
Logical Methods in Computer Science

Vol. 8 (2:08) 2012, pp. 1–15

www.lmcs-online.org

Submitted Jan. 16, 2012

Published Jun. 1, 2012

WIDTH AND SIZE OF REGULAR RESOLUTION PROOFS

ALASDAIR URQUHART

University of Toronto
e-mail address: urquhart@cs.toronto.edu

Abstract. This paper discusses the topic of the minimum width of a regular resolution
refutation of a set of clauses. The main result shows that there are examples having small
regular resolution refutations, for which any regular refutation must contain a large clause.
This forms a contrast with corresponding results for general resolution refutations.

Introduction

Recent results [1, 13] showing near-exponential separations between the size of regular and
general refutations of certain sets of clauses also show a separation of general and regular
resolution width. That is to say, the examples used in showing the size separation have
large regular resolution width, but bounded general resolution width.

This observation suggests that it might be possible to prove results for regular resolution
similar to those of Ben-Sasson and Wigderson [5] for tree resolution and general resolution.
The main theorem below shows that this hope is bound to be disappointed; it exhibits
examples having small regular resolution size, but large regular width.

The first part of the paper gives a characterization of regular resolution width, in the
style of Atserias and Dalmau [3]. The second part discusses the relationship between the
size and width of regular resolution refutations.

1. Resolution proofs and their width

A literal is a propositional variable x or its negation ¬x. A clause is a set of literals,
interpreted as the disjunction of the set. For clauses containing exactly one positive literal,
we use the implication p1, . . . , pk → q as alternative notation for the clause ¬p1∨· · ·∨¬pk∨q.
For notational convenience, we shall also allow the case where the positive literal q is replaced
by the propositional constant ⊥. For any assignment σ, σ(⊥) = 0, so that the expression
“p1, . . . , pk → ⊥” is an alternative notation for the purely negative clause ¬p1 ∨ · · · ∨ ¬pk

1998 ACM Subject Classification: F2.2,F4.1.
Key words and phrases: regular resolution proofs, size of proofs, width of proofs.
The author gratefully acknowledges the support of the Natural Sciences and Engineering Research Council

of Canada.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (2:08) 2012

c© A. Urquhart
CC© Creative Commons

http://creativecommons.org/about/licenses

2 A. URQUHART

If p is a variable, and C a clause, then we say that p has a positive occurrence in C if
p is in C, and a negative occurrence in C if ¬p is in C. In addition, we shall say that ⊥
has a positive occurrence in the purely negative Horn clause p1, . . . , pk → ⊥. If Σ is a set
of clauses, and x, y are variables in Σ, or the propositional constant ⊥, then we say that
there is an implicational chain from x to y in Σ if there is a sequence x = x0, . . . , xk = y
of variables (or constants) and a sequence C1, . . . , Ck of clauses so that for all i, 0 < i ≤ k,
xi−1 occurs negatively and xi positively in Ci.

The resolution rule allows us to derive the resolvent C ∨D from the clauses C ∨ x and
D ∨ ¬x by resolving on the variable x. A resolution derivation of a clause C from a set of
clauses Σ consists of a sequence of clauses in which each clause is either a clause of Σ, or
derived from earlier clauses by resolution, and C is the last clause in the sequence; it is a
refutation of Σ if C is the empty clause Λ.

The size of a resolution proof is the number of occurrences of clauses in the proof –
that is to say, the length of the proof considered as a sequence. For a contradictory set of
clauses Σ, we write S(Σ) for the minimum size of a resolution refutation of Σ. A resolution
proof is a tree-style proof if every clause in the proof is used at most once as a premiss in
a resolution inference. We write ST (Σ) for the minimum size of a tree-style refutation of a
contradictory set of clauses Σ. A resolution refutation of a set of clauses Σ is an input proof
if in every application of the resolution rule in it, at least one premiss of the application is
an input clause in Σ. Every input refutation is automatically a tree-style refutation.

An irregularity in a resolution proof is a sequence of clauses C1, . . . , Ck so that Ci+1

is derived from Ci (that is, Ci is one of the premisses of a resolution inference in which
the conclusion is Ci+1), and there is a variable that occurs in C1 and Ck, but not in any
intermediate clause Cj , 1 < j < k. A resolution proof is regular if it contains no irregularity.

If V is a set of propositional variables, then an assignment is a Boolean function defined
on a subset of V , that is, an assignment of {0, 1} to some or all of the variables in V . If
α is an assignment, then we write |α| for the cardinality of α, the number of variables to
which α assigns values. The result of restricting a clause C by setting a literal l is defined
as follows. If the literal l occurs in C, then C[l := 1] = 1, while C[l := 0] is C \ {l}. If Σ is
a set of clauses, and v ∈ {0, 1}, then Σ[l := v] is the set of clauses {C[l := v] : C ∈ Σ} \ {1}.

The width of a clause is the number of literals in it. The width w(Σ) of a set of clauses is
the maximum width of a clause in Σ, while the width of a resolution proof is the maximum
width of a clause in it. If Σ is a contradictory set of clauses, then we define the refutation
width of Σ, written w(Σ ⊢ 0), to be the minimum width of a resolution refutation of Σ.
If F is a family of resolution proofs, we define a restricted notion of refutation width, the
F-refutation width, w(Σ ⊢F 0), to be the minimum width of a refutation of Σ that belongs
to F . In particular, we define the regular refutation width, w(Σ ⊢R 0), of a contradictory
set of clauses Σ to be the R-refutation width where R is the class of all regular resolution
proofs.

