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ABSTRACT. Given a graph whose nodes may be coloured red, the parity of the number of
red nodes can easily be maintained with first-order update rules in the dynamic complexity
framework DynFO of Patnaik and Immerman. Can this be generalised to other or even all
queries that are definable in first-order logic extended by parity quantifiers? We consider
the query that asks whether the number of nodes that have an edge to a red node is odd.
Already this simple query of quantifier structure parity-exists is a major roadblock for
dynamically capturing extensions of first-order logic.

We show that this query cannot be maintained with quantifier-free first-order update
rules, and that variants induce a hierarchy for such update rules with respect to the arity
of the maintained auxiliary relations. Towards maintaining the query with full first-order
update rules, it is shown that degree-restricted variants can be maintained.

1. INTRODUCTION

The query PARITY — given a unary relation U, does U contain an odd number of ele-
ments? — cannot be expressed in first-order logic, even with arbitrary numerical built-in
relations [Ajt83, FSS84|. However, it can easily be maintained in a dynamic scenario where
single elements can be inserted into and removed from U, and helpful information for
answering the query is stored and updated by first-order definable update rules upon changes.
Whenever a new element is inserted into or an existing element is removed from U, then a
stored bit P is flipped!. In the dynamic complexity framework by Patnaik and Immerman
[PI97] this can be expressed by the following first-order update rules:

on insert a into U update P as (-~U(a) A—=P) V (U(a) A P)
on delete a from U update P as (U(a) A—=P) V (=U(a) A P)
This simple program proves that PARITY is in the dynamic complexity class DynFO which

contains all queries that can be maintained via first-order formulas that use (and update)
some additional stored auxiliary relations.

Key words and phrases: Dynamic complexity, parity quantifier, arity hierarchy.
IThis bit is preserved if a change re-inserts an element that already is in U, or tries to delete an element
that is not in U.
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Motivated by applications in database theory and complexity theory, the class DynFO
has been studied extensively in the last three decades. In database theory, it is well-known
that first-order logic corresponds to the relational core of SQL (see, e.g., [AHV95]). Thus,
if a query can be maintained with first-order update rules then, in particular, it can be
updated using SQL queries. From a complexity theoretic point of view, first-order logic with
built-in arithmetic corresponds to the circuit complexity class uniform AC® [BIS90]. Hence
queries in DynFO can be evaluated in a highly parallel fashion in dynamic scenarios.

The focus of research on DynFO has been its expressive power. The parity query is a first
witness that DynFO is more expressive than FO (the class of queries expressible by first-order
formulas in the standard, non-dynamic setting), but it is not the only one. Further examples
include the reachability query for general directed graphs [DKM™18], another textbook
query that is not in FO but complete for the complexity class NL, which can be characterised
(on ordered structures) by the extension of first-order logic with a transitive closure operator.
On (classes of) graphs with bounded treewidth, DynFO includes all queries that can be
defined in monadic second-order logic MSO [DMS*19], which extends first-order logic by
quantification over sets. In particular, DynFO contains all MSO-definable Boolean queries
on strings, that is, all regular languages. For strings, the first-order update rules do not
even need any quantifiers [GMS12], proving that regular languages are even in the dynamic
complexity class DynProp which is defined via quantifier-free first-order update rules.

These examples show that in the dynamic setting, first-order logic can, in some cases,
sidestep quantifiers and operators which it cannot express statically: parity and set quantifiers,
as well as transitive closure operators. Immediately the question arises whether first-order
update rules can dynamically maintain all queries that are statically expressible in extensions
of first-order logic by one of these quantifiers or operators. Note that this does not follow
easily, for instance, from the result that the NL-complete reachability query is in DynFO,
because the notions of reductions that are available in the dynamic setting are too weak [PI97].

The extension FO+Parity of first-order logic by parity quantifiers is the natural starting
point for a more thorough investigation of how DynFO relates to extensions of FO, as it is
arguably the simplest natural extension that extends the expressive power. Unfortunately,
however, a result of the form FO+Parity C DynFO is not in sight?2. While PARITY is in
DynFO, already for slightly more complex queries expressible in FO+Parity it seems not to
be easy to show that they are in DynFO. In this paper we are particularly interested in the
following generalisation of the parity query:

PARITYEXISTS: Given a graph whose nodes may be coloured red. Is the
number of nodes connected to a red node odd? Edges can be inserted and
deleted; nodes can be coloured or uncoloured.

2Formally one has to be a little more precise. If one does not allow an appropriate initialisation mechanism,
one cannot express the query “The size of the domain is even.” in DynFO, which implies FO+Parity £ DynFO
for this variant of DynFO. However, if the initialisation is powerful enough to answer the query for the initial
input, maintenance under changes is trivial, as they are not allowed to change the domain.

We aim to study the ability of dynamic programs to maintain queries under changes, we are less interested
in inexpressibility results that crucially rely on weaknesses of the initialisation. Therefore we are interested
in results of the form FO+Parity C DynFO for domain-independent queries, that is, queries whose result does
not change when isolated elements are added to the domain. As we only consider initial input structures
with empty relations, and so initial inputs only differ in their domain, the initial query answer for domain-
independent queries is the same for all possible initial input structures, and therefore trivial to obtain
regardless of the power of the initialisation.
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As it is still unknown whether PARITYEXISTS is in DynFO, this query is a roadblock
for showing that DynFO captures (large subclasses of) FO+Parity. For this reason we study
the dynamic complexity of PARITYEXISTS. We focus on the following two directions: (1)
its relation to the well-understood quantifier-free fragment DynProp of DynFO, and (2) the
dynamic complexity of degree-restricted variants.

The update rules given above witness that PARITY is in DynProp. We show that this is
not the case any more for PARITYEXISTS.

Theorem 1.1. PARITYEXISTS ¢ DynProp.

A fine-grained analysis of the quantifier-free complexity is the main contribution of
this paper, which also implies Theorem 1.1. Let PARITYEXISTSgeg<x be the variant of the
PARITYEXISTS query that asks whether the number of nodes that have both an edge to a
red node and degree at most k is odd, for some fixed number k£ € N.

Theorem 1.2. PARITYEXISTSgeg<k can be maintained in DynProp with auziliary relations
of arity k, for any k > 3, but not with auxiliary relations of arity k — 1, even on graphs with
in-degree at most k.

This result actually has an impact beyond the lower bound given by Theorem 1.1. It
clarifies the structure of DynProp, as it shows that auxiliary relations with higher arities
increase the expressive power of quantifier-free update formulas even on graph structures.

Already Dong and Su showed that DynFO has an arity hierarchy [DS98], i.e., that for
each k € N there is a query g that can be maintained using first-order update rules and
k-ary auxiliary relations, but not using (k — 1)-ary auxiliary relations. The query gx given
by Dong and Su [DS98] is a k-ary query that is evaluated over a (6k + 1)-ary relation 7" and
returns all k-ary tuples @ such that the number of (5k + 1)-ary tuples b with (a,b) € T is
divisible by 4. Dong and Su ask whether the arity of the relation 7" can be reduced to 3k, k,
or even to 2. Their question for reducing it below 3k was motivated by a known reduction
of the arity to 3k + 1 [DZ00].

An arity hierarchy for DynProp, though again only for input relations whose arity
depends on k, follows from the observation that the query ¢ can be maintained with
quantifier-free update rules. Some progress towards an arity hierarchy for queries over a
fixed schema was made by Zeume and Schwentick [ZS15], who separated the arities up to
k = 3 for Boolean queries on graphs. If only insertions are allowed, then DynProp is known
to have an arity hierarchy for Boolean graph queries [Zeul7|.

An arity hierarchy for quantifier-free update rules and Boolean graph properties is now
an immediate consequence of Theorem 1.2, in connection with the separation results for
k < 3 [ZS15].

Corollary 1.3. DynProp has a strict arity hierarchy for Boolean graph queries.

We note that such an arity hierarchy does not exist for DynProp when we consider not
graphs as inputs but strings. Gelade et al. show that the class of Boolean queries on strings
that can be maintained in DynProp are exactly the regular languages, and that every such
language can be maintained with binary auxiliary relations [GMS12]. So, relations of higher
arity are never necessary in this case.

With respect to DynFO, we cannot answer the question whether PARITYEXISTS €
DynFO, but we can generalise the upper bound of Theorem 1.2 to restrictions beyond fixed
numbers k, at least if the update formulas have access to additional built-in relations. Let
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PARITYEXISTSgeg<logn be the query that asks for the parity of the number of nodes that are
connected to a red node and have degree at most logn, where n is the number of nodes of
the graph. The binary BIT predicate essentially gives the bit encoding of natural numbers.

