the

variable x, making it unavailable for other resolution inferences on the same path, even if
the variable does not occur at all in C0 and C1. The last two reasons mean that w-resolution
can be rather weak; this strengthens our results below (Theorems 5.1 and 5.3) about the
existence of regular proofs that use w-resolution.

The following simple theorem gives some useful properties for regular w-resolution.

Theorem 2.4. Let G be a regular w-resolution refutation. Let C be a clause in G.

(a) Suppose that C is derived from C0 and C1 with the edge from C0 (resp. C1) to C labeled
with x (resp. x). Then x /∈ C0, and x /∈ C1.
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(b) Let α be an assignment such that for every literal l labeling an edge on the path from C
to the final clause, α(l) = True. Then C|α = 0.

Proof. The proof of part a. is based on the observation that if x ∈ C0, then also x ∈ C.
However, by the regularity of the resolution refutation, every clause on the path from C to
the final clause ✷ must contain x. But clearly x /∈ ✷.

Part b. is a well-known fact for regular resolution proofs. It holds for similar reasons
for regular w-resolution proofs: the proof proceeds by induction on clauses in the proof,
starting at the final clause ✷ and moving up towards the leaves. Part a. makes the induction
step trivial.

Directed acyclic graphs. We define some basic concepts that will be useful for analyzing
both resolution proofs and conflict graphs (which are defined below in Section 4). Let
G = (V,E) be a dag. The set of leaves (nodes in V of in-degree 0) of G is denoted V 0

G. The
depth of a node u in V is defined to equal the maximum number of edges on any path from
a leaf of G to the node u. Hence leaves have depth 0. The subgraph rooted at u in G is
denoted Gu; its nodes are the nodes v for which there is a path from v to u in G, and its
edges are the induced edges of G.

3. w-resolution trees with lemmas

This section first gives an alternate characterization of resolution dags by using resolu-
tion trees with lemmas. We then refine the notion of lemmas to allow only input lemmas.
For non-regular derivations, resolution trees with lemmas and resolution trees with input
lemmas are both proved below to be p-equivalent to resolution. However, for regular proofs,
the notions are apparently different. (In fact we give an exponential separation between
regular resolution and regular w-resolution trees with input lemmas.) Later in the paper
we will give a tight correspondence between resolution trees with input lemmas and DLL
search algorithms.

The intuition for the definition of a resolution tree with lemmas is to allow any clause
proved earlier in the resolution tree to be reused as a leaf clause. More formally, assume we
are given a resolution proof tree T , and further assume T is ordered in that each internal
node has a left child and a right child. We define <T to be the post-ordering of T , namely,
the linear ordering of the nodes of T such that if u is a node in T and v is in the subtree
rooted at u’s left child, and w is in the subtree rooted at u’s right child, then v <T w <T u.
For F a set of clauses, a resolution tree with lemmas (RTL) proof from F is an ordered
binary tree such that (1) each leaf node v is labeled with either a member of F or with
a clause that labels some node u <T v, and (2) each internal node v is labeled with a
variable x and a clause C, such that C is inferred by resolution w.r.t. x from the clauses
labeling the two children of v, and (3) the unique out-degree zero node is labeled with the
conclusion clause D. If D = ✷, then the RTL proof is a refutation.

w-resolution trees with lemmas (WRTL) are defined just like RTL’s, but allowing w-
resolution in place of resolution, and resolution trees with lemmas and weakening (RTLW)
are defined in the same way, but allowing the weakening rule in addition to resolution.

An RTL or WRTL proof is regular provided that no path in the proof tree contains
more than one (w-)resolution using a given variable x. Note that paths follow the tree edges
only; any maximal path starts at a leaf node (possibly a lemma) and ends at the conclusion.
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It is not hard to see that resolution trees with lemmas (RTL) and resolution dags (RD)
p-simulate each other. Namely, an RD can be converted into an RTL by doing a depth-first,
leftmost traversal of the RD. In addition, it is clear that regular RTL’s p-simulate regular
RD’s. The converse is open, and it is false for regular WRTL, as we prove in Section 5:
intuitively, the problem is that when one converts an RTL proof into an RD, new path
connections are created when leaf clauses are replaced with edges back to the node where
the lemma was derived.

We next define resolution trees with input lemma (RTI) proofs. These are a restricted
version of resolution trees with lemmas, where the lemmas are required to have been derived
earlier in the proof by input proofs. Input proofs have also been called trivial proofs by
Beame et al. [2], and they are useful for characterizing the clause learning permissible for
DLL algorithms.

Definition 3.1. An input resolution tree is a resolution tree such that every internal node
has at least one child that is a leaf. Let v be a node in a tree T and let Tv be the subtree
of T with root v. The node v is called an input-derived node if Tv is an input resolution
tree.

Often the node v and its label C are identified. In this case, C is called an input-derived
clause. In RTI proofs, input-derived clauses may be reused as lemmas. Thus, in an RTI
proof, an input-derived clause is derived by an input proof whose leaves either are initial
clauses or are clauses that were already input-derived.

Definition 3.2. A resolution tree with input lemmas (RTI) proof T is an RTL proof with
the extra condition that every lemma in T must appear earlier in T as an input-derived
clause. That is to say, every leaf node u in T is labeled either with an initial clause from F
or with a clause that labels some input-derived node v <T u.

The notions of w-resolution trees with input lemmas (WRTI), regular resolution trees
with input lemmas (regRTI), and regular w-resolution trees with input lemmas (regWRTI)
are defined similarly.1

It is clear that the resolution dags (RD) and resolution trees with lemmas (RTL) p-
simulate resolution trees with input lemmas (RTI). Somewhat surprisingly, the next theorem
shows that the converse p-simulation holds as well.

Theorem 3.3. Let G be a resolution dag of size s for the clause C from the set F of clauses.
Let d be the depth of C in G. Then there is an RTI proof T for C from F of size < 2sd. If
G is regular then T is also regular.

Proof. The dag proof G can be unfolded into a proof tree T ′, possibly exponentially bigger.
The proof idea is to prune clauses away from T ′ leaving a RTI proof T of the desired size.

Without loss of generality, no clause appears more than once in G; hence, for a given
clause C in the tree T ′, every occurrence of C in T ′ is derived by the same subproof T ′

C .
Let dC be the depth of C in the proof, i.e., the height of the tree T ′

C . Clauses at leaves have
depth 0. We give the proof tree T ′ an arbitrary left-to-right order, so that it makes sense
to talk about the i-th occurrence of a clause C in T ′.

1A small, but important point is that w-resolution inferences are not allowed in input proofs, even for
input proofs that are part of WRTI proofs. We have chosen the definition of input proofs so as to make
the results in Section 5 hold that show the equivalence between regWRTI proofs and DLL-L-UP search
algorithms. Although similar results could be obtained if the definition of input proof were changed to allow
w-resolution inferences, it would require also using a modified, and less natural, version of clause learning.
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We define the j-th occurrence of a clause C in T ′ to be leafable, provided j > dC . The
intuition is that the leafable clauses will have been proved as a input clause earlier in T ,
and thus any leafable clause may be used as a lemma in T .

To form T from T ′, remove from T ′ any clause D if it has a successor that is leafable,
so that every leafable occurrence of a clause either does not appear in T or appears in T
as a leaf. To prove that T is a valid RTI proof, it suffices to prove, by induction on i, that
if C has depth dC = i > 0, then the i-th occurrence of C is input-derived in T . Note that
the two children C0 and C1 of C must have depth < dC . Since every occurrence of C is
derived from the same two clauses, these occurrences of C0 and C1 must be at least their i-th
occurrences. Therefore, by the induction hypothesis, the children C0 and C1 are leafable
and appear in T as leaves. Thus, since it is derived by a single inference from two leaves,
the i-th occurrence of C is input-derived.

It follows that T is a valid RTI proof. If the proof G was regular, clearly T is regular
too.

