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Abstract. We investigate the decidability and complexity status of model-checking prob-
lems on unlabelled reachability graphs of Petri nets by considering first-order and modal
languages without labels on transitions or atomic propositions on markings. We consider
several parameters to separate decidable problems from undecidable ones. Not only are
we able to provide precise borders and a systematic analysis, but we also demonstrate the
robustness of our proof techniques.

1. Introduction

Decision problems for Petri nets. Petri nets are among the oldest families of generators of
infinite state systems, and much effort has been dedicated to their algorithmic analysis. For
Petri nets, the reachability problem is hard but decidable [35]. Further important prob-
lems that are specific to Petri nets and that were shown decidable are boundedness [29, 38],
deadlock-freeness and liveness [20] (by reduction to reachability), persistence [18], and semi-
linearity [22]. Hack’s thesis [20] provides a comprehensive overview of problems equivalent
to Petri net reachability. On the negative side, language equality is undecidable for labelled
Petri nets [21, 1], but it can be decided for injectively labelled as well as for labelled and
deterministic Petri nets [37] (by a reduction to reachability). Another undecidability result
for Petri nets, obtained by Rabin [4] and Hack [21], is that equality of reachability sets
of two Petri nets with identical places is undecidable. As our main contribution, we link
this result to first-order logic expressing properties of general Petri net reachability graphs.
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We provide a robust proof schema that entails undecidability of most logical fragments
interpreted on such graphs.

Our motivations. For Petri nets, model checking CTL formulae with atomic propositions
of the form p > 0 (place p contains at least one token) is known to be undecidable [13].
This negative result carries over to all fragments of CTL containing the modalities EF
or AF. Furthermore, model checking CTL without atomic propositions but with next-
time modalities indexed by action labels is undecidable too [13]. In contrast, LTL model-
checking over vector addition systems with states is ExpSpace-complete [19] when atomic
propositions refer to control states.

These negative results do not compromise the search for decidable fragments of first-
order logic that describe, only purely graph-theoretically, the shape of the Petri net state
graphs. So we intentionally avoid edge labels and atomic propositions interpreted on mark-
ings. As an example, we shall consider the first-order structure (Nn,−→) derived from a
Petri net N with n places such that M −→ M ′ iff M evolves to M ′ by firing a transition
of N . Since (Nn,−→) is an automatic structure, its first-order theory over predicates −→
and = is decidable, see e.g. [6]. This decision procedure can be extended to Petri net state
graphs with Presburger-definable predicates on markings and with labels on transitions. As
a second example of results related to our work, given a formula ϕ in FO(−→,=) with free
variables x1, . . . , xm, one can effectively construct a Presburger formula that characterizes
exactly the markings satisfying ϕ in (Nn,−→).

However, it is unclear what happens if we consider the first-order theory of −→ over
the practically interesting structure (Reach(N),−→). Here, Reach(N) denotes the set of all
markings reachable from the initial marking of Petri net N . Our paper studies this problem.
We investigate the decidability status of several first-order logics, sometimes extended by
a bit of MSO (via reachability predicates), sharing with [40] a common motivation. The
properties of the reachability graph we are interested in are purely graph-theoretical in that
they do not refer to tokens or transition labels and they are mostly local in that we often
restrict ourselves to −→ instead of its transitive closure. As summarised in Table 1 (Section 5)
we settle the decidability status of most problems. To the best of our knowledge, this is the
first study of logics for the reachability graph. In particular, related logics in [3] consider
quantitative properties on markings and transitions, and evaluate formulae on runs. We do
not refer to tokens or to transition labels.

Our contributions. We investigate the model-checking problem over structures of the form

(Reach(N),−→,
∗
−→) generated from Petri nets N with first-order languages including pred-

icate symbols for −→ and/or
∗
−→. We consider variants depending on the predicates and

on whether Reach(N) or
∗
−→ are effectively semilinear. This allows us to provide a refined

analysis about the decidability borders for such problems. As it is a classical fragment
of first-order logic, we also consider the modal language ML(�,�−1) with forward and
backward modalities. Let us mention some features of our investigation:

(1) Undecidability proofs are obtained by reduction from the equality problem (or the in-
clusion problem) between reachability sets defined by Petri nets, shown undecidable
in [4, 21]. We demonstrate that our proof schema is robust and can be adapted to
numerous formalisms specifying local properties as in first-order logic. Moreover, un-
decidability can be obtained even for a fixed formula (i.e., for a fixed property).
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(2) To determine the cause of undecidability, we investigate logical fragments. At the same
time, we strive for maximally expressive decidable fragments. With these two goals,
our study on graph-theoretical properties is quite systematic.

(3) For decidable problems, we assess the computational complexity — either relative to
standard complexity classes such as PSpace or ExpSpace or by establishing a reduction
from the reachability problem for Petri nets (when decision procedures rely on solving
instances of this problem).

Our main findings are as follows (refined statements can be found in the body of the paper,
see also Table 1 in Section 5):

⋆ Model-checking (Reach(N),−→) [resp. (Reach(N),
∗
−→), (Reach(N),

+
−→)] is undecidable for

the corresponding first-order language with a single binary predicate symbol.
⋆ Undecidability is also shown for the positive fragment of FO(−→), for the forward frag-

ment of FO(−→), and for FO(−→) augmented with
∗
−→. The latter result even holds if the

reachability sets are effectively semilinear.
⋆ Combining procedures for coverability and reachability in Petri nets, we obtain some
positive results. We prove that model-checking the existential fragment of FO(−→) is
decidable, but as hard as the reachability problem for Petri nets. Moreover, the model

checking problem is decidable for FO(−→,
∗
−→,=) under the assumption that the relations

−→ and
∗
−→ are semilinear (consequence of [6]). We have not found any decision result

between these two extremes.
⋆ Concerning the modal language ML(�,�−1), the global model-checking problem on
(Reach(N),−→) is undecidable but it becomes decidable when restricted to ML(�) (even
if extended with Presburger-definable predicates on markings); the latter problem is also
as hard as the reachability problem for Petri nets.

One may regret that our main results turn towards undecidability but this was not clear
at all when we began our study. On the positive side, we were able to identify non-trivial
fragments for which the decision problems can be of high computational complexity. Our
results shed some new light on the verification of structural properties on unlabelled net
reachability graphs.

Structure of the paper. The remaining sections are organized as follows. Section 2 brings
the background of the study. Section 3 presents results that focus on the reachability
graph without the reachability predicate. Section 4 presents those involving the reachability
predicate.

2. Preliminaries

We recall basics on Petri nets and semilinear sets and we give the standard definitions
and fundamental results used in the paper. We first introduce the notations needed when
considering Petri net reachability graphs as models for first-order sentences. Then, we define
first-order logic and modal logic interpreted on graphs induced by Petri nets. Finally, we
present positive decidability results about model-checking problems.
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2.1. Petri nets. A Petri net is a bi-partite graph N = (P, T, F,M0), where P and T are
finite disjoint sets of places and transitions, and F : (P × T ) ∪ (T × P ) → N is a set of
directed edges with non-negative integer weights. A marking of N is a functionM : P → N.
M0 is the initial marking of N . A transition t ∈ T is enabled at a markingM , writtenM [t〉,
if M(p) ≥ F (p, t) for all places p ∈ P . If t is enabled at M then it can be fired. This leads
to the marking M ′ defined by M ′(p) = M(p) + F (t, p)−F (p, t) for all p ∈ P . The firing
relation is denoted by M [t〉M ′. The definitions are extended to transition sequences s ∈ T ∗

in the expected way. A marking M ′ is reachable from a marking M if M [s〉M ′ for some
s ∈ T ∗. A transition t is in self-loop with a place p iff F (p, t) = F (t, p) > 0. A transition is
neutral if it has null effect on all places. The reachability set Reach(N) of N is the set of
all markings that are reachable from the initial marking.

Theorem 2.1. [35] Given a Petri net N and two markings M and M ′, one can decide
whether M ′ is reachable from M .

Theorem 2.2. [4, 21] Given two Petri nets N and N ′, it is undecidable whether Reach(N) =
Reach(N ′) [resp. Reach(N) ⊆ Reach(N ′)].

A stronger version of Theorem 2.2 has been established in [28] where it was shown that
undecidability still holds when N and N ′ have five places and one of these nets is fixed.

A Petri net N = (P, T, F,M0) induces several standard structures on which first-order
logics may be interpreted. The plain unlabelled reachability graph of N is the structure
PURG(N) = (D,−→) where D = Reach(N) and −→ is the binary relation on D defined
by M −→ M ′ if M [t〉M ′ for some t ∈ T . Note that M0 ∈ D but no predicate is given
to identify this specific marking. The unlabelled reachability graph of N is the structure

URG(N) = (D, init,−→,
∗
−→,

+
−→,=) where init = {M0}, and relations

∗
−→ and

+
−→ are the

iterative and strictly iterative closures of −→, respectively. The unlabelled transition graph

of N is the structure UG(N) = (NP , init,−→,
∗
−→,

+
−→,=) where M −→M ′ if M [t〉M ′ for some

transition t ∈ T . Note that reachability of markings is not taken into account in UG(N).
In the sequel, by default card(P ) = n and we identify N

P and N
n. We also call 1-loop an

edge M −→M ′ with M =M ′.

2.2. Petri nets and semilinear sets. We rely on results about the semilinear subsets
of Nn that represent possible markings of a Petri net with n places. Recall that (Nn,+)
is a commutative monoid where the product operation is the componentwise addition of
n-vectors (+) and the neutral element is the null n-vector.

A subset E ⊆ N
n is called linear if it can be expressed as x+ {y1, . . . , ym}

∗ for vectors
x ∈ N

n and y1, . . . , ym ∈ N
n. The Kleene iteration {y1, . . . , ym}

∗ is a shorthand notation
for k1y1 + . . . + kmym for some k1, . . . , km ∈ N. A subset E ⊆ N

n is semilinear if it is
a finite union of linear subsets. Owing to the commutativity of the product operation
+, semilinear subsets of N

n coincide with the regular subsets of N
n. Hence, they are

generated by finite automata over N
n. Indeed, one can always choose finite automata

whose transitions are labelled with generators, i.e., with n-vectors with a single non-null
entry equal to 1. The semilinear subsets of N

n form an effective Boolean algebra [16],
hence providing decision procedures for emptiness. In [17], Ginsburg and Spanier gave an
effective correspondence between semilinear subsets and Presburger subsets, i.e., subsets
of Nn definable in Presburger arithmetic. Presburger arithmetic can be decided in triple
exponential time [8].
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Proposition 2.3. Given a Petri net N = (P, T, F,M0) and a semilinear subset of markings
E ⊆ N

|P |, one can decide whether (some marking in) E can be reached from M0.