The notation log x stands for the base two logarithm of x, and logk x for (log x)k.

2. Characterization of general resolution width

In this section, we give a proof of a result of Atserias and Dalmau [3] characterizing the
width of general resolution refutations. The characterization is in terms of a two player

WIDTH AND SIZE OF REGULAR RESOLUTION PROOFS 3

game, that we shall call the k-width game, played by the Prover and the Adversary. 1 The
rules of the game are as follows.

The players are given a set of clauses Σ, on a set V of variables, and an integer parameter
k ≥ 0. The players together construct a succession of assignments to the variables in V .
Initially, the assignment is empty. Each round of the game proceeds as follows, starting from
a current assignment. First, the Prover queries an unassigned variable, and the Adversary
assigns a value to it. Second, the Prover is allowed to delete some of the values of the
variables in V from the assignment resulting from the Adversary’s reply; the result is the
new current assignment.

The Adversary can win in two ways. First, if the current assignment (after deletions)
assigns values to more than k variables; second, if an earlier assignment is repeated during
the play of the game. The Prover wins if the current assignment falsifies an initial clause
in Σ. Clearly every play of the game must eventually terminate with a win for the Prover
or for the Adversary (Atserias and Dalmau define their game so that when the Adversary
wins, the game can continue infinitely).

Definition 2.1. If Σ is a set of clauses on a set V of variables, then a non-empty family A
of V -assignments is an extendible k-family for Σ if it satisfies the following conditions:

(1) No assignment in A falsifies a clause in Σ;
(2) Each assignment α in A satisfies the condition |α| ≤ k;
(3) If α ∈ A, and β ⊆ α, then β ∈ A;
(4) If α ∈ A, |α| < k, and x ∈ V , then there is a β ∈ A, so that α ⊆ β, and β(x) is defined.

The next theorem shows that a resolution refutation of width k constitutes a winning
strategy for the Prover, while an extendible k + 1-family provides a winning strategy for
the Adversary.

Theorem 2.2. [Atserias and Dalmau 2003] Let Σ be a set of clauses, and k ≥ w(Σ).
Then the following are equivalent:

(1) There is no resolution refutation of Σ of width k;
(2) There is an extendible k + 1-family for Σ;
(3) The Adversary wins the k + 1-width game based on Σ.

Proof. First, let us suppose that there is no resolution refutation of Σ of width k. Let C be
the set of all clauses having a resolution proof from Σ of width at most k; since w(Σ) ≤ k,
Σ ⊆ C. Let A be the set of all assignments of size at most k+1 that do not falsify any clause
in C. We claim that A is an extendible k + 1-family for Σ. First, A is non-empty, because
it contains the empty assignment (since C does not contain the empty clause). Second, A
satisfies the first three conditions of Definition 2.1, by construction. To prove the fourth
condition, let α ∈ A, and |α| ≤ k, x ∈ V , but there is no extension β of α in A with β(x)
defined. It follows that there is a clause D ∈ C that is falsified if we extend α by setting x
to 0. Then D = E ∨ x for some E, since otherwise α would falsify D. Similarly, there is a
clause F ∨ ¬x in C that is falsified by the extension of α that sets x to 1. But then α must
falsify E ∨F , showing that E ∨F has width at most k, since |α| ≤ k. Hence, it follows that
E ∨ F is in C, contradicting our assumption that α is in A.

Second, let us suppose that there is an extendible k+1-family for Σ. Then the Adversary
can play the k-width game on Σ by responding to the Prover’s queries with the appropriate

1Atserias and Dalmau, following the tradition of finite model theory, call their players the Spoiler and
the Duplicator, but our terminology seems clearer in the present context.

4 A. URQUHART

assignment from the family, starting with the empty assignment. Since no assignment in the
family falsifies an initial clause, this strategy must eventually end in a win for the Adversary,
no matter how the Prover plays.

Finally, let us suppose that there is a resolution refutation of Σ of width k. Then the
refutation provides the Prover with a winning strategy in the k + 1-width game based on
Σ. Starting from the empty clause at the root, the Prover follows a path in the refutation
so that at each round, the assignment (after appropriate deletions) is a minimal assignment
falsifying the current clause. The variable queried is the variable resolved upon to derive
the current clause. This strategy must result in a win for the Prover when the path reaches
a clause in Σ.

3. Characterization of regular resolution width

In the present section, we modify the result of Atserias and Dalmau to characterize the
width of regular resolution refutations. The characterization is again in terms of a two
player game, that we shall call the regular k-width game. The game is exactly the same as
that described in the previous section, but with the added condition that the Prover can
never query a previously queried variable.

As in the case of general resolution width, we can characterize the regular resolution
width in terms of extendible families of assignments. However, we need to redefine the
notion of an assignment. In the earlier notion of assignment, a variable could be in three
states: positive (1), negative (0), and unassigned (∗). For the case of regular resolution,
we define an extended assignment to be an assignment of values in which each variable can
be in four states: positive (1), negative (0), unassigned (∗), or forgotten (⊠). The empty
extended assignment to a set V of variables consists of the assignment in which all variables
in V are unassigned (∗) (this should be distinguished from assignments in which all of the
variables are unassigned or forgotten (⊠)).

If α is an extended assignment, then those variables that are assigned the values 0 or 1
are the live variables in α, and we write |α| for the number of live variables in α. If α and
β are extended assignments to a set of variables V , then we write α ⊆ β if β results from α
by replacing some unassigned variables by live variables. We also write α ⊑ β if α results
from β by forgetting some variables, that is, changing the value of a live (0 or 1) variable
to ⊠.