To prove the size bound for T , note that G has at most s− 1 internal nodes. Each one
occurs at most d times as an internal node in T , so T has at most d(s − 1) internal nodes.
Thus, T has at most 2d · (s− 1) + 1 < 2sd nodes in all.

The following two theorems summarize the relationships between our various proof
systems. We write R ≡ Q to denote that R and Q are p-equivalent, and Q ≤ R to denote
that R p-simulates Q. The notation Q < R means that R p-simulates Q but Q does not
simulate R.

Theorem 3.4. RD ≡WRD ≡ RTI ≡WRTI ≡ RTL ≡WRTL

Proof. The p-equivalences RD ≡ WRD and RTI ≡ WRTI and RTL ≡ WRTL are shown
by (the proof of) Proposition 2.2. The simulations RTI ≤ RTL ≡ RD are straightforward.
Finally, RD ≤ RTI is shown by Theorem 3.3.

For regular resolution, we have the following theorem.

Theorem 3.5. regRD ≡ regWRD ≤ regRTI ≤ regRTL ≤ regWRTL ≤ RD and regRTI ≤
regWRTI ≤ regWRTL.

Proof. regRD ≡ regWRD and regWRTL ≤ RD follow from the definitions and the
proof of Proposition 2.2. The p-simulations regRTI ≤ regRTL ≤ regWRTL and
regRTI ≤ regWRTI ≤ regWRTL follow from the definitions. The p-simulation
regRD ≤ regRTI is shown by Theorem 3.3.

Below, we prove, as Theorem 5.4, that regRD < regWRTI. This is the only separation
in the hierarchy that is known. In particular, it is open whether regRD < regRTI, regRTI <
regRTL, regRTL < regWRTL, regWRTL < RD or regWRTI < regWRTL hold. It is also
open whether regWRTI and regRTL are comparable.

4. DLL algorithms with clause learning

4.1. The basic DLL algorithm. The DLL proof search algorithm is named after the
authors Davis, Logeman and Loveland of the paper where it was introduced [9]. Since they
built on the work of Davis and Putnam [10], the algorithm is sometimes called the DPLL
algorithm. There are several variations on the DLL algorithm, but the basic algorithm
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is shown in Figure 1. The input is a set F of clauses, and a partial assignment α. The
assignment α is a set of ordered pairs (x, ǫ), where ǫ ∈ {0, 1}, indicating that α(x) = ǫ.
The DLL algorithm is implemented as a recursive procedure and returns either UNSAT if F
is unsatisfiable or otherwise a satisfying assignment for F .

DLL(F, α)
1 if F |α = 0 then

2 return UNSAT

3 if F |α = 1 then

4 return α
5 choose x ∈ Var(F |α) and ǫ ∈ {0, 1}
6 β ←DLL(F, α ∪ {(x, ǫ)})
7 if β 6= UNSAT then

8 return β
9 else

10 return DLL(F, α ∪ {(x, 1− ǫ)})

Figure 1: The basic DLL algorithm.

Note that the DLL algorithm is not fully specified, since line 5 does not specify how
to choose the branching variable x and its value ǫ. Rather one can think of the algorithm
either as being nondeterministic or as being an algorithm schema. We prefer to think of the
algorithm as an algorithm schema, so that it incorporates a variety of possible algorithms.
Indeed, there has been extensive research into how to choose the branching variable and its
value [12, 22].

There is a well-known close connection between regular resolution and DLL algorithms.
In particular, a run of DLL can be viewed as a regular resolution tree, and vice-versa. This
can be formalized by the following two propositions.

Proposition 4.1. Let F be an unsatisfiable set of clauses and α an assignment. If there
is an execution of DLL(F,α) that returns UNSAT and performs s recursive calls, then there
exists a clause C with C|α = 0 such that C has a regular resolution tree T from F with
|T | ≤ s+ 1 and Var(T ) ∩ dom(α) = ∅.

The converse simulation of Proposition 4.1 holds, too, that is, a regular resolution tree
can be transformed directly in a run of DLL.

Proposition 4.2. Let F be an unsatisfiable set of clauses. Suppose that C has a regular
resolution proof tree T of size s from F . Let α be an assignment with C|α = 0 and Var(T )∩
dom(α) = ∅. Then there is an execution of DLL(F,α), that returns UNSAT after at most
s− 1 recursive calls.

The two propositions are based on the following correspondence between resolution
trees and a DLL search tree: first, a leaf clause in a resolution tree corresponds to a
clause falsified by α (so that F |α = 0), and second, a resolution inference with respect to
a variable x corresponds to the use of x as a branching variable in the DLL algorithm.
Together the two propositions give the following well-known exact correspondence between
regular resolution trees and DLL search.

Theorem 4.3. If F is unsatisfiable, then there is an execution of DLL(F,∅) that executes
with < s recursive calls if and only if there exists a regular refutation tree for F of size ≤ s.
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4.2. Learning by unit propagation. Two of the most successful enhancements of DLL
that are used by most modern SAT solvers are unit propagation and clause learning. Unit
clause propagation (also called Boolean constraint propagation) was already part of the
original DLL algorithm and is based on the following observation: If α is a partial assignment
for a set of clauses F and if there is a clause C ∈ F with C|α = {l} a unit clause, then any
β ⊃ α that satisfies F must assign l the value True.

There are a couple of methods that the DLL algorithm can use to implement unit
propagation. One method is to just use unit propagation to guide the choice of a branching
variable by modifying line 5 so that, if there is a unit clause in F |α, then x and ǫ are
chosen to make the literal true. More commonly though, DLL algorithms incorporate unit
propagation as a separate phase during which the assignment α is iteratively extended to
make any unit clause true until there are no unit clauses remaining. As the unit propagation
is performed, the DLL algorithm keeps track of which variables were set by unit propagation
and which clause was used as the basis for the unit propagation. This information is then
useful for clause learning.

Clause learning in DLL algorithms was first introduced by Silva and Sakallah [23] and
means that new clauses are effectively added to F . A learned clause D must be implied
by F , so that adding D to F does not change the space of satisfying assignments. In theory,
there are many potential methods for clause learning; however, in practice, the only useful
method for learning clauses is based on unit propagation as in the original proposal [23].
In fact, all deterministic state of the art SAT solvers for structured (non-random) instances
of SAT are based on clause learning via unit propagation. This includes solvers such as
Chaff [21], Zchaff [20] and MiniSAT [11].

These DLL algorithms apply clause learning when the set F is falsified by the current
assignment α. Intuitively, they analyze the reason some clause C in F is falsified and use
this reason to infer a clause D from F to be learned. There are two ways in which a
DLL algorithm assigns values to variables, namely, by unit propagation and by setting a
branching variable. However, if unit propagation is fully carried out, then the first time
a clause is falsified is during unit propagation. In particular, this happens when there are
two unit clauses C1|α = {x} and C2|α = {x} requiring a variable x to be set both True and
False. This is called a conflict.

The reason for a conflict is analyzed by building a conflict graph. Generally, this is
done by maintaining an unit propagation graph that tracks, for each variable which has
been assigned a value, the reason that implies the setting of the variable. The two possible
reasons are that either (a) the variable was set by unit propagation when a particular
clause C became a unit clause, in which case C is the reason, or (b) the variable was set
arbitrarily as a branching variable. The unit propagation graph G has literals as its nodes.
The leaves of G are literals that were set true as branching variables, and the internal nodes
are variables that were set true by unit propagation. If a literal l is an internal node in G,
then it was set true by unit propagation applied to some clause C. In this case, for each
literal l′ 6= l in C, l′ is a node in G and there is an edge from l′ to l. If the unit propagation
graph contains a conflict it is called a conflict graph. More formally, a conflict graph is
defined as follows.