Theorem 1.4. PARITYEXISTSqeg<logn can be maintained in DynFO with binary auziliary
relations in the presence of a linear order and BIT.

In particular, the queries PARITYEXISTSgeg<k, for k& € N, do not induce an arity hierarchy
for DynFO. For fixed k, essentially already unary auxiliary relations suffice.

Theorem 1.5. PARITYEXISTSqeg<k can be maintained in DynFO with unary auziliary
relations in the presence of a linear order, for every k € N.

In both results, Theorem 1.4 and 1.5, the assumption on the presence of a built-in linear
order and the BIT predicate can be lifted, when, for Theorem 1.4, the degree bound of
PARITYEXISTSgeg<logn Tefers to the active domain instead of the whole domain, and, for
Theorem 1.5, when binary auxiliary relations are allowed. See Section 4 for a more detailed
discussion.

Finally, we complement our results by a discussion of how queries expressible in FO
extended by arbitrary modulo quantifiers can be maintained in an extension of DynFO.
This observation is based on discussions with Samir Datta, Raghav Kulkarni, and Anish
Mukherjee.

Outline. After recalling the dynamic descriptive complexity scenario in Section 2, we prove
Theorem 1.2 in Section 3, followed by Theorem 1.4 and Theorem 1.5 in Section 4. Section 5
contains the discussion regarding maintaining PARITYEXISTS and similar queries in extensions
of DynFO. We conclude in Section 6.

2. PRELIMINARIES AND A SHORT INTRODUCTION TO DYNAMIC COMPLEXITY

In this article, we write [n] for the set {1,...,n} of natural numbers.

We now shortly recapitulate the dynamic complexity framework as introduced by Patnaik
and Immerman [PI97], and refer to Reference [SZ16] for details.

In this framework, a (relational, finite) structure Z over some schema oy, can be changed
by inserting a tuple into or removing a tuple from a relation of Z. A change o = é(a)
consists of an (abstract) change operation §, which is either INSp or DELR for a relation
symbol R € oy, and a tuple a over the domain of Z. The change INSg(a) inserts a into the
relation R of Z, and DELRg(a) deletes @ from that relation. We denote by a(Z) the structure
that results from applying a change « to the structure Z.

A dynamic program P stores an input structure Z over oj, as well as an auxiliary
structure A over some auxiliary schema o,,x. For each change operation § and each auxiliary
relation S € oaux, the dynamic program has a first-order update rule that specifies how S
is updated after a change. Each such rule is of the form on change 6(p) update S(z) as
gof (p; ) where the update formula goés is over the combined schema oi, U 04y« of Z and A.
Now, for instance, if a tuple a is inserted into an input relation R, the auxiliary relation .S
is updated to {b | (Z,A) E @i -(@;b)}. In the standard scenario, all relations in both Z
and A are empty initially.

An m-ary query q on o-structures, for some schema o, maps each o-structure with some
domain D to a subset of D™, and commutes with isomorphism. A query q is maintained by
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P if A has one distinguished relation ANS which, after each sequence of changes, contains
the result of ¢ for the current input structure Z.

The class DynFO contains all queries that can be maintained by first-order update rules.
The class DynProp likewise contains the queries that can be maintained by quantifier-free
update rules. We say that a query ¢ is in k-ary DynFO, for some number k € N if it is in
DynFO via a dynamic program that uses at most k-ary auxiliary relations; and likewise for
DynProp.

Sometimes we allow the update formulas to access built-in relations, as for example a
predefined linear order < and the BIT predicate. We then assume that the input provides
a binary relation that stores a linear order < on the domain, which allows to identify the
domain with a prefix of the natural numbers, and a binary relation BIT that contains a
tuple (i, ) if the j-th bit in the binary representation of 7 is 1. Built-in relations are not
changed by update rules.

For expressibility results we will use the standard scenario of Patnaik and Immerman
[PI97] that uses initial input and auxiliary structures with empty relations. Our inexpress-
ibility results are stated for the more powerful scenario where the auxiliary structure may be
initialised arbitrarily. See also Reference [ZS15] for a discussion of these different scenarios.

Already quantifier-free programs are surprisingly expressive, as they can maintain, for
instance, all regular languages [GMS12] and the transitive closure of deterministic graphs
[Hes03]. As we have seen in the introduction, also the query PARITY can be maintained
by quantifier-free update rules. The following example illustrates a standard technique for
maintaining queries with quantifier-free update rules which will also be exploited later.

Example 2.1. For fixed k € N, let Size-k be the Boolean query that asks whether the size
of a unary relation U is equal to k, so, whether |U| = k holds. This query is easily definable
in FO for each k. We show here that S1ZE-k can be maintained by a DynProp-program P
with binary auxiliary relations.

The dynamic program we construct uses k-lists, a slight extension of the list technique
introduced by Gelade, Marquardt and Schwentick [GMS12]. The list technique was also used
to maintain emptiness of a unary relation U under insertions and deletions of single elements
with quantifier-free formulas [ZS15]. To this end, a binary relation LIST is maintained which
encodes a linked list of the elements in U in the order of their insertion. Additionally,
two unary relations mark the first and the last element of the list. The key insight is that
a quantifier-free formula can figure out whether the relation U becomes empty when an
element a is deleted by checking whether a is both the first and the last element of the list.

Let us implement this highlevel idea for a fixed k € N. Let ¢ < %k + 1. To maintain
SiZE-k, the quantifier-free dynamic program P stores a list of all elements v € U, using

a binary relation LisT;. More precisely, if uq,...,u,;, are the elements in U, then LisTy
contains the tuples (uij,uiﬁl), for 1 < j < m — 1, where iy,...,i, is some permutation
of {1,...,m}. Additionally, the program uses binary relations LISTo, ..., L1sT; such that

LisT; describes paths of length 7 in the linked list LisT;. For example, if (uy,u2), (u2, us)
and (ug, u4) are tuples in Li1sTy, then (uy,us) € LisTs. The list L1ST; comes with 2¢ unary
relations FIRSTy, ..., FIRSTy, LASTy, ..., LAST, that mark the first and the last £ elements
of the list, as well as with k& + 2 nullary relations ISy, ..., ISk, ISsx that indicate the number
of elements in U up to k. We call nodes u with u € FIRST; or u € LAST; the i-first or the
i-last element, respectively.

Using these relations, the query can be answered easily: the result is given by Isy.
We show how to maintain the auxiliary relations under insertions and deletions of single
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elements, and assume for ease of presentation of the update formulas that if a change INSy(u)
occurs then u ¢ U before the change, and a change DELy(u) only happens if u € U before
the change.

Insertions of elements. When an element u is inserted, it needs to be inserted into the list.
This element u also becomes the last element of the list (encoded by a tuple v € LAST;),
and the i-last element v’ becomes the (i + 1)-last one, for i < £. If only i elements are in
the list before the change, u becomes the (i + 1)-first element. The update formulas are as
follows:

sDILNI§$ (usz,y) = LisT;(z,y) V (LASTi(w) Au = y) forie {1,...,0}
Pl (o) Eu=a
SOIITq/E%Ti(U; ) = LAST; () for i € {2,...,0}
@FNISRST'L'(U; z) < FIRsT; (2) V (u=2AIsi_1) fori € {1,...,0}
Pivg () = L
Prasy (1) = foric {1,...,k}
P (u) = Tsg V Issi

Deletions of elements. When an element u is deleted, the hardest task for quantifier-free
update formulas is to determine whether, if the size of U was at least k+ 1 before the change,
its size is now ezactly k. We use that if an element u is the j-first and at the same time the
j'-last element, then the list contains exactly j + j' — 1 elements. If u is removed from the
list, j + j' — 2 elements remain. So, using the relations FIRST; and LAST;/, the exact number
m of elements after the change can be determined, if m < 2¢ — 2 = 2k, and in particular,
it can be determined whether this number is k. The relations FIRST; (and, symmetrically
the relations LAST;) can be maintained using the relations LiST;: if the i'-first element w is
removed from the list, then v’ becomes the i-first element for ¢’ < i < £if (u,u’) € LIST; ;1.
The update formulas exploit these insights:

oot (wiz,y) = (u#x A J\ ~LisTy(z, u) A LsTi(2,y))
i'<i
V \/ (LISTj(x, u) A L1STj (u, y)) fori e {1,...,£}

4.’
i’ =it

bt (us ) = (/\ ~LasTy (u) A LAST;(x))
i<i
v \/ (LASTy (u) A LIST;—y41(, u)) for i € {1,...,0}
i/ <i
POMSTi (y; 1) & /\ —FIRST; (u) A FIRST;(x))
i'<i
v \/ (FIRSTy (u) A LIST; 41 (u, z)) for i€ {1,...,0}
i<i
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%ﬁ;‘LU (u) & \/ (FIRST;(u) A LASTj (u)) for i € {0,...,k}
5,3"
j+i =i

‘PII)SE>LI§J (u) = Iss e A /\ (ﬁFIRSTj (u) v ﬁLASTj,(u))

33’
j+5' 2=k
As all auxiliary relations can be maintained under insertions and deletions of elements, the
presented dynamic program witnesses that SIZE-k is in binary DynProp. []

Later on we will use that the dynamic program from Example 2.1 can straightforwardly
be extended to maintain the set of nodes in a graph with degree k, for each fixed k € N: for
each node v of the graph, the dynamic program maintains whether the set of nodes adjacent
to v has size k. Towards this end, the program maintains one instance of the auxiliary
relations from Example 2.1 for each node v. This is realised by increasing the arity of every
auxiliary relation by one, and the additional dimension is used to indicate the node to which
a tuple belongs. Accordingly, this dynamic program uses at most ternary auxiliary relations.