Hack reduced this semilinear reachability problem to the reachability problem in Petri
nets [21, Lemma 4.3]. The proposition now follows with the decidability of reachability in

Theorem 2.1. The statement shows in particular that for any marking M ∈ N
|P |, one can

decide whether a marking greater than or equal to M is reachable.
We recalled in the introduction that it is decidable whether the reachability set of a

Petri net system is semilinear. Note that semilinearity of the reachability set Reach(N) does

not entail semilinearity of the reachability relation
∗
−→⊆ Reach(N)× Reach(N) ⊆ N

|P |+|P |.
Here are some classes of Petri nets and counter systems for which the reachability relation
∗
−→ is effectively semilinear (apart from bounded Petri nets):

⋆ Cyclic Petri nets, see e.g. [2, 9, 32].
⋆ Communication-free Petri nets [12].
⋆ Vector addition systems with states of dimension 2 [25, 33].
⋆ Single-path Petri nets [26].
⋆ Petri nets with regular languages [41].
⋆ Flat affine counter systems with the finite monoid property [7, 14].
⋆ Flat relational counter systems [11, 10].
⋆ Reversal-bounded counter systems [27].

Some of these results require complex machinery but they are essential to use the decision
procedures based on effective semilinearity.

2.3. First-order languages. To specify properties of structures URG(N), PURG(N) and
UG(N) obtained from a Petri net N , we introduce a first-order logic FO with atomic

predicates x −→ y, x
∗
−→ y, x

+
−→ y and init(x). Formulae in FO are defined by

x −→ y | x
∗
−→ y | x

+
−→ y | init(x) | x = y | ¬ϕ | ϕ ∧ ϕ | ∃ x ϕ | ∀ x ϕ.

Given a set P of predicate symbols from the above signature, we denote the restriction of
FO to the predicates in P by FO(P). By default, FO refers to the full language. Formulae
are interpreted either on PURG(N), URG(N) or UG(N). Observe that FO on UG(N)
enables, using init and reachability predicates, to relativize formulae to URG(N), but
restricted logical languages motivate the existence of both structures. It is worth noting
that by slight abuse, we sometimes use the same notation for a predicate symbol and its fixed

interpretation. Note that, as regards interpretation,
∗
−→=(= ∪

+
−→) and

+
−→=(−→ ◦

∗
−→), hence

FO(init,−→,
+
−→,=), FO(init,−→,

∗
−→,=), and FO(init,−→,

+
−→,

∗
−→,=) are equally expressive.

FO indicates that one can quantify over markings. Note that predicates
+
−→ or

∗
−→ exceed the

expressiveness of usual first-order logics on graphs. We omit the standard definition of the
satisfaction relation U ,v |= ϕ with U a structure (PURG(N), URG(N) or UG(N)) and v

a valuation of the free variables in ϕ. For example, ∀x ϕ holds true whenever the formula
ϕ holds true for all elements (markings) of the considered structure. Sentences are closed
formulae, i.e., without free variables. If U |= ϕ then U is called a model of ϕ.

It is worth noting that FO can only describe graph-theoretical properties of the struc-
tures U , apart from equality tests. The binary relations do not use transitions of nets as
labels and no atomic propositions give reference to markings. As a consequence, quantita-
tive properties about markings cannot be expressed in FO, at least in the obvious way, and
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constraints about the firing of specific transitions cannot be expressed either. Note that FO
is not minimal when it comes to expressiveness. The redundancies, however, help us design
interesting logical fragments.

In the sequel, we consider several model-checking problems. The model-checking problem
MCURG(FO) is stated as follows:

input:: a Petri net N = (P, T, F,M0) and a sentence ϕ ∈ FO
question:: URG(N) |= ϕ?

The variant MCUG(FO) is:

input:: a Petri net N = (P, T, F,M0) and a sentence ϕ ∈ FO
question:: UG(N) |= ϕ?

The logics FO(P) (atomic formulae restricted to predicates in P) induce restricted variants
of the two model checking problems that we denote by MCURG(FO(P)) and MCUG(FO(P)),
respectively. Formulae in FO can express standard structural properties, for instance
deadlock-freeness with ∀x ∃y x −→ y, existence of a 1-loop with ∃x x −→ x, or cyclicity

with ∀x∀y x
∗
−→ y ⇒ y

∗
−→ x. Automatic structures form a large class of structures having

a decidable model checking problem for FO. These structures have presentations in which
k-ary relations are defined by synchronous automata (see [6] for more details).

Theorem 2.4. [6] Let S be an automatic structure, then MCS(FO) is decidable.

From [16], semilinear sets and semilinear relations are automatic. In particular, this
means that (Nn,−→,=) is automatic. Propositions 2.5, 2.6 and 2.7 are consequences of
Theorem 2.4; they are provided below to present more explicitly what is the current state
of knowledge.

Proposition 2.5. MCUG(FO(−→,=)) is decidable.

Note that given ϕ in FO(−→,=), one can effectively build a Presburger formula that char-
acterizes exactly the valuations satisfying ϕ in UG(N). Decidability is preserved with
Presburger-definable properties on markings and with labelled transition relations [t〉. How-
ever, having N

n as a domain does not always guarantee decidability, see the undecidability
result in [40, Theorem 2] about a structure with domain N

n but equipped with succes-
sor relations for each dimension and with reachability predicates constrained by regular
languages. Likewise, subproblems of MCURG(FO) may require additional assumptions to
achieve decidability, as the semilinearity assumption made in the statement below. The
proposition also follows from Theorem 2.4.

Proposition 2.6. Let C be a class of Petri nets for which the restriction on reachable

markings of the reachability relation x
∗
−→ y is effectively semilinear. Then, MCURG(FO)

restricted to C is decidable.

Proof. Let N = (P, T, F,M0) be a Petri net in C with card(P ) = n. We represent its
markings by vectors M ∈ N

n. By assumption, Reach(N) and the set {(M,M ′) |M,M ′ ∈

Reach(N) and M
∗
−→ M ′} are effectively semilinear. Similarly, the set {(M,M) |M ∈

Reach(N)} is effectively semilinear. Define ∆ = {(M,M ′) |M,M ′ ∈ Reach(N) and M
∗
−→

M ′, M 6= M ′}. Then ∆ is effectively semilinear. Let ∆2 = {(M,M ′) | (∃M ′′) (M,M ′′) ∈
∆ and (M ′′,M ′) ∈ ∆}. As semilinear sets are closed under projection (quantifier elimination
in Presburger arithmetic), ∆2 is effectively semilinear. Now {(M,M ′) |M ∈ Reach(N) and
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M
+
−→M ′} is equal to ∆∪∆2. Hence this set is effectively semilinear. Therefore, through the

effective correspondence between semilinear sets and sets definable in Presburger arithmetic,
any sentence ϕ of FO translates to a sentence ϕ′ of Presburger arithmetic logic such that
URG(N) |= ϕ if and only if ϕ′ is true. The proposition follows from the decidability of
Presburger arithmetic [39].

When reachability sets are effectively semilinear but the reachability relation is not, the
strictly less expressive logical fragment FO(−→,=) remains decidable, from Theorem 2.4.

Proposition 2.7. Let C be a class of Petri nets N for which Reach(N) is effectively semi-
linear. Then, MCURG(FO(−→,=)) restricted to C is decidable.

Proof. Consider a Petri net N = (P, T, F,M0) in C. Assume the Presburger formula
ϕ(x1, . . . , xn) characterizes Reach(N) where |P | = n. There is a second Presburger for-
mula ϕ′(x1, . . . , xn, x

′
1, . . . , x

′
n) that characterizes the binary relation −→ in UG(N).

Given a sentence ψ in FO(−→,=), one can build a sentence f(ψ) in Presburger arithmetic
such that URG(N) |= ψ iff f(ψ) is satisfiable in Presburger arithmetic. The map f(·) is
homomorphic for Boolean connectives. Furthermore,

⋆ f(z −→ z
′)

def
= ϕ′(z1, . . . , zn, z

′
1, . . . , z

′
n),

⋆ f(z = z
′)

def
=

∧
i∈[1,n]

zi = z
′
i,

⋆ f(∀z χ)
def
= ∀z1, . . . , zn (ϕ(z1, . . . , zn) ⇒ f(χ)).

To evaluate predicate −→, we resort to ϕ′. With ϕ, we relativize the quantifiers to taking
only positions in Reach(N) into account.

Again, decidability is preserved with Presburger-definable properties on markings and

with labelled transition relations of the form
t
−→. To give an example application of this

result, MCURG(FO(−→,=)) restricted to cyclic Petri nets is decidable. This follows from
Proposition 2.7 combined with the fact that cyclic Petri nets have semilinear reacha-
bility sets [9]. The restriction to language FO(−→,=) is essential for the decidability in
Proposition 2.7. As we shall see in Proposition 4.5, the related model checking problem

MCURG(FO(−→,
∗
−→)) is undecidable — even under the assumption of semilinearity for the

reachability sets.

2.4. Standard first-order fragments: modal languages. By moving along edges,
modal languages provide a local view to (potentially labelled) graph structures. Note the
contrast to first-order logic in which one quantifies over any element of the structure. Appli-
cations of modal languages include modelling temporal and epistemic reasoning, and they
are central for designing logical specification languages. In this paper, we consider sim-
ple modal languages understood as distinguished fragments of first-order logic. Moreover,
the modal language ML defined below has no propositional variable (like Hennessy-Milner
modal logic [23] but unlike standard modal logic K [5]) and no label on modal operators
(unlike in modal languages dedicated to describing labelled transition systems). This allows
us to interpret modal formulae on directed graphs of the form (Reach(N),−→). However, in
some places, we shall indicate when decidability or complexity results can be extended to
richer versions of ML. The modal formulae in ML are defined by the grammar

⊥ | ⊤ | ¬ϕ | ϕ ∧ ψ | �ϕ | ♦ϕ | �−1ϕ | ♦−1ϕ.
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This language is not only poor compared to first-order logic, but also little expressive
compared to other modal dialects. Yet, it is sometimes sufficiently expressive to obtain first
undecidability results for model checking Petri net structures. Given a modal formula ϕ, its
modal degree is the greatest number of nested occurrences of modal operators in ϕ. We write
ML(�) to denote the restriction of ML to the modal operators � and ♦. We interpret modal
formulae on directed graphs of the form (D,−→) for some Petri net N = (P, T, F,M0) with

URG(N) = (D, init,−→,
∗
−→,

+
−→,=). We provide the definition of the satisfaction relation

|= relatively to an arbitrary directed graph M = (W,R) (and w ∈ W ). The clauses for
Boolean connectives and logical constants are standard and we omit them. For the modal
operators, we set

⋆ M, w |= �ϕ
def
⇔ for every w′ ∈W such that (w,w′) ∈ R, we have M, w′ |= ϕ.

