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Abstract. Categorical quantum mechanics exploits the dagger compact closed structure
of finite dimensional Hilbert spaces, and uses the graphical calculus of string diagrams to
facilitate reasoning about finite dimensional processes. A significant portion of quantum
physics, however, involves reasoning about infinite dimensional processes, and it is well-
known that the category of all Hilbert spaces is not compact closed. Thus, a limitation of
using dagger compact closed categories is that one cannot directly accommodate reasoning
about infinite dimensional processes.

A natural categorical generalization of compact closed categories, in which infinite
dimensional spaces can be modelled, is ∗-autonomous categories and, more generally,
linearly distributive categories. This article starts the development of this direction of
generalizing categorical quantum mechanics. An important first step is to establish the
behaviour of the dagger in these more general settings. Thus, these notes simultaneously
develop the categorical semantics of multiplicative dagger linear logic.

The notes end with the definition of a mixed unitary category. It is this structure which
is subsequently used to extend the key features of categorical quantum mechanics.

1. Introduction

Categorical quantum mechanics (CQM), as described in [CK17, HJ19], employs a graphical
calculus for †-compact closed categories (†-KCCs) to study quantum processes within the
†-KCC of finite dimensional Hilbert spaces (FHilb). From a logical perspective, the graphical
calculus is the proof theory of a compact fragment of multiplicative †-linear logic [Dun06].
This programme of CQM was initiated by Abramsky and Coecke’s seminal paper [AC04]
and it has allowed much of the structure of FHilb to be abstracted away and absorbed into
the graphical calculus.

A well-known limitation of compact closed categories, is that, while they model finite
dimensional Hilbert spaces, they do not model infinite dimensional spaces [Heu08]. A
categorical generalization of compact closed categories, in which infinite dimensions spaces
can be modelled, however, is *-autonomous categories. Thus, from a categorical perspective,
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an inviting direction to accommodate infinite dimensional quantum processes is to utilize
these *-autonomous settings as extensions of the compact closed settings of CQM. This
can be taken a step further by generalizing to linearly distributive categories (LDC) in
which the existence of dual objects is not assumed. These linear settings come with a proof
theory – a graphical calculus – so that we need not abandon this key aspect of CQM. They
also provide a natural setting for Frobenius structures (see Egger [Egg10]), thus another
important innovation of CQM can potentially be extended. The downside is that these
linear settings are more complicated as the single tensor product of CQM splits into two
tensor products (the tensor, ⊗, and the “par”, ⊕1).

A first step towards extending CQM from compact closed categories to these linear set-
tings is to understand how the dagger is expressed in ∗-autonomous and linearly distributive
categories. This issue is the main focus of this paper. In CQM, the dagger structure directly
determines the important notion of a unitary isomorphism. As is discussed further below, the
expression of unitary structure in linear settings, is more complicated and leads ultimately
to the introduction of mixed unitary categories (MUCs). A mixed unitary category may
be viewed as an essentially traditional CQM setting extended by a dagger linear setting
in which (potentially) infinite dimensional objects can reside. In our subsequent papers,
[CS19a, CS19b] we show how some fundamental features of CQM can be realized in mixed
unitary categories. In [CS19a] we show, following the ideas in [CH16], that completely
positive maps can be expressed in mixed unitary categories and, in [CS19b], we explore
Frobenius structure and complementarity in the mixed unitary setting.

The problem of extending CQM to include infinite dimensional processes has been
explored in a number of different ways. A fundamental feature of CQM is the replacement
of the notion of an orthonormal basis by the algebraic structure of a special commutative
†-Frobenius algebra. In the category of finite dimensional Hilbert spaces the correspondence
between orthonormal bases and special commutative †-Frobenius algebras is precise [CPV12].
Taking this correspondence as fundamental, Abramsky and Heunen, in [AH12], showed how
Ambrose’s H∗-algebras [Amb45] could be used, in much the same way, to replace orthonormal
bases in infinite dimensional Hilbert spaces. However, there was a cost: they had to move to
semi-Frobenius algebras (that is they had to drop the units from the Frobenius structure)
and to require a special property (which they appropriately called H∗) on the maps from
the unit. Gogoiso and Genovese [GG17] proposed an interesting approach to reinstating the
units using techniques from non-standard analysis [Rob96]. They considered ?Hilb the
category of non-standard separable Hilbert Spaces and linear maps. This they claimed is a
dagger compact closed category, in which, among other things, the semi-Frobenius algebras
of Abramsky and Heunen can be modelled. Furthermore, the units can be reinstated because
formal infinite sums are permitted.

In [CH16], Coecke and Heunen, in order to include infinite dimensional quantum
processes, take the simple step of dropping the requirement of being compact closed and
work in dagger symmetric monoidal categories (†-SMCs). The category of Hilbert spaces is
the prototypical example of a †-SMC. In particular, they show how to build, for an arbitrary
†-SMC, the category of completely positive maps. Of course, it is also possible to consider
special commutative †-Frobenius algebras in an arbitrary †-SMC: although these, for Hilbert
spaces are, of course, just the finite dimensional objects again. In [HR18], Heunen and
Reyes considered a different †-SMC, namely, the category of Hilbert C∗-modules. Its objects

1In the linear logic community the par is often written `.
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can be equivalently viewed as bundles of Hilbert spaces over a locally compact Hausdorff
space. They characterized the special commutative †-Frobenius algebras in this category
as bundles of finite dimensional Hilbert spaces (with dimensions are uniformly bounded).
These objects, while being far from finite, do retain a (uniform) locally finite nature. This
example, by using vector bundles and ideas from differential geometry, enters the domain of
traditional theoretical physics, and serves as a reminder that †-Frobenius algebras are not
only of interest for Hilbert spaces.

The approach taken in this article to the problem of allowing infinite dimensional
objects is different again. We accept CQM and its finite dimensionality as a feature not
a bug. However, we also accept that it is useful to have access to infinite dimensional
structures. Rather than insisting that these infinite dimensional structures are concretely
related to Hilbert spaces, we allow that they may be a system of formal types which extend
an essentially traditional CQM core. A prototypical example of this is provided by the
extension of finite dimensional complex matrices to infinite dimensional “finiteness matrices”
(see Example 3.5.2).

The system of types extending the core are minimally expected to organize themselves
into a linear setting with a dagger, that is, into a dagger linearly distributive category (a
†-LDC). There are various reasons for this expectation. To start with the CQM core with
its dagger involution is already an example of a †-LDC (albeit a “compact” one, that is
one in which the two tensor products, tensor and par, coincide). Formally extending such a
CQM core with (infinite) limits and colimits freely – using the bicompletion of Joyal [Joy95]
– causes the tensor product of the core to separate into two linearly related tensor structures.
These form the tensor, ⊗, and the par, ⊕, of linear logic and of a †-LDC. Extending a setting
to accommodate infinite objects may, dually, be viewed as a process of extracting a core of
“finite objects” from that larger setting. Taking this latter view, suggests that we should
start with a linear setting with a dagger, namely a †-LDC, and extract from it a traditional
CQM core.

At the very outset of such a program, there are some immediate – and perhaps paradigm
breaking – questions to be faced. The most immediate one is the question of what a †-LDC
might be. To answer this question is also to answer the question of what (multiplicative)
“dagger linear logic” is. This article essentially focuses on this question. It lays down the
categorical groundwork for dagger linear logic and, thereby, begins to build a bridge to
CQM.

Recall, following the lead of [AC04, Sel07], that it is now standard in CQM to interpret
the dagger functor as a stationary on objects (A = A†) involution. However, in the setting
of linear logic and LDCs, one expects an involution to flip the tensor and par structure so
that A† ⊗B† = (A⊕B)†. This has the – perhaps uncomfortable – effect of implying that,
in these more general settings, the involution can no longer be viewed as being stationary
on objects. Of course, having started down this road, it seems prudent also to replace
the equality above by a coherent isomorphism λ⊗ : A† ⊗ B† −→ (A ⊕ B)† and indeed the
involution by an isomorphism ιA : A −→ (A†)†.

At this juncture it is perhaps appropriate to acknowledge that these are not new ideas.
Models for quantum mechanics in ∗-autonomous categories are often described as “toy
models” [Abr12] and were, in particular discussed by Pavlovic [Pav11] where some very
similar directions were advocated. Indeed, Egger [Egg11], in initiating the development
of “involutive” categories, was also implicitly suggesting that dagger functors should not
necessarily be regarded as being stationary on objects in these more general settings. Section 4
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is essentially a realization of Egger’s ideas: we have, however, changed his terminology
preferring to talk of “conjugation” rather than “involution” as we think of the contravariant
dagger, ( )†, as an involution. Nonetheless, conjugation and involution are closely related
(see section 4) as in the presence of dualization having conjugation is equivalent to having
an involution.

There are some significant complications attendant on allowing a non-stationary dagger.
The first and foremost amongst these is that one gets inundated by coherence issues. This
article does provide a path through these coherence issues, and, hopefully shows – once one
has assimilated all the structure – that these issues are not nearly as terrible as might be
expected. However, we are forced to concede that they are non-trivial. The next problem,
once the coherences are under control, is that one would like to be able to say what a unitary
isomorphism is with respect to a non-stationary involution. How this may be accomplished
seems, at first glance, less than obvious.

The fact that the dagger functor is an involution with a coherent isomorphism ιA : A
−→ (A†)† makes it natural to view a unitary object as an object with an isomorphism
ϕA : A −→ A†, such that ιA = ϕA(ϕ−1

A )†: we refer to ϕA as the unitary structure of A.
Considering this, with the expected coherent behaviour of this unitary structure, leads one
to realize that, for unitary objects, we must also have A⊗B ' A⊕B. This, in turn, leads
one to ask how this can happen in an LDC. Fortunately, there is a theory which has been
developed for this situation: namely that of LDCs with mix [CS97b, Pav11]. An LDC with
mix has a coherent map, from the par unit to the tensor unit m : ⊥ −→ >, called the mix
map, which, in turn, induces a map mx : A ⊗ B −→ A ⊕ B, called the mixor. In a mix
category we say an object A is in the core [BCS00] in case the mixor for that object with
any other object, mxA,X : A ⊗ X −→ A ⊕ X, is an isomorphism. This allows our earlier
expectation to be expressed as the requirement that unitary objects be in the core. As
†-LDCs with mix play an important role in this development we refer to them as a †-mix
category. If, further, we want our unitary objects to form a compact LDC – that is one
in which the tensor and par structures are equivalent – then the tensor and par structures
must agree at their units, which means we must ask that the mix map, m : ⊥ −→ >, be an
isomorphism. The first milestone of the paper is therefore to collect all this structure into
what we call a †-isomix category.

Amidst the introduction of all this structure, the astute reader may notice that we have
still failed to elucidate how the unitary isomorphisms arise. Let us hasten to correct this
oversight: a unitary isomorphism f : A −→ B is an isomorphism between unitary objects
which is (twisted) natural with respect to the unitary structures, ϕA and ϕB

2, in the sense

2This formulation of unitary isomorphisms is not completely original as a lively discussion of whether
†-categories were “evil” led Peter Lumsdaine to suggest in the math overflow forum [LL15] how they might
be made a little less evil. These ideas never took off, perhaps because it was pointed out by Peter Selinger
that, when one regarded something as evil if it was not preserved by equivalence, then it was impossible for
dagger not to be evil! Here we quite explicitly have “unitary structure” which is of course is not only not
necessarily unique but also will not necessarily be preserved by an equivalence. Thus, like all structure, it is
thoroughly evil!
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that the following diagram is rendered commutative:

A

ϕA
��

f // B

ϕB
��

A† B†
f†

oo

Note that, when the unitary structure is the identity map, we recover the usual notion
of unitary isomorphism. The coherence requirements on unitary structure then have the
pleasing effect of forcing the coherence isomorphisms, for unitary objects, to be unitary
maps.

A unitary category is a †-isomix category in which all objects have a unitary structure.
Unitary categories are necessarily compact LDCs and so are rather special. In fact, we
show that they are †-linearly equivalent to the more standard CQM notion of a †-SMC –
and, furthermore, that a closed unitary category is linearly equivalent to a dagger compact
closed category, †-KCC. One may – with some justification – feel that one has, at this stage,
come full circle as the standard structures from categorical quantum mechanics seem to be
emerging. However, notice that it is our more complex notion of unitary that allows the
extraction of a unitary core from a larger †-isomix category: the larger †-isomix category,
with its possibly infinite dimensional objects, is still available.

A mixed unitary category (MUC) is a strong †-isomix functor M : U −→ C, which has
domain a “small” unitary category (the unitary core) and codomain of a “large” †-isomix
category. A mixed unitary category can be represented schematically as follows:

A
ϕA−−−→
'

A†

Unitary

category
†-isomix

functor

†-isomix

category

B

B†

One may think of the unitary category as acting on the larger category, much as a
field K acts on a K-algebra as scalars. Expressing these categories in this manner allows
an obvious notion of functor as a square of †-Frobenius functors, whose component on the
unitary categories preserves unitary structure, and which commutes up to a linear natural
isomorphism. For any †-isomix category one can build a unitary category by collecting the
“pre-unitary” objects which are in the core. This give a way of generating a mixed unitary
category from a †-isomix category, which we call the unitary construction.

We have provided examples throughout the text. An important example, closely related
to traditional CQM, is the ∗-autonomous category of “finiteness matrices”, FMat(C), over
the complex numbers [Ehr05] (see Example 3.5.2). Here the maps are infinite dimensional
matrices whose support is carefully controlled by the finiteness structure. The dagger on the
category is given by simultaneously transposing and conjugating the matrices: on objects
it is given by taking the dual finiteness space. FMat(C) forms a †-isomix category which,
furthermore, is †-∗-autonomous. An object is in the core if and only if it’s underlying
finiteness space is finite and these objects are also exactly the unitary objects. The unitary
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structure of a finite object in this case is the identity map (so the unitary structure is
“trivial”) – which means that the coherence requirements are immediately satisfied.

Another source of examples (see Example 4.4.2) is from the Chu construction, [Bar06],
where the dualizing object is set to the tensor unit. Considering the Chu construction
over complex vector spaces there is an obvious notion of conjugation which means that
this category forms a †-isomix category. From there one can obtain a non-trivial MUC by
extracting the pre-unitary objects, or, more directly, by using the fact that the category of
Hilbert spaces embeds into this category. To obtain a MUC one must then restrict this last
embedding to the finite dimensional Hilbert spaces.

Notation: Throughout the paper we use diagrammatic order for composition of maps so

fg : A −→ C = A
f−−→ B

g−−→ C. Functors, however, are usually written using applicative
notation so that GF (A) = F (G(A)). We write par, the dual linear logic tensor, as ⊕
throughout. Circuit diagrams should be read from top to bottom (in the same direction as
the pull of gravity).

2. Linearly distributive categories

This section recalls some background concepts from the theory of linearly distributive
categories. The definition of linearly distributive categories is available in [CS97b, BCST96].
Here we briefly recall the definition of linear functors and their transformations [CS99], the
notion of a linear adjoint [CKS00] – which we shall refer to as a linear dual – and the notion
of a mix category and its core [CS97a, BCS00].

2.1. Linearly distributive categories, functors, and transformations. A linearly
distributive category (LDC) is a category, X, with two monoidal structures

(⊗,>, a⊗, uL⊗, uR⊗) and (⊕,⊥, a⊕, uL⊕, uR⊕)

linked by natural transformations called the linear distributors:

∂L : A⊗ (B ⊕ C)→ (A⊗B)⊕ C
∂R : (B ⊕ C)⊗A→ B ⊕ (C ⊗A)

such that the monoidal natural isomorphisms - associators and unitors - interact coherently
with the linear distributors, see [BCST96, CS97b] for more details. A symmetric LDC is an
LDC in which both monoidal structures are symmetric, with symmetry maps c⊗ and c⊕,
such that ∂R = c⊗(1⊗ c⊕)∂L(c⊗ ⊕ 1)c⊕.

LDCs provide categorical semantics for the multiplicative linear logic (MLL). LDCs
come equipped with a graphical calculus [BCST96] that contains the calculus for monoidal
categories.

In this section, we review the fundamentals of the graphical calculus for LDCs. For
detailed exposition, see [BCST96, CS97b]. The following are the generators of LDC circuits:
wires represent objects and circles represent maps. The input wires of a map are tensored
(with ⊗), and the output wires are “par”ed (with ⊕). The following diagram represents a
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map f : A⊗B −→ C ⊕D.

f

A B

C D

f : A⊕B −→ C ⊗D

The ⊗-associator, the ⊕-associator, the left linear distributor, and the right linear
distributors are, respectively, drawn as follows:

(a)

A⊗ (B ⊗ C)

(A⊗B)⊗ C

A⊗B
C

B ⊗ CA

(b)

A⊕ (B ⊕ C)

(A⊕B)⊕ C

A

B ⊕ C

B

C

A

(c)

A⊗ (B ⊕ C)

A

B ⊕ C

B

C

A⊗B

(A⊗B)⊕ C

(d)

(A⊕B)⊕ C

C

A⊕B

B

A

B ⊗ C

A⊕ (B ⊗ C)

is the ⊕-introduction rule, is ⊗-introduction rule, is the ⊗-elimination rule,

is the ⊕-elimination rule.

The unitors are drawn as follows:

(a)

>

A

(uL⊗)−1 : A −→ >⊗A

(b)

>
A

uL⊗ : >⊗A −→ A

(c) ⊥

A

(uL⊕)−1 : A −→ ⊥⊕A

(d)
⊥ A

uL⊕ : ⊥⊕A −→ A

Diagram (a) is called the left >-introduction, (b) is called the left >-elimination, (c) is
the left ⊥-introduction, and (d) is the left ⊥-elimination. The unit > is introduced, and the
counit ⊥ is eliminated using the thinning links which are shown using dotted wires in the
diagrams.

The following are a set of circuit equalities (which when oriented become reduction
rewrite rules):

>
A

>

= A ⊥ A

⊥

= A

A B

A B

=

A B

A B

A B

A B

=

A B

A B

The following are also circuit equalities (and when oriented become expansion rules):

=
A⊗B =

A⊕B

>

> = >

⊥

⊥ = ⊥

As in linear logic, not all circuit diagrams constructed from these basic components
represent a valid LDC circuit. In his seminal paper on linear logic, [Gir87], Girard introduced
a criterion for the correctness of his representation of proofs using proof nets based on
switching links. A valid proof structure must be connected and acyclic for all the switching
link choices. Using this correctness criterion has the disadvantage of requiring exponential
time in the number of switching links. Danos and Regnier [DR89] improved this situation
significantly by providing an algorithm for correctness which takes linear time (see [Gue99])
on the size of the circuit. To verify the validity of the circuit diagrams of LDCs, Blute
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et.al. [BCST96], provided a boxing algorithm which was based on Danos and Regnier’s
more efficient algorithm which we now describe.

In order to verify that an LDC circuit is valid, circuit components are “boxed” using
the below rules. The primitive generating maps are automatically boxed.

(a1) ⇒ (a2) ⇒ (b1) ⇒ (b2) ⇒

(c) ⇒ (d1)
⊥

⇒ (d2)

⊥

⇒ (d3) ⇒

(e1)
>

⇒ (e2)
>

⇒ (e3)
>
⇒ (e4)

>

⇒

Double lines refer to multiple number of wires. ⊗-introduction and ⊕-elimination are
boxed in (a1) and (a2) respectively. In (b1), it is shown how a box ‘eats’ the ⊗-elimination:
in (b2) the dual rule shows a ⊕-introduction being eaten. (c) shows how boxes can be
amalgamated when they are connected by a single wire. In (e1)-(e4), it is shown how the
thinning links can be boxed. By progressively enclosing the components of the circuit in
boxes using these rules, if we end up with a single box (or a wire), precisely when the circuit
is valid.

As an example, we verify the validity of the left linear distributor:

a1,a2⇒ c⇒ b1,b2⇒

In the firts step the ⊗-introduction and ⊕-elimination are boxed. In the second step the
boxes are amalgamated along the single wire joining them. In the third step, the box absorbs
the ⊗-elimination and ⊕-introduction.

In contrast, we now show that the reverse of the linear distributor is invalid as the
boxing process gets stuck:

a1,a2⇒

Before presenting the definition of linear functors, we briefly recall the definition of
monoidal functors. A functor F : X −→ Y between monoidal categories is a monoidal functor
if it is equipped with natural transformations m⊗ : F (A)⊗ F (B) −→ F (A⊗B) and mI : I
−→ F (I) such that the following diagrams commute:
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(F (A)⊗ F (B))⊗ F (C)

a⊗
��

m⊗⊗1 // F (A⊗B)⊗ F (C)
m⊗ // F ((A⊗B)⊗ C)

F (a⊗)

��
F (A)⊗ (F (B)⊗ F (C))

1⊗m⊗
// F (A)⊗ F (B ⊗ C) m⊗

// F (A⊗ (B ⊗ C))

F (A)⊗ I
uR⊗

++

1⊗mI

��
F (A)⊗ F (I) m⊗

// F (A⊗ I)
F (uL⊗)

// F (A)

I ⊗ F (A)
uL⊗

++

mI⊗1

��
F (I)⊗ F (A) m⊗

// F (I ⊗A)
F (uL⊗)

// F (A)

The first diagram for the monoidal functor is the associative law, and the other two
diagrams are the right and the left unit laws respectively.

Definition 2.1. [CS99, Definition 1] Given linearly distributive categories X and Y, a linear
functor F : X −→ Y consists of

(i) a pair of functors F = (F⊗, F⊕): (F⊗,m⊗,m>) which is monoidal with respect to ⊗
and (F⊕, n⊕, n⊥) which is comonoidal with respect to ⊕. We refer to m⊗ and n⊕ as
tensor laxors, and m> and n⊥ as unit laxors.