3. PARITYEXISTS AND QUANTIFIER-FREE UPDATES

In this section we start our examination of the PARITYEXISTS query in the context of
quantifier-free update rules. Let us first formalise the query. It is evaluated over coloured
graphs, that is, directed graphs (V, E) with an additional unary relation R that encodes
a set of (red-)coloured nodes.> A node w of such a graph is said to be covered if there is
a coloured node v € R with (v,w) € E. The query PARITYEXISTS asks, given a coloured
graph, whether the number of covered nodes is odd.

As stated in the introduction, PARITYEXISTS cannot be maintained with quantifier-
free update rules. A closer examination reveals a close connection between a variant of
this query and the arity structure of DynProp. Let k be a natural number. The variant
PARITYEXISTSgeg<k 0f PARITYEXISTS asks whether the number of covered nodes that
additionally have in-degree at most k is odd. Note that PARITYEXISTSqeg<k is a query on
general coloured graphs, not only on graphs with bounded degree.

Theorem 1.2. PARITYEXISTSqeg<k can be maintained in DynProp with auxiliary relations
of arity k, for any k > 3, but not with auxiliary relations of arity k — 1, even on graphs with
in-degree at most k.

We repeat two immediate consequences which have already been stated in the introduc-
tion.

Theorem 1.1. PARITYEXISTS ¢ DynProp.
Corollary 1.3. DynProp has a strict arity hierarchy for Boolean graph queries.

Proof. For every k > 1 we give a Boolean graph query that can be maintained using k-ary
auxiliary relations, but not with (k — 1)-ary relations.

For k > 3, we choose the query PARITYEXISTSqes<) Which satisfies the conditions by
Theorem 1.2.

3We note that the additional relation R is for convenience of exposition. All our results are also valid for
pure graphs: instead of using the relation R one could consider a node v coloured if it has a self-loop (v,v) € E.
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FIGURE 1. The graph used in the proof of Corollary 1.3. If the dashed edge
is included, the graph is a positive instance of PARITYDEGREEDI1V3. If the
dotted edge is included, it is a negative instance.

For k = 2, already [ZS15, Proposition 4.10] shows that the query s-T-TwOPATH which
asks whether there exists a path of length 2 between two distinguished vertices s and ¢
separates unary DynProp from binary DynProp.

For k = 1, we consider the Boolean graph query PARITYDEGREED1V3 that asks whether
the number of nodes whose degree is divisible by 3 is odd. This query can easily be maintained
in DynProp using only unary auxiliary relations. In a nutshell, a dynamic program can
maintain for each node v the degree of v modulo 3. So, it maintains three unary relations
My, My, My with the intention that v € M; if the degree of v is congruent to ¢ modulo 3.
These relations can easily be updated under edge insertions and deletions. Similar as for
PARITY, a bit P that gives the parity of | M| can easily be maintained.

On the other hand, PARITYDEGREED1V3 cannot be maintained in DynProp using nullary
auxiliary relations. Suppose towards a contradiction that it can be maintained by a dynamic
program P that only uses nullary auxiliary relations and consider an input instance that
contains the nodes V' = {uy, ug, v1,v2,v3} and the edges E = {(u1,v1), (u1,v2), (u2,v1)}. No
matter the auxiliary database, P needs to give the same answer after the changes o £
INSg(u1,v3) and oo 4 INs g(ug,v3), as it cannot distinguish these tuples using quantifier-free
first-order formulas. But «; leads to a yes-instance for PARITYDEGREEDIV3, and as does
not. See Figure 1 for an illustration. So, P does not maintain PARITYDEGREED1V3.  []

The rest of this section is devoted to the proof of Theorem 1.2. First, in Subsection 3.1,
we show that PARITYEXISTSgeg<) can be maintained with k-ary auxiliary relations, for & > 3.
For this, we employ the list technique introduced in Example 2.1. Afterwards, in Subsection
3.2, we prove that auxiliary relations of arity kK — 1 do not suffice. This proof relies on a
known tool for proving lower bounds for DynProp that exploits upper and lower bounds for
Ramsey numbers [Zeul7].

3.1. Maintaining PARITYEXISTSges<k. We start by proving that PARITYEXISTSgeg< can
be maintained in DynProp using k-ary auxiliary relations. In Subsection 3.2 we show that
this arity is optimal.

Proposition 3.1. For every k > 3, PARITYEXISTSqeg<k 45 in k-ary DynProp.

Proof. Let k > 3 be some fixed natural number. We show how a DynProp-program P can
maintain PARITYEXISTSgeg< using at most k-ary auxiliary relations.

The idea is as follows. Whenever a formerly uncoloured node v gets coloured, a certain
number ¢(v) of nodes become covered: v has edges to all these nodes, but no other coloured
node has. Because the number ¢(v) can be arbitrary, the program P necessarily has to store
for each uncoloured node v the parity of ¢(v) to update the query result. But this is not



Vol. 17:4 DYNAMIC COMPLEXITY OF PARITY EXISTS QUERIES 9:9

FIGURE 2. An illustration of the notation used in the proof of Proposition 3.1.
The set N'*°(A, B) does not include wy, as there is no edge (vs,w1), and it
does not include ws, as there is an edge (v7, ws) for a coloured node vy & A.

sufficient. Suppose that another node v’ is coloured by a change and that, as a result, a
number ¢(v') of nodes become covered, because they have an edge from v’ and so far no
incoming edge from another coloured neighbour. Some of these nodes, say, ¢(v,v’) many,
also have an incoming edge from v. Of course these nodes do not become covered any more
when afterwards v is coloured, because they are already covered. So, whenever a node v’
gets coloured, the program P needs to update the (parity of the) number ¢(v), based on
the (parity of the) number ¢(v,v). In turn, the (parity of the) latter number needs to be
updated whenever another node v” is coloured, using the (parity of the) analogously defined
number ¢(v,v’,v"”), and so on.

It seems that this reasoning does not lead to a construction idea for a dynamic program,
as information for more and more nodes needs to be stored, but observe that only those
covered nodes are relevant for the query that have in-degree at most k. So, a number
c(vy,...,v) does not need to be updated when some other node vi41 gets coloured, because
no relevant node has edges from all nodes vy, ..., vg41.

We now present the construction in more detail. A node w is called active if its in-
degree in-deg(w) is at most k. Let A = {ai,...,ar} be a set of coloured nodes and let
B = {b1,...,by} be a set of uncoloured nodes, with £ +m < k. By N2°(A, B) we denote
the set of active nodes w of the coloured graph G whose coloured (in-)neighbours are exactly
the nodes in A and that have (possibly amongst others) the nodes in B as uncoloured
(in-)neighbours. So, w € N2°(A, B) if

(1) in-deg(w) < k,
(2) (v,w) € E for all v € AU B, and
(3) there is no edge (v',w) € F from a coloured node v' € R with v’ ¢ A.

We omit the subscript G and just write N'*°(A, B) if the graph G is clear from the context.
See Figure 2 for an example. The dynamic program P maintains the parity of N2 (A, B)|
for all such sets A, B.

Whenever a change o« = INSg(v) colours a node v of G, the update is as follows. We
distinguish the three cases

(1) v e A,
(2) v € B and
3) ve AUB.
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In case (1), the set N;E’G) (A, B) equals the set N2°(A\{v}, BU{v}), and the existing auxiliary
information can be copied. In case (2), actually N° O:E’G)(A, B) =), as B contains a coloured
node. The parity of the cardinality 0 of () is even. For case (3) we distinguish two further cases.
If JAUB| = k, no active node w can have incoming edges from every node in AUBU{v} as w
has in-degree at most k, so NO:Z’G)(A, B) = N2°(A, B) and the existing auxiliary information
is taken over. If [AU B| <k, then N30y (A4, B) = N&°(A, B) \ N&° (A, BU {v}) and P can
combine the existing auxiliary information.

