
Logical Methods in Computer Science
Volume 19, Issue 4, 2023, pp. 20:1–20:38
https://lmcs.episciences.org/

Submitted Oct. 26, 2021
Published Dec. 07, 2023

A TRICHOTOMY FOR REGULAR TRAIL QUERIES

WIM MARTENS , MATTHIAS NIEWERTH , AND TINA POPP

University of Bayreuth, Germany

Abstract. Regular path queries (RPQs) are an essential component of graph query
languages. Such queries consider a regular expression r and a directed edge-labeled graph
G and search for paths in G for which the sequence of labels is in the language of r. In
order to avoid having to consider infinitely many paths, some database engines restrict such
paths to be trails, that is, they only consider paths without repeated edges. In this article
we consider the evaluation problem for RPQs under trail semantics, in the case where the
expression is fixed. We show that, in this setting, there exists a trichotomy. More precisely,
the complexity of RPQ evaluation divides the regular languages into the finite languages,
the class Ttract (for which the problem is tractable), and the rest. Interestingly, the tractable
class in the trichotomy is larger than for the trichotomy for simple paths, discovered by
Bagan, Bonifati, and Groz [JCSS 2020]. In addition to this trichotomy result, we also
study characterizations of the tractable class, its expressivity, the recognition problem,
closure properties, and show how the decision problem can be extended to the enumeration
problem, which is relevant to practice.

1. Introduction

Graph databases are a popular tool to model, store, and analyze data [Neo, Tig, Ora, Wik,
DBp]. They are engineered to make the connectedness of data easier to analyze. This is
indeed a desirable feature, since some of today’s largest companies have become so successful
because they understood how to use the connectedness of the data in their specific domain
(e.g., Web search and social media). One aspect of graph databases is to bring tools for
analyzing connectedness to the masses.

Regular path queries (RPQs) are a crucial component of graph databases, because they
allow reasoning about arbitrarily long paths in the graph and, in particular, paths that are
longer than the size of the query. A regular path query essentially consists of a regular
expression r and is evaluated on a graph database which, for the purpose of this article, we
view as an edge-labeled directed graph G. When evaluated, the RPQ r searches for paths
in G for which the sequence of labels is in the language of r. The return type of the query
varies: whereas most academic research on RPQs [MW95, Bar13, BLR11, LM13, ACP12]
and SPARQL [W3C13] focus on the first and last node of matching paths, Cypher [Ope]

Key words and phrases: Regular languages, query languages, path queries, graph databases, databases,
complexity, trails, simple paths.

∗A shorter version of this article has appeared in STACS 2020, see [MNT20].

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-19(4:20)2023
© W. Martens, M. Niewerth, and T. Popp
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0001-9480-3522
https://orcid.org/0000-0003-2032-5374
https://orcid.org/0000-0001-6355-3815
http://creativecommons.org/about/licenses

20:2 W. Martens, M. Niewerth, and T. Popp Vol. 19:4

returns the entire paths. G-Core, a recent proposal by partners from industry and academia,
sees paths as “first-class citizens” in graph databases [AAB+18].

In addition, there is a large variation on which types of paths are considered. Popular
options are all paths, simple paths, trails, and shortest paths. Here, simple paths are paths
without repeated nodes and trails are paths without repeated edges. Academic research
has focused mostly on all paths, but Cypher 9 [Ope, FGG+18], which is perhaps the
most widespread graph database query language at the moment, uses trails. Since the
trail semantics in graph databases has received virtually no attention from the research
community yet, it is crucial that we improve our understanding.

In this article, we study the data complexity of RPQ evaluation under trail semantics.
That is, we study variants of RPQ evaluation in which the RPQ r is considered to be fixed.
As such, the input of the problem only consists of an edge-labeled (multi-)graph G and a
pair (s, t) of nodes and we are asked if there exists a trail from s to t on which the sequence
of labels matches r. One of our main results is a trichotomy on the RPQs for which this
problem is in AC0, NL-complete, or NP-complete, respectively. By Ttract, we refer to the
class of tractable languages (assuming NP ̸= NL).

In order to increase our understanding of Ttract, we study several important aspects of
this class of languages. A first set of results is on characterizations of Ttract in terms of closure
properties and syntactic and semantic conditions on their finite automata. In a second
set of results, we therefore compare the expressiveness of Ttract with yardstick languages
such as FO2[<], FO2[<,+1], FO[<] (or aperiodic languages), and SPtract. The latter class,
SPtract, is the closely related class of languages for which the data complexity of RPQ
evaluation under simple path semantics is tractable.1 Interestingly, Ttract is strictly larger
than SPtract and includes languages outside SPtract such as a∗bc∗ and (ab)∗ that are relevant
in application scenarios in network problems, genomic datasets, and tracking provenance
information of food products [PS] and were recently discovered to appear in public query
logs [BMT17, BMT19]. Furthermore, every single-occurrence regular expression [BNSV10]
is in Ttract, which can be a convenient guideline for users of graph databases, since single-
occurrence (every alphabet symbol occurs at most once) is a very simple syntactical property.
It is also popular in practice: we analyzed the 50 million RPQs found in the logs of [BMT18]
and discovered that over 99.8% of the RPQs are single-occurrence regular expressions.

We then study the recognition problem for Ttract, that is: given an automaton, does its
language belong to Ttract? This problem is NL-complete (resp., PSPACE-complete) if the
input automaton is a DFA (resp., NFA). We also treat closure under common operations
such as union, intersection, reversal, quotients and morphisms.

We conclude by showing that also the enumeration problem is tractable for Ttract. By
tractable, we mean that the paths that match the RPQ can be enumerated with only
polynomial delay between answers. Technically, this means that we have to prove that we
cannot only solve a decision variant of the RPQ evaluation problem, but we also need to find
witnessing paths. We prove that the algorithms for the decision problems can be extended
to return shortest paths. This insight can be combined with Yen’s Algorithm [Yen71] to give
a polynomial delay enumeration algorithm.

Related Work. RPQs on graph databases have been studied since the end of the 80’s and
are now finding their way into commercial products. The literature usually considers the

1Bagan et al. [BBG20] called the class Ctract, which stands for “tractable class”. We distinguish between
SPtract and Ttract here to avoid confusion between simple paths and trails.

Vol. 19:4 A TRICHOTOMY FOR REGULAR TRAIL QUERIES 20:3

s t
a
b a

b s t
a b

a
s t

b

a
ba s t

a a b

b b

a

Figure 1: Directed, edge-labeled graphs that have a trail from s to t.

variant of RPQ evaluation where one is given a graph database G, nodes s, t, and an RPQ
r, and then needs to decide if G has a path from s to t (possibly with loops) that matches r.
For arbitrary and shortest paths, this problem is well-known to be tractable, since it boils
down to testing intersection emptiness of two NFAs.

Mendelzon and Wood [MW95] studied the problem for simple paths, which are paths
without node repetitions. They observed that the problem is already NP-complete for
regular expressions a∗ba∗ and (aa)∗. These two results rely heavily on the work of Fortune
et al. [FHW80] and LaPaugh and Papadimitriou [LP84].

Our work is most closely related to the work of Bagan et al. [BBG20] who, like us,
studied the complexity of RPQ evaluation where the RPQ is fixed. They proved a trichotomy
for the case where the RPQ should only match simple paths. In this article we will refer
to this class as SPtract, since it contains the languages for which the simple path problem
is tractable, whereas we are interested in a class for trails. Martens and Trautner [MT19]
refined this trichotomy of Bagan et al. [BBG20] for simple transitive expressions, by analyzing
the complexity where the input consists of both the expression and the graph.

Paperman has integrated the classes SPtract and Ttract in his tool called Semigroup
Online [Pap22]. The tool can process a regular expression as input and can tell the user
whether the language is in SPtract, Ttract, and/or in many other important classes of languages.

Trails versus Simple Paths. We conclude with a note on the relationship between simple
paths and trails. For many computational problems, the complexities of dealing with simple
paths or trails are the same due to two simple reductions, namely: (1) constructing the line
graph or (2) splitting each node into two, see for example Perl and Shiloach [PS78, Theorem
2.1 and 2.2]. As soon as we consider labeled graphs, the line graph technique still works, but
not the nodes-splitting technique, because the labels on paths change. As a consequence, we
know that finding trails is at most as hard as finding simple paths, but we do not know if it
has the same complexity when we require that they match a certain RPQ r.

In this article we show that the relationship is strict, assuming NL ̸= NP. An easy
example is the language (ab)∗, which is NP-hard for simple paths [LP84, MW95], but—
assuming that a-labeled edges are different from b-labeled edges—in NL for trails. This is
because every path from s to t that matches (ab)∗ can be reduced to a trail from s to t that
matches (ab)∗ by removing loops (in the path, not in the graph) that match (ab)∗ or (ba)∗.
In Figure 1 we depict four small graphs, all of which have trails from s to t. (In the three
rightmost graphs, there is exactly one path labeled (ab)∗, which is also a trail.)

Outline. We note that this is a full version of the work presented in [MNT20]. In addition
to adding the full proofs, we generalize our results to multigraphs throughout the article. In
Section 2 we define our notation, Section 3 introduces the class Ttract, which contains exactly
the regular languages for which finding a trail from s to t is in polynomial time (assuming
P ̸= NP). We prove this dichotomy in Section 4. (The article is named trichotomy because
we can also differentiate between finite and infinite languages. For the first, finding such a

20:4 W. Martens, M. Niewerth, and T. Popp Vol. 19:4

path is in AC0 while NL-hard for the latter.) After giving some interesting closure properties
of Ttract in Section 5 and extending the algorithm for languages in Ttract to an enumeration
algorithm, we conclude our work in Section 7. The most complex part of this article is in
Section 3, where we give several equivalent definitions of Ttract, some of which are needed
for the proof of its tractability, others, like the syntactic definition given in Theorem 3.31
might be useful for database engineers, while others are used to compare Ttract to well-known
classes such as FO or FO2[<,+1].

2. Preliminaries

We use [n] to denote the set of integers {1, . . . , n}. By Σ we always denote a finite alphabet,
i.e., a finite set of symbols. We always denote symbols by a, b, c, d and their variants, like
a′, a1, b1, etc. The regular expressions we use in this article are defined as follows: ∅, ε,
and every symbol in Σ is a regular expression. When r and s are regular expressions, then
(rs), (r + s), (r?), (r∗), and (r+) are also regular expressions. We use the usual precedence
rules to omit parentheses. For n ∈ N, we use rn to abbreviate the n-fold concatenation
r · · · r of r. The language L(r) of a regular expression r is defined as usual. For readability,
we often omit the L(·) and only write r for the language of r. A word is a finite sequence
w = a1 · · · an of symbols.

We consider edge-labeled directed multigraphs G = (V,E, E), where V is a finite set
of nodes, E is a finite set of edges, and E : E → V × Σ × V is a function that maps each
edge identifier to a tuple (v1, a, v2) describing the origin, the label, and the destination
node of the edge. We denote v1 by origin(e), a by lab(e) and v2 by destination(e). We
emphasize that E does not need to be injective, i.e., there might be several edges with
identical origin, label, and destination. The size of G is defined as |V | + |E|. A (simple)
graph is a multigraph where E is injective. A path p from node s to t is a sequence e1 · · · em
of edges such that origin(e1) = s, destination(em) = t, and for 1 ≤ i < m it holds that
destination(i) = origin(i+ 1). By |p| we denote the number of edges of a path. A path is a
trail if every edge e appears at most once2 and a simple path if all the nodes in origin(e1)
and destination(e1), . . . ,destination(em) are different. We note that each simple path is a
trail but not vice versa. We denote lab(e1) · · · lab(em) by lab(p). Given a language L ⊆ Σ∗,
path p matches L if lab(p) ∈ L. For a subset E′ ⊆ E, path p is E′-restricted if every edge of
p is in E′. Given a trail p and two edges e1 and e2 in p, we denote the subpath of p from e1
to e2 by p[e1, e2].

We define an NFA A to be a tuple (Q,Σ, I, F, δ) where Q is the finite set of states;
I ⊆ Q is a set of initial states; δ ⊆ Q×Σ×Q is the transition relation; and F ⊆ Q is the set
of accepting states. Strongly connected components of (the graph of) A are simply called
components. Unless noted otherwise, components will be non-trivial, i.e., containing at least
one edge. We write C(q) to denote the strongly connected component of state q.

By δ(q, w) we denote the states reachable from state q by reading w. Given a path p, we
also slightly abuse notation and write δ(q, p) instead of δ(q, lab(p)). We denote by q1 ⇝ q2
that state q2 is reachable from q1. Finally, Lq denotes the set of all words accepted from
q and L(A) =

⋃
q∈I Lq is the set of words accepted by A. For every state q, we denote by

Loop(q) the set {w ∈ Σ+ | δL(q, w) = q} of all non-empty words that allow to loop on q. For
a word w and a language L, we define wL = {ww′ | w′ ∈ L} and w−1L = {w′ | ww′ ∈ L}.

2We note that it is allowed that for i ̸= j it holds that E(ei) = E(ej).

Vol. 19:4 A TRICHOTOMY FOR REGULAR TRAIL QUERIES 20:5

A DFA is an NFA such that I is a singleton and for all q ∈ Q and σ ∈ Σ: |δ(q, σ)| ≤ 1.
Let L be a regular language. We denote by AL = (QL,Σ, iL, FL, δL) the (complete) minimal
DFA for L and by N the number |QL| of states. For q0 ∈ Q, we say that a run from q0
of A on w = a1 · · · an is a sequence q0 → · · · → qn of states such that qi ∈ δ(qi−1, ai), for
every i ∈ {1, . . . , n}. When A is a DFA and q0 its initial state, we also simply call it the
run of A on w. The product of multigraph G = (V,E, E) and NFA A = (Q,Σ, I, F, δ)
is a graph (V ′, E′, E ′) with V ′ = V × Q, E′ = {(e, (q1, q2)) | (q1, lab(e), q2) ∈ δ} and
E ′((e, (q1, q2))) = ((origin(e), q1), lab(e), (destination(e), q2)).

A language L is aperiodic if and only if δL(q, w
N+1) = δL(q, w

N) for every state q and
word w. Equivalently, L is aperiodic if and only if its minimal DFA does not have simple
cycles labeled wk for k > 1 and w ̸= ε. Thus, for “large enough n” we have: uwnv ∈ L iff
uwn+1v ∈ L. So, a language like (aa)∗ is not aperiodic (take w = a and k = 2), but (ab)∗ is.
(There are many characterizations of aperiodic languages [Sch65].)

We study the regular trail query (RTQ) problem for a regular language L.

RTQ(L)
Given: A (multi-)graph G = (V,E, E) and (s, t) ∈ V × V .

Question: Is there a trail from s to t that matches L?

A similar problem, which was studied by Bagan et al. [BBG20], is the RSPQ problem.
The RSPQ(L) problem asks if there exists a simple path from s to t that matches L.

3. The Tractable Class

In this section, we define and characterize a class of languages of which we will prove that it
is exactly the class of regular languages L for which RTQ(L) is tractable (if NL ̸= NP).

3.1. Warm-Up: Downward Closed Languages. It is instructive to first discuss the
case of downward closed languages. A language L is downward closed (DC) if it is closed
under taking subsequences. That is, for every word w = a1 · · · an ∈ L and every sequence
0 < i1 < · · · < ik < n + 1 of integers, we have that ai1 · · · aik ∈ L. Perhaps surprisingly,
downward closed languages are always regular [Hai69]. Furthermore, they can be defined by a
clean class of regular expressions (which was shown by Jullien [Jul69] and later rediscovered
by Abdulla et al. [ACBJ04]), which is defined as follows.

Definition 3.1. An atomic expression over Σ is an expression of the form (a + ε) or
of the form (a1 + · · · + an)

∗, where a, a1, . . . , an ∈ Σ. A product is a (possibly empty)
concatenation e1 · · · en of atomic expressions e1, . . . , en. A simple regular expression is of
the form p1 + · · ·+ pn, where p1, . . . , pn are products.

Another characterization is by Mendelzon and Wood [MW95], who show that a regular
language L is downward closed if and only if its minimal DFA AL = (QL,Σ, iL, FL, δL)
exhibits the suffix language containment property, which says that if δL(q1, a) = q2 for some
symbol a ∈ Σ, then we have Lq2 ⊆ Lq1 .

3 Since this property is transitive, it is equivalent to
require that Lq2 ⊆ Lq1 for every state q2 that is reachable from q1.

Theorem 3.2 [ACBJ04, Hai69, Jul69, MW95]. The following are equivalent:

3They restrict q1, q2 to be on paths from iL to some state in FL, but the property trivially holds for q2
being a sink-state.