(ii) natural transformations:

νR⊗ : F⊗(A⊕B) −→ F⊕(A)⊕ F⊗(B)

νL⊗ : F⊗(A⊕B) −→ F⊗(A)⊕ F⊕(B)

νR⊕ : F⊗(A)⊗ F⊕(B) −→ F⊕(A⊗B)

νL⊕ : F⊕(A)⊗ F⊗(B) −→ F⊕(A⊗B)

such that the following coherence conditions hold:

[LF.1] (a) F⊗(uL⊕) = νR⊗(n⊥ ⊕ 1)uL⊕

F⊗(⊥⊕A)
F⊗(uL⊕)

//

νR⊗
��

F⊗(A)

F⊕(⊥)⊕ F⊗(A)
n⊥⊕1

// ⊥⊕ F⊗(A)

uL⊕

OO

(b) νL⊗(1⊕ n⊥)uR⊕ = F⊗(uR⊕)

(c) (uL⊗)−1(m> ⊗ 1)νR⊕ = F⊕((uL⊗)−1)

(d) (uR⊗)−1(m> ⊗ 1)νL⊕ = F⊕((uR⊗)−1)
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[LF.2] (a) F⊗(a⊕)νR⊗(1⊕ νR⊗) = νR⊗(n⊕ ⊕ 1)a⊕

F⊗((A⊕B)⊕ C)
F⊗(a⊕) //F⊗(a⊕) //

νR⊗
��

F⊗(A⊕ (B ⊕ C))

νR⊗
��

F⊕(A⊕B)⊕ F⊗(C)

n⊕⊕1

��

F⊕(A)⊕ F⊗(B ⊕ C)

1⊕νR⊗
��

(F⊕(A)⊕ F⊕(B))⊕ F⊗(C) a⊕
// F⊕(A)⊕ (F⊕(B)⊕ F⊕(C))

(b) F⊗(a⊕)νL⊗(1⊕ n⊕) = νL⊕(νL ⊕ 1)a⊕
(c) (m⊗ ⊗ 1)νR⊕F⊕(a⊗) = a⊗(1⊗ νR⊕)νR⊕
(d) (νR⊕ ⊗ 1)νL⊕F⊕(a⊗) = a⊗(1⊗m⊗)νL⊕

[LF.3] (a) F⊗(a⊕)νR⊗(1⊕ νL⊗) = νL⊗(νR⊗ ⊕ 1)a⊕

F⊗((A⊕B)⊕ C)
F⊗(a⊕) //

νL⊗
��

F⊗(A⊕ (B ⊕ C))

νR⊗
��

F⊗(A⊕B)⊕ F⊕(C)

νR⊗⊕1

��

F⊕(A)⊕ F⊗(B ⊕ C)

1⊕νL⊗
��

(F⊕(A)⊕ F⊗(B))⊕ F⊕(C) a⊕
// F⊕(A)⊕ (F⊗(B)⊕ F⊕(C))

(b) (νR⊕ ⊗ 1)νL⊕F⊕(a⊗) = a⊗(1⊗ νL⊕)νR⊕
[LF.4] (a) (1⊗ νR⊗)∂L(νR⊕ ⊕ 1) = m⊗F⊗(∂L)νR⊗

F⊗(A)⊗ F⊗(B ⊕ C)
1⊗νR⊗//

m⊗
��

F⊗(A)⊗ (F⊕(B)⊕ F⊗(C))

∂L

��
F⊗(A⊗ (B ⊕ C))

F⊗(∂L)
��

(F⊗(A)⊗ F⊕(B))⊕ F⊗(C)

νR⊕⊕1

��
F⊗((A⊗B)⊕ C)

νR⊗

// F⊕(A⊕B)⊕ F⊗(C)

(b) (νL⊗ ⊗ 1)∂R(1⊕ νL⊕) = m⊗F⊗(∂R)νL⊗
(c) (1⊗ νL⊗)∂L(νL⊕ ⊕ 1) = νL⊕F⊕(∂L)n⊕
(d) (νR⊗ ⊗ 1)∂R(1⊕ νR⊕) = νR⊕F⊕(∂R)n⊕
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[LF.5] (a) (1⊗ νL⊗)∂L(m⊗ ⊕ 1) = m⊗F⊗(∂L)νL⊗

F⊗(A)⊗ F⊗(B ⊕ C)
1⊗νL⊗//

m⊗
��

F⊗(A)⊗ (F⊗(B)⊕ F⊕(C))

∂L

��
F⊗(A⊗ (B ⊕ C))

F⊗(∂L)
��

(F⊗(A)⊗ F⊗(B))⊕ F⊕(C)

m⊗⊕1

��
F⊗((A⊗B)⊕ C)

νL⊗

// F⊗(A⊗B)⊕ F⊕(C)

(b) (νR⊗ ⊗ 1)∂R(1⊕m⊗) = m⊗F⊗(∂R)νR⊗
(c) (1⊗ n⊕)∂L(νR⊕ ⊕ 1) = νR⊕F⊕(∂L)n⊕
(d) (n⊕ ⊗ 1)∂R(1⊕ νL⊕) = νL⊕F⊕(∂R)n⊕

In the graphical calculus, functors are represented by linear functor boxes [CS99]. A
linear functor box can be monoidal or comonoidal. When the functor box is monoidal (F⊗),
it has one principal output wire (represented by a port where the wire exits the box) and
the other wires are auxiliary. When the box is comonoidal (F⊕), it has one principal input
wire with a port and the other wires are auxiliary. The functor boxes are subject to a very
natural “box eats box” calculus described in [CS99]. A box can eat another box only when
a ported wire meets an auxiliary wire.

The linear strengths are drawn in the graphical calculus as follows:

νL⊕ =

F⊕(A) F⊗(B)

F⊕(A⊗B)

F νR⊕ =

F⊗(A) F⊕(B)

F⊕(A⊗B)

F νL⊗ =

F⊗(A) F⊕(B)

F⊗(A⊕B)

F νR⊗ =

F⊕(A) F⊗(B)

F⊗(A⊕B)

F

m⊗ =

F⊗(A) F⊗(B)

F⊗(A⊗B)

F m> =
>

> =
>

>

n⊕ =

F⊕(A) F⊕(B)

F⊕(A⊕B)

F n⊥ = ⊥
⊥

= ⊥
⊥

When working in the categorical doctrine of symmetric LDCs we will expect the linear
functors to preserve the symmetry. Thus, a symmetric linear functor is a linear functor
F = (F⊗, F⊕) which satisfies in addition:

F⊗(A)⊗ F⊗(B)

c⊗
��

m⊗ // F⊗(A⊗B)

F⊗(c⊗)

��
F⊗(B)⊗ F⊗(A) m⊗

// F⊗(B ⊗A)

F⊕(A⊕B)

F⊕(c⊕)

��

n⊗ // F⊕(A)⊕ F⊕(B)

c⊕
��

F⊕(B ⊗A) n⊕
// F⊕(B)⊕ F⊕(A)

Natural transformations between linear functors also break into two components linking
respectively the tensor functors and, in the opposite direction, the par functors:
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Definition 2.2. [CS99, Definition 3] A linear (natural) transformation, α : F −→ G,
between parallel linear functors F,G : X −→ Y consists of a pair of natural transformations
α = (α⊗, α⊕) such that α⊗ : F⊗ −→ G⊗ is a monoidal transformation and α⊕ : G⊕ −→ F⊕ is
a comonoidal transformation satisfying the following coherence conditions:

[LT.1] a⊗ν
R
⊗(a⊕ ⊕ 1) = νR⊗(1⊕ a⊗)

F⊗(A⊕B)
α⊗ //

νR⊗
��

G⊗(A⊕B)

νR⊗
��

F⊕(A)⊕ F⊗(B)

1⊕α⊗ ))

G⊕(A)⊕G⊗(B)

α⊕⊕1uu
F⊕(A)⊕G⊗(B)

[LT.2] α⊗ν
L
⊗(1⊕ α⊕) = νL⊗(α⊗ ⊕ 1)

[LT.3] (1⊗ α⊗)νL⊕(α⊕) = (α⊕ ⊗ 1)νL⊕
[LT.4] (α⊗ ⊗ 1)νR⊕α⊕ = (1⊗ α⊕)νR⊕

Conditions [LT.1] - [LT.4] are represented graphically as follows:

[LT.1]
α⊗

F
=

α⊕

α⊗

G [LT.2]
α⊗

F
=

α⊕

α⊗

G [LT.3]

α⊕

F =

α⊗

α⊕

F

[LT.4]

α⊕

G =

α⊗

α⊕

F

An adjunction of linear functors, (η, ε) : F a G is an adjunction in the usual sense
(i.e. satisfying the triangle equalities) in the 2-category of LDCs with linear functors and
linear natural transformations. In particular, such an adjunction yields a pair of adjunctions:
(η⊗, ε⊗) : F⊗ a G⊗ which is a monoidal adjunction, and (ε⊕, η⊕) : G⊕ a F⊕ which is
a comonoidal adjunction. By Kelly’s results [Kel74], a functor with a right adjoint is
comonoidal if and only if its right adjoint is monoidal. This leads to the observation that:

Lemma 2.3. If (η, ε) : F aa G is an adjunction of linear functors, then F⊗ is iso-monoidal
(or strong) with respect to ⊗ and F⊕ is iso-comonoidal making the linear functor F strong.

Proof. Since (η⊗, ε⊗) : F⊗ a G⊗ is a monoidal adjunction, the left adjoint (F⊗,m⊗,m>) is
a strong monoidal functor. Similarly, since (ε⊕, η⊕) : G⊕ a F⊕ is a comonoidal adjunction,
the right adjoint (F⊕, n⊕, n⊥) is a strong comonoidal functor.

A linear equivalence is a linear adjunction in which the unit and counit are linear
natural isomorphisms.

2.2. Mix categories. In this paper we shall be predominately concerned with LDCs which
have a mix map:
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Definition 2.4. [CS97a] An LDC is a mix category in case there is a mix map m : ⊥
−→ > in X such that:

A⊗B
1⊗uL−1

⊕ //

(uR⊕)−1⊗1

�� mxA,B

))

A⊗ (⊥⊕B)
1⊗(m⊕1) // A⊗ (>⊕B)

∂L

��
(A⊕⊥)⊗B

∂R

��

(A⊗>)⊕B

uR⊗⊕1

��
A⊕ (⊥⊗B)

1⊕(m⊗1)
// A⊕ (>⊗B)

1⊕uL⊗
// A⊕B

The map mxA,B is natural and is called the mixor. The coherence condition for the
mix map has the following form in string diagrams (where the mix map is represented by an
empty box):

mxA,B :=
⊥

>

=
⊥

>

In a mix category, the associator, the distributor and the mix maps interact as follows.
See Lemma 2, and proposition 3 in [BCS00] for a proof.

[mix.] (A⊕B)⊗ C δR //

mx

��
(a)

A⊕ (B ⊗ C)

1⊕mx
��

(A⊕B)⊕ C a⊕
// A⊕ (B ⊕ C)

(A⊗B)⊗ C mx //

a⊗
��

(b)

A⊕ (B ⊗ C)
OO

δL

A⊗ (B ⊗ C)
1⊗mx

// A⊗ (B ⊕ C)

C ⊗ (A⊕B)
δL //

mx

��
(c)

(C ⊗A)⊕B

mx⊕1
��

C ⊕ (A⊕B)
a−1
⊕

// (C ⊕A)⊕B

A⊗ (B ⊗ C)
mx //

a−1
⊗
��

(d)

A⊕ (B ⊗ C)
OO

δR

(A⊗B)⊗ C
mx⊗1

// (A⊕B)⊗ C

There are many examples of mix categories including Coherence spaces [Gir87], and
Finiteness spaces [Ehr05].

When the mix map m is an isomorphism, then X is said to be an isomix category.
Recall that, when m is an isomorphism, the coherence requirement for the mixor is automat-
ically satisfied (see [CS97a, Lemma 6.6]). Finiteness spaces [Ehr05] and Chu Spaces [Bar06]
provide examples of isomix categories.

An isomix category, (X,⊗,⊕) always has two linear functors Mx↓ : (X,⊗,⊗) −→ (X,⊗,⊕)
and Mx↑ : (X,⊕,⊕) −→ (X,⊗,⊕) given by the identity functor, that is (Mx↑)⊗ = (Mx↑)⊕ =
Id = (Mx↓)⊗ = (Mx↓)⊕. The linear strengths and monoidal maps are given by the inverse of
the mix map and the mixor. These mix functors take the degenerate linear structure on the
tensor (respectively the par) and spread it out over both the tensor structures.
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Lemma 2.5. For any isomix category X the functors Mx↓ : (X,⊗,⊗) −→ (X,⊗,⊕) and
Mx↑ : (X,⊕,⊕) −→ (X,⊗,⊕) are linear functors.

Proof. We show that Mx↓ : (X,⊗,⊗) −→ (X,⊗,⊕) is a linear functor: the monoidal and
comonoidal components of the functor are given by (1, 1, 1) and (1,mx,m−1) respectively. The
linear strenghts are νL⊗ = νR⊗ : A⊗B −→ A⊕B := mx and νL⊕ = νR⊕ : A⊕B −→ A⊕B := 1.

First we show (1,mx,m−1) : (X,⊗,⊗) −→ (X,⊗,⊕) is a monoidal functor:

• The associative law for monoidal functors, (mx⊗ 1) mx a⊕ = a⊗ (1⊗mx) mx, is satisfied:

= =

• The unit laws for monoidal functors hold. Here is the pictorial proof of (1⊗m−1)mx =
uL⊗(uL⊕)−1, where the filled rectangles represent m−1:

=

>

⊥

⊥

=

>

⊥

⊥

=

>

⊥

The other unit law holds similarly.

Mx↓ : (X,⊗,⊗) −→ (X,⊗,⊕) satisfies all the coherence requirements of a linear functor:
[LF.1], [LF.2], and [LF.3] hold because (Mx↓)⊗ and (Mx↓)⊕ are monoidal and comonoidal

respectively, [LF.4](a) becomes mxa−1
⊕ = ∂L(mx⊕ 1) and holds because:

= =

[LF.4] (b) - (d) and [LF.5] (a) - (d) are satisfied similarly.
Thus, Mx↓ is a linear functor.
The proof that Mx↑ is a linear functor is (linearly) dual.

In fact, these linear functors and are examples of isomix Frobenius functors, which we
shall introduce formally in the Section 3.1.

2.3. Compact LDCs. A compact LDC is an isomix category in which each mixor mxA,B
is an isomorphism. An important way in which compact LDCs arise is from the “core” of
an isomix category:
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Definition 2.6. [BCS00] The core of a mix category, Core(X) ⊆ X, is the full subcategory
with objects U such that the mixors

U ⊗ ( )
mxU,( )−−−−−→ U ⊕ ( ) and ( )⊗ U

mx( ),U−−−−−→ ( )⊕ U
are isomorphisms.

Proposition 2.7. [BCS00, Proposition 3] If X is a mix-LDC and A,B ∈ Core(X) then A⊕B
and A⊗B ∈ Core(X) (and A⊕B ' A⊗B). If X is an isomix-LDC, then >,⊥ ∈ Core(X).

Corollary 2.8. When X is a compact LDC, the mix functors, Mx↓ and Mx↑, are linear
isomorphisms. Consequently, compact LDCs are linearly equivalent to monoidal categories.

We shall denote the inverse of Mx↓ by Mx∗↓ : (X,⊗,⊕) −→ (X,⊕,⊕): this is the identity
functor as a mere functor, strict on the par structure, and on the tensor structure having as
the unit laxor m and as the tensor laxor mx−1. Similarly, we shall denote the inverse of Mx↑
by Mx∗↑.

2.4. Linear duals. A key notion in the theory of LDCs is the notion of a linear adjoint
[CKS00]. Here we shall refer to linear adjoints as “linear duals” in order to avoid any
confusion with an adjunction of linear functors.

Definition 2.9. Suppose X is a LDC and A,B ∈ X, then B is left linear dual (or left
linear adjoint) to A – or A is right linear dual (right linear adjoint) to B – written
(η, ε) : B aa A, if there exists η : > → B ⊕ A and ε : A ⊗ B → ⊥ such that the following
diagrams commute:

B
(uL⊗)−1

// >⊗B
η⊗1// (B ⊕A)⊗B

∂R
��

B B ⊕⊥
uR⊕

oo B ⊕ (A⊗B)
1⊕ε

oo

A
(uR⊗)−1

// A⊗>
1⊗η// A⊗ (B ⊕A)

∂L
��

A ⊥⊕A
uL⊕

oo (A⊗B)⊕A
ε⊕1

oo

The commuting diagrams are called often referred to as “snake diagrams” because of
their shape when drawn in string calculus:

η

ε

B

B

=
ε

η
A

A

=

Lemma 2.10. [BCS00]

(i) In an LDC if (η, ε) : B aa A and (η′, ε′) : C aa A, then B and C are isomorphic;
(ii) In a symmetric LDC (η, ε) : B aa A if and only if (ηc⊕, c⊗ε) : A aa B;
(iii) In a mix-LDC if B ∈ Core(X) and B aa A, then A ∈ Core(X).

Lemma 2.11. [CKS00] Linear functors preserve linear duals: when F : X −→ Y is a linear
functor and (η, ε) : A aa B ∈ X, then F⊗(A) aa F⊕(B) and F⊕(A) aa F⊗(B).

Proof. The unit and counit of the adjunction (η′, ε′) : F⊗(A) aa F⊕(B) is given as follows:

η′ := > m>−−→ F⊗(>)
F⊗(η)−−−−→ F⊗(A⊕B)

νL⊗−−→ F⊗(A)⊕ F⊕(B) = η

>
F
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ε′ := F⊕(B)⊗ F⊗(A)
νL⊕−−→ F⊕(B ⊗A)

F⊕(ε)−−−→ F⊕(⊥)
n⊥−−→ ⊥ = ε

⊥
F

The unit and counit of the other adjunction is given similarly, however using the right
linear strengths (νR⊗ and νR⊕).

An LDC in which every object has a chosen left and right linear dual, respectively
(η∗, ε∗) : A∗ aa A and (∗η, ∗ε) : A aa ∗A, is a ∗-autonomous category. In the symmetric
case a left linear dual gives a right linear dual using the symmetry: thus, it is standard to
assume the existence of just the left dual with the right being the same object with the unit
and counit given by symmetry (as above).

Just as compact LDCs are linearly equivalent to monoidal categories so compact ∗-
autonomous categories are linearly equivalent to compact closed categories. The equivalence
is given by Mx↑ which spreads the par onto two tensor structures (or, indeed, by Mx↓ which
shows how to spread out a compact closed structure on the tensor).

In a symmetric ∗-autonomous category the left dual of an object is always canonically
isomorphic to the right dual. Moreover, even in non-symmetric ∗-autonomous categories, it
is often the case that the two duals are coherently isomorphic:

Definition 2.12. [EM12] A cyclor in a ∗-autonomous category (X,⊗,>,⊕,⊥, ∗( ), ( )∗)

is a natural isomorphism A∗
ψ−−→ ∗A satisfying the following coherence conditions:

⊥∗
ψ //

m−1
>   

[C.1]

∗⊥

m−1
>}}

>

A
η

zz

η

$$
[C.2]

(∗A)∗
ψ∗
// (A∗)∗

ψA∗
// ∗(A∗)

>∗
ψ //

n⊥   
[C.3]

∗>

n⊥}}
⊥

(A⊗B)∗
ψ //

n⊕
��

[C.4]

∗(A⊗B)

n⊕

��
(B∗ ⊕A∗)

ψ⊕ψ
// ∗B ⊕ ∗A

(A⊕B)∗
ψ //

m−1
⊗
��

[C.5]

∗(A⊕B)

m−1
⊗

��
(B∗ ⊗A∗)

ψ⊗ψ
// ∗B ⊗ ∗A

A ∗-autonomous category with a cyclor is said to be cyclic.

In [C.2], η : A −→ (∗A)∗ is drawn as follows:

A

(∗A)∗

(∗A)∗ . The map η : A −→ ∗(A∗) is

given similarly.
The coherence conditions are not independent of each other: being cyclic is equivalent

to any one of the following four pairs of conditions: ([C.1], [C.5]), ([C.2], [C.5]), ([C.4],
[C.2]) and ([C.4], [C.3]) (see [EM12]).

Condition [C.2] which is used extensively in Section 4:

ψA∗ ψA

η∗

∗ε

A∗∗

∗(A∗)

A∗

∗A

A

=

∗η

ε∗ ∗(A∗)

A∗

A
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The requirement [C.2] implies:

[C.2]−1 ψ−1
A ψ−1

A∗

ε∗

∗η

A∗∗A∗

∗(A∗)

∗A

A

=

 ψA∗ ψA

η∗

∗ε

A∗∗

∗(A∗)

A∗

∗A

A


−1

=


∗η

ε∗ ∗(A∗)

A∗

A

−1

=

η∗

∗ε

∗(A∗)

A∗

A

Symmetric ∗-autonomous categories always have a canonical cyclor:

∗η

ε∗

A∗

∗A

We shall use the cyclor in Section 4 to show how conjugation and dagger are related in
the presence of dualization.

3. Frobenius functors and daggers

We shall be interested here in linear functors between LDCs called Frobenius functors which
come in various flavours, including mix functors and isomix functors, as illustrated in Figure
1. These functors are directly related to the Frobenius monoidal functors of [DP08] and they
are referred to as degenerate linear functors in [BPS12]. Furthermore, we have already seen
two rather basic examples, namely, Mx↑ and Mx↓.