When a change o = DELg(v) uncolours a node v of G, the necessary updates are
symmetrical. The case v € A is similar to case (2) above: Na"(’G> (A,B) = 0, because
A contains an uncoloured node. The case v € B is handled similarly as case (1) above,
as we have NO:E’G)(A,B) = N2 (AU {v},B\ {v}). The third case v ¢ AU B is treated
analogously as case (3) above, but in the sub-case |A U B| < k we have that NC:E’G)(A, B) =
NE(A,B)UNE (AU {v}, B).

Edge insertions and deletions are conceptionally easy to handle, as they change the sets
N*°(A, B) by at most one element. Given all nodes of A and B and the endpoints of the
changed edge as parameters, quantifier-free formulas can easily determine whether this is
the case for specific sets A, B.

We now present P formally. For every ¢ < k + 1 the program maintains unary relations
Ny and N} with the intended meaning that for a node w it holds w € Ny if in-deg(w) = ¢
and w € N} if w has exactly £ coloured in-neighbours. These relations can be maintained as
explained in Example 2.1 and the subsequent remark, requiring some additional, ternary
auxiliary relations. We also use a relation ACTIVE & Ny U---U Ny that contains all active
nodes with at least one edge.

For every ¢,m > 0 with 1 < ¢+ m < k the programs maintains (¢ + m)-ary auxiliary
relations P, with the intended meaning that a tuple (a1,...,ar,b1,...,by,) is contained in
P, ,, if and only if

e the nodes aq,...,ap, b1,..., b, are pairwise distinct,

e a; € Rand b; ¢ R for i€ [(],j € [m], and

e the set N'*°(A, B) has an odd number of elements, where A = {ay,...,a;} and B =
{b1,...,bm}.

The following formula 6y ,, checks the first two conditions:

gﬁ,m(xla"'7x€7y17"'7ym)d:EEf /\ J,'Z?é.%']/\ /\ yZ#yj/\ /\ R(.’L’z)/\ /\ _'R(yZ)

i#jell] i#j€[m] i€lf] i€[m]

Of course, P also maintains the Boolean query relation ANS.

We now describe the update formulas of P for the relations Py, and ANS, assuming
that each change actually alters the input graph, so, for example, no changes INSg (v, w)
occur such thai(:1 ‘fche edge (v,w) already exists.

Let o Y = (@A) V (= A1) denote the Boolean exclusive-or connector.

Colouring a node v. A change INSg(v) increases the total number of active, covered nodes
by the number of active nodes that have so far no coloured in-neighbour, but an edge from v.
That is, this number is increased by [NV *°((, {v})|. The update formula for ANSs is therefore

def

P (v) = ANS & Py (v).
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We only spell out the more interesting update formulas for the relations P ,,, for different
values of £, m. These formulas list the conditions for tuples @ = a1, ...,ap and b =by,..., by,
that N'*°({a1,...,a¢},{b1,...,bn}) is of odd size after a change. The other update formulas
are simple variants.

Pg!m . def
PINSp (’U7$17 sy LYy Y1y - aym) =

\/ (U = Z; /\Pf—l,m-i-l('rl’ ey =1y Ti41y e - - 7'%'57:']7,0))

1€[f]
v( /\ v T A /\ v # yi A (Pom(Z,7) @ Pg,mﬂ(:z,g,v))) for £>1,04m <k
i€lf] i€[m]
PZ,m def
<P1NSR(U;3717--~’3327917- . 7ym) -

\/ (1} =x; N\ Pg,17m+1($1, ey X1, T 1y - ,xg,ﬂ,’l)))

i€[f]
\/(/\v;«éxi/\ /\ v;éyi/\Pg,m(a’;,g)) for £>1,6+m=k
i€[f] 1€[m]

Uncolouring a node v. The update formulas for a change DELg(v) are analogous to the
update formulas for a change INSgr(v) as seen above. Again we only present a subset of the
update formulas, the others are again easy variants.

oy (V) = ANS @ Pro(v)

Py om def
()ODELR(U;‘/EIV" 7m€7y17"~7ym> =
\/ ('U =Yi A PZ+1,m71(f,U7yl7 s Yi—1 Yirls - 7ym>)
1€[m]
\/( /\ v #£ x; A /\ vy A (Pg’m(:i,gj) &) Pg+1,m(a’:,v,gj))) form>1,0+m<k
i€[f] i€[m]
PZ,m def
QODELR(U;CEM'” 7‘7:@7y17"‘7ym) =
\/ (U =Y A Pg+1,M*1(i7v7y17 e Yi—1, Y1y - 7ym))
1€[m)]
\/(/\U#l‘i/\ /\U;’éyi/\Pg’m(i‘,g)> form>1,4+m=k
i€[l] i€[m]

Inserting an edge (v,w). When an edge (v, w) is inserted, the number of active, covered
nodes can change at most by one. At first, a covered node w might become inactive. This
happens when w had in-degree k before the insertion. Or, an active node w becomes covered.
This happens if v is coloured and w had no coloured in-neighbour and in-degree at most
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k — 1 before the change. The update formula for ANS is accordingly

(pf;f;(v w) L ANs @ ( \/ NP (w (R(v) A NS (w \/ N;—1( )
i€[k] i€ (k]

The necessary updates for relations Py, are conceptionally very similar. We list the
conditions that characterise whether the membership of w in N'*°(A, B) changes, for a set
A ={x1,...,2z4} of coloured nodes and a set B = {yi,...,yn} of uncoloured nodes.

e Before the change, w € N'*°(A, B) holds, but not afterwards. This is either because w
becomes inactive or because the new edge (v, w) connects w with another coloured node
v. This case is expressed by the formula

1 N\ Bz w) ANSw) A\ E(yi,w) A (Ni(w) V R(v)).
i€[(] i€[m)]

e Before the change, w € N'*°(A, B) does not hold, but it does afterwards. Then w needs to
be active and to have an incoming edge from all but one node from AU B, and v is that
one node. Additionally, w has no other coloured in-neighbours. The following formulas
19, 93 express these conditions for the cases v € A and v € B, respectively.

g & \/ v=x; A\ /\ (), w /\ E(y;,w) ANj( \/NJ 1

i€[(] Jelan{i} Jj€lm]
Py = \/ (v=wi A /\ E(y;,w) /\ E(zj,w) AN Nj(w \/ N] 1(
i€m] jelm\{s} Jjele J€lk]

The update formula for P, is then

)= O0.n(Z,7) A (Pom(Z,5) ® (1 V 1ha V 4h3)).

PZ,m
SOINSE (v,w;xl, e 7[1;573/17 e 73/m

Deleting an edge (v,w). The ideas to construct the update formulas for changes DELg (v, w)
are symmetrical to the constructions for changes INSg (v, w). When an edge (v, w) is deleted,
the node w becomes active if its in-degree before the change was k + 1. It is (still) covered,
and then is a new active and covered node, if it has coloured in-neighbours other than v.
This is the case if w has at least two coloured in-neighbours before the change, or if it has
at least one coloured in-neighbour and v is not coloured.

On the other hand, if v was the only coloured in-neighbour of an active node w, this
node is not covered any more. The update formula for the query relation ANS is therefore

P (v, w) Z ANs @ <(Nk+1(w) A\ NP (w) A (=R(v) V =NE (w)))
1€lk+1]
V (R(v) ANT(w) A \/ Ni(w
1€[k]
Regarding the update of relations P ,,, we distinguish the same cases as for insertions

INSg (v, w) for a set A = {x1,...,2¢} of coloured nodes and a set B = {y1,...,ym} of
uncoloured nodes.
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e Before the change, w € N*°(A, B) holds, but not afterwards. That means the active node
w has incoming edges from all nodes from A U B, has no coloured in-neighbours apart
from the nodes in A, and v € AU B. This is expressed by the formula

N\ Blanw) ANSw) A\ Eyiw) A\ Niw)

1€[¢] 1€[m] i€[k]
/\(\/xi:v\/ \/ yi:v).
1€[4] 1€[m)|

e Before the change, w € N'*°(A, B) does not hold, but it does afterwards. Then w already
is and stays connected to all nodes from A U B, and either have degree k + 1 and become
active and/or loose an additional coloured in-neighbour v. The following formula 4 lists
the possible combinations.

b N\ @#zAE@,w) A\ (v # v AE(y,w))

icl) i€[m]
A ((Nkﬂ(w) A=R(v) A NJ (w))
V (Niga(w) A R(v) A NZ i (w))

\V, ( \/ N;i(w) A R(v) A Nf.-i-l(w)))
1€[k]

Finally, the update formula for Py, is

Py e _ _
SODfD’LE(Ua WLy s Ty Y1y - - 7ym) d:f gf,m(m)y) A (Pf,m(‘rvy) S5 (d/l \ 1/15)) D

Our proof does not go through for k£ < 3, as we use ternary auxiliary relations to
maintain whether a node has degree at most k, see Example 2.1 and the subsequent remark.
In fact, this cannot be circumvented, as formalised by the next proposition.