Definition 4.4. A conflict graph G for a set F of clauses under the assignment α is a dag
G = (V ∪ {✷}, E) where V is a set of literals and where the following hold:



12 S. R. BUSS, J. HOFFMANN, AND J. JOHANNSEN

(a) For each l ∈ V , either (i) l has in-degree 0 and α(l) = 1, or (ii) there is a clause C ∈ F
such that C = {l} ∪ {l′ : (l′, l) ∈ E}. For a fixed conflict graph G, we denote this clause
as Cl.

(b) There is a unique variable x such that V ⊇ {x, x}.

(c) The node ✷ has only the two incoming edges (x,✷) and (x,✷).

(d) The node ✷ is the only node with outdegree zero.

Let V 0
G denote the nodes in G of in-degree zero. Then, letting αG = {(x, ǫ) : xǫ ∈

V 0
G}, the conflict graph G shows that every vertex l must be made true by any satisfying

assignment for F that extends α. Since for some x, both x and x are nodes of G, this
implies α cannot be extended to a satisfying assignment for F . Therefore, the clause
D = {l : l ∈ V 0

G} is implied by F , and D can be taken as a learned clause. We call this
clause D the conflict clause of G and denote it CC(G).

There is a second type of clause that can be learned from the conflict graph G in addition
to the conflict clause CC(G). Namely, let l 6= ✷ be any non-leaf node in G. Further, let
V 0
Gl

be the set of leaves l′ of G such that there is a path from l′ to l. Then, the clauses

in F imply that if all the leaves l′ ∈ V 0
Gl

are assigned true, then l is assigned true. Thus,

the clause D = {l} ∪ {l′ : l′ ∈ V 0
Gl
} is implied by F and can be taken as a learned clause.

This clause D is called the induced clause of Gl and is denoted IC(l, G). In the degenerate
case where Gl consists of only the single literal l, this would make IC(l, G) equal to {l, l};
rather than permit this as a clause, we instead say that the induced clause does not exist.

In practice, both conflict clauses CC(G) and induced clauses IC(l, G) are used by
SAT solvers. It appears that most SAT solvers learn the first-UIP clauses [23], which
equal CC(G) and IC(l, G′) for appropriately formulated G and G′. Other conflict clauses
that can be learned include all-UIP clauses [26], rel-sat clauses [19], decision clauses [26],
and first cut clauses [2]. All of these are conflict clauses CC(G) for appropriate G. Less
commonly, multiple clauses are learned, including clauses based on the cuts advocated by
the mentioned works [23, 26], which are a type of induced clauses.

In order to prove the correspondence in Section 5 between DLL with clause learning
and regWRTI proofs, we must put some restrictions on the kinds of clauses that can be
(simultaneously) learned. In essence, the point is that for DLL with clause learning to
simulate regWRTI proofs it is necessary to learn multiple clauses at once in order to learn
all the clauses in a regular input subproof. But on the other hand, for regWRTI to simulate
DLL with clause learning, regWRTI must be able to include regular input proofs that derive
all the learned clauses so as to have them available for subsequent use as input lemmas.
Thus, we define a notion of “compatible clauses” which is a set of clauses that can be
simultaneously learned. For this, we define the notion of a series-parallel decomposition of
a conflict graph G.

Definition 4.5. A graphH = (W,E′) is a subconflict graph of the conflict graph G = (V,E)
provided that H is a conflict graph with W ⊆ V and E′ ⊆ E, and that each non-leaf vertex
of H (that is, each vertex in W \ V 0

H) has the same in-degree in H as in G.
H is a proper subconflict graph of G provided there is no path in G from any non-leaf

vertex of H to a vertex in V 0
H .

Note that if l is a non-leaf vertex in the subconflict graph H of G, then the clause Cl

is the same whether it is defined with respect to H or with respect to G.
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Definition 4.6. Let G be a conflict graph. A decomposition of G is a sequence H0 ⊂ H1 ⊂
· · · ⊂ Hk, k ≥ 1, of distinct proper subconflict graphs of G such that Hk = G and H0 is the
dag on the three nodes ✷ and its two predecessors x and x.

A decomposition of G will be used to describe sets of clauses that can be simultaneously
learned. For this, we put a structure on the decomposition that describes the exact types
of clauses that can be learned:

Definition 4.7. A series-parallel decomposition H of G consists of a decomposition
H0, . . . ,Hk plus, for each 0 ≤ i < k, a sequence Hi = Hi,0 ⊂ Hi,1 ⊂ · · · ⊂ Hi,mi

= Hi+1 of
proper subconflict graphs of G. Note that the sequence

H0 = H0,0,H0,1,H0,2, . . . ,H0,m0
= H1 = H1,0,H1,1, . . . ,Hk−1,mk−1

= Hk

is itself a decomposition of G. However, we prefer to view it as a two-level decomposition.
A series decomposition is a series-parallel decomposition with trivial parallel part, i.e., with
k = 1. A parallel decomposition is series-parallel decomposition in which mi = 1 for all i.
Note that we always have Hi 6= Hi+1 and Hi,j 6= Hi,j+1.

Figure 2 illustrates a series-parallel decomposition.

Definition 4.8. For H a series-parallel decomposition, the set of learnable clauses, CC(H),
for H consists of the following induced clauses and conflict clauses:

• For each 1 ≤ j ≤ m0, the conflict clause CC(H0,j), and
• For each 0 < i < k and 0 < j ≤ mi and each l ∈ V 0

Hi
\V 0

Hi,j
, the induced clause IC(l,Hi,j).

It should be noted that the definition of the parallel decomposition incorporates the
notion of “cut” used by Silva and Sakallah [23]. The DLL algorithm shown in Figure 3
chooses a single series-parallel decomposition H and learns some subset of the learnable
clauses in CC(H). It is clear that this generalizes all of the clause learning algorithms
mentioned above.

The algorithm schema DLL-L-UP that is given in Figure 3 is a modification of the
schemaDLL. In addition to returning a satisfying assignment or UNSAT, it returns a modified
formula that might include learned clauses. If F is a set of clauses and α is an assignment
then DLL-L-UP(F, α) returns (F ′, α′) such that F ′ ⊇ F and F ′ is equivalent to F and
such that α′ either is UNSAT or is a satisfying assignment for F .2

The DLL-L-UP algorithm as shown in Figure 3 does not explicitly include unit
propagation. Rather, the use of unit propagation is hidden in the test on line 2 of whether
unit propagation can be used to find a conflict graph. In practice, of course, most algorithms
set variables by unit propagation as soon as possible and update the implication graph each
time a new unit variable is set. The algorithm as formulated in Figure 3 is more general,
and thus covers more possible implementations of DLL-L-UP, including algorithms that
may change the implication graph retroactively or may pick among several conflict graphs
depending on the details of how F can be falsified. There is at least one implemented clause
learning algorithm that does this [13].

2 Our definition of DLL-L-UP is slightly different from the version of the algorithm as originally defined
in Hoffmann’s thesis [17]. The first main difference is that we use series-parallel decompositions rather the
compatible set of subconflict graphs of Hoffmann [17]. The second difference is that our algorithm does
not build the implication graph incrementally by the use of explicit unit propagation; instead, it builds the
implication graph once a conflict has been found.
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✷
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Figure 2: A series-parallel decomposition. Solid lines define the sets Hi of the parallel part
of the decomposition, and dotted lines define the sets Hi,j in the series part. Each
line (solid or dotted) defines the set of nodes that lie below the line. The learnable
clauses associated with each set are shown in the right column.

DLL-L-UP(F, α)
1 if F |α = 1 then return (F, α)
2 if there is a conflict graph for F under α then

3 choose a conflict graph G for F under α
4 and a series-parallel decomposition H of G
5 choose a subset S of CC(H) -- the learned clauses

6 return (F ∪ S, UNSAT)

7 choose x ∈ Var(F |α) and ǫ ∈ {0, 1}
8 (G, β)←DLL-L-UP(F, α ∪ {(x, ǫ)})
9 if β 6= UNSAT then

10 return (G, β)
11 return DLL-L-UP(G,α ∪ {(x, 1− ǫ)})

Figure 3: DLL with Clause Learning.

