
Logical Methods in Computer Science

Vol. 9(1:10)2013, pp. 1–19

www.lmcs-online.org

Submitted Jul. 9, 2012

Published Mar. 6, 2013

BISIMILARITY ON BASIC PROCESS ALGEBRA IS IN 2-EXPTIME

(AN EXPLICIT PROOF)

PETR JANČAR

Technical University Ostrava (FEI VŠB-TUO), Czech Rep.
e-mail address: petr.jancar@vsb.cz

Abstract. Burkart, Caucal, Steffen (1995) showed a procedure deciding bisimulation
equivalence of processes in Basic Process Algebra (BPA), i.e. of sequential processes gen-
erated by context-free grammars. They improved the previous decidability result of Chris-
tensen, Hüttel, Stirling (1992), since their procedure has obviously an elementary time
complexity and the authors claim that a close analysis would reveal a double exponential
upper bound. Here a self-contained direct proof of the membership in 2-ExpTime is given.
This is done via a Prover-Refuter game which shows that there is an alternating Tur-
ing machine deciding the problem in exponential space. The proof uses similar ingredients
(size-measures, decompositions, bases) as the previous proofs, but one new simplifying fac-
tor is an explicit addition of infinite regular strings to the state space. An auxiliary claim
also shows an explicit exponential upper bound on the equivalence level of nonbisimilar
normed BPA processes.

The importance of clarifying the 2-ExpTime upper bound for BPA bisimilarity has
recently increased due to the shift of the known lower bound from PSpace (Srba, 2002) to
ExpTime (Kiefer, 2012).

1. Introduction

The classical language equivalence problems in automata theory have their counterparts
in the bisimulation equivalence problems in process theory. The computational complexity
of bisimulation equivalence is still not fully settled even for fundamental classes, one of
them being the class of Basic Process Algebra (BPA) processes, i.e. of sequential processes
generated by context-free grammars. This concrete research topic started with a result
by Baeten, Bergstra, Klop [1] who showed decidability in the normed BPA case (where
each nonterminal of the underlying context-free grammar derives some terminal word).
Christensen, Hüttel, Stirling [8] extended the decidability result to the whole BPA class,
and Burkart, Caucal, Steffen [6] (see also [5]) showed a procedure with an elementary

2012 ACM CCS: [Theory of computation]: Formal languages and automata theory—Formalisms—
Rewrite systems; Semantics and reasoning—Program semantics—Action semantics; Logic—Logic and
verification.

Key words and phrases: bisimulation equivalence, basic process algebra, complexity.
The work was supported by the Czech Grant Agency (GAČR:P202/11/0340) and partly by the European

Regional Development Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070).

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(1:10)2013

c© P. Jančar
CC© Creative Commons

http://creativecommons.org/about/licenses

2 P. JANČAR

complexity, claiming that a close analysis would demonstrate a double exponential upper
bound. We also note that the normed case was subsequently shown to be in PTime [10]
(see [9] for the most recent improvement of complexity).

Regarding the lower bounds for the (full) BPA problem, Srba [19] showed PSpace-
hardness, and Kiefer [15] recently shifted this to ExpTime-hardness (using the ExpTime-
completeness of countdown games [14]); he thus also strengthened the lower bound results
known for (visibly) pushdown processes [16], [20] and for weak bisimilarity [17]. This was a
bit surprising since the bisimulation equivalence problem for related classes of basic parallel
processes (generated by commutative context-free grammars) and of one-counter processes
were shown PSpace-complete [11], [3]. The mentioned shift of the lower bound is a natural
impulse for looking at the complexity again; confirming the upper bound which has been a
bit vaguely stated in the literature becomes more important.

Here we show a direct self-contained proof of the fact that BPA bisimilarity is indeed
in 2-ExpTime. This is done via a Prover-Refuter game which shows that there is an alter-
nating Turing machine deciding the problem in exponential space. The proof uses similar
ingredients (size-measures, decompositions, bases) as the previous proofs, though in some-
what different forms; a new factor is an explicit addition of infinite regular strings to the
state space. On the whole, the proof confirms the previously claimed upper bound, sim-
plifies several technical aspects, and it might also shed some new light on the structural
decomposition approach for deciding bisimilarity. An auxiliary claim also shows an expo-
nential upper bound on the equivalence level of nonbisimilar normed BPA processes; such
a bound seems to have been only implicit in the previous works.

Section 2 recalls the notion of regular strings, defines the bisimilarity problem for BPA
and states the main result. Section 3 then shows a proof. It recalls some simple notions and
observations, including the congruence properties and decompositions, and then a Prover-
Refuter game is defined; it will be obvious that Refuter has a winning strategy for negative
instances. The above mentioned exponential upper bound on the equivalence level of non-
bisimilar normed BPA processes, which is used to show that Prover has a winning strategy
for positive instances, is highlighted in Section 4. Section 5 adds some further remarks.

2. Preliminaries

Let N = {0, 1, 2, . . . }. For a finite set C, card(C) is the number of elements of C, and C∗

is the set of finite sequences of elements of C, also called strings or words over C. By ε we
denote the empty sequence and by |w| the length of w ∈ C∗. By Cω we denote the set of
infinite strings over C, i.e. the set of mappings N → C. By uv we denote the concatenation
of strings u, v. For technical convenience, we might write uv even when u is infinite but
then uv is implicitly identified with u. We put u0 = ε and ui+1 = uui (where i ∈ N). By
uω we denote the string uuu · · · ; uω = u when u is infinite, and εω = ε. If w = uv then u

is a prefix of w; if u is finite then v is a suffix of w.

Regular strings. A regular string over C is either a finite string (an element of C∗) or an
infinite string (an element of Cω) of the form βγγγ · · · = βγω where β, γ ∈ C∗ and γ 6=
ε. (Such infinite strings are also called ultimately periodic words.) We do not consider
nonregular strings.

One infinite regular string can have more “lasso” presentations, as shown by the example

BAA(BBABBABBA)ω = BA(ABB)ω.

BISIMILARITY ON BASIC PROCESS ALGEBRA 3

The second presentation is the canonical one, since it has the shortest cycle (ABB) and the
shortest prefix (BA). We now make this standard notion precise, while also recalling some
standard facts which will be used later.

For α ∈ C∗ we put swap(α) = {γβ | βγ = α}.

Proposition 2.1. If β1(γ1)
ω = β2(γ2)

ω then (γ2)
ω = (γ′1)

ω for some γ′1 ∈ swap(γ1).

Proof. Since β1γ1γ1γ1 · · · = β2γ2γ2γ2 . . . , we obviously must have γ2γ2γ2 · · · = δγ1γ1γ1 . . .

for a suffix δ of γ1; let γ1 = δ′δ. Hence (γ2)
ω = δ(δ′δ)ω = (δδ′)ω.

Lemma 2.2. Each regular string α has the unique prefix αp and the unique cycle αc such
that α = αp(αc)

ω and, moreover, α = βγω implies |β| ≥ |αp| and |γ| ≥ |αc| (if β is finite).

Proof. Suppose α = β1(γ1)
ω = β2(γ2)

ω. Using Prop. 2.1, we get

α = β1(γ1)
ω = β1(γ

′
2)

ω = β2(γ2)
ω = β2(γ

′
1)

ω

for some γ′2 ∈ swap(γ2) and γ′1 ∈ swap(γ1). It is thus obvious that α = βγω where
|β| = min{|β1|, |β2|} and |γ| = min{|γ1|, |γ2|}. The claim thus follows easily.

We call αp(αc)
ω the canonical presentation of α (where αp = α and αc = ε when α is

finite). It is useful to note that the (canonical) cycle of a regular string is insensitive to any
change of a finite prefix, up to swapping:

Proposition 2.3. For any finite β1, β2 and any (regular) α we have (β2α)c ∈ swap((β1α)c).

Proof. We have β1α = (β1α)p((β1α)c)
ω = β1αp(αc)

ω; hence |(β1α)c| ≤ |αc| (by Lemma 2.2).
On the other hand, α = γ1((β1α)c)

ω for some finite γ1, and thus |αc| ≤ |(β1α)c|; hence
|(β1α)c| = |αc|. Similarly α = γ2((β2α)c)

ω for some finite γ2, and we deduce |(β1α)c| =
|(β2α)c|. Since γ1((β1α)c)

ω = γ2((β2α)c)
ω, by Prop. 2.1 we easily derive that (β2α)c ∈

swap((β1α)c).

We will also (implicitly) use the following simple computational fact.

Proposition 2.4. There is a polynomial-time algorithm which, given finite strings β and
γ, finds the canonical prefix (βγω)p and the canonical cycle (βγω)c.

Proof. Even a brute-force approach is sufficient here. We can systematically explore all 3-
part partitions βγ = δ1δ2δ3. For each of them we can check whether δ1(δ2)

ω = βγω: for this

we must have δ3 = (δ2)
jδ, δ2 = δδ′ and (δ′δ)ω = γω; the latter holds iff (δ′δ)|γ| = γ|δ

′δ|.