Proposition 3.2. For k € {1,2}, PARITYEXISTSgeg<i s not in binary DynProp, even with
arbitrary initialisation.

The proof relies on a lower bound result by Zeume and Schwentick [ZS15]. They show
that one cannot maintain in binary DynProp, not even with arbitrary initialisation, whether
there is a directed path from some distinguished node s to some distinguished node ¢ in a
2-layered graph G [ZS15, Theorem 4.7]. A graph G = (V, E, s,t) with distinguished nodes
s,t € V is 2-layered, if its set V of nodes can be partitioned into sets V' = {s,t} UAU B, such
that edges go either from s to some node in A, from some node in A to some node in B, or
from some node in B to t. So, the edge set E is a subset of ({s} x A) U (A x B)U (B x {t}).

We prove Proposition 3.2 using a reduction from (a special case of) this query.

Proof. We first show the result for £ = 1. The proof of [ZS15, Theorem 4.7] shows that
there is no dynamic program with quantifier-free update rules and binary auxiliary relations
that can maintain s-t-reachability in 2-layered graphs, not even if the auxiliary relations
may be initialised arbitrarily. The proof actually shows that such dynamic programs cannot
even maintain the query if
e the initial graph may be any 2-layered graph G = (V, E, s,t) with some node set V =
{s,t} U AU B that satisfies the following conditions:
— there is no edge from s to any other node, and
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o Ov @) (@) YO] o O\ @) o ,O
\O \.

(A) A 2-layered graph G,,. If the dashed edge (8) A (}oloured g.ra.ph G- .If t.he dashed
is included, the graph contains an s-t-path. If edge is included, it is a negative instance of

the dotted edge is included, the graph has no .PARITYE?(IS.TSdegS{' ) If.the dotted edge is
such path. included, it is a positive instance.

FIGURE 3. An example for the construction in the proof of Proposition 3.2.

— all nodes from B have an edge to t,

e the auxiliary relations are initialised arbitrarily,

e the changes consist of a sequence of deletions of edges from A x B followed by the insertion
of a single edge from s to some node in A.

We now assume, towards a contradiction, that there is a dynamic program P’ that
witnesses that PARITYEXISTSqeg<1 is in binary DynProp. We show that from P’ we can
construct a dynamic program P with quantifier-free update rules and binary auxiliary
relations that can maintain s-t-reachability for 2-layered graphs with the restrictions noted
above, contradicting [ZS15, Theorem 4.7].

Let G = (V, E,s,t) be some 2-layered graph with node set V' = {s,t} U AU B, such
that (b,t) € E for every b € B and (s,v) € E for every v € V. Let G' = (V, E’, R) be the
coloured graph with the same node set V as @, edge set E' < {(v,u) | (u,v) € E}, and
R = (. Let A’ be the auxiliary relations that P’ assigns to G’ starting from an initially
empty graph and arbitrarily initialised auxiliary relations when the edges E’ are inserted in
some arbitrary order.

We now explain how a dynamic program P can maintain s-t-reachability for G under
deletions of edges from A x B followed by the insertion of a single edge from s to some node
in A, starting from the initial auxiliary relations A’. The basic idea is that changes to G are
translated to changes to G’ such that

e if the graph obtained from G has an s-t-path then the graph obtained from G’ has no
covered node with in-degree at most 1, and

e if the graph obtained from G has no s-t-path then the graph obtained from G’ has exactly
one covered node with in-degree at most 1.

The dynamic program P proceeds as follows. If an edge (u,v) € E with u € A and
v € B is deleted, then P simulates P’ for the deletion of the edge (v,u) € E’. If an edge
(s,a) is inserted into E, then P simulates P’ for the insertion of (s, a) into E’ followed by
the insertion of s into R. Then P gives the query answer “true” if and only if the answer
of P is “false”. All this is clearly expressible by quantifier-free update formulas.

Let Gy, be the 2-layered graph that results from G by applying the changes, and let G,
be the coloured graph that results from G’ by applying the corresponding changes. An
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example is depicted in Figure 3. It remains to show that there is an s-t-path in G, if and
only if the number of covered nodes in G, that have in-degree at most 1 is not odd.

Suppose that there is an s-t-path in G,, using edges (s, a), (a,b), (b,t), for some nodes
a € A and b € B. It follows that the edges (s,a) and (b,a) are present in G, so, a has
in-degree at least 2. As a is the only neighbour of the only red node s, there are 0 covered
nodes in G, with in-degree at most 1, an even number. Suppose on the other hand that
there is no s-t-path in G,. That means that the only node a € A such that an edge (s, a)
exists in G, has no edge to any node in B, because every node from B has an edge to t.
Consequently, the only incoming edge of a in G/, is from s, which is a red node. So, there is
exactly one covered node in G/, with in-degree at most 1, an odd number. This concludes
the case k = 1.

The case of k = 2 can be proven along the same lines, with the only adjustment that in
the graph G’ we add edges from ¢ to every node in A U B, increasing the in-degree of every
node from this set by 1. O]

3.2. Inexpressibility results for PARITYEXISTSgeg<k- In this subsection we prove that k-
ary auxiliary relations are not sufficient to maintain PARITYEXISTSgeg<k+1, for every k € N.
The proof technique we use, and formalise as Lemma 3.3, is a reformulation of the proof
technique of Zeume [Zeul7], which combines proof techniques from dynamic complexity
[GMS12, ZS15] with insights regarding upper and lower bounds for Ramsey numbers. We
actually use a special case of the formalisation from [SVZ18, Lemma 7.4], which is sufficient
for our application.

The technique consists of a sufficient condition under which a Boolean query ¢ cannot
be maintained in DynProp with at most k-ary auxiliary relations. The condition basically
requires that for each collection B of subsets of size k 4+ 1 of a set {1,...,n} of elements
that may be changed, for an arbitrary n, there is a structure Z whose domain includes the
elements {1,...,n} and a sequence 61(x1),...,dk+1(xs1) of changes such that

(1) the elements 1,...,n cannot be distinguished by quantifier-free formulas evaluated on Z,
and
(2) the structure that results from Z by applying the changes d1(71), ..., 0,11 (ix+1) in that
order, for each choice of k + 1 elements {i1,...ig11} C {1,...,n}, is a positive instance
for q exactly if {i1,...,ix11} € B.
In the following, we write (Z,a) = (Z,b) if @ and b have the same length and agree on
their quantifier-free type in Z, that is, Z |= ¢(a) if and only if Z = 1(b) for all quantifier-free
formulas . We denote the set of all subsets of size k of a set A by (‘2)

Lemma 3.3 [SVZ18|. Let q be a Boolean query of o-structures. Then q is not in k-ary

DynProp, even with arbitrary initialisation, if for each n € N and all subsets B C (k[i]l) there
exist

e o o-structure T and a set P = {p1,...,pn} of distinct elements such that
— P is a subset of the domain of Z,
= (Z,piys - -1 Pingr) =0 (L, 0415 - -+ Pjpyr) for all strictly increasing sequences iy, . .., igy1
and ji,...,Jjk+1 over [n], and

o a sequence 61(x1),...,0k+1(xk41) of changes
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such that for all strictly increasing sequences iy, ...,ig11 over n]:

(51(]07;1)O...O5k+1(pik+l))(z) €q < {il,...,ik+1}68.
With the help of Lemma 3.3 we can show the desired inexpressibility result.

Proposition 3.4. For every k > 0, PARITYEXISTSgeg<k+1 %5 not in k-ary DynProp, even
with arbitrary initialisation. This even holds if the input graph may only have in-degree at
most k + 1.

In the following, for a graph G = (V, E) and some set X C V' of nodes we write N57(X)
for the set {v | Ju € X: E(u,v)} of out-neighbours of the nodes in X. For singleton sets
X = {z} we just write N37(z) instead of N37({z}). Similarly, we write N7(X) for the set
{v|Vue X: E(u,v)} =\,ex N5 () of nodes that are out-neighbours of every node in X.

Proof. Let k € N be fixed. We apply Lemma 3.3 to show that PARITYEXISTSgeg<k+1 is not
in k-ary DynProp.