As in the case of the earlier k-width game, the players are given a set of clauses Σ, on a
set V of variables, and an integer parameter k ≥ 0. Together, they construct a succession of
extended assignments to the variables in V . Initially, the assignment is empty. Each round
of the game proceeds as follows. First, the Prover queries an unassigned variable, and the
Adversary assigns a value to it. Next, the Prover is allowed to forget some of the variables
in the resulting assignment, that is, to change the value of a live variable from 0 or 1 to ⊠

(forgotten); the result is the new current assignment.
Again, the Adversary can win in two ways. First, if the current assignment assigns

values to more than k variables; second, if the Prover has not won up to this point, but
there are no unqueried variables, so the Prover has no legal move. The Prover wins if
the current assignment falsifies an initial clause in Σ (if this clause contains more than k
variables, then we count this as a win for the Adversary). As before, every play of the game
must eventually terminate with a win for the Prover or for the Adversary.

WIDTH AND SIZE OF REGULAR RESOLUTION PROOFS 5

Definition 3.1. If Σ is a set of clauses on a set V of variables, then a family A of extended
V -assignments is a regular extendible k-family for Σ if it satisfies the following conditions:

(1) The empty assignment belongs to A;
(2) No assignment in A falsifies a clause in Σ;
(3) Each assignment α in A satisfies the condition |α| ≤ k;
(4) If α ∈ A, and β ⊑ α, then β ∈ A;
(5) If α ∈ A, |α| < k, x ∈ V , and α(x) = ∗, then there is a β ∈ A, so that α ⊆ β, and

β(x) = 0 or β(x) = 1.

The next theorem is the analogue of Theorem 2.2 for regular resolution.

Theorem 3.2. Let Σ be a set of clauses, and k ≥ w(Σ). Then the following are equivalent:

(1) There is no regular resolution refutation of Σ of width k;
(2) There is a regular extendible k + 1-family for Σ;
(3) The Adversary wins the regular k + 1-width game based on Σ.

Proof. (1 ⇒ 2): Let us suppose that there is no regular resolution refutation of Σ of width
k. Define C to be the set of all clauses having a regular resolution proof from Σ of width at
most k; since w(Σ) ≤ k, Σ ⊆ C. Let A be the set of all extended assignments of size at most
k+1 that do not falsify any clause in C. We claim that A is an extendible k+ 1-family for
Σ.

Since the empty clause Λ does not belong to C, the empty assignment is in A, so the
first condition in Definition 3.1 is satisfied. The second condition holds because Σ ⊆ C, and
the third condition by definition. The fourth condition also follows from the definition of
A.

It remains to prove the fifth condition. Assume that α ∈ A, and |α| ≤ k, x ∈ V , and
α(x) = ∗, but there is no extension β ⊇ α in A with β(x) defined. Let α0 and α1 be the
extended assignments obtained from α by setting x to 0 and 1, respectively. Since neither
α0 nor α1 belong to A, it follows that there are regular resolution derivations R0 and R1

of clauses C0 and C1, each having width at most k, so that for i = 0, 1, αi(Ci) = 0. Since
α ∈ A, it follows that C0 = D∨x, and C1 = E∨¬x, for some clauses D and E. However, if
we extend the regular resolution derivations R0 and R1 by resolving on x, so that the final
clause is D ∨E, the result is a regular resolution derivation of D ∨E, where α(D ∨E) = 0.
Since |α| ≤ k, D ∨ E has at width at most k, showing that D ∨ E is in C; this contradicts
our assumption that α ∈ A.

(2 ⇒ 3): Second, let us suppose that there is a regular extendible k + 1-family for Σ.
Then the Adversary can play the k-width game on Σ by responding to the Prover’s queries
with the appropriate assignment from the family, starting with the empty assignment. Since
no assignment in the family falsifies an initial clause, this strategy must eventually end in
a win for the Adversary, no matter how the Prover plays.

(3 ⇒ 1): Finally, let us suppose that there is a regular resolution refutation of Σ of
width k. Then the refutation provides the Prover with a winning strategy in the regular
k+1-width game based on Σ. Starting from the empty clause at the root, the Prover follows
a path in the refutation so that at the end of each round, after the Prover has forgotten
certain live variables, the remaining live variables are the domain of a minimal assignment
falsifying the current clause. The variable queried is the variable resolved upon to derive
the current clause. This strategy must result in a win for the Prover.

6 A. URQUHART

Corollary 3.3. The question “Is there a regular resolution refutation of the set of clauses
Σ with width k?” is in PSPACE.

Proof. Theorem 3.2 shows that this question can be answered by an alternating Turing
machine operating in polynomial time.

In the case of general resolution width, it is not clear whether the corresponding problem
is in PSPACE, because there is no polynomial upper bound on how long the k-width game
might last.

4. Size and width of regular resolution proofs

4.1. The width and size of resolution proofs. Recent results on size separation between
regular and general resolution also show a width separation.

Theorem 4.1. For each n > 0, there is a contradictory set of clauses with O(n2) vari-
ables and O(n3) clauses for which the general resolution width is bounded, but the regular
resolution width is Ω(n).

Proof. The paper [1] implicitly contains such a separation. More specifically the family of
clauses GT ′

n,ρ defined in §3 of [1] fulfil the conditions of the theorem. The Ω(n) lower bound
on regular resolution width is proved (implicitly) in Theorem 3.10 of that paper, which

shows an exponential (2n/200) lower bound on the size of regular resolution refutations of
GT ′

n,ρ.