⋆ M, w |= ♦ϕ
def
⇔ there is w′ ∈W such that (w,w′) ∈ R and M, w′ |= ϕ.

⋆ M, w |= �−1ϕ
def
⇔ for every w′ ∈W such that (w′, w) ∈ R, we have M, w′ |= ϕ.

⋆ M, w |= ♦−1ϕ
def
⇔ there is w′ ∈W such that (w′, w) ∈ R and M, w′ |= ϕ.

As usual, � and ♦ as well as �−1 and ♦−1 are dual operators that can be defined one from
another as soon as negation is part of the language.

The model-checking problem MCURG(ML) is the following:

input:: a Petri net N = (P, T, F,M0) and a modal formula ϕ ∈ ML.
question:: (Reach(N),−→),M0 |= ϕ?

Let MCURG(ML(�)) denote MCURG(ML) restricted to ML(�). Proposition 2.8 proves this
model checking problem decidable. The procedure exploits the fact that a modal formula of
modal degree d can only induce constraints on nodes at distance at most d from the initial
marking, a standard argument, see e.g. [5].

Proposition 2.8. MCURG(ML(�)) is decidable and PSpace-complete.

Proof. Consider a Petri net N = (P, T, F,M0) with URG(N) = (D, init,−→,
∗
−→,

+
−→,=). Let

ϕ be a modal formula in ML(�) with modal degree d (d is the greatest number of nested
occurrences of modal operators in ϕ). We consider the directed graph M = (W,R) so that

⋆ W ⊆ N
P and R is the restriction of −→ to W .

⋆ For M ∈ N
P we set M ∈ W

def
⇔ there is a sequence of transitions s of length at most d

such that M0[s〉M .

Observe that M is finite and the cardinal of W is at most exponential in the size of N
and d. One can show that M,M0 |= ϕ iff (D,−→),M0 |= ϕ. Hence, MCURG(ML(�)) is
decidable, because the model-checking problem for ML over finite structures is decidable
(in polynomial time). The PSpace upper bound can be obtained with an algorithm similar
to the one that shows CTL model-checking over 1-safe Petri nets to be in PSpace, see
e.g. [13, Section 4.2]. Our problem is actually simpler since we can restrict ourselves to the
temporal operators AX and EX corresponding to � and ♦, respectively. We briefly describe
below the nondeterministic algorithm MC((P, T, F,M0), ϕ) that returns true whenever
(D,−→),M0 |= ϕ. We proceed by a case analysis.

ϕ = ⊤ return true;
ϕ = ¬ϕ′: if MC((P, T, F,M0), ϕ

′) then return false else return true;
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ϕ = ϕ1 ∧ ϕ2: if MC((P, T, F,M0), ϕ1) and MC((P, T, F,M0), ϕ2) then return true else

return false;

ϕ = �ϕ′: if for some M ′ such that M0
t
−→ M ′ with t ∈ T we have MC((P, T, F,M ′), ϕ′) =

false then return false else return true.

Note that the depth of recursive calls for MC((P, T, F,M0), ϕ) is bounded by the modal
degree of ϕ and each call requires only polynomial space in the size of (P, T, F,M0) and
ϕ. Hence, MC((P, T, F,M0), ϕ) runs in nondeterministic polynomial space. By Savitch
Theorem, we get the bound PSpace.

To establish PSpace-hardness, we give a reduction from QBF. Let Q1p1 · · · Q2np2n ψ
be a QBF formula where Q1 · · · Q2n is a sequence of quantifiers starting with Q1 = ∃,
alternating strictly ∃ and ∀, and ψ is a quantifier-free propositional formula built over
the propositional variables in {p1, . . . ,p2n}. We consider a modal formula ϕ of the form
(♦�)nψ′ where ψ′ is obtained from ψ by replacing each propositional variable pi by ♦i� ⊥.
Construct a Petri net N = (P, T, F,M0) as follows. The set of places P contains a subset
{p1, . . . , p2n}, in bijection with the atomic propositions and initially empty, plus auxiliary
places. From M0, N executes first a sequence of 2n independent choices (t′1+ t′′1) · (t

′
2 + t′′2) ·

. . . · (t′2n+ t
′′
2n) where t

′
i puts i tokens in place pi to represent the truth of the corresponding

atomic proposition while t′′i puts no tokens in pi to indicate the proposition does not hold.
After this sequence of binary choices, N executes a non-deterministic choice (x1+ · · ·+x2n)
where xi removes one token from pi and puts one token in a place p′i which was initially
empty. Each control place p′i is set in self-loop with a transition ti that removes at each
firing one token from pi.

Existential quantifications are replaced by ♦, and universal ones by �. A path relative
to a formula (♦�)n then ends up in a configuration where truth values have been chosen
for all variables. Note that the formula needs to be true for one continuation at each ♦

position and true for each continuation at � positions. The last part of the formula needs
to check the truth values of individual variables. For each pi, we have a formula ♦i� ⊥ that
is true only when there is precisely a path of length i, which corresponds to our encoding of
truth values. The selection of each individual variable (and only one) is performed by the
transition (x1+· · ·+x2n). Altogether, (Reach(N),−→),M0 |= (♦�)nψ′ iff Q1p1 · · · Q2np2nψ
is satisfiable. Note that Reach(N) is finite.

For simple models (like finite structures), adding �−1 to ML(�), often does not change
the decidability status or the computational complexity of model checking, see e.g. [5].
When it comes to Petri net reachability graphs PURG(N), adding the backward operator
�−1 preserves decidability but at the cost of performing reachability checks.

Proposition 2.9. MCURG(ML(�,�−1)) is decidable.

Proof. Consider a Petri net N = (P, T, F,M0) with URG(N) = (D, init,−→,
∗
−→,

+
−→,=). Let

ϕ be a modal formula in ML(�,�−1) of modal degree d. Define N = (P, T ∪ T−1, F,M0)
where T−1 is a set of formal inverses of the transitions in T , i.e., F (p, t−1) = F (t, p) and
F (t−1, p) = F (p, t) for all t ∈ T . To model check URG(N) against ϕ, the idea is to consider
a depth d unrolling of URG(N). However, when following inverse transitions M ′[t−1〉M ,
reachability checks are needed to guarantee the target markingM belongs to the domain D
of structure URG(N). These checks are effective by Theorem 2.1 quoted from [35, 30, 31].
More formally, we consider the directed graph M′ = (W ′, R′) defined by
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⋆ W ′ ⊆ N
P and R′ is the restriction of −→ to W ′.

⋆ For M ∈ N
P we set M ∈W ′ def

⇔
(a) M ∈ D,
(b) there is a sequence of transitions s ∈ (T ∪ T−1)∗ of length at most d such that

M0[s〉M .

Checking M0[s〉M is easy whereas M ∈ D requires a reachability check. Observe that M′

is finite and effectively constructible. The cardinal of W ′ is exponential in d. One can show
that M′,M0 |= ϕ iff (D,−→),M0 |= ϕ. Hence, MCURG(ML(�,�−1)) is decidable, because
model-checking ML over finite structures is a decidable problem that takes polynomial time.

The best known decision procedures for Petri net reachability are non primitive re-
cursive, which provides the worst possible and hopefully not tight upper bound to the
complexity of the model-checking problem MCURG(ML(�,�−1)). Unfortunately, it might
well be the case that this upper complexity bound is tight, for we shall (in turn) reduce
Petri net reachability to the above model-checking problem in Section 3.4.

We introduce another decision problem about ML that is closely related to first-order
model-checking over reachability graphs. The validity problem VALURG(ML), also known
as global model-checking, is stated as follows:

input:: a Petri net N = (P, T, F,M0) that induces the structure URG(N) =

(D, init,−→,
∗
−→,

+
−→,=), and a modal formula ϕ ∈ ML.

question:: (D,−→),M |= ϕ for every marking M ∈ D ?

As observed earlier, formulae from ML(�,�−1) can be viewed as first-order formulae in
FO(−→). Therefore, using modal languages in specifications is a way to consider fragments
of FO(−→). Indeed, given a modal formula ϕ in ML(�,�−1), one can compute in linear
time a first-order formula ϕ′ with only two individual variables (see e.g. [5]) that satisfies:
for every Petri net N we have PURG(N) |= ϕ′ iff PURG(N),M |= ϕ for every marking M
in Reach(N). Hence, the validity problem VALURG(ML) appears as a natural counterpart
to the model-checking problem for FO over unlabelled reachability graphs of Petri nets. We
will see in the next section that both problems are undecidable.

We conclude the section by introducing an extension of ML that admits quantifier-free
formulae from Presburger arithmetic as atomic propositions. The idea is to pose arithmeti-
cal constraints on the numbers of tokens in places, and thus to increase the expressiveness
of ML. We call this logic PAML and it will be mainly used in decidability results in Sec-
tion 3.3. The domain of the structure for PAML needs to be of the form N

P . More precisely,
with terms t ::= a× p | t+ t where p is a place and a ∈ Z we define PAML from ML by
adding atomic formulae ψ defined by

ψ ::= ⊤ | t ≤ k | t ≥ k | t ≡c k
′ | ψ ∧ ψ | ¬ψ.

Here, ⊤ is the truth constant, c ∈ N \ {0, 1}, k ∈ Z and k′ ∈ N. The definition of
(Reach(N),M) |= ψ depends on the definition of satisfaction of ψ in Presburger arithmetic
by a tuple M . The details are as expected and we omit them here. It can be shown that
MCURG(PAML(�,�−1)) is decidable. The proof is similar to the proof of Proposition 2.9.
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3. Structural Properties of Unlabelled Net Reachability Graphs

We study the decidability status of model checking unlabelled reachability graphs of Petri
nets against the first-order and modal logics defined in the previous section. Recall that the
logics are designed to expressing purely graph-theoretical properties of reachability graphs.