BPA processes. A BPA system is defined as a context-free grammar in Greibach normal
form with no starting nonterminal; it is a tuple G = (N ,A,R) where N , A, R are finite
nonempty sets of nonterminals (or variables), actions (or terminals), and rewriting rules,

respectively. The rules in R are of the form A
a

−→ α where A ∈ N , a ∈ A, α ∈ N ∗. For
later convenience we assume that for each A ∈ N there is at least one rule of the form
A

a
−→ α, i.e., there are no dead nonterminals. (But there may still be nonterminals which

do not derive any terminal word in the classical language sense.)
With each BPA system G = (N ,A,R) we associate the labelled transition system (LTS)

LG = (SG ,A, (
a

−→)a∈A) where SG is the set of all regular strings over N , which are also

called states or processes. The transition relations
a

−→⊆ SG ×SG are defined inductively as

follows: if A
a

−→ α is a rule in R then Aβ
a

−→ αβ for any regular string β. We also define
w

−→, for w ∈ A∗, as usual: α
ε

−→ α ; if α
a

−→ β and β
u

−→ γ then α
au
−→ γ.

4 P. JANČAR

Remark. We note that LG is generally nondeterministic, since R can contain rules

A
a

−→ α and A
a

−→ β where α 6= β. We also note that if α is a finite string and α
w

−→ β

then β is also finite. The convenience of including also infinite regular strings into SG will
become clear later.

Bisimilarity problem for BPA. Given G = (N ,A,R), with the associated LTS LG =

(SG ,A, (
a

−→)a∈A), we say that B ⊆ SG × SG covers (α, β) ∈ SG × SG if for any transi-

tion α
a

−→ α′ there is β
a

−→ β′ such that (α′, β′) ∈ B, and for any β
a

−→ β′ there is α
a

−→ α′

such that (α′, β′) ∈ B. For subsets B,B′ of SG × SG we say that B covers B′ if B covers
each (α, β) ∈ B′. A set B is a bisimulation if B covers B. States α, β are bisimilar, denoted
α ∼ β, if there is a bisimulation B containing (α, β).

The problem BPA-Bisim asks, given G and two nonterminals X,Y , if X ∼ Y . We will
prove the next theorem, assuming a standard encoding of G,X, Y .

Theorem 2.5. BPA-Bisim is in 2-ExpTime; i.e., there is an algorithm which decides

BPA-Bisim and its time complexity is in O(22
pol(n)

) for a polynomial pol.

3. Proof of Theorem 2.5

In Subsection 3.1 we define some useful technical notions and observe their properties. These
are variants of the ingredients used in the previous works like [8, 10, 6]. The extensions
to regular strings are straightforward but we sketch all the proofs, to be self-contained.
Subsection 3.2 then describes the crux of the algorithm, formulated as a Prover-Refuter
game. Soundness (meaning that Prover cannot force a win when X 6∼ Y) will be obvious,
while completeness (Prover can force a win when X ∼ Y) is shown in Subsection 3.3;
the proof of a crucial technical lemma, related to normed BPA processes, is separated in
Subsection 3.4.

3.1. Useful notions and their properties. We consider a BPA system G = (N ,A,R),

with the associated labelled transition system LG = (SG ,A, (
a

−→)a∈A). We put∼0= SG×SG,
and let ∼i+1⊆ SG × SG (i ∈ N) be the set of all pairs covered by ∼i. We note that α 6∼1 β

iff α, β enable different sets of actions.
In the next proposition we also use the convention that αβ and αω are identified with

α when α is infinite.

Proposition 3.1.

(1) The relations ∼ and ∼i (for all i ∈ N) are equivalences.
(2) If α ∼i+1 β then α ∼i β (hence ∼0⊇∼1⊇∼2⊇ . . .).
(3) We have α ∼ β iff ∀i ∈ N : α ∼i β.
(4) If α ∼i β and γ ∼i δ then αγ ∼i βδ. Hence ∼ and ∼i are congruences w.r.t. concate-

nation.
(5) If α ∼i γα and γ 6= ε then α ∼i γ

ω. (Hence α ∼ γα implies α ∼ γω.)

Proof. (1) Bisimilarity, i.e. the relation ∼, can be easily shown to be the greatest bisimula-
tion, namely the union of all bisimulations; the equivalence conditions can be easily checked.
For relations ∼i, the equivalence conditions can be easily established by induction on i.
(2) can be also easily established by induction on i.

BISIMILARITY ON BASIC PROCESS ALGEBRA 5

(3) The inclusion
⋂

i∈N ∼i⊇∼ is trivial. Since LG is image finite, i.e., for each pair α ∈ SG ,

a ∈ A there are only finitely many β such that α
a

−→ β, the set
⋂

i∈N ∼i can be easily
checked to be a bisimulation; therefore

⋂
i∈N ∼i⊆∼.

(4) Our assumption that there is no dead nonterminal A ∈ N implies ε ∼1 α iff α = ε. By
induction on i it is easy to show that α ∼i α

′ implies αβ ∼i α
′β and βα ∼i βα

′.
(5) By (4) and (1), α ∼i γα implies γα ∼i γγα, γγα ∼i γγγα, . . . , and thus also α ∼i γ

iα.
The obvious fact γiα ∼i γ

ω (when γ 6= ε) thus establishes the claim.

Remark. The “no dead nonterminal” assumption is not crucial for the problem BPA-

Bisim, since we can always add a special nonterminal D and a special action d, with the

rules A
d

−→ A for all dead nonterminals A (including D), and finally replace the question

X
?
∼ Y with XD

?
∼ Y D.

Points (1)–(3) in Prop. 3.1 suggest to define the equivalence level, or the eq-level, for
each pair of strings:

EqLv(α, β) = k ∈ N if α ∼k β and α 6∼k+1 β, and EqLv(α, β) = ω if α ∼ β.

We stipulate n < ω and ω + n = ω − n = ω + ω = ω for each n ∈ N.
We observe the following facts.

Proposition 3.2.

(1) If EqLv(α, β) < ω then either there is a transition α
a

−→ α′ such that for any β
a

−→ β′

we have EqLv(α′, β′) < EqLv(α, β), or there is a transition β
a

−→ β′ such that for any

α
a

−→ α′ we have EqLv(α′, β′) < EqLv(α, β).

(2) If α
a1−→ α1

a2−→ α2 · · ·
ak−→ αk where ai ∈ A (for all i, 1 ≤ i ≤ k) and k ≤ EqLv(α, β)

then there are β1, β2, . . . , βk such that β
a1−→ β1

a2−→ β2 · · ·
ak−→ βk and

EqLv(αi, βi) ≥ EqLv(α, β) − i for i = 1, 2, . . . , k; this implies αi ∼ βi if α ∼ β.
(3) If EqLv(α,α′) ≥ EqLv(α, β) + 1 then EqLv(α, β) = EqLv(α′, β).
(4) EqLv(α, β) ≤ EqLv(αγ, βγ).

Proof. The claims easily follow from the definitions of ∼i and ∼. In Point 2 we can use
induction on k. For Point 3 it suffices to note that if α ∼i β, α 6∼i+1 β, and α ∼i+1 α′

(hence also α ∼i α
′) then α′ ∼i β and α′ 6∼i+1 β. For Point 4 we note that α ∼i β implies

αγ ∼i βγ by Prop 3.1(1,4).

Now we define the norm as a mapping SG → N ∪ {ω}.

Definition 3.3. The norm of α ∈ SG is denoted by ‖α‖. If there is no w ∈ A∗ such that

α
w

−→ ε then we put ‖α‖ = ω and say that α is unnormed ; otherwise α is normed and

‖α‖ = |w| for a shortest w such that α
w

−→ ε.

A path β0
a1−→ β1

a2−→ β2 · · ·
ak−→ βk in LG , where k ≥ 1 and ai ∈ A, is norm-reducing if

‖βi‖ > ‖βi+1‖ (and thus necessarily ‖βi+1‖ = ‖βi‖ − 1) for i = 0, 1, . . . , k−1.

We note that ‖ε‖ = 0 and ‖αβ‖ = ‖α‖ + ‖β‖. We have ‖α‖ = ω when α is infinite.
Now we observe further simple facts.

Proposition 3.4.

(1) If ‖α‖ 6= ‖β‖ then EqLv(α, β) ≤ min{‖α‖, ‖β‖} (and thus α 6∼ β).
(2) If U ∈ N and ‖U‖ = ω then U ∼ Uα for any α.
(3) EqLv(γα, γβ) ≥ ‖γ‖ + EqLv(α, β).

6 P. JANČAR

Proof. (1) Suppose ‖α‖ < ‖β‖. Hence α
u

−→ ε for some u where |u| = ‖α‖. If EqLv(α, β) ≥

‖α‖ then there is β′ such that β
u

−→ β′ andEqLv(ε, β′) ≥ EqLv(α, β)−‖α‖ (by Prop. 3.2(2)).
Since ‖β‖ > ‖α‖, we have β′ 6= ε, and thus EqLv(ε, β′) = 0. Hence EqLv(α, β) ≤ ‖α‖.

(2) We can easily check that the set {(αγ, βδ) | α ∼ β, ‖α‖ = ‖β‖ = ω} is a bisimulation.
(3) If γα ∼ γβ (which surely holds when ‖γ‖ = ω) then the claim is trivial. We thus

assume γα 6∼ γβ and proceed by induction on EqLv(γα, γβ). If EqLv(γα, γβ) = 0 then
γ = ε (hence ‖γ‖ = 0) and the claim is trivial. If γ 6= ε then Prop. 3.2(1) implies that

there is a transition γ
a

−→ σ, where necessarily ‖σ‖ ≥ ‖γ‖ − 1, such that EqLv(σα, σβ) <
EqLv(γα, γβ). Since EqLv(σα, σβ) ≥ ‖σ‖ + EqLv(α, β) by the induction hypothesis, we
deduce EqLv(γα, γβ) ≥ 1 + ‖σ‖ + EqLv(α, β) ≥ ‖γ‖+ EqLv(α, β).