The author’s paper [13] demonstrates an improved size separation between regular
and general resolution; it also shows a width separation between the two forms of proof
system. The main theorem shows that for infinitely many n, there is a set Πn of O(n log5 n)
clauses containing O(n log log n) variables, where the maximum width of a clause in Πn

and the general resolution width are both O(log log n), while the regular resolution width
is Ω(n/ log n).

The results just described suggest a natural conjecture that a good lower bound on
the regular width of a set of clauses leads to a good lower bound on the size of a regular
refutation of them. For both general and tree resolution, Ben-Sasson and Wigderson [5]
have proved strong results along these lines.

Theorem 4.2. [Ben-Sasson and Wigderson 2001] Let Σ be a contradictory set of
clauses with an underlying set of variables V . Then:

(1) ST (Σ) ≥ 2w(Σ⊢0)−w(Σ);

(2) S(Σ) = exp
(

Ω
(

(w(Σ⊢0)−w(Σ))2

|V |

))

Given the width and size separation results between regular and general resolution cited
above, it seems reasonable to conjecture that the second lower bound proved by Ben-Sasson
and Wigderson might hold, in the form where we replace “resolution size” by “regular
resolution size,” and “resolution width” by “regular resolution width.” In the remainder of
the paper, we show that this conjecture fails.

Before proceeding to the main constructions, it may be helpful to the reader to clarify
the relations between the various forms of resolution discussed here.

WIDTH AND SIZE OF REGULAR RESOLUTION PROOFS 7

If we consider the size measure alone, then it is not hard to see that regular resolution
is at least as powerful as tree resolution. This is because a pruning procedure [11] [12, p.
436] can be applied to a tree refutation to remove any irregularities while decreasing the
size of the tree. On the other hand, the lower bound on width for regular refutations proved
below does not apply to tree resolution, since the minimum width of a tree-style refutation
of a set of clauses is the same as that of a general resolution refutation (we can convert any
general resolution proof into a tree-style proof by repeating subderivations).

However, if we insist on restricting our attention to tree-style refutation of minimum
size, then the lower bounds on width do apply, since such refutations are necessarily regular.

5. Pebbling games and pebbling formulas

5.1. The pebbling game. A pointed graph G is a directed acyclic graph where all vertices
have indegree at most two, having a unique sink, or target vertex, to which there is a
directed path from all the vertices in G. It is binary if all vertices except for the source
vertices have indegree two. If v is a vertex in a pointed graph G, then G↾ v is the subgraph
of G restricted to the vertices from which there is a directed path to v.

The pebbling game played on a pointed graph G is a one-player game in the course of
which pebbles are placed on or removed from vertices in G. The rules of the game are as
follows;

(1) A pebble may be placed on a source vertex at any time.
(2) If all predecessors of a vertex are marked with pebbles, then a pebble may be placed

on the vertex itself.
(3) A pebble may be removed from a vertex at any time.

A move in the game consists of placing or removing one of the pebbles in accordance with
one of the three rules. The configuration at a given stage in the game is the set of vertices
in G that are marked with a pebble. A play of the game begins with no pebbles on G. The
goal of the game is to place a pebble on the sink vertex t, while minimizing the number of
pebbles used (that is, minimizing the number of pebbles on the graph at any stage of the
game). Thus a successful play of the game can be presented as a sequence of configurations
C0, . . . , Ck, where C0 = ∅ and t ∈ Ck, where Cj+1 is obtained from Cj by one of the three
rules.

A strategy for the game is a sequence of moves following the rules of the game that
ends in pebbling the target vertex. The cost of such a strategy is the minimum number of
pebbles required in order to execute it, that is to say, the size of the largest configuration
in the sequence of configurations produced by following the strategy. The pebbling number
of G, written as ♯G, is the minimum cost of a strategy for the pebbling game played on G.

5.2. Pebbling formulas. We associate a contradictory set of clauses Peb(G) with every
pointed graph G. Each vertex in G except the target t is assigned a distinct variable; to
simplify notation, we identify a vertex with the variable associated with it, and use the
notation Var(G) for the set of these variables. We associate the constant ⊥ (falsum) with
the target vertex t, and make the identification t = ⊥.

Definition 5.1. If G is a pointed graph, Peb(G) is a set of clauses expressed in terms of
the variables Var(G), so that Peb(G) = {Clause(v) : v ∈ G}.

8 A. URQUHART

(1) If v is a source vertex of G, then Clause(v) = v.
(2) If v is a vertex in G, with predecessor u, then Clause(v) = u → v.
(3) If v is a vertex in G, with predecessors u,w, then Clause(v) = u,w → v.

If we set some variables in Peb(G), then the resulting set of clauses is not necessarily
of the form Peb(G′), where G′ is a subgraph of G. We shall focus on a family of special
assignments, called pebbling assignments, that preserve this property. If v ∈ G, v 6= t, then
we define the assignment [[v := 1]] to be the assignment defined by first setting the variable
v to 1, and then setting to 1 any variable u for which there is no implicational chain from u
to ⊥ in the resulting clause set. The assignment [[v := 0]] is defined as follows: first, choose
a directed path π = (v, . . . , t) from v to the target t, set all the vertices in the path to 0, and
in addition set any vertex from which v is not reachable, but not in the path π, to 1. The
assignment [[v := 0]] is not uniquely determined by this construction, since it depends on
the path chosen – however, this is not important, since the set of clauses Peb(G)↾ [[v := 0]]
resulting from the restriction is independent of the path. A pebbling assignment results
from a sequence of restrictions of the form [[v := 0]] and [[w := 1]].