3.1. A proof schema for undecidability of FO(−→). To establish undecidability of
MCURG(FO(−→)), model checking reachability graphs against first-order specifications, we
provide a reduction of the equality problem for reachability sets. For two Petri nets N1

and N2 with identical sets of places, Hack proved it to be undecidable whether the sets
of reachable markings Reach(N1) and Reach(N2) coincide (Theorem 2.2 recalls this result
from [21]). To encode the equality problem into a first-order model checking problem, we
join N1 and N2 in a third Petri net N . The construction ensures that equality of the reach-
ability sets can be checked with a first-order query: Reach(N1) = Reach(N2) if and only
if PURG(N) |= ϕ. Interestingly, ϕ is a fixed formula and thus independent of the inputs
N1 and N2. Before we turn to the technicalities, we sketch the idea of the construction
and comment on why it yields so much expressiveness. With an initial guess, N decides to
simulate either N1 or N2. At any time, N may stop the simulation. Then N either starts
behaving in different ways according to the initial choice between N1 and N2. Alternatively,
N may forget this choice and enter a deadlock marking M that reflects the last marking of
N1 or N2 in the simulation.

The reachability sets of N1 and N2 are equal if and only if every simulation resultM can
be obtained from both, N1 and N2. But inspecting M in isolation does not reveal whether
it stemmed from N1 or N2. The idea is in the different behaviours that recall the initial
guess when the simulation ends. They yield a neighbourhood ofM in the reachability graph
of N that reveals the origin of the marking. Indeed, with finite experiments we can check
whether M is found in the simulation of N1 or N2. Equality of the reachability sets is then
checked by a formula ϕ which requires that, for any simulation result M , both experiments
witnessing for N1 and N2 succeed. The experiments consist of one backward transition and
some forward transitions. Backward transitions reconstruct the initial choice, and forward
transitions distinguish the nets N1 and N2.

The strength of this construction stems from the combination of two ideas. A Petri
net can (i) store choices over arbitrarily long histories and (ii) reveal this propagated infor-
mation in local structures. These structures can be characterised by finite back and forth
experiments that are expressed in terms of first-order formulae.

Construction. The two nets N1 and N2 to be compared for equality of reachability sets share
all places. The constructed net, N , has these places together with an initialization place p,
two control places p1 and p2, and additional places p′1, p

′′
1, and p

′
2 that we will elaborate on

below. The initialization place is the only place that is initially marked, by a single token.
As transitions, N has the disjoint union of the transitions of N1 and N2, plus additional

transitions that we introduce now together with an explanation of their intended behaviour.
The original transitions are put in self-loop with the respective control places. Furthermore,
we have two concurrent transitions t1c , t

2
c that consume the initial token and mark either p1

and all places marked in the initial configuration of N1 or p2 and all places marked in the
initial configuration of N2. Firing t1c starts the simulation of N1, and similar for t2c . Each
subnet N1 and N2 may be stopped at any time by firing transitions t1end and t

2
end that move
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the token from the control place p1 or p2 to the place p′1 or p′2, respectively. As a result,
the token count on the places of N1 and N2 is not changed any more.

When the transitions t1end and t
2
end have been fired, N behaves as indicated in Figure 3.1

below M1 and M2, respectively. At a marking M1, place p
′
1 enables a transition t1ℓ which

puts a token on p′′1, depicted by M	 in the figure. The place enables a transition tsl in
self-loop. Furthermore, two transitions t1dl and t2dl (from M1 to Mℓ and from M2 to Mr)
empty the places p′1 and p′2. The markings reached by these transitions are designed to be
deadlocks. Moreover, by construction of N , deadlock markings can only be reached this
way (as Mℓ or Mr or both). Since, firing t

1
dl or t

2
dl lets N forget the index 1 or 2 of the net

that was simulated, we have the following relationship. Whenever a marking M is reached
both in N1 and N2, the corresponding markings in N lead to Mℓ =Mr

N1 N2

M ′

0

M1 M2

M	 Mℓ Mr

t1c t2c

t1
end

t2
end

t1
ℓ

t1
dl

t2
dl

tsl

Figure 3.1: Reachability graph of N

A formula expressing equality of the reachability sets of N1 and N2 (without recycling
variables) is defined hereafter:

ϕ
def
= ∀ z (¬∃z′ z → z

′) ⇒ (∃z1 z1 → z ∧ ϕl (z1)) ∧ (∃z2 z2 → z ∧ ¬ϕl (z2))

Formula ϕl (x)
def
= ∃ y (x −→ y ∧ y −→ y) indicates that x has a successor that has a 1-loop.

Lemma 3.1. Reach(N1) = Reach(N2) if and only if PURG(N) |= ϕ.

Proof. For the implication from left to right, consider a deadlockM . MarkingM is reachable
only via t1dl or t

2
dl, say M1[t

1
dl〉M . Then marking M1 satisfies ϕl and stems from a marking

M ′
1[t

1
end〉M1 of N1. The hypothesis on equal reachability sets yields a marking M ′

2 of N2

that leads by transition t2end to a marking M2 satisfying ¬ϕl as required.
In turn, if ϕ holds we establish two inclusions. To show Reach(N1) ⊆ Reach(N2),

consider marking M ′
1 reachable via sequence s1 in N1. In N , the marking can be prolonged

to a deadlock M with M ′
0[t

1
c〉M

1
0 [s1〉M

′
1[t

1
end〉M1[t

1
dl〉M . Here, M1 satisfies ϕl . But ϕ yields

another predecessor M2 of M with M2 6= M1. To avoid the 1-loop, marking M2 has to
result from a sequence M ′

0[t
2
c〉M

2
0 [s2〉M

′
2[t

2
end〉M2[t

2
dl〉M . It is readily checked that M ′

1 and
M ′

2 coincide up to the token on the control place. Hence, M ′
1 ∈ Reach(N2) as required.
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Corollary 3.2. MCURG(FO(−→)) is undecidable, already for the fixed formula ϕ given in
this section.

By recycling variables in ϕ above, we get a sharp result that marks the undecidability
border of model checking against FO(−→) by two variables. Model checking FO(−→) restricted
to one variable is decidable.

Theorem 3.3. There exists a formula ϕ in FO(−→) with two individual variables such that
MCURG(FO(−→)) restricted to ϕ is undecidable.

Proof. It is sufficient to observe that formula ϕ below

∀z (¬∃z′ z → z
′) ⇒ (∃z1 z1 → z ∧ ϕl (z1)) ∧ (∃z2 z2 → z ∧ ¬ϕl (z2))

with ϕl (x)
def
= ∃y (x −→ y ∧ y −→ y) is logically equivalent to the formula

∀z (¬∃z′ z → z
′) ⇒ (∃z′ z′ → z ∧ ϕ′

l
(z′)) ∧ (∃z′ z′ → z ∧ ¬ϕ′

l
(z′))

where ϕ′
l
(z′)

def
= ∃ z (z′ −→ z ∧ z −→ z). Recycling of variables is explained e.g. in [15].

Moreover, combined with the fact that model checking first order logic for automatic
structures is decidable, Theorem 3.3 leads to the following impossibility result.

Corollary 3.4. There is no algorithm to construct an automatic graph isomorphic to the
unlabelled reachability graph of a Petri net.

Note that this negative result cannot follow directly from complexity-theoretic consider-
ations. Indeed, even if the unlabelled reachability graph of a Petri net could be represented
as an automatic graph, this automatic graph could not be used to decide on reachability
of markings unless this representation were in effective bijection with N

n (where n is the
number of places).

Restricted to a single variable, model checking FO(−→) becomes decidable.

Proposition 3.5. MCURG(FO(−→)) restricted to one individual variable is decidable.

Proof. Every sentence in FO(−→) restricted to one individual variable is logically equivalent
either to ⊥, or to ⊤, or to a positive Boolean formula with atomic formulae of one of the
forms below:

(1) ∃x (x −→ x)
(2) ∃x ¬(x −→ x)
(3) ∀x (x −→ x)
(4) ∀x ¬(x −→ x).

Since (2) is the negation of (3) and (1) is the negation of (4), decidability is obtained by
evaluating (1) PURG(N) |= ∃x (x −→ x) and (3) PURG(N) |= ∀x (x −→ x). (1) can be checked
by solving one instance of the covering problem for each neutral transition of the net whereas
(3) can be checked by solving a single instance of the reachability problem. Indeed, let T	
be the subset of transitions of the net that leave markings unchanged (neutral transitions).
Then the set of markings specified hereafter is effectively semilinear:

Z
def
= {M : not M [t〉 for all t ∈ T	}

We have not PURG(N) |= ∀ x (x −→ x) iff there is a marking M ∈ Z that is reachable,

M0
∗
−→M . With [21, Lemma 4.3] this reduces to an instance of the reachability problem.
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It is possible to play further with parameters. For instance, our undecidability proof uses
several reachability graphs with constant formulae. It is open whether there is a fixed Petri
net reachability graph for which the model-checking problem for FO(−→) is undecidable.

3.2. Robustness of the proof schema. Based on the previous proof schema, this section
presents undecidability results for subproblems of MCURG(FO(−→)). More specifically, we
consider the positive fragment, the forward fragment, the restriction when the direction of
edges is omitted, and ML(�,�−1). For all these fragments, we establish undecidability of
model checking.

3.2.1. Forgetting orientation. Let λ(x, x′)
def
= (x −→ x

′) ∨ (x′ −→ x). Expressing properties
about PURG(N) in FO(λ) amounts to getting rid of the direction of edges of this graph.
Despite this weakening, undecidability is still present for general Petri nets. To instan-
tiate the above argumentation, we have to identify deadlock markings and analyse their
environment. In FO(λ), we augment markings encountered during the simulation by 3-
cycles. Then, the absence of 3-cycles and an environment without such cycles characterises
deadlock markings.

Proposition 3.6. MCURG(FO(λ)) is undecidable.