Linear functors

Frobenius functors

Mix functors

Isomix functors
(Normal functors)

m>F (m−1)n⊥ = m−1

n⊥mm> = F (m)

F⊗ = F⊕;m⊗ = νL⊕ = νR⊕ ;n⊕ = νL⊗ = νR⊗

cyclic functors

symmetric functors

Figure 1: Linear functor family

Frobenius functors preserve linear duals and with an additional coherence condition
they preserve the mix map. The coherence requirements for a dagger on an LDC are implied
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by requiring that the dagger functor be a Frobenius involutive equivalence. Once the dagger
is understood we can consider †-mix categories and their functors which we shall take to
be mix Frobenius functors with a further requirement concerning the preservation of the
dagger.

3.1. Frobenius functors.

Definition 3.1. A Frobenius functor is a linear functor F such that:

[FLF.1] F⊗ = F⊕
[FLF.2] m⊗ = νR⊕ = νL⊕
[FLF.3] n⊕ = νL⊗ = νR⊗

The left and right linear strengths of ⊗ and ⊕ coinciding with the m⊗ and n⊕ respectively
means that in the diagrammatic calculus, ports can be moved around freely:

F⊕(A) F⊗(B)

F⊕(A⊗B)

F =

F⊗(A) F⊕(B)

F⊕(A⊗B)

F =

F⊗(A) F⊗(B)

F⊗(A⊗B)

F

F⊗(A) F⊕(B)

F⊗(A⊕B)

F =

F⊕(A) F⊗(B)

F⊗(A⊕B)

F =

F⊕(A) F⊕(B)

F⊕(A⊕B)

F

νL⊕ = νR⊕ = m⊗ ν
L
⊗ = νR⊗ = n⊕

This implies that the ports can be omitted in the circuits.
A Frobenius functor is symmetric if as a linear functor it preserves the symmetries of

the tensor and par.

Lemma 3.2. Suppose X and Y are LDCs. The following are equivalent:

(a) F : X −→ Y is a Frobenius linear functor.
(b) F is ⊗-monoidal and ⊕-comonoidal such that

F (A)⊗ F (B ⊕ C)
1⊗n⊕//

m⊗
��

[F.1]

F (A)⊗ (F (B)⊕ F (C))

∂L

��
F (A⊗ (B ⊕ C))

F (∂L)
��

(F (A)⊗ F (B))⊕ F (C)

m⊗⊕1

��
F ((A⊕B)⊕ C) n⊕

// F (A⊕B)⊕ F (C)

F (A⊕B)⊗ F (C)
n⊕⊗1//

m⊗
��

[F.2]

(F (A)⊕ F (B))⊗ F (C)

∂R

��
F ((A⊕B)⊗ C)

F (∂R)
��

F (A)⊕ (F (B)⊗ F (C))

1⊕m⊗
��

F (A⊕ (B ⊗ C)) n⊕
// F (A)⊕ F (B ⊗ C)

Proof. For (a)⇒(b), fix F := F⊗ = F⊕, then F is ⊗-monoidal and ⊕-comonoidal. Conditions
[F.1] and [F.2] are given by [LF.5]-(a) and [LF.5]-(b). For the other direction, define
F⊗ = F⊕ := F . Then it is straightforward to check that all the axioms of Frobenius linear
functors are satisfied by (F⊗, F⊕).



Vol. 17:4 DAGGER LINEAR LOGIC FOR CATEGORICAL QUANTUM MECHANICS 8:19

Conditions [F.1] and [F.2] in Lemma 3.2 are diagrammatically represented as follows:

[F.1]
F

=

F

F
[F.2]

F

= F

F

Frobenius functors compose: the composition is defined as the usual composition of
linear functors [CS97b].

It is immediate from Lemma 2.11 that Frobenius functors preserve linear duals. In fact
if F : X −→ Y is a Frobenius functor and A aa B is a linear dual, as the duals F⊗(A) aa F⊕(B)
and F⊕(A) aa F⊗(B) now coincide, we just obtain the one dual F (A) aa F (B). In the case
when the Frobenius functor is between cyclic ∗-autonomous categories we expect the functor
to be cyclor-preserving in the following sense:

[CFF] F (X∗)

∼=
��

F (ψ) // F ( ∗X)

∼=
��

F (X)∗
ψ

// ∗F (X)

where the left and right vertical arrows are respectively the maps:

(uR⊗)−1(η ∗ ⊗1)∂R(1⊕ (mF
⊗F (ε∗)nF⊥))uR⊕ and (uR)−1(1⊗ ∗η)∂L(mF

⊗ ⊕ 1)((F (∗ε)nF⊥)⊕ 1)uL⊕

The cyclor preserving condition may be pictorially represented as follows:

ψ

F

F (X∗)

X∗

ε∗

X

η∗

F (X)∗

∗F (X)

=
F

F (X∗)

∗X

∗ε

X

∗η

∗F (X)

ψ

Lemma 3.3. Suppose F is a cyclor preserving Frobenius linear functor, then

F

F (X)

∗ε

ψ

ψ

η∗

X

∗X

X∗

F (X∗)

F (X∗)∗

∗F (X∗)

=

F (X)

X

F

∗F (X∗)

∗η

ε∗
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Proof.

F

F (X)

∗ε

ψ

ψ

η∗

X

∗X

X∗

F (X∗)

F (X∗)∗

∗F (X∗)

=

F

F (X)

∗ε

ψ

ψ

η∗

X

∗X

X∗

F (X∗)

F (X∗)∗

∗F (X∗)

η∗

ε∗

=

F

F (X)

∗ε

ψ

ψ

η∗ X

∗X

X∗

F (X∗)

F (X∗)∗

∗F (X∗)

η∗

ε∗

F

[CFF]
=

F (X)

∗ε

ψ
X

∗X

X∗

η∗

F

ε∗ ∗F (X∗)

∗η

ψ

F

=

F (X)

∗ε

ψ
X

∗X

X∗

η∗

F

∗ε ∗F (X∗)

∗η

ψ

F

F ([C.2])
=

F (X)

X

F

∗ε ∗F (X∗)

∗η

F

ε∗

∗η

=

F (X)

X

F

∗F (X∗)

∗η

ε∗

Definition 3.4. Suppose X and Y are mix categories. F : X −→ Y is a mix functor if it is
a Frobenius functor such that

[mix-FF] F (⊥)

F (m)

88
n⊥ // ⊥ m // > m> // F (>)

This is diagrammatically represented as follows:

⊥ ⊥

>

>

=

⊥

>

F

Lemma 3.5. Mix functors preserve the mix map:

F (A)⊗ F (B)
mx //

m⊗
��

mx // F (A)⊕ F (B)

F (A⊗B)
F (mx)

//
F (mx)

// F (A⊕B)

n⊕

OO
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Proof.

⊥

>

F

F (A) F (B)

=

⊥

>

F

F

F

[mix-FF]
=

⊥

>

⊥

>

⊥

>

=
⊥

>

⊥

>

⊥ >

F

F
=

⊥

>

F (A) F (B)

Linear natural isomorphisms between Frobenius functors (α⊗, α⊕) : F −→ G often take
a special form with α⊗ = α−1

⊕ : this allows the coherence requirements to be simplified. The
next results describe some basic circumstances in which this happens:

Lemma 3.6. Suppose F : X −→ Y, and G : X −→ Y are Frobenius linear functors and
α := (α⊗, α⊕) : F ⇒ G is a linear natural transformation. Then, the following are
equivalent:

(i) One of [nat.1](a) or [nat.1](b) holds, and one of α⊗ or α⊕ is an isomorphism.

[nat.1] > m> //

m> ''

G(>)

α⊕
��

(a)

F (>)

or F (⊥)
α⊗ //

n⊥
((

G(⊥)

n⊥
��

(b)

⊥

(ii) One of [nat.1](a) or [nat.1](b) holds and one of

[nat.2] G(A)⊗ F (B)
1⊗α⊗ //

α⊕⊗1

��
(a)

G(A)⊗G(B)

mG
⊗

��

F (A)⊗ F (B)

mF
⊗
��

F (A⊗B) α⊗
// G(A⊗B)

or F (A)⊗G(B)
α⊗⊗1 //

1⊗α⊕
��

(b)

G(A)⊗G(B)

mG
⊗

��

F (A)⊗ F (B)

mF
⊗
��

F (A⊗B) α⊗
// G(A⊗B)

or G(A⊕B)
nG
⊕ //

α⊕
��

(c)

G(A)⊕G(B)

1⊕α⊕

��

F (A⊕B)

nF
⊕
��

F (A)⊕ F (B)
α⊗⊕1

// G(A)⊕ F (B)

or G(A⊕B)
nG
⊕ //

α⊕
��

(d)

G(A)⊕G(B)

α⊕⊕1

��

F (A⊕B)

n⊕
��

F (A)⊕ F (B)
1⊗α⊗

// F (A)⊕G(B)

holds.
(iii) α−1

⊗ = α⊕
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(iv) α′ := (α⊕, α⊗) : G⇒ F is a linear transformation.

Conditions [nat.2] are as follows in the graphical calculus:

(a)

α⊗

G =

α⊕

α⊗

F

(b)

α⊗

G =

α⊕

α⊗

F

(c)
α⊕

G
=

α⊗

α⊕

F (d)
α⊕

G
=

α⊗

α⊕

F

Proof. (i) ⇒ (iii): Here is the proof assuming [nat.1](a) that α⊗α⊕ = 1:

F (X)

=

F

F (X)

=
>

>

F

F (X)

=

>

>

F

F (X)

F

=
α⊕

>

>

F

G

F (X)

=
α⊕

>

>

F

G

F (X)

=

>

>

G

α⊗

α⊕

F

F (X)

F (X)

=

>

>

G

α⊗

α⊕

G

F (X)

F (X)

=

F (X)

α⊗

α⊕

if either α⊗ or α⊕ are isomorphisms, then α⊕α⊗ = 1.
(ii) ⇒ (iii): The assumption of [nat.1](a) or (b) yields, as above, that α⊗α⊕ = 1. Using

[nat.2](c) for example gives α⊕α⊗ = 1:

G(X)

=

G

G(X)

=

⊥

⊥
G

G

G(X)

G(X)

=

⊥

⊥
G

F

G(X)

G(X)

α⊕

=

⊥

⊥
F

α⊕

α⊗

F

G(X)

G(X)

=

G(X)

α⊕

α⊗

G(X)

Since, α⊗α⊕ = 1 and α⊗α⊕ = 1 we have α⊗ = α−1
⊕ . The other combinations of rules

are used in similar fashion.
(iii) ⇒ (iv): If α⊗ = α−1

⊕ , then

(α⊕ ⊗ α⊕)mF
⊗ = mG

⊗α⊗ : G(A)⊗G(B) −→ F (A⊗B)

α⊕ α⊕

F
=

α⊕ α⊕

α⊗

α⊕

F
=

α⊕ α⊕

α⊕

α⊗ α⊗

G

=

α⊕
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mF
> = mG

>α⊕ : > −→ F (>)

>

>

F

=

>

>

α⊗

α⊕

F

=

>

>

α⊕

G

Thus, α⊗ is comonoidal. Similarly, it can be proven that α⊕ is monoidal. The axioms
[LT.4] (a)-(d) for a linear transformation are satisfied for (α⊕, α⊗) because α⊕ = α−1

⊗ .
(iv) ⇒ ((i) and (ii)): The axioms [nat.1] and [nat.2] are given by the fact that (α⊕, α⊗)

is a linear transformation.

Frobenius functors between isomix categories are especially important in the development
of dagger linearly distributive categories and they often satisfy an additional property:

Definition 3.7. A Frobenius functor between isomix categories is an isomix functor in
case it is a mix functor which satisfies, in addition, the following diagram:

[isomix-FF] >
m−1

--

m> ""

⊥

F (>)
F (m−1)

// F (⊥)

n⊥

<<

Recall that a linear functor is normal in case both m> and n⊥ are isomorphisms. We
observe:

Lemma 3.8. For a mix Frobenius functor, F : X −→ Y, between isomix categories the
following are equivalent:

(i) n⊥ : F (⊥) −→ ⊥ or m> : > −→ F (>) is an isomorphism;
(ii) F is a normal functor;
(iii) F is an isomix functor.

Proof.

(i) ⇒ (ii): Note that, as F is a mix functor F (m) = n⊥m m>. As the mix map m is an
isomorphism so is F (m) which implies that if n⊥ is an isomorphism then m> must be
an isomorphism and vice versa. Thus, F will be a normal functor.

(ii) ⇒ (iii): If F is normal then n⊥ and m> are isomorphisms and so

F (m) = n⊥m m>

F (m−1) = m−1
> m−1n−1

⊥

m>F (m−1)n⊥ = m−1

(iii) ⇒ (i): The mix-preservation for F makes n⊥ a section (and m> a retraction) while
the isomix-preservation makes m⊥ a retraction (and m> a section). This means n⊥ is
an isomorphism (m> is an isomorphism).

Corollary 3.9. α := (α⊗, α⊕) is a linear natural isomorphism between isomix Frobenius
linear functors if and only if α⊗ = α−1

⊕ .



8:24 R. Cockett, C. Comfort, and P. V. Srinivasan Vol. 17:4

Proof. Note that if we can establish [nat.1](a) or (b) then we can prove that α⊗α⊕ = 1
and, as α⊗ is an isomorphism it follows that α⊕α⊗ = 1. Thus, it suffices to show that
[nat.1](a) holds:

m>α⊕G(m−1)n⊥ = m>F (m−1)α⊕n⊥ = m>F (m−1)n⊥ = m−1 = m>G(m−1)n⊥

However, as G(m−1)n⊥ is an isomorphism, it follows that m>α⊕ = m>.

Lemma 3.6 and Corollary 3.9 are generalizations of [DP08, Proposition 7]. [DP08,
Proposition 7] states the following:

Let X and Y be monoidal categories and (η, ε) : A aa B ∈ X. If F,G : X −→ Y are
Frobenius monoidal functors with a natural transformation α : F ⇒ G which is both
monoidal and comonoidal, then αA is invertible.

In Lemma 3.6, when A aa B ∈ X, then α⊕ is defined as follows:

α⊕ : G(A) −→ F (A) = α⊗

ε

η

G(A)

F (A)

F (B)

G(B)

F

G

For these special linear isomorphisms with α⊗ = α−1
⊕ we can simplify the coherence

requirements:

Lemma 3.10. Suppose F and G are Frobenius functors and α : F −→ G is a natural
isomorphism then:

(i) If α : F −→ G is ⊗-monoidal and ⊕-comonoidal then (α, α−1) is a linear transforma-
tion;

(ii) If F and G are strong Frobenius functors and α is ⊗-monoidal and ⊕-monoidal then
(α, α−1) is a linear transformation.

Proof.

(i) If α is ⊗-monoidal and ⊕-comonoidal then so is α−1 supporting the possibility that it
is a component of a linear transformation. Considering [LT.1] we show that (α, α−1)
satisfies this requirement as:

F (A⊕B)
α⊗ //

n⊕=νR⊗
��

G(A⊕B)

n⊕=νR⊗
��

F (A)⊕ F (B)

1⊕α ((

α⊕α // G(A)⊕G(B)

α−1⊕1vv
F (A)⊕G(B)

The remaining requirements follow in a similar manner.
(ii) When the laxors for the functors are isomorphisms then being monoidal implies being

comonoidal.
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3.2. Dagger mix categories. Conventionally, in categorical quantum mechanics a dagger
is defined as a contravariant functor which is an involution that is stationary on objects
(A† = A). Before proceeding to define the dagger functor for LDCs, the notion of the
opposite LDC and whence the notion of a contravariant linear functors have to be developed.
For LDCs we cannot expect the dagger to be stationary on objects, however, it is still
possible that it can act like an involution.

If (X,⊗,>,⊕,⊥) is a linear distributive category, the opposite linear distributive
category is (X,⊗,>,⊕,⊥)op := (Xop,⊕,⊥,⊗,>) where Xop is the usual opposite category
with the monoidal structures are flipped as follows:

⊗op := ⊕ >op := ⊥ ⊕op := ⊗ ⊥op := >

( )op is an endo functor for the category of LDCs and linear functors. It is an involution:
(X,⊗,>,⊕,⊥)op op = (X,⊗,>,⊕,⊥).
Let (F⊗, F⊕) : (X,⊗,>,⊕,⊥)op −→ (X,⊗,>,⊕,⊥) be a linear functor. The opposite

linear functor (F⊗, F⊕)op : (X,⊗,>,⊕,⊥) −→ (X,⊗,>,⊕,⊥)op given by the pair of opposite
functors (F op

⊕ , F
op
⊗ ). Observe that F op is a mix Frobenius linear functor if and only if F is.

Definition 3.11. A dagger linearly distributive category (†-LDC), is an LDC, X,
with a contravariant Frobenius linear functor ( )† : Xop −→ X which is a linear involutive
equivalence ( )† aa ( )†

op
: Xop −→ X.

First note that saying this is an involutive equivalence asserts that the unit and counit
of the equivalence are the same (although one is in the opposite category). Thus, the
adjunction expands to take the form (ı, ı) : ( )† aa ( )†

op
: Xop −→ X. However, the unit and

counit are linear natural transformations so ı expands to ı = (ı⊗, ı⊕). As the dagger functor
is a left adjoint, it is strong and, thus, is normal. Furthermore, as the unit of an equivalence,
ı is a linear natural isomorphism. This means ı = (ı⊗, ı⊕) satisfies the requirements of
Lemma 3.6, implying that ı−1

⊗ = ı⊕. Simplifying notation we shall set ι := ı⊕ so the unit

linear transformation is ı := (ι−1, ι). We then can simplify the requirements of ı to the map
ι : A −→ (A†)† which we refer to as the involutor.

A symmetric †-LDC is a †-LDC which is a symmetric LDC for which the dagger is
a symmetric linear functor. A cyclic †-∗-autonomous category is a †-LDC with chosen
left are right duals and a cyclor which is preserved by the dagger. A †-mix category is a
†-LDC for which ( )† : Xop −→ X is a mix functor. As the dagger functor is strong (and so
normal) if the category is an isomix category then being †-mix already implies that the
dagger is an isomix functor. Thus, a †-isomix category is a †-mix category which happens
to be an isomix category.

In the remainder of the section, we unfold the definition of a †-isomix category and give
the coherence requirements explicitly.

Proposition 3.12. A dagger linearly distributive category is an LDC with a functor ( )† : Xop

−→ X and natural isomorphisms

laxors: A† ⊗B† λ⊗−−→ (A⊕B)† A† ⊕B† λ⊕−−→ (A⊗B)†

> λ>−−→ ⊥† ⊥ λ⊥−−→ >†

involutor: A
ι−→ (A†)†

such that the following coherences hold:
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[†-ldc.1] Interaction of λ⊗, λ⊕ with associators:

A† ⊗ (B† ⊗ C†)
a⊗−1

//

1⊗λ⊗
��

(A† ⊗B†)⊗ C†

λ⊗⊗1
��

A† ⊗ (B ⊕ C)†

λ⊗
��

(A⊕B)† ⊗ C†

λ⊗
��

(A⊕ (B ⊕ C))†
a†⊕

// ((A⊕B)⊕ C)†

A† ⊕ (B† ⊕ C†)
a−1
⊕ //

1⊕λ⊕
��

(A† ⊕B†)⊕ C†

λ⊕⊕1
��

A† ⊕ (B ⊗ C)†

λ⊕
��

(A⊗B)† ⊕ C†

λ⊕
��

(A⊗ (B ⊗ C))†
a†⊗

// ((A⊗B)⊗ C)†

[†-ldc.2] Interaction of λ>, λ⊥ with unitors:

>⊗A† λ>⊗1 //

uR⊗
��

⊥† ⊗A†

λ⊗
��

A† (⊥⊕A)†//
(uR⊕)†

⊥⊕A† λ⊥⊕1 //

uR⊕
��

>† ⊕A†

λ⊕
��

A† (>⊗A)†//
(uR⊗)†

and two symmetric diagrams for uL⊗ and uL⊕ must also be satisfied.
[†-ldc.3] Interaction of λ⊗, λ⊕ with linear distributors:

A† ⊗ (B† ⊕ C†) ∂L //

1⊗λ⊕
��

(A† ⊗B†)⊕ C†

λ⊗⊕1
��

A† ⊗ (B ⊗ C)†

λ⊗
��

(A⊕B)† ⊕ C†

λ⊕
��

(A⊕ (B ⊗ C))†
(∂R)†

// ((A⊕B)⊗ C)†

(A† ⊕B†)⊗ C† ∂R //

λ⊕⊗1
��

A† ⊕ (B† ⊗ C†)

1⊕λ⊗
��

(A⊗B)† ⊗ C†

λ⊗
��

A† ⊕ (B ⊕ C)†

λ⊕
��

((A⊗B)⊕ C)†
(∂L)†

// (A⊗ (B ⊕ C))†

[†-ldc.4] Interaction of ι : A→ A†† with λ⊗, λ⊕:

A⊕B ι //

ι⊕ι
��

((A⊕B)†)†

λ†⊗
��

(A†)† ⊕ (B†)†
λ⊕

// (A† ⊗B†)†

A⊗B ι //

ι⊗ι
��

((A⊗B)†)†

λ†⊕
��

(A†)† ⊗ (B†)†
λ⊗

// (A† ⊕B†)†

[†-ldc.5] Interaction of ι : A→ A†† with λ>, λ⊥:

⊥ ι //

λ⊥ !!

(⊥†)†

λ†>��
>†

> ι //

λ> !!