Convention. Prop. 3.4(2) allows us to remove the suffix after the first occurrence of an
unnormed nonterminal in any string, without changing its bisimulation equivalence class.
We thus further implicitly assume that the considered strings are of the forms α, αU , or
βγω where α, β, γ ∈ N ∗ are normed and U ∈ N is unnormed. We still might write, e.g., γβ
or γω even if ‖γ‖ = ω but such strings are implicitly identified with the appropriate prefix
of γ.

It will be useful to use the norm when measuring the size of string presentations:

Definition 3.5. Given G = (N ,A,R), the function size : SG ∪ (SG × SG) → N is defined
as follows.

• For a finite string α we put size(α) = ‖α′‖ where α′ is the longest normed prefix of α.
(Thus size(αU) = size(α) = ‖α‖ when α is normed and U is unnormed.)

• For an infinite regular string α, containing no unnormed nonterminal, we put size(α) =
‖αpαc‖ (where αp(αc)

ω is the canonical presentation of α).
• For a pair (α, β) we put size(α, β) = max {size(α), size(β)}.

Stipulating max ∅ = 0, we define:

M = max {‖A‖;A ∈ N , ‖A‖ < ω},

Mrhs = max { ‖α‖; ‖α‖ < ω and R contains a rule A
a

−→ α },

Srhs = max { size(α) | R contains a rule A
a

−→ α }.

Hence M is the maximal norm of normed nonterminals, and Srhs is the maximal size of the
right-hand sides (rhs) in the rules of G; in particular, Srhs is greater than or equal to the
norm of any normed rhs, and thus Mrhs ≤ Srhs.

The following fact is also standard; we sketch a proof to be self-contained.

Proposition 3.6. There is a polynomial-time algorithm which, given G = (N ,A,R), com-
putes ‖A‖ for each A ∈ N , and also M,Mrhs, Srhs; these values are bounded by an expo-
nential function of the size of G.

Proof. We sketch an algorithm which outputs nonterminals in an order A1, A2, . . . , Ak (for
k = card(N)) where ‖A1‖ ≤ ‖A2‖ ≤ · · · ≤ ‖Ak‖. Suppose A1, A2, . . . , Ai and their norms
have been already established (i = 0 in the beginning). Construct the set

D = {α | α ∈ {A1, A2, . . . , Ai}
∗ and there is a rule A

a
−→ α for A 6∈ {A1, A2, . . . , Ai}}.

If D 6= ∅ then put m = min{ ‖α‖ ; α ∈ D } and define Ai+1 as a chosen A 6∈ {A1, A2, . . . , Ai}

for which there is a rule A
a

−→ α such that α ∈ D and ‖α‖ = m; it is obvious that
‖Ai+1‖ = 1+m. If D = ∅ then ‖A‖ = ω for all A 6∈ {A1, A2, . . . , Ai}. The time complexity

BISIMILARITY ON BASIC PROCESS ALGEBRA 7

of the algorithm is obviously polynomial. The exponential bounds follow by noting that
‖Ai‖ ≤ Mi where we put M0 = 0 and Mi+1 = 1 + r ·Mi for r = max{ |α| ; α is the rhs of a
rule in R}.

Remark. The exponential upper bound in the proof is tight: if we have the rules

Ak
a

−→ Ak−1Ak−1, . . . , Ai
a

−→ Ai−1Ai−1, . . . , A2
a

−→ A1A1, A1
a

−→ ε then ‖Ai‖ = 2i − 1.

We now define a crucial notion, used in the later Prover-Refuter game.

Definition 3.7. A nonempty set {(α1, β1), (α2, β2), . . . , (αk, βk)} is a decomposition of
(α, β) if size(αj , βj) < size(α, β) for j = 1, 2, . . . , k, and (α, β) belongs to the least congru-
ence (w.r.t. concatenation) containing all (αj , βj), j = 1, 2, . . . , k. Moreover, if αj ∼ βj for
all j = 1, 2, . . . , k then it is a bisimilar decomposition.

Example 3.8. One decomposition of (Aα,Bβ) is { (Aγ,B), (α, γβ) } when both size(Aγ,B)
and size(α, γβ) are less than size(Aα,Bβ). Indeed, a least congruence proof is the sequence
(Aγ,B), (α, γβ), (β, β), (Aγβ,Bβ), (A,A), (Aα,Aγβ), (Aα,Bβ) where each pair either is
a generator ((Aγ,B) or (α, γβ) in our case) or is deduced from the previous pairs by using
reflexivity, symmetry, transitivity, and concatenation. Another decomposition of (Aα,Bβ)
is {(α, γβ), (β, δω), (Aγδω , Bδω)} if the size conditions are satisfied.

Proposition 3.9. If {(αj , βj) | 1 ≤ j ≤ k} is a decomposition of (α, β) then

min {EqLv(αj , βj) | 1 ≤ j ≤ k } ≤ EqLv(α, β);

if it is a bisimilar decomposition then α ∼ β.

Proof. Let (α, β) belong to the least congruence generated by {(αj , βj) | 1 ≤ j ≤ k}.
Then there is a least congruence proof (γ1, δ1), (γ2, δ2), . . . , (γm, δm) such that (γm, δm) =
(α, β), and (γi, δi), for each i, 1 ≤ i ≤ m, either is a generator (αj , βj), or satisfies γi =
δi (reflexivity), or can be derived from pairs (γ1, δ1), (γ2, δ2), . . . , (γi−1, δi−1) by using
symmetry, transitivity, or concatenation (γi = γi1γi2 , δi = δi1δi2 for some i1 < i, i2 < i).

For any ℓ ∈ N, by using the fact that ∼ℓ is a congruence w.r.t. concatenation (as follows
from Prop. 3.1(1,4)) we get: if αj ∼ℓ βj for all j, 1 ≤ j ≤ k, then γi ∼ℓ δi for i = 1, 2, . . . ,m,
and thus α ∼ℓ β. Hence if αj ∼ℓ βj for all j, 1 ≤ j ≤ k, and all ℓ ∈ N then α ∼ℓ β for all
ℓ ∈ N, and thus α ∼ β (by Prop. 3.1(3)).

3.2. Algorithm deciding BPA-Bisim, based on a Prover-Refuter game. We recall
that 2-ExpTime =AExpSpace where “A” stands for “Alternating” [7]. For proving The-
orem 2.5 it is thus sufficient to show an alternating Turing machine working in exponential
space which accepts precisely those G,X, Y where X 6∼ Y . The existence of such a machine
easily follows from the following game, once we show that Refuter has a winning strategy
iff X 6∼ Y .

Prover (she) - Refuter (he) Game

(1) A BPA-system G = (N ,A,R) and X,Y ∈ N are given.

(2) A work space of size 2pol(size(G)) is reserved, where pol is a (sufficiently large) polynomial
whose existence will become clear later. A part of the work space serves for storing a
presentation of a current pair, initially (X,Y); the rest of the work space is called the
free work space.

(3) For i = 1, 2, 3, . . . , the following Phase i is performed; (α, β) denotes the current pair:

8 P. JANČAR

(a) If α 6∼1 β then Refuter wins. If α, β are dead (i.e., if they do not enable any action,
i.e. α = β = ε) then Prover wins. The play finishes in these cases; otherwise it
continues with (b).

(b) Prover can decide to show some (freely chosen) pairs and demonstrate that these
pairs constitute a decomposition of (α, β). She is restricted by the free work space
when presenting the pairs and a least congruence proof. (As shown later, it suffices
to allow only decompositions with at most three pairs.) Then Refuter chooses a pair
(α′, β′) from the decomposition and replaces the current pair (α, β) with (α′, β′).
(Recall that size(α′, β′) < size(α, β).) The play then continues with Phase i+1.

(c) (Prover has not used the possibility in (b).) Refuter chooses a transition α
a

−→ α′

or β
a

−→ β′. In the first case Prover chooses some β
a

−→ β′, in the second case

Prover chooses some α
a

−→ α′. If (α′, β′) does not fit into the space reserved for
the current pair then Refuter wins; otherwise the current pair (α, β) is replaced
with (α′, β′) and the play continues with Phase i+1.

Remark. A play can be infinite, which can be viewed as a win of Prover. To make each
play finite, we could add a step counter whose overflow (over a double exponential bound)
would mean that a game configuration has been repeated and that Prover has won, but this
is not technically necessary.

Lemma 3.10. (Soundness.) If X 6∼ Y then Refuter has a winning strategy (even in the
game with no space restriction).

Proof. Assume thatX 6∼ Y and Refuter uses the following strategy. In (b) he always chooses
a pair (α′, β′) with the least eq-level, and in (c) he always chooses a transition guaranteeing
that EqLv(α′, β′) < EqLv(α, β). Prop. 3.2(1) and Prop. 3.9 show that this is possible
and that EqLv(α′, β′) < EqLv(α, β), or EqLv(α′, β′) = EqLv(α, β) and size(α′, β′) <

size(α, β). Refuter thus must win eventually; he can only benefit from any space restriction.