Proof. We take advantage of the fact that FO(λ) can express that a node x belongs to an
undirected cycle of length three. A possible formula is:

3cycle(x)
def
= ∃y∃z (λ(x, y) ∧ λ(y, z) ∧ λ(z, x)) ∧ ¬(λ(x, x) ∨ λ(y, y) ∨ λ(z, z))

Now consider two Petri nets N1 and N2 with identical sets of places. For 1 ≤ i ≤ 3, add to
each net new places pi and transitions ti such that p1 contains initially one token, while p2
and p3 are empty. Transition ti takes one token from pi and puts one token in pi+1 mod 3.
The resulting Petri nets have identical reachability sets if and only if N1 and N2 have
identical reachability sets. Therefore, equality of reachability sets is undecidable for nets in
which every reachable marking belongs to some cycle of length three. Assuming that N1

and N2 have this property, let N be the net constructed from N1 and N2 as in the proof of
Proposition 3.3 (see also Figure 3.1). We can assume without loss of generality that every
transition of N1 and N2 changes the current marking (the other transitions do not affect
the reachability sets and can be removed). As a consequence, the reachability graphs of
the augmented nets N1 and N2 have no 1-loops, which is required for the effectiveness of
3cycle(x). The deadlock markings of N are then exactly the markings that have no cycle
of length one or three and that are surrounded by nodes without cycles of length three:

dead(z)
def
= ¬λ(z, z) ∧ ¬3cycle(z) ∧ ∀x λ(z, x) ⇒ ¬3cycle(x).

Equality of the reachability sets of N1 and N2 is then expressed by the formula ϕ below

∀z dead(z) ⇒ (∃z1 λ(z, z1) ∧ ϕl(z1)) ∧ (∃z2 λ(z, z2) ∧ ¬ϕl(z2))

where ϕl(z)
def
= ∃y λ(z, y) ∧ λ(y, y). We have Reach(N1) = Reach(N2) iff N |= ϕ. By

Theorem 2.2, MCURG(FO(λ)) is undecidable.
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3.2.2. A well-known first-order fragment: ML(�,�−1). To establish undecidability of the
problem VALURG(ML(�,�−1)), we again provide a reduction from the equality problem
for Petri net reachability sets.

Proposition 3.7. VALURG(ML(�,�−1)) is undecidable.

Proof. Consider two Petri nets N1 and N2 with identical sets of places. We rely on the
construction of N in Section 3.1, but give a modal formula ϕ (independent of N1 and
N2) that yields the following equivalence: N1 and N2 have the same reachability set iff
PURG(N),M |= ϕ for every marking M in Reach(N). For all deadlocks, there is one
predecessor (from N1) that is able to do two more steps and another predecessor (from N2)

that is not: ϕ
def
= � ⊥ ⇒ (♦−1♦♦⊤ ∧ ♦−1�� ⊥). Formula ϕ is semantically equivalent to

the first-order formula ϕfo defined below:

∀z (¬∃z′ z → z
′) ⇒ (∃z1, z2, z3 (z1 −→ z) ∧ (z1 −→ z2) ∧ (z2 −→ z3)) ∧

(∃z1 (z1 −→ z) ∧ ∀z2, z3 ¬((z1 −→ z2) ∧ (z2 −→ z3))).

This undecidability result is tight. In Section 3.3.2, we establish decidability of an extended
variant of VALURG(ML(�)) where the backward modality �−1 is excluded. Moreover, by
translating formulae in ML(�,�−1) to FO(−→) restricted to two individual variables, we get
another evidence that MCURG(FO(−→)) restricted to two individual variables is undecidable.

3.2.3. FO(−→) restricted to positive or forward formulae. Although VALURG(ML(�,�−1))
and MCURG(FO(−→)) are undecidable in general, we have identified decidable fragments
of modal logic in Section 2.4. By analogy, one may expect to find decidability of related
fragments of first-order logic. We prove here that this is not the case. We consider forward
FO(−→) and positive FO(−→) and show that their model checking problems are undecidable.
In a positive formula, atomic propositions occur only under the scope of an even number of
negations. Let FO+(P) denote the set of positive first order formulae over predicates in P.

Proposition 3.8. MCURG(FO+(−→)) is undecidable.

Proof. We rely on the previously introduced proof schema. Let N1 and N2 be two Petri
nets and N their combination sketched in Figure 3.1. We propose a positive formula ϕ so
that inclusion Reach(N2) ⊆ Reach(N1) holds if and only if PURG(N) |= ϕ:

ϕ
def
= ∀z ∃z1 ∃yℓ ∃z

′ (z −→ z
′) ∨ ((z1 −→ z) ∧ (z1 −→ yℓ) ∧ (yℓ −→ yℓ))

The formula considers an arbitrary marking M . If M is no deadlock, nothing is required
by ϕ. If M is a deadlock, then ϕ asks for vertices M1 and M	 so that M1 is a common
direct ancestor of M and M	 and moreover M	 has a 1-loop.

By construction of N , formula ϕ is satisfied if and only if every deadlock marking
M reachable in N (in particular, a simulation of N2) can be reached in N1. This means
Reach(N2) ⊆ Reach(N1).
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Open problem 1. Decidability status of MCURG(FO+(
∗
−→)). ©

A forward formula is a formula in which every occurrence x −→ y is in the scope of a quantifier
sequence of the form Q1 x . . . Q2 y where x is bound before y. Let FOf (P) denote the set of
forward formulae over predicates in P.

Proposition 3.9. MCURG(FOf (−→)) is undecidable.

Proof. We again reduce the equality problem for reachability sets of two Petri nets N1 and
N2. Let N be the net presented in Figure 3.1. We propose a forward formula ϕ so that
Reach(N2) = Reach(N1) if and only if PURG(N) |= ϕ:

ϕ
def
= ∀z2 ∃z1 ∀z ∃ yℓ ∃z′ (z2 −→ z) ⇒ ((z −→ z

′) ∨ ψ(z1, z2, z, yℓ))

ψ(z1, z2, z, yℓ)
def
= (z1 −→ z) ∧ (yℓ −→ yℓ) ∧ ((z1 −→ yℓ) ⇔ ¬(z2 −→ yℓ))

Forward formulae make it harder to quantify over deadlock markings M . Before presenting
how formula ϕ enables the reduction, a short comment on quantification: this formula
intends to quantify over z, but the forward constraint imposes first to quantify over z2, then
on z1, and only afterwards on z. This is not a problem since, once z2 is fixed, variable z1 may
be fixed, and then z may be chosen. The idea of ϕ is to capture the situation in Figure 3.1,
potentially with the roles of M1 and M2 swapped. In detail, the formula considers an
arbitrary marking M2, a corresponding marking M1 (if it exists), and an arbitrary marking
M . If M2 and M are not connected, then ϕ requires nothing. If M2 and M are connected
and M is no deadlock, there are also no requirements. Otherwise M2 and M are connected
and M is a deadlock. In this case, there must be a marking M	 (valuation for yℓ) so that
formula ψ is true for (M1,M2,M,M	). The formula ψ checks that deadlock M is reachable
in both N1 and N2, see Figure 3.1. Thus, Reach(N1) = Reach(N2) iff PURG(N) |= ϕ. This
proves the claimed undecidability.

Open problem 2. Decidability status of MCURG(FOf (
∗
−→)). ©

While forward formulae can well identify the deadlock markings used in the proof
schema, the difficulty is in the description of the local environment witnessing the simulation
results.

3.3. Taming undecidability with fragments. In this section, we present the restrictions
of FO(−→) that we found to have decidable model checking or validity problems.

3.3.1. Existential fragment. Our undecidability results follow a common principle, namely
identifying a local pattern in the reachability graph that characterizes an undecidable
property. The pattern may depend on the specification language. Below, we state a re-
sult that, at first glance, might seem to contradict the previous findings: decidability of
MCURG(FO(−→)) restricted to the existential fragment. This decidability, however, simply
implies that universal quantification is needed to characterize undecidable properties by
local patterns. We write ∃FO for the fragment of FO consisting of those formulae that use
only existential quantification when written in prenex normal form.

Proposition 3.10. MCURG(∃FO(−→,=)) is decidable.

Proof. Let N = (P, T, F,M0) be a Petri net with reachability set Reach(N) and |P | = n.
Decidability follows from two crucial properties:
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(1) Given a Presburger formula ϕ(~x1, . . . ,~xα) with n×α free variables such that each ~xi is a
sequence of n distinct variables interpreted as a marking of N , one can decide whether
ϕ(M1, . . . ,Mα) holds true for some (not necessarily distinct) markings M1, . . . ,Mα in
Reach(N). Proposition 2.3 corresponds to the case α = 1.

(2) One can effectively construct a quantifier-free Presburger formula ϕ−→(~x1,~x2) so that
for all markings M1,M2, formula ϕ−→(M1,M2) holds iff M1[t〉M2 for some t ∈ T .

Before we turn to the proofs of (1) and (2), we explain how these results yield decidability
of MCURG(∃FO(−→,=)). Consider ψ = ∃ x1, . . . , xα ψ

′ where ψ′ is a quantifier-free formula
with atomic propositions of the form xi −→ xj and xi = xj . With (2), one constructs
a quantifier-free Presburger formula ϕ(~x1, . . . ,~xα) so that for all markings M1, . . . ,Mα in
Reach(N), formula ϕ(M1, . . . ,Mα) holds true iff PURG(N),v |= ψ′ where v(~xi) = Mi

for 1 ≤ i ≤ α. By (1), it is decidable whether ϕ(M1, . . . ,Mα) holds for some markings
M1, . . . ,Mα ∈ Reach(N). This is equivalent to URG(N) |= ψ.

It remains to prove (1) and (2). The formula ϕ−→(~x1, ~x2) for statement (2) encodes the
definition of enabledness and firing for transitions, M [t〉M ′:

∨

t∈T

(
∧

p∈P

~x1(p) ≥ F (p, t)) ∧ (
∧

p∈P

~x2(p) = ~x1(p)− F (p, t) + F (t, p)).

For statement (1), we adapt the proof of Proposition 2.3. We construct a Petri net N ′

that simulates α copies of N . Technically, N ′ is defined as the disjoint union of α instances
of N . The initial marking of N ′ is α times M0. For all markings M1, . . . ,Mα we now have
the following equivalence: the markings are reachable in N and satisfy ϕ(M1, . . . ,Mα) iff
(M1, . . . ,Mα) is a possible simulation result in N ′ and ϕ(M1, . . . ,Mα) holds. An application
of Proposition 2.3 on N ′ and ϕ yields the desired decidability result.