As shown in Figure 3, if F |α is false, then the algorithm must return UNSAT (lines
2-6). Sometimes, however, we use instead a “non-greedy” version of DLL-L-UP. For the
non-greedy version it is optional for the algorithm to immediately return UNSAT once F has
a conflict graph. Thus the non-greedy DLL-L-UP algorithm can set a branching variable
(lines 7-11) even if F has already been falsified and even if there are unit clauses present.
This non-greedy version of DLL-L-UP will be used in the next section to simulate regWRTI
proofs.



RESOLUTION TREES WITH LEMMAS 15

The constructions of Section 5 also imply that DLL-L-UP is p-equivalent to the
restriction of DLL-L-UP in which only series decompositions are allowed. That is to
say, DLL-L-UP with only series decompositions can simulate any run of DLL-L-UP with
at most polynomially many more recursive calls.

5. Equivalence of regWRTI and DLL-L-UP

5.1. regWRTI simulates DLL-L-UP. We shall prove that regular WRTI proofs are
equivalent to non-greedy DLL-L-UP searches. We start by showing that every DLL-L-UP

search can be converted into a regWRTI proof. As a first step, we prove that, for a given
series-parallel decomposition H of a conflict graph, there is a single regWRTI proof T such
that every learnable clause of H appears as an input-derived clause in T . Furthermore, T is
polynomial size; in fact, T has size at most quadratic in the number of distinct variables
that appear in the conflict graph.

This theorem generalizes earlier, well-known results of Chang [8] and Beame et al. [2]
that any individual learned clause can be derived by input resolution (or, more specifically,
that unit resolution is equivalent to input resolution). The theorem states a similar fact
about proving an entire set of learnable clauses simultaneously.

Theorem 5.1. Let G be a conflict graph of size n for F under the assignment α. Let H be
a series-parallel decomposition for G. Then there is a regWRTI proof T of size ≤ n2 such
that every learnable clause of H is an input-derived clause in T . The final clause of T is
equal to CC(G). Furthermore, T uses as resolution variables, only variables that are used
as nodes (possibly negated) in G \ V 0

G.

First we prove a lemma. Let the subconflict graphs H0 ⊂ H1 ⊂ · · · ⊂ Hk and H0,0 ⊂
H0,1 ⊂ · · · ⊂ Hk−1,mk−1

be as in the definition of series-parallel decomposition.

Lemma 5.2.

(a) There is an input proof T0 from F which contains every conflict clause CC(H0,j), for
j = 1, . . . ,m0. Every resolution variable in T0 is a non-leaf node (possibly negated)
in H1.

(b) Suppose that 1 ≤ i < k and u is a literal in V 0
Hi
. Then there is an input proof T u

i which

contains every (existing) induced clause IC(u,Hi,j) for j = 1, . . . ,mi. Every resolution
variable in T u

i is a non-leaf node (possibly negated) in the subgraph (Hi+1)u of Hi+1

rooted at u.

Proof. We prove part a. of the lemma and then indicate the minor modifications needed to
prove part b. The construction of T0 proceeds by induction on j to build proofs T0,j; at the
end, T0 is set equal to T0,m0

. Each proof T0,j ends with the clause CC(H0,j) and contains
the earlier proof T0,j−1 as a subproof. In addition, the only variables used as resolution
variables in T0,j are variables that are non-leaf nodes (possibly negated) in H0,j.

To prove the base case j = 1, we must show that CC(H0,1) has an input proof T0,1.
Let the two immediate predecessors of ✷ in G be the literals x and x. Define a clause C
as follows. If x is not a leaf in H0,1, then we let C = Cx; recall that Cx is the clause
that contains the literal x and the negations of literals that are immediate predecessors
of x in the conflict graph. Otherwise, since H0,1 6= H0, x is not a leaf in H0,1, and we let
C = Cx. By inspection, C has the property that it contains only negations of literals that
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are in H0,1. For l ∈ C, define the {0, 1}-depth of l as the maximum length of a path to l
from a leaf of H0,1. If all literals in C have {0, 1}-depth equal to zero, then C = CC(H0,1),
and C certainly has an input proof from F (in fact, since C = Cx or C = Cx, we must have
C ∈ F ).

Suppose on the other hand, that C is a subset of the nodes of H0,1 with some literals
of non-zero {0, 1}-depth. Choose a literal l in C of maximum {0, 1}-depth d and resolve
C with the clause Cl ∈ F to obtain a new clause C ′. Since Cl ∈ F , the resolution step
introducing C ′ preserves the property of having an input proof from F . Furthermore, the
new literals in C ′ \ C have {0, 1}-depth strictly less than d. Redefine C to be the just
constructed clause C ′. If this new C is a subset of CC(H0,1) we are done constructing C.
Otherwise, some literal in C has non-zero {0, 1}-depth. In this latter case, we repeat
the above construction to obtain a new C, and continue iterating this process until we
obtain C ⊂ CC(H0,1).

When the above construction is finished, C is constructed as a clause with a regular
input proof T0,1 from F (the regularity follows by the fact that variables introduced in C ′

have {0, 1} depth less than that of the resolved-upon variable). Furthermore C ⊂ CC(H0,1).
In fact, C = CC(H0,1) must hold, because there is a path, in H0,1, from each leaf of H0,1

to ✷. That completes the proof of the j = 1 base case.
For the induction step, with j > 1, the induction hypothesis is that we have constructed

an input proof T0,j such that T0,j contains all the clauses CC(H0,p) for 1 ≤ p ≤ j and such
that the final clause in T0,j is the clause CC(H0,j). We are seeking to extend this input proof
to an input proof T0,j+1 that ends with the clause CC(H0,j+1). The construction of T0,j+1

proceeds exactly like the construction above of T0,1, but now we start with the clause
C = CC(H0,j) (instead of C = Cx or Cx), and we update C by choosing the literal l ∈ C
of maximum {0, j + 1}-depth and resolving with Cl to derive the next C. The rest of the
construction of T0,j+1 is similar to the previous argument. For the regularity of the proof
it is essential that H0,j is a proper subconflict graph of H0,j+1. By inspection, any literal l
used for resolution in the new part of T0,j+1 is a non-leaf node in H0,j+1 and has a path
from l to some leaf node of H0,j. Since H0,j is proper, it follows that l is not an inner node
of H0,j and thus is not used as a resolution literal in T0,j . Thus H0,j+1 is regular. This
completes the proof of part a.

The proof for part b. is very similar to the proof for part a. Fixing i > 0, let u be any
literal in V 0

Hi,0
. We need to prove, for 1 ≤ j ≤ mi, there is an input proof T u

i,j from F such

that (a) T u
i,j contains every existing induced clause IC(u,Hi,k) for 1 ≤ k < j, and (b) T u

i,j

ends with the induced clause IC(u,Hi,j), and (c) the resolution variables used in T u
i,j are

all non-leaf nodes (possibly negated) of V(Hi,j)u . The proof is by induction on j. One
starts with the clause C = Cu. The main step of the construction of T u

i,j+1 from T u
i,j is to

find the literal v 6= u in C of maximum {i, j}-depth, and resolve C with Cv to obtain the
next C. This process proceeds iteratively exactly like the construction used for part a. This
completes the proof of Lemma 5.2.

We now can prove Theorem 5.1. Lemma 5.2 constructed separate regular input
resolution proofs T0,m0

= T0 and T u
i,mi

= T u
i that included all the learnable clauses of H.