In the next subsection we show the completeness (Prover has a winning strategy when
X ∼ Y) by which a proof of Theorem 2.5 will be finished.

3.3. Completeness of the Prover-Refuter game. Our aim is to prove Lemma 3.15; a
crucial technical fact is captured by the next lemma (assuming a given G = (N ,A,R)):

Lemma 3.11. If α1 6∼ α2 and α1β ∼ α2β then there is δ 6= ε such that β ∼ δβ (and thus
β ∼ δω) and size(δ) ≤ (size(α1, α2) + card(N)2 ·Mrhs + Srhs) · (1 + Srhs).

In the lemma we can have ‖δ‖ = ω; in this case δβ = δω = δ (by our convention after
Prop. 3.4). We postpone a proof of this lemma, and a related discussion of normed BPA, to
Subsection 3.4 and Section 4. Now we observe a bound on the possible increase of the string
size in any transition in LG. Roughly speaking, by performing a transition the canonical
cycle either does not change, or is swapped, or becomes empty; the canonical prefix can
increase by Srhs at most.

Proposition 3.12. If α
a

−→ δ, i.e. αp(αc)
ω a
−→ δp(δc)

ω, then δc ∈ swap(αc) or δc = ε,
hence size(δc) ≤ size(αc), and size(δp) ≤ size(αp) + Srhs.

Proof. We have α
a

−→ δ due to a rule A
a

−→ γ, where α = Aα′ and δ = γα′.

BISIMILARITY ON BASIC PROCESS ALGEBRA 9

If ‖γ‖ = ω then δ = γ (by Convention after Prop. 3.4), which entails δp = γ, δc = ε,
and size(δp) ≤ Srhs.

If ‖γ‖ < ω then (also ‖A‖ < ω and) δc ∈ swap(αc) by Prop. 2.3. Recalling Lemma 2.2,
we note that if αp 6= ε then αp = Aα′

p, and δp is a prefix of γα′
p; this entails size(δp) <

size(αp) + Srhs. If αp = ε then α = (αc)
ω = Aβω where β ∈ swap(αc); hence δ = γβω,

which entails that δp is a prefix of γ and thus size(δp) ≤ Srhs.

The next technical lemma, Lemma 3.14, is related to Point 3(b) in the Prover-Refuter
game. It aims to show that if the current pair is (Aα,Bβ) where Aα ∼ Bβ and the
presentation size of (Aα,Bβ) is bigger than an exponential bound then there is a bisimilar
decomposition of (Aα,Bβ), with at most three pairs and with a least congruence proof of
bounded size.

We handle separately the size of canonical prefixes and the size of canonical cycles. Our
convention (after Prop. 3.4) implies size(αc) = ‖αc‖ < ω (including the case αc = ε).

Definition 3.13. Given G = (N ,A,R) and E ∈ N, we say that a (regular) string α ∈
N ∗ ∪N ω has an E-bounded cycle if size(αc) ≤ E .

In the next lemma, E is an exponential bound w.r.t. the size of G (as follows from
Prop. 3.6). The chosen E and the following analysis are a bit generous, since we prefer
technical simplicity to more detailed upper bounds.

Lemma 3.14. Given a BPA system G = (N ,A,R), we put

E = (2M + card(N)2 ·Mrhs + Srhs) · (1 + Srhs).

If Aα ∼ Bβ, both Aα,Bβ have E-bounded cycles, and size((Aα)p, (Bβ)p) > 2M + E then
there is a bisimilar decomposition {(α1, β1), (α2, β2), (α3, β3)} of (Aα,Bβ) where all αj , βj
(1 ≤ j ≤ 3) have E-bounded cycles.

Proof. Let us consider Aα = (Aα)p((Aα)c)
ω, Bβ = (Bβ)p((Bβ)c)

ω satisfying the assump-
tion. By our convention, α = ε if ‖A‖ = ω and β = ε if ‖B‖ = ω; w.l.o.g. we assume
‖A‖ ≤ ‖B‖.

We recall that size(α, β) = max{size(α), size(β)} (by Def. 3.5) and we now show that

size(α, β) < size(Aα,Bβ). (3.1)

This is not valid in general, since size(α) < size(Aα) if and only if (Aα)p 6= ε; if (Aα)p =
ε then Aα = ((Aα)c)

ω, α = ((α)c)
ω, and αc ∈ swap((Aα)c), which implies size(α) =

size(Aα). In our case we thus have size(α) < size(Aα) or size(α) = size(Aα) ≤ E , and
size(β) < size(Bβ) or size(β) = size(Bβ) ≤ E . Since size((Aα)p, (Bβ)p) > 2M + E , we
indeed easily establish (3.1). Moreover, both α, β have E-bounded cycles as well.

Now we perform a case analysis (showing also some decompositions with even less than
three pairs); recall that we assume ‖A‖ ≤ ‖B‖.

(1) ‖A‖ ≤ ‖B‖ = ω; hence β = ε, ‖A‖ < ω, α 6= ε (since size(Aα) > 2M + E > M), and
Aα ∼ B:

There is a norm-reducing path A
u

−→ ε, where |u| = ‖A‖ ≤ M ; we have Aα
u

−→ α.

By Prop. 3.2(2) there is γ such that B
u

−→ γ and α ∼ γ, and thus also Aγ ∼ B (by
Prop. 3.1(1,4)); recalling Prop. 3.12, we derive that size(γ) ≤ size(B) + M · Srhs =
M · Srhs.

We easily check that both size(α, γ) and size(Aγ,B) are less than size(Aα,B), and
that {(α, γ), (Aγ,B)} is a bisimilar decomposition of (Aα,B) (as shown by the least

10 P. JANČAR

congruence proof (α, γ), (A,A), (Aα,Aγ), (Aγ,B), (Aα,B)); moreover, all strings in
the decomposition have E-bounded cycles (which are empty for γ,Aγ,B).

(2) ‖A‖ ≤ ‖B‖ < ω (and Aα ∼ Bβ); we consider the disjoint cases (a) and (b):

(a) There is norm-reducing B
v

−→ ε (hence |v| = ‖B‖, and Bβ
v

−→ β) such that

A
v

−→ δ for some δ 6= ε where δα ∼ β:

For any norm-reducing A
u

−→ ε there is surely γ such that B
u

−→ γ and α ∼ γβ

(since ‖A‖ ≤ ‖B‖ and Aα ∼ Bβ). Since size(A) = ‖A‖ ≤ M and size(B) =
‖B‖ ≤ M , for (finite) strings γ, δ we get

size(γ) ≤ M · (1 + Srhs) ≤
E
2 , size(δ) ≤ M · (1 + Srhs) ≤

E
2 .

Since α ∼ γβ ∼ γδα ∼ (γδ)ω (recall Prop. 3.1(5)), and similarly β ∼ (δγ)ω ,
the set {(α, (γδ)ω)), (β, (δγ)ω), (A(γδ)ω , B(δγ)ω)} can be easily checked to be a
bisimilar decomposition of (Aα,Bβ); moreover, all strings in the decomposition
have E-bounded cycles. (By our convention (δγ)ω = δ if ‖δ‖ = ω , etc.)

(b) The condition (a) does not hold:

Let us consider a norm-reducing path B
a1−→ γ1

a2−→ γ2 · · ·
ak−→ γk = ε (k = ‖B‖),

and the corresponding path Bβ
a1−→ γ1β

a2−→ γ2β · · ·
ak−→ γkβ = β. By Prop. 3.2(2)

there is a path Aα
a1−→ α1

a2−→ α2 · · ·
ak−→ αk such that αj ∼ γjβ for j = 1, 2, . . . , k.

Since (a) does not hold, there must be i ∈ {1, 2, . . . , k} such that αi = α (A has
been erased, and α has been exposed); let us put γ = γi. We thus have α ∼ γβ

where ‖γ‖ < ‖B‖ ≤ M .
If (Bβ)p 6= ε (hence B is the first symbol of the canonical prefix and size(Bβ) =
‖B‖ + size(β)) then size(γβ) ≤ ‖γ‖ + size(β) < size(Bβ). If (Bβ)p = ε (hence
Bβ = ((Bβ)c)

ω and size(Bβ) = size(β) ≤ E) then size(γβ) ≤ ‖γ‖ + size(β) <

M + E . The assumption size((Aα)p, (Bβ)p) > 2M + E thus implies
size(α, γβ) < size(Aα,Bβ).

We now explore the following two subcases separately.
(i) Aγ ∼ B:

Here { (Aγ,B), (α, γβ) } is a bisimilar decomposition of (Aα,Bβ) (we recall
Example 3.8), where all strings have E-bounded cycles.

(ii) Aγ 6∼ B (but Aγβ ∼ Bβ, since Aα ∼ Bβ and α ∼ γβ):
Here we use Lemma 3.11: by putting there α1 = Aγ, α2 = B we get β ∼ δω

where size(δ) ≤ (2M + card(N)2 · Mrhs + Srhs) · (1 + Srhs) = E . Hence
{(α, γβ), (β, δω), (Aγδω , Bδω)} is a bisimilar decomposition of (Aα,Bβ), where
all strings have E-bounded cycles; since size(Aγδω , Bδω) ≤ 2M + E <

size(Aα,Bβ), the size conditions indeed hold.