The basic proof idea is simple. Given a collection B C (k[i}l), we construct a graph
G = (V, E) with distinguished nodes P = {p1,...,pn} C V such that

(1) each node has in-degree at most k£ + 1 and

(2) for each B € (k[i]l) the set N37({p; | i € B}) is of odd size if and only if B € B.

Then applying a change sequence o which colours all nodes p; with ¢ € B to G results in a
positive instance of PARITYEXISTSgeg<k+1 if and only if B € B. An invocation of Lemma 3.3
yields the intended lower bound.

It remains to construct the graph G. Let S be the set of all non-empty subsets of [n] of
size at most k+ 1. We choose the node set V' of G as the union of P and S. Only nodes in P
will be coloured, and only nodes from S will be covered. A first attempt to realise the idea
mentioned above might be to consider an edge set {(p;, B) | B € B,i € B}: then, having
fixed some set B € B, the node B becomes covered whenever the nodes p; with ¢ € B are
coloured. However, also some nodes B’ # B will be covered, namely if B'N B # (), and the
number of these nodes influences the query result. We ensure that the set of nodes B’ # B
that are covered by {p; | i € B} is of even size, so that the parity of N3 ({p; | ¢ € B})| is
determined by whether B € B holds. This will be achieved by introducing edges to nodes
([?]) € S for ¢ < k such that for every subset P’ of P of size at most k the number of nodes
from S that have an incoming edge from all nodes from P’ is even. By an inclusion-exclusion
argument we conclude that for any set Pe (kil) the number of nodes from S that have

an incoming edge from some node of P, but not from all of them, is even. It follows that
whenever k + 1 nodes p;,, ..., p;,_, are marked, the number of covered nodes is odd precisely
if there is one node in S that has an edge from all nodes p;,,...,p;_,, which is the case
exactly if {i1,...,ix+1} € B.

We now make this precise. Let n be arbitrary and let P = {pi1,...,p,}. For a set
X C [n] we write Py for the set {p; | i € X}.

The structure Z we construct consists of a coloured graph G = (V, E, R) with nodes

V= PUS, where S &< ([71‘]) U---U (k[i}l)’ and initially empty set R < () of coloured nodes.

The edge set E contains all edges (p;,Y) such that ¢ € Y and the set {B € B|Y C B} has

odd size. See Figure 4 for an example of this construction. Note that for each Y € ([?]), for
i€ {l,...,k+ 1}, the degree of Y in G is at most i, and therefore also at most k + 1.
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FIGURE 4. Example for the construction in the proof of Proposition 3.4,
with £k =2 and n = 4.

We now show that for a set B € (k[i]l) the cardinality of N3 (Pg) is indeed odd if and

only if B € B. This follows by an inclusion-exclusion argument. For a set B € (k[i}l) the set
N7 (Pp) contains all nodes with an incoming edge from a node in Pp. It is therefore equal
to the union J;c g N37(pi). When we sum up the cardinalities of these sets N37(p;), any
node in N5*(Ppg) with edges to both p; and pj, for numbers i, j € B, is accounted for twice.

Continuing this argument, the cardinality of N3*(Pp) can be computed as follows:

NG (PB)| =Y NG ()| = D [N (i pi)] -+ (18 NG (PB)).
i€B z,j<€]B

For the parity of |N57(Pg)| it therefore holds

NG (PR)| = D [AY(Px)| (mod 2).
0CXCB
Our claim follows from the observation that |[N;”(Px)| is odd if and only if X € B, which
we will prove next.

Recall that for each i <n and Y € S an edge (p;,Y) exists precisely if i € Y and YV
is included in an odd number of sets B’ € B. This means that ¥ € N’ (Px) if and only
if X CY and Y is included in an odd number of sets B’ € B. The parity of [N (Px)| is
therefore congruent modulo 2 to the number of pairs (Y, B’) such that X CY C B’ and
B' € B hold: if Y is included in an even number of sets B’ € B then Y ¢ N7 (Px), but the
parity is not affected by also counting the even number of pairs (Y, B’) for this set Y.

For a fixed set B, the number of sets Y with X C Y C B’ is 218"\X|. We conclude that

NP = Y 2P (mod 2),

B'eB,XCB’
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where the right-hand side is odd if and only if there is a B’ € B with X C B" and B"\ X = 0),
so if X € B. This proves the claim.

Let 61(z1), ..., 0k+1(xgr1) be the change sequence INSgr(z1),. .., INSg(xk+1) that colours

the nodes x1,...,z5+1. Let B € (k[i]l) be of the form {iy,...,ig1} with i3 < -+ < ig4q.
def .

The change sequence ap = 61(pi;) - - Op+1(Pijy,) = INSR(Diy ), - - -, INSR(pj;,,, ) Tesults in a

graph where the set of coloured nodes is exactly Pg. As all nodes in N57(Pg) have degree
at most k + 1 and the set N37(Pg) is of odd size exactly if B € B, we have that ag(Z) is a
positive instance of PARITYEXISTSgeg<k+1 if and only if B € B. []

4. PARITYEXISTS AND FIRST-ORDER UPDATES

As discussed in the introduction, the PARITY query can be easily maintained with first-
order update rules. So far we have seen that its generalisation PARITYEXISTS can only be
maintained with quantifier-free update rules if the in-degree of covered nodes is bounded
by a constant. Now we show that with full first-order update rules, this query can be
maintained if the in-degree is bounded by log n, where n is the number of nodes in the graph.
We emphasise that only the in-degree of covered nodes is bounded, while a coloured node
v can cover arbitrarily many nodes. If also the out-degree of coloured node is restricted,
maintenance in DynFO becomes trivial®.

We start by providing a dynamic program with first-order update rules that maintains
PARITYEXISTSgeg<k, for a constant k, and only uses unary relations apart from a linear
order. Thus, in contrast to quantifier-free update rules, this query cannot be used to obtain
an arity hierarchy for graph queries for first-order update rules. Afterwards we will exploit
the technique used here to maintain PARITYEXISTSgeg<l0gn, With binary auxiliary relations.

Theorem 1.5. PARITYEXISTSqee<k can be maintained in DynFO with unary auziliary
relations in the presence of a linear order, for every k € N.

An intuitive reason why quantifier-free dynamic programs for PARITYEXISTSgeg< need
auxiliary relations of growing arity is that for checking whether some change, for instance
the colouring of a node v, is “relevant” for some node w, it needs to have access to all of w’s
“important” neighbours. Without quantification, the only way to do this is to explicitly list
them as elements of the tuple for which the update formula decides whether to include it in
the auxiliary relation.

With quantification and a linear order, sets of neighbours can be defined more easily,
if the total number of neighbours is bounded by a constant. Let us fix a node w with at
most & (in-)neighbours, for some constant k. Thanks to the linear order, the neighbours can
be distinguished as first, second, ..., k-th neighbour of w, and any subset of these nodes
is uniquely determined and can be defined in FO by the node w and a set I C {1,...,k}
that indezes the neighbours. With this idea, the proof of Proposition 3.1 can be adjusted
appropriately for Theorem 1.5.

Proof (of Theorem 1.5). Let k € N be some constant. Again, we call a node active if its
in-degree is at most k. We sketch a dynamic program that uses a linear order on the nodes
and otherwise at most unary auxiliary relations.

4If the out-degree of a node is upper-bounded by some constant ¢ and the colour of some node v changes,
then first-order update rules can determine the number ¢ < ¢ of nodes that have an incoming edge from v
and no coloured in-neighbour w # v. The change of the query result is determined by the parity of i.
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FIGURE 5. An illustration of the notation used in the proof of Theorem 1.5.
The set N2°( EQ’?)} (w3)) does not include wy, as there is no edge (vs,w1),
and it does not include ws, as there is an edge (vy,ws) for a coloured node
v7 & N[ 53 (ws). Compare with Figure 2.

Let I be a non-empty subset of {1,...,k}, and let w be an active node with at least
max (/) in-neighbours. The set N (w) of I-indexed in-neighbours of w includes a node v
if and only if (v, w) is an edge in the input graph and v is the i-th in-neighbour of w with
respect to the linear order, for some ¢ € I. The following notation is similar as in the proof
of Proposition 3.1. For a graph G and an arbitrary set C' of (coloured and uncoloured)
nodes, we denote by N2°(C) the set of active nodes that have an incoming edge from every
node in C' and no coloured in-neighbour that is not in C'. An example for these notions is
depicted in Figure 5.

For every I C {1,...,k} with I # () we introduce an auxiliary relation P; with the
following intended meaning. An active node w with at least max(I) neighbours is in Py if
and only if

(1) w has no coloured in-neighbours that are not contained in N (w), and
(2) the set N&° (N} (w)) has odd size.

Note that (1) implies that w € N2 (N (w)).