To complete the proof of Theorem 5.1, we combine all these proofs into one single regWRTI
proof. For this, we construct proofs T ∗

i of the clause CC(Hi). T
∗
1 is just T0. The proof T

∗
i+1

is constructed from T ∗
i by successively resolving the final clause of T ∗

i with the final clauses
of the proofs T u

i , using each u ∈ V 0
Hi
\ V 0

Hi+1
as a resolution variable, taking the u’s in
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order of increasing {i,mi}-depth to preserve regularity. Letting T = T ∗
k , it is clear that

T ∗
k contains all the clauses from CC(H), and, by construction, T ∗

k is regular.
To bound the size of T , note that any regular input proof S has size 2r + 1 where r is

the number of distinct variables used as resolution variables in S. Since T is regular, and is
formed by combining the regular input proofs T0, T

u
i in a linear fashion, the total size of T

is less than n+
∑n−1

k=0(2k + 1) = n2 + 1. This completes the proof of Theorem 5.1. ✷

Note that, since the final clause of T contains only literals from V 0
G, T does not use any

variable that occurs in its final clause as a resolution variable.

We can now prove the first main result of this section, namely, that regWRTI proofs
polynomially simulate DLL-L-UP search trees.

Theorem 5.3. Suppose that F is an unsatisfiable set of clauses and that there is an
execution of a (possibly non-greedy) DLL-L-UP search algorithm on input F that outputs
UNSAT with s recursive calls. Then there is a regWRTI refutation of F of size at most s ·n2

where n = |Var (F )|.

Proof. Let S be the search tree associated with the DLL-L-UP algorithm’s execution. We
order S so that theDLL-L-UP algorithm effectively traverses S in a depth-first, left-to-right
order. We transform S into a regWRTI proof tree T as follows. The tree T contains a copy
of S, but adds subproofs at the leaves of S (these subproofs will be derivations of learned
clauses). For each internal node in S, if the corresponding branching variable was x and was
first set to the value xǫ, then the corresponding node in T is labeled with x as the resolution
variable, and its left incoming edge is labeled with xǫ and its right incoming edge is labeled
with x1−ǫ. For each node u in S, let αu be the assignment at that node that is held by
the DLL-L-UP algorithm upon reaching that node. By construction, αu is equivalently
defined as the assignment that has αu(l) = 1 for literal l that labels an edge on the path
(in T ) between u and the root of T .

For a node u that is a leaf of S, the DLL-L-UP algorithm chooses a conflict graph Gu

with a series-parallel decomposition Hu such that every leaf node l of Gu is a literal set to
true by αu. Also, let Fu be the set F of original clauses augmented with all clauses learned
by the DLL-L-UP algorithm before reaching node u. By Theorem 5.1, there is a proof Tu

from the clauses Fu such that every learnable clause of Hu appears in Tu as in input-derived
clause. Hence, of course, every clause learned at u by the DLL-L-UP algorithm appears
in Tu as an input-derived clause. The leaf node u of S is then replaced by the proof Tu

in T . Note that by Theorem 5.1 and the definition of conflict graphs, the final clause Cu

of Tu is a clause that contains only literals falsified by αu.
So far, we have defined the clauses Cu that label nodes u in T only for leaf nodes u. For

internal nodes u, we define Cu inductively by letting v and w be the immediate predecessors
of u in T and defining Cu to be the clause obtained by (w-)resolution from the clauses
Cv and Cw with respect to the branching variable x that was picked at node u by the
DLL-L-UP algorithm. Clearly, using induction from the leaves of S, the clause Cu contains
only variables that are falsified by the assignment αu. This makes T a regWRTI proof.

Let r be the root node of S. Since αr is the empty assignment, the clause Cr must equal
the empty clause ✷. Thus T is a regWRTI refutation of F and Theorem 5.3 is proved.

Since DLL clause learning based on first cuts has been shown to give exponentially
shorter proofs than regular resolution [2], and since Theorem 5.3 states that regWRTI can
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simulate DLL search algorithms (including ones that learn first cut clauses), we have proved
that regRD does not simulate regWRTI:

Theorem 5.4. regRD < regWRTI.

Hoffmann [17] gave a direct proof of Theorem 5.4 based on the variable extensions
described below in Section 7.

5.2. DLL-L-UP simulates regWRTI. We next show that the non-greedy DLL-L-UP

search procedure can simulate any regWRTI proof T . The intuition is that we split T into
two parts: the input parts are the subtrees of T that contain only input-derived clauses.
The interior part of T is the rest of T . The interior part will be simulated by a DLL-L-UP

search procedure that traverses the tree T and at each node, chooses the resolution variable
as the branching variable and sets the branching variable according to the label on the left
incoming edge. In this way, the tree T is traversed in a depth-first, left-to-right order. The
input parts of T are not traversed however. Once an input-derived clause is reached, the
DLL-L-UP search learns all the clauses in that input subproof and backtracks returning
UNSAT.

The heart of the procedure is how a conflict graph and corresponding series-parallel
decomposition can be picked so as to make all the clauses in a given input subproof learnable.
This is the content of the next lemma.

Lemma 5.5. Let T be a regular input proof of C from a set of clauses F . Suppose that
α falsifies C, that is, C|α = 0. Further suppose no variable in C is used as a resolution
variable in T . Then there is a conflict graph G for F under α and a series decomposition H
for G such that the set of learnable clauses of H is equal to the set of input-derived clauses
of T .

Recall that a series decomposition just means a series-parallel decomposition with a
trivial parallel part, i.e, k = 1 in the definition of series-parallel decompositions.

Proof. Without loss of generality, F is just the set of initial clauses of T . Let the input
proof T contain clauses Cm+1 = C,Cm, . . . , C1,Dm, . . . ,D1 as illustrated in Figure 4 with
m = 4. Each Ci+1 is inferred from Ci and Di by resolution on li, where li ∈ Ci and li ∈ Di.
For each i, we have Di = {li} ∪ D′

i, where D′
i ⊆ Ci+1. Likewise, Ci = {li} ∪ C ′

i, where
C ′
i ⊆ Ci+1.

As illustrated in Figure 5, we construct conflict graphs H0,0 = {✷, l1, l1} ⊂ H0,1 ⊂ · · · ⊂
H0,m = G which form a series decomposition of G. H0,i will be a conflict graph from the set
of clauses {C1,D1, . . . ,Di} under αi where αi is the assignment that falsifies all the literals
in Ci+1. Indeed, the leaves of H0,i are precisely the negations of literals in Ci+1. For i > 0,

the non-leaf nodes of H0,i are l1 and l1, . . . , li. The predecessors of l1 are defined to be the
literals u with u ∈ C ′

1, that is Cl1
= C1. Likewise, the predecessors of li are the literals u

with u ∈ D′
i so that Cli = Di.

To start with, we define H0,0 to equal {✷, l1, l1}. Let H0,i be already constructed. Then

we have li+1 ∈ Ci+1 since Ci+2 is inferred by resolution on li+1 from Ci+1. It follows that
αi(li+1) = 1 and that li+1 is a leaf in H0,i. We obtain H0,i+1 from H0,i by adding the
predecessors of li+1 (i.e., the literals u with u ∈ D′

i+1) to H0,i. The leaves of H0,i+1 are now
exactly the negations of the literals in the clause C ′

i+2. Finally the graph H0,m = G and the
series decomposition H defined by the graphs H0,i is as wanted. This completes the proof
of Lemma 5.5.
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Figure 4: A regular input proof of C. Edges are labeled li or li. The Ci’s and Di’s are
clauses.
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Figure 5: A conflict graph and a series decomposition. The solid lines and arcs indicate
edges that may or may not be present. The notations C ′′

1 and D′′
i indicate zero or

more literals, and the double lines indicate an edge from each literal in the set. The
dashed lines indicate cuts, and thereby the sets H0,i in the series decomposition.
Namely, the set H0,i contains the nodes below the corresponding dotted line.