20:6 W. Martens, M. Niewerth, and T. Popp Vol. 19:4

(1) L is a downward closed language.
(2) L is definable by a simple regular expression.
(3) The minimal DFA of L exhibits the suffix language containment property.

Obviously, RTQ(L) is tractable for every downward closed language L, since it is equivalent
to deciding if there exists a path from s to t that matches L. For the same reason, deciding
if there is a simple path from s to t that matches L is also tractable for downward closed
languages. However, there are languages that are not downward closed for which we show
RTQ(L) to be tractable, such as a∗bc∗ and (ab)∗. For these two languages, the simple path
variant of the problem is intractable.

3.2. Main Definitions and Equivalence. The following definitions are the basis of the
class of languages for which RTQ(L) is tractable.

Definition 3.3. An NFA A satisfies the left-synchronized containment property if there
exists an n ∈ N such that the following implication holds for all q1, q2 ∈ Q and a ∈ Σ:

If q1 ⇝ q2 and if w1 ∈ Loop(q1), w2 ∈ Loop(q2) with w1 = aw′
1 and w2 = aw′

2,

then wn
2Lq2 ⊆ Lq1 .

Similarly, A satisfies the right-synchronized containment property if the same condition holds
with w1 = w′

1a and w2 = w′
2a.

We illustrate this definition in Figure 2. We note that the minimal DFA of any downward
closed language satisfies the left-synchronized containment property.

q1

q2 q3

q4 q5 q6
a

b

c
a b

c

a
q7

q8 q9

q10 q11 q12 q13
a

b

c
a c a

c

a

Figure 2: Example illustrating Definition 3.3. The left NFA does not satisfy the left-
synchronized containment property as (ac)∗Lq6 ∩Lq1 = ∅. The right NFA satisfies
the left-synchronized containment property with n = 2 as (ac)2Lq13 ⊆ Lq7 and
(ca)2Lq12 ⊆ Lq9 .

The left-synchronizing length of an NFA A is the smallest value n such that the
implication in Definition 3.3 for the left-synchronized containment property holds. We define
the right-synchronizing length analogously.

Observation 3.4. Let n0 be the left-synchronizing length of an NFA A. Then the implication
of Definition 3.3 is satisfied for every n ≥ n0. The reason is that w2 ∈ Loop(q2).

Definition 3.5. A regular language L is closed under left-synchronized power abbreviations
(resp., closed under right-synchronized power abbreviations) if there exists an n ∈ N such
that for all words wℓ, wm, wr ∈ Σ∗ and all words w1 = aw′

1 and w2 = aw′
2 (resp., w1 = w′

1a
and w2 = w′

2a) we have that wℓw
n
1wmwn

2wr ∈ L implies wℓw
n
1w

n
2wr ∈ L.

Vol. 19:4 A TRICHOTOMY FOR REGULAR TRAIL QUERIES 20:7

We note that Definition 3.5 is equivalent to requiring that there exists an n ∈ N such
that the implication holds for all i ≥ n. The reason is that, given i > n and a word of the
form wℓw

i
1wmwi

2wr, we can write it as w′
ℓw

n
1wmwn

2w
′
r with w′

ℓ = wℓw
i−n
1 and w′

r = wi−n
2 wr,

for which the implication holds by Definition 3.5.

Lemma 3.6. Consider a minimal DFA AL = (QL,Σ, iL, FL, δL) with N states. Then the
following is true:

(1) If AL satisfies the left-synchronized containment property, then the left-synchronizing
length is at most N .

(2) If AL satisfies the right-synchronized containment property, then the right-synchronizing
length is at most N .

Proof. We only prove (1), (2) is symmetric. By Definition 3.3, there exists an n ∈ N such
that: If q1, q2 ∈ QA and a ∈ Σ such that q1 ⇝ q2 and if w1 ∈ Loop(q1), w2 ∈ Loop(q2) with
w1 = aw′

1 and w2 = aw′
2, then wn

2Lq2 ⊆ Lq1 .
If n > N , then there must be a loop in the wn

2 part that generates multiples of w2.
Applying the pigeonhole principle there is an i < n for which wi

2Lq2 ⊆ Lq1 holds. By
repetition, we obtain an i with i < N .

From Definition 3.3, Observation 3.4, and Lemma 3.6, we get the following corollary.

Corollary 3.7. Let A be a minimal DFA with N states, q1, q2 ∈ QA with q1 ⇝ q2,
w1 ∈ Loop(q1), and w2 ∈ Loop(q2). If A satisfies the

• left-synchronized containment property, w1 = aw′
1, and w2 = aw′

2, then wN
2 Lq2 ⊆ Lq1.

• right-synchronized containment property, w1 = w′
1a, and w2 = w′

2a, then wN
2 Lq2 ⊆ Lq1.

We need two lemmas to prove Theorem 3.11. And their proofs require the following lemma:

Lemma 3.8 (Implicit in [BBG20], Lemma 3 proof). Every minimal DFA satisfying
for all q1, q2 ∈ QL such that q1 ⇝ q2 and Loop(q1) ∩ Loop(q2) ̸= ∅ : Lq2 ⊆ Lq1 (P)

accepts an aperiodic language.

Lemma 3.9. If AL has the left-synchronized containment property or right-synchronized
containment property, then L is aperiodic.

Proof. Let AL satisfy the left- or right-synchronized containment property. We show that L
satisfies Property (P), restated here for convenience.

Lq2 ⊆ Lq1 for all q1, q2 ∈ QL such that q1 ⇝ q2 and Loop(q1) ∩ Loop(q2) ̸= ∅ (P)

This proves the lemma since all languages satisfying Property (P) are aperiodic, see
Lemma 3.8. Let q1, q2 ∈ QL and w satisfy q1 ⇝ q2 and w ∈ Loop(q1) ∩ Loop(q2). By Corol-
lary 3.7 we then have that wNLq2 ⊆ Lq1 . Since w ∈ Loop(q1), we have that δ(q1, w

N) = q1,
which in turn implies that Lq2 ⊆ Lq1 .

Lemma 3.10. If L is closed under left- or right-synchronized power abbreviations, then L
is aperiodic.

Proof. Let L be closed under left- or right-synchronized power abbreviations and i ∈ N be
as in Definition 3.5. We show that AL satisfies the Property (P). The aperiodicity then
follows from Lemma 3.8.

Let q1, q2 ∈ QL and w satisfy q1 ⇝ q2 and w ∈ Loop(q1) ∩ Loop(q2). Let wℓ, wm ∈ Σ∗

be such that q1 = δL(iL, wℓ) and q2 = δL(q1, wm). Let wr ∈ Lq2 . Then, wℓw
∗wmw∗wr ⊆ L

20:8 W. Martens, M. Niewerth, and T. Popp Vol. 19:4

by construction. Especially, wℓw
iwmwiwr ∈ L and, by Definition 3.5, also wℓw

iwiwr ∈ L.
Since δL(iL, wℓw

iwi) = q1, this means that wr ∈ Lq1 . Therefore, Lq2 ⊆ Lq1 .

Next, we show that all conditions defined in Definitions 3.3 and 3.5 are equivalent for
DFAs.

Theorem 3.11. For a regular language L with minimal DFA AL, the following are equivalent:

(1) AL satisfies the left-synchronized containment property.
(2) AL satisfies the right-synchronized containment property.
(3) L is closed under left-synchronized power abbreviations.
(4) L is closed under right-synchronized power abbreviations.

Proof. Let AL = (QL,Σ, iL, FL, δL). (1) ⇒ (3): Let AL satisfy the left-synchronized
containment property. We will show that if there exists a word wℓw

i
1wmwi

2wr ∈ L with
i = N + N2 and w1 and w2 starting with the same letter, then wℓw

i
1w

i
2wr ∈ L. To

this end, let wℓw
i
1wmwi

2wr ∈ L. Due to the pumping lemma, there are states q1, q2 and

integers h, j, k, ℓ,m, n ≤ N with j,m ≥ 1 satisfying: q1 = δ(iL, wℓw
h
1), q1 = δ(q1, w

j
1),

q2 = δ(q1, w
k
1wmwℓ

2), q2 = δ(q2, w
m
2), and wn

2wr ∈ Lq2 . This implies that

wℓw
h
1 (w

j
1)

∗wk
1wmwℓ

2(w
m
2)∗wn

2wr ⊆ L .

Since AL satisfies the left-synchronized containment property and by Corollary 3.7, we have
(wm

2)NLq2 ⊆ Lq1 and therefore

wℓw
h
1 (w

j
1)

∗(wm
2)Nwn

2wr ⊆ L .

Now we use that L is aperiodic, see Lemma 3.9:

wℓw
h
1 (w

j
1)

N (w1)
∗(wm

2)N (w2)
∗wn

2wr ⊆ L

And finally, we use that i = N +N2 and h, j,m, n ≤ N to obtain wℓ(w1)
i(w2)

iwr ∈ L.
(3) ⇒ (4): Let L be closed under left-synchronized power abbreviations and let j ∈ N

be the maximum of |AL| and n+ 1, where the n is from Definition 3.5. We will show that
if wℓ(w1a)

jwm(w2a)
jwr ∈ L, then wℓ(w1a)

j(w2a)
jwr ∈ L. If wℓ(w1a)

jwm(w2a)
jwr ∈ L,

then we also have wℓ(w1a)
jwm(w2a)

j+1wr ∈ L since L is aperiodic, see Lemma 3.10, and
j ≥ |AL|. This can be rewritten as

wℓw1(aw1)
j−1awmw2(aw2)

j−1(aw2awr) ∈ L .

As L is closed under left-synchronized power abbreviations, and n < j, this implies

wℓw1(aw1)
j−1(aw2)

j−1(aw2awr) ∈ L .

This can be rewritten into wℓ(w1a)
j(w2a)

jwr ∈ L.
(4) ⇒ (2): Let L be closed under right-synchronized power abbreviations. We will prove

that AL satisfies the right-synchronized containment property, that is, if there are two states
q1, q2 in AL with q1 ⇝ q2 and w1 ∈ Loop(q1), w2 ∈ Loop(q2), such that w1 and w2 end with
the same letter, then (w2a)

NLq2 ⊆ Lq1 . Let q1, q2 be such states. Then there exist wℓ, wm

with q1 = δL(iL, wℓ) and q2 = δL(q1, wm). If Lq2 = ∅, we are done. So let us assume there is
a word wr ∈ Lq2 . We define w′

r = wN
2 wr. Due to construction, we have wℓw

∗
1wmw∗

2w
′
r ⊆ L.

Since L is closed under right-synchronized power abbreviations, there is an i ∈ N such that
wℓw

i
1w

i
2w

′
r ∈ L. Since we have a deterministic automaton and q1 = δL(iL, wℓw

i
1) this implies

that wi
2w

′
r = wi

2w
N
2 wr ∈ Lq1 . We now use that L is aperiodic due to Lemma 3.10 to infer

that wN
2 wr ∈ Lq1 .

Vol. 19:4 A TRICHOTOMY FOR REGULAR TRAIL QUERIES 20:9

(2) ⇒ (1): Let AL satisfy the right-synchronized containment property. We will show
that if there exist states q1, q2 ∈ QL and words w1, w2 ∈ Σ∗ with aw1 ∈ Loop(q1) and
aw2 ∈ Loop(q2) and q1 ⇝ q2, then (aw2)

NLq2 ⊆ Lq1 . Let q1, q2 be such states and w1, w2

as above. We define q′1 = δL(q1, w1) and q′2 = δL(q2, w2). Since AL is deterministic, the
construction implies that w1a ∈ Loop(q′1) and w2a ∈ Loop(q′2). Furthermore, it holds that
(i) Lq′1

= a−1Lq1 and (ii) w2Lq2 ⊆ Lq′2
. With this we will show that (w2a)

NLq′2
⊆ Lq′1

implies

(aw2)
NLq2 ⊆ Lq1 . Let (w2a)

NLq′2
⊆ Lq′1

. Adding an a left hand, yields (aw2)
NaLq′2

⊆
aLq′1

⊆ Lq1 because of (i). We use (ii) to replace Lq′2
to get: (aw2)

N+1Lq2 ⊆ Lq1 . Since L is

aperiodic, see Lemma 3.9, this is equivalent to (aw2)
NLq2 ⊆ Lq1 .

Corollary 3.12. If a regular language L satisfies Definition 3.5 and N = |AL| then, for
all i > N2 +N and for all words wℓ, wm, wr ∈ Σ∗ and all words w1 = aw′

1 and w2 = aw′
2

(resp., w1 = w′
1a and w2 = w′

2a) we have that wℓw
i
1wmwi

2wr ∈ L implies wℓw
i
1w

i
2wr ∈ L.

Proof. This immediately follows from the proof of (1) ⇒ (3).

In Theorem 4.1 we will show that, if NL ̸= NP, the languages L that satisfy the above
properties are precisely those for which RTQ(L) is tractable. To simplify terminology, we
will henceforth refer to this class as Ttract.

Definition 3.13. A regular language L belongs to Ttract if L satisfies one of the equivalent
conditions in Theorem 3.11.

For example, (ab)∗ and (abc)∗ are in Ttract, whereas a∗ba∗, (aa)∗ and (aba)∗ are not.
The following property immediately follows from the definition of Ttract.

Observation 3.14. Every regular expression for which each alphabet symbol under a
Kleene star occurs at most once in the expression defines a language in Ttract.

A special case of these expressions are those in which every alphabet symbol occurs at
most once. These are known as single-occurrence regular expressions (SORE) [BNSV10].
SOREs were studied in the context of learning schema languages for XML [BNSV10], since
they occur very often in practical schema languages.

3.3. The inner Structure of minimal DFAs in Ttract. The components of minimal
DFAs of languages in Ttract have a very special form. The insights provided in this section
are used in Section 4 to show trichotomy results for Ttract, and in Section 3.4 to give a
syntactic characterization of languages in Ttract.

Lemma 3.15. Let L ∈ Ttract, a ∈ Σ, C be a component of AL, and q1, q2 ∈ C. If there exist
w1a ∈ Loop(q1) and w2a ∈ Loop(q2), then, for all σ ∈ Σ, we have that δL(q1, σ) ∈ C if and
only if δL(q2, σ) ∈ C.

Proof. Let q1 ̸= q2 be two states in C. Let σ satisfy δL(q1, σ) ∈ C and let w ∈ Loop(q1)∩σΣ∗a.
Such a w exists since δL(q1, σ) ∈ C and δL(q1, w1a) = q1. Let q3 = δL(q2, w

N). We will
prove that q1 = q3, which implies that δL(q2, σ) ∈ C. As L is aperiodic, w ∈ Loop(q3).
Consequently, there is an n ∈ N such that wnLq3 ⊆ Lq1 by Definition 3.3. Since w ∈ Loop(q1),
this also implies Lq3 ⊆ Lq1 . Furthermore, q2 has a loop ending with a and AL satisfies
the right-synchronized containment property, so wNLq1 ⊆ Lq2 by Corollary 3.7. Hence,
Lq1 ⊆ (wN)−1Lq2 and, by definition of q3, we have (wN)−1Lq2 = Lq3 . So we showed
Lq3 ⊆ Lq1 and Lq1 ⊆ Lq3 which, by minimality of AL, implies q1 = q3.

20:10 W. Martens, M. Niewerth, and T. Popp Vol. 19:4

The following is a direct consequence thereof.

Corollary 3.16. Let L ∈ Ttract, a ∈ Σ, C be a component of AL, and q1, q2 ∈ C. If there
exist w1a ∈ Loop(q1) and w2a ∈ Loop(q2), then δL(q1, w) ∈ C if and only if δL(q2, w) ∈ C
for all words w ∈ Σ∗.

Lemma 3.17. Let AL satisfy the left-synchronized containment property. If states q1 and
q2 belong to the same component of AL and Loop(q1) ∩ Loop(q2) ̸= ∅, then q1 = q2.

Proof. Let q1, q2 be as stated and let w be a word in Loop(q1) ∩ Loop(q2). According to
Definition 3.3, there exists an n ∈ N such that wnLq2 ⊆ Lq1 . Since w ∈ Loop(q1), this
implies that Lq2 ⊆ Lq1 . By symmetry, we have Lq2 = Lq1 , which implies q1 = q2, since AL

is the minimal DFA.

To this end, we obtain the following synchronization property for AL.

Lemma 3.18. Let L ∈ Ttract, let C be a component of AL, let q1, q2 ∈ C, and let w be a
word of length N2. If δL(q1, w) ∈ C and δL(q2, w) ∈ C, then δL(q1, w) = δL(q2, w).