(>†)†

λ†⊥��
⊥†

[†-ldc.6] ιA† = (ι−1
A )† : A† −→ A†††

The structure is presented using strong monoidal laxors: to form a linear functor the
laxor λ⊕ needs to be reversed by taking its inverse. Then, we have νl⊗ = νr⊗ := λ−1

⊕ and
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νl⊕ = νr⊕ := λ⊗. Once this adjustment is made all the required coherences for † to be a
linear functor are present.

Note that [†-ldc.6] equivalently expresses the triangle identities of the adjunction
(ι, ι) :: †op a † : Xop −→ X.

The coherences for the involutor asserts that it is a monoidal transformation for both the
tensor and par: by Lemma 3.10 (ii) this suffices to show that it is a linear transformation.

A symmetric †-LDC is a †-LDC which is a symmetric LDC and for which the following
additional diagrams commute:

[†-ldc.7] Interaction of λ⊗, λ⊕ with symmetry maps:

A† ⊗B†
λ⊗ //

c⊗
��

(A⊕B)†

c†⊕
��

B† ⊗A†
λ⊗
// (B ⊕A)†

A† ⊕B†
λ⊕ //

c⊕
��

(A⊗B)†

c†⊗
��

B† ⊕A†
λ⊕
// (B ⊗A)†

A †-mix category is a †-LDC which has a mix map and satisfies the following additional
coherence:

[†-mix]

⊥ m //

λ⊥
��

>

λ>
��

>†
m†
// ⊥†

If m is an isomorphism, then X is a †-isomix category and, since ( )† is normal, ( )† is an
isomix Frobenius functor.

Lemma 3.13. Suppose X is a †-mix category then the following diagram commutes:

A† ⊗B† mx //

λ⊗
��

A† ⊕B†

λ⊕
��

(A⊕B)†
mx†
// (A⊗B)†

Proof. The proof follows directly from Lemma 3.5.

With respect to its applications to quantum theory, this article primarily focuses on
†-isomix categories. As we will see in Section 5, the notion of unitary objects and unitary
isomorphisms is supported only within a †-isomix category.

It is useful to observe that objects in the core are closed under taking the dagger and
duals.

Lemma 3.14. Suppose X is a †-mix category and A ∈ Core(X) then A† ∈ Core(X).

Proof. The natural transformation A† ⊗X mx−−→ A† ⊕X is an isomorphism as follows:

A† ⊗X 1⊗ι //

mx
��

(nat. mx)

A† ⊗X††
λ⊗ //

mx
��

lem. 3.13

(A⊕X†)†

mx†

��
A† ⊕X

1⊕ι
// A† ⊕X††

λ⊕
// (A⊗X†)†
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Lemma 3.15. Let X be †-LDC. If A aa B then B† aa A†.

Proof. The statement follows from Lemma 2.11: Frobenius functors preserve linear adjoints.
Explicitly, if (η, ε) : A aa B then (λ>ε

†λ−1
⊕ , λ⊗η

†λ−1
⊥ ) : B† aa A†.

Suppose X is a †-∗-autonomous category and (η∗, ε∗) : A∗ aa A, then ((ε∗)†, (η∗)†) : A† aa
(A∗)†, where ((ε∗)†, (η∗)†) := (λ>ε ∗† λ−1

⊕ , λ⊗η ∗† λ−1
⊥ ). We draw (ε∗)† and (∗ε)† as dagger

cups, and (η∗)† and (∗η)† as dagger caps which are pictorially represented as follows:

X† (∗X)†

(∗η)†

X∗† X†

(η∗)†
X† (∗X)†

(∗ε)†

X∗
†

X†

(ε∗)†

A †-∗-autonomous category is a cyclic †-∗-autonomous category when the dagger
preserves the cyclor in the following sense.

ψ†

ψ−1†

(A†)∗

ε∗

(∗ε)†

(∗A)†

A† =

ψ

ψ−1†

(A†)∗ (ε∗)†

∗ε

(∗A)†

A†

Lemma 3.16. In a cyclic, †-∗-autonomous category,

ψ

(∗ε)†

∗ε

ψ†

A∗†∗

A†

∗(A†∗)
A†∗

∗(A†)

=

(ε∗)†

ε∗

A∗†∗

A†

A∗†

Proof. Proved by direct application of Lemma 3.3.

3.3. Dagger functor box. Suppose X is a †-LDC and f : A → B ∈ X. Then, the map
f † : B† → A† is graphically depicted as follows:

f
A

B

A†

B†

The rectangle is a functor box for the †-functor. Notice how we use vertical mirroring to
express the contravariance of the †-functor. By the functoriality of ( )†, we have: = .
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These contravariant functor boxes compose... contravariantly. Given maps f : A −→ B
and g : B −→ C:

f

g

C†

B†

A†

=
g

f

C†

A†

The following are the representations of the basic natural isomorphisms of a †-LDC:

λ> : > → ⊥† = ⊥> λ−1
> : ⊥† → > = ⊥ >

λ⊥ : ⊥ → >† = > ⊥ λ−1
⊥ : >† → ⊥ = > ⊥

λ⊗ : A† ⊗B† → (A⊕B)† = λ⊕ : A† ⊗B† → (A⊕B)† =

λ−1
⊗ : (A⊕B)† −→ A† ⊗B† = λ−1

⊕ : (A⊗B)† −→ A† ⊕B† =

Dagger boxes interact with involutor A
ι−→ A†† as follows:

f

ι ι

· · ·

· · ·

· · ·

=
f

ι

· · ·

It is important to note that one may not have a legal proof net inside a †-box. This
complicates the correctness criterion. However, the required correctness criterion is discussed
in [MP05].

3.4. Functors for †-linearly distributive categories. Clearly the functors and transfor-
mations between †-LDCs must “preserve” the dagger in some sense. Precisely we have:

Definition 3.17. F : X −→ Y is a †-linear functor between †-LDCs when F is a linear
functor equipped with a linear natural isomorphism ρF = (ρF⊗ : F⊗(A†) −→ F⊕(A)†, ρF⊕ :

F⊗(A)† −→ F⊕(A†)) called the preservator, such that the following diagrams commute:

F⊗(X)
ι //

F⊗(ι)
��

[†-LF.1]

F⊗(X)††
OO

(ρF⊕)†

F⊗(X††)
ρF⊗

// F⊕(X†)†

F⊕(X)
ι //

F⊕(ι)
��

[†-LF.2]

F⊕(X)††

(ρF⊗)†

��
F⊕(X††) oo

ρF⊕
F⊗(X†)†
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In case that F is a normal mix functor between †-isomix categories, then by Lemma 3.8,
F is an isomix functor and, therefore by Corollary 3.9, the preservators become inverses,
ρF⊗ = (ρF⊕)−1. This means the squares [†-LF.1] and [†-LF.2] coincide to give a single
condition for the tensor preservator:

F (X)
ι //

F (ι)
��

[†-isomix]

F (X)††

(ρF⊗)†

��
F (X††)

ρF⊗

// F (X†)†

In case when F is an isomix functor, by Lemma 3.6, ρ := ρ⊗ is monoidal on ⊗ and
comonoidal on ⊕:

[P.1] F (A†)⊗ F (B†)
ρ⊗ρ //

m⊗
��

(a)

F (A)† ⊗ F (B)†

λ⊗
��

F (A† ⊗B†)

F (λ⊗)
��

(F (A)⊗ F (B))†

n†⊕
��

F ((A⊕B)†) ρ
// (F (A⊕B))†

>
m>
��

λ>

##
(b)F (>)

F (λ>)
��

⊥†
n†⊥

##
F (⊥†) ρ

// (F (⊥))†

[P.2] F ((A⊗B)†)
ρ //

F (λ−1
⊕ )
��

(a)

F (A⊗B)†

m†⊗
��

F (A† ⊕B†)

nF
⊕
��

(F (A)⊗ F (B))†

λ−1
⊕
��

F (A†)⊕ F (B†)
ρ⊕ρ

// F (A)† ⊕ F (B)†

F (>†)

ρ

��

F (λ−1
⊥ )

##
(b) F (⊥)

n⊥

!!
F (>)†

m†>

// >†
λ−1
⊥

// ⊥

Pictorial representation of [P.2]-(a) is as follows:

ρ

M

ρ

F ((A⊗B)†)

F (A† ⊗B†)

F (A†) F (B†)

F (A)† F (B)†

=

ρ

M

F ((A⊗B)†)

F ((A)⊗ F (B))†

F (A)† F (B)†

For linear natural transformations (β⊗, β⊕) : F −→ G between †-linear functors, we
demand that β⊗ and β⊕ are related by:
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F⊗(A†)

ρF⊗
��

β⊗ // G⊗(A†)

ρG⊗
��

(F⊕(X))†
β†⊕

// (G⊕(X))†

(G⊗(X))†

ρG⊕
��

β†⊗ // (F⊗(X))†

ρF⊕
��

G⊕(A†)
β⊕

// F⊕(A†)

Notice that this means that β⊗ is completely determined by β⊕ in the following sense:

F⊗(A)

F⊗(ι)
��

β⊗ // G⊗(A)

G⊗(ι)
��

F⊗(A††)

ρF⊗
��

β⊗ // G⊗(A††)

ρG⊗
��

F⊕(A†)†
β†⊕

// G⊕(A†)†

Because the vertical maps are isomorphisms, this diagram can be used to express β⊗ in
terms of β⊕. Similarly, β⊕ can be expressed in terms of β⊗. Thus, it is possible to express
the coherences in terms of just one of these transformations.

3.5. Examples of †-LDCs. In this section, we discuss some basic examples of †-isomix
categories. The first example is a compact LDC. The example of Finiteness spaces is
non-compact and all these examples are ∗-autonomous category. These categories all have
a non-stationary dagger functor. More examples of †-isomix categories can be found in
Section 5.6.

3.5.1. Finite dimensional framed vector spaces. In this section we describe the category of
“framed” finite dimensional vector spaces, where a frame in this context is just a choice of
basis. Thus, the objects in this category are vector spaces with a chosen basis while the
maps, ignoring the basis, are simply homomorphisms of the vector spaces.

The category of finite dimensional framed vectors spaces, FFVecK , is a monoidal category
defined as follows:

Objects: The objects are pairs (V,V) where V is a finite dimensional K-vector space and
V = {v1, ..., vn} is a basis.

Maps: A map (V,V)
f−→ (W,W) is a linear map V

f−→W in FdVecK .
Tensor: (V,V) ⊗ (W,W) = (V ⊗W, {v ⊗ w|v ∈ V, w ∈ W}) where V ⊗W is the usual

tensor product. The unit is (K, {e}) where e is the unit of the field K.

To define the “dagger” we must first choose a conjugation ( ) : K −→ K (see more details

in Section 4.2), that is a field homomorphism with k = (k). The canonical example being
conjugation of the complex numbers, however, the conjugation can be arbitrarily chosen
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– so could also, for example, be the identity. This conjugation then can be extended to a
(covariant) functor:

( ) : FFVecK −→ FFVecK ;

(V,V)

f
��

(W,W)

7→

(V,V)

f
��

(W,W)

where (V,V) is the vector space with the same basis but with the conjugate action c · v = c ·v.
The conjugate homomorphism, f , is then the same underlying map which is homomorphism
between the conjugate spaces.

FFVecK is also a compact closed category with (V,B)∗ = (V ∗, {b̃i|bi ∈ B}) where

V ∗ = V ( K and b̃i : V −→ K;

∑
j

βj · bj

 7→ βi

This makes ( )∗ : FFVecop
K −→ FFVecK a contravariant functor whose action is determined by

precomposition. Finally, we define the “dagger” to be the composite (V,B)† = (V,B)∗.
This is a compact LDC with tensor and par being identified (so the linear distribution

is the associator) and is isomix. We must show that it is a †-LDC. Towards this aim we
define the required natural transformations on the basis:

λ⊗ = λ⊕ : (V,V)† ⊗ (W,W)† −→ ((V,V)⊗ (W,W))†; ṽi ⊗ w̃j 7→ ṽi ⊗ wj

λ> = λ⊥ : (K, {e}) −→ (K, {e})†; k 7→ k

ι : (V,V) −→ ((V,V)†)†; v 7→ λf.f(v)

Note that the last transformation is given in a basis independent manner. Importantly, it

may also be given in a basis dependent manner as ι(vi) = ˜̃vi as the behaviour of these two
maps is the same when applied to the basis of (V,V)† namely the elements ṽj :

ι(vi)(ṽj) = (λf.f(vi))ṽj = ṽjvi = ∂i,j = ˜̃vi(ṽj)
Also note that ṽi ⊗ wj = (ṽi ⊗ w̃j)u⊗, where u⊗ : K ⊗K −→ K is the multiplication of the
field. With these definitions in hand it is straightforward to check that this gives a †-LDC by
checking the required coherences on basis elements. To demonstrate the technique consider
the coherence [†-ldc.4]:

A⊕B

ι⊕ι
��

ι // ((A⊕B)†)†

λ†⊗
��

(A†)† ⊕ (B†)†
λ⊕

// (A† ⊗B†)†

We must show (identifying tensor and par) that λ†⊗(ι(ai ⊗ bj)) = λ⊗(ι⊗ ι(ai ⊗ bj)). Now
the result is a higher-order term so it suffices to show the evaluations on basis elements are
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the same. This means we need to show: λ†⊗(ι(ai ⊗ bj))(ãp ⊗ b̃q) = λ⊗(ι⊗ ι(ai ⊗ bj))(ãp ⊗ b̃q)

(λ⊗(ι⊗ ι(ai ⊗ bj)))(ãp ⊗ b̃q) = (λ⊗( ˜̃ai ⊗ ˜̃bj))(ãp ⊗ b̃q)
= (

˜̃
ai ⊗ b̃j)(ãp ⊗ b̃q)

= (ãp ⊗ b̃q)( ˜̃ai ⊗ ˜̃bj)u⊗ (diagrammatic order)

= ∂p,i∂q,j

(λ†⊗(ι(ai ⊗ bj)))(ãp ⊗ b̃q) = (λ†⊗(
˜̃
ai ⊗ bj))(ãp ⊗ b̃q)

= (ãp ⊗ b̃q)λ⊗
˜̃
ai ⊗ bj (diagrammatic order)

= ãp ⊗ bq
˜̃
ai ⊗ bj

= ∂p,i∂q,j

Thus, FFVecK is a compact †-isomix category where the † functor shifts objects i.e.,
A 6= A†.

3.5.2. Finiteness matrices. Finiteness spaces were introduced by Ehrhard, [Ehr05], as a
model of linear logic. The type system can be used to produce a typed system for infinite
dimensional matrix multiplication in which no sums become infinite. This system of infinite
dimensional matrices forms an isomix ∗-autonomous category. If these matrices have entries
in the complex numbers then there is a natural notion of conjugation and this gives a
†-isomix category. We shall see that by taking the core of this category, which is the category
of finite dimensional matrices, one obtains a basic example of a mixed unitary category as
described in Section 5 of this paper. This example is also explored further in the sequels to
this paper [CS19a, CS19b].

Definition 3.18. A finiteness space is a pair X := (|X|,F) with |X| a set, called the
web, and F be a subset of P(|X|) such that F = F⊥⊥ where

F⊥ := {x′ ⊆ X|∀x ∈ F .x ∩ x′ is finite}.
The elements of F are called the finitary sets of the finiteness space of X, and the elements
of F⊥ are called cofinitary sets.

Observe that if the web of X is finite, then F is forced to be the whole powerset of X.
Finiteness spaces organize themselves into a (symmetric) ∗-autonomous category, FRel:

Objects: Finiteness spaces X := (|X|,F).
Maps: A map R : (|X|,F) −→ (|Y |,G) is a finiteness relation that is a relation R : |X|

−→ |Y | so that:
• For all x ∈ F , xR ∈ G where xR = {y|y ∈ Y, there exists b ∈ x such that bRy}
• For all y ∈ G⊥, Ry ∈ F⊥ where Ry = {x|x ∈ X, there exists t ∈ y such that xRt}

Composition and identities: same as in sets and relations.
Tensor: Given finiteness spaces X = (|X|,F), and Y = (|Y |,G), X ⊗ Y := (|X| × |Y |,F ×

G) where

F × G := ↓ {u× v|u ∈ F , v ∈ G}
= {w|∃u ∈ F , v ∈ G.w ⊆ u× v}



8:34 R. Cockett, C. Comfort, and P. V. Srinivasan Vol. 17:4

This is well-defined as F × G = (F × G)⊥⊥ is proven in [Ehr05] Lemma 2.
Given maps R : X1 −→ Y1 and S : X2 −→ Y2:

R⊗ S := {((x1, x2), (y1, y2))|(x1, y1) ∈ R, (x2, y2) ∈ S}

Monoidal tensor unit: > := ({∗},P({∗}))
Dualizing functor: (X,F)∗ := (X,F⊥)

Finiteness spaces with finiteness relations, FRel, form an isomix ∗-autonomous category,
where the objects in the core are precisely the objects whose webs are finite sets. There is a
faithful underlying structure preserving functor U : FRel −→ Rel.

The category of finiteness matrices over the complex numbers, FMat(C), can be built
from the category of finiteness spaces:

Objects: Finiteness spaces X = (|X|,F);
Maps: M : X −→ Y , matrices M : |X| × |Y | −→ C; (x, y) 7→ Mx,y such that supp(M) =

{(x, y)|Mx,y 6= 0} is a finiteness relation;
Composition: If M : X −→ Y and N : Y −→ Z then (MN)x,z =

∑
y∈Y Mx,yNy,z where for

fixed x and z both Mx,y and Ny,z are non-zero for only finitely many y as this is the
intersection of a finitary set of Y with a cofinitary set of Y . Identity maps are given
as usual by diagonal matrices.

Tensor: If M : X −→ Y and N : X ′ −→ Y ′ then M⊗N : X⊗X ′ −→ Y ⊗Y ′; ((x, y), (x′, y′)) 7→
Mx,yNx′,y′ ;

Dual and dagger: If M : X −→ Y then M∗ : Y ∗ −→ X∗; (y, x) 7→ Mx,y while M † : Y ∗

−→ X∗; (y, x) 7→Mx,y.

The coherence maps for the isomix ∗-autonomous of FMat(C) are simply the characteristic
functions of the relations which give the coherence maps in FRel. The support gives a colax
2-functor from supp : FMat(C) −→ FRel where supp(MN) ⊆ supp(M)supp(N).

3.5.3. Category of abstract state spaces. This model is inspired by the category of convex
operational models [BW11]. The following is a way to construct new †-isomix categories
from an exisiting one.

Definition 3.19. Let X be a †-isomix category. Define Asp(X) as follows:

Objects: (A, eA : A −→ ⊥, uA : > −→ A)
Arrows: f : A −→ B ∈ X such that the following diagram commutes:

>
uA

��

uB

��
A

f //

eA ��

B

eB��
⊥

Identity arrow and composition are inherited directly from X. Asp(X) is a LDC:

⊗ on objects: (A, eA, uA)⊗ (B, eB, uB) := (A⊗B, e′, u′) where, e′ := mx(eA ⊕ eB)u⊕ and
u′ := u−1

⊗ (uA ⊗ uB). The unit of ⊗ is given by (>,m−1 : > −→ ⊥, 1>).
⊕ on objects: (A, eA, uA) ⊕ (B, eB, uB) := (A ⊕ B, e′, u′) where, e′ := (eA ⊕ eB)u⊕ and

u′ := u−1
⊗ (uA ⊗ uB)mx. The unit of ⊕ is (⊥, 1⊥,m−1 : > −→ ⊥)
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Asp(X) is also †-isomix category with

(A, e, u)† := (A†, u†λ−1
⊥ , λ>e

†)

All the basic natural isomorphisms are inherited from X. Hence, Asp(X) is a †-isomix
category.

4. Daggers, duals, and conjugation

The goal of this section is to review the interaction of the dualizing, conjugation and dagger
functors. In dagger compact closed categories, the dagger functor ( )†, and the dualizing
functor ( )∗ commute with each other and their composite gives the conjugate functor ( )∗.
Similary, ( )∗ and ( )∗ when composed gives the dagger functor. Our aim is to generalize
these interactions to †-LDCs and to achieve this at a reasonable level of abstraction. To
achieve this we shall need the notion which we here refer to as “conjugation” but was
investigated by Egger in [Egg11] under the moniker of “involution” (which clashes with our
usage).

4.1. Duals. The reverse of an LDC, X, written Xrev := (X,⊗,>,⊕,⊥)rev

= (X,⊗rev,>,⊕rev,⊥) where,

A⊗rev B := B ⊗A A⊕rev B := B ⊕A

and the associators and distributors are adjusted accordingly. Similar to the opposite of an
LDC, we have (Xrev)rev = X.

In a ∗-autonomous category, taking the left (or right) linear dual of an object extends
to a Frobenius linear functor as follows:

( )∗ : (Xop)rev −→ X; A 7→ A∗; f

A

B

7→ f

B∗

A∗

The ( )∗ functor is both contravariant and, op-monoidal and op-comonoidal:

m⊗ : A∗ ⊗B∗ −→ (B ⊕A)∗ :=

B∗ ⊗A∗

B∗ A∗

(A⊕B)∗

m> : > −→ ⊥∗ :=
>

⊥

>

⊥∗

n⊕ : (A⊗B)∗ −→ B∗ ⊕A∗ :=

(A⊗B)∗

B∗ ⊕A∗

n⊥ : >∗ −→ ⊥ :=

>

⊥

>∗

These maps are op-monoidal and op-comonoidal laxors, hence are isomorphisms, which
satisfy the obvious coherences. Thus, ( )∗ is a strong Frobenius linear functor.

In the rest of the section, we will write (Xop)rev as Xoprev.