We can now finish the proof that DLL-L-UP simulates regWRTI.
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Theorem 5.6. Suppose that F has a regWRTI proof of size s. Then there is an execution
of the non-greedy DLL-L-UP algorithm with the input (F,∅) that makes < s recursive
calls.

Proof. Let T be a regWRTI refutation of F . The DLL-L-UP algorithm works by traversing
the proof tree T in a depth-first, left-to-right order. At each non-input-derived node u of T ,
labeled with a clause C, the resolution variable for that clause is chosen as the branching
variable x, and the variable x is assigned the value 1 or 0, corresponding to the label on the
edges coming into u. By part b. of Theorem 2.4, the clause C is falsified by the assignment α.
At each input-derived node of T , the DLL-L-UP algorithm learns the clauses in the input
subproof above u by using the conflict graph and series decomposition given by Lemma 5.5.
Since the DLL-L-UP search cannot find a satisfying assignment, it must terminate after
traversing the (non-input) nodes in the regWRTI refutation tree. The number of recursive
calls will equal twice the number of non-input-derived nodes of T , which is less than s.

6. Generalized DLL with clause learning

6.1. The algorithm DLL-Learn. This section presents a new formulation of DLL with
learning called DLL-Learn. This algorithm differs from DLL-L-UP in two important
ways. First, unit propagation is no longer used explicitly (although it can be simulated).
Second, the DLL-Learn algorithm uses more information that arises during the DLL
search process, namely, it can infer clauses by resolution at each node in the search tree.
This makes it possible forDLL-Learn to simulate regular resolution trees with full lemmas;
more specifically, DLL-Learn is equivalent to regWRTL.

The DLL-Learn algorithm is very similar to the pool resolution system introduced
by Van Gelder [25]. Furthermore, our Theorem 6.1 is similar to results obtained by Van
Gelder for pool resolution. Our constructions differ mostly in that we use w-resolution
in place of the degenerate resolution inference of Van Gelder [25]. Loosely speaking, Van
Gelder’s degenerate resolution inference is a method of allowing resolution to operate on any
two clauses without any weakening. Conversely, our w-resolution is a method for allowing
resolution to operate on any two clauses, but with the maximum reasonable amount of
weakening.

The idea of DLL-Learn is to extend DLL so that it can learn a new clause C at
each node in the search tree. As usual, the new clause will satisfy F ≡ F ∪ {C}. At
leaves, DLL-Learn does not learn a new clause, but marks a preexisting falsified clause as
“new”. At internal nodes, after branching on a variable x and making two recursive calls,
the DLL-Learn algorithm can use w-resolution to infer a new clause, CDLL(F,α), from the
two identified new clauses, C0 and C1 returned by the recursive calls. Since x does not have
to occur in Var (C0) and Var(C1), C is obtained by a w-resolution instead of resolution.

The DLL-Learn algorithm shown in Figure 6 uses non-greedy detection of contradic-
tions. Namely, the “optionally do” on line 2 of Figure 6 allows the algorithm to continue
to branch on variables even if the formula is already unsatisfied. This feature is needed for
a direct proof of Theorem 6.1. In addition, it could be helpful in an implementation of the
algorithm: Think of a call of DLL(F,α) such that F |α = 0 and suppose that all of the
falsified clauses C ∈ F are very large and thus undesirable to learn. It might, for example,
be the case that F |α contains two conflicting unit clauses C0|α = {x} and C1|α = {¬x},
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where C0 and C1 are small. In that case, it could be better to branch on the variable x and
to learn the resolvent of C0 and C1.

There is one situation where it is not optional to execute lines 3-4; namely, if α is a
total assignment and has assigned values to all variables, then the algorithm must do lines
3-4.

Note that it is possible to remove C0 and C1 from F in line 13 if they were previously
learned. Additionally, in an implementation of DLL-Learn it could be helpful to tag Ci

as the new clause in H in line 13 if Ci ⊆ C for an i ∈ {0, 1} instead of learning C —
this would be essentially equivalent to using Van Gelder’s degenerate resolution instead of
w-resolution.

DLL-Learn(F, α)
1 if F |α = 1 then return (F, α)
2 if F |α = 0 then optionally do

3 tag a C ∈ F with C|α = 0 as the new clause

4 return (F, UNSAT)
5 choose x ∈ Var(F ) \ dom(α) and a value ǫ ∈ {0, 1}
6 (G, β)←DLL-Learn(F, α ∪ {(x, ǫ)})
7 if β 6= UNSAT then return (G, β)
8 (H, γ)←DLL-Learn(G,α ∪ {(x, 1− ǫ)})
9 if γ 6= UNSAT then return (H, γ)
10 select the new C0 ∈ G and the new C1 ∈ H
11 C ← (C0 − {x

1−ǫ}) ∪ (C1 − {x
ǫ})

12 H ← H ∪ {C} -- learn a clause

13 tag C as the new clause in H.

14 return (H, UNSAT)

Figure 6: DLL with a generalized learning.

It is easy to verify that, at any point in the DLL-Learn algorithm, when a clause C
is tagged as new, then C|α = 0.

There is a straightforward, and direct, translation between executions of the DLL-

Learn search algorithm on input (F,∅) and regWRTL proofs of F . An execution of
DLL-Learn(F,∅) can be viewed as traversing a tree in depth-first, left-to-right order. If
there are s−1 recursive calls to DLL-Learn, the tree has s nodes. Each node of the search
tree is labeled with the clause tagged in the corresponding call to DLL-Learn. Thus,
leaves of the tree are labeled with clauses that either are from F or were learned earlier in
the tree. The clause on an internal node of the tree is inferred from the clauses on the two
children using w-resolution with respect to the branching variable. Finally, the clause C
labeling the root node, where α = ∅, must be the empty clause, since α must falsify C. In
this way the search algorithm describes precisely a regWRTL proof tree. Conversely, any
regWRTL refutation of F corresponds exactly to an execution of the DLL-Learn(F,∅).

This translation between DLL-Learn and regWRTI proof trees gives the following
theorem.

Theorem 6.1. Let F be a set of clauses. There exists a regWRTL refutation of F of
size s if and only if there is an execution of DLL-Learn(F,∅) that performs exactly s− 1
recursive calls.
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It follows as a corollary of Theorems 3.5 and 6.1 that DLL-Learn can polynomially
simulate DLL-L-UP.

7. Variable Extensions

This section introduces the notion of a variable extension of a CNF formula. A variable
extension augments a set F of clauses with additional clauses such that modified formula
VEx(F ) is satisfiable if and only if F is satisfiable. Variable extensions will be used to
prove that regWRTI proofs can simulate resolution dags, in the sense that if there is an
RD refutation of F , then there is a polynomial size regWRTI refutation of VEx (F ). Hence,
DLL-Learn and the non-greedy version of DLL-L-UP can simulate full (non-regular)
resolution in the same sense.

Our definition of variable extensions is inspired by the proof trace extensions of Beame
et al. [2] that were used to separate DLL with clause learning from regular resolution dags. A
similar construction was used by Hertel et al. [16] to show that pool resolution can simulate
full resolution. Our results strengthen and extend the prior results by applying directly
to regWRTI proofs. More importantly, in contrast to proof trace extensions, variable
extensions do not depend on the size of a (possibly unknown) resolution proof but only
on the number of variables in the formula.

Definition 7.1. Let F be a set of clauses and |Var(F )| = n. The set of extension variables
of F is EVar(F ) = {q, p1, . . . , pn}, where q and pi are new variables. The variable extension
of F is the set of clauses

VEx(F ) = F ∪
{

{q, l̄} : l ∈ C ∈ F
}

∪
{

{p1, p2, . . . , pn}
}

.