Proof. Assume that w = a1 · · · aN2 . For each i from 0 to N2 and α ∈ {1, 2}, let qα,i =
δL(qα, a1 · · · ai). Since there are at most N2 distinct pairs (q1,i, q2,i), there exist i, j with
0 ≤ i < j ≤ N2 such that q1,i = q1,j and q2,i = q2,j . Since δL(q1, w) ∈ C and δL(q2, w) ∈ C,
q1,i, q2,i ∈ C. Let w′ = ai+1 · · · aj . We have w′ ∈ Loop(q1,i) ∩ Loop(q2,i), hence q1,i = q2,i by
Lemma 3.17. As a consequence, δL(q1, w) = δL(q2, w).

Furthermore, we show that every language in Ttract satisfies an inclusion property which
is stronger than indicated by Definition 3.3. That is, we show that it is not necessary to
repeat some word w2 multiple times. Instead, we show that any word w that stays in a
component, given that w is long enough and starts with a suitable symbol, already implies
an inclusion property.

Lemma 3.19. Let L ∈ Ttract, a ∈ Σ and let q1, q2 be two states such that q1 ⇝ q2 and
Loop(q1) ∩ aΣ∗ ̸= ∅. Let C be the component of AL that contains q2. Then,

Lq2 ∩ La
q2Σ

∗ ⊆ Lq1

where La
q2 is the set of words w of length N2 that start with a and such that δL(q2, w) ∈ C.

Proof. If Loop(q2) = ∅, then Lq2 ∩La
q2Σ

∗ = ∅ and the inclusion trivially holds. Therefore we
assume from now on that Loop(q2) ̸= ∅. Since the proof of this lemma requires a number of
different states and words, we provide a sketch in Figure 3. Let w ∈ Lq2 ∩ La

q2Σ
∗, u be the

prefix of w of length N2 and w′ be the suffix of w such that w = uw′. Since q2 and δL(q2, u)
are both in the same component C, there exists a word v with uv ∈ Loop(q2). Corollary 3.7
implies that

(uv)NLq2 ⊆ Lq1 . (3.1)

Let q3 = δL(q1, (uv)
N). Due to aperiodicity we have uv ∈ Loop(q3). Since AL is deterministic,

this implies Lq3 = ((uv)N)−1Lq1 and, together with Equation (3.1) that

Lq2 ⊆ Lq3 . (3.2)

We now show that there is a prefix u1 of u such that δL(q1, u1) = q and δL(q3, u1) = q′

with Loop(q) ∩ Loop(q′) ̸= ∅. Assume that u = a1 · · · aN2 . Let qα,0 = qα and, for each i
from 1 to N2 and α ∈ {1, 3}, let qα,i = δL(qα, a1 · · · ai). Since there are at most N2 distinct
pairs (q1,i, q3,i), there exist i, j with 0 ≤ i < j ≤ N2 such that q1,i = q1,j and q3,i = q3,j .

Vol. 19:4 A TRICHOTOMY FOR REGULAR TRAIL QUERIES 20:11

q1· · ·

q2

q3q q′

a..

a..

u−1
1 (uv)N

u1

u−1
1 uvu2

u1
u2

u

v

w′

Figure 3: Sketch of the proof of Lemma 3.19

Let u1 = a1 · · · ai and u2 = ai+1 · · · aj . We have u2 ∈ Loop(q1,i) ∩ Loop(q3,i). We define
q = δL(q1, u1) and q′ = δL(q3, u1). Since q ⇝ q′ and u2 ∈ Loop(q) ∩ Loop(q′), Corollary 3.7
implies uN2 Lq′ ⊆ Lq. Since u2 ∈ Loop(q), we also have that

Lq′ ⊆ Lq . (3.3)

By definition of q and the determinism of AL, we have that Lq = u−1
1 Lq1 . Thus, Equation (3.3)

implies Lq′ ⊆ u−1
1 Lq1 . The definition of q′ implies that Lq′ = u−1

1 Lq3 , so u−1
1 Lq3 ⊆ u−1

1 Lq1 .
In other words, we have Lq3 ∩ u1Σ

∗ ⊆ Lq1 ∩ u1Σ
∗. Since u1 is a prefix of u, and by

Equation (3.2), we also have Lq2 ∩ uΣ∗ ⊆ Lq1 . This implies that w ∈ Lq1 , which concludes
the proof.

3.4. A Syntactic Characterization. The goal of this section is to give a better understand-
ing of languages in Ttract. We provide a syntactic definition, which will allow to construct
languages in Ttract. More precisely, we will show that every language of a “memoryless
component” is in Ttract. And if memoryless components are connected with “consistent
jumps”, then the language is again in Ttract. We show that all languages in Ttract can be
constructed in this way. Using this modular principle, systems with graphical search queries
could enable users to “click” a language in Ttract together. Note that this section is quite
technical and detached from the rest of the article, thus it can be skipped.

As we have seen before, regular expressions in which every symbol occurs at most once
define languages in Ttract. We will define a similar notion on automata.

Definition 3.20. A component C of some NFA A is called memoryless, if for each symbol
a ∈ Σ, there is at most one state q in C, such that there is a transition (p, a, q) with p in C.

In this section, we will prove the following theorem which provides (in a non-trivial
proof that requires several steps) a syntactic condition for languages in Ttract. The syntactic
condition is item (4) of the theorem, which we define after its statement. Condition (5)
imposes an additional restriction on condition (4).

Theorem 3.21. For a regular language L, the following properties are equivalent:

(1) L ∈ Ttract

(2) There exists an NFA A for L that satisfies the left-synchronized containment property.
(3) There exists an NFA A for L that satisfies the left-synchronized containment property

and only has memoryless components.
(4) There exists a detainment automaton for L with consistent jumps.
(5) There exists a detainment automaton for L with consistent jumps and only memoryless

components.

20:12 W. Martens, M. Niewerth, and T. Popp Vol. 19:4

To define detainment automata, we use finite automata with counters or CNFAs from Gelade
et al. [GGM12], which we slightly adapt to make the construction easier.4

We recall the definition of counter NFAs from Gelade et al. [GGM12]. We introduce
a minor difference, namely that counters count down instead of up, since this makes our
construction easier to describe. Furthermore, since our construction only requires a single
counter, zero tests, and setting the counter to a certain value, we immediately simplify the
definition to take this into account.

Let c be a counter variable, taking values in N. A guard on c is a statement γ of the
form true or c = 0. We denote by c |= γ that c satisfies the guard γ. In the case where γ is
true, this is trivially fulfilled and, in the case where γ is c = 0, this is fulfilled if c equals 0.
By G we denote the set of guards on c. An update on c is a statement of the form c := c− 1,
c := c, or c := k for some constant k ∈ N. By U we denote the set of updates on c.

Definition 3.22. A nondeterministic counter automaton (CNFA) with a single counter is a
6-tuple A = (Q, I, c, δ, F, τ) where Q is the finite set of states; I ⊆ Q is a set of initial states;
c is a counter variable; δ ⊆ Q× Σ×G×Q× U is the transition relation; and F ⊆ Q is the
set of accepting states. Furthermore, τ ∈ N is a constant such that every update of the form
c := k has k ≤ τ .

Intuitively, A can make a transition (q, a, γ; q′, π) whenever it is in state q, reads a, and
c |= γ, i.e., guard γ is true under the current value of c. It then updates c according to
the update π, in a way we explain next, and moves into state q′. To explain the update
mechanism formally, we introduce the notion of configuration. A configuration is a pair
(q, ℓ) where q ∈ Q is the current state and ℓ ∈ N is the value of c. Finally, an update π
defines a function π : N → N as follows. If π = (c := k) then π(ℓ) = k for every ℓ ∈ N. If
π = (c := c− 1) then π(ℓ) = max(ℓ− 1, 0). Otherwise, i.e., if π = (c := c), then π(ℓ) = ℓ.
So, counters never become negative.

An initial configuration is (q0, 0) with q0 ∈ I. A configuration (q, ℓ) is accepting if q ∈ F
and ℓ = 0. A configuration α′ = (q′, ℓ′) immediately follows a configuration α = (q, ℓ) by
reading a ∈ Σ, denoted α→a α′, if there exists (q, a, γ; q′, π) ∈ δ with c |= γ and ℓ′ = π(ℓ).

For a string w = a1 · · · an and two configurations α and α′, we denote by α ⇒w α′

that α→a1 · · · →an α′. A configuration α is reachable if there exists a string w such that
α0 ⇒w α for some initial configuration α0. A string w is accepted by A if α0 ⇒w αf where
α0 is an initial configuration and αf is an accepting configuration. We denote by L(A) the
set of strings accepted by A.

It is easy to see that CNFA accept precisely the regular languages. (Due to the value τ ,
counters are always bounded by a constant.)

Let A be a CNFA with one counter c. Initially, the counter has value 0. The automaton
has transitions of the form (q1, a, P ; q2, U) where P is a precondition on c and U an update
operation on c. For instance, the transition (q1, a, c = 5; q2, c := c − 1) means: if A is in
state q1, reads a, and the value of c is five, then it can move to q2 and decrease c by one. If
we decrease a counter with value zero, its value remains zero. We denote the precondition
that is always fulfilled by true.

We say that A is a detainment automaton if, for every component C of A:

• every transition inside C is of the form (q1, a, true; q2, c := c− 1);
• every transition that leaves C is of the form (q1, a, c = 0; q2, c := k) for some k ∈ N;5

4The adaptation is that we let counters decrease instead of increase. Furthermore, it only needs zero-tests.
5If q2 is in a trivial component, then k should be 0 for the transition to be useful.

Vol. 19:4 A TRICHOTOMY FOR REGULAR TRAIL QUERIES 20:13

C1 C2

p1

q1
p2

q2a a ⇒
C1 C2

p1

q1
p2

q2a a
a

Figure 4: Consistent jump condition (simplified, i.e.: without preconditions, counter and
update) used in Theorem 3.31. C1 and C2 are components (not necessarily
different) such that C2 is reachable from C1.

Intuitively, if a detainment automaton enters a non-trivial component C, then it must stay
there for at least some number of steps, depending on the value of the counter c. The
counter c is decreased for every transition inside C and the automaton can only leave C once
c = 0. We say that A has consistent jumps if, for every pair of components C1 and C2, if
C1 ⇝ C2 and there are transitions (pi, a, true; qi, c := c− 1) inside Ci for all i ∈ {1, 2}, then
there is also a transition (p1, a, P ; q2, U) for some P ∈ {true, c = 0} and some update U .6

We illustrate this in Figure 4. We note that C1 and C2 may be the same component. The
consistent jump property is the syntactical counterpart of the left-synchronized containment
property. The memoryless condition carries over naturally to CNFAs, ignoring the counter.

Proof sketch of Theorem 3.21. The implications (3) ⇒ (2) and (5) ⇒ (4) are trivial. We
sketch the proofs of (1) ⇒ (5) ⇒ (3) and (4) ⇒ (2) ⇒ (1) below, establishing the theorem.

(1) ⇒ (5) uses a very technical construction that essentially exploits that—if the
automaton stays in the same component for a long time—the reached state only depends on
the last N2 symbols read in the component. This is formalized in Lemma 3.18 and allows
us to merge any pair of two states p, q which contradict that some component is memoryless.
To preserve the language, words that stay in some component C for less than N2 symbols
have to be dealt with separately, essentially avoiding the component altogether. Finally,
the left-synchronized containment property allows us to simply add transitions required to
satisfy the consistent jumps property without changing the language.

(5) ⇒ (3) and (4) ⇒ (2): We convert a given CNFA to an NFA by simulating the
counter (which is bounded) in the set of states. The consistent jump property implies
the left-synchronized containment property on the resulting NFA. The property that all
components are memoryless is preserved by the construction.

(2) ⇒ (1): One can show that the left-synchronized containment property is invariant
under the powerset construction.

The following lemma is the implication (1) ⇒ (5) from Theorem 3.21

Lemma 3.23. If L ∈ Ttract, then there exists a detainment automaton for L with consistent
jumps and only memoryless components.

Proof. Let AL = (QL,Σ, iL, FL, δL) be the minimal DFA for L. The proof goes as follows:
First, we define a CNFA A with two counters. Second, we show that we can convert A to an
equivalent CNFA A′ with only one counter that is a detainment automaton with consistent
jumps and only memoryless components. This conversion is done by simulating one of the
counters using a bigger set of states. Last, we show that L(A) = L(AL), which shows the
lemma statement as L(A) = L(A′).

6The values of P and U depend on whether C1 is the same as C2 or not.

20:14 W. Martens, M. Niewerth, and T. Popp Vol. 19:4

Before we start we need some additional notation. We write p1 ↷a q2 to denote that
C(p1)⇝ C(q2) and there are states q1 ∈ C(p1) and p2 ∈ C(q2) such that (pi, a, qi) ∈ δL for
i ∈ {1, 2}. Let q be a state, then we write Σ⟳(q) to denote the set of symbols a, such that
there is a word w = aw′ ∈ Loop(q).

Let ∼ ⊆ QL ×QL be the smallest equivalence relation over QL that satisfies p ∼ q if
C(p) = C(q) and Σ⟳(p) ∩ Σ⟳(q) ̸= ∅. For q ∈ QL, we denote by [q] the equivalence class
of q. By [QL] we denote the set of all equivalence classes. We also write [C] to denote the
equivalence classes that only use states from some component C. We extend the notion C(q)
to [QL], i.e., C([q]) = C(q) for all q ∈ QL.

We will use the following observation that easily follows from Lemma 3.15 using the
definition of ∼.

Observation 3.24. Let q1, q2 be states with [q1] = [q2], then for all a ∈ Σ it holds that
δL(q1, a) ∈ C(q1) if and only if δL(q2, a) ∈ C(q1).

We define a CNFA A = (Q, I, c, d, δ, F,N2) that has two counters c and d. The counter
c is allowed to have any initial value from [0, N2], while the counter d has initial value 0.
We note that we will eliminate counter c when converting to a one counter automaton, thus
this is not a contradiction to the definition of CNFA with one counter that we use.

We use Q′ = QL∪ [QL], i.e., we can use the states from AL and the equivalence classes of
the equivalence relation ∼. The latter will be used to ensure that components are memoryless,
while the former will only be used in trivial components. We use I = {iL, [iL]} and F = FL.

δ1⟳ = { (q1, a, {c > 0, d = 0}; q2, {c := c− 1}) | (q1, a, q2) ∈ δL, C(q1) = C(q2) }
δ2⟳ = { ([q1], a, {c = N2}; [q2], {d := d− 1}) | (q1, a, q2) ∈ δL, C(q1) = C(q2) }
δ3⟳ = { ([q1], a, {c = N2, d = 0}; q2, {c := c− 1}) | (q1, a, q2) ∈ δL, C(q1) = C(q2) }
δ1→ = { (q1, a, {c = 0, d = 0}; q2, {c := i}) | (q1, a, q2) ∈ δL, C(q1) ̸= C(q2), i ∈ [0, N2 − 1] }
δ2→ = { (q1, a, {c = 0, d = 0}; [q2], {c := N2}) | (q1, a, q2) ∈ δL, C(q1) ̸= C(q2) }
δ↷ = { ([q1], a, {c = N2, d = 0}; [q2], {d := N2}) | q1 ↷a q2, C(q1) ̸= C(q2) }
δ = δ1⟳ ∪ δ2⟳ ∪ δ3⟳ ∪ δ1→ ∪ δ2→ ∪ δ↷

We say that a component C of AL is a long run component of a given word w = a1 · · · an,
if |{i | δ(iL, a1 · · · ai) ∈ C}| > N2, i.e., if the run stays in C for more than N2 symbols. All
other components are short run components.

For short run components, we use states from QL. We use the counter c to enforce that
these parts are indeed short. For long run components, we first use states in [QL]. Only the
last N2 symbols in the component are read using states from QL. The left-synchronized
containment property guarantees that for long run components the precise state is not
important, which allows us to make these components memoryless.

The transition relation is divided into transitions between states from the same component
of AL (indicated by δ⟳ = δ1⟳∪δ2⟳∪δ3⟳) and transitions between different components (indicated
by δ→ = δ1→ ∪ δ2→). Transitions in δ↷ are added to satisfy the consistent jumps property.
They are the only transitions that increase the counter d. This is necessary, as the left-
synchronized containment property only talks about the language of the state reached after
staying in the component for some number of symbols. If we added the transitions in δ↷

Vol. 19:4 A TRICHOTOMY FOR REGULAR TRAIL QUERIES 20:15

without using the counter, we would possibly add additional words to the language. This
concludes the definition of A.