An auxiliary relation Py basically replaces the relations P, with ¢ +m = |I| from the
proof of Proposition 3.1, and the updates are mostly analogous.

We now explain how the query relation ANS and the relations Py are updated when a
modification to the input graph occurs. For maintaining P;, observe that first-order formulas
can easily express that a node w is active, has at least max(I) neighbours and satisfies
condition (1). The main task of the dynamic program we construct is to check condition (2).

Colouring a node v. When a change INSg(v) occurs, so, when a node v is coloured, the query
relation ANS is only changed if v becomes the only coloured neighbour of an odd number
of active nodes. This is the case if and only if there is an active and previously uncovered
node w that v has an edge to and, furthermore, if w € P; for the set I = {4}, where i is
the number such that v is the i-th in-neighbour of w with respect to the linear order.

For an arbitrary index set I, the update of a relation Py after the colouring of a node v
is as follows. Let G be the graph before the change is applied, and let G’ be the changed
graph. Let w be any active node. If v is an I-indexed in-neighbour of w, so if v € Nf (w),
no change regarding w € Py is necessary. Otherwise if v ¢ N}~ (w), we need to check whether
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w

& (N§,3,4,5} (w'))
& (N{T,z,a} (w))

F1GURE 6. Illustration for the update of the relation P; in the proof of Theo-
rem 1.5, for I = {1,2,3}. Graph G’ results from graph G by colouring node v.
The set N&(N{] 5.4 (w)) is the disjoint union of the sets N&* (N5 3 4 5,(w'))
and N7 (N7 4 5y (w)), so the parity of | é?(./\/"f_m’?)}(w)ﬂ can be determined
from the parity of |N2( 53’475}(w’))| and the parity of |N2( (23.45) (w))]-

both conditions (1) and (2) from above are satisfied regarding w and I. If at least one of
the conditions is not satisfied, then w is not contained in the updated relation P;.

Suppose that condition (1) is satisfied, so, that w has no coloured in-neighbours in G’
that are not contained in N}~ (w). This can easily be checked by a first-order formula. We
need to check condition (2), so, whether [N (N[~ (w))| is odd.

The set N2 (N[~ (w)) contains exactly those nodes from N2° (N~ (w)) that do not have
the newly coloured node v as in-neighbour, as this node is not contained in N (w). So,

o (N (w)) = NNV (w)) \ N NF (w) U {v}). Tt follows that we can determine the

parity of N2 (N~ (w))| from the parity of [N&° (N} (w))| and the parity of N5 (N[ (w) U
{v})]. We know whether |[N5° (N} (w))| is odd, this is the case if and only if w € P;. It
remains to find the parity of [N (N[ (w) U {v})|.

Suppose that N2° (N} (w) U {v}) is non-empty and contains some node w’. The node
w' is active and has an edge from v and every node in Nj (w), but no edge from any other
coloured node. Such a node w’ can easily be identified by a first-order formula. Let I’ be
chosen such that N} (w’) = Nf (w) U {v}. The set N&° (N} (w) U {v}) coincides with the
set N&° (N7 (w')) and the size of this set is odd exactly if w’ € Pp.

So, in this case, condition (2) is satisfied in G’ exactly if Pr(w) @ Pp(w') holds for the
old auxiliary relations. An illustration of the reasoning is given in Figure 6.

Note that if no such w’ exists, then N2°(N} (w)) = NN} (w)) and no change
regarding w € Pr is necessary.

Uncolouring a node v. The update of the query relation ANS and the relations Pr after a
change DELR(v) that uncolours a node v are symmetric to the previous case. The query bit
is flipped if there is an active node w that has v as its only coloured in-neighbour and if
w € Py for the index set I = {i}, where ¢ is the number such that v is the i-th in-neighbour
of w. The update of auxiliary relations P; for some node w is exactly as for the previous
case of changes INSg(v) — for checking condition (2) in the case v € N} (w), we now have
that N5 (N[ (w)) is the disjoint union of N&° (N} (w)) and N2 (N7 (w")), where I' and w’
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are defined exactly as in the previous case, still condition (2) holds exactly if Pr(w) & Pp(w’)
holds.

Inserting an edge (v,w). When a change INSg(v,w) inserts an edge (v, w), the query bit
ANS needs to be flipped if w is a covered node that becomes inactive, so if its degree becomes
larger than k, or if w stays active and v becomes its first coloured in-neighbour. Otherwise,
ANS is not changed.

For any index set I, the relation P; is updated as follows. Let G be the graph before
the change, and let G’ be the changed graph that includes the edge (v,w). First, we
consider whether some active node u # w is in the updated version of P;. We assume that
condition (1) from above holds for u, otherwise u ¢ P; before and after the update. Whether
u € Pr holds might only change if the parity of N'*°(N} (u)) changes. This only happens
when the membership of w in N'*°(N; (u)) changes by inserting (v, w), and this happens if

(a) we N2 (NS (u)) and
(i) w becomes inactive, or
(ii) v is a coloured node that is not included in N~ (u); or
(b) w ¢ N&(Nf (u)) and w stays active, the node v is in Nf (u), and w has an incoming
edge from all nodes from N} (u) in G’ and no incoming edge from any coloured node
that is not in this set.

It remains to explain how to determine whether w € Pr needs to hold after the update.
In the following, we make the graph explicit in the notation N} (w) and write N5 (w)
for the set if I-indexed in-neighbours of w in G. We assume that w stays active and that
condition (1) from above holds after the change, so w has no coloured in-neighbours that
are not in NV ;(w). The update formulas only need to check whether condition (2) holds,
that is, whether the set N (N (w)) has odd size.

We consider two cases. First, suppose v € N, “,7 ;(w). As w satisfies condition (1), it
follows that v is uncoloured. Let I be the index set such that N ;(w) = N 1 (w). Then
N (NS () = N (NS (w)), and w € Pr holds after the update if and only if w € Pp
before the update. 7

Now, suppose v € N ;(w). If w is not the only node in N7 (N ;(w)), then there
is another active node w' and an index set I" such that N ;(w) = N p(w') and w has
no coloured in-neighbour apart from nodes in NV, (w'). It follows that N&7 (NG ((w)) =
{w} UNZ (NS (w')). So, w € Pr holds after the update if and only if w’ ¢ Py before the
update. ’

All conditions can easily be expressed by first-order formulas.

Deleting an edge (v,w). The update after a change DELE (v, w) is mostly symmetric to the
update after the insertion of an edge (u,v). We shortly describe it here. The query bit ANS
needs to be flipped if w is a covered and formerly inactive node that becomes active, so, if
w has degree k after applying the change and has a coloured in-neighbour different from v.
The bit ANS also needs to be flipped if w is a covered and active node before applying the
change, but v is the only node that covers w. In all other cases, ANS is not changed.

We now discuss the update of Pr, for some index set I. Let G be the graph before the
change, and let G’ be the changed graph that does not include the edge (v, w). For a node
u # w, the reasoning for updating whether v € P; holds is very similar to the reasoning in
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the case of inserting an edge (u,v). The only differences are the conditions that tell whether
the membership of w in N*°(N; (u)) changes. This happens after the edge (v, w) is deleted,
if
(a) w e N2 (N (u)) and the node v is in N (u), or
(b) w ¢ N& (NS (u)), the node w is active in G’, has an incoming edge from all nodes from
N{ (u) in G', but not from any coloured node that is not in this set, and
(i) w was not active in G, or
(ii) v is a coloured node that is not included in N} (u).

Now we explain the update of P; for the node w. We assume that w is active in G’
and satisfies condition (1) from above; otherwise, w ¢ Pr. We need to explain how to
determine the parity of N2 (NS ;(w))|. We again consider two cases. First, suppose that
w was already active in G and that v is uncoloured. Let I’ be the index set such that
N& 1(w) = N p(w). Again, N (NG ((w)) = N& (NG (w)), and w € Pr holds after the
update if and only if w € Py before the update.

Suppose the first case does not apply. Then, if w is not the only node in N; '(,’(./\/57 ;(w)),
there is again an active node w’ # w and an index set I’ such that N ;(w) = NS (w') and
w' has no coloured in-neighbour apart from nodes in V5, (w’). It holds that N&7 (N (w)) =
{w} UNE (NS (w')) and so, w € Pr after the update if and only if w’ & Pp before the
update.

Again, all conditions are easily seen to be first-order expressible. []

It is easy to maintain a linear order on the non-isolated nodes of an input graph [Ete98],
which is all that is needed for the proof of Theorem 1.5. So, PARITYEXISTSgeg<) can also be
maintained in DynFO without a predefined linear order, at the expense of binary auxiliary
relations.