Obviously VEx (F ) is satisfiable if and only if F is. Furthermore, |VEx (F )| = O(|F |).
Suppose that G is a resolution dag (RD) proof from F . We can reexpress G as a

sequence of (derived) clauses C1, C2, . . . , Ct which has the following properties: (a) Ct is
the final clause of G, and (b) each Ci is inferred by resolution from two clauses D and E,
where each of D and E either are in F or appear earlier in the sequence as Cj with j < i.
Basically, the sequence is an ordinary resolution refutation, but with the clauses from F
omitted.

Lemma 7.2. Suppose that D,E ⊢x C. Then, there is an input resolution proof tree TC of
the clause {q} from VEx(F ) ∪ {D,E} such that C appears in TC and such that |TC | = 2 ·
|C|+ 3.

Proof. The proof TC starts by resolving D and E to yield C. It then resolves successively
with the clauses {q, l}, for l ∈ C, to derive {q}.

Theorem 7.3. Let F be a set of clauses, n = |Var (F )|, and let C be a clause. Suppose
that G is a resolution dag proof of C from F of size s. Then, there is a regWRTI proof T
of C from VEx(F ) of size ≤ 2s · (d+ 2) + 1 where d = max{|D| : D ∈ G} ≤ n.

Proof. Let C1, . . . , Ct be a sequence of the derived clauses in G as above. Without loss of
generality, t < 2n since F also has a regular resolution tree refutation, and this has depth
at most n, and thus has < 2n internal nodes. Let T ′ be a binary tree with t leaves and of
height h = ⌈log2 t⌉ ≤ n. For each node u in T ′, let l(u) be the level of u in T ′, namely,
the number of edges between u and the root. Label u with the variable pl(u). Also, label
every node u in T ′ with the clause {q}. T ′ will form the middle part of a regWRTI proof:
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each clause {q} at level i is inferred by w-resolution from its two children clauses (also equal
to {q}) with respect to the variable pi.

Now, we expand T ′ into a regWRTI proof tree T ′′. For this, for 1 ≤ i ≤ t, we replace
the i-th leaf of T ′ with a new subproof TCi

defined as follows. Letting Ci be as above, let
Di and Ei be the two clauses from which Ci is inferred in G. Then replace i-th leaf of T ′ by
the input proof TCi

from Lemma 7.2 which contains Ci and ends with the clause {q}. Note
that each of Di and Ei either is in F or appeared as an input clause in a proof, TDi

or TEi
,

inserted at an earlier leaf of T ′. Therefore T ′′ is a valid regWRTI proof of {q} from VEx(F ).
Since there are at most s − 1 internal nodes in T ′ and each TCi

has size ≤ 2d + 3, T ′′ has
size at most (s− 1) + s · (2d + 3).

Finally, we form a regWRTI proof of C by modifying T ′′ by adding a new root labeled
with the clause C and the resolution variable q. Let the left child of this new root be the
root of T ′′, and let the right child be a new node labeled also with C. (This is permissible
since C is input-derived in T ′′.) Label the left edge coming to the new root with the literal q,
and the right edge with the literal q. This makes C inferred from {q} and C by w-resolution
with respect to q. T is a valid regWRTI of size at most s+1+s ·(2d+3) = 2s ·(d+2)+1.

Since DLL-L-UP and DLL-Learn simulate regWRTI, Theorem 7.3 implies that these
two systems p-simulate full resolution by the use of variable extensions:

Corollary 7.4. Suppose that F has a resolution dag refutation of size s. Then both DLL-

L-UP and DLL-Learn, when given VEx(F ) as input, have executions that return UNSAT

after at most p(s) recursive calls, for some polynomial p.

We now consider some issues about “naturalness” of proofs based on resolution with
lemmas. Beame et al. [2] defined a refutation system to be natural provided that, whenever
F has a refutation of size s, then F |α has a refutation of size at most s. We need a somewhat
relaxed version of this notion:

Definition 7.5. Let R be a refutation system for sets of clauses. The system R is p-natural
provided, there is a polynomial p(s), such that, whenever a set F has an R-refutation of
size s, and α is a restriction, then F |α has an R-refutation of size ≤ p(s).

The next proposition is well-known.

Proposition 7.6. Resolution dags (RD) and regular resolution dags (regRD) are natural
proof systems.

As a corollary to Theorem 7.3 we obtain the following theorem.

Theorem 7.7.

(a) regWRTI is equivalent to RD if and only if regWRTI is p-natural.
(b) regWRTL is equivalent to RD if and only if regWRTL is p-natural.

Proof. Suppose that regWRTI ≡ RD. Then, since RD is natural, we have immediately that
regWRTI is p-natural.

Conversely, suppose that regWRTI is p-natural. By Theorem 3.5, RD p-simulates
regWRTI. So it suffices to prove that regWRTI p-simulates RD. Let F have an RD refutation
of size s. By Theorem 7.3, VEx(F ) has a regWRTI proof of size 2s(s + 2) + 1. Let α be
the assignment that assigns the value 1 to each of the extension variables q and p1, . . . , pn.
Since VEx(F )|α is F and since regWRTI is p-natural, F has a regWRTI proof of size at
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most p(2s(s+2)+ 1). This proves that regWRTI p-simulates RD, and completes the proof
of a.

The proof of b. is similar.

Theorem 7.7 is stated for the equivalence of systems with RD. It could also be stated for
p-equivalent but then one needs an “effective” version of p-natural, where the R-refutation
of F |α is computable in polynomial time from α and a R-refutation of F .

8. A Lower Bound for RTLW with short lemmas

In this section we prove a lower bound showing that learning only short clauses does
not help a DLL algorithm for certain hard formulas. The proof system corresponding to
DLL algorithms with learning restricted to clauses of length k is, according to Section 5,
regWRTI with the additional restriction that every used lemma is a clause of length at most
k. We prove a lower bound for a stronger proof system that allows arbitrary lemmas instead
of just input lemmas, drops the regularity restriction, and uses the general weakening rule
instead of just w-resolution, i.e., RTLW as defined in Section 3. We define RTLW(k) to
be the restriction of RTLW in which every lemma used, i.e., every leaf label that does not
occur in the initial formula, is of size at most k.

The hard example formulas we prove the lower bound for are the well-known Pigeonhole
Principle formulas. This principle states that there can be no 1-to-1 mapping from a set of
size n+1 into a set of size n. In propositional logic, the negation of this principle gives rise
to an unsatisfiable set of clauses PHPn in the variables xi,j for 1 ≤ i ≤ n+1 and 1 ≤ j ≤ n.
The variable xi,j is intended to state that i is mapped to j. The set PHPn consists of the
following clauses:

• the pigeon clause Pi =
{

xi,j ; 1 ≤ j ≤ n
}

for every 1 ≤ i ≤ n+ 1.
• the hole clause Hi,j,k = {x̄i,k, x̄j,k} for every 1 ≤ i < j ≤ n+ 1 and k ≤ n.

It is well-known that the pigeonhole principle requires exponential size dag-like resolu-
tion proofs: Haken [15] shows that every RD refutation of PHPn is of size 2Ω(n). Note that
the number of variables is O(n2), so that this lower bound is far from maximal. In fact,
Iwama and Miyazaki [18] prove a larger lower bound for tree-like refutations.

Theorem 8.1 (Iwama and Miyazaki [18]). Every resolution tree refutation of PHPn is of

size at least (n/4)n/4.

We will show that for k ≤ n/2, RTLW(k) refutations of PHPn are asymptotically

of the same size 2Ω(n logn) as resolution trees. On the other hand, it is known [7] that
dag-like resolution proofs need not be much larger than Haken’s lower bound: there exist
RD refutations of PHPn of size 2n · n2. These refutations are even regular, and thus can
be simulated by regWRTI. Hence PHPn can be solved in time 2O(n) by some variant of
DLL-L-UP when learning arbitrary long clauses, whereas our lower bound shows that any
DLL algorithm that learns only clauses of size at most n/2 needs time 2Ω(n logn).