We now argue that the automaton A′ = (Q′× [0, N2], iL, d, δ
′, F ×{0}, N2) derived from

A by pushing the counter c into the states is a detainment automaton with consistent jumps
that only has memoryless components. The states of A′ have two components, first the state
of A and second the value of the second counter that is bounded by N2. We do not formally
define δ′. It is derived from δ in the obvious way, i.e., by doing the precondition checks that
depend on c on the second component of the state. Similarly, updates of c are done on the
second component of the states.

It is straightforward to see that A′ is a detainment automaton with consistent jumps
that only has memoryless components using the following observations:

• Every transition in A that does not have c = N2 before and after the transition requires
d = 0.
• Let Cuts be the set of components of A, then the set of components of A′ is {[C]×{N2} |
C ∈ Cuts}.

The consistent jumps are guaranteed by the transitions in δ↷. As A′ only has memoryless
components, the consistent jump property is trivially satisfied for states inside the same
component.

We now show that L(AL) ⊆ L(A). Let w = a1 · · · an be some string in L(AL) and
q0 → · · · → qn be the run of AL on w. countdown : N→ N that gives us how long we stay
inside some component as countdown : i 7→ j − i, where j is the largest number such that
C(qj) = C(qi).

It is easy to see by the definitions of the transitions in δ→ and δ⟳, that the run(
p0,min(N2, countdown(0)), 0

)
→ · · · →

(
pn,min(N2, countdown(n)), 0

)
is an accepting run of A, where pi is qi if ci < N2 and [qi] otherwise. We note that the
counter d is always zero, as we do not use any transitions from δ↷. The transitions in δ↷
are only there to satisfy the consistent jumps property. This shows L(AL) ⊆ L(A).

Towards the lemma statement, it remains to show that L(A) ⊆ L(AL). Let therefore
w = a1 · · · an be some string in L(A), (p0, c0, d0)→ · · · → (pn, cn, dn) be an accepting run of
A, and q0 → · · · → qn be the unique run of AL on w.

We now show by induction on i that there are states q̂1, . . . , q̂n in QL such that the
following claim is satisfied. The claim easily yields that qn ∈ FL, as both counters have to
be zero for the word to be accepted.

Lq̂i ∩ ai+1 · · · ai+diΣ
∗ ⊆ Lqi and q̂i ∈


{pi} if ci = di = 0

[pi] if ci + di > 0 and pi ∈ QL

pi if ci + di > 0 and pi ∈ [QL]

The base case i = 0 is trivial by the definition of I. We now assume that the induction
hypothesis holds for i and are going to show that it holds for i+1. Let ρ = (pi−1, ai, P ; pi, U)
be the transition used to read ai. We distinguish several cases depending on ρ.

Case ρ ∈ δ→: In this case, ci = 0 by the definition of δ→. Therefore, the claim for i+ 1
follows with q̂i+1 = pi+1, as q̂i = pi by the induction hypothesis and (pi, a, pi+1) ∈ δL by the
definition of δ→.

20:16 W. Martens, M. Niewerth, and T. Popp Vol. 19:4

Case ρ ∈ δ2⟳: We note that pi, pi+1 ∈ [QL]. The claim for i + 1 follows with q̂i+1 =
δ(q̂i, ai+1) using C(q′) = C(δ(q′, ai+1) for all q

′ ∈ [pi] (by Observation 3.24), C(pi) = C(pi+1)
(by definition of δ⟳), and q̂i ∈ pi (by the induction hypothesis).

Case ρ ∈ δ3⟳: We want to show that Lpi+N2 ⊆ LqN2 establishing the claim directly for

the position i+N2 using q̂i+N2 = pi+N2 . Therefore, we first want to apply Lemma 3.18 to
show that δ(q̂i, ai+1 · · · ai+N2) = pi+N2 . The preconditions of the lemma require us to show
that (i) C(q̂i) = C(pi), (ii) C(pi) = C(pi+N2), and (iii) C(q̂i) = C(δL(q̂i, ai+1 · · · ai+N2)).
Precondition (i) is given by the induction hypothesis, precondition (ii) is by the definition of
δ⟳, i.e., that all transitions in δ⟳ are inside the same component of AL, and precondition (iii)
is by the fact that each transition in δ⟳ has a corresponding transition in δL that stays
in the same component. Therefore, we can actually apply Lemma 3.18 to conclude that
δ(q̂i, ai+1 · · · ai+N2) = pi+N2 . As we furthermore have that Lq̂i ∩ ai+1 · · · ai+diΣ

∗ ⊆ Lqi by
the induction hypotheses, we can conclude that Lpi+N2 ⊆ LqN2 . This establishes the claim

for position i+N2 using q̂i+N2 = pi+N2 . As we only need the claim for position n (and not
for all smaller positions), we can continue the induction at position i+N2. Especially there
is no need to look at the case where ρ ∈ δ1⟳.

Case ρ ∈ δ↷: By the definition of δ↷, we have that pi, pi+1 ∈ [QL]. Furthermore, there
are transitions (pi, ai+1, p

′) and (p′′, ai+1, pi+1) in δL such that C(p′) = C(pi), C(p′′) =
C(pi+1), and p′ ⇝ p′′. This (and the fact that q̂i ∈ pi by the induction hypothesis) allows us
to apply Observation 3.24, which yields δ(q̂i, ai+1) ∈ C(pi). From p′ ⇝ p′′ and q̂i ∈ C(p′) we
can conclude that q̂i ⇝ p′′. We now can apply Lemma 3.19 that gives us Lp′′ ∩L

ai+1

p′′ Σ∗ ⊆ Lq̂i .

Now we argue that the subword ai+2 · · · ai+N2+1 is in L
ai+1

p′′ . By the definition of δ↷, we

have di+1 = N2, enforcing that the next N2 transitions are all from δ2⟳, as these are the only
transitions that allow d > 0 in the precondition. Applying Observation 3.24 N2 times yields
that δ(p′′, ai+2 · · · ai+N2+1) ∈ C(p′′) and therefore ai+2 · · · ai+N2+1 ∈ L

ai+1

p′′ . Using this and

Lp′′ ∩ L
ai+1

p′′ Σ∗ ⊆ Lq̂i , we get that Lδ(p′′,ai+1) ∩ ai+2 · · · ai+N2+1Σ
∗ ⊆ Lδ(q̂i,ai+1) yielding the

claim for i+ 1. This concludes the proof of the lemma.

We now continue with the rest of the proof of Theorem 3.21.

Proof of Theorem 3.21. We show (1) ⇒ (5) ⇒ (3) ⇒ (2) ⇒ (1) and (5) ⇒ (4) ⇒ (2).
(1) ⇒ (5): Holds by Lemma 3.23.

(5) ⇒ (3) and (4) ⇒ (2): Let A = (Q, I, c, δ, F, ℓ) be a detainment automaton with
consistent jumps. We compute an equivalent NFA A′ = (Q× {0, . . . , ℓ}, δ′, I × {0}, F × {0})
in the obvious way, i.e., ((p, i), a, (q, j)) ∈ δ′ if and only if A can go from configuration (p, i)
to configuration (q, j) reading symbol a. By the definition of detainment automata, we get
that the components of A′ are

{ C × {0} | C is a component of A }

This directly shows that A′ only has memoryless components if A only has memoryless
components.

To prove the left-synchronizing containment property, we choose n = ℓ. Let now
(q1, c1), (q2, c2) ∈ Q × {0, . . . , ℓ}, a ∈ Σ, and w′

1, w
′
2 ∈ Σ∗ be such that (q1, c1) ⇝ (q2, c2),

w1 = aw′
1 ∈ Loop((q1, c1)), and w2 = aw′

2 ∈ Loop((q2, c2)). We have to show that

wn
2L(q2,c2) ⊆ L(q1,c1) . (3.4)

Vol. 19:4 A TRICHOTOMY FOR REGULAR TRAIL QUERIES 20:17

We distinguish two cases. If q1 and q2 are in the same component, we know that there is a
transition (q1, a, true; q3; c := c − 1) ∈ δ, as A has consistent jumps. Therefore, there is a
transition ((q1, 0), a, (q2, 0)) ∈ δ′, which directly yields (3.4).

If q1 and q2 are in different components, then there is a transition (q1, a, c = 0; q3; c :=
k) ∈ δ, as A has consistent jumps. Therefore, there is a transition ((q1, 0), a, (q2, k)) ∈ δ′ for
some k ∈ [0, ℓ]. We have w2 ∈ Loop(q2). The definition of detainment automata requires
that every transition inside a component—thus every transition used to read w2 using the
loop—is of the form (p, a, true; q, c := c − 1), i.e., it does not have a precondition and it
decreases the counter by one. Therefore in A′, we have that δ′((q2, k), w

ℓ) ⊇ δ((q2, 0), w
ℓ).

This concludes the proof of (5) ⇒ (3) and (4) ⇒ (2)

(5) ⇒ (4) and (3) ⇒ (2): Trivial.

(2)⇒ (1): Let A = (Q,Σ, δ, I, F) be an NFA satisfying the left-synchronized containment
property and AL be the minimal DFA equivalent to A. We show that AL satisfies the left-
synchronized containment property establishing (1).

Let M be the left synchronizing-length of A and q1, q2 ∈ QL be states of AL such that

• q1 ⇝ q2; and
• there are words w1 ∈ Loop(q1) and w2 ∈ Loop(q2) that start with the same symbol a.

We need to show that there exists an n ∈ N with wn
2Lq2 ⊆ Lq1 . Let w be a word such that

δ(q1, w) = q2. Let P1 ⊆ Q be a state of the powerset automaton of A with LP1 = Lq1 and
let P2 = δ(P1, ww

∗
2) be the state in the powerset automaton of A that consists of all states

reachable from P1 reading some word from ww∗
2.

It holds that LP2 = Lq2 , as δ(q1, ww
∗
2) = q2 and Lq1 = LP1 .

We define

P ′
2 = { p ∈ P2 | wi

2 ∈ Loop(p) for some i > 0 }

P ′′
2 = δ(P1, w

|A|
2)

We obviously have P ′′
2 ⊆ P ′

2 ⊆ P2. Furthermore, we have

LP2 = Lq2 = L
δ(q2,w

|A|
2)

= LP ′′
2

The second equation is by δ(q2, w
|A|
2) = q2. We can conclude that Lq2 = LP ′

2
.

Let ρ : Q → Q be a function that selects for every state p2 ∈ P ′
2 a state p1 ∈ P1 such

that p1 ⇝ p2. By definition of P ′
2, such states exist. Using the fact that A satisfies the

left-synchronized containment property, we get that wM
2 Lp2 ⊆ Lρ(p2) for each p2 ∈ P2. We

can conclude

wM
2 Lq2 = wM

2 LP ′
2

=
⋃

p2∈P ′
2

wM
2 Lp2 ⊆

⋃
p2∈P ′

2

Lρ(p2) ⊆ LP1 = Lq1

and therefore w
|A|+M
2 Lq2 ⊆ Lq1 . So AL satisfies the left-synchronized containment property

with n = M , where M is the left synchronizing-length of A. This concludes the proof for (2)
⇒ (1) and thus the proof of the theorem.

20:18 W. Martens, M. Niewerth, and T. Popp Vol. 19:4

aperiodic languages (= FO[<]) (ac∗bc∗)∗

DC
SPtract

a

a∗bc∗

Ttract

(ab)∗

FO2[<]

a∗ba∗

FO2[<,+1]

a∗ba∗(cd)∗

Figure 5: Expressiveness of subclasses of the aperiodic languages

3.5. Regular Simple Path Queries. Bagan et al. [BBG20] analyzed the problem of
computing all simple paths that satisfy a given regular path query. They introduced the
class SPtract, which characterizes the class of regular languages L for which the regular simple
path query (RSPQ) problem is tractable.

Theorem 3.25 [BBG20, Theorem 3]. Let L be a regular language.

(1) If L is finite, then RSPQ(L) ∈ AC0.
(2) If L ∈ SPtract and L is infinite, then RSPQ(L) is NL-complete.
(3) If L /∈ SPtract, then RSPQ(L) is NP-complete.

One characterization of SPtract is the following (Theorem 6 in [BBG20]):

Theorem 3.26. SPtract is the set of regular languages L such that there exists an i ∈ N
for which the following holds: for all wℓ, w, wr ∈ Σ∗ and w1, w2 ∈ Σ+ we have that, if
wℓw

i
1ww

i
2wr ∈ L, then wℓw

i
1w

i
2wr ∈ L.

Comparing the characterization with Definition 3.5, we see that Definition 3.5 imposes
an extra “synchronizing” condition on w1 and w2, namely that they share the same first (or
last) symbol. We therefore have the following observation:

Observation 3.27. The class SPtract is contained in Ttract.

3.6. An algebraic Characterization of Ttract and SPtract. We now provide an algerbaic
characterization of Ttract and SPtract. We use this characterization for two things: First, we
use the characterizations to fully classify the expressiveness of both classes with respect
to some well known fragments of first order logic. The results are depicted in Figure 5.
Later, in Section 5, we will conclude a bunch of closure properties for both classes. These
properties follow from Observation 3.29, which is the only result from this subsection that is
used outside of it.

We refer the reader to the book [Pin97] for a general overview of syntactic semigroups
and the different hierarchies. We use the following notation. The syntactic preorder of a
language L of Σ∗ is the relation ≤L defined on Σ∗ by x ≤L y if and only if for all u, v ∈ Σ∗

we have uxv ∈ L⇒ uyv ∈ L. The syntactic congruence of L is the associated equivalence
relation ∼L defined by x ∼L y if and only if x ≤L y and y ≤L x. The quotient Σ+/ ∼L

(Σ∗/ ∼L) is called the syntactic semigroup (monoid) of L. A word e ∈ Σ∗ is idempotent if
e2 = e. Given a finite semigroup S, it is folklore that there is an integer ω(S) (denoted by ω
when S is understood) such that for all s ∈ S, sω is idempotent. More precisely, sω is the
limit of the Cauchy sequence (sn!)n≥0.

Vol. 19:4 A TRICHOTOMY FOR REGULAR TRAIL QUERIES 20:19

Let SP denote the variety of semigroups defined by the profinite inequalities xωuyω ≤
xωyω. Let T denote the variety of semigroups defined by the set of profinite inequalities
(xy)ωu(xz)ω ≤ (xy)ω(xz)ω. Note that, by choosing x = y and/or x = z, this last inequality
implies that the profinite inequalities (x)ωu(xz)ω ≤ (x)ω(xz)ω, (xy)ωu(x)ω ≤ (xy)ω(x)ω and
(x)ωu(x)ω ≤ (x)ω must also be satisfied.

Theorem 3.28.

(1) A regular language L ∈ Σ+ is in SPtract if and only if its syntactic semigroup belongs
to SP.

(2) A regular language L ∈ Σ+ is in Ttract if and only if its syntactic semigroup belongs
to T.

Proof. Item (1) follows from Theorem 3.26 and the observation that if there exists an i for
which Theorem 3.26 holds, then it also holds for each i′ ≥ i. This can easily be seen by

choosing w′
ℓ = wℓw

i′−i
1 and w′

r = wi′−i
2 wr. Item (2) follows from Theorem 3.11, Definition 3.5

and the paragraph after the definition.

Observation 3.29. The theorem immediately implies that SPtract and Ttract are varieties
of semigroups and ne-varieties [Pin97, PS05].

We now fully classify the expressiveness of Ttract and SPtract compared to yardstick classes
such as DC, FO2[<], and FO2[<,+1] (see also Figure 5). Here, FO2[<] and FO2[<,+1]
are the two-variable restrictions of FO[<] and FO[<,+1] over words, respectively. By
FO[<,+1] we mean the first-order logic with unary predicates Pa for all a ∈ Σ (denoting
positions carrying the letter a) and the binary predicates +1 and < (denoting the successor
relation and the order relation among positions). The logic FO[<] is FO[<,+1] without
the successor predicate.

We use the characterizations from Theorem 3.28 to classify SPtract and Ttract wrt. the
Straubing-Thérien hierarchy [Str81, Thé81]) and the dot-depth hierarchy (also known as
Brzozowski hierarchy [CB71]). Both hierarchies are particular instances of concatenation
hierarchies, which means that they can be built through a uniform construction scheme.
Pin [Pin17] summarized numerous results and conjectures around these hierarchies.