The effect of the restrictions just defined can be described directly as an operation on
the underlying graph. If G is a pointed graph, and v ∈ G, v 6= t, G[v := 1] is the graph
resulting from G by first removing v, together with all edges entering or leaving v, and then
restricting the resulting graph to the vertices from which the target vertex t is accessible.
G[v := 0] is the pointed graph G↾ v.

Lemma 5.2.

(1) For b = 0, 1, Peb(G)↾ [[v := b]] = Peb(G[v := b]).
(2) If G is a pointed graph, and v ∈ G, then

♯G ≤ max{♯G[v := 0], ♯G[v := 1] + 1}.

Proof. The first part of the lemma follows straightforwardly from the definitions. For the
second part, we employ the following strategy in the pebble game on G; the strategy is the
same as the one used in Lemma 15 of [4].

First, follow a minimum cost strategy to pebble v in G[v := 0]. Second, leaving a pebble
on v, but removing all other pebbles, follow a minimum cost strategy in the pebbling game
on G[v := 1] to pebble the target vertex in G, using the extra pebble for any moves
where a pebble is needed on v to justify a placement. The cost of this strategy is at most
max{♯G[v := 0], ♯G[v := 1] + 1}.

Example 5.3. If G is the pyramid graph shown in Figure 1, then Peb(G) is the set of
clauses

{a, b, c, d, (a, b → e), (b, c → f), (c, d → g), (e, f → h), (f, g → i), (h, i → ⊥)}.

The assignment [[e := 1]] sets the variables a and e to 1; Peb(G)↾ [[e := 1]] is Peb(G[e := 1])
where G[e := 1] results from G by removing the vertices a and e. If we choose the path
f → h → ⊥, then the assignment [[f := 0]] sets the variables f and h to 0, while the variables
a, d, e, g, i are all set to 1. The set of clauses Peb(G)↾ [[f := 0]] is Peb(G[f := 0]), where
G[f := 0] is the subgraph of G containing only b, c and f .

Lemma 5.4. If G is a pointed graph with n vertices, then Peb(G) has a tree resolution
refutation with size 2n− 1.

WIDTH AND SIZE OF REGULAR RESOLUTION PROOFS 9

a b c d

e f g

h i

Figure 1: A pyramid graph

Proof. Starting with the clause Clause(⊥) associated with the sink of G, construct a se-
quence of purely negative clauses, working from the sink to the sources, by successive
inferences using input resolution. Let C∨¬w be the last clause in the sequence constructed
so far, where w is not a source vertex, and C is purely negative. Resolve C∨¬w against the
clause Clause(w) = (u, v → w) to produce the next purely negative clause in the sequence,
C ∨¬u∨¬v. The sequence must end in a purely negative clause in which all the literals are
of the form ¬s, where s is a source vertex. Now resolve each of these negative literals against
the one-literal positive clauses corresponding to the sources. In this input refutation, each
variable is resolved upon exactly once, so that the refutation has size 2n− 1.

If Σ is a set of clauses, then a C-critical assignment is a total assignment to the variables
in Σ that makes all the clauses true, except C. In the case of Peb(G), we are interested
in a particular family of critical assignments. Let v be a vertex in G, and π = (v, . . . , t) a
directed path in G from v to the target vertex t. Set all the vertices in the path π to 0,
and all other vertices in G to 1. This assignment makes all of the clauses in Peb(G) true,
except for Clause(v). An assignment determined by the path π we shall call a v-critical
assignment, since the clause that it falsifies is associated with the vertex v. Since we have
assumed that G is a pointed graph, such v-critical assignments exist for all the vertices v
in G, so that Peb(G) is minimally inconsistent.

Lemma 5.5. If G is a pointed graph with ♯G = p, then there are at least p vertices v in G
for which there is a v-critical assignment for Peb(G).

Proof. Every pebbling strategy for G must contain a configuration with p pebbles, so there
must be at least p vertices in G. For every vertex in G, we can construct a v-critical
assignment for Peb(G) by choosing a path from v to the target vertex.

10 A. URQUHART

6. Constructing clause sets with large regular width

6.1. The basic construction. To produce clause sets requiring large regular width, we
start from the set of clauses Peb(G), where G is a pointed graph with n vertices. We use
the abbreviation V for the set of variables Var(G), and V p for the set of all sequences of
variables in V of length p.

Let σ be a function from G to V p, that is to say, a function associating a sequence
of length p with every v ∈ G. Thus, for each v ∈ G, we have an associated sequence
σ(v) = σ1(v), . . . , σp(v), where each σj(v) is a variable in V ; the sequence may contain
repetitions. Now for v ∈ G, define the set Clausesσ(v) to be the set of all clauses having
the form

Clause(v) ∨ ±σ1(v) ∨ · · · ∨ ±σp(v),

where ±r, for r ∈ V , is either r or ¬r. Clausesσ(v) contains 2p clauses of width at most
p+ 3. In addition, for A ⊆ G, define

Clausesσ(A) =
⋃

{Clausesσ(v)|v ∈ A}.

The construction just described can be considered as an iteration of the method used to
construct the family of clauses GT ′

n,ρ defined in §3 of [1]. A key difference from the earlier

construction is that the GT ′
n,ρ examples begin from a set of clauses GT ′

n that is hard for
tree resolution (though easy for general resolution), while the present construction begins
from a set of clauses Peb(G) that is easy for tree resolution.