In fact, we will prove our lower bound for the weaker functional pigeonhole principle
FPHPn, which also includes the following clauses:

• The functional clause Fi,j,k = {x̄i,j , x̄i,k} for every 1 ≤ i ≤ n+1 and every 1 ≤ j < k ≤ n.

While the lower bound of Iwama and Miyazaki is only stated for the clauses PHPn, it is
easily verified that their proof works as well when the functional clauses are added to the
formula.
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Our lower bound proof uses the fact that resolution trees with weakening (RTW) are
natural, i.e., preserved under restrictions in the following sense:

Proposition 8.2. Let R be a RTW proof of C from F of size s, and ρ a restriction. There
is an RTW proof R′ for C|ρ from F |ρ of size at most s.

We denote the resolution tree R′ by R|ρ. Since this proposition is well-known a proof
will not be given.

Next, we need to bring refutations in RTLW(k) to a certain normal form. First, we
show that it is unnecessary to use clauses as lemmas that are subsumed by axioms in the
refuted formula.

Lemma 8.3. If there is a RTLW(k) refutation of some formula F of size s, then there is
a RTLW(k) refutation of F of size at most 2s in which no clause C with C ⊇ D for some
clause D in F is used as a lemma.

Proof. If a clause C with C ⊇ D for some D ∈ F is used as a lemma, replace every leaf
labeled C by a weakening inference of C from D.

Secondly, we need the fact that an RTLW(k) refutation does not need to use any
tautological clauses, i.e., clauses of the form C ∪ {x, x̄} for a variable x.

Lemma 8.4. If there is a RTLW(k) refutation of some formula F of size s, then there is
a RTLW(k) refutation of F of size at most s that contains no tautological clause.

Proof. Let P be an RTLW(k)-refutation of F of size s that contains t occurrences of
tautological clauses. We transform P into a refutation P ′ of size |P ′| ≤ s such that P ′

contains fewer than t occurrences of tautological clauses. Finitely many iterations of this
process yields the claim.

We obtain P ′ as follows. Since the final clause of P is not tautological, if t > 0, there
must be a tautological clause C ∪ {x, x̄} which is resolved with a clause D ∪ {x} to yield
a non-tautological clause C ∪D ∪ {x}. The idea is to cut out the subtree T0 that derives
the clause C ∪ {x, x̄}, and derive C ∪D ∪ {x} by a weakening from D ∪ {x}. This gives a
“proof” P0 with fewer tautological clauses than P . However, P0 may not be a valid proof,
since some of the clauses in T0 might be used as lemmas in P0. To fix this, we shall extract
parts of T0 and plant them onto P0 so that all lemmas used are derived. In order to make
this construction precise, we need the notion of trees in which some of the used lemmas are
not derived.

A partial RTLW from F is defined to be a tree T which satisfies all the conditions of
an RTLW, except that some leaves may be labeled by clauses that occur neither in F nor
earlier in T ; these are called the open leaves of T .

We construct P ′ in stages by defining, for i ≥ 0, a partial RTLW refutation Pi of F
and a partial RTLW derivation Ti of C ∪ {x, x̄} from F with the following properties:

• All open leaves in Pi appear in Ti. The first open leaf in Pi is denoted Ci.
• All open leaves in Ti appear in Pi before Ci.
• |Pi|+ |Ti| = |P | .

P0 and T0 were defined above and certainly satisfy the two properties. Given Pi and Ti, we
construct Pi+1 and Ti+1 as follows: We locate the first occurrence of Ci in Ti and let T ∗

i be
the subtree of Ti rooted at this occurrence. We form Ti+1 by replacing in Ti the subtree T

∗
i

by a leaf labeled Ci. And, we form Pi+1 by replacing the first open leaf, Ci, in Pi by the
tree T ∗

i .
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The invariants are easily seen to be preserved. Obviously, |Pi+1|+ |Ti+1| = |Pi|+ |Ti| =
|P |. The open leaves of T ∗

i appear in Pi before Ci, and therefore, any open leaf in Pi+1, and
in particular, Ci+1 if it exists, must occur after the (formerly open leaf) clause Ci. New
open leaves in Ti are Ci and possibly some lemmas derived in T ∗

i , and these all occur in Pi+1

before Ci+1.
Since Pi+1 contains fewer open leaves than Pi for every i, there is an m such that

Pm contains no open leaves, and thus is an RTLW refutation. We then discard Tm and
set P ′ := Pm. Each lemma used in P ′ was a lemma in P , thus P ′ is also an RTLW(k)
refutation.

Note that the total number of occurrences of tautological clauses in Pi+1 and Ti+1

combined is the same as in Pi and Ti combined. This is also equal to the number of
tautological clauses in P . Furthermore, Tm must contain at least one tautological clause,
namely its root C ∪ {x, x̄}. It follows that P ′ has fewer tautological clauses than P .

A matching ρ is a set of pairs
{

(i1, j1), . . . , (ik, jk)
}

⊂ {1, . . . , n + 1} × {1, . . . , n} such
that all the iν as well as all the jν are pairwise distinct. The size of ρ is |ρ| = k. A matching
ρ induces a partial assignment to the variables of PHPn as follows:

ρ(xi,j) =



















1 if (i, j) ∈ ρ

0 if there is (i, j′) ∈ ρ with j 6= j′

or (i′, j) ∈ ρ with i 6= i′

undefined otherwise.

We will identify a matching and the assignment it induces. The crucial property of such
a matching restriction ρ is that FPHPn|ρ is – up to renaming of variables – the same as
FPHPn−|ρ|.

The next lemma states that a short clause occurring as a lemma in an RTLW refutation
can always be falsified by a small matching restriction.

Lemma 8.5. Let C be a clause of size k ≤ n/2 such that

• C is not tautological,
• C 6⊇ Hi,i′,j for any hole clause Hi,i′,j,
• C 6⊇ Fi,j,j′ for any functional clause Fi,j,j′.

Then there is a matching ρ of size |ρ| ≤ k such that C|ρ = ✷.

Proof. First, we let ρ1 consist of all those pairs (i, j) such that the negative literal x̄i,j occurs
in C. By the second and third assumption, these pairs form a matching. All the negative
literals in C are set to 0 by ρ1, and by the first assumption, no positive literal in C is set
to 1 by ρ1.

Now consider all pigeons i1, . . . , ir mentioned in positive literals in C that are not
already set to 0 by ρ1, i.e., that are not mentioned in any of the negative literals in C. Pick
j1, . . . , jr from the n/2 holes not mentioned in C, and set ρ2 :=

{

(i1, j1), . . . , (ir, jr)
}

. This
matching sets the remaining positive literals to 0, thus for ρ := ρ1 ∪ ρ2, we have C|ρ = ✷.
Clearly the size of ρ is at most k since we have picked at most one pair for each literal
in C.

Finally, we are ready to put all ingredients together to prove our lower bound.

Theorem 8.6. For every k ≤ n/2, every RTLW(k)-refutation of FPHPn is of size

2Ω(n logn).
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Proof. Let R be an RTLW(k)-refutation of FPHPn of size s. By Lemmas 8.3 and 8.4,
R can be transformed into R′ of size at most 2s in which no clause is tautological and no
clause used as a lemma is subsumed by a clause in FPHPn. Let C be the first clause in R′

which is used as a lemma; C is of size at most k. The subtree RC of R′ rooted at C is a
resolution tree for C from FPHPn.

By Lemma 8.5, there is a matching restriction ρ of size |ρ| ≤ k such that C|ρ = ✷.
Then RC |ρ is a resolution tree with weakening refutation of FPHPn|ρ, which is the same as
FPHPn−k. By Proposition 2.3, applications of the weakening rule can be eliminated from
RC |ρ without increasing the size. Therefore by Theorem 8.1, RC is of size

(n− k

4

)
n−k
4

≥
(n

8

)
n
8

and hence the size of R is at least

s ≥
1

2
|RC | ≥ 2Ω(n logn).
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