Thomas [Tho82] showed that the dot-depth hierarchy corresponds, level by level, to
the quantifier alternation hierarchy of first-order formulas, defined as follows. A formula
is a Σn-formula if it is equivalent to a formula Q(x1, . . . , xk)φ, where φ is quantifier free
and Q(x1, . . . , xk) is a sequence of n blocks of quenatifiers such that the first block contains
only existental quantifiers. The class Σn is the class of languages which can be defined
by Σn-formulas. The class Πn is defined by starting with a block of universal instead of
existential quantifiers. A language L is in Π1[<,+1] if and only if its complement Lc is in
Σ1[<,+1]. The class of downward closed languages DC is exactly the class Π1[<].

Theorem 3.30. DC ⊊ SPtract ⊊ Ttract ⊊ Π1[<,+1]

Proof. We first show DC ⊊ SPtract. As DC is definable by simple regular expressions, we have
for each downward closed language L that wℓw

i
1ww

i
2wr ∈ L implies wℓw

i
1w

i
2wr ∈ L for every

integer i ∈ N and all words wℓ, w1, w, w2, wr ∈ Σ∗. Therefore, L ∈ SPtract by Theorem 3.26.
The language {a} is not downward closed, but in SPtract using Theorem 3.26 with i = 1.

The subset relation SPtract ⊆ Ttract was already obserbed earlier (Observation 3.27) and
a∗bc∗ is a language in Ttract which is not in SPtract, showing that the containment is strict.

We now prove that Ttract is strictly contained in Π1[<,+1]. The class Σ1[<,+1] is
defined by the equation xωuxω ≥ xω, see Pin and Weil [PW02]. As Π1[<,+1] is the dual

20:20 W. Martens, M. Niewerth, and T. Popp Vol. 19:4

variety of Σ1[<,+1], it is defined by xωuxω ≤ xω. By Theorem 3.28 it immediately follows
that Ttract is in the class satisfied by xωuxω ≤ xω and therefore Ttract ⊆ Π1[<,+1]. On the
other hand, (a+ b)∗a(a+ b)∗ is an example of a language definable in Π1[<,+1] which is
not in Ttract.

So SPtract and Ttract are between Π1[<] and Π1[<,+1].
While SPtract and Ttract behave similar when the number of alternations of a first-order

formula is restricted, restricting the number of variables (FO2) leads to a different behavior:

Theorem 3.31.

(a) SPtract ⊊ FO2[<]
(b) Ttract and FO2[<] are incomparable
(c) Ttract ⊊ FO2[<,+1]

Proof. We first show (a). Thérien and Wilke [TW98] proved that DA=FO2[<], where
DA is defined by the identity (xyz)ωy(xyz)ω = (xyz)ω. Thus we only have to prove
that each syntactic semigroup of a language in SPtract satisfies this identity. Let L ∈
SPtract. By Theorem 3.28, it immediately follows that the syntactic semigroup of L satisfies
(xyz)ωy(xyz)ω ≤ (xyz)ω. Thus it remains to show that there exists an n′ such that for each
n ≥ n′ and all u, v, x, y, z ∈ Σ∗ it holds that:

u(xyz)ny(xyz)nv ∈ L if u(xyz)nv ∈ L .

For this direction, we use that Bagan et al. [BBG20, Theorem 6] give a definition of
SPtract in terms of regular expressions, showing that each component can be represented
as (A≥k + ε) for some set A ⊆ Σ and k ∈ N. So if there is xyz ∈ Σ∗ with u(xyz)Mv ∈ L
for some u, v ∈ Σ∗, then we also have u(xyz)M (Alph(xyz))∗(xyz)Mv ⊆ L, where Alph(x)
denotes the set of symbols x uses. Thus we especially have u(xyz)My(xyz)Mv ∈ L, which
proves the other direction. The same holds for each M ′ ≥ M . This concludes the proof
of (a).

Statement (b) simply follows from the facts that the language a∗ba∗ is in FO2[<] but
not in Ttract whereas the language (ab)∗ is in Ttract but not in FO2[<].

It remains to prove (c), which follows from Theorem 3.30 as Π1[<,+1] is a subset of the
1st level of the dot-depth hierarchy, which in turn is a subset of FO2[<,+1]. The language
a∗ba∗ is an example of a language in FO2[<,+1] and not in Ttract.

Proposition 3.32. SPtract is in V3/2, the 3/2th level of the Straubing-Thérien hierarchy.

Proof. Let L ∈ SPtract. The 3/2th level of the Straubing-Thérien hierarchy is defined by
the profinite inequality xω ≤ xωyxω where Alph(x) = Alph(y) [Pin97, Theorem 8.9]. This
means that we have to show that there exists an n′ such that for all n ≥ n′ and words
wℓ, wr it holds: if wℓx

nwr in L, then also wℓx
nyxnwr in L. We can easily see that every

language in SPtract satisfies this: The components have the form (A≥k + ε) for some set of
symbols A by the definition of SPtract in terms of regular expressions, see [BBG20, Theorem
6]. Therefore, the implication immediately holds for all y with Alph(y) = Alph(x).

Vol. 19:4 A TRICHOTOMY FOR REGULAR TRAIL QUERIES 20:21

4. The Trichotomy

This section is devoted to the proof of the following theorem.

Theorem 4.1. Let L be a regular language.

(1) If L is finite then RTQ(L) ∈ AC0.
(2) If L ∈ Ttract and L is infinite, then RTQ(L) is NL-complete.
(3) If L /∈ Ttract, then RTQ(L) is NP-complete.

4.1. Finite Languages. We now turn to proving Theorem 4.1. We start with Theo-
rem 4.1(1). Clearly, we can express every finite language L as a FO-formula. Since we can
also test in FO that no edge e is used more than once, the multigraphs for which RTQ(L)
holds are FO-definable. By Immerman [Imm88], this implies that RTQ(L) is in AC0.

4.2. Languages in Ttract. We now sketch the proof of Theorem 4.1(2). We note that we
define several concepts (trail summary, local edge domains, admissible trails) that have a
natural counterpart for simple paths in Bagan et al.’s proof of the trichotomy for simple
paths [BBG20]. However, the underlying proofs of the technical lemmas are quite different.
For instance, components of languages in SPtract behave similarly to A∗ for some A ⊆ Σ,
while components of languages in Ttract are significantly more complex. Furthermore, the
trichotomy for trails leads to a strictly larger class of tractable languages.

For the remainder of this section, we fix the constant K = N2.
We will show that in the case where L belongs to Ttract, we can identify a number of

edges that suffice to check if the path is (or can be transformed into) a trail that matches L.
This number of edges only depends on L and is therefore constant for the RTQ(L) problem.
These edges will be stored in a summary. We will define summaries formally and explain
how to use them to check whether a trail between the input nodes that matches L exists.
To this end, we need a few definitions.

Definition 4.2. Let p = e1 · · · em be a path and r = q0 → · · · → qm the run of AL over
lab(p). For a set C of states of AL, we denote by leftC the first edge ei with qi−1 ∈ C and
by rightC the last edge ej with qj ∈ C. A component C of AL is a long run component of p
if leftC and rightC are defined and |p[leftC , rightC]| > K.

Next, we want to reduce the amount of information that we require for trails. The
synchronization property, see Lemma 3.18, motivates the use of summaries, which we define
next.

Definition 4.3. Let Cuts denote the set of components of AL and Abbrv = Cuts × (V ×
Q)× EK . A component abbreviation (C, (v, q), eK · · · e1) ∈ Abbrv consists of a component
C, a node v of G and state q ∈ C to start from, and K edges eK · · · e1. A trail π matches a
component abbreviation, denoted π |= (C, (v, q), eK · · · e1), if δL(q, π) ∈ C, it starts at v, and
its suffix is eK · · · e1. Given an arbitrary set of edges E′, we write π |=E′ (C, (v, q), eK · · · e1)
if π |= (C, (v, q), eK · · · e1) and all edges of π are from E′ ∪ {e1, . . . , eK}. For convenience,
we write e |=∅ e.

If p is a trail, then the summary Sp of p is the sequence obtained from p by replac-
ing, for each long run component C, the subsequence p[leftC , rightC] by the abbreviation
(C, (v, q), psuff), where v is the source node of the edge leftC , q is the state in which AL is
immediately before reading leftC , and psuff is the suffix of length K of p[leftC , rightC].

20:22 W. Martens, M. Niewerth, and T. Popp Vol. 19:4

We note that the length of a summary is always bounded by O(N3), i.e., a constant
that depends on L. Indeed, AL has at most N components and, for each of them, we store
at most K + 3 many things (namely, C, v, q, and K edges). Our goal is to find a summary
S and replace all abbreviations with matching pairwise edge-disjoint trails which do not
use any other edge in S, because this results in a trail that matches L. However, not every
sequence of edges and abbreviations is a summary, because a summary needs to be obtained
from a trail. So, we will work with candidate summaries instead.

Definition 4.4. A candidate summary S is a sequence of the form S = α1 · · ·αm withm ≤ N
where each αi is either (1) an edge e ∈ E or (2) an abbreviation (C, (v, q), eK · · · e1) ∈ Abbrv.
Furthermore, all components in S are distinct and each edge e occurs at most once. A path
p that is derived from S by replacing each αi ∈ Abbrv by a trail pi such that pi |= αi is
called a completion of the candidate summary S.

The following corollary is immediate from the definitions and Lemma 3.18, as the lemma
ensures that the state after reading p inside a component does not depend on the whole
path but only on the labels of the last K edges, which are fixed.

Corollary 4.5. Let L be a language in Ttract. Let S be the summary of a trail p that matches
L and let p′ be a completion of S. Then, p′ is a path that matches L.

Together with the following lemmas, Corollary 4.5 can be used to obtain an nonde-
terministic logarithmic space algorithm7 that gives us a completion of a summary S. The
lemma heavily relies on other results on the structure of components in AL.

Lemma 4.6. There exists a nondeterministic logarithmic space algorithm that, given a
directed graph G and nodes s and t, outputs a shortest path from s to t in G.

Proof. We show that Algorithm 1 can output a shortest path in nondeterministic logarithmic
space. Recall that nondeterministic algorithms with output either give up, or produce a
correct output and that at least one computation does not give up. We note that Algorithm 1
is a mixture of the Immermann-Szelepscényi Theorem [Imm88, Sze88] and reachability. To
this end, S(k) denotes the set of nodes reachable from s with k edges. Using the algorithm
given by Immermann [Imm88] and Szelepscényi [Sze88] to show that non-reachability is in
NL, we can find in lines 1–27 the smallest n such that a path from s to t of length n but
none of length n− 1 exists. Indeed, we only added a test in line 19 to find the smallest k for
which t ∈ S(k)—this k is the length of a shortest path from s to t. After line 28 we then
use the smallest k (which we name n) together with a standard reachability algorithm to
nondeterministically output a path of this length. (If we are only interested in the length of
a shortest path, we can return n instead.) We note that one can easily change the algorithm
to avoid outputting edges of paths that will give up. This would require an extra test if
there exists a path of length n− p from wp to t before outputting the edge from wp−1 to wp.
We omitted this extra test for readability (and because at this point we know that there is a
solution and non-deterministic algorithms will always return the correct output).

That Algorithm 1 runs in nondeterministic logarithmic space follows from the Immermann-
Szelepscényi Theorem and reachability being in NL.

We explain how to use the algorithm described in Lemma 4.6 to output a shortest path
that satisfies some additional constraints.

7That is, a nondeterministic Turing Machine with read-only input and write-only output that only uses
O(logn) space on its working tapes.

Vol. 19:4 A TRICHOTOMY FOR REGULAR TRAIL QUERIES 20:23

ALGORITHM 1: Extension of the Immermann-Szelepscényi Theorem

Input: A directed graph G = (V,E, E), nodes s, t in G, s ̸= t
Output: A shortest path from s to t in G or “no” if no path from s to t exists

1 n← −1 ▷ n will be the length of a shortest path from s to t

2 |S(0)| ← 1

3 for k = 1, 2, . . . , |V | − 1 do ▷ Compute |S(k)| from |S(k − 1)|
4 ℓ← 0

5 foreach u ∈ V do ▷ Test if u ∈ S(k)
6 m← 0

7 reply ← false

8 foreach v ∈ V do ▷ Test if v ∈ S(k − 1)
9 w0 ← s

10 for p = 1, . . . , k − 1 do
11 guess a node wp

12 if (wp−1, wp) is not an edge in G then
13 give up

14 if wk−1 ̸= v then
15 give up

16 m← m+ 1

17 if (v, u) is an edge in G then
18 reply ← true

19 if u = t then
20 n← k

21 continue in line 28

22 if m < |S(k − 1)| then
23 give up

24 if reply = true then
25 ℓ← ℓ+ 1

26 |S(k)| ← ℓ

27 return “no” ▷ t /∈ S(k) for any k

28 w0 ← s

29 for p = 1, . . . , n do
30 guess a node wp

31 if (wp−1, wp) is not an edge in G then
32 give up

33 output an edge from wp−1 to wp in G

34 if wn ̸= t then
35 give up

20:24 W. Martens, M. Niewerth, and T. Popp Vol. 19:4

Lemma 4.7. Let L ∈ Ttract, let (C, (v, q), eK · · · e1) be an abbreviation and E′ ⊆ E. There
exists a nondeterministic logarithmic space algorithm that outputs a shortest trail p such that
p |=E′ (C, (v, q), eK · · · e1) if it exists and rejects otherwise.

Proof. Let G be a directed (labeled) multigraph. In order to find a path in G that matches
C, ends on eK · · · e1, and uses edges {e1, . . . , eK} only once, we use Algorithm 1 on the
product of G (restricted to the edges E′ ∪ {e1, . . . , eK}) and C extended with numbers
ℓ ∈ [K]. Since we cannot store the product in O(log n) space, we will construct it on-the-fly.
Intuitively, the value of ℓ will tell us if we are in the last K edges and if so, then which of
the last K edges we expect next. The “product” of G, C, and [K] is a directed multigraph
G∗ = (V ∗, E∗, E∗) defined as follows: V ∗ = V ×Q× [K] and

E∗ = {(eℓ, (q1, q2, ℓ)) | ℓ ∈ [K] and (q1, lab(eℓ), q2) ∈ C}
∪ {(e, (q1, q2,K)) | e ∈ E′ − {e1, . . . , eK} and (q1, lab(e), q2) ∈ C}

E∗((e, (q1, q2,K))) = ((origin(e), q1,K), lab(e), (destination(e), q2,K)) if e ̸= eK

E∗((e, (q1, q2,K))) = ((origin(e), q1,K), lab(e), (destination(e), q2,K − 1)) if e = eK

E∗((eℓ, (q1, q2, ℓ))) = ((origin(eℓ), q1, ℓ), lab(eℓ), (destination(eℓ), q2, ℓ− 1)) if ℓ < K

Since K is a constant, the size of each state in V ∗ is logarithmic in the input, and for two
states x, y ∈ V ∗, we can test in logarithmic space if there is an edge e ∈ E∗ such that
E∗(e) = (x, lab(e), y). This is necessary for lines 12, 17, and 31.

We then output a shortest path from (v, q,K) to (t, q′, 1) for t being the target node of
e1 and some q′ ∈ C.8 More precisely, since we want a path in G and not in the product, we
project away the unnecessary state and number and only output the corresponding edge in
G in line 33.

It remains to show that p is a trail (in G). Assume towards contradiction that p =
d1 · · · dmeK · · · e1 is not a trail. Then there exists an edge di = dj that appears at least twice
in p. Note that dj is not in the suffix eK · · · e1 by definition of p. We define

p′ = d1 · · · didj+1 · · · dmeK · · · e1
and show that p′ is a shorter than p but meets all requirements. Let q1 = δ(q, d1 · · · di) and
q2 = δ(q, d1 · · · dj). By definition, q1, q2 ∈ C and both have an incoming edge with label
lab(di) = lab(dj). This allows us to use Corollary 3.16 to ensure that

δ(q1, dj+1 · · · dmeK · · · e1) ∈ C.

We can then apply Lemma 3.18 to prove that

δ(q1, dj+1 · · · dmeK · · · e1) = δ(q2, dj+1 · · · dmeK · · · e1) .
So p′ is indeed a trail satisfying p′ |=E′ (C, (v, q), eK · · · e1). Furthermore, p′ is shorter than
p, contradicting our assumption.

Using the algorithm of Lemma 4.7 we can, in principle, output a completion of S that
matches L using nondeterministic logarithmic space. However, such a completion does not
necessarily correspond to a trail. The reason is that, even though each trail pC we guess for
some abbreviation involving a component C is a trail, the trails for different components

8Algorithm 1 can also output a shortest path from s to some node in a set T by testing u ∈ T in line 19
and wn−1 /∈ T in line 34.