Again, decidability is preserved with Presburger-definable properties on markings and

with labelled transition relations of the form
t
−→.

Corollary 3.11. MCURG(FO(−→,=)) restricted to Boolean combinations of existential for-
mulae is decidable.

Consequently, the following subgraph isomorphism problem is decidable too:

input: a finite directed graph G = (V,E) and a Petri net N .
question: is there a subgraph of (Reach(N),−→) isomorphic to G?

Open problem 3. Decidability status of MCURG(∃FO(
∗
−→)) and MCURG(∃FO(

∗
−→,−→)). ©

3.3.2. ML(�) with arithmetical constraints. Section 3.2.2 proves that VALURG(ML(�,�−1))
is undecidable. To our surprise, and in contrast to the negative result on model checking
the forward fragment of FO, this undecidability depends on the backward modality. The
following Proposition 3.12 shows decidability of the validity problem for ML(�), even in
the presence of arithmetical constraints at the atomic level.

Proposition 3.12. The validity problem VALURG(PAML(�)) is decidable.

Proof. Let N be a Petri net, and ϕ a formula in PAML(�). According to Lemma 3.13
stated hereafter, the set of markings satisfying ¬ϕ is effectively semilinear. Let X¬ϕ be this
set. Proving validity of ϕ amounts to checking that no element of X¬ϕ is reachable in N .
This is decidable from Proposition 2.3.
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Lemma 3.13. Given a Petri net N with n places and a formula ϕ in PAML(�), the set
of markings in N

n satisfying ϕ in UG(N) is effectively semilinear.

Proof. We proceed by induction on the structure of ϕ, using the fact that semilinear sets
are (effectively) closed under Boolean operations and the fact that, if X is semilinear, then
pre(X) = {M ∈ N

n : ∃ M ′ ∈ X, M −→ M ′} is effectively semilinear too. The latter set
pre(X) contains all markings with a successor marking in X.

Each atomic formula is a quantifier-free Presburger formula, and as such, defines a
semilinear set. Throughout the induction on the structure of ϕ, formulae with outermost
Boolean connectives are treated in the obvious way by applying Boolean operations on
semilinear sets. Eventually one has to prove that �ψ defines a semilinear set whenever ψ
does. Using the induction hypothesis, let Xψ be the semilinear set of markings satisfying
ψ. The set satisfying �ψ is then equal to N

n \pre(Nn \Xψ), which is effectively semilinear.
This concludes the induction, and the proof.

This decidability result can be extended by allowing labels on edges (transitions).

3.4. On the hardness of decidable problems. Some of our decision procedures call
subroutines for checking reachability in Petri nets, even though the reachability problem is
not known to be primitive recursive. We provide here some complexity-theoretic justifica-
tion for these costly invocations: we reduce the reachability problem for Petri nets to the
decidable problems MCURG(ML(�,�−1)) and MCURG(∃FO(−→)). Besides reachability, we
proposed decision procedures that exploit the effective semilinearity of reachability sets or
relations (see e.g. Proposition 2.7). The next proposition shows that, already for bounded
Petri nets, MCURG(FO(−→)) is of high complexity.

Proposition 3.14. MCURG(FO(−→)) restricted to bounded Petri nets is decidable but this
problem has nonprimitive recursive complexity.

Proof. We perform a reduction from the finite containment problem for Petri nets, known
to have nonprimitive recursive complexity [36]. Let N1 and N2 be two bounded Petri nets
with identical sets of places, and construct N as in Section 3.1. This net is bounded. The
formula ϕ in FO(−→) that checks inclusion is derived from the formula in Section 3.1:

∀z (¬∃z′ z → z
′) ⇒ (∃z2 z2 → z ∧ ¬ϕl (z2))

where ϕl (x)
def
= ∃y (x −→ y ∧ y −→ y). The construction guarantees Reach(N1) ⊆ Reach(N2)

iff URG(N) |= ϕ. Indeed, a deadlock is either reachable from N2 or from N1. But to satisfy
the formula, if the deadlock is reachable from N1 it also has to be reachable from N2. Note
that the formula ϕ is again independent of N1 and N2.

We have seen that VALURG(ML(�) is decidable by reduction to the reachability prob-
lem for Petri nets (see Proposition 3.12). Below, we state that there is a reduction in the
reverse direction, from non-reachability to VALURG(ML(�).

Proposition 3.15. There is a logarithmic-space reduction from the non-reachability prob-
lem for Petri nets to VALURG(ML(�)).

Proof. Without any loss of generality, we can assume that the non-reachability problem
is restricted to the target marking ~0 (no place has any token). Consider the Petri net
N = (P, T, F,M0) where we assume w.l.o.g. that every transition has a place in its preset.
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N

M1

M2

M0

M ′
wMw

t0

tstop

ttry

twin

Figure 3.2: Reachability graph in the hardness proof of ML(�,�−1)-model checking

We build a variant Petri net N ′ from N by adding a new transition tp for every place p ∈ P .
The new transitions are put in self-loop with their places, F ′(p, tp) = 1 = F ′(tp, p) and
F ′(p′, tp) = 0 = F ′(tp, p

′) for all p′ ∈ P with p′ 6= p. Intuitively, tp witness for the presence
of tokens on p by the existence of at least one transition from M in the reachability graph.
As a result, ~0 6∈ Reach(N) iff for every marking M ∈ Reach(N ′), some transition can be
fired: (D,−→),M |= ♦⊤. Note that our reduction uses a constant formula.

Proposition 3.16. There is a logarithmic-space reduction from the reachability problem
for Petri nets to MCURG(ML(�,�−1)).

Proof. We reduce reachability of marking M2 from marking M1 in a Petri net N to an
instance of MCURG(ML(�,�−1)) for a larger net N . The idea is to introduce a marking
Mw (see Figure 3.2) such that the existence of a path to Mw of length greater than 1 is a
witness for the existence of some path fromM1 toM2 in PURG(N). To reachMw by an ML
formula, we place it close to the new initial marking. We sketch the argumentation. The
initial markingM0 of N contains a single marked place pi for which two transitions ttry and
t0 compete. Transition ttry moves the unique token from pi to another place pw and thus
produces the marking Mw where no other place is marked. Transition t0 loads M1 in the
places of N and moves the control token from pi to another control place pc set in self-loop
with all transitions of N . This starts the simulation of N from M1. The simulation may
get stuck or proceed forever, or it may be interrupted whenever it reaches a marking of N
greater than or equal to M2. Then, transition tstop consumes M2 from the places of N and
moves the control token from pc to a place pw′ . The control token is finally moved from pw′

to pw by firing twin. Mw is reached, after firing tstop twin, iff M2 is reached. Therefore M2

is reachable from M1 iff Mw is reachable from M1 (its restriction to the places of N is M1).
This is equivalent to stating that Mw has a predecessor different from M0. The shape of
the reachability graph allows us to formulate the latter as a local property in ML(�,�−1):

ϕ := ♦(� ⊥ ∧ ♦−1♦−1⊤).

Without loss of generality, we can assume that M1 is no deadlock and M2 6= M1. Formula
ϕ requires that M0 has a deadlock successor which has an incoming path of length two.
That the successor is a deadlock means it is not M1 but Mw obtained by firing ttry. The
path from M0 to Mw is of length one and M0 has no predecessor. So the path of length
two to Mw is not via ttry but stems from twin. This means Mw is reachable from M1, which
means M2 is reachable from M1 in N .

The proof of Proposition 3.16 can be adapted to ∃FO(−→) for which we also have shown
decidability of model-checking by reduction to the reachability problem for Petri nets.

Proposition 3.17. There is a logarithmic-space reduction from the reachability problem
for Petri nets to MCURG(∃FO(−→)) restricted to a single variable.
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Proof. Among any two of the following problems, there is a logarithmic-space reduction:

(1) the reachability problem for Petri nets;
(2) the reachability problem for Petri nets restricted to instances such that the target

marking M is equal to ~0;
(3) the following variant of the reachability problem:

input: a Petri net N = (P, T, F,M0) with no neutral transitions and a place p ∈ P .
question: Is there a marking M with M(p) = 0 such that M ∈ Reach(N)?

To show that (3) is as hard as reachability, the idea is to introduce a budget place that
maintains the sum of tokens in all other places. From an instance of problem (3), let us
build in instance of MCURG(∃FO(−→)) restricted to a single variable. We build a Petri net
N ′ from N and p ∈ P by simply adding a neutral transition (the unique one in N ′) that is
in self-loop with p. One can then easily show that there is a marking M ∈ Reach(N) with
M(p) = 0 iff PURG(N ′) |= ∃x ¬(x −→ x).

4. FO with Reachability Predicates

In this section, we consider several first-order languages with reachability relations
∗
−→ or

+
−→,

mainly without the one-step relation −→. Undecidability of these dialects does not directly
follow from Theorem 3.3 since we may exclude −→. Nonetheless we follow the same proof
schema. Besides, we distinguish the case when reachability sets are semilinear leading to
a surprising undecidability result (Proposition 4.5). Finally, we show that model-checking

unlabelled graphs with FO(−→,
∗
−→) is undecidable too.

4.1. FO with reachability relations. Let us see why the model checking problem for
both the strict and the non-strict reachability relation is undecidable.

4.1.1. Undecidability of MCURG(FO(
+
−→)). The decidability status of MCURG(FO(

+
−→)) is

not directly dependent upon the decidability status of MCURG(FO(−→)). Still we are able

to adapt the construction of Section 3.1 but using now a formula ϕ in FO(
+
−→). The Petri

net N is the one depicted on Figure 3.1. The formula ϕ is defined as follows:

ϕ
def
= ∀ z dl(z) ⇒ (∃ z1 (z1

+
−→ z) ∧ ϕleft(z1)) ∧ (∃ z2 (z2

+
−→ z) ∧ ϕright(z2))

where

⋆ dl(z)
def
= ¬∃z′ z

+
−→ z

′,

⋆ sl(y)
def
= y

+
−→ y ∧ ∀w [y

+
−→ w ⇒ w

+
−→ y],

⋆ ϕleft(z)
def
= [∃ y z

+
−→ y ∧ sl(y)] ∧ [∀y z

+
−→ y ⇒ (sl(y) ∨ dl(y))],

⋆ ϕright(z)
def
= [∃y z

+
−→ y ∧ ∀y z

+
−→ y ⇒ dl(y)].