Unfortunately we cannot generalise the technique from the proof of Theorem 1.5 for
PARITYEXISTSgeg<k to PARITYEXISTS, but only to PARITYEXISTSdeg<logn, Which asks for
the parity of the number of covered nodes with in-degree at most logn. Here, n is the
number of nodes of the graph.

Theorem 1.4. PARITYEXISTSqeg<logn can be maintained in DynFO with binary auziliary
relations in the presence of a linear order and BIT.

Proof sketch. With the help of the linear order we identify the node set V' of size n of
the input graph with the numbers {0,...,n — 1}, and use BIT to access the bit encoding
of these numbers. Any node v € V then naturally encodes a set I(v) C {1,...,logn}:
i€ {l,...,logn} is contained in I(v) if and only if the i-th bit in the bit encoding of v is 1.

The proof of Theorem 1.5 constructs a dynamic program that maintains unary rela-
tions Py, for each non-empty set I C {1,...,k}. We replace these relations by a single binary
relation P, with the intended meaning that (v,w) € P if and only if w € Py(,). First-order
update rules can easily translate between these two representations in the presence of a
linear order and BIT, and otherwise the update works exactly as described in the proof of
Theorem 1.5. []

In addition to a linear order, Etessami [Ete98] also shows how corresponding relations
addition and multiplication can be maintained for the active domain of a structure. As BIT
is first-order definable in the presence of addition and multiplication, and vice versa (see e.g.
[Imm99, Theorem 1.17]), both a linear order and BIT on the active domain can be maintained,
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still using only binary auxiliary relations. So, the variant of PARITYEXISTSqeg<10gn that
considers n to be the number of non-isolated nodes, instead of the number of all nodes, can
be maintained in binary DynFO without assuming built-in relations.

5. MAINTENANCE USING AUXILIARY RELATIONS OF QUASI-POLYNOMIAL SIZE

Orthogonally to the perspectives taken in this work so far, which focussed on the expressive
power of the update formalism, one can ask how many auxiliary bits are necessary to
maintain the query PARITYEXISTS, or, more generally, all queries expressible in first-order
logic extended by modulo quantifiers. The class DynFO allows for polynomially many
auxiliary bits: the auxiliary relations of a DynFO program can be encoded by a bit string of
polynomial size. It is not hard to see that if one allows quasi-polynomially many auxiliary
bits — so, the number of auxiliary bits is bounded by 208"V n _ then all queries expressible
in first-order logic extended by modulo quantifiers can be maintained. This was observed in
discussions with Samir Datta, Raghav Kulkarni and Anish Mukherjee. Here, we provide a
proof sketch for this observation.

For discussing the amount of auxiliary bits, it is convenient to switch the view point
from first-order updates to updates computed by AC? circuits. A classical result linking
circuit complexity and finite model theory states that a query can be computed by a uniform
family of AC%-circuits (that is, by constant depth and polynomial size circuits with —-, A-
and V-gates with unbounded fan-in) if and only if it can be expressed by a first-order formula
with access to a built-in linear order and BIT [BIS90]. So, if we assume the presence of a
built-in linear order and BIT then the classes DynFO and (uniform) DynAC? coincide.

The class ACC? is defined similarly as AC?, but the circuits are additionally allowed
to use modulo-gates. A query can be computed by a uniform family of ACC-circuits if
and only if it can be expressed by a first-order formula that may use modulo quantifiers, in
addition to a linear order and BIT.

For simplifying the discussion, in the following we take a solely circuit-based perspective.
We also, from now on, disregard uniformity conditions and only consider non-uniform circuit
classes.

The classes g-AC? and q-ACC? are defined as the classes AC® and ACC? except that

circuits can be of quasi-polynomial size, that is, of size 210g”Wn  The class DynAC? is the
class of queries that can be maintained with AC’-circuits and polynomially many auxiliary
bits. The class g-DynACY is defined as the class DynAC? except that dynamic programs may
use quasi-polynomially many auxiliary bits and update circuits from g-ACY.

It turns out that with quasi-polynomial update circuits all q-ACC’-queries can be
maintained, and in particular the query PARITYEXISTS.

Theorem 5.1. Every query in ¢-ACC® can be maintained in ¢-DynACP.

Instead of proving this theorem directly, we use that q-ACC? can be characterised by
very simple circuits with one gate with quasi-polynomial in-degree [BT94].

A boolean function f : {0,1}"™ — {0,1} is symmetric if f(Z) = f(y) whenever the
number of ones in Z and 7 is equal. The class Sym™ contains all queries computable by depth-
two size-21°8°" 7 circuits where the output gate computes a symmetric boolean function,

and it has incoming wires from a layer of and-gates, which each have fan-in logo(l) n (see
Reference [BT94]).
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As q-ACCY is contained in Sym™ [BT94, Proposition 1.2], the following result implies
Theorem 5.1.

Theorem 5.2. Every query in Sym™ can be maintained in ¢-DynAC®.

Proof. The proof extends the ideas from the proofs of Theorem 1.4 and Theorem 1.5 to
nodes with in-degree logo(l) n.

Let C be a family of Sym™-circuits, where for each n € N the circuit C,, is a depth-two
size-2106° 1 civeuit whose output gate computes some symmetric boolean function A, and
that otherwise consists of a layer of and-gates g1, go,... with fan-in at most k, for some
k€ logo(l) n.

We construct a g-DynAC’-program P. The idea is to maintain, for each domain size n,
the number m of and-gates of (), that are currently activated, i.e., that are only connected
to inputs that are currently set to 1. The output of the symmetric function h for inputs
with m ones can then be looked up in a table.

For maintaining the number of activated and-gates, the program P maintains, for every
subset A of the input gates of size at most k, the value

def

#(A) = |{gi | gi is connected to all inputs in A,

and is activated when the inputs from A are ignored}|,

that is, the number of and-gates that are connected to all inputs in A and whose only inputs
that are not set to 1 (if any) are contained in A.

Rephrased in the setting of the previous sections, we can think of the circuit as a
coloured graph G, and an input gate is considered to be coloured if the input bit is set to 0.
Then, #(A) is the number of and-gates that are connected to all inputs in A and are not
covered by some node that is not in A, so, the cardinality of the set N2°(A) as defined in
Section 4.

As the number of sets of input gates of size at most k is quasi-polynomial in n, and
for each such set A the number #(A) is bounded by the size of the circuit, which is again
quasi-polynomial in n, this auxiliary information can be encoded by quasi-polynomially
many auxiliary bits.

We need to show that the number of activated gates as well as the auxiliary information
#(A) can be updated after changes that flip an input bit. Note that the circuit itself is
fixed, so the dynamic program does not need to support changes that delete or insert wires.

When an input bit 2 is changed, the values #(A) are updated to #'(A) as follows. For
all sets A that include z, the count #(A) does not change, as all inputs in A are ignored in
the definition of #(A). Also, the count #(A) does not change for sets A with = ¢ A and
|A| = k, as all and-gates have fan-it at most k& and can therefore not be connected to all
inputs in A and the additional input x. The only case left is for a set A with |A| < k that
does not include . Suppose that z is flipped from 0 to 1. All and-gates counted for #(A)
are not connected to x by the definition of #(A). After the change, also those gates are
counted for #(A) that have a connection to all gates in A and to z, but to no other input
gate that is set to 0. The number of these gates is given by #(A U {z}).

In summary, the updated auxiliary information #'(A) after x is set from 0 to 1 is as
follows:

1y et | F#(A) ifxeAor |Al =k
#(A4) = {#(A) +#(AU{z}) else.
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If x is set from 1 to 0, the update is symmetric:
#(A) ifreAor|Al=k
#(A) — #(AU{z}) else.

The total number of activated gates changes by the number #({z}), which is either added
in case z is flipped from 0 to 1, or subtracted if = is flipped from 1 to 0. These updates can
easily be expressed by g-ACY circuits. ]

#'(4) =

In Reference [Muk19] it is discussed how Theorem 5.1 can be extended to show that
all queries in q-AC can be maintained in q-DynAC, using different techniques. Here, g-AC
denotes the class of all queries that can computed by families of circuits with quasi-polynomial
size and poly-logarithmic depth.

6. CONCLUSION

We studied the dynamic complexity of the query PARITYEXISTS as well as its bounded
degree variants. While it remains open whether PARITYEXISTS is in DynFO, we showed that
PARITYEXISTSgeg<logn is in DynFO and that PARITYEXISTSgeg<) is in DynProp, for fixed
k € N. The latter result is the basis for an arity hierarchy for DynProp for Boolean graph
queries. Several open questions remain.

Open question. Can PARITYEXISTS be maintained with first-order updates rules? If so,
are all (domain-independent) queries from FO+Parity also in DynFO?

Open question. Is there an arity hierarchy for DynFO for Boolean graph queries?
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