Lemma 4.1. If X is an isomix category, then ( )∗ : Xoprev −→ X is an isomix functor.
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Proof. Because, ( )∗ is a strong Frobenius functor, by Lemma 3.8, it suffices to prove that
( )∗ preserves mix, i.e., ( )∗ is a mix functor i.e., we need to show that n⊥ m m> : >∗
−→ ⊥∗ = m∗. The proof is as follows:

n⊥mm> =

>

⊥

>

⊥

=

>

⊥

>

⊥

=

>

⊥

>

⊥

=

>

⊥

>

⊥

= = m∗

Lemma 4.2. (η, ε) :: ( )∗ aa ∗( )oprev : Xoprev −→ X

η⊗ : X −→ ∗(X∗) :=

∗η

ε∗

X

X∗

∗(X∗)

∈ X η⊕ := η−1
⊗

ε⊕ : X −→ (∗X)∗ :=

η∗

∗ε

X

∗X

(∗X)∗

∈ X ε⊗ := ε−1
⊕

is a linear equivalence of Frobenius linear functors.

Proof. The proof is straightforward in the graphical calculus.

For a cyclic ∗-autonomous category, we can straighten out this equivalence to be a
dualizing involutive equivalence (i.e. so that the unit and counit are equal):

Lemma 4.3. (η′, ε′) :: ( )∗ aa (( )∗)oprev : Xoprev −→ X where η′⊗ = η′⊕
−1 := η⊗ψ

−1, ε′⊗ =
ε′⊕ := εψ∗ and η′ = ε′.

Proof. The unit and counit are drawn as follows:

η′⊗ =
ψ−1

ε∗

∗ηX

∗(X∗)

X∗∗

X∗

∈ X ε′⊗ =
∗ε

η∗
X∗

ε∗

η∗

ψ

X∗∗

∗(X∗)

=

∗ε

η∗ X

X∗∗

ψ

∗X

X∗ [C.2]
=

ψ−1
ε∗

∗ηX

∗(X∗)

X∗∗

X∗

∈ X

The cyclor is a linear transformation which is an isomorphism as it is monoidal with
respect to both tensor and par and adjoints are determined only upto isomorphism. It
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remains to check that the triangle identities hold:

η⊗′
X∗

(ε′⊗)∗ =
ψ−1

X∗∗∗

ε∗

∗η
X∗

ψ−1

∗η

ε∗

=

X∗∗∗

∗ε

η∗
X∗

ψ−1

∗η

ε∗

ψ

X∗

=

∗ε

X∗

ψ−1

∗η

ψ

X∗

= = 1

The other triangle identity holds similarly.

The equality of η′ and ε′ is immediate from [C.2] for cyclors with the map η′ = ε′ being
the dualizor. In the symmetric case, the dualizor of this equivalence may be drawn as:

ψ−1
ε∗

∗ηA

∗(A∗)

A∗∗

A∗

=
ε∗

η∗A

A∗∗

=

∗ε

η∗ A

A∗∗

ψ

∗A

A∗

4.2. Conjugation. Recall the following structure from Egger [Egg11]:

Definition 4.4. A conjugation for a monoidal category (X,⊗, I) consists of a functor

( ) : Xrev −→ X with natural isomorphisms:

A⊗B χ−−→ B ⊗A A
ε−−→ A

called respectively the (tensor reversing) conjugating laxor and the conjugator such that

A
εA = εA−−−−−−→ A

and

(A⊗B)⊗ C
a⊗ //

χ⊗1
��

[CF.1]⊗

A⊗ (B ⊗ C)

1⊗χ
��

(B ⊗A)⊗ C

χ
��

A⊗ (C ⊗B)

χ
��

C ⊗ (B ⊗A)
a−1
⊗

// (C ⊗B)⊗A

A⊗B
χ //

ε⊗ε

��

[CF.2]⊗

B ⊗A

χ

��

A⊗B A⊗Bε
oo

A monoidal category is conjugative when it has a conjugation functor.
A symmetric monoidal category, which is conjugative, is symmetric conjugative in

case it satisfies the additional coherence:

A⊗B
c⊗
��

χ //

[CF.3]⊗

B ⊗A

c⊗
��

B ⊗A χ
// A⊗B
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Notice that we have not specified any coherence for the unit I. This is because the
expected coherences are automatic:

Lemma 4.5. [Egg11, Lemma 2.3] For every conjugative monoidal category, there exists a

unique isomorphism I
χ◦−→ I such that

I ⊗A
χ◦⊗1 //

u⊗
��

[CF.4]>

I ⊗A

χ
��

A
u−1
⊗

// A⊗ I

A⊗ I
1⊗χ◦ //

u⊗
��

[CF.5]>

A⊗ I

χ
��

A
u−1
⊗

// I ⊗A

I
χ◦ //

[CF.6]>

I

χ◦
��

I
ε−1

// I

Definition 4.6. [Egg11] A conjugative LDC is a linearly distributive category (X,⊗,>,⊕,⊥)

together with a conjugating functor ( ) : X −→ X and natural isomorphisms:

A⊗B χ⊗−−→ B ⊗A A⊕B χ⊕−−→ B ⊕A A
ε−→ A

such that (X,⊗,>, χ⊗, ε) and (X,⊕,⊥, χ−1
⊕ , ε) are conjugative (symmetric) monoidal

categories with respect to the conjugating functor and the following diagrams commute:

B ⊕ C ⊗A
χ⊕⊗1 //

χ⊗
��

[CF.7]

(C ⊕B)⊗A

∂
��

(A⊗ (B ⊕ C))

∂
��

C ⊕ (B ⊗A)

1⊕χ⊗
��

((A⊗B)⊕ C) χ⊕
// C ⊕A⊗B

A⊗ C ⊕B
χ⊗ //

1⊗χ⊕
��

[CF.8]

(C ⊕B)⊗A

∂
��

A⊗ (B ⊕ C)

∂
��

C ⊕ (B ⊗A)

χ⊕
��

(A⊗B)⊕ C
χ⊗⊕1

// (B ⊗A)⊕ C

Note, by Lemma 4.5, there exists canonical isomorphisms >
χ◦>−−→ > and ⊥

χ◦⊥−−→ ⊥, hence
conjugation is a normal functor. However, the conjugation is not necessarily a mix functor
when X is a mix category. For conjugation to be a mix functor, the following extra condition
must be satisfied:

[CF.9] ⊥

(χ◦⊥)−1 ��

m
,, >

⊥
m
// >

χ◦>

??

Proposition 4.7. A conjugative LDC is precisely a LDC, X, with a Frobenius adjoint

(ε−1, ε) : ( ) a ( )
rev

: Xrev −→ X where ε := (ε, ε−1). Furthermore, if X is an isomix category
and conjugation is a mix functor then conjugation is an isomix equivalence.

Proof. It is clear that ( ) is a strong Frobenius functor so being mix implies isomix. Also, ε

is clearly monoidal for tensor and par. The triangle equalities give ε−1ε = 1 : A −→ A thus
ε = ε.

Clearly conjugation should flip left duals into right duals:

Lemma 4.8. If B aa A is a linear dual then A aa B is a linear dual.
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Proof. Suppose (η, ε) : B aa A. Then, (χ◦>ηχ⊕, χ⊗εχ
◦
⊥) : A aa B.

When a ∗-autonomous category is cyclic one expects that conjugation should interact
with the cyclor in a coherent fashion:

Definition 4.9. [EM12] A conjugative cyclic ∗-autonomous category is a conjugative

∗-autonomous category together with a cyclor A∗
ψ−−→ ∗A such that

(A)∗
ψ //

'
��

∗(A)

'
��

(∗A)
ψ−1

// (A∗)

which gives a map σ : (A)∗ −→ (A∗).

The above condition is drawn as follows:

σ =
ψ−1

(A)∗

ε∗

∗η

A∗

A
∗A =

ψ

(A)∗

η∗

∗ε

A∗

∗(A)
A

When the ∗-autonomous category is symmetric, conjugation automatically preserves
the canonical cyclor.

Lemma 4.10. In a conjugative ∗-autonomous category,

ε

η∗

X∗

X

X

=
ε−1

η∗

X∗
X

X∗

χ◦> χ
◦
> η∗ χ⊕

−1χ−1
⊕ (1⊕ ε) = η ∗ (ε−1 ⊕ 1) : > −→ X∗ ⊕X

Proof.

χ◦> χ
◦
> η∗ χ

−1χ−1(1⊕ ε) = χ◦> χ
◦
> η∗ χ

−1χ−1(εε−1 ⊕ ε)
= χ◦> χ

◦
> η∗ χ

−1χ−1(ε⊕ ε)(ε−1 ⊕ 1)

[CF.2]⊕
= χ◦ χ◦> η∗ε(ε

−1 ⊕ 1)

nat.
= χ◦> χ

◦
> εη∗ (ε−1 ⊕ 1)

[CF.6]>
= η∗ (ε−1 ⊕ 1)
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4.3. Dagger and conjugation. The interaction of the dagger and conjugation for cyclic
∗-autonomous categories in the presence of the dualizing functor is illustrated by the following
diagram:

Xop

( )†

++

(( )∗)rev

��

⊥

∼=

X
(( )†)op

kk

( )
rev

��

a

Xrev

( )∗
op

WW

( )

GG

a

Specifically we have:

Theorem 4.11. Every cyclic, †-∗-autonomous category is a conjugative ∗-autonomous
category.

Proof. Let X be a cyclic, †-∗-autonomous category. Then composing adjoints gives the

equivalence ( )†
∗ a ( )∗

†
. To build a conjugation, however, we need an equivalence between

the same functors: to obtain such an equivalence we use the natural equivalence ω : ( )†∗

−→ ( )∗† from the cyclor preserving condition for Frobenius linear functors. A conjugative
equivalence, in addition, requires that the unit and counit of the equivalence be inverses of
each other. The unit and counit of the equivalence are given by (a) and (b) respectively;

(a) Xrev

( )∗
op ""

⇓ η′⊗

Xrev
<<

( )∗
op

Xop

† !!
⇓ ι−1

Xop
==

†op

ω
=⇒ Xoprev

88

( )∗
oprev

†revll

X

(b) Xrev//†rev <<
( )∗

rev
( )∗

op

""
⇓ ε′⊗

Xoprev
bb

( )∗
oprev

ω−1

=⇒ Xop
==

†op
⇓ ι−1

Xop

†

!!
X X

where the isomorphism ω : ( )†∗ −→ ( )∗† is from the cyclor preserving condition, [CFF], for
Frobenius linear functors:

ω :=
ψ†

X†∗

X∗†

ε∗

(∗ε)†

ω−1 :=
ψ−1†

X†∗

X∗†

η∗

(∗η−1)†

It remains to show that the unit and the counit maps are inverses of each other in X:
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(a)

ψ−1

ε∗

∗η

η∗

ε∗
ψ†

ι−1

X∗†∗†

(∗ε)†

ε∗

(X∗)††

X∗

X∗∗

X

=

ψ−1

ε∗

∗η

ε∗

ψ†

ι−1

X∗†∗†

(∗ε)†

(X∗)††

X∗

X∗∗

X

=
∗ε

η∗

ε∗

ψ†

ι−1

X∗†∗†

(∗ε)†

(X∗)††

X∗

X∗∗

X

ψ

=

∗ε

ψ†

ι−1

X∗†∗†

(∗ε)†

X∗
††

X∗

X

ψ

∗X

=

∗ε

ψ†

ψ††

X∗†∗†

(∗ε)†

(X∗)††

( ∗X)††

X

ι−1

∗X

=
ψ†

ψ††

X∗†∗†

(∗ε)†

(X∗)††

( ∗X)††

X

ι

∗ε††

∗
=

ψ ψ†

X∗†∗†

∗ε

(X∗)†

( ∗X)†

X

ι

(∗ε)†

†

∗(X∗†)

X∗†∗

X†

3.16
=

X∗†∗†

X

ι

(∗ε)†

†

X†

X†

X∗†∗

(X∗)†

ε∗

(b)

η∗

η∗

(∗η)†

ε∗

X†∗∗

X∗†

(∗X)†
X†

X†∗

X∗†∗

X∗†∗†

ψ−1†

ψ−1

∗η

ε∗
∗(X†∗)

X†∗∗

X†∗

X†

X†∗∗†

ι−1

X††

X

†

†

=

η∗

η∗

(∗η)†

ε∗

X∗†

(∗X)†
X†

X†∗

X∗†∗

X∗†∗†

ψ−1†

X†

ι−1

X††

X

†

ψ−1

X†∗

∗η

∗(X†∗)
ε∗

X†∗∗

=

η∗

η∗

(∗η)†

ε∗

X†

X†∗

X∗†∗

X∗†∗†

ψ−1†

ι−1

X††

X

†

ψ

∗ε

X†

(X†∗

∗(X†)

(∗X)†

X∗†

X†∗∗

η∗

=
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η∗

η∗

(∗η)†

X†

X†∗

X∗†∗

X∗†∗†

ψ−1†

ι−1

X††

X

†

ψ

∗ε

X†

∗
=

η∗

X∗†∗

X∗†∗†

ι−1

X††

X

†

ψ

∗ε

X†

ψ−1

(η∗)†

∗η

=

η∗

X∗†∗

X∗†∗†

ι−1

X††

X

†

X†

(η∗)†

X∗†

(∗) holds because † preserves the cyclor. Thus, (a) and (b) are inverses of each other.

Next, we show that a conjugation functor together with a dualizing functors gives a †:

Theorem 4.12. Every cyclic, conjugative ∗-autonomous category is also a †-∗-autonomous
category.

Proof. Let X be a cyclic, conjugative ∗-autonomous category then ( )∗ a ( )
∗

is an equivalence.
To build a dagger we need an equivalence on the same functor: we obtain this by using

the natural equivalence σ : ( )∗ −→ ( )
∗

from Definition 4.9. An involutive equivalence, in
addition, requires the unit and counit of the (contravariant) equivalence to be the same map
(which we called the involutor, ι). We show that this is the case:

The unit and counit of the equivalence is given by (a) and (b) respectively;

(a) Xop

( )∗
rev ""

⇓ η′⊗

Xop
<<

( )∗
op

Xrev

( ) !!
⇓ ε−1

Xrev
==

( )
rev

σ
=⇒ Xoprev

88

( )∗
oprev

( )
opmm

X

(b) Xop//( )
op

<<
( )∗

op
( )∗

rev

""
⇓ ε′⊗

Xoprev
bb

( )∗
oprev

σ−1

=⇒ Xrev
==

( )
rev

⇓ ε

Xrev

( )

!!
X X

where σ : A
∗ −→ A∗ is given in Definition 4.9. Below we show that the unit and counit

coincide in X.
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(a)

ψ−1

ε−1

ψ

(
X∗
)∗

ε∗

X∗

∗η
∗
(
X∗
)

(
X∗
)∗

ε∗
η∗

η∗

X∗∗

X∗

X∗

∗ε

∗(X∗) X∗

X

[C.2]
=

ψ−1

ε−1

(
X∗
)∗

ε∗

X∗

∗η
∗
(
X∗
)

(
X∗
)∗

ε∗

η∗

X∗∗

X∗

X∗

ε∗

X∗

X

ψ−1

∗η
∗X

=

ψ−1

ε−1

(
X∗
)∗

ε∗

X∗

∗η

∗(X∗)

(X∗)∗

ε∗

X∗

X∗

X∗

X

ϕ−1

∗η

∗X =

ψ−1

ε−1∗

(
X∗
)∗

ε∗

X∗

∗η

∗(X∗)

(X∗)∗

ε∗

X∗

X

ϕ−1

∗η

∗X

X∗∗

=

(
X∗
)∗

ε∗

X∗

∗η

∗(X∗)

ε∗

X∗

X

ψ−1

∗η

∗X

ψ−1

∗ε−1

∗(X∗)

X∗∗

=

(
X∗
)∗

ε∗

X∗

∗η

∗(X∗)

ε∗

X∗

X

ψ−1

∗η

∗X

ψ−1

∗(X∗)

X∗∗

ε−1

∗η

∗ε

=

(
X∗
)∗

ε∗

X∗

X

ψ−1

∗η

∗X

ψ−1

∗(X∗)

X∗∗

ε−1

∗η

ε∗

[C.2](inv)
=

(
X∗
)∗

X

ε−1

∗η

ε∗

∗(X∗)

∗ε

X∗

η∗

=

(
X∗
)∗

X

ε−1

ε∗

X∗

η∗

=: ι−1

(b)

ψ

ε∗

η∗

∗ε

η∗

ψ

ε

η∗

∗ε

(
X∗
)∗

(
X
)∗∗

X

X

X
∗

∗(X
∗
)

X
∗∗

X
∗∗

X∗
∗

X∗

∗(X∗)

(X∗)
∗

=

ψ

ε∗

η∗

∗ε

η∗

ψ

ε

η∗

∗ε

(
X∗
)∗

(
X
)∗∗

X

X

(
X
)∗

∗(
(
X
)∗

)

X
∗∗

X
∗∗

X∗
∗

X∗

∗ (X∗)
(
X∗
)∗

( )

[C.2]
=

ε

η∗

(
X∗
)∗

X

X

(
X
)∗

X∗
∗

( )

ε∗

η∗

ε∗

∗η

∗ε

X∗
X

X
∗

∗(X
∗
)

=

ε

(
X∗
)∗

X

X∗
∗

( )

ε∗

η∗

ε∗

η∗

X∗
X

X
∗ =
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ε

(
X∗
)∗

X

X∗
∗

( )
ε∗

η∗

X∗

X

=

ε

(
X∗
)∗

X
ε∗

η∗

X∗ X

4.10
=

X∗
∗

X

ε−1

ε∗

X∗

η∗

=: ι−1

Observe that for composition of the dualizing functor and the conjugation functor to
yield a dagger, and vice versa, a ∗-autonomous category is required to be cyclic with the
cyclor being preserved by the conjugation (see Definition 4.9) and the dagger (see just before
Lemma 3.16).

4.4. Examples. In this section, we cover examples of †-isomix categories where the † is
given by conjugation and the dualizing functor.

4.4.1. Category of a group with conjugation.

Definition 4.13. A group with conjugation is a group (G, ., e) together with a function

( ) : G −→ G such that, for all g ∈ G, g = g, and for all g, h ∈ G, g.h = hg, and e = e.

Let (G, ., e) be a group with conjugation. The discrete category D(G, ., e) whose objects
are the elements of the group is a monoidal category with the tensor product given by
g ⊗ h := g.h, and the monoidal unit e. Moreover, D(G, ., e) is a compact closed category
where g∗ := g−1 and it has a trivial conjugative cyclor (See Definition 4.9). Thus, D(G, ., e)
is a compact †-isomix-∗-autonomous category with g† := g∗ gives an example of how the
conjugation gives rise to a dagger.

Here are some examples of groups with conjugation and the discrete categories given by
them:

• Suppose we fix the group to be (C,+, 0) where the objects are complex numbers and the
tensor product is addition. The dual and conjugation of complex numbers are given as
follows: (a+ ib)∗ = −a− ib and a+ ib := a− ib. Hence,

(a+ ib)† := (a+ ib)∗ = (−a− ib) = −a+ ib

• Consider the multiplicative group (C∗, ., 1) where the objects are non-zero complex numbers
and the tensor product is given by multiplication. The dualizing and the conjugation
functors are given as follows:

(a+ ib)∗ = c+ id, where ac− bd = 1 and ad+ bc = 0

a+ ib := a− ib
(a+ ib)† is given by (a+ ib)∗.
• Suppose the group is fixed to be D(P (x),+, 0) where P (x) is a polynomial ring.

D(P (x),+, 0) is a conjugative compact closed category: P (x)∗ = −P (x) and P (x) =
P (−x). Then, P (x)† = −P (−x).
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• Consider the general linear group of degree 2, (M2, ., I2) over complex numbers. Then,
the discrete category D(M2, ., I2) has a dualizing functor given by matrix inverse and

conjugation is given by conjugate transpose:

(
a+ ib m+ in
c+ id p+ iq

)
:=

(
a− ib c− id
m− in p− iq

)
.

Then, D(M2, ., I2) is a †-isomix ∗-autonomous category with:(
a+ ib m+ in
c+ id p+ iq

)†
:=

(
a+ ib m+ in
c+ id p+ iq

)∗
=

(
a− ib c− id
m− in p− iq

)−1

4.4.2. Chu Spaces. Applications of Chu Spaces to represent quantum systems have been
studied in [Abr12], [Abr13]. In this section we show that the Chu construction over a closed
conjugative monoidal category, which has pullbacks, produces a †-isomix LDC, ChuX(I). To
get the ∗-autonomous category and †-structure on ChuX(I) we shall start by explaining how
one can produce conjugative structure on the Chu category. To achieve this we iteratively
develop the structure of this category, starting with a conjugative closed monoidal category,
X, which is not necessarily symmetric. Note that the fact that it is conjugative means
that it is both left and right closed which allows us to consider the non-commutative Chu
construction: in this regard we shall follow Jürgen Koslowski’s construction [Kos06] using
simplified “Chu-cells” on the same dualizing object to obtain not a ∗-linear bicategory but
a cyclic ∗-autonomous category. Furthermore, we shall choose a dualizing object which is
conjugative in order to obtain a conjugative cyclic ∗-autonomous category.

A conjugative object is an object D of X with an isomorphism d : D −→ D such that

dd = ε : D −→ D. We can then define ChuX(D) as follows:

Objects: (A,B,ψ0, ψ1) where ψ0 : A⊗B −→ D and ψ1 : B ⊗ A −→ D in X (these are the
simplified Chu cells).