Lemma 4.1. Reach(N1) = Reach(N2) iff PURG(N ) |= ϕ.

Proof. The principles presented in the proof of Lemma 3.1 apply here. Below, we refer to
markings as they are depicted in Figure 3.1.

First, observe that none of the formulae dl(z), sl(y), ϕleft(z) nor ϕright(z) may be sat-
isfied at a marking reached in course of simulating the original Petri nets N1 or N2: the
formula dl(z), which asserts the absence of a successor, is always false on such markings
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whereas the formula sl(y), requiring that one can always come back to y, is false at such
markings since the transitions t1end and t2end cannot be undone. Furthermore, neither dl
nor sl is satisfied by the markings M1 or M2. Hence, formulae ϕleft(z) and ϕright(z) are
not satisfied by any marking z reached in the course of simulating N1 or N2: any such
marking has at least one successor of the type M1 or M2, thus invalidating the subformulae

∀y z
+
−→ y ⇒ (sl(y) ∨ dl(y)) and ∀y z

+
−→ y ⇒ dl(y).

Now, it is straightforward to verify the following facts:

⋆ dl(z) is satisfied precisely at markings Mr and Mℓ;
⋆ sl(y) is satisfied precisely at marking M	;
⋆ ϕleft and ϕright are satisfied respectively at markings M1 and M2.

The formula ϕ may be written ∀z ϕ′(z) with ϕ′(z) of the form dl(z) ⇒ ψ(z). Formula ϕ′(z)
is true whenever z evaluates to a non-deadlock marking. Otherwise, when z is a deadlock,
validity of ψ requires that it has two distinct predecessors z1 and z2 of the typesM1 andM2,
entailing the equality of the reachability sets of N1 and N2. Conversely, if both reachability
sets are equal, then all markings of N1 and N2 are connected as described in Figure 3.1,
entailing the validity of ϕ in N .

Corollary 4.2. MCURG(FO(
+
−→)) is undecidable. Furthermore this results holds for the

fixed formula ϕ defined earlier.

4.1.2. Undecidability of MCURG(FO(
∗
−→)). For showing undecidability of MCURG(FO(

∗
−→)),

we have to adapt our usual proof schema since, in FO(
∗
−→), we are no longer able to identify

1-loops as we did in FO(
+
−→). The new schema is illustrated in Figure 4.1.

Proposition 4.3. MCURG(FO(
∗
−→)) is undecidable.

N1 N2

M0t1
c

t2
c

M1 M2

Mℓ Mr

Figure 4.1: Petri net N adapted for FO(
∗
−→)

Proof. From two Petri nets N1 and N2, we construct the Petri net N depicted in Figure 4.1.
We define the following formulae:

⋆ dl(z)
def
= ∀w z

∗
−→ w ⇒ w

∗
−→ z,

⋆ predl(z)
def
= ¬dl(z) ∧ (∀w(z

∗
−→ w ∧ ¬w

∗
−→ z) ⇒ dl(w)).
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Thus in Figure 4.1, the markings Mr and Mℓ satisfy dl, and the markings M1 and M2

satisfy predl, but no other marking satisfies these predicates.
The formula ϕ is defined as follows:

ϕ
def
= ∀z (dl(z) ⇒ ∃z1, z2 (z1

∗
−→ z ∧ predl(z1) ∧ z2

∗
−→ z ∧ predl(z2) ∧ ¬z1

∗
−→ z2))

Observe that ¬z1
∗
−→ z2 ensures that z1 and z2 have distinct interpretations. By construction,

Reach(N1) = Reach(N2) iff PURG(N) |= ϕ.

Even though MCUG(FO(−→,=)) is decidable (see Proposition 2.5), replacing −→ by
∗
−→

and adding init leads to undecidability.

Corollary 4.4. MCUG(FO(init,
∗
−→)) is undecidable.

Indeed, MCURG(FO(
∗
−→)) reduces to MCUG(FO(init,

∗
−→)) by relativization: URG(N) |=

ϕ iff UG(N) |= ∃x0 init(x0)∧ f(ϕ) where ϕ and f(ϕ) are in FO(
∗
−→), f is homomorphic for

Boolean connectives and f(∀x ψ)
def
= ∀x (x0

∗
−→ x) ⇒ f(ψ).

Open problem 4. Decidability status of MCUG(FO(
∗
−→)). ©

4.2. When semilinearity enters into the play. We saw that MCURG(FO(−→,=)) re-
stricted to Petri nets with effectively semilinear reachability sets is decidable, using a transla-
tion into Presburger arithmetic (see Proposition 2.7). This section is devoted to discovering

what happens when the relation
∗
−→ is added. We establish that MCURG(FO(−→,

∗
−→)) re-

stricted to Petri nets with semilinear reachability sets is undecidable, by a reduction from
MCURG(FO(−→)). Given a Petri net N and a sentence ϕ ∈ FO(−→), we reduce the truth of
ϕ in PURG(N) to the truth of a formula ϕ in PURG(N ) where N is an augmented Petri
net with a semilinear reachability set. The Petri net N is defined from N by adding the
new places p0, p1 and p2; each transition from N is in self-loop with p1. Moreover, we add
a new set of transitions in self-loop with p2, each of which adds tokens to or removes tokens
from a corresponding (original) place of N (thus modifying its contents arbitrarily). These
transitions form a subnet denoted by Br. Three other transitions are added; see Figure 4.2
for a schematic representation of N (the initial marking M ′

0 of N restricted to places in N
is M0, while M

′
0(p0) = M ′

0(p1) = 1 and M ′
0(p2) = 0). Our intention is to force Reach(N )

to be semilinear while staying able to identify a subset from Reach(N ) in bijection with
Reach(N); this is a way to drown Reach(N) into Reach(N). Indeed, Reach(N) contains
all markings such that the sum of p1 and p2 is 1 and p0 is at most 1. Nevertheless, if
the transition t is fired first, then the subsequently reachable markings are exactly those of
N (except that p1 contains one token); PURG(N) embeds isomorphically into PURG(N).
Until t is fired, one may always come back to M ′

0, using the brownian subnet Br, but this
is impossible afterwards.

Proposition 4.5. MCURG(FO(−→,
∗
−→)) restricted to Petri nets with semilinear reachability

sets is undecidable.

Proof. In a first stage, we use init although this predicate cannot be expressed in FO(−→,
∗
−→).

Let ϕ be the formula ∃ x0 x1 init(x0)∧x0 −→ x1∧¬(x1
∗
−→ x0)∧f(ϕ) where f(·) is homomorphic

for Boolean connectives and f(∀x ψ)
def
= ∀x (x1

∗
−→ x) ⇒ f(ψ) (relativization). In ϕ, x0 is
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p0

p1

p2t

N

Br

Shared places

Figure 4.2: Petri net N

interpreted as the initial markingM ′
0, and x1 is interpreted as a successor of x0 from which x0

cannot be reached again. This may only happen by firing t fromM ′
0. Now the relativization

of every other variable to x1 in ϕ ensures that PURG(N) |= ϕ iff PURG(N ) |= ϕ. To remove

init, we construct a Petri netN
′
very similar toN . N

′
has an extra place p′0, initially marked

with one token, and a new transition that consumes this token and produces two tokens in

p0 and p1, which were initially empty. By construction, the initial marking of N
′
is the sole

marking in PURG(N
′
) with no incoming edge and one outgoing edge. With this modified

net, we use the modified formula ϕ′ as follows:

∃ x
′
0 x0 x1 (¬∃ y y −→ x

′
0) ∧ x

′
0 −→ x0 ∧ x0 −→ x1 ∧ (¬x1

∗
−→ x0) ∧ f(ϕ)

For the same reasons as above, PURG(N) |= ϕ iff PURG(N ′) |= ϕ′.

Open problem 5. Decidability status of MCURG(FO(
∗
−→)) restricted to Petri nets with semi-

linear reachability sets. ©

4.3. The reachability relation and structure UG(N). Corollary 4.4 has stated a first
undecidability result for the structure UG(N). In this section, we examine two other situa-

tions where it is an undecidable problem to model-check formulas of FO(−→,
∗
−→) in UG(N).

Proposition 4.6. MCUG(FO(−→,
∗
−→)) is undecidable.

p0

N ′

t0

te

pℓ

N

tℓti

pℓ: new place in self-loop with
each transition of N .

For each place pi in N , there
is a transition ti in self-loop
with it.

Figure 4.3: Petri net N
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Proof. We reduce MCURG(FO(
∗
−→)) to MCUG(FO(−→,

∗
−→)). Given a net N = (P, T, F,M0)

and a formula ϕ in FO(
∗
−→), we construct N and ϕ′ such that URG(N) |= ϕ iff UG(N) |= ϕ′.

Figure 4.3 presents some key elements for the construction of N .
First, let N ′ = (P ′, T ′, F ′,M ′

0) be the Petri net defined with P ′ = P ∪ {pℓ}, T
′ =

T ∪ {ti | pi ∈ P ′}, for all (p, t) in P × T , F ′(p, t) = F (p, t) and F ′(t, p) = F (t, p), for
all pi ∈ P ′, F (pi, ti) = F (ti, pi) = 1, for all t ∈ T, F (t, pℓ) = F (pℓ, t) = 1, for all p ∈ P ,
M ′

0(p) =M0(p), andM
′
0(pℓ) = 1. Restricted to places in P (all places but pℓ), the reachable

markings of N ′ coincide with those of N . By construction, pℓ contains always a single token.
In URG(N ′), every marking has a 1-loop. Similarly, every marking of N ′ in which some
place is positive possesses a 1-loop in the graph UG(N ′). The tuple (0, 0, . . . , 0), on the
other hand, enables no transition (the empty place pℓ inhibits every transition).

Now, we construct N from N ′. N has the same places and transitions as N ′, plus an
extra place p0 and two extra transitions te and t0. Transition te removes tokens from p0,
one at a time. Transition t0 consumes one token from p0 and produces M ′

0 in the places of
N ′. The initial marking M0 of N has a single token in place p0.

We claim the following:

⋆ The reachable graph of N is identical to the reachable graph of N , up to the first transition

and up to the 1-loops which have no influence on formulas in FO(
∗
−→).

⋆ There is a formula ϕinit(x) ∈ FO(−→,
∗
−→) which is satisfied in UG(N) only at M0.