Lemma 3.15. (Completeness.) There is a polynomial pol, used in Point 2 of the Prover-
Refuter game, such that X ∼ Y implies that Prover has a strategy avoiding Refuter’s win
(the play may be infinite).

Proof. Starting with X ∼ Y , we let Prover maintain bisimilarity of (the strings in) each
current pair. In Point 3(b) of the game Prover only uses bisimilar decompositions of the
form presented in the case analysis in the proof of Lemma 3.14, whenever the canonical
prefix of a string in the current pair is bigger than 2M + E . Doing this, Prover keeps the
property that the strings in any current pair have E-bounded cycles. In Point 3(c) Prover
always chooses so that the next current pair is again bisimilar; Prop. 3.12 implies that the
E-boundedness of the cycles is kept.

BISIMILARITY ON BASIC PROCESS ALGEBRA 11

Adhering to the above strategy, Prover maintains the property that the current pair
fits into space 2 · (2 ·M + 2 · E + Srhs). The case analysis in the proof of Lemma 3.14 also
makes clear that the space d ·E , for a fixed (small) constant d ∈ N independent of G,X, Y , is
sufficient for presenting the appropriate decompositions together with the least congruence
proofs. The claim of the lemma thus easily follows.

3.4. Proof of Lemma 3.11. We now prove Lemma 3.11, by which a proof of Theorem 2.5
will be finished. We assume a BPA system G = (N ,A,R), with the associated labelled

transition system LG = (SG ,A, (
a

−→)a∈A) and with the values M,Mrhs, Srhs (recall Def. 3.5
and Prop. 3.6). The assumed G is general, the special case of normed BPA systems is
discussed in the next section. We first note the following simple fact.

Proposition 3.16. If σβ ∼ σ′β and ‖σ‖ < ‖σ′‖ then there is δ 6= ε such that β ∼ δβ and

size(δ) ≤ size(σ, σ′) · (1 + Srhs).

Proof. Suppose σβ ∼ σ′β and ‖σ‖ < ‖σ′‖; let σ
v

−→ ε be a norm-reducing path. The path

σβ
v

−→ β must have a matching path σ′β
v

−→ τ such that β ∼ τ (recall Prop. 3.2(2)).

Since ‖σ′‖ > ‖σ‖, we can write τ = δβ where σ′ v
−→ δ and δ 6= ε; we note that size(δ) ≤

size(σ′) + |v| · Srhs (using Prop. 3.12 generously). Since |v| = ‖σ‖ ≤ size(σ, σ′), we get

size(δ) ≤ size(σ, σ′) + size(σ, σ′) · Srhs = size(σ, σ′) · (1 + Srhs).

Lemma 3.11. (Repeated.) If α1 6∼ α2 and α1β ∼ α2β then there is δ 6= ε such that β ∼ δβ

(and thus β ∼ δω) and size(δ) ≤ (size(α1, α2) + card(N)2 ·Mrhs + Srhs) · (1 + Srhs).

Proof. In the assumed BPA system G = (N ,A,R), for each pair (A1, A2) of nonterminals

where ‖A1‖ ≤ ‖A2‖ < ω we fix a norm-reducing path A2
u

−→ γ such that ‖γ‖ = ‖A2‖−‖A1‖
(hence |u| = ‖A1‖).

Now we consider α1, α2, β such that α1 6∼ α2 and α1β ∼ α2β. At least one of α1, α2

must be normed (otherwise α1β ∼ α1 and α2β ∼ α2), and we thus have ‖α1‖ 6= ‖α2‖ or
‖α1‖ = ‖α2‖ < ω. If ‖α1‖ 6= ‖α2‖ then the claim of the lemma is true by Prop. 3.16.
We thus assume ‖α1‖ = ‖α2‖ < ω, and imagine a stepwise (not necessarily effective)
construction of a certain sequence

(ρ1, ρ
′
1, µ1), (ρ2, ρ

′
2, µ2), . . . , (ρm, ρ′m, µm) (3.2)

where (ρ1, ρ
′
1, µ1) = (α1, α2, ε). The construction will guarantee that for all i ∈ {1, 2, . . . ,m}

we have ρi 6∼ ρ′i, µi is normed, and ρiµiβ ∼ ρ′iµiβ; for i = 1 this holds by the assumptions.
Moreover, we will have ‖ρi‖ = ‖ρ′i‖ < ω for i = 1, 2, . . . ,m−1, and ‖ρm‖ 6= ‖ρ′m‖.

Suppose we have constructed (ρi, ρ
′
i, µi) where ‖ρi‖ = ‖ρ′i‖ < ω, ρi 6∼ ρ′i, and ρiµiβ ∼

ρ′iµiβ. Since both ρi, ρ
′
i are thus nonempty, we can write

ρi = A1δ1, ρ
′
i = A2δ2 (3.3)

where A1, A2 ∈ N (and ‖A1δ1‖ = ‖A2δ2‖ < ω). We assume ‖A1‖ ≤ ‖A2‖ (otherwise we

just swap ρi, ρ
′
i); let A2

u
−→ γ be the norm-reducing path which we fixed for (A1, A2) above.

Recall that |u| = ‖A1‖, ‖A1γ‖ = ‖A2‖ and note that ‖δ1‖ = ‖γδ2‖. We thus have

A1δ1 6∼ A2δ2 and A1δ1µiβ ∼ A2δ2µiβ (3.4)

12 P. JANČAR

and we now describe how to choose (ρi+1, ρ
′
i+1, µi+1), depending on the following cases.

(1) (ρi, ρ
′
i) = (A1γ,A2), i.e. δ1 = γ and δ2 = ε in (3.3):

Hence A1γ 6∼ A2 and A1γµiβ ∼ A2µiβ. We fix a rule Aj
a

−→ σj, j ∈ {1, 2}, such that

for any rule A3−j
a

−→ σ3−j we get EqLv(A1γ,A2) > EqLv(σ1γ, σ2); such Aj
a

−→ σj

exists by Prop. 3.2(1). Now we fix a rule A3−j
a

−→ σ3−j such that σ1γµiβ ∼ σ2µiβ;

such A3−j
a

−→ σ3−j exists by Prop. 3.2(2). Using the fixed rules A1
a

−→ σ1, A2
a

−→ σ2,
we put

(ρi+1, ρ
′
i+1, µi+1) = (σ1γ, σ2, µi).

We note the following properties of our choice:
• EqLv(ρi+1, ρ

′
i+1) < EqLv(ρi, ρ

′
i),

• ρi+1µi+1β ∼ ρ′i+1µi+1β,
• min { ‖ρi+1µi+1‖, ‖ρ

′
i+1µi+1‖ } ≤ ‖ρiµi‖+Mrhs − 1

(we cannot have ‖σ1‖ = ‖σ2‖ = ω since σ1γ 6∼ σ2 and σ1γµiβ ∼ σ2µiβ),
• size(ρi+1µi+1, ρ

′
i+1µi+1) ≤ max { ‖ρiµi‖+Mrhs − 1 , Srhs }.

We need to count with Srhs since one of σ1, σ2 can be unnormed; in this case one of
ρi+1µi+1, ρ

′
i+1µi+1 is unnormed and its size is at most Srhs (using our convention that

στ = σ when ‖σ‖ = ω). We have the following two possibilities.
(a) If ‖σ1γ‖ 6= ‖σ2‖ then ‖ρi+1‖ 6= ‖ρ′i+1‖ and the sequence (3.2) is completed, i.e.

i+1 = m.
(b) If ‖σ1γ‖ = ‖σ2‖ then ‖ρi+1µi+1‖ = ‖ρ′i+1µi+1‖ < ω.

(2) (ρi, ρ
′
i) = (A1δ1, A2δ2) 6= (A1γ,A2), and we have

EqLv(A1γ,A2) ≤ EqLv(A1δ1, A2δ2) and A1γδ2µiβ ∼ A2δ2µiβ : (3.5)

Here we put

(ρi+1, ρ
′
i+1, µi+1) = (A1γ,A2, δ2µi);

this choice has the following properties:
• EqLv(ρi+1, ρ

′
i+1) ≤ EqLv(ρi, ρ

′
i),

• ρi+1µi+1β ∼ ρ′i+1µi+1β,
• ‖ρi+1µi+1‖ = ‖ρ′i+1µi+1‖ = ‖ρiµi‖ = ‖ρ′iµi‖.
Moreover, for i+1 the above case (1) will apply.

(3) None of (1), (2) applies:

Since (1) and (2) cover precisely the cases where the conjunction (3.5) holds, here we
handle the cases where the conjunction (3.5) does not hold. We partition these cases
into the disjoint parts (a) and (b) below.

(a) (3.5) does not hold, and δ1µiβ 6∼ γδ2µiβ:

(The reasoning here is based on the fact δ1µiβ 6∼ γδ2µiβ, and it could be applied
even if (3.5) would hold.)

