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Abstract. We consider commutative regular and context-free grammars, or, in other
words, Parikh images of regular and context-free languages. By using linear algebra and a
branching analog of the classic Euler theorem, we show that, under an assumption that the
terminal alphabet is fixed, the membership problem for regular grammars (given v in binary
and a regular commutative grammar G, does G generate v?) is P, and that the equivalence
problem for context free grammars (do G1 and G2 generate the same language?) is in ΠP

2 .

1. Introduction

Let Σ be a finite alphabet. By Σ∗ we denote the set of words over Σ, or finite sequences of
elements of Σ. For a word w ∈ Σ∗, by Ψ(w) (the Parikh image of w) we denote the function
from Σ to non-negative integers N, such that each x ∈ Σ appears Ψ(w)(x) times in w. For a
language L ⊆ Σ∗, Ψ(L) = {Ψ(w) : w ∈ L} ⊆ NΣ.

Context free and regular languages are one of the most important classes of languages in
computer science [HU79]. By a famous result of Parikh [Par66], a subset of NΣ is a Parikh
image of a context free language if and only if it is a semilinear set, or a union of finitely
many linear sets.

In this paper, we explore the complexity of various problems related to Parikh images
of context free languages, such as the following:

• Membership: Given a context-free grammar G and v ∈ NΣ (given in binary). Is v a
member of the Ψ(G), the Parikh image of the language generated by G?
• Universality: Given two context-free grammars G, is Ψ(G) equal to NΣ?
• Inclusion: Given two context-free grammars G1 and G2, does Ψ(G1) ⊆ Ψ(G2)?
• Equality: Given two context-free grammars G1 and G2, does Ψ(G1) = Ψ(G2)?
• Disjointness: Given two context-free grammars G1 and G2, is Ψ(G1) ∩Ψ(G2) nonempty?

Since in this paper we are never interested in the order of terminals or non-terminals,
we treat everything in a commutative way. This allows us to identify the commutative
languages (subsets of Σ∗) with their Parikh images (subsets of NΣ).
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In the non-commutative case, the size of alphabet usually does not matter very much:
larger alphabets can be encoded as words over smaller alphabets, for example the alphabet
{a, b, c} can be encoded as {b, ba, baa} or {a, ba, bb}. This changes in the commutative case:
each new letter in the alphabet literally brings a new dimension to the Parikh image. If
we do not fix the size of the alphabet, it can be easily shown that even the membership
problem for regular languages is NP complete.

There are many practical uses of regular and context-free languages which do not care
about the order of the letters in the word. For example, when considering regular languages
of trees, we might be not interested in the ordering of children of a given node. [BM99] and
[NS99] consider XML schemas allowing marking some nodes as unordered.

Some complexity results regarding semilinear sets and commutative grammars have
been obtained by D. Huynh [Huy80, Huy85], who has shown that equivalence is ΠP

2 -hard
both for semilinear sets and commutative grammars (where ΠP

2 is the dual of the second
level of the polynomial-time hierarchy, [Sto76]).

Some research has also been done in the field of communication-free Petri nets, or Basic
Parallel Processes (BPP). We say that a Petri net ([Pet81], [Rei85]) is communication-free if
each transition has only one input. This restriction means that such a Petri net is essentially
equivalent to a commutative context-free grammar. [Yen97] shows that the reachability

equivalence problem for BPP-nets can be solved in DTIME
(

22ds
3)

, where d is a constant

and s is the size of the problem instance. For general Petri nets, reachability (membership
in terms of grammars) is decidable [Kos82, Ler10], although the known algorithms require
non-primitive recursive space; and reachability equivalence is undecidable [Hac75]. Also,
some harder types of equivalence problems are undecidable for BPP nets [Hüt94]. See [EN94]
for a survey of decidability results regarding Petri nets.

As mentioned above, we will assume in this paper that the alphabet is fixed. We have
the following two main results:

• The membership problem for commutative regular languages over a fixed alphabet is
in P. This was open for a long time (even for a binary alphabet), until it was solved
independently by the author of this paper and Anthony Widjaja Lin. This result, and its
applications, was presented as a merged paper at the LICS conference [KT10].
• The equivalence problem for commutative context-free languages over a fixed alphabet is

in ΠP
2 . As far as we know, there have been no successful previous attempts in this direction,

except for the much simpler case where the alphabet has only one symbol [Huy84].

In context free grammars, usually the order of transitions used in a derivation is important:
we are never allowed to use a non-terminal which has not yet been produced. For example,
a transition X → aX allows us to produce an arbitrary amount of the terminal symbol a,
but only if we have access to the non-terminal symbol X. However, derivations also can
be defined commutatively. The well known Euler’s theorem gives a necessary and sufficient
condition for whether there is a path or cycle in a graph which uses each edge e exactly ne
times: the condition says that each vertex has to be entered and left exactly the same number
of times (Euler condition) and reachable from the starting vertex (connectedness). Thus, we
can forget the order of edges on such a path or cycle, count them, and just check that the
conditions are satisfied; a roughly similar approach is used in the definition of a cycle in the
construction of homology groups in algebraic topology [Hat02]. The same approach works
in our more general case — we can define a commutative run and a commutative cycle by
counting the number of times each transition has been used, and just like in Euler’s theorem,
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a very simple condition can be used to check whether such a function from transitions to
integers is indeed a Parikh image of a valid derivation. Similar technique has been used
previously in [Esp97]; it also has been used successfully to solve an open problem in database
theory [Kop11].

Although we are not allowed to use a non-terminal which has not yet been produced,
our framework straghtforwardly allows the following interesting generalization: we allow
our terminal symbols to be produced in negative quantities. In this case, these negative
productions do not have to be balanced by positive productions. Thus, our commutative
languages are interpreted as subsets of ZΣ rather than NΣ. Although such languages do not
commonly appear in the theory of languages, they turn out to be interesting and useful. For
example, such negative production allow to reduce disjointness of A and B to membership
very easily – just check for membership of 0 in A − B = {a − b : a ∈ A, b ∈ B} (see
Proposition 5.12 below) . This generalization was also discovered independently by Anthony
Widjaja Lin.

1.1. Related papers. This paper is the full version of [KT10], with the following major
differences:

• [KT10] is a result of merging of two submissions. This paper includes only results obtained