Assuming these claims, validity of a formula in FO(
∗
−→) with respect to URG(N) may

be reduced to the validity of a formula of FO(−→,
∗
−→) with respect to UG(N ), using a similar

technique as in the proof of Corollary 4.4. For this purpose, we should relativize the given

formula in FO(
∗
−→) to the vertices of UG(N) that may be reached from the marking M0

′

defined by M0[t0〉M0
′
. This can actually be done in FO(−→,

∗
−→), because M0

′
is the sole

marking of N that satisfies the formula ∃y ϕinit(y)∧ y −→ x∧ x −→ x. Therefore, to complete
the proof of the proposition, it suffices to establish the two claims made above.

Now, the first claim derives immediately from the construction of N . The second claim
may be established by setting:

ϕinit(x)
def
= (¬ x −→ x) ∧ (∃ y∀ z x −→ y ∧ ¬(y −→ z))

This formula contains a subformula (¬ x −→ x) that expresses the absence of a 1-loop, thus
ϕinit(x) may only be satisfied in markings with all places p ∈ P ′ empty. But (¬ x −→ x)
may be satisfied in a marking x with an arbitrary number of tokens in p0. Now consider
markings with all places in P ′ empty, and an arbitrary number of tokens in p0. Three cases
must be considered. First, suppose that p0 contains a single token (i.e., x is interpreted by
M0), then (∃ y∀ z x −→ y ∧ ¬(y −→ z)) is satisfied: x has a successor y (reached by firing te)
which is a deadlock. Second, if p0 is empty, then the marking x has no successor at all. If p0
contains at least two tokens, then no successor of x is a deadlock: every marking reached by
t0 has a 1-loop and te can be executed at least twice. Putting everything together, the only
tuple in N

n satisfying ϕinit(x), is the marking M0 = (1, 0, . . . , 0), establishing the second
claim.

Proposition 4.6 holds even when the reachability set of the net is effectively semilinear.

Proposition 4.7. MCUG(FO(−→,
∗
−→)) is undecidable for the subclass of Petri nets with an

effective semilinear reachability set.
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Proof. We pile up (adaptations of) the proofs of Propositions 4.3, 4.5, and 4.6.
Given arbitrary two nets N1 and N2 without neutral transitions, let N3 denote the net

N constructed from N1 and N2 like in the proof of Proposition 4.3, and let M3 denote the
initial marking of this net. By the proof of Proposition 4.3, Reach(N1) = Reach(N2) if and
only if PURG(N3) |= ϕ, where:

ϕ
def
= ∀z (dl(z) ⇒ ∃z1, z2 (z1

∗
−→ z ∧ predl(z1) ∧ z2

∗
−→ z ∧ predl(z2) ∧ ¬z1

∗
−→ z2 ∧ ¬z2

∗
−→ z1)),

dl(z)
def
= ∀w z

∗
−→ w ⇒ w

∗
−→ z,

predl(z)
def
= ¬dl(z) ∧ (∀w)(z

∗
−→ w ∧ ¬w

∗
−→ z) ⇒ dl(w).

Let PURG	(N3) be the extended reachability graph obtained from PURG(N3) by adding
a 1-loop in every marking. Then clearly, PURG(N3) |= ϕ if and only if PURG	(N3) |= ϕ.
By Hack’s result, PURG	(N3) |= ϕ is undecidable from the input {N1, N2}.

Now put N = N3 in the net shown in Figure 4.2. Denote the resulting net N by N4,
and let M4 be its initial marking. By construction, N4 has a semilinear reachability set.
Moreover, if we put:

θ(x, y)
def
= init(x) ∧ x −→ y ∧ ¬(y

∗
−→ x),

then, in PURG(N4), this statement holds exclusively for x interpreted by M4 and y inter-
preted by M3 + {p1}. Let PURG	(N4) be the extended reachability graph obtained from
PURG(N4) by adding a 1-loop in every marking. Then clearly, in PURG	(N4), θ(x, y) holds
exclusively for x interpreted by M4 and y interpreted by M3 + {p1}.

Finally put N = N4 in the net shown in Figure 4.3. Denote the resulting net N by N5,
and let M5 be its initial marking. Thus, N5 has a semilinear reachability set. As was shown
in the proof of Proposition 4.6, if we put:

ϕinit(x)
def
= (¬ x −→ x) ∧ (∃ y∀ z x −→ y ∧ ¬(y −→ z)),

then, in UG(N5), ϕinit(x) holds exclusively for x interpreted by M5. Therefore, if we put:

ψinit(x)
def
= ∃y ϕinit(y) ∧ y −→ x ∧ x −→ x,

then, in UG(N5), ψinit(x) holds exclusively for x interpreted by M4+{pℓ}. The subgraph of
UG(N5) reachable from the markingM4+{pℓ} is isomorphic to PURG	(N4). Therefore, in

UG(N5), ψinit(x)∧x −→ y∧¬(y
∗
−→ x) holds for x, y if and only if x is interpreted byM4+{pℓ}

and y is interpreted by M3 + {p1} + {pℓ}. The subgraph of UG(N5) reachable from the
marking M3 + {p1} + {pℓ} is isomorphic to PURG	(N3). Therefore, PURG	(N3) |= ϕ if
and only if UG(N5) |= ϕ where ϕ is the formula:

∃ x0 x1 ψinit(x0) ∧ x0 −→ x1 ∧ ¬(x1
∗
−→ x0) ∧ f(ϕ)

where f(·) is homomorphic for Boolean connectives and f(∀x ψ)
def
= ∀x (x1

∗
−→ x) ⇒ f(ψ)

(relativization). As a consequence, UG(N5) |= ϕ is undecidable from the input {N1, N2}.
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Problem ♯ Arbitrary Effectively semilinear Reach(N)

MC♯(FO(−→)) URG UNDEC (Cor. 3.2) DEC

MC♯(FO(
+
−→)) URG UNDEC (Cor. 4.2) open

MC♯(FO(
∗
−→)) URG UNDEC (Prop. 4.3) open

MC♯(FO(−→,
∗
−→))

URG UNDEC UNDEC (Prop. 4.5)
UG UNDEC (Prop. 4.6) UNDEC (Prop. 4.7)

MC♯(FO+(−→)) URG UNDEC (Prop. 3.8) DEC

MC♯(FOf (−→)) URG UNDEC (Prop. 3.9) DEC

MC♯(∃FO(−→,=)) URG DEC† (Prop. 3.10) DEC

MC♯(FO(−→)) with 1 variable URG DEC† (Prop. 3.17) DEC

MC♯(FO(−→,=)) UG DEC (Prop. 2.5) DEC

MC♯(ML(�)) URG PSpace-complete PSpace-complete

MC♯(ML(�,�−1)) URG DEC† (Prop. 2.9) DEC

VAL♯(ML(�,�−1)) URG UNDEC (Prop. 3.7) DEC

VAL♯(PAML(�)) URG DEC† (Prop. 3.12) DEC

Table 1: Summary (†: equivalent to Petri nets (non) reachability problem)

In this section we have examined several first-order sublanguages involving the reach-
ability predicate. We obtained undecidability results, even when the reachable markings
form a semilinear set, and even when the global structure UG(N) is considered instead of
URG(N).

5. Concluding Remarks

We investigated mainly the model-checking problem over unlabelled reachability graphs
of Petri nets with the first-order language FO(−→) (no label on transitions, no property
on markings). The robustness of our main undecidability proof has been tested against
standard fragments of FO(−→) (for instance the two-variable fragment), modal fragments
from ML(�,�−1) and against the additional assumption that reachability sets are effec-
tively semilinear. Table 1 provides a summary of the main results (observe that whenever

the reachability relation
∗
−→ is effectively semilinear, each problem is decidable). Results

in bold are proved in the paper, whereas unbold ones are their consequences; further-
more each undecidability result holds for a fixed formula. We have investigated sev-
eral types of borderlines to distinguish decidable problems from undecidable ones. For
instance, MCURG(FO(−→)) restricted to the two-variable fragment is undecidable whereas
MCURG(FO(−→)) restricted to the existential fragment is decidable (even though this prob-
lem is at least as hard as the reachability problem for Petri nets). Similarly, on the modal
side, MCURG(ML(�,�−1)) is decidable (again as hard as the reachability problem for Petri
nets) whereas VALURG(ML(�,�−1)) is undecidable. Despite the numerous results we ob-
tained, we can identify the following rules of thumb.

(1) Undecidability of MCURG(FO(−→)) is robust for numerous fragments of FO(−→) includ-
ing both universal and existential quantifications (a single alternation is enough).

(2) Decidability results with simple restrictions such as considering bounded Petri nets or
∃FO(−→) lead to computationally difficult problems, some of them being non primitive
recursive or as hard as the reachability problem for Petri nets (see Section 3.4).

(3) The above points are still relevant for modal languages.
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Let us conclude the paper by mentionning possible continuations of this work. A first
direction would be to investigate the model checking of fragments of second-order languages
with respect to Petri net unlabelled reachability graphs. Knowing that MCURG(FO(−→))
is already undecidable, this makes sense only if one disallows first-order quantification,
while keeping of course second-order quantification. A possible primitive atomic formula

could be for instance: X =⇒ Y
def
⇔ for all x ∈ X, there is y ∈ Y such that x −→ y

and for all y ∈ Y , there is x ∈ X such that x −→ y. With this definition, it is easily
shown that MCURG(MSO(⇒)) is undecidable, but many other fragments of MSO are worth
investigating and comparing with the fragments considered in the paper.

A second direction for extending this work would be to consider the geometrical prop-
erties of the set of markings reachable from a given marking, taken as a subset of Nn. It is
for instance trivial to determine whether there is at least one marking reachable from the
initial marking and different from it. It is slightly more difficult to prove that there is at
least one non-reachable marking.

A third direction, diverging significantly from our approach, would be to investigate
decidability questions about infinite unfoldings of nets instead of net reachability graphs.
Unfolding Petri nets produces local event structures that induce in turn local trace languages
[24]. Safe Petri nets, as opposed to unbounded Petri nets, may in particular be modelled
with regular trace event structures [34]. The decidability of FO over regular trace event
structures has been shown in [34], as well as the decidability of MTL, a fragment of MSO
where quantification is restricted to conflict-free sets of events. The proofs of these results
rely strongly on regularity and do not extend easily to local event structures representing
general Petri nets.
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