The clause sets that we construct in this section are of the form Clausesσ(G), for G a
pointed graph with n vertices. To ensure that these clause sets require large regular width,
the map σ must satisfy a combinatorial condition that can be stated roughly as follows:
the image of any large set of vertices in G has a large intersection with any large set of
variables. In the next subsection, we give a precise meaning to the term “large,” and prove
the existence of a function σ satisfying the condition, by a probabilistic construction.

For G a pointed graph, and σ a function fromG to V p, define Pebσ(G) to be Clausesσ(G).
Pebσ(G) contains n · 2p clauses of width at most p+ 3. We shall show in what follows that
the sets of clauses Pebσ(G), for an appropriate family of pointed graphs G and functions σ,
require large regular width, but on the other hand have regular tree resolution refutations
whose size is linear in |Pebσ(G)|.

6.2. A combinatorial lemma. In this subsection, we formulate and prove the existence
result described above, by employing a probabilistic construction. If σ ∈ Xk, and B ⊆ X,
then we use the notation σ ∩ B for the set of all elements in the sequence σ that also
belong to the set B; similarly, if S is a set of such sequences, then S ∩ B is defined to be
⋃

{σ ∩B|σ ∈ S}. For A ⊆ G, define σ(A) = {σ(v)|v ∈ A}.

Lemma 6.1. Let G be a pointed graph with n vertices, V = Var(G) the set of variables in
Peb(G), and p = ⌈log5 n⌉.

For any d > 0, and sufficiently large n, there is a map σ from G to V p satisfying the
condition: For all A ⊆ G and B ⊆ V with |A| = |B| = ⌊dn/ log n⌋, |σ(A)∩B| ≥ dn/2 log n.

Proof. Let us associate with each v ∈ G a random subset of V with size p, chosen with re-
placement. That is to say, with each v ∈ G, we associate a sequence σ(v) = σ1(v), . . . , σp(v),

WIDTH AND SIZE OF REGULAR RESOLUTION PROOFS 11

where each variable σj(v) is chosen independently and uniformly at random from the set V
of all variables.

In the first part of the proof, let us consider the sets A and B to be fixed subsets ofG and
V respectively. Define a map σ fromG to V p to be bad for A and B if |σ(A)∩B| ≥ dn/2 log n;
otherwise good for A and B. We begin by proving that for fixed sets A and B, a random
map σ is bad with exponentially small probability.

To prove this bound on the probability, it is convenient to consider the construction of
the map as resulting from a series of independent choices. Divide the sequence 1, . . . , p into
q = ⌊log3 n⌋ blocks, so that each block contains at least Θ(log2 n) integers. That is to say,
the sequence 1, . . . , p can be written as a concatenation τ1τ2, . . . , τq of sequences τj, each of

length at least Θ(log2 n).
Fix a block τj, where 1 ≤ j ≤ q, and define a random variable Z representing the

number of variables in B that are not in the random subset τj(A), that is to say

Z(τj) = |{x ∈ B|x 6∈ τj(A)}|.

We begin by estimating the expected value of Z.
Let B = {b1, b2, . . . , bi, . . . , bm} where m = ⌊dn/ log n⌋. Define an indicator random

variable Θi by:

Θi(τj) =

{

1, if bi 6∈ τj(A)
0, if bi ∈ τj(A),

so that Z = Θ1 + · · ·+Θm. We estimate the expected value of Θi by

E(Θi) ≤

(

1−
1

|V |

)|A|·|τj|

≤

(

1−
1

n− 1

)Θ(n logn)

≤ exp (−Ω (log n)) ,

showing that
E(Z) ≤ m · exp (−Ω (log n)) = m · o(1).

It follows that for any given positive γ, E(Z) < γm, for sufficiently large n. For the
remainder of the proof, we assume that n is chosen sufficiently large so that E(Z) < m/8.

In the second stage of the proof, we need to show that the random variable Z is
tightly concentrated around its mean. To do this, we employ a large deviation bound for
martingales, following [7].

Order the set A as {a1, . . . , am}. The sequence τj(a1), τj(a2), . . . , τj(am) represents a
random subset of variables with size r = m · |τj| = Θ(n log n). Let R be the set of all
sequences in V of length r. For σ ∈ R, and 1 ≤ t ≤ r, define σ↾ t to be the subsequence
σ1, . . . , σt. Define an equivalence relation on R by setting, for ρ, σ ∈ R,

ρ ≡t σ ⇐⇒ ρ↾ t = σ↾ t,

for 1 ≤ t ≤ r, and let ≡0 be the universal relation on R. Let Ft be the finite Boolean
algebra whose atoms are the blocks of the partition of R induced by ≡t, for 0 ≤ t ≤ r; the
sequence F0, . . . ,Fr of Boolean algebras forms a filtration over the set R.

Define a sequence of random variables Z0, . . . , Zr by setting Zt = E(Z|Ft). Then
Z0 = E(Z), Zr = Z, and the sequence Z0, . . . , Zr forms a martingale [8, p. 221], the Doob
martingale associated with the filtration F0, . . . ,Fr. The intuitive picture here is that at

12 A. URQUHART

time 0, we begin with no specific information about a given sequence σ; we learn its values
one by one at each successive time step t, until we have full information about σ at time r.

If ρ and σ are two sequences in R that differ at most at a single point, then |Z(ρ) −
Z(σ)| ≤ 1. In the terminology of Alon and Spencer [2, p. 89], the random variable Z
satisfies the Lipschitz condition relative to the filtration F0, . . . ,Fr. It follows by Theorem
4.1 of Chapter 7 of the monograph by Alon and Spencer [2, p. 90] that |Zt+1 − Zt| ≤ 1.
Consequently, by the martingale tail inequality of Hoeffding and Azuma [8, p. 221] [2, p. 85],

P (Z ≥ m/2) ≤ P (Z − E(Z) > 3m/8)

< exp(−(3m/8)2/2r)

≤ exp(−Ω(n/ log3 n)).