Vol. 19:4 A TRICHOTOMY FOR REGULAR TRAIL QUERIES 20:25

v

e
π

Edgei ∪ {e1, . . . eK}
v

eK · · · e1

e

π

Edgeℓ ∪ {e1, . . . , eK}

Figure 6: Sketch of case (1) and (2) in the proof of Lemma 4.10

may not be disjoint. Therefore, we will define pairwise disjoint subsets of edges that can be
used for the completion of the components.

The following definition fulfills the same purpose as the local domains on nodes in Bagan
et al. [BBG20, Definition 7]. Since our components can be more complex, we require extra
conditions on the states (the δL(q, π) ∈ C condition).

Definition 4.8 (Local Edge Domains). Let S = α1 · · ·αk be a candidate summary and E(S)
be the set of edges appearing in S. We define the local edge domains Edgei ⊆ Ei inductively
for each i from 1 to k, where Ei are the remaining edges defined by E1 = E \ E(S) and
Ei+1 = Ei \ Edgei. If there is no trail p such that p |= αi or if αi is a single edge, we define
Edgei = ∅.

Otherwise, let αi = (C, (v, q), eK · · · e1). We denote by mi the minimal length of a trail
p with p |=Ei αi and define Edgei as the set of edges used by trails π that start at v, only
use edges in Ei, are of length at most mi −K, and satisfy δL(q, π) ∈ C.

By definition of Edgei, we can conclude that E(ei) ̸= E(ej) for all ei ∈ Edgei, ej ∈
Edgej , i ≠ j, as ei ∈ Edgei and E(ei) = E(ej) imply that ej ∈ Edgei. We note that a shortest
trail using ei but not ej can use ej instead of ei. We note that the sets E(S) and (Edgei)i∈[k]
are always disjoint.

Definition 4.9 (Admissible Trail). We say that a trail p is admissible if there exist a
candidate summary S = α1 · · ·αk and trails p1, . . . , pk such that p = p1 · · · pk is a completion
of S and pi |=Edgei αi for every i ∈ [k].

We show that shortest trails that match L are always admissible. Thus, the existence of
a trail is equivalent to the existence of an admissible trail.

Lemma 4.10. Let G and (s, t) be an instance for RTQ(L), with L ∈ Ttract. Then every
shortest trail from s to t in G that matches L is admissible.

Proof sketch. We assume towards a contradiction that there is a shortest trail p from s to t
in G that matches L and is not admissible. That means there is some ℓ ∈ N, and an edge e
used in pℓ with e /∈ Edgeℓ. There are two possible cases: (1) e ∈ Edgei for some i < ℓ and
(2) e /∈ Edgei for any i. In both cases, we construct a shorter trail p that matches L, which
then leads to a contradiction. We depict the two cases in Figure 6. We construct the new
trail by substituting the respective subtrail with π.

Proof. In this proof, we use the following notation for trails. By p[e1, e2) we denote the
prefix of p[e1, e2] that excludes the last edge (so it can be empty). Notice that p[e1, e2] and
p[e1, e2) are always well-defined for trails. Let p = d1 · · · dm be a shortest trail from s to t
that matches L. Let S = α1 · · ·αk be the summary of p and let p1, . . . , pk be trails such that

20:26 W. Martens, M. Niewerth, and T. Popp Vol. 19:4

p = p1 · · · pk and pi |= αi for all i ∈ [k]. We denote by lefti and righti the first and last edge
in pi. By definition of pi and the definition of summaries, lefti and righti are identical with
leftC and rightC if αi ∈ Abbrv is an abbreviation for the component C.

Assume that p is not admissible. That means there is some edge e used in pℓ such that
e /∈ Edgeℓ. There are two possible cases:

(1) e ∈ Edgei for some i < ℓ; and
(2) e /∈ Edgei for any i.

In case (1), we choose i minimal such that some edge e ∈ Edgei is used in pj for some j > i.
Among all such edges e ∈ Edgei, we choose the edge that occurs latest in p. This implicitly
maximizes j for a fixed i. Especially no edge from Edgei is used in pj+1 · · · pk.

Let αi = (Ci, (v, q), eK · · · e1). By definition of Edgei, there is a trail π from v, ending
with e, with δL(q, lab(π)) ∈ Ci, and that is shorter than the subpath p[lefti, righti] and
therefore shorter than p[lefti, e].

We now show that p′ = p1 · · · pi−1πp(e, dm] is a trail. Since p is a trail, it suffices to
prove that the edges in π are disjoint with other edges in p′. We note that all intermediate
edges of π belong to Edgei. By minimality of i, no edge in p1 · · · pi−1 can use any edge of
Edgei and by our choice of e, no edge in p after e can use any edge of Edgei. This shows
that p′ is a trail.

We now show that p′ matches L. Since e appears in pj , there is a path from leftj to
rightj over e that stays in Cj . Let q1 and q2 be the states of AL before and after reading e
in p and, analogously, q′1 and q′2 the states of AL before and after reading e in p′. That is

q1 = δL(iL, p[d1, e)) q2 = δL(q1, e)

q′1 = δL(iL, p
′[d1, e)) q′2 = δL(q

′
1, e)

We note that in p′, e is at the end of the subtrail π.
We can conclude that the states q1 and q′1 both have loops starting with a = lab(e),

as the transition (q1, lab(e), q2) is read in Cj and the transition (q′1, lab(e), q
′
2) is read in

Ci. Furthermore, q′1 ⇝ q1, since q′1 ∈ Ci and q1 ∈ Cj . Therefore, Lemma 3.19 implies that
Lq1 ∩ La

q1Σ
∗ ⊆ Lq′1

where La
q1 denotes all words w of length K that start with a and such

that δL(q1, w) ∈ Cj .
We have that lab(p[e, dm]) ∈ Lq1 by the fact that p matches L. We have that

lab(p[e, dm]) ∈ La
q1Σ

∗, as, by the definition of summaries, AL stays in Cj for at least
K more edges after reading e in p. We can conclude that lab(p[e, dm]) ∈ Lq′1

, which proves

that p′ matches L.
This concludes case (1). For case (2), we additionally assume w.l.o.g. that there is

no edge e ∈ Edgei that appears in some pj with j > i, i.e., no edge satisfies case (1). By
definition of Edgeℓ, there is a trail π with π |=Edgeℓ αℓ that is shorter than p[leftℓ, rightℓ]. We
choose p′ as the path obtained from p by replacing pℓ with π.

We now show that p′ = p1 · · · pℓ−1 ·π · pℓ+1 · · · pk is a trail. Since p is a trail, it suffices to
prove that the edges in π are disjoint with other edges in p′. We note that all intermediate
edges of π belong to Edgeℓ.

By definition of Edgeℓ, no edge in p1 · · · pℓ−1 is in Edgeℓ. And by the assumption that
there is no edge satisfying case (1), no edge in pℓ+1 · · · pk is in Edgeℓ. Therefore, p

′ is a trail.
It remains to prove that p′ matches L. Let (C, (v, q̂), eK · · · e1) = αℓ and let q and q′ be the

states in which AL is before reading eK in p and p′, respectively. By definition of a summary,
we have that δL(q, eK · · · e1) ∈ C and, by definition of |=, we have that δL(q

′, eK · · · e1) ∈ C.

Vol. 19:4 A TRICHOTOMY FOR REGULAR TRAIL QUERIES 20:27

By Lemma 3.18 we can conclude that δL(q, eK · · · e1) = δL(q
′, eK · · · e1). As p matches L,

we can conclude that also p′ matches L.

So, if there is a solution to RTQ(L), we can find it by enumerating the candidate
summaries and completing them using the local edge domains. We next prove that testing
if an edge is in Edgei can be done in logarithmic space. We will name this decision problem
Pedge(L) and define it as follows:

Pedge(L)
Given: A (multi-)graph G = (V,E, E), nodes s, t, a candi-

date summary S, an edge e ∈ E and an integer i.

Question: Is e ∈ Edgei?

Lemma 4.11. Pedge(L) is in NL for every L ∈ Ttract.

Proof. The proof is similar to the proof of Lemma 17 by Bagan et al. [BBG20], which is
based on the following result due to Immerman [Imm88]: NLNL = NL. In other words, if
a decision problem P can be solved by an NL algorithm using an oracle in NL, then this

problem P belongs to NL. Let, for each k ≥ 0, P≤k
edge(L) be the decision problem Pedge(L)

with the restriction i ≤ k, i.e., (G, s, t, S, e, i) is a positive instance of P≤k
edge(L) if and only if

(G, s, t, S, e, i) is a positive instance of Pedge(L) and i ≤ k. Notice that i belongs to the input

of P≤k
edge(L) while this is not the case for k. Obviously, Pedge(L) = P

≤|S|
edge (L). We prove that

P≤k
edge(L) ∈ NL for each k ≥ 0. If k = 0, P≤0

edge(L) always returns False because Edgei is not

defined for i = 0. So P≤0
edge(L) is trivially in NL. Assume, by induction, that P≤k

edge(L) ∈ NL.

It suffices to show that there is an NL algorithm for P≤k+1
edge (L) using P≤k

edge(L) as an oracle.

Since NLNL = NL, this implies that P≤k+1
edge (L) ∈ NL.

Let (G, s, t, S, e, i) be an instance of P≤k+1
edge (L). If i ≤ k, we return the same answer as

the oracle P≤k
edge(L). If i = k + 1 and αi ∈ E, we return False, as Edgei = ∅. If i = k + 1 and

αi ∈ Abbrv, we first compute the length m of a minimal trail p such that p |=Ei αi using the
NL algorithm of Lemma 4.7. We note that we can compute Ei using the NL algorithm for

P≤k
edge.

To test whether the edge e can be used by a trail from some (v, q) in at most m−K
steps, we use the on-the-fly product of G and AL restricted to the edges in Ei and states in
C. We search for a shortest path from (v, q) to some (v′, q′) ∈ V × C that ends with e. We
recall that reachability is in NL.

We note that this trail in the product graph might correspond to a path p with a cycle
in G. As we project away the states, some distinct edges in the product graph are actually
the same edge in G. However, by Lemma 3.15, we can remove all cycles from p without
losing the property that δL(q, p) ∈ C. This concludes the proof.

With this, we can finally give an NL algorithm that decides whether a candidate summary
can be completed to an admissible trail that matches L.

Lemma 4.12. Let L be a language in Ttract. There exists an NL algorithm that given an
instance G, (s, t) of RTQ(L) and a candidate summary S = α1 · · ·αk tests whether there is
a trail p from s to t in G with summary S that matches L.

Proof. We propose the following algorithm, which consists of three tests:

20:28 W. Martens, M. Niewerth, and T. Popp Vol. 19:4

(1) Guess, on-the-fly, a path p from S by replacing each αi by a trail pi such that pi |=Edgei αi

for each i ∈ [k]. This test succeeds if and only if this is possible.
(2) In parallel, check that p matches L.
(3) In parallel, check that S is a summary of p.

We first prove that the algorithm is correct. First, we assume that there is a trail with
summary S from s to t that matches L. Then, there is also a shortest such trail and, by
Lemma 4.10, this trail is admissible. Therefore, the algorithm will succeed.

Conversely, assume that the algorithm succeeds. Since E(S) and all the sets Edgei are
mutually disjoint, the path p is always a trail. By tests (2) and (3), it is a trail from s to t
that matches L.

We still have to check the complexity. We note that the sets Edgei are not stored in
memory: we only need to check on-the-fly if a given edge belongs to those sets, which
only requires logarithmic space according to Lemma 4.11. Therefore, we use an on-the-fly
adaption of the NL algorithm from Lemma 4.7, which requires a set Edgei as input, which
we will provide on-the-fly.

Testing if p matches L can simply be done in parallel to test (1) on an edge-by-edge
basis, by maintaining the current state of AL in memory. If we do so, we can also check in
parallel if S = α1 · · ·αk is a summary of p. This is simply done by checking, for each αi of
the form (C, (v, q), eK · · · e1) and αi+1 = e, whether e /∈ C. This ensures that, after being in
C for at least K edges, the path p leaves the component C, which is needed for summaries.
Furthermore, we test if there is no substring αi · · ·αj in S that purely consists of edges that
are visited in the same component C, but which is too long to fulfill the definition of a
summary. Since this maximal length is a constant, we can check it in NL.

We eventually show the main Lemma of this section, proving that RTQ(L) is tractable
for every language in Ttract.

Lemma 4.13. Let L ∈ Ttract. Then, RTQ(L) ∈ NL.

Proof. We simply enumerate all possible candidate summaries S w.r.t. (L,G, s, t), and apply
on each summary the algorithm of Lemma 4.12. We return true if this algorithm succeeds
and false otherwise. Since the algorithm succeeds if and only if there exists an admissible
path from s to t that matches L, and consequently, if and only if there is a trail from s
to t that matches L (Lemma 4.10), this is the right answer. Since L is fixed, there is a
polynomial number of candidate summaries, each of logarithmic size. Consequently, they
can be enumerated within logarithmic space.

Lemma 4.14. Let L ∈ Ttract and L be infinite. Then, RTQ(L) is NL-complete.

Proof. The upper bound is due to Lemma 4.13, the lower due to reachability in directed
graphs being NL-hard.

Corollary 4.15. Let L ∈ Ttract, G be a multigraph, and s, t be nodes in G. If there exists a
trail from s to t that matches L, then we can output a shortest such trail in polynomial time
(and in nondeterministic logarithmic space).

Proof. For each candidate summary S, we first use Lemma 4.12 to decide whether there
exists an admissible trail with summary S. With the algorithm in Lemma 4.7, we then
compute the minimal length mi of each pi. The sum of these mis then is the length of a
shortest trail that is a completion of S. We will keep track of a summary of one of the
shortest trails and finally recompute the overall shortest trail completing this summary and

Vol. 19:4 A TRICHOTOMY FOR REGULAR TRAIL QUERIES 20:29

outputting it. Notice that this algorithm is still in NL since the summaries have constant
size and overall counters never exceed |E|.

4.3. Languages not in Ttract. In this section we prove that RTQ(L) is NP-hard for
languages L /∈ Ttract, even if the input is restricted to graphs. Therefore, NP-completeness
also follows for multigraphs. The proof of Theorem 4.1(3) is by reduction from the following
NP-complete problem:

TwoEdgeDisjointPaths
Given: A language L, a graph G = (V,E, E), and two pairs

of nodes (s1, t1), (s2, t2).

Question: Are there two paths p1 from s1 to t1 and p2 from
s2 to t2 such that p1 and p2 are edge-disjoint?

The proof is very close to the corresponding proof for simple paths by Bagan et
al. [BBG20, Lemma 4] (which is a reduction from the two vertex-disjoint paths problem).

Lemma 4.16. TwoEdgeDisjointPaths is NP-complete.

Proof. Fortune et al. [FHW80] showed that the problem variant of TwoEdgeDisjointPaths that
asks for node-disjoint paths is NP-complete. The reductions from LaPaugh and Rivest [LR80,
Lemma 1 and 2] or Perl and Shiloach [PS78, Theorem 2.1 and 2.2] then imply that the NP
completeness also holds for edge-disjoint paths.

To prove the lower bound, we first show that every regular language that is not in Ttract

admits a witness for hardness, which is defined as follows.

Definition 4.17. A witness for hardness is a tuple (q, wm, wr, w1, w2) with q ∈ QL,
wm, wr, w1, w2 ∈ Σ∗, w1 ∈ Loop(q) and there exists a symbol a ∈ Σ with w1 = aw′

1

and w2 = aw′
2 and satisfying

• wm(w2)
∗wr ⊆ Lq, and

• (w1 + w2)
∗wr ∩ Lq = ∅.

Before we prove that each regular language that is not in Ttract has such a witness, recall
Property P :

Lq2 ⊆ Lq1 for all q1, q2 ∈ QL such that q1 ⇝ q2 and Loop(q1) ∩ Loop(q2) ̸= ∅

Lemma 4.18. Let L be a regular language that does not belong to Ttract. Then, L admits a
witness for hardness.

Proof. Let L be a regular language that does not belong to Ttract. Then there exist q1, q2 ∈ QL

and words w1, w2 with w1 = aw′
1 and w2 = aw′

2 such that w1 ∈ Loop(q1), w2 ∈ Loop(q2),
and q1 ⇝ q2 such that wM

2 w′
r /∈ Lq1 for a w′

r ∈ Lq2 . Let wm be a word with q2 = δL(q1, wm).
We set wr = wM

2 w′
r.