We recall A1δ1µiβ ∼ A2δ2µiβ from (3.4). Hence the path A2δ2µiβ
u

−→ γδ2µiβ

(corresponding to the fixed norm-reducing path A2
u

−→ γ) has a matching path

A1δ1µiβ
u

−→ as claimed in Prop. 3.2(2); this path cannot finish in δ1µiβ, since

δ1µiβ 6∼ γδ2µiβ (i.e., the respective path A1
u

−→ cannot be norm-reducing).
Though we start with the same norms ‖A1δ1‖ = ‖A2δ2‖, we thus must get a

BISIMILARITY ON BASIC PROCESS ALGEBRA 13

difference of norms in the following sense: the path A2
u

−→ γ has a prefix A2
u1−→

σ2
a

−→ τ2, where a ∈ A (and u1 might be empty), such that there is a path A1
u1−→

σ1
a

−→ τ1 where σ1δ1µiβ ∼ σ2δ2µiβ, ‖σ1δ1‖ = ‖σ2δ2‖, and τ1δ1µiβ ∼ τ2δ2µiβ,
‖τ1δ1‖ > ‖τ2δ2‖. Here we put

(ρi+1, ρ
′
i+1, µi+1) = (τ1δ1, τ2δ2, µi).

In this case ‖ρi+1‖ 6= ‖ρ′i+1‖, and (3.2) is completed, i.e. i+1 = m.
Here we do not claim that EqLv(ρi+1, ρ

′
i+1) ≤ EqLv(ρi, ρ

′
i) but we note the fol-

lowing properties:
• ρi+1µi+1β ∼ ρ′i+1µi+1β,
• ‖ρi+1µi+1‖ 6= ‖ρ′i+1µi+1‖,
• min { ‖ρi+1µi+1‖, ‖ρ

′
i+1µi+1‖ } = ‖ρ′i+1µi+1‖ < ‖ρiµi‖,

• size(ρi+1µi+1) ≤ max { ‖ρiµi‖+Mrhs − 1 , Srhs }.

The last two points follow from the facts that ‖τ2δ2‖ < ‖A2δ2‖ (since A2
u

−→ γ

is norm-reducing) and that τ1 arises by applying a rule to σ1; thus ‖τ1δ1‖ ≤
‖σ1δ1‖ + Mrhs − 1 ≤ ‖A1δ1‖ + Mrhs − 1 if τ1 is normed and size(τ1) ≤ Srhs if
τ1 is unnormed (in which case ρi+1µi+1 = τ1).

(b) (3.5) does not hold, and δ1µiβ ∼ γδ2µiβ:

We note that δ1µiβ ∼ γδ2µiβ implies A1δ1µiβ ∼ A1γδ2µiβ, and the assumption
A1δ1µiβ ∼ A2δ2µiβ (3.4) then yields A1γδ2µiβ ∼ A2δ2µiβ; the second conjunct
in (3.5) thus holds. Hence the first conjunct does not hold, and we have

EqLv(A1γ,A2) > EqLv(A1δ1, A2δ2).
We thus have EqLv(A1γδ2, A2δ2) > EqLv(A1δ1, A2δ2) (by Prop. 3.2(4)); this im-
plies that EqLv(A1δ1, A1γδ2) = EqLv(A1δ1, A2δ2) (by Prop. 3.2(3)).
Since EqLv(A1δ1, A1γδ2) ≥ ‖A1‖+EqLv(δ1, γδ2) (by Prop. 3.4(3)), we get

EqLv(δ1, γδ2) ≤ EqLv(A1δ1, A1γδ2)− ‖A1‖ = EqLv(A1δ1, A2δ2)− ‖A1‖.
We put

(ρi+1, ρ
′
i+1, µi+1) = (δ1, γδ2, µi)

and note the following properties:
• EqLv(ρi+1, ρ

′
i+1) ≤ EqLv(ρi, ρ

′
i)− ‖A1‖ < EqLv(ρi, ρ

′
i),

• ρi+1µi+1β ∼ ρ′i+1µi+1β,
• ‖ρi+1µi+1‖ = ‖ρ′i+1µi+1‖ = ‖ρiµi‖ − ‖A1‖.

If we construct a sequence (3.2) by performing the above described step for i = 1, 2, 3, . . . ,
we obviously maintain the properties ρi 6∼ ρ′i and ρiµiβ ∼ ρ′iµiβ. When some (ρi, ρ

′
i, µi)

where ‖ρi‖ 6= ‖ρ′i‖ is constructed, the construction ends (i = m in (3.2)), and this is the
only way how to end. The end is reached whenever the case (3a) applies; another possibility
occurs in the case (1). We also maintain that µi is normed; µi is “increasing” in the sense
that µi is a suffix of µi+1 (for i < m).

Informally speaking, the “head eq-level” is decreasing. More precisely, if (1), (2), or
(3b) applies to i then we have EqLv(ρi, ρ

′
i) ≥ EqLv(ρi+1, ρ

′
i+1); if (3a) applies then we do

not care since the construction finishes (with i+1 = m). In (1) and (3b) the head eq-level
is even strictly decreasing, i.e. EqLv(ρi, ρ

′
i) > EqLv(ρi+1, ρ

′
i+1). We thus cannot use (1)

for the same pair (A1, A2) twice; this implies that (1) cannot be used more than card(N)2

times (which is a generous upper bound). Since any use of (2) for i entails using (1) for i+1,
the head eq-level decreasing guarantees that the construction must end eventually, reaching
some (ρm, ρ′m, µm) where ‖ρm‖ 6= ‖ρ′m‖.

14 P. JANČAR

We recall that min { ‖ρ1µ1‖, ‖ρ
′
1µ1‖ } = ‖α1‖ = ‖α2‖ < ω. We can easily check that for

each i ∈ {1, 2, . . . ,m−1} we have:

• if (1) applies to i then min { ‖ρi+1µi+1‖, ‖ρ
′
i+1µi+1‖ } ≤ min { ‖ρiµi‖, ‖ρ

′
iµi‖ }+Mrhs;

• if (2) or (3) applies to i then min { ‖ρi+1µi+1‖, ‖ρ
′
i+1µi+1‖ } ≤ min { ‖ρiµi‖, ‖ρ

′
iµi‖ }.

We thus have

min{‖ρmµm‖, ‖ρ′mµm‖} ≤ ‖α1‖+ card(N)2 ·Mrhs.

If both ρm, ρ′m are normed then

max{‖ρmµm‖, ‖ρ′mµm‖} ≤ ‖α1‖+ card(N)2 ·Mrhs +Mrhs;

in fact, max{‖ρmµm‖, ‖ρ′mµm‖} ≤ min{‖ρmµm‖, ‖ρ′mµm‖}+Mrhs, as can be checked in (1)
and (3a). If one of ρm, ρ′m is unnormed then its size is at most Srhs. We can thus safely
confirm that

size(ρmµm, ρ′mµm) ≤ size(α1, α2) + card(N)2 ·Mrhs + Srhs.

Since ‖ρmµm‖ 6= ‖ρ′mµm‖ and ρmµmβ ∼ ρ′mµmβ, Prop. 3.16 finishes the proof.

4. Exponential bound on eq-levels in normed BPA systems

A BPA system is normed if each nonterminal is normed:

Definition 4.1. A BPA system G = (N ,A,R) is normed if ‖A‖ < ω for all A ∈ N .

Convention. In this section we stipulate SG = N ∗ in the LTS LG = (SG ,A, (
a

−→)a∈A); we
thus do not consider infinite regular strings (since they are unnormed).

As already mentioned, the problem BPA-Bisim restricted to normed BPA systems is
known to be in PTime. Nevertheless it is easy to construct an example where EqLv(X,Y)
(for X 6∼ Y) is exponential in the size of the given normed BPA system G; e.g., in Remark
after Prop. 3.6 we have EqLv(Ak, Ak−1) = ‖Ak−1‖ = 2k−1 − 1.

An exponential upper bound on the eq-levels in the normed case seems to be only
implicit in the literature; we thus show a bound explicitly here, as Theorem 4.5. In principle,
we use again the construction from the proof of Lemma 3.11 in Subsection 3.4, but now
in a different setting and with a different aim. It is easy to note that in the normed
case we cannot have α1 6∼ α2 and α1β ∼ α2β; but this is not a problem, we do not
need such β here. We will construct a sequence like (3.2), with the decreasing head eq-
levels EqLv(ρi, ρ

′
i), but we will now take also the “overall” eq-levels EqLv(ρiµi, ρ

′
iµi) into

account. These eq-levels were of no interest in Subsection 3.4 (there we just took care that
EqLv(ρiµiβ, ρ

′
iµiβ) = ω); here these overall eq-levels add technical complications since they

can evolve differently than the head eq-levels. We remove these complications when we
arrange that EqLv(ρiµi, ρ

′
iµi) = EqLv(ρi, ρ

′
i)+‖µi‖; that’s why we introduce the following

completion of a normed system with a special unnormed nonterminal.

Definition 4.2. For a normed BPA system G = (N ,A,R), by the completion of G we
mean the BPA system G′ = (N ∪{U},A,R′) where U is a special (unnormed) nonterminal,

and R′ = R ∪ {U
a

−→ U | a ∈ A} ∪ {A
a

−→ U | A ∈ N , a ∈ A}.

BISIMILARITY ON BASIC PROCESS ALGEBRA 15

By our conventions, in the LTS LG′ = (SG′ ,A, (
a

−→)a∈A) we have SG′ = N ∗∪{αU | α ∈
N ∗}. In LG′ we obviously have EqLv(α, β) = 0 iff precisely one of α, β is ε. Other useful
properties of LG′ are captured in Prop. 4.4, but we first make clear that an upper bound
on eq-levels in LG′ is also an upper bound on eq-levels in LG.

Proposition 4.3.