Arrows: (f, g) : (A,B,ψ0, ψ1) −→ (A′, B′, ψ′0, ψ
′
1) where f : A −→ A′ and g : B′ −→ B and

the following diagrams commutes:

A⊗B′
1⊗g

yy

f⊗1

%%
A⊗B

ψ0 %%

A′ ⊗B′

ψ′0yy
D

B′ ⊗A
g⊗1

yy

1⊗f

%%
B ⊗A

ψ1 %%

B′ ⊗A′

ψ′1yy
D

Compositon: (f, g)(f ′, g′) := (ff ′, g′g). Composition is well-defined as:

A⊗B′′
1⊗g′

yy

f⊗1

&&
A⊗B′

f⊗1 %%

1⊗g

yy

A′ ⊗B′′

1⊗g′xx

f ′⊗1

&&
A⊗B

ψ0

**

A′ ⊗B′

ψ′0
��

A′′ ⊗B′′
ψ′′0

ttD
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and similarly for the reverse Chu-maps ψ1, ψ′1 and ψ′′1 . The identity maps are
(1A, 1B) : (A,B,ψ0, ψ1) −→ (A,B, ψ0, ψ1) as expected.

Tensor product ⊗: (A,B,ψ0, ψ1)⊗ (A′, B′, ψ′0, ψ
′
1) := (A⊗A′, E, γ0, γ1), where E is the

pullback in the following diagram:

E
π1

**

π0

tt
A′ ( B

1(ψ̃1 **

B′ (A

ψ̃′1 (Att

A′ ( (D (A)
'−−→ (A′ ( D) (A

with

B
ψ̃1−−→ D (A

B ⊗A ψ1−−→ B
B′

ψ̃′1−−→ A′ ( D
A′ ⊗B′ −→ D

and,

γ0 := (A⊗A′)⊗E 1⊗ π0−−−−−→ (A⊗A′)⊗(A′ ( B)
a⊗−−−→ A⊗(A′⊗A′ ( B)

1⊗ eval(−−−−−−−→ A⊗B
ψ′0−−→ D

γ1 := E⊗(A⊗A′) π1 ⊗ 1−−−−−→ (B′ (A)⊗(A⊗A′)
a−1
⊗−−−→ (B′ (A⊗A)⊗A′ eval (⊗ 1−−−−−−−→ B′⊗A′

ψ′1−−→ D

The tensor unit is (I,D, ul⊗, u
r
⊗).

It is standard that ChuX(D) is a (non-commutative) ∗-autonomous category. Further-
more, it is cyclic because

∗(A,B,ψ0, ψ1) = (A,B,ψ0, ψ1)∗ = (B,A,ψ1, ψ0).

In addition, ChuX(D) is conjugative with

(A,B,ψ0, ψ1) := (A,B, χψ1d, χψ0d)

and (f, g) = (f, g). Finally, being conjugative cyclic ∗-autonomous implies that one has a
dagger!

In the case that X is a symmetric monoidal closed category we may recapture the usual
Chu construction [Bar06], which we denote ChusX(D). Consider the full subcategory of
Chu-objects with special Chu-cells of the form (A,B,ψ, c⊗ψ) in which the symmetry map is
used to obtain the second cell, this gives an inclusion ChusX(D) −→ ChuX(D).

We observe that X is symmetric conjugative when this subcategory is closed to the
conjugation:

Lemma 4.14. If X is a conjugative symmetric monoidal closed category and d : D −→ D is
an involutive object, then ChusX(D) is a conjugative symmetric ∗-autonomous category.

Proof. It suffices to observe that the Chu-cells of (A,B,ψ, c⊗ψ) have the right form. Using
the coherence of the involution with symmetry, the first Chu-cell of this object has χc⊗ψd =
c⊗χψd which is exactly the symmetry map applied to the second Chu-cell of the object as
desired.
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To obtain an isomix category one can choose D = I. ChusX(I) is an isomix category
because the unit for tensor and par are the same (namely > = ⊥ = (I, I, ul⊗ = ur⊗)). The

tensor unit is always a conjugative object since (χ◦)−1 : I −→ I; therefore, this is immediately
a conjugative symmetric ∗-autonomous category. Composing the conjugation with the
dualizing functor gives us a dagger.

4.4.3. Category of Hopf Modules of a ∗-autonomous category. In the previous example, start-
ing from a conjugative closed monoidal category with pullbacks, we built a †-∗-autonomous
category using the Chu construction. In this example3, we start with any symmetric ∗-
autonomous category, X, and build the category of modules over a Hopf Algebra which is in
turn a †-∗-autonomous category.

First of all, it has been already proven in [PS09], that the category of Hopf modules over
a ⊗-Hopf algebra in any symmetric ∗-autonomous category is also a ∗-autonomous category.
Then we note that, whenever the Hopf Algebra is cocommutative, the resulting ∗-autonomous
category has a conjugation functor. One can construct the dagger functor by composing
the conjugation functor and dualizing functor as in Theorem 4.12. We establish some basic
definitions before describing the category of modules over a Hopf Algerba, H-ModX.

Definition 4.15. A bialgebra in a symmetric monoidal category is a 4-tuple

(∇ : B ⊗B −→ B, e : I −→ B,∆ : B −→ B ⊗B, u : B −→ I)

such that (A,∇, e) is a monoid and (A,∆, u) is a comonoid and ∇ and e are coalgebra
homomorphisms with respect to the comultiplication and the counit.

Note that instead of requiring that ∇ and e are coalgebra homomorphisms, one could
equivalently require ∆ and u are algebra homomorphims with respect to the multiplication
and the unit.

The components of a bialgebra are graphically depicted as follows:

: A⊗A −→ A : A −→ A⊗A : A −→ I : I −→ A

This gives a succinct graphical depiction of the coalgebra homomorphism laws; namely:

= = = = I

Definition 4.16. An antipode for a bialgebra (B,∇, ,∆, ) is an endomorphism s : B
−→ B such that

s = s =

A Hopf algebra is a bialgebra with an antipode. An involutive Hopf algebra is a
hopf algebra where the antipode is self-inverse.

A standard example of a Hopf algebra is a group algebra over a field: for all group
elements g, ∇ : g 7→ g ⊗ g, : g 7→ 1, ∆ : g ⊗ h 7→ gh and s : g 7→ g−1.

3We thank J-S. P. Lemay for bringing our attention to this example.
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Lemma 4.17. Suppose X is a symmetric monoidal category, then:

(i) [Blu96, Theroem 3.5] If H is a commutative or a cocommutative Hopf Algebra in X,
then s2 = 1 where s is the antipode: so it is an involutive Hopf algebra.

(ii) [Lem19, Lemma 2.11] If H is a commutative Hopf Algebra, then s is a monoid
homomorphism. If H is a cocommutative Hopf Algebra, then s is a comonoid homo-
morphism.

Definition 4.18. A left module for a bialgebra (B,∇, u,∆, e) is a tuple (M,alM : B ⊗M
−→M) such that alM is a B-action i.e., the following diagram commutes:

M
ul⊗ // >⊗M

��
M

We graphically depict alm as follows:

: B ⊗M −→M

giving the graphical presentation of the module laws:

= and =

Definition 4.19. Let X be a ∗-autonomous category and H be a Hopf ⊗-algebra in X. The
category of left H-modules in X, H-ModX has:

Objects: Left H-modules (A, alA : H ⊗A −→ A):

Arrows: A module homomorphism (A, aLA : H ⊗ A −→ A)
f−−→ (B, aLB : H ⊗B −→ B) is a

map A
f−−→ B such that the following diagram commutes:

H ⊗A
aLA //

1⊗f
��

A

f
��

H ⊗B
aLB

// B

This is graphically depicted as follows:

f
=

f

Observe that any left action is indeed a module homomorphism.

Theorem 4.20 . [PS09] Let X be symmetric ∗-autonomous category and H be a ⊗-Hopf
Algebra in X with bijective antipode (s2 = 1). Then, H-ModX is a ∗-autonomous category.
If the Hopf Algebra, H, is cocommutative, then H-ModX is a symmetric ∗-autonomous
category.
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Proof. (Sketch) The monoidal product ⊗ for H-ModX is defined as follows:

(A, )⊗ (B, ) := (A⊗B, ) where, :=

The unit of ⊗ is given by (>, H ⊗>
uR⊗−−−→ H

e−−→ >), the left action is drawn as
>

>

H >

The par product is defined as: (A, )⊕ (B, ) := (A⊕B, ) where,

:= H ⊗ (A⊕B)
∆⊗ 1−−−−→ (H ⊗H)⊗ (A⊕B)

a⊗−−−→ H ⊗ (H ⊗ (A⊕B))

c⊗−−→ (H ⊗ (A⊕B))⊗H ∂L ⊗ 1−−−−−→ ((H ⊗A)⊕B)⊗H ∂R−−−→ (H ⊗A)⊕ (B ⊗H)

1⊕ c⊗−−−−−→ (H ⊗A)⊕ (H ⊗B)
⊕

−−−−−→ A⊕B
and the unit of ⊕ is

⊥ := (⊥, H ⊗⊥ u⊗⊥−−−−→ >⊗⊥ u⊗−−−→ ⊥)

All the basic natural isomorphisms are inherited directly from X and they are module
homomorphisms. Thus, HModX is a LDC.

The dualizing functor ( )∗ is given as follows:(A, : H ⊗A −→ A)∗ := (A∗, ∗ : H ⊗A∗

−→ A∗) where,

∗ :=

H A∗

A∗

s

Equationally,

∗ := H ⊗A∗ s⊗ 1−−−−→ H ⊗A∗
u−1
⊗ ⊗ 1

−−−−−−→ (H ⊗>)⊗A∗ 1⊗ η ⊗ 1−−−−−−→ (H ⊗ (A∗ ⊕A))⊗A∗

c⊗ ⊗ 1−−−−−→ ((A∗ ⊕A)⊗H)⊗A∗ ∂ ⊗ 1−−−−→ (A∗ ⊕ (A⊗H))⊗A∗ 1⊗ c⊗ ⊗ 1−−−−−−−→ (A∗ ⊕ (H ⊗A))⊗A∗

(1⊕ )⊗ 1
−−−−−−−−→ (A∗ ⊕A)⊗A∗ ∂−−→ A∗ ⊕ (A⊗A∗) 1⊕ ε−−−−→ A⊕⊥

uR⊕−−−→ A∗

The cups and caps are inherited directly from X, hence the snake diagrams hold. The
antipode in the definition of ∗ : H ⊗A∗ −→ A∗ makes the cup and cap module morphisms.

Suppose (A, )
f−−→ (B, ) is as a module morphism, then f∗ := B∗

f∗−−→ A∗ ∈ X which

is also a module morphism. Thus, H-ModX is a monoidal category with a dualizing functor,
hence a ∗-autonomous category.

If H is cocommutative, then (A, )⊗ (B, )
c⊗−−→ (B, )⊗ (A, ) is a module homomor-

phism.
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In that case, H-ModX is a symmetric ∗-autonomous category.

Futhermore, we can show that the category of Hopf modules is conjugative.

Lemma 4.21. Let X be a symmetric ∗-autonomous category. H-ModX, the category of
modules over a cocommutative Hopf Algebra H is a conjugative symmetric ∗-autonomous
category.

Proof. We already know that H-ModX is a symmetric ∗-autonomous category. We define
the conjugation functor ( ) : H-ModX −→ H-ModX as follows:

• (A, ) := (A, ) where, := s

• Suppose f : (A, ) −→ (B, ), then f := f

The basic natural isomorphisms are given by:

(B, )⊗ (A, )
χ−−→ (A, )⊗ (B, ) := B ⊗A

(c⊗)B,A−−−−−−→ A⊗B

(A, )
ε−−→ (A, ) := 1

The natural isormorphisms satisfy all the coherences of conjugative symmetric ∗-
autonomous category.

Lemma 4.22. Suppose X is a symmetric (iso)mix ∗-autonomous category, then H-ModX,
the category of Hopf modules over a cocommutative Hopf Algebra H is a (iso)mix conjugative
symmetric ∗-autonomous category.
Proof. The mix map m : ⊥ −→ > is inherited directly from X.

Corollary 4.23. Suppose X is a symmetric (iso)mix ∗-autonomous, then H-ModX, the
category of modules over a cocommutative Hopf Algebra H is a symmetric † (iso)mix ∗-
autonomous category.

Proof. From Lemma 4.22, H-ModX is an (iso)mix conjugative symmetric ∗-autonomous
category. Then, by Theorem 4.12 one can construct a dagger functor by composing the
conjugation and the dualizing functor as follows: ( )† := ( )∗ : H-Modop

X −→ H-ModX.
Therefore,

(A, )† := (A∗,
∗
) where,

(A,
∗
) :=

H A∗

A∗

s

s

=

H A∗

A∗

Thus, one can generate a †-isomix category from a symmetric isomix ∗-autonomous
category by choosing the Hopf modules over any cocommutative ⊗- Hopf Algebra.
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5. Unitary structure and mixed unitary categories

The objective of this section is to introduce mixed unitary categories (MUCs) and their
morphisms. A mixed unitary category consists of a unitary category , U, with a †-isomix
Frobenius functor M : U −→ C into a “large” † isomix category C. We refer to U as the
unitary core of the MUC. The unitary core is to be regarded as providing the analogue of
scalars for the larger category much as a field provides scalars for an algebra over that field.

The section starts by describing the general notion of unitary structure in a †-isomix
category. This allows the definition of a unitary category as a compact †-isomix category
in which all objects have unitary structure satisfying certain coherence conditions. We
then show how to extract a unitary category from any compact †-isomix category using
pre-unitary objects. This is a useful construction in practice. However, it can just deliver a
trivial unitary category – trivial in the sense that all objects are isomorphic to the units. This
means that, in applying the construction, it is important to identify non-trivial pre-unitary
objects to ensure that one is getting something worthwhile out.

Next we show, using the isomix functors Mx↑ (or Mx↓) that unitary categories are †-
linearly equivalent to †-monoidal categories and, furthermore, that closed unitary categories
are equivalent to †-compact closed categories. This provides an explicit connection from
MUCs to the standard notions from categorical quantum mechanics. One contribution of
this more general perspective is that through the constructions in this section one can obtain
examples not only of mixed unitary categories but also of †-monoidal and †-compact closed
categories which might otherwise have been difficult to realize.

The final subsection introduces mixed unitary categories (MUCs). These form the basis
for our approach to infinite dimensional categorical quantum mechanics. A MUC has a
unitary core which is a model of classical categorical quantum mechanics extended by a
larger setting in which infinite dimensional objects can be modelled.

5.1. Unitary structure. The notion of unitary maps is central to both quantum informa-
tion theory as well as quantum mechanics since the evolution of a closed quantum system is
described by such maps. Categorically, within a †-category, a unitary map is an isomorphism
f : A −→ B such that f−1 = f †. This definition of unitary isomorphism cannot be used
directly within the framework of †-LDCs since the types of f−1 : B −→ A and f † : B† −→ A†

are different. It is therefore apparent that one can only ask to have unitary isomorphisms
between certain objects, which we call “unitary objects”:

Definition 5.1. A †-isomix category, X has unitary structure in case there is an essentially
small class of objects U , called the unitary objects of X such that

[U.1] for all A ∈ U , A ∈ Core(X), and A is equipped with an isomorphism, ϕA : A −→ A†,
called the unitary structure map of A

[U.2] U is closed to ( )† so that for all A ∈ U , ϕA† = ((ϕA)−1)†

[U.3] for all A ∈ U , the following diagram commutes:

A

ϕA

��
ι

))
A† ϕ

A†
// (A†)†
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[U.4] ⊥,> ∈ U such that:

⊥
ϕ⊥ //

λ⊥
��

m

  

⊥†

λ−1
>
��

>†
ϕ−1
>

// >

[U.5] If A,B ∈ U , then A⊗B and A⊕B ∈ U such that :

(a) A⊗B
ϕA⊗ϕB

'
//

mx

44A† ⊗B†
λ⊕

'
// (A⊕B)†

ϕ−1
A⊕B

'
// A⊕B

(b) A⊗B
ϕA⊗B

'
//

mx

44(A⊗B)†
λ−1
⊗

'
// A† ⊕B†

ϕ−1
A ⊕ϕ

−1
B

'
// A⊕B

Lemma 5.2. When A and B is a unitary object in a †-isomix category then, ϕA†† = (ϕA)†† :
A†† −→ A†††.
Proof.

ϕ(A†)† = ((ϕA†)
−1)† = ((((ϕA)−1)†)−1)† = ((((ϕA)−1)−1)†)† = ((ϕA)†)†

Often we shall want the unitary objects to have linear adjoints (or duals) but we shall
need the analogue of †-duals (η† = c⊗ε and ε† = ηc⊗) from categorical quantum mechanics:

Definition 5.3. A unitary linear duality (η, ε) : A aa u B between unitary objects A and
B is a linear duality satisfying in addition:

[Udual.]

>

(a)

η //

λ>
��

A⊕B

ϕA⊕ϕB
��

⊥†

ε†
��

A† ⊕B†

c⊕
��

(B ⊗A)†
λ−1
⊕

// B† ⊕A†

(or) A⊗B

(b)

ϕA⊗ϕB //

c⊗

��

A† ⊗B†

λ⊗
��

B ⊗A

ε

��

(A⊕B)†

η†

��
⊥

λ⊥
// >†

Observe that [Udual.](a)⇔ (b). In a compact †-LDC, > aa u ⊥. [Udual] (a) is shown
diagrammatically as follows:

ε =

η

Lemma 5.4. Suppose (η1, ε1) : V1 aa u U1 and (η2, ε2) : V2 aa u U2. Then, (V1 ⊗ V2) aa u

(U1 ⊕ U2).

Proof. Define (η′, ε′) : (V1 ⊗ V2) aa u (U1 ⊕ U2) so that η′ =
η1 η2

ε′ =
ε1 ε2

. This is

easily checked to be a unitary linear adjoint.
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We can now define what it means for an isomorphism to be unitary:

Definition 5.5. Suppose A and B are unitary objects. An isomorphism A
f−→ B is said to

be a unitary isomorphism if the following diagram commutes:

A
ϕA //

f

��

ϕA // A†

B ϕB

// B†

f†

OO

Observe that ϕ is “twisted” natural for all unitary isomorphisms, thus, unitary isomor-
phisms compose and contain the identity maps. In a category in which the unitary structure
maps are identity morphisms, one recovers the usual notion of unitary isomorphisms.

Our next objective is to show that all the coherence isomorphisms between unitary
objects are unitary maps. First a warm up:

Lemma 5.6. In a †-isomix category with unitary structure:

(i) If f is a unitary isomorphism, then so is f †;
(ii) If f and g are unitary, then so are f ⊗ g and f ⊕ g;
(iii) Unitary isomorphisms are closed under composition.

Proof.

(i) Recall that ϕA† = (ϕ−1
A )†, then f † is unitary because

B†

(ϕ−1
B )†=ϕ

B† ��

f† // A†

(ϕ−1
A )†=ϕ

A†��
B†† A††

f††
oo

is just the dagger functor applied to the unitary diagram of f .
(ii) Suppose f and g are unitary morphisms, then:

A⊗B
ϕA⊗B //

f⊗g

��

mx
%%

(nat. mx)

[U.5(b)]

(A⊗B)†

(nat. λ⊕)

A⊕B
ϕA⊕ϕB//

f⊕g
��

A† ⊕B†
λ⊕

88

A′ ⊕B′
ϕA′⊗ϕB′

//

[U.5(b)]

A′† ⊕B′†
λ⊕

&&

f†⊕g†
OO

A′ ⊗B′ ϕA′⊗B′
//

mx

99

(A′ ⊗B′)†

(f⊗g)†

OO

The inner square commutes because f and g are unitary maps. Similarly, using
[U.5(b)], one can show that if f and g are unitary, then f ⊕ g is unitary.

(iii) The proof is trivial.

The following lemma will be used to prove that the associator natural isomorphisms are
unitary.
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Lemma 5.7. The following diagram commutes:

(A⊗B)⊗ C mx //

a⊗
��

(A⊗B)⊕ C mx⊕1 // (A⊕B)⊕ C

a⊕
��

A⊗ (B ⊗ C)
mx
// A⊕ (B ⊗ C)

1⊕mx
// A⊕ (B ⊕ C)

Proof.

(A⊗B)⊗ C mx //

a⊗
��

mix (b)

(A⊗B)⊕ C
OO

∂L

mx⊕1 //

mix (a)

(A⊕B)⊕ C

a⊕
��

A⊗ (B ⊗ C)
1⊗mx

//

mx ++

A⊗ (B ⊕ C)
mx
//

nat.mx

A⊕ (B ⊕ C)

A⊕ (B ⊗ C) 1⊕mx

??

Lemma 5.8. Suppose X is a †-isomix category with unitary structure and A, B, and C are
unitary objects then the following are unitary maps:

(i) λ⊗ : A† ⊗B† → (A⊕B)†

(ii) λ⊕ : A† ⊕B† → (A⊗B)†

(iii) λ> : > → ⊥†
(iv) λ⊥ : ⊥ −→ >†
(v) ϕA : A→ A†

(vi) m : > → ⊥
(vii) mxA,B : A⊗B → A⊕B

(viii) ι : A→ (A†)†

(ix) a⊗ : (A⊗B)⊗ C → A⊗ (B ⊗ C)
(x) a⊕ : (A⊕B)⊕ C → A⊕ (B ⊕ C)
(xi) c⊗ : A⊗B → B ⊗A
(xii) c⊕ : A⊕B → B ⊕A

(xiii) ∂L : A⊗ (B ⊕ C)→ (A⊗B)⊕ C
(xiv) ∂R : (A⊕B)⊗ C → A⊕ (B ⊗ C)

Proof.