Let W be the random variable representing the number of variables in B not in the
image of A under σ:

W (σ) = |{x ∈ B| x 6∈ σ(A) }|.

Since the maps τ1, . . . , τq are constructed independently, it follows that

P (W ≥ m/2) ≤ [exp(−Ω(n/ log3 n))]q = exp(−Ω(n)).

We can now complete the proof of the existence of a map σ satisfying the condition of
Lemma 6.1. The probability that a random map ρ ∈ R is bad for some A and B is bounded
by

(

n

m

)2

exp(−Ω(n)).

Using the simple inequality
(

n

k

)

≤
(en

k

)k
,

found in Bollobás’s textbook on graph theory [6, p. 216], the binomial coefficient above can
be bounded by

(

n

m

)

≤
(en

m

)m

=
(

eO(log logn)
)O(n/ logn)

= eO(n log logn/ logn).

Hence, the probability can be bounded above by

exp(O(n log log n/ log n)) exp(−Ω(n)) = exp(−Ω(n)).

Consequently, the probability that a random map ρ is bad for some A and B is exponentially
small for sufficiently large n, showing that a map satisfying the condition of the lemma must
exist.

WIDTH AND SIZE OF REGULAR RESOLUTION PROOFS 13

7. Separating regular size and width

Let G be a pointed graph, V the set of vertices in G (other than the sink) and N and p
positive integers. We define a map σ to be good for G, N , and p if it satisfies the condition:
There is a map σ from G into V p so that for any A ⊆ G and B ⊆ V , if |A| = |B| = ⌊N⌋,
then |σ(A) ∩ B| ≥ N/2. Lemma 6.1 states that for any d > 0, given sufficiently large n,
p = ⌈log5 n⌉, and N = dn/ log n, for every pointed graph with n vertices, there is a map σ
that is good for G, N , and p.

This lemma allows to construct a set of examples that have polynomial-size regular
resolution refutations, but large regular width. The construction is based on the following
result of Paul, Tarjan and Celoni.

Theorem 7.1. [9] There is a sequence of binary pointed graphs G1, . . . , Gi, . . . with pebbling
number at least cn(i)/ log n(i), for sufficiently large i, where n(i) = |Gi| = O(i2i), and
c > 1/20.

It should be mentioned that the graphs Hi constructed by Paul, Tarjan and Celoni,
though binary, are not pointed, since they are constructed to have multiple sink nodes.
However, in their main theorem, they show that for sufficiently large i, their graph Hi

contains a sink node that requires cn(i)/ log n(i) pebbles to pebble it, starting from the
empty configuration. Hence, we can construct a pointed graph from Hi by choosing such a
sink node, and considering the subgraph Gi containing all the nodes from which this sink is
accessible. This subgraph Gi still satisfies the condition n(i) = |Gi| = O(i2i), so the main
theorem of Paul, Tarjan and Celoni continues to hold, if we add the qualifier “pointed.”

Lemma 7.2. Let G be a pointed graph with n vertices, and σ a map from G to V p, where

p = ⌈log5 n⌉. Then the set of clauses Pebσ(G) contains n−1 variables and nO(log4 n) clauses,

and has a regular tree refutation with size nO(log4 n).

Proof. By Lemma 5.4, Peb(G) has an input refutation with size at most 2n−1. For a given
vertex v in G, the clause C(v) associated with the vertex can be derived from Clausesσ(v)

by a tree resolution proof with size 2O(log5 n) = nO(log4 n). Consequently, Pebσ(Gi) has a

tree refutation with size O(n) ·nO(log4 n), that is, nO(log4 n). This tree refutation may not be
regular; however, if irregularities are present, it is possible to remove them [11] [12, p. 436]
resulting in a smaller regular tree-style refutation.

Lemma 7.3. Let G be a pointed graph with pebbling number ♯G = N and σ a map that is
good for G, N/2, and p. Then any regular resolution refutation of Pebσ(G) must contain a
clause with width at least N/4.

Proof. We prove the Lemma by showing that the Adversary wins the regular N/4-width
game based on Pebσ(G). The winning strategy has two stages. In the first stage, the
Adversary maintains a pebbling assignment to G; at the start of the game, this assignment is
empty. In the second stage, the Adversary answers according to a fixed v-critical assignment.

Assume that it is the Adversary’s turn, that π is the current pebbling assignment to
the variables V in Pebσ(G), and that x is the variable currently queried by the Prover. The
Adversary answers the current query according to these rules.

(1) If the variable x is already assigned a value by π, then answer the query according to
π;

14 A. URQUHART

(2) If the variable queried is not assigned a value by π, then it must be associated with
a node v ∈ G↾π. Extend π to a pebbling assignment π′ so that π′ contains [[v := b]],
choosing b so as to maximize the pebbling number of G↾π′.

The Adversary continues to play according to these rules until ⌊N/2⌋ nodes in G have been
queried; when this happens, the first stage is completed.

With the first stage completed, let α be the current extended assignment, π the current
pebbling assignment maintained by the Adversary; we assume that it is the Prover’s turn.
By Lemma 5.5, there are at least N/2 vertices v ∈ G↾π for which there is a v-critical
assignment for Peb(G↾π). If φ is such a critical assignment, then π ∪ φ is a v-critical
assignment for Peb(G). Let A be the set of all nodes in G satisfying this condition, and B
the set of variables queried in the game so far. Because |A|, |B| ≥ ⌊N/2⌋, |σ(A)∩B| ≥ N/4,
since σ is good for G, N , and p.