We now show that the so-defined tuple (q1, wm, wr, w1, w2) is a witness for hardness.
By definition, we have wm(w2)

∗wr ⊆ Lq1 . We distinguish two cases, depending on whether
L satisfies Property P or not. If L does not satisfy P , we can assume w.l.o.g. that in our
tuple we have w1 = w2 and since wM

2 w′
r /∈ Lq1 , we also have w∗

2wr ∩ Lq1 ≠ ∅, so it is indeed
a witness for hardness.

Otherwise, L is aperiodic, see Lemma 3.8. We assume w.l.o.g. that w1 = (w′
1)

M

for some word w′
1. Then, we claim that Lq′ ⊆ Lq1 for every q′ in δL(q1,Σ

∗w1). Indeed,

20:30 W. Martens, M. Niewerth, and T. Popp Vol. 19:4

every q′ ∈ δL(q1,Σ
∗w1) loops over w1 by the pumping lemma and aperiodicity of L, hence

w1 ∈ Loop(q1) ∩ Loop(q′) and therefore Lq′ ⊆ Lq1 due to Property P .
It remains to prove that (w1 + w2)

∗wr ∩ Lq1 = ∅. Every word in (w1 + w2)
∗wr can

be decomposed into uv with u ∈ ε + (w1 + w2)
∗w1 and v ∈ w∗

2wr. For q′ = δL(q1, u)
we have proved that Lq′ ⊆ Lq1 , so it suffices to show that v /∈ Lq1 . This is immediate

from wr = wM
2 w′

r /∈ Lq1 and the aperiodicity of L. So we have uv /∈ Lq1 and the tuple
(q, wm, wr, w1, w2) is indeed a witness for hardness.

We can now show the following

Lemma 4.19. Let L be a regular language that does not belong to Ttract. Then, RTQ(L) is
NP-complete.

Proof. The proof is almost identical to the reduction from two node-disjoint paths to
the RSPQ(L) problem by Bagan et al. [BBG20]. Clearly, RTQ(L) is in NP for every
regular language L, since we only need to guess a trail of length at most |E| from s to
t and verify that the word on the trail is in L. Let L /∈ Ttract. We exhibit a reduction
from TwoEdgeDisjointPaths to RTQ(L). According to Lemma 4.18, L admits a witness for
hardness (q, wm, wr, w1, w2). Let wℓ be a word such that δL(iL, wℓ) = q. By definition of a
witness we get wℓ(w1 + w2)

∗wr ∩ L = ∅ and wℓw
∗
1wmw∗

2wr ⊆ L. Let a ∈ Σ and w′
1, w

′
2 ∈ Σ∗

such that w1 = aw′
1 and w2 = aw′

2. If w
′
1 or w′

2 is empty, we replace it with a.
In the following construction, whenever we say that we add a path from v0 to vn labeled

by a word w = a1 · · · an, denoted by v0 w vn we mean that we add n − 1 new nodes
v1, . . . , vn−1 and n new edges e1, . . . , en such that E ′(ei) = (vi−1, ai, vi).

Let G = (V,E) be an unlabeled and simple input graph for the TwoEdgeDisjointPaths
problem and s1, t1, s2, t2 be nodes in V . We build from G a graph G′ = (V ′, E′, E ′) such
that (G, s1, t1, s2, t2) is a yes-instance of TwoEdgeDisjointPaths if and only if there is a trail
from s to t matching L in G′. We start with the nodes from G and add two new nodes s and
t and three paths s wℓ s1, t1

wm s2, and t2
wr t. Furthermore, for each edge (v1, v2) in G,

we add a new node v12 and three paths v1 a v12, v12
w′

1 v2, and v12
w′

2 v2. An example
for the language da∗c(abc)∗ef and some graph G can be seen in Figure 7.

By construction, two edge disjoint paths p1 and p2 in G going from s1 to t1 and from s2
to t2 correspond to a trail p from s to t in G′ that contains the path t1

wm s2. Such a trail
p matches a word in wℓ(w1 + w2)

∗wm(w1 + w2)
∗wr. And, as paths labeled w1 and w2 can

be used interchangeably, we find a trail matching wℓw
∗
1wmw∗

2wr ⊆ L.
For the other direction, we have to show two things. First, we show that every trail p in

G′ from s to t that uses the path t1
wm s2 proves the existence of two edge disjoint paths

p1 and p2 in G from s1 to t1 and from s2 to t2. Indeed p1 and p2 can be computed from p
by keeping only those nodes that are from G and splitting p between t1 and s2. The paths
are disjoint, as otherwise some edge vi to vij has to be used twice by p. Second, we show
that there can be no trail p from s to t in G′ that matches L and does not use the path
t1

wm s2. Indeed, every trail p from s to t in G′ that does not contain the path t1
wm s2

matches a word in wℓ(w1 + w2)
∗wr. By definition of witness for hardness, no such word is

in L. Thus, RTQ(L) returns true for (G′, s, t) if and only if there is a trail from s to t in G′

that contains the edge (t1, wm, s2) that is, if and only if TwoEdgeDisjointPaths returns true
for (G, s1, t1, s2, t2).

Vol. 19:4 A TRICHOTOMY FOR REGULAR TRAIL QUERIES 20:31

G
s1 t1

s2t2

G′
s1

t1

s2
t2

s

t

a a

bc

a a

bca

abc

a
bc

a

a
bc

a

c

d

ef

Figure 7: Example of the reduction in Lemma 4.19 for the language da∗c(abc)∗ef . We use
wℓ = d, wm = c, wr = ef , w1 = aa, and w2 = abc for the construction. For the
ease of readability, we omit the intermediate nodes on the bc and ef paths.

5. Recognition and Closure Properties

The following theorem establishes the complexity of deciding if a regular language is in
Ttract.

Before we establish the complexity of deciding for a regular language L whether L ∈ Ttract,
we need some lemmas. The first has been adapted from the simple path case (Lemma 6
in [BBG20]).

Lemma 5.1. Let L be a regular language. Then, L belongs to Ttract if and only if for all
pairs of states q1, q2 ∈ QL and symbols a ∈ Σ such that q1 ⇝ q2 and Loop(q1) ∩ aΣ∗ ̸= ∅,
the following statement holds: (Loop(q2) ∩ aΣ∗)NLq2 ⊆ Lq1.

Proof. The (if) implication is immediate by Corollary 3.7. Let us now prove the (only if)
implication. Since the proof of this lemma requires a number of different states and words,
we provide a sketch in Figure 8. Assume L ∈ Ttract. Let q1, q2 be two states such that
Loop(q1) ∩ aΣ∗ ̸= ∅ and q1 ⇝ q2. If Loop(q2) ∩ aΣ∗ = ∅, the statement follows immediately.
So let us assume w.l.o.g. that Loop(q2) ∩ aΣ∗ ̸= ∅. Let v1, . . . , vN ∈ (Loop(q2) ∩ aΣ∗) be
arbitrary words and q3 = δL(q1, v1 · · · vN). We want to prove Lq2 ⊆ Lq3 . For some i, j with
0 ≤ i < j ≤ N , we get δL(q1, v1 · · · vi) = δL(q1, v1 · · · vj) due to the pumping Lemma. (We
have δL(q1, v1 · · · vi) = q1 for i = 0.) Let u1 = v1 · · · vi, u2 = vi+1 · · · vj and u3 = vj+1 · · · vk.
Let q4 = δL(q1, u1).

We claim that Lq2 ⊆ Lq4 . The result then follows from Lq2 = u−1
3 Lq2 ⊆ u−1

3 Lq4 = Lq3 .
To prove the claim, let w = u1u

N
2 and q5 = δL(q1, w

N). As w ∈ Loop(q2), we can
use Corollary 3.7 to obtain wNLq2 ⊆ Lq1 . Together with Lq5 = (wN)−1Lq1 this implies
Lq2 ⊆ Lq5 . Furthermore, u2 belongs to Loop(q5) because L is aperiodic. To conclude
the proof, we observe that Lq5 ⊆ Lq4 , by Corollary 3.7 with q5, q4 and u2, and because
δL(q4, u

N
2) = q4 and u2 ∈ Loop(q5).

Theorem 5.2. Testing whether a regular language L belongs to Ttract is

(1) NL-complete if L is given by a DFA and
(2) PSPACE-complete if L is given by an NFA or by a regular expression.

Proof. The proof is inspired by Bagan et al. [BBG20]. The upper bound for (1) needs
several adaptations, the lower bound for (1) and the proof for (2) works exactly the same as
in [BBG12], a preliminary version of [BBG20] (just replacing SPtract by Ttract).

We first prove (1). W.l.o.g., we can assume that L is given by the minimal DFA AL, as
testing Nerode-equivalence of two states is in NL.

20:32 W. Martens, M. Niewerth, and T. Popp Vol. 19:4

q1· · ·

q2

q3
q4

q5

a..

v1, . . . , vN

u3

u2

u1 w, u2wN

Figure 8: Sketch of the proof of Lemma 5.1

By Lemma 5.1, we need to check for each pair of states q1, q2 and symbol a ∈ Σ whether

(i) q1 ⇝ q2;
(ii) Loop(q1) ∩ aΣ∗ ̸= ∅; and
(iii) (Loop(q2) ∩ aΣ∗)NLq2 \ Lq1 = ∅.

Statements (i) and (ii) are easily verified using an NL algorithm for transitive closure. For
(iii), we test emptiness of (Loop(q2)∩ aΣ∗)NLq2 \Lq1 using an NL algorithm for reachability
in the product automaton of AL with itself, starting in the state (q2, q1). More precisely,
the algorithm checks whether there does not exist a string that is in Lq2 , is not in Lq1 ,
starts with an a, and leaves the state q2 (in the left copy of AL) at least N times with an
a-transition.

The remainder of the proof is from [BBG12] and only included for self containedness.
For the lower bound of (1), we give a reduction from the Emptiness problem. Let L ⊆ Σ∗

be an instance of Emptiness given by a DFA AL. W.l.o.g. we assume that ε /∈ L, since this
can be checked in constant time. Furthermore, we assume that the symbol 1 does not belong
to Σ. Let L′ = 1+L1+. A DFA AL′ that recognizes L′ can be obtained from AL as follows.
We add a state qI that will be the initial state of AL′ . and a state qF that will be the unique
final state of AL′ . The transition function δL′ is the extension of δL defined as follows:

• δL′(qI , 1) = qI and δL′(qI , a) = iL for every symbol a ∈ Σ.
• For every final state q ∈ FL, δL′(q, 1) = qF .
• δL′(qF , 1) = qF .

We will show that L′ ∈ Ttract if and only if L is empty. If L is empty, then L′ = ∅ belongs
to Ttract. For the other direction, assume that L is not empty. Let w ∈ L. Then, for every
n ∈ N, 1nw1n ∈ L′ and 1n1n /∈ L′. Thus L′ /∈ Ttract.

For the upper bound of (2), we first observe the following fact: Let A,B be two problems
such that A ∈ NL and let t be a reduction from B to A that works in polynomial space
and produces an exponential output. Then B belongs to PSPACE. Thus, we can apply the
classical powerset construction for determinization on the NFA and use the upper bound
from (1).

For the lower bound of (2), we give a reduction from Universality. Let L ⊆ {0, 1}∗
be an instance of Universality given by an NFA or a regular expression. Consider L′ =
(0 + 1)∗a∗ba∗ + La∗ over the alphabet {0, 1, a, b}. We show that L = {0, 1}∗ if and only
if L′ ∈ Ttract. Our reduction associates L′ to L and keeps the same representation (NFA
or regular expression). If L′ = {0, 1}∗, then L′ = (0 + 1)∗a∗(b+ ε)a∗ and thus L′ ∈ Ttract.
Conversely, assume L ̸= {0, 1}∗. Let w ∈ {0, 1}∗ \ L. Then, for every n ∈ N, wanban ∈ L′

and wanan /∈ L′. Thus L′ /∈ Ttract.

Vol. 19:4 A TRICHOTOMY FOR REGULAR TRAIL QUERIES 20:33

We wondered if, similarly to Theorem 3.2, it could be the case that languages closed
under left-synchronized power abbreviations are always regular, but this is not the case. For
example, the (infinite) Thue-Morse word [Thu06, Mor21] has no subword that is a cube (i.e.,
no subword of the form w3) [Thu06, Satz 6]. The language containing all prefixes of the
Thue-Morse word thus trivially is closed under left-synchronized power abbreviations (with
i = 3), yet it is not regular.

We now give some closure properties of SPtract and Ttract. We note that Bagan et
al. [BBG20] already observed that SPtract is closed under finitie unions, intersections, and
reversal.

Lemma 5.3. Both classes SPtract and Ttract are closed under (i) finite unions, (ii) finite in-
tersections, (iii) reversal, (iv) left and right quotients, (v) inverses of non-erasing morphisms,
(vi) removal and addition of individual strings.

Proof. The closure properties (i) to (vi) follow immediately from Observation 3.29, i.e., that
SPtract and Ttract are ne-varieties, see [Pin97, PS05].

Lemma 5.4. The classes SPtract and Ttract are not closed under complement.

Proof. Let Σ = {a, b}. The language of the expression b∗ clearly is in SPtract and Ttract. Its
complement is the language L containing all words with at least one a. It can be described by
the regular expression Σ∗aΣ∗. Since biabi ∈ L for all i, but bibi /∈ L for any i, the language
L is neither in SPtract nor in Ttract.

It is an easy consequence of Lemma 5.3 (vi) that for regular languages outside of SPtract

or Ttract there do not exist best lower or upper approximations.

Corollary 5.5. Let C ∈ {SPtract,Ttract}. For every regular language L such that L /∈ C and

• for every upper approximation L′′ of L (i.e., L ⊊ L′′) with L′′ ∈ C it holds that there exists
a language L′ ∈ C with L ⊊ L′ ⊊ L′′;
• for every lower approximation L′′ of L (i.e., L′′ ⊊ L) it holds that there exists a language
L′ ∈ C with L′′ ⊊ L′ ⊊ L.

The corollary implies that Angluin-style learning of languages in SPtract or Ttract is not
possible. However, learning algorithms for single-occurrence regular expressions (SOREs)
exist [BNSV10] and can therefore be useful for an important subclass of Ttract.

6. Enumeration

In this section we state that—using the algorithm from Theorem 4.1—the enumeration
result from [Yen71] transfers to the setting of enumerating trails matching L.

Theorem 6.1. Let L be a regular language, G be a multigraph and (s, t) a pair of nodes
in G. If NL ̸= NP, then one can enumerate trails from s to t that match L in polynomial
delay in data complexity if and only if L ∈ Ttract.

Proof sketch. The algorithm is an adaptation of Yen’s algorithm [Yen71] that enumerates
the k shortest simple paths for some given number k, similar to what was done by Martens
and Trautner [MT19]. It uses the algorithm from Corollary 4.15 as a subprocedure.

20:34 W. Martens, M. Niewerth, and T. Popp Vol. 19:4

ALGORITHM 2: Yen’s algorithm changed to work with trails on multigraphs

Input: Multigraph G = (V,E, E), nodes s, t ∈ V , a language L ∈ Ttract

Output: All trails from s to t in G that match L under bag semantics
1 A← ∅ ▷ A is the set of trails already written to output

2 B ← ∅ ▷ B is a set of trails from s to t matching L

3 p← a shortest trail from s to t matching L ▷ p← ⊥ if no such trail exists

4 while p ̸= ⊥ do
5 output p

6 Add p to A

7 for i = 0 to |p| do
8 G′ ← (V,E′, E|E′) with E′ = E \ E(p[1, i]) ▷ Remove edges used in p[1, i]

9 S ← {e ∈ E | p[1, i] · e is a prefix of a trail in A}
10 p1 ← a shortest trail from destination(p[1, i]) to t in G′ that matches

((lab(p[1, i]))−1L) \ {ε} and does not start with an edge from S

11 Add p[1, i] · p1 to B

12 p← a shortest trail in B ▷ p← ⊥ if B = ∅
13 Remove p from B

Notice that we cannot simply use the line graph construction and solve this problem for
simple paths since the class of regular languages that is tractable for simple paths is a strict
subset of Ttract. So this method would not, for example, solve the problem for L = (ab)∗.

Instead, we can change Yen’s algorithm [Yen71] to work with trails instead of simple
paths. The changes are straightforward: instead of deleting nodes, we only delete edges. In
Algorithm 2 we changed Yen’s algorithm to enumerate L-labeled trails. Note that we only
need L ∈ Ttract to ensure that the subroutines in lines 3 and 10 are in polynomial time.