(i) λ⊗ : A† ⊗B† → (A⊕B)† is a unitary map because:

A† ⊗B†
ϕ−1
A ⊗ϕ

−1
B //

λ⊗
��

[U.5(a)]

A⊗B
ϕA⊗ϕB //

mx

��
nat.

A† ⊗B†
ϕ
A†⊗B† //

mx
��

[U.5(a)]

(A† ⊗B†)†

λ−1
⊕
��

(A⊕B)†
ϕ−1
A⊕B //

ϕ
(A⊕B)†

""

[U.3]

A⊕B
ϕA⊕ϕB // A† ⊕B†

ϕ
A†⊕ϕB†//

[U.3] ⊕ [U.3]

(A†)† ⊕ (B†)†

A⊕B ι⊕ι //

ι
��

[†-ldc.5(a)]

(A†)† ⊕ (B†)†

λ⊕
��

((A⊕B)†)†
λ†⊗

// (A† ⊗B†)†
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(ii) λ⊕ is unitary because:

A† ⊕B†
ϕ
A†⊕B† //

mx−1

&&

λ⊕

��

Lem. 3.13

(A† ⊕B†)†

(Lem. 3.13)†

A† ⊗B†
ϕ
A†⊗B†//

λ⊗
��

Lem. 5.8 (vi)

Lem. 5.8 (i)

(A† ⊗B†)†

(mx−1)†
77

(A⊕B)†
ϕ
(A⊕B)†//

Lems. 5.8 (vi), 5.6 (i)

((A⊕B)†)†

λ†⊗

OO

((mx−1)†)†

''
(A⊗B)†

ϕ
(A⊕B)† //

(mx−1)†
88

((A⊗B)†)†

λ†⊕

OO

(iii) λ⊥ : ⊥ → >† is unitary because:

⊥

λ⊥
��

ϕ⊥ // ⊥†

(λ−1
⊥ )†

��
>†

m†

77

ϕ>†=(ϕ−1
> )†
// >††

The left triangle commutes by [U.4] and [†-mix]. The right triangle commutes by
[U.4] and the functoriality of †.

(iv) λ> : > → ⊥† is unitary because:

>

λ>
��

ϕ> // >†

(λ−1
> )†

��
⊥†

(m−1)†

77

ϕ⊥†=(ϕ−1
⊥ )†
// ⊥††

The left triangle commutes by [U.4] and [†-mix]. The right triangle commutes by
[U.4] and the functoriality of †.

(v) ϕA is unitary because the following square commutes by [U.3] and [U.4].

A
ϕA //

ϕA

��

A†

(ϕ−1)†

��
A†

ϕ
A† // A††

(vi) m : ⊥ → > is unitary because:

⊥
ϕ⊥ //

m

��

⊥†

(m−1)†

��
> ϕ>

//

λ>

??

>†

The left and right triangles commute by [U.4] and [†-mix] respectively. Hence, the
outer squares commutes.
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(vii) mxA,B : A⊗B → A⊕B is unitary as:

A⊗B

mx

��

ϕA⊗B

''
mx //

ϕA⊗ϕB
00

nat.

[U.5(a)]

A⊕B
ϕA⊕ϕB// A† ⊕B†

λ⊕ // (A⊗B)†

A† ⊗B†
mx

OO

λ⊗

&&

Lem. 3.13

A⊕B ϕA⊕B

//

[U.3]

(A⊕B)†

mx†

OO

(viii) ι : A→ A†† is unitary as in

A

ι
��

ϕA // A†

(ι−1)†

��

ϕ
A†

||
A†† ϕ

A††
// A†††

the left triangle commutes by [U.3] and the right triangle commutes by:

(ι−1)† = ((ϕA†)
−1ϕ−1

A )† = (((ϕ−1
A )†)−1ϕ−1

A )†

= ((ϕ†A)(ϕ−1
A ))† = (ϕ−1

A )†(ϕA)††

= ϕA†(ϕA)†† = ϕA†(ϕA††)

(ix) a⊗ is unitary as:

(A⊗B)⊗ C
ϕ(A⊗B)⊗C //

a⊗

��

mx
((

[U.5(b)]

Lem. 5.7

((A⊗B)⊗ C)†

(A⊗B)⊕ C
ϕA⊗B⊕ϕC//

mx⊕1

��
[U.5(b)]⊕(id)

(A⊗B)† ⊕ C†

λ−1
⊕ ⊕1
��

λ⊕

66

[†-ldc.1]

(A⊕B)⊕ C
(ϕA⊕ϕB)⊕ϕC

//

a⊕

��
nat.

(A† ⊕B†)⊕ C†

a⊕
��

A⊕ (B ⊕ C)
ϕA⊕(ϕB⊕ϕC)

//

(id)⊕[U.5(b)]

A† ⊕ (B† ⊕ C†)

1⊕λ⊕
��

A⊕ (B ⊗ C)
ϕA⊕ϕB⊗C

//

1⊕mx

OO

A† ⊕ (B ⊗ C)†

λ⊕

((
A⊗ (B ⊗ C)

ϕA⊗(B⊗C) //

mx
66

[U.5(b)]

(A⊗ (B ⊗ C))†

a†⊗

OO

(x) a⊕ is unitary because:
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(A⊕B)⊕ C
ϕ(A⊕B)⊕C //

a⊕

��

mx−1
((

[U.5(a)]

Lem. 5.7

((A⊕B)⊕ C)†

(A⊕B)⊗ C
ϕA⊕B⊗ϕC//

mx−1⊗1
��

[U.5(a)]⊗(id)

(A⊕B)† ⊗ C†

λ−1
⊗ ⊗1
��

λ⊕

66

[†-ldc.1]

(A⊗B)⊗ C
(ϕA⊕ϕB)⊕ϕC

//

a⊗

��
nat.

(A† ⊗B†)⊗ C†

a⊗
��

A⊗ (B ⊗ C)
ϕA⊗(ϕB⊗ϕC)

//

(id)⊗[U.5(a)]

A† ⊗ (B† ⊗ C†)

1⊗λ⊗
��

A⊗ (B ⊕ C)
ϕA⊗ϕB⊕C

//

1⊗mx−1

OO

A† ⊗ (B ⊕ C)†

λ⊗

((
A⊕ (B ⊕ C)

ϕA⊕(B⊕C) //

mx−1
66

[U.5(a)]

(A⊕ (B ⊕ C))†

a†⊕

OO

(xi) c⊗ is unitary because:

A⊗B
ϕA⊗B //

mx

$$

c⊗

��

[U.5(b)]

(A⊗B)†

A⊕B
ϕA⊕ϕB//

c⊕

��
nat.

A† ⊕B†

c⊕
��

λ⊕
88

[†-ldc.2(b)]

B ⊕A
ϕB⊕ϕA// B† ⊕A†

λ⊕

&&
B ⊗A

mx

::

ϕB⊗A //

[U.5(b)]

(B ⊗A)†

(c−1
⊗ )†=c†⊗

OO

where the left square commutes because

>

⊥
=

>

⊥

=
>

⊥

(xii) c⊕ is unitary because:
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A⊕B
ϕA⊕B //

mx−1

$$

c⊕

��

Lem. 5.8 (vii)

(A⊕B)†

A⊗B
ϕA⊗B//

c⊗

��
Lem. 5.8 (xi)

(A⊗B)†

(mx−1)†
88

B ⊗A
ϕB⊗A// (B ⊗A)†

(mx−1)†

&&

c†⊗

OO

B ⊕A
ϕB⊕A //

mx−1

::

Lem. 5.8 (vii)

(B ⊕A)†

c†⊕

OO

where the left square commutes for the same reason and the right square is the
dagger of the left square.

(xiii) ∂L is unitary (see Figure 2).
(xiv) ∂R is unitary because:

(A⊕B)⊗C mx //

∂R
��

ϕ(A⊕B)⊗C

))
(A⊕B)⊕Cmx−1⊕1// (A⊗B)⊕C

ϕ(A⊗B)⊕C//

Lem. 5.8 (xiii)

Lem. 5.8 (vii), 5.6

((A⊗B)⊕C)†
(mx−1⊕1)†//

∂†L
��

((A⊕B)⊕C)†
mx† // ((A⊕B)⊗C)†

A⊕(B⊗C)
mx−1

//

ϕA⊕(B⊗C)

66
A⊕(B⊕C)

1⊕mx // A⊗(B⊕C)
ϕA⊗(B⊕C)//

∂L

OO

Lem. 5.8 (vii), 5.6

(A⊗(B⊕C))†
(mx⊕1)†// (A⊕(B⊕C))†

(mx−1)†// (A⊕(B⊗C))†

∂†R

OO

5.2. Unitary categories. With the notion of unitary objects in place, one can consider
†-isomix categories in which all the objects are unitary: these are called unitary categories.
This section develops the theory of unitary categories.

Definition 5.9. A unitary category is a †-isomix category with unitary structure such
that every object in the category is a unitary object.

Clearly, a unitary category must be a compact †-LDC, because every object is in the
core.

A †-monoidal category is a strict unitary category in which the unitary structure map
and the mix map are identity morphisms. Similarily, a †-compact closed category is a strict
unitary category in which all objects have unitary duals.

In the rest of this subsection, we show that any unitary category is †-linearly equivalent
to a conventional dagger monoidal category. A unitary category being a compact LDC is
linearly equivalent, using Mx∗↑ : (X,⊗,⊕) −→ (X,⊕,⊕) (see Corollary 2.8) to the underlying
monoidal category based on the par (and the tensor). We now show that for a unitary
category one can induce a stationary on objects dagger on (X,⊕,⊕). We denote this dagger
by ( )‡ and define it by f ‡ := ϕBf

†ϕ−1
A as illustrated by the left diagram below:
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A
⊗

(B
⊕
C

)
ϕ
A
⊗
ϕ
B
⊕
C

//

m
x

��

ϕ
A
⊗
(B
⊕
C
)

++

∂
L

  

[U
.6

(
b
)
]

A
†
⊗

(B
⊕
C

)†
+3

��
id

A
†
⊗

(B
⊕
C

)†
m
x
//

1
⊗
λ
−
1
⊗

��
n
a
t
.

[U
6
.(
b
)
]

A
†
⊕

(B
⊕
C

)†
λ
⊕

//

1
⊕
λ
−
1
⊗

��
[†
-l
d
c
.4

(
b
)
]

(A
⊗

(B
⊕
C

))
†

A
⊕

(B
⊕
C

)ϕ
A
⊕
(B
⊕
C
)
//

a
−
1
⊕
��

L
e
m

.
5
.8

(
ix

)

(A
⊕

(B
⊕
C

))
†

λ
−
1
⊗
//

(a
⊕

)†

��

A
†
⊗

(B
⊕
C

)†
1
⊗
λ
−
1
⊗
//

[†
-l
d
c
.1

(
b
)
]

A
†
⊗

(B
†
⊗
C
† )

m
x
//

a
−
1
⊗
��

m
x
.
c
a
t
.A
†
⊕

(B
†
⊗
C
† )

(A
⊕
B

)
⊕
C
ϕ
(A
⊕
B
)⊕

C //

��

((
A
⊕
B

)
⊕
C

)†
λ
−
1
⊗
//

[U
.6

(
a
)
]

(A
⊕
B

)†
⊗
C
†
λ
−
1
⊗
⊗

1 //

m
x
��

n
a
t
.

(A
†
⊗
B
† )
⊗
C
†

m
x⊗

1
//

m
x
��

n
a
t
.

(A
†
⊕
B
† )
⊗
C
†

m
x

��

+3

∂
R

OO

n
a
t
.

(A
†
⊕
B
† )
⊗
C
†

λ
⊕
⊗

1

��

(A
⊕
B

)
⊕
C

ϕ
A
⊕
B
⊕
ϕ
C

//

m
x−

1
⊕

1
��

m
x

c
a
t
.

(
id

)
⊗
(
L
e
m

.
5
.8

(
v
ii
)
)

(A
⊕
B

)†
⊕
C
†
λ
−
1
⊗
⊕

1 //

m
x†
⊕

1
��

1
⊗
(
L
e
m

.
3
.1

3
)

(A
†
⊗
B
† )
⊕
C
†

m
x⊕

1
��

m
x⊕

1
//

id

(A
†
⊕
B
† )
⊕
C
†

��

(A
⊗
B

)
⊕
C

ϕ
A
⊕
B
⊕
ϕ
C

//

��
[U

.6
(
a
)
]

(A
⊗
B

)†
⊕
C
†
λ
−
1
⊗
⊕

1 //

λ
⊗
��

id

(A
†
⊕
B
† )
⊕
C
†

λ
⊕
⊕

1
��

(A
⊗
B

)
⊕
C

m
x−

1
//

��

(A
⊕
B

)
⊗
C
ϕ
(A
⊕
B
)⊕

C //

[U
.6

(
a
)
]((
A
⊗
B

)
⊗
C

)†
λ
−
1
⊗
// (
A
⊗
B

)†
⊕
C
†
λ
−
1
⊕
⊗

1 //

��
id

(A
†
⊕
B
† )
⊕
C
†

λ
⊕
⊗

1
��

(A
⊗
B

)
⊕
C

ϕ
A
⊗
B
⊕
ϕ
C

//

ϕ
(A
⊗
B
)⊕

C

33
(A
⊗
B

)†
⊕
C
†

+3

[U
.6

(
a
)
]

(A
⊗
B

)†
⊕
C
†

m
x−

1
// (
A
⊗
B

)†
⊗
C
†

λ
⊗
// (

(A
⊗
B

)
⊕
C

)†

∂
† L

OO

Figure 2: ∂L is a unitary isomorphism
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B

ϕB
��

f‡ //

:=

A

ϕA
��

B†
f†

// A†

A

ι

��

ϕA
��

f‡‡ // B

ϕB
��

ι

��

A†

(ϕ−1
A )†

��

(f‡)†
// B†

(ϕ−1
B )†

��
A††

f††
// B††

This new dagger clearly preserves composition and is also a stationary on objects
involution as proven by the second diagram: the lower square of this diagram is the dagger
of the inverted definition and the resulting outer square is the naturality of ι forcing f ‡‡ = f .

Next, we observe that u : X −→ Y is a unitary isomorphism in X if and only if u−1 = u‡.
This makes unitary isomorphisms in the traditional sense of categorical quantum mechanics
coincide with the notion introduced here. Thus, u is unitary in the sense here if and only if
the diagram below commutes

B

ϕB
��

u−1
// A

ϕA

��
B†

u†
// A

but this diagram commutes if and only if u−1 = u‡.

Definition 5.10. A †-Frobenius mix functor, F : X −→ Y, between compact †-isomix
categories with unitary structure preserves unitary structure if

(i) for all unitary objects A ∈ X, F (A) is a unitary object such that ϕF (A) = F (ϕA)ρF

(ii) Either nF⊥ or mF
> are unitary isomorphisms i.e.,

F (⊥)
F (ϕ⊥)//

n⊥
��

F (⊥†)
ρ // F (⊥)†

⊥ ϕ⊥
// ⊥†

n†⊥

OO
(or) >

ϕ> //

m>
��

>†

F (>)
F (ϕ>)

// F (>†) ρ
// F (>)†

m†>

OO

Notice that if F preserves unitary structure, it must be an isomix functor by Lemma
3.8. Also, when A ∈ X is a unitary object, then F (A) must be a unitary object, and so F (A)
is in the core.

We now show that Mx↑ : (X,⊕,⊕) −→ (X,⊗,⊕) provides a unitary structure preserving
equivalence of a dagger monoidal category into a unitary category:

Proposition 5.11. Unitary categories are †-linearly equivalent via the mix functor Mx↑ :
(X,⊕,⊕) −→ (X,⊗,⊕) to the underlying dagger monoidal category on the par. Furthermore,
closed unitary categories under this equivalence become dagger compact closed categories.

Proof. We must exhibit a preservator, that is a natural transformation showing that the
involution is preserved:

Mx↑(A
‡)

ϕA−−−→ Mx↑(A)†

A −−−→
ϕA

A†
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Note that ϕ is a natural transformation by the definition of ( )‡ and its coherence requirements
make it a linear natural equivalence. Making this the preservator immediately means that
unitary structure is preserved.

Finally, we must show that unitary linear duals under Mx∗↑ become ‡-duals. Given
(η, ε) : A aau B we must show that under Mx∗↑ this produces a dagger dual. Mx∗↑(η) = m η : ⊥
−→ A ⊕ B and Mx∗↑(ε) = mx−1ε : B ⊕ A −→ ⊥ We then require that c⊕Mx∗↑(ε) = Mx∗↑(η)‡.
This is provided by:

A⊕B

mx−1

��

ϕA⊕B

��

c⊕ // B ⊕A

Mx∗↑(ε)

))
mx−1

// B ⊗A ε
// ⊥

m

��
ϕ⊥

��

λ⊥

��

A⊗B

ϕA⊗ϕB
��

c⊗

66

A† ⊗B†

λ⊗
��

>

λ>
��

(A⊕B)†

Defn. 5.3 (b)

Mx∗↑(η)†

77
η†

// >†
m†

// ⊥†

5.3. The unitary construction. A †-isomix category can have many different unitary
structures, as we shall describe in this section, thus it is structure, and not a property.
The requirements, however, do mean that for a †-isomix category, X, there is always the
smallest unitary structure, referred to as the “trivial” unitary structure, that produces a
full unitary subcategory in X. In this subsection, we provide a construction that produces
this unitary category from any †-isomix category. This construction, which we call the
unitary construction provides an important technique for building unitary categories.
The construction is based on identifying objects with pre-unitary structure: the tensor
units always have a canonical pre-unitary structure so the construction always produces a
non-empty category. However, to ensure that an application of the construction yields a
unitary category in which there are objects which are not isomorphic to the units, one must
exhibit concretely such objects. Fortunately this is often not difficult to do, making the
construction quite applicable.
Definition 5.12.

(i) In a †-isomix category, a pre-unitary object is an object U ∈ Core(X), together
with an isomorphism α : U −→ U † such that α(α−1)† = ι.

(ii) Suppose X is a †-isomix category, then define Unitary(X), the unitary core of X, as
follows:
Objects: Pre-unitary objects (U,α),

Maps: (U,α)
f−−→ (V, β) where U

f−−→ V is any map of X.

We note that any object which is isomorphic to a preunitary object is also pre-unitary:
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Lemma 5.13. In a †-isomix category, if U is a pre-unitary object and there exists an
isomorphism f : U −→ U ′, then U ′ is pre-unitary.

Our objective is to show that Unitary(X) is endowed with all the structure of a unitary
category.

Lemma 5.14. For any †-isomix category, its canonical unitary core is a compact †-LDC
with tensor and par defined by

(>,m−1λ⊥ : > −→ >†) (A,α)⊗ (B, β) := (A⊗B,mx(α⊕ β)λ⊕ : A⊗B −→ (A⊗B)†)

(⊥,m λ> : ⊥ −→ ⊥†) (A,α)⊕ (B, β) := (A⊕B,mx−1(α⊗ β)λ⊗ : A⊕B −→ (A⊕B)†)

and (U,α)† := (U †, (α−1)†).

Proof. The proof uses the techniques of Lemma 5.2.
Note that, as the map and tensor structure is inherited from X, it suffices to show that

these objects are all pre-unitary objects. Starting with (Uα)† we have:

(α−1)†(((α−1)†)−1)† = (α−1)†(α†)† = (α†α−1)† = (ι−1)† = ι

For the tensor and par we have:

m−1λ⊥((m−1λ⊥)−1)† = m−1λ⊥m
†λ†⊥

[†-mix]
= m−1mλ>λ

†
⊥ = ι

mx−1(α⊕ β)λ⊕((mx−1(α⊕ β)λ⊕)−1)† = mx−1(α⊕ β)λ⊕(mx†)(α−1 ⊕ β−1)†(λ−1
⊕ )†

= mx−1(α⊕ β)mxλ⊗(α−1 ⊕ β−1)†(λ−1
⊕ )†

= (α⊗ β)λ⊗(α−1 ⊕ β−1)†(λ−1
⊕ )†

= (α⊗ β)((α−1)† ⊗ (β−1)†)λ⊗(λ−1
⊕ )†

Defn 5.12-(i)
= (ι⊗ ι)λ⊗(λ−1

⊕ )†

[†-ldc.4]
= ι

mλ>((mλ>)−1)† = mλ>(m−1)†(λ−1
> )†

= m m−1λ⊥(λ−1
> )† = ι

mx(α⊗ β)λ⊗((mx(α⊗ β)λ⊗)−1)† = mx(α⊗ β)λ⊗(mx−1)†(α−1 ⊗ β−1)†(λ−1
⊗ )†

= (α⊕ β)mx mx−1λ⊕(α−1 ⊗ β−1)†(λ−1
⊗ )†

= (α⊕ β)((α−1)† ⊕ (β−1)†)λ⊕(λ−1
⊗ )†

= (ι⊕ ι)λ⊕(λ−1
⊗ )† = ι

This makes Unitary(X) into a compact †-LDC with all the structure inherited directly
from X. However, more is true: each object now has an obvious unitary structure. This
gives:

Proposition 5.15. For any †-isomix category, X, Unitary(X) is a unitary category with a
full and faithful underlying †-isomix functor U : Unitary(X) −→ X.
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Proof. The laxors are all identity maps so that the underlying functors is immediately a
†-mix functor.

It remains to show that every object is unitary: we set the unitary structure of an
object to be α : (X,α) −→ (X,α)†. However, [U.1] – [U.5] are immediately satisfied by
construction implying this provides unitary structure for every object.