(1) EqLv(γ1, γ2) in LG is not bigger than EqLv(γ1, γ2) in LG′.
(2) In LG′ we have α ∼ U iff ‖α‖ = ω.
(3) For any γ1, γ2 ∈ N ∗ we have γ1 ∼ γ2 in LG iff γ1 ∼ γ2 in LG′.

(Hence if EqLv(γ1, γ2) is finite in LG then it is finite in LG′ as well.)

Proof. (1) If γ1 ∼i γ2 in LG then γ1 ∼i γ2 in LG′ , as can be shown by induction on i, when

noting that each move γj
a

−→ U can be matched by γ3−j
a

−→ U if γ3−j 6= ε.
(2) If ‖α‖ < ‖β‖ then α 6∼ β (recall Prop. 3.4(1)); on the other hand, the set

{(α, β); ‖α‖ = ‖β‖ = ω} is here a bisimulation.
(3) From Point 1 we get that γ1 ∼ γ2 in LG implies γ1 ∼ γ2 in LG′ ; on the other hand,

{(α, β) ∈ N ∗ ×N ∗ | α ∼ β in LG′} can be easily checked to be a bisimulation in LG .

Proposition 4.4. In LG′ the following claims hold:

(1) EqLv(γ1, γ2) = 0 iff precisely one of γ1, γ2 is the empty word ε.
(2) EqLv(γ1, γ2) ≥ min{‖γ1‖, ‖γ2‖}.
(3) If ‖γ1‖ 6= ‖γ2‖ then EqLv(γ1, γ2) = min{‖γ1‖, ‖γ2‖}.

(4) Suppose ‖α1‖ ≤ ‖α2‖ < ω and α2
u

−→ γ is a norm-reducing path where |u| = ‖α1‖ (and
thus ‖γ‖ = ‖α2‖ − ‖α1‖). Then for any δ1, δ2 we have
EqLv(δ1, γδ2) ≥ EqLv(α1δ1, α2δ2)− ‖α1‖.

(5) EqLv(σ1µ, σ2µ) = EqLv(σ1, σ2) + ‖µ‖.

Proof. Points 1,2,3 are easy to observe.

(4) If ‖α1δ1‖ 6= ‖α2δ2‖ then ‖δ1‖ = ‖α1δ1‖ − ‖α1‖ 6= ‖α2δ2‖ − ‖α1‖ = ‖γδ2‖, and (3)
implies

EqLv(δ1, γδ2) = min{‖δ1‖, ‖γδ2‖} = min{‖α1δ1‖, ‖α1γδ2‖} − ‖α1‖ =
min{‖α1δ1‖, ‖α2δ2‖} − ‖α1‖ = EqLv(α1δ1, α2δ2)− ‖α1‖.

We now assume ‖α1δ1‖ = ‖α2δ2‖ (hence also ‖δ1‖ = ‖γδ2‖) and we contradict the
assumption

EqLv(δ1, γδ2) < EqLv(α1δ1, α2δ2)− ‖α1‖ (4.1)

as follows. By Prop. 3.2(2), the norm-reducing path α2δ2
u

−→ γδ2 has a match-

ing path α1δ1
u

−→ σδ1 where EqLv(σδ1, γδ2) ≥ EqLv(α1δ1, α2δ2) − ‖α1‖. Hence

σ 6= ε (i.e., α1
u

−→ σ is not norm-reducing), and thus ‖σδ1‖ > ‖γδ2‖, which entails
EqLv(σδ1, γδ2) = ‖γδ2‖. Since EqLv(δ1, γδ2) ≥ ‖γδ2‖ (by (2)), by (4.1) we would get
a contradiction:

‖γδ2‖ ≤ EqLv(δ1, γδ2) < EqLv(α1δ1, α2δ2)− ‖α1‖ ≤ EqLv(σδ1, γδ2) = ‖γδ2‖.

(5) The equality surely holds if ‖µ‖ = ω (in which case σ1µ ∼ U ∼ σ2µ) or if σ1 ∼ σ2; we
thus further assume that µ is normed and EqLv(σ1, σ2) < ω.
• We show EqLv(σ1µ, σ2µ) ≤ EqLv(σ1, σ2) + ‖µ‖ by induction on EqLv(σ1, σ2).
If EqLv(σ1, σ2) = 0 then precisely one of σ1, σ2 is ε, and EqLv(σ1µ, σ2µ) = ‖µ‖.
If EqLv(σ1, σ2) = n+1 (which entails σ1 6= ε, σ2 6= ε) then by Prop. 3.2(1,2) there

are some transitions σ1
a

−→ τ1 and σ2
a

−→ τ2 such that

16 P. JANČAR

(1) EqLv(τ1, τ2) < EqLv(σ1, σ2), and
(2) EqLv(τ1µ, τ2µ) ≥ EqLv(σ1µ, σ2µ)− 1.
Since EqLv(τ1µ, τ2µ) ≤ EqLv(τ1, τ2) + ‖µ‖ by the induction hypothesis, we have
EqLv(σ1µ, σ2µ) ≤ 1 + EqLv(τ1, τ2) + ‖µ‖ ≤ EqLv(σ1, σ2) + ‖µ‖.

• We show EqLv(σ1µ, σ2µ) ≥ EqLv(σ1, σ2) + ‖µ‖ by induction on EqLv(σ1µ, σ2µ),
excluding the trivial case EqLv(σ1µ, σ2µ) = ω.
The case EqLv(σ1µ, σ2µ) = 0 is trivial since it entails µ = ε.
If EqLv(σ1µ, σ2µ) = n+1 then at most one of σ1, σ2 can be empty. If we have
σj = ε (j ∈ {1, 2}) then EqLv(σ1, σ2) = 0 and EqLv(σ1µ, σ2µ) = ‖µ‖ (by (3)); the
claim thus holds. If both σ1, σ2 are nonempty then by Prop. 3.2(1,2) there are some

transitions σ1
a

−→ τ1 and σ2
a

−→ τ2 such that
(1) EqLv(τ1µ, τ2µ) < EqLv(σ1µ, σ2µ), and
(2) EqLv(τ1, τ2) ≥ EqLv(σ1, σ2)− 1.
Since EqLv(τ1µ, τ2µ) ≥ EqLv(τ1, τ2) + ‖µ‖ by the induction hypothesis, we have
EqLv(σ1µ, σ2µ) ≥ 1 + EqLv(τ1, τ2) + ‖µ‖ ≥ EqLv(σ1, σ2) + ‖µ‖.

We now prove the announced theorem. Let us recall that the value Mrhs (in Def. 3.5) is
bounded by an exponential function of the size of G (by Prop. 3.6).

Theorem 4.5. Let G = (N ,A,R) be a normed BPA system, and Mrhs = max {‖α‖; there is

a rule A
a

−→ α in R}. If α1 6∼ α2 then EqLv(α1, α2) ≤ min{‖α1‖, ‖α2‖}+card(N)2 ·Mrhs.

Proof. If ‖α1‖ < ‖α2‖ then EqLv(α1, α2) ≤ ‖α1‖, as we noted in Prop. 3.4(1) for general
BPA systems. We thus consider α1 6∼ α2 where ‖α1‖ = ‖α2‖, and we will work in the LTS
LG′ , where G′ is the completion of G; the achieved upper bound will be also valid for LG by
Prop. 4.3(1,3). We will construct a sequence

(ρ1, ρ
′
1, µ1), (ρ2, ρ

′
2, µ2), . . . , (ρm, ρ′m, µm) (4.2)

where (ρ1, ρ
′
1, µ1) = (α1, α2, ε). We use a slightly modified process of constructing the

sequence (3.2) in the proof of Lemma 3.11 in Subsection 3.4. Given (ρi, ρ
′
i, µi), where

‖ρi‖ = ‖ρ′i‖ < ω and EqLv(ρiµi, ρ
′
iµi) = EqLv(ρi, ρ

′
i) + ‖µ‖ < ω, we now construct

(ρi+1, ρ
′
i+1, µi+1). As in the proof of Lemma 3.11, we write

ρi = A1δ1, ρ
′
i = A2δ2 (4.3)

where ‖A1‖ ≤ ‖A2‖ and we assume that the pair (A1, A2) has a fixed norm-reducing path

A2
u

−→ γ such that ‖A1γ‖ = ‖A2‖; we thus also have ‖δ1‖ = ‖γδ2‖.

(1) (ρi, ρ
′
i) = (A1γ,A2), i.e. δ1 = γ and δ2 = ε in (4.3):

By Prop. 3.2(1,2) there are rules A1
a

−→ σ1, A2
a

−→ σ2 such that EqLv(σ1γ, σ2) =
EqLv(A1γ,A2)− 1 (and where we thus do not have σ1 = σ2 = U). We put

(ρi+1, ρ
′
i+1, µi+1) = (σ1γ, σ2, µi),

and we note (by recalling that EqLv(ρµ, ρ′µ) = EqLv(ρ, ρ′) + ‖µ‖):
• EqLv(ρi+1, ρ

′
i+1) = EqLv(ρi, ρ

′
i)− 1,

• EqLv(ρi+1µi+1, ρ
′
i+1µi+1) = EqLv(ρiµi, ρ

′
iµi)− 1,

• min { ‖ρi+1µi+1‖, ‖ρ
′
i+1µi+1‖ } ≤ ‖ρiµi‖+Mrhs − 1.