Since the Prover and Adversary are playing the regular N/4-width game, it follows
that |α| < N/4 (since the current assignment after the Adversary’s reply has width |α|+1).
Hence, at least one variable v in σ(A) ∩ B must be forgotten in α. Let φ be a v-critical
assignment for Peb(G); φ is also a v-critical assignment for Pebσ(G). In the second stage of
the strategy, the Adversary answers all queries in accordance with the assignment φ. Since
φ makes all of the clauses in Pebσ(G) true, except for a clause in Clauses(v) containing the
variable v, this strategy results in a win for the Adversary, since the variable v is forgotten,
so the Prover cannot query it again.

Theorem 7.4. There is an infinite sequence Σ1,Σ2, . . . ,Σi, . . . of contradictory sets of
clauses and a corresponding list of parameters n(1), n(2), . . . , n(i), . . . so that (abbreviating
n(i) as n):

(1) Each clause set Σi contains n− 1 variables and nO(log4 n) clauses with width O(log5 n);

(2) Σi has a regular tree refutation with size nO(log4 n);
(3) Any regular refutation of Σi must contain a clause with width Ω(n/ log n).

Proof. Define Σi = Pebσ(Gi), where Gi is one of the sequence of pointed graphs in Theorem
7.1. The theorem follows by Lemmas 6.1, 7.2 and 7.3.

Although the clause sets in Theorem 7.4 have size quasi-polynomial in n, they have
regular tree refutations that are linear in the size of the clause sets themselves. Furthermore,
if we compute the significant quantities in the second part of Theorem 4.2, we find that
if the corresponding theorem held for regular size and width, then regular refutations of
these clause sets would have to have size exponential in n/ log2 n. This shows that the
relations between size and width holding for tree resolution and general resolution cannot
be generalized to the case of regular resolution.

Acknowledgments

I wrote this paper for a five day workshop on proof complexity at the Banff International
Research Station in October 2011. I would like to express my thanks to the organizers,
Sam Buss, Stephen Cook, Antonina Kolokolova, Toni Pitassi and Pavel Pudlák for a most
stimulating workshop, and also to Paul Beame, who, following my talk, pointed out a
computational error in the original version of the paper.

WIDTH AND SIZE OF REGULAR RESOLUTION PROOFS 15

References

[1] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart. An exponential sep-
aration between regular and general resolution. Theory of Computing, 3:81–102, 2007. Preliminary
version in Proceedings of the 34th Annual ACM Symposium on Theory of Computing: May 19-21
2002, Montréal, Québec, Canada.

[2] Noga Alon and Joel H. Spencer. The Probabilistic Method. John Wiley, 1992.
[3] Albert Atserias and Victor Dalmau. A combinatorial characterization of resolution width. Journal of

Computer and System Sciences, 74:323–334, 2008. Preliminary version: 18th IEEE Conference on Com-
putational Complexity, pp. 239-247, 2003.

[4] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation of tree-like and
general resolution. Combinatorica, 24:585–603, 2004. Preliminary version, ECCC TR00-005, 2000.

[5] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow – resolution made simple. Journal of the
Association for Computing Machinery, 48:149–169, 2001. Preliminary version: Proceedings of the 31st
Annual ACM Symposium on Theory of Computing, 1999, pp. 517-526.

[6] Béla Bollobás. Modern Graph Theory. Springer-Verlag, 1998. Graduate Texts in Mathematics 184.
[7] Anil Kamath, Rajeev Motwani, Krishna Palem, and Paul Spirakis. Tail bounds for occupancy and the

satisfiability threshold conjecture. Random Structures and Algorithms, 7:59–80, 1995.
[8] Colin McDiarmid. Concentration. In Michel Habib, Colin McDiarmid, Jorge Ramirez-Alfonsin, and

Bruce Reed, editors, Probabilistic Methods for Algorithmic Discrete Mathematics, pages 195–248.
Springer, 1998. Algorithms and Combinatorics 16.

[9] W.J. Paul, R.E. Tarjan, and J.R. Celoni. Space bounds for a game on graphs. Mathematical Systems

Theory, 10:239–251, 1977.
[10] Jörg Siekmann and Graham Wrightson, editors. Automation of Reasoning. Springer-Verlag, New York,

1983.
[11] G.S. Tseitin. On the complexity of derivation in propositional calculus. In A. O. Slisenko, editor, Studies

in Constructive Mathematics and Mathematical Logic, Part 2, pages 115–125. Consultants Bureau, New
York, 1970. Reprinted in [10], Vol. 2, pp. 466-483.

[12] Alasdair Urquhart. The complexity of propositional proofs. The Bulletin of Symbolic Logic, 1:425–467,
1995.

[13] Alasdair Urquhart. A near-optimal separation of regular and general resolution. SIAM Journal on

Computing, 40:107–121, 2011.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	Introduction
	1. Resolution proofs and their width
	2. Characterization of general resolution width
	3. Characterization of regular resolution width
	4. Size and width of regular resolution proofs
	4.1. The width and size of resolution proofs

	5. Pebbling games and pebbling formulas
	5.1. The pebbling game
	5.2. Pebbling formulas

	6. Constructing clause sets with large regular width
	6.1. The basic construction
	6.2. A combinatorial lemma

	7. Separating regular size and width
	Acknowledgments
	References