Explanation of Algorithm 2. In the algorithm, p[1, i] denotes the prefix of p containing
exactly i edges and destination(p) denotes the last node of p. In line 3, we can use the
algorithm explained in the proof of Theorem 4.1 (more concretely, Corollary 4.15) to find a
L-labeled trail from s to t in G in NL if one exists. In the for-loop in line 7 we use quotients
of the last trail written to the output to find new candidates. Intuitively, for all i ∈ N, we
regard all paths that share the prefix of length exactly i with the last path and do not share
a prefix of length i+1 with any path outputted so far. In line 10, we search for a suffix to the
prefix p[1, i] by again using the algorithm explained in the proof of Theorem 4.1. We recall
that Ttract is closed under left derivatives and removal of individual strings, see Lemma 5.3,
i.e., (lab(p[1, i]))−1L \ {ε} is in Ttract. However, to prevent finding a trail that was already
in the output, we do not allow the suffix to start with some edge from S. We note that the
algorithm from Corollary 4.15 can be easily modified to check for this additional condition.
We repeat this procedure with all trails in B, until we do not find any new trails.

Set vs. Bag Semantics in Multigraphs. Let us consider a small multigraph G = (V,E, E)
with two nodes {v1, v2} and two edges e1, e2 with E(e1) = E(e2) = (v1, a, v2). If we want to
enumerate all paths from v1 to v2 that match a, how many paths should we get? Under set
semantics, we will only obtain a single answer, whereas, under bag semantics, we will consider
e1 and e2 as different edges and therefore return two answers. Algorithm 2 enumerates

Vol. 19:4 A TRICHOTOMY FOR REGULAR TRAIL QUERIES 20:35

ALGORITHM 3: Yen’s algorithm for trails with set semantics

Input: Multigraph G = (V,E, E), nodes s, t ∈ V , a language L ∈ Ttract

Output: All trails from s to t in G that match L under bag semantics
1 A← ∅ ▷ A is the set of trails already written to output

2 B ← ∅ ▷ B is a set of trails from s to t matching L

3 p← a shortest trail from s to t matching L ▷ p← ⊥ if no such trail exists

4 j ← 0 ▷ tells where the deriviation should start

5 while p ̸= ⊥ do
6 output p

7 Add p to A

8 for i = j to |p| do
9 G′ ← (V,E′, E|E′) with E′ = E \ E(p[1, i]) ▷ Remove edges used in p[1, i]

10 S ← {e′ ∈ E | ∃e with E(e) = E(e′) and p[1, i] · e is a prefix of a trail in A}
11 p1 ← a shortest trail from destination(p[1, i]) to t in G′ that matches

((lab(p[1, i]))−1L) \ {ε} and does not start with an edge from S

12 Add (p[1, i] · p1, i) to B

13 (p, j)← a pair from B with p being a shortest trail ▷ p← ⊥ if B = ∅
14 Remove (p, j) from B

trails according to bag semantics. This is because all edges are considered to be different.
Algorithm 3 enumerates trails according to set semantics.

The changes between Algorithm 2 and Algorithm 3 are the following:

(1) The set S is computed differently. In Algorithm 2 the set S contains exactly the edges
that were already used to continue the path p[1, i], whereas in Algorithm 3 the set S
contains all edges whose origin, destination, and label are identical to some edge already
used to continue the path p[1, i].

(2) In Algorithm 2 the set B can contain paths that are identical under set semantics,
while this is forbidden Algorithm 3. One possibility to realize this is in Algorithm 3 is
to use Lawler’s [Law72] extension of Yen’s algorithm. Lawler observed that if a path
p′ = p[1, i] · p1 was added to A, in the next iteration it is sufficent to start the derivation
from i, as the derivatives of p[1, i] have already been added to B. This change impacts
the for-loop in line 8 of Algorithm 3.

We note that Lawler’s extension of Yen’s algorithm can also be used under bag semantics to
improve the running time, as observed by Lawler [Law72]. The following example shows that
(1) alone is not sufficient to enumerate multigraphs under set semantics because it would be
possible that different paths are added to B which are identical under set semantics, but
different under bag semantics.

Example 6.2. Consider the graph illustrated in Figure 9 with nodes {s, v, t} and edges
{e1, . . . , e5}. Assume S in line 9 in Algorithm 2 is calculated as in (1). If the algorithm
starts with the ab-path e1e2, it can add one db-path e4e2 and the ab-path e1e3 to B. If it
picks the ab-path e1e3 from B in the next step, the algorithm might add the other db-path
e5e2 to B. Thus B = {e4e2, e5e2} contains two paths that are identical under set semantics.

20:36 W. Martens, M. Niewerth, and T. Popp Vol. 19:4

s t

a/e1

d/e4

d/e5

b/e2

c/e3

Figure 9: Example graph for enumeration under set semantics. Edges are annotated with
label and edge identifier.

7. Conclusions and Lessons Learned

We have defined the class Ttract of regular languages L for which finding trails in directed
graphs that are labeled with L is tractable iff NL ̸= NP. We have investigated Ttract in
depth in terms of closure properties, characterizations, and the recognition problem, also
touching upon the closely related class SPtract (for which finding simple paths is tractable)
when relevant.

In our view, graph database manufacturers can have the following trade-offs in mind
concerning simple path (SPtract) and trail semantics (Ttract) in database systems:

• SPtract ⊊ Ttract, that is, there are strictly more languages for which finding regular paths
under trail semantics is tractable than under simple path semantics. Some of the languages
in Ttract but outside SPtract are of the form (ab)∗ or a∗bc∗, which were found to be relevant
in several application scenarios involving network problems, genomic datasets, and tracking
provenance information of food products [PS] and appear in query logs [BMT17, BMT19].
• Both SPtract and Ttract can be syntactically characterized but, currently, the characteri-
zation for SPtract (Section 7 in [BBG20]) is simpler than the one for Ttract. This is due
to the fact that connected components for automata for languages in Ttract can be much
more complex than for automata for languages in SPtract.
• On the other hand, the single-occurrence condition, i.e., each alphabet symbol occurs at
most once, is a sufficient condition for regular expressions to be in Ttract. This condition
is trivial to check and also captures languages outside SPtract such as (ab)∗ and a∗bc∗.
Moreover, the condition seems to be useful: we analyzed the 50 million RPQs found in
the logs of [BMT18] and discovered that over 99.8% of the RPQs are single-occurrence.
• In terms of closure properties, learnability, or complexity of testing if a given regular
language belongs to SPtract or Ttract, the classes seem to behave the same.
• The tractability for the decision version of RPQ evaluation can be lifted to the enumeration
problem, in which case the task is to output matching paths with only a polynomial delay
between answers.

As an open question remains the trichotomy for 2RPQs, that is, when we allow RPQs to
follow a directed edge also in its reverse direction. We briefly discuss why this is challenging.
Let us denote by â the backward navigation of an edge labeled a. Then, the case of ordinary
RPQs can be seen as a special case of 2RPQs on undirected graphs: it only has bidirectional
navigation of the form (a+ â). It has been open since 1991 whether evaluating (aaa)∗ on
undirected graphs is in P or NP-complete [APY91].

Acknowledgments. This work was supported by DFG grant MA 4938/4-1. We thank the
participants of Shonan meeting No. 138 (and Hassan Chafi in particular), who provided

Vol. 19:4 A TRICHOTOMY FOR REGULAR TRAIL QUERIES 20:37

significant inspiration for the first paragraph in the Introduction, Jean-Éric Pin for pointing
us to positive Cne-varieties of languages, and Charles Paperman for useful comments and
pointing out that Ttract ⊊ Π[<,+1] (see Theorem 3.30). We also thank Jean-Éric Pin and
Luc Segoufin for their help with the proof with a weaker statement. Furthermore, we want
to thank the anonymous reviewers for valuable comments.

References

[AAB+18] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter A. Boncz, George H. L. Fletcher, Claudio
Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow, Juan F. Sequeda, Oskar van
Rest, and Hannes Voigt. G-CORE: A core for future graph query languages. In International
Conference on Management of Data (SIGMOD), pages 1421–1432, 2018.

[ACBJ04] Parosh Aziz Abdulla, Aurore Collomb-Annichini, Ahmed Bouajjani, and Bengt Jonsson. Using
forward reachability analysis for verification of lossy channel systems. Formal Methods in System
Design, 25(1):39–65, 2004.

[ACP12] Marcelo Arenas, Sebastián Conca, and Jorge Pérez. Counting beyond a yottabyte, or how SPARQL
1.1 property paths will prevent adoption of the standard. In International Conference on World
Wide Web (WWW), pages 629–638, 2012.

[APY91] Esther M. Arkin, Christos H. Papadimitriou, and Mihalis Yannakakis. Modularity of cycles and
paths in graphs. Journal of the ACM, 38(2):255–274, 1991.

[Bar13] Pablo Barceló. Querying graph databases. In Symposium on Principles of Database Systems
(PODS), pages 175–188, 2013.

[BBG12] Guillaume Bagan, Angela Bonifati, and Benôıt Groz. A trichotomy for regular simple path queries
on graphs. CoRR, abs/1212.6857, 2012.

[BBG20] Guillaume Bagan, Angela Bonifati, and Benôıt Groz. A trichotomy for regular simple path queries
on graphs. Journal of Computer and System Sciences, 108:29–48, 2020.

[BLR11] Pablo Barceló, Leonid Libkin, and Juan L. Reutter. Querying graph patterns. In Symposium on
Principles of Database Systems (PODS), pages 199–210. ACM, 2011.

[BMT17] Angela Bonifati, Wim Martens, and Thomas Timm. An analytical study of large SPARQL query
logs. Proceedings of the VLDB Endowment, 11(2):149–161, 2017.

[BMT18] Angela Bonifati, Wim Martens, and Thomas Timm. DARQL: deep analysis of SPARQL queries.
In The Web Conference (WWW) (Companion Volume), pages 187–190. ACM, 2018.

[BMT19] Angela Bonifati, Wim Martens, and Thomas Timm. Navigating the maze of wikidata query logs.
In The Web Conference (WWW), pages 127–138. ACM, 2019.

[BNSV10] Geert Jan Bex, Frank Neven, Thomas Schwentick, and Stijn Vansummeren. Inference of concise
regular expressions and dtds. ACM Transactions on Database Systems, 35(2):11:1–11:47, 2010.

[CB71] Rina S. Cohen and Janusz A. Brzozowski. Dot-depth of star-free events. Journal of Computer
and System Sciences, 5(1):1–16, 1971.

[DBp] Dbpedia. wiki.dbpedia.org.
[FGG+18] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor

Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor. Cypher: An
evolving query language for property graphs. In International Conference on Management of Data
(SIGMOD), pages 1433–1445. ACM, 2018.

[FHW80] Steven Fortune, John Hopcroft, and James Wyllie. The directed subgraph homeomorphism
problem. Theoretical Computer Science (TCS), 10(2):111–121, 1980.

[GGM12] Wouter Gelade, Marc Gyssens, and Wim Martens. Regular expressions with counting: Weak
versus strong determinism. SIAM Journal on Computing, 41(1):160–190, 2012.

[Hai69] Leonard H. Haines. On free monoids partially ordered by embedding. Journal of Combinatorial
Theory, 6(1):94–98, 1969.

[Imm88] Neil Immerman. Nondeterministic space is closed under complementation. SIAM Journal on
Computing, 17(5):935–938, 1988.

[Jul69] Pierre Jullien. Contribution à l’étude des types d’ordres dispersés. PhD thesis, Universite de
Marseille, 1969.

wiki.dbpedia.org

20:38 W. Martens, M. Niewerth, and T. Popp Vol. 19:4

[Law72] Eugene L. Lawler. A procedure for computing the k best solutions to discrete optimization
problems and its application to the shortest path problem. Management Science, 18(7):401—-405,
mar 1972.

[LM13] Katja Losemann and Wim Martens. The complexity of regular expressions and property paths in
SPARQL. ACM Transactions on Database Systems, 38(4):24:1–24:39, 2013.

[LP84] Andrea S. LaPaugh and Christos H. Papadimitriou. The even-path problem for graphs and
digraphs. Networks, 14(4):507–513, 1984.

[LR80] Andrea S. LaPaugh and Ronald L. Rivest. The subgraph homeomorphism problem. Journal of
Computer and System Sciences, 20(2):133–149, 1980.

[MNT20] Wim Martens, Matthias Niewerth, and Tina Trautner. A trichotomy for regular trail queries. In
Symposium on Theoretical Aspects of Computer Science (STACS), volume 154 of LIPIcs, pages
7:1–7:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[Mor21] Harold Marston Morse. Recurrent geodesics on a surface of negative curvature. Transactions of
the American Mathematical Society, 22(1):84–100, Jan 1921. doi:10.2307/1988844.

[MT19] Wim Martens and Tina Trautner. Dichotomies for evaluating simple regular path queries. ACM
Transactions on Database Systems, 44(4):16:1–16:46, 2019.

[MW95] Alberto O. Mendelzon and Peter T. Wood. Finding regular simple paths in graph databases.
SIAM Journal on Computing, 24(6):1235–1258, 12 1995.

[Neo] Neo4j. neo4j.com.
[Ope] Cypher query language reference, version 9, mar. 2018. https://github.com/opencypher/

openCypher/blob/master/docs/openCypher9.pdf.
[Ora] Oracle spatial and graph. www.oracle.com/technetwork/database/options/spatialandgraph/.
[Pap22] Charles Paperman. Semigroup online. https://paperman.name/semigroup/, 2022.
[Pin97] Jean-Eric Pin. Syntactic semigroups. In Handbook of Formal Languages (1), pages 679–746.

Springer, 1997.

[Pin17] Jean-Éric Pin. The dot-depth hierarchy, 45 years later. In The Role of Theory in Computer
Science, pages 177–202. World Scientific, 2017.

[PS] Neo4J Petra Selmer. Personal communication.
[PS78] Yehoshua Perl and Yossi Shiloach. Finding two disjoint paths between two pairs of vertices in a

graph. Journal of the ACM, 25(1):1–9, 1978.
[PS05] Jean-Eric Pin and Howard Straubing. Some results on C-varieties. RAIRO Theoretical Informatics

and Applications, 39(1):239–262, 2005.
[PW02] Jean-Eric Pin and Pascal Weil. The wreath product principle for ordered semigroups. Communi-

cations in Algebra, 30:5677–5713, 2002.
[Sch65] Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Information and

Control, 8(2):190–194, 1965.
[Str81] Howard Straubing. A generalization of the schützenberger product of finite monoids. Theoretical

Computer Science (TCS), 13:137–150, 1981.
[Sze88] Róbert Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta

Informatica, 26(3):279–284, 1988.
[Thé81] Denis Thérien. Classification of finite monoids: The language approach. Theoretical Computer

Science (TCS), 14:195–208, 1981.
[Tho82] Wolfgang Thomas. Classifying regular events in symbolic logic. Journal of Computer and System

Sciences, 25(3):360–376, 1982.

[Thu06] Axel Thue. Über unendliche Zeichenreihen. Skrifter udg. af Videnskabs-Selskabet i Christiania : 1.
Math.-Naturv. Klasse. Dybwad [in Komm.], 1906.

[Tig] Tigergraph. www.tigergraph.com.
[TW98] Denis Thérien and Thomas Wilke. Over words, two variables are as powerful as one quantifier

alternation. In ACM Symposium on Theory of Computing (STOC), pages 234–240. ACM, 1998.
[W3C13] SPARQL 1.1 query language. https://www.w3.org/TR/sparql11-query/, 2013. World Wide Web

Consortium.
[Wik] Wikidata. wikidata.org.
[Yen71] Jin Y. Yen. Finding the k shortest loopless paths in a network. Management Science, 17(11):712–

716, 1971.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.2307/1988844
neo4j.com
https://github.com/opencypher/openCypher/blob/master/docs/openCypher9.pdf
https://github.com/opencypher/openCypher/blob/master/docs/openCypher9.pdf
www.oracle.com/technetwork/database/options/spatialandgraph/
https://paperman.name/semigroup/
www.tigergraph.com
https://www.w3.org/TR/sparql11-query/
wikidata.org

	1. Introduction
	2. Preliminaries
	3. The Tractable Class
	3.1. Warm-Up: Downward Closed Languages
	3.2. Main Definitions and Equivalence
	3.3. The inner Structure of minimal DFAs in Ttract
	3.4. A Syntactic Characterization
	3.5. Regular Simple Path Queries
	3.6. An algebraic Characterization of T-tract and SP-tract

	4. The Trichotomy
	4.1. Finite Languages
	4.2. Languages in Ttract
	4.3. Languages not in Ttract

	5. Recognition and Closure Properties
	6. Enumeration
	7. Conclusions and Lessons Learned
	References