We have the following two possibilities.
(a) If ‖σ1γ‖ 6= ‖σ2‖ then ‖ρi+1‖ 6= ‖ρ′i+1‖ and the sequence (4.2) is completed, i.e.

i+1 = m. In this case

BISIMILARITY ON BASIC PROCESS ALGEBRA 17

EqLv(ρmµm, ρ′mµm) = min { ‖ρmµm‖, ‖ρ′mµm‖ }.
(b) If ‖σ1γ‖ = ‖σ2‖ then ‖ρi+1µi+1‖ = ‖ρ′i+1µi+1‖ < ω.

(2) (ρi, ρ
′
i) = (A1δ1, A2δ2) 6= (A1γ,A2) and EqLv(A1γδ2, A2δ2) = EqLv(A1δ1, A2δ2):

We put

(ρi+1, ρ
′
i+1, µi+1) = (A1γ,A2, δ2µi),

and note:
• EqLv(ρi+1, ρ

′
i+1) = EqLv(ρi, ρ

′
i)− ‖δ2‖ ≤ EqLv(ρi, ρ

′
i),

• EqLv(ρi+1µi+1, ρ
′
i+1µi+1) = EqLv(ρiµi, ρ

′
iµi),

• ‖ρi+1µi+1‖ = ‖ρ′i+1µi+1‖ = ‖ρiµi‖ = ‖ρ′iµi‖.
Moreover, for i+1 the above case (1) will apply.

(3) EqLv(A1γδ2, A2δ2) 6= EqLv(A1δ1, A2δ2) (which entails (ρi, ρ
′
i) 6= (A1γ,A2)):

We thus have EqLv(A1δ1, A1γδ2) ≤ EqLv(A1δ1, A2δ2), by Prop. 3.2(3).
Since EqLv(A1δ1, A1γδ2) ≥ ‖A1‖+ EqLv(δ1, γδ2) (by Prop. 3.4(3)), we get

EqLv(δ1, γδ2) ≤ EqLv(A1δ1, A1γδ2)− ‖A1‖ ≤ EqLv(A1δ1, A2δ2)− ‖A1‖.

On the other hand, Prop. 4.4(4) implies

EqLv(δ1, γδ2) ≥ EqLv(A1δ1, A2δ2)− ‖A1‖.

Hence EqLv(δ1, γδ2) = EqLv(A1δ1, A2δ2)− ‖A1‖. We put

(ρi+1, ρ
′
i+1, µi+1) = (δ1, γδ2, µi),

and note:
• EqLv(ρi+1, ρ

′
i+1) = EqLv(ρi, ρ

′
i)− ‖A1‖,

• EqLv(ρi+1µi+1, ρ
′
i+1µi+1) = EqLv(ρiµi, ρ

′
iµi)− ‖A1‖,

• ‖ρi+1µi+1‖ = ‖ρ′i+1µi+1‖ = ‖ρiµi‖ − ‖A1‖.

As in Subsection 3.4, due to eq-level decreasing the case (1) cannot apply more than
card(N)2 times, and the construction must end eventually, with ‖ρmµm‖ 6= ‖ρ′mµm‖ arising
in (1a). Let us now put

ei = EqLv(ρiµi, ρ
′
iµi), and di = ei −min { ‖ρiµi‖, ‖ρ

′
iµi‖ }.

In fact, in (1a) we noted that dm = 0. If (2) or (3) applies to i then we obviously have
di = di+1. We can also easily check that if (1) applies to i then

ei+1 −min { ‖ρi+1µi+1‖, ‖ρ
′
i+1µi+1‖ } ≥ (ei − 1)− (min { ‖ρiµi‖, ‖ρ

′
iµi‖ } +Mrhs − 1).

This yields di+1 ≥ di−Mrhs, hence di ≤ di+1+Mrhs. We thus deduce d1 ≤ card(N)2 ·Mrhs,
i.e., e1 ≤ min { ‖ρ1µ1‖, ‖ρ

′
1µ1‖ }+ card(N)2 ·Mrhs. Since (ρ1, ρ

′
1, µ1) = (α1, α2, ε), we get

EqLv(α1, α2) ≤ min { ‖α1‖, ‖α2‖ }+ card(N)2 ·Mrhs .

18 P. JANČAR

5. Additional remarks

Lemma 3.14 shows that the pairs (α, β) where α ∼ β, α, β have E-bounded cycles, and
size(αp, βp) ≤ 2M + E create a basis for G, similar to the bisimulation base of [6] but with
explicit regular strings. We could construct the basis by a standard coinductive approach
(building a sequence of decreasing overapproximations). Each of the pairs in the basis fits
into exponential space, and their number is thus at most double exponential.

Among the related topics for future research, the obvious one is the question how to
close the gap between ExpTime and 2-ExpTime for bisimilarity on BPA. Other examples
of research topics follow from the fact that BPA processes can be viewed as being generated
by pushdown automata with a single control state and no ε-transitions. Sénizergues [18]
showed the decidability of bisimilarity for general pushdown processes where ε-transitions
are deterministic and popping; it seems interesting to explore the decomposition approach
here as well, using regular terms (as in [12]). One indication that this more general problem
is also more complicated is a recent announcement [2] that its computational complexity
is nonelementary. We can also mention that bisimilarity of pushdown processes with non-
deterministic popping ε-transitions is undecidable [13]; this was shown by using so called
“Defender’s Forcing”, which was recently also used to show undecidability for 2nd-order
pushdown processes with no ε-transitions [4]. The decidability question for BPA with ε-
transitions (i.e., the weak bisimilarity problem for BPA) is still open.

Acknowledgement. The author cordially thanks to anonymous reviewers for helpful com-
ments and suggestions.

References

[1] J. Baeten, J. Bergstra, and J. Klop. Decidability of bisimulation equivalence for processes generating
context-free languages. J.ACM, 40(3):653–682, 1993.

[2] M. Benedikt, S. Göller, S. Kiefer, and A. S. Murawski. Bisimilarity of pushdown systems is nonelemen-
tary. CoRR, abs/1210.7686, 2012.

[3] S. Böhm, S. Göller, and P. Jančar. Bisimilarity of one-counter processes is PSPACE-complete. In CON-

CUR 2010 - Concurrency Theory, volume 6269 of LNCS, pages 177–191. Springer-Verlag, 2010.
[4] C. H. Broadbent and S. Göller. On bisimilarity of higher-order pushdown automata: Undecidability at

order two. In FSTTCS 2012, volume 18 of LIPIcs, pages 160–172. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2012.

[5] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite structures. In J. Bergstra,
A. Ponse, and S. Smolka, editors, Handbook of Process Algebra, pages 545–623. North-Holland, 2001.

[6] O. Burkart, D. Caucal, and B. Steffen. An elementary bisimulation decision procedure for arbitrary
context-free processes. In Proc. of MFCS’95, volume 969 of LNCS, pages 423–433. Springer, 1995.

[7] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1):114–133, 1981.
[8] S. Christensen, H. Hüttel, and C. Stirling. Bisimulation equivalence is decidable for all context-free

processes. Inf. Comput., 121(2):143–148, 1995.
[9] W. Czerwiński and S. Lasota. Fast equivalence-checking for normed context-free processes. In Proc.

FSTTCS’10, volume 8 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.
[10] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for deciding bisimilarity of normed

context-free processes. Theor. Comput. Sci., 158:143–159, 1996.
[11] P. Jančar. Strong bisimilarity on basic parallel processes is PSPACE-complete. In Proc. LICS 2003,

pages 218–227. IEEE Computer Society, 2003.
[12] P. Jančar. Decidability of DPDA language equivalence via first-order grammars. In Proc. LICS 2012.

IEEE Computer Society, 2012.
[13] P. Jančar and J. Srba. Undecidability of bisimilarity by Defender’s forcing. J. ACM, 55(1), 2008.

BISIMILARITY ON BASIC PROCESS ALGEBRA 19

[14] M. Jurdzinski, J. Sproston, and F. Laroussinie. Model checking probabilistic timed automata with one
or two clocks. Logical Methods in Computer Science, 4(3), 2008.

[15] S. Kiefer. BPA bisimilarity is EXPTIME-hard. Inf. Proc. Letters, 113(4):101–106, 2013.
[16] A. Kučera and R. Mayr. On the complexity of checking semantic equivalences between pushdown

processes and finite-state processes. Inf. Comput., 208(7):772–796, 2010.
[17] R. Mayr. Weak bisimilarity and regularity of context-free processes is exptime-hard. Theor. Comput.

Sci., 330(3):553–575, 2005.
[18] G. Sénizergues. The bisimulation problem for equational graphs of finite out-degree. SIAM J.Comput.,

34(5):1025–1106, 2005.
[19] J. Srba. Strong bisimilarity of simple process algebras: complexity lower bounds. Acta Inf., 39(6-7):469–

499, 2003.
[20] J. Srba. Beyond language equivalence on visibly pushdown automata. Logical Methods in Computer

Science, 5(1), 2009.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	3. Proof of Theorem 2.5
	3.1. Useful notions and their properties
	3.2. Algorithm deciding BPA-Bisim, based on a Prover-Refuter game
	3.3. Completeness of the Prover-Refuter game
	3.4. Proof of Lemma 3.11

	4. Exponential bound on eq-levels in normed BPA systems
	5. Additional remarks
	Acknowledgement

	References