Next, we prove the couniversal property of the unitary construction. Define UCat to
be the category of unitary categories and †-isomix functors that preserve unitary structure
in the sense of Definition 5.10, thus, whenever ϕA is the unitary structure then F ′(ϕA)ρF

′

is unitary structure. Define Kompact to be the category of compact †-LDCs and †-isomix
functors.

We now show that the unitary construction produces a right adjoint to the underlying
functor U : UCat −→ Kompact which is the identity functor. Preliminary to this result we
prove that Frobenius functors preserve preunitary objects:

Lemma 5.16. If F : X −→ Y is a †-isomix functor between compact †-LDCs and (A,ϕ) is a
preunitary object of X, then (F (A), F (ϕ)ρ) is a preunitary object of Y.

Proof. To prove that (F (A), F (ϕ)ρ) is a preunitary object, one has the following computation:

F (ϕ)ρ((F (ϕ)ρ)−1)† = F (ϕ)ρF (ϕ−1)†(ρ−1)†

= F (ϕ(ϕ−1)†)ρ(ρ−1)†

= F (ι)ρ(ρ−1)†
[†−isomix]

= ι

Proposition 5.17. U : UCat −→ Kompact has a right adjoint Unitary : Kompact −→
UCat;C 7→ Unitary(C).

Proof. The couniversal diagram is as follows:

U(U)
F //

U(F [)
��

C

U(Unitary(C))

ε

66

Since F is a †-isomix functor it preserves preunitary structure (see Lemma 5.16). This
means that each (U,ϕU ) in U is carried by F onto a preunitary object in C, (F (U), F (ϕ)ρF ).

But a preunitary object in C is an object of Unitary(C) and this determines F [. The functor

F [ is uniquely determined as it must preserve the unitary structure.

5.4. Examples of unitary constructions. In Section 4, we discussed examples of †-isomix
categories in which the † is given by composing the conjugation functor and the dualizing
functor. In the rest of the section, we apply the unitary construction to each of those
examples to construct a unitary category:
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5.4.1. Category of abstract state spaces. In Section 3.5.3, we discussed a construction on a
†-isomix category, X, that produces a category of abstract state spaces, Asp(X), which is
a †-isomix category. In this section, we examine the preunitary objects of Asp(X). Since
all the basic natural isomorphisms are inherited from X, Core(X) determine Core(Asp(X)).
If (A,α) is a preunitary object for X, and (A, eA, uA) ∈ Asp(X) then, ((A, eA, uA), α) is a

preunitary object for Asp(X) if uAα = λ>e
†
A.

5.4.2. Category of a group with involution. We discussed a source of examples of compact
†-LDCs which are given by groups with conjugation. Applying unitary construction to each
of the example categories results in the following unitary categories. It could be noticed
that the preunitary objects in each of these categories includes those group elements such
that g−1 = g. More explicitly, the preunitary objects are (g, 1) such that g−1 = g.

• In the discrete category of complex numbers, D(C,+, 0),

(a+ ib)† := (a+ ib)∗ = (−a− ib) = −a+ ib

The preunitary objects in this category are given by all complex numbers, i.e., (ib, 1).
• In the discrete category of non-zero complex numbers, D(C, ., 1), the preunitary objects

are given by complex numbers on a unit circle.
• In the discrete category, D(P (x),+, 0), where P (x) is a polynomial ring, P (x)† = −P (−x)

and the preunitary objects are polynomials P (x) =
∑

n anx
n such that n is odd.

• In D(M2, ·, I2) where M2 is the group of 2× 2 invertible matrices over C. The † structure
is as follows:(

a+ ib m+ in
c+ id p+ iq

)†
:=

(
a+ ib m+ in
c+ id p+ iq

)∗
=

(
a− ib c− id
m− in p− iq

)−1

The preunitary objects in this category are given by unitary matrices.

5.4.3. Category of Hopf Modules in a ∗-autonomous category. In Section 4.4.3, we described
a construction of †-isomix categories from any symmetric isomix ∗-autonomous category, X,
by choosing the Hopf Modules over a cocommutative ⊗-Hopf Algebra. We referred to the
resulting category as H-ModX. Now we shall look at the preunitary objects in H-ModX in
order to apply the unitary construction to this category. We begin by identifying the objects
in the core of H-ModX:

Lemma 5.18. Suppose X is a mix ∗-autonomous category and H is a cocommutative Hopf
Algebra in X. If (A, ) is a H-Module and A ∈ Core(X), then (A, ) ∈ Core(H-ModX).

Proof. The mixor mx : A⊗B −→ A⊕B is inherited directly from X. Hence, (A, ) ∈ Core(H-

ModX).

Now that we identified the objects in the core, we prove a lemma that will be used later
to identify the preunitary objects from the core:
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Lemma 5.19. The following equality holds for a Frobenius algebra:

=

Proof.

= = = =

In the following Proposition we identify the preunitary objects in the core:

Proposition 5.20. Suppose X is a symmetric mix ∗-autonomous category and H is a
cocommutative Hopf Algebra in X. If A ∈ Core(X) and (A, , , , ) is a cocommutative

Frobenius Algebra with an algebra homomorphism H
h−−→ A then,

(a) (A, ) is a H-Module where, : H ⊗A −→ A :=
h

(b) (A, )∗ = (A, ) where A∗ is the self-dual Frobenius Algebra with cups and caps defined

as and respectively. Hence, A∗ = A and (A, )† = (A, ).

Proof.

(a) h : H ⊗A −→ A is a left action because h : H −→ A is an algebra homomorphism.

(b)

H A∗

A∗

h =
h

Lemma 5.19
=

h

cocomm.
=

h

=
h

Corollary 5.21. (((A, , , , ), ), 1) is a preunitary object.
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Thus, we have a source of non-trivial preunitary objects so that we can form a non-trivial
unitary category.

5.5. Mixed unitary categories. We are now ready for the definition of mixed unitary
categories, which is the key structure developed in this paper.

Definition 5.22. A mixed unitary category (MUC) is a †-isomix category, C, equipped
with a strong †-isomix functor M : U −→ C from a unitary category U to C such that there
exists the following natural transformations:

mx′ : M(U)⊕X −→M(U)⊗X with mx mx′ = 1 and mx′ mx = 1

mx′′ : X ⊕M(U) −→ X ⊗M(U) with mx mx′′ = 1 and mx′′ mx = 1

A mixed unitary category, M : U −→ C is symmetric if the functor M , the unitary category
U, and the †-isomix category C are symmetric.

In the definition of a MUC, the requirement of a transformation mx′ which is inverse to
mx ensures that the functor M : U −→ C factors through the Core(C). We discuss examples
of MUCs in the next section. First we show that the unitary construction on a †-isomix
category produces a mixed unitary category (MUC) which is couniversal.

Mix unitary categories organize themselves into a 2-category MUC (although we shall
not discuss the 2-cell structure):

0-cells: Are mix unitary categories M : U −→ X;
1-cells: Are MUC morphisms: these are squares of †-isomix functors (F ′, F, γ) : M −→ N

commuting up to a †-linear natural isomorphism γ:

U

F ′

��
⇓ γ

M // X

F
��

V
N

// Y

The functor F ′ : U −→ V is between unitary categories and we demand of it that it
preserves unitary structure in the sense of Definition 5.10, thus, whenever ϕA is the
unitary structure then F ′(ϕA)ρF is unitary structure.

2-cells: These are “pillows” of natural transformations. (β, β′) : (F, F ′, γF )⇒ (G,G′, γG)
is a 2-cell if and only if it satisfies the following equality:

U

G′

��

F ′

��

⇓ γF

M // X

F

��

β′⇐=

V
N

// Y

=

U

G′

��

⇓ γG

M // X

G

��

F

��

β⇐=

V
N

// Y

We remark that we have observed that any MUC can be “simplified” to a dagger
monoidal category with a strong †-mix Frobenius functor into a †–isomix category: this is
achieved by precomposing with Mx↓. This may seem a worthwhile simplification, but it
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should be recognized that it simply transfers complexity from the unitary category itself
onto the preservator which must now “create” unitary structure:

U
Mx∗↓
��

M // C

U↓
Mx↓;M

// C

Here U↓ = (U,⊕,⊕) is viewed as a dagger monoidal category and Mx∗↓ is the inverse of Mx↓.
The point is that the preservator of the lower arrow Mx↓;M is non-trivial as it must encode
the unitary structure of U.

Our objective is now to show that the unitary construction of the previous section gives
rise to a right adjoint to the underlying 2-functor U : MUC −→ MCC where the 2-category
MCC is defined as:

0-cells: Its objects are mixed †-compact categories (MCC), that is strong †-Frobenius
functors V : C −→ Y where C is a compact †-LDC, Y is a †-isomix category, and V
factors through the core of Y i.e, for all ∀ objects C ∈ C, Y ∈ Y, ∃ mx′ : V (C)⊕ Y
−→ V (C)⊗ Y such that mx mx′ = 1 and mx′ mx = 1.

1-cells: The 1-cells are squares of mix Frobenius functors which commute up to a linear
natural isomorphism;

2-cells: Are pillows of natural transformations (which we shall ignore).

An example of a mix †-compact category is, of course, the inclusion of the core into a
†-isomix category C : Core(X) ↪→ X;

Proposition 5.23. U : MUC −→ MCC has a right adjoint Unitary : MCC −→ MUC; (C
V−−→ X) 7→ (Unitary(C)

U ;V−−−−→ X).

Proof. The couniversal diagram is as follows:

U M−−→ X
(F,G,γ) //

(F [,G,γ[)

��

C V−−→ Y

Unitary(C) −−−−→
U ;V

Y

ε

55

where ε is the square on the left and (F [, G, γ[) is the square on the right:

Unitary(C)

U
��

U // C V // Y

C
V

// Y

U

F
$$

F [

��
↑ γ

M // X

G
��

Unitary(C)
U

// C
V
// Y

It follows from Proposition 5.17 that the couniversal diagram commute.

This proposition means that in building a non-trivial MUC from a mixed †-compact
category it suffices to show that the compact †-LDC contains non-trivial pre-unitary objects.
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5.6. Examples of mixed unitary categories. In this section we present a number of
examples of MUCs. We have already noted that dagger monoidal categories are automatically
unitary categories in which the unitary structure is given by identity maps. The identity
functors then give a rather trivial MUC. More excitingly one can take the bicompletion of
the †-monoidal category: this is a non-trivial †-isomix ∗-autonomous category extension of
the original †-monoidal category and provides, thus, an interesting example of how MUCs
arise.

Our purpose in this section is to exhibit some non-trivial manifestations of the various
structural components of a MUC. To this end we discuss in some detail three basic examples.

5.6.1. Finite dimensional framed vector spaces. In this section we show that the example
FFVecK , the category of finite dimensional framed vector spaces defined in Section 3.5.1 is a
unitary category (hence is immediately a mixed unitary category). The unitary structure
map on each object (V,V) is defined as follows:

ϕ(V,V) : (V,V) −→ (V,V)†; vi 7→ ṽi

and it remains to check the coherences [U.3]–[U.6]. First note that [U.4] holds immediately

by the observation above that ι(vi) = ˜̃vi. For [U.3] we require that ϕA†(ãi) = (ϕ−1
A )†(ãi)

the result is a higher-order term, so we may check that the evaluations are the same on basis
elements:

(ϕA†(ãi))(ãj) = ˜̃ai(ãj) = ∂i,j

((ϕ−1
A )†(ãi))(ãj) = ãi(ϕ

−1
A (ãj)) = ãi(aj) = ∂i,j

Note that [U.5](a) and [U.5](b), in this example, require λ> = ϕ> which can easily be
verified as each reduces to conjugation. [U.6](a) and [U.6](b), in this example, are the
same requirement which is verified by:

λ⊗(ϕA ⊗ ϕB(ai ⊗ bj)) = λ⊗(ãi ⊗ b̃j) = ãi ⊗ bj = ϕA⊗B(ai ⊗ bj)
This gives:

Proposition 5.24. FFVecK with the unitary structure above is a MUC.

This raises the question of what precisely the unitary maps of this example are. To
elucidate this we note that a functor can easily be constructed U : FFVecK −→ Mat(K)
where, for each object in FFVecK we choose a total order on the elements of the basis and
note that any map is then given by a matrix acting on the bases: thus a matrix in Mat(K)
with the appropriate dimensions. We now observe:

Lemma 5.25. An isomorphism u : (A,A) −→ (B,B) in FFVecK is unitary if and only if
U(f) is unitary in Mat(X).

Proof. While U does not preserve ( )† on the nose it does so up to the natural equivalence
determined by U(ϕA) which being a basis permutation is a unitary equivalence. Thus, it is
not hard to see that the following diagram commutes:

U(B,B)

U(f)†

��

U(ϕB) // U((B,B)†)

U(f†)
��

U(A,A)
U(ϕA)

// U((A,A)†)
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Recall that in the category of matrices, the dagger is stationary on objects so U(B,B) =
U(B,B)†.

Now suppose u is unitary in FFVecK then u−1 = ϕBu
†ϕ−1

A so that

U(u)−1 = U(u−1) = U(ϕBu
†ϕ−1

A ) = U(ϕB)U(u†)U(ϕ−1
A ) = U(u)†

so that its underlying map is unitary. Conversely, if U(u) is unitary then

U(u−1) = U(u)−1 = U(u)† = U(ϕBu
†ϕ−1

A )

which immediately implies, as U is faithful, that u is unitary in FFVecK .

One might reasonably regard this as a rather roundabout way to describe the standard
notion of a unitary map. However, two things of importance have been achieved. First an
example of a unitary category with a non-stationary dagger and, thus, a non-identity unitary
structure, has been exhibited. Second we have shown how the standard unitary structure
may be re-expressed in this formalism using non-stationary constructs.

5.6.2. Finiteness matrices. In Section 3.5.2, we described the category of finiteness matrices,
FMat(C). The core of FMat(C) is the subcategory determined by objects whose webs are
finite sets, that is the objects are X = (|X|, P (X)) where |X| is a finite set. Clearly,
Core(FMat(C)) is then equivalent to the category of finite dimensional matrices, Mat(C).
This is a well-known †-compact closed category, which is a unitary category with unitary
structure given by identity maps (as ( )† is stationary on objects).

The inclusion I : Mat(C) −→ FMat(C) provides an important example of a MUC.

5.6.3. The embedding of finite-dimensional Hilbert Spaces into Chu spaces. In Section 4.4.2,
we showed that the Chu construction applied to a symmetric conjugative closed monoidal
category, X, with pullbacks gives a †-isomix category. Recall that the dagger in the resulting
category of Chu spaces is given by composing the conjugation with the dualizing functor. In
this section, we start by discussing, in general, the construction of a mixed unitary category
from a Chu category ChusX(I). A crucial step in this is to identify objects which are in the
core of this category.

Recall that a symmetric monoidal closed category, X, is (degenerately) a compact linearly
distributive category and, thus, there may be objects which have linear adjoints: these are
called nuclear objects [HR89]. Explicitly a nuclear object A in a symmetric monoidal closed
category is an object with A( B ∼= A∗⊗B, where A∗ := A( I. The nuclear objects form
a compact closed subcategory of X which is conjugative when X is conjugative. In VecC the
nucleus consist precisely of the finite dimensional vector spaces. If (η, ε) : A aa B is witness
that A (and B) are nuclear in X then the object (A,B, ε, c⊗ε) is in the core of ChusX(I)
because in the second component of the tensor product with any other object (X,Y, ν, c⊗ν)
one has the degenerate pullback:

Y ⊗B
'

**tt
X ( B

'
))

Y ⊗A∗

uu

X ( A∗
'−−→ (X ( I)⊗A
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where we use the isomorphism B
'−−→ A∗.

In this manner the nuclear objects of Nuclear(X), which form a compact closed category
with a dagger, may be embedded into the core of ChusX(I). To obtain a unitary category it
suffices then to use the unitary construction for which, to obtain a non-trivial result, we
need to show that there are non-trivial examples of pre-unitary objects. To achieve this we
consider an object H for which (e, n) : H aa H and such that e satisfies:

H ⊗H

ε⊗1
��

χ // H ⊗H

e

��

H ⊗H

e

��
I

χ◦
// I

For such an object we note:

(H,H, e, c⊗e)
∗

= (H,H, χc⊗e(χ
◦)−1, χe(χ◦)−1)∗

= (H,H, χe(χ◦)−1, χc⊗e(χ
◦)−1)

This makes

(ε−1, 1) : (H,H, e, c⊗e) −→ (H,H, χe(χ◦)−1, χc⊗e(χ
◦)−1)

a preunitay map. Note that it is a Chu map by the commuting diagram above and as ε = ε
we have

(ε−1, 1)(1, ε) = (ε−1, 1)(1, ε) = (ε−1, ε)

where (ε−1, ε) is the involutor.
In VecC a map e : H ⊗H −→ C is a “sesquilinear form” and the diagram above asserts

that it is in addition a symmetric form. Any Hilbert space with its inner product, thus,
satisfies the above conditions. Thus, it is clear that the embedding of the category of
finite dimensional Hilbert Spaces into Chu spaces, FHilb ↪→ ChusVecC(C) is a mixed unitary
category. The embedding is in fact a full and faithful embedding which extends to all Hilbert
spaces (although only the finite dimensional ones land in the core).

Explicitly the embedding is defined as follows: suppose H is a (finite dimensional))
Hilbert Space, then the corresponding Chu Space is given by (H,H, 〈−|−〉H), where 〈−|−〉H :

H ⊗H −→ C is the inner product. For any linear map H
f−−→ K between Hilbert Spaces,

the corresponding Chu map is given by (f, f †) : (H,H, 〈−|−〉H) −→ (K,K, 〈−|−〉K), where
f † is the Hermitian adjoint of f so, 〈f(a)|b〉 = 〈a|f †(b)〉.

Furthermore, observe that (H,H, 〈−|−〉H)† := (H,H, 〈−|−〉H)∗ = (H,H, 〈−|−〉H).
Hence, this embedding preserves the (stationary) dagger for all Hilbert spaces. However, the
par of two infinite dimensional Hillbert spaces in this Chu category is not a Hilbert space so
that the duality cannot be seen within the category of Hilbert spaces.
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5.6.4. Constructing MUCs using the unitary construction. One can construct a MUC
from any †-isomix category using the unitary construction: for any †-isomix category,

X, Unitary(Core(X))
U−−→ Core(X) ↪→ X is a MUC. In this manner we have already many

examples of MUCs:

• The inclusion C ↪→ D(C,+, 0)

• Unitary(Core(H-ModX))
U−−→ Core(H-Mod) ↪→ H-ModX

• Unitary(Core(ChusX(I))
U−−→ Core(ChusX(I)) ↪→ ChusX(I)

6. Conclusion

In this paper, we have extended the theory of †-monoidal categories and †-compact closed
categories to linearly distributive and *-autonomous settings to obtain the semantics of
(multiplicative) †-linear logic. In these linear settings, the two different tensor products
(tensor and par) must be flipped by the dagger. Thus, one cannot have a stationary
(identity on objects) dagger, and hence one is forced to replace the conventional dagger by a
contravariant structure-preserving involution. This has coherence consequences: almost two
thirds of this paper is dedicated to understanding the details of these coherences.

If multiplicative †-linear logic is to provide a semantics for a generalized categorical
quantum mechanics (CQM), then notions such as isometry and unitary isomorphism, which
are central to CQM, should have an expression in this logic. Here we showed that with
additional “unitary structure” one can recapture classical CQM as a “unitary core” of
multiplicative †-linear logic. Furthermore, we showed how, from any †-isomix category, it
is always possible to extract a “unitary core” which is, up to equivalence, a †-monoidal
category (i.e a classical semantic setting for CQM).

This led to the notion of a mixed unitary category (MUC) given by a †-isomix category
with a chosen unitary core as our proposal for an extension of CQM. A MUC can be viewed
as an extension much as a K-algebra extends a field K and permits the expression of
properties which are difficult to express within K itself. In the extended setting of a MUC –
finiteness matrices with its core for example – provides an extension of the classical CQM
setting in which infinite dimensional types, such as those given by the exponential modalities,
are present. Furthermore, in the extended setting one can bend, and yank wires without the
category being compact.

The fact that a unitary category is a component of a MUC allows one to mimic the
construction of completely positive maps, CP∞, see [CH16], in a way which displays some
interesting features. To start with the ancillary objects (which are to be traced out) must
now, necessarily, be chosen from the unitary core and these it can be supposed are an
essentially small class even though the overall category may be large. This keeps the
number completely positive maps between any two objects small. The resulting category is
under reasonable assumptions a MUC (see [CS19a]) which has an appropriate analogue of
environment structure [CP10]. Furthermore, in the presence of duals the whole construction
is functorial.

An important observation of CQM is that an orthogonal basis, for a Hilbert space,
correspond to a special commutative Frobenius algebra [CPV12]. This allows one to replace
the notion of a basis by algebraic structure. A significant consequence of this has been the
algebraic expression of “uncertainty” using complementary Frobenius algebras [CD11], which,
in turn, led to the formulation of the ZX-calculus. As was mentioned in the introduction,
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linear settings allow the expression of structures which parallel Frobenius algebras and this
can be exploited to allow an expression complementarity in MUCs and, furthermore, to link
this to the exponential modalities in †-linear logic [CS19b].

An instructive source of examples of MUCs, which was mentioned in the introduction
and left for future work, uses Joyal’s bicompletion procedure [Joy95]: here, starting with a
†-monoidal category, or a compact †-isomix category, C, one can form a MUC ι : C −→ Λ(C)
by simply bicompleting. Furthermore, the bicompletion is a (non-compact) †-isomix category
which, when the starting point, C, is †-compact closed, is a †-isomix ∗-autonomous category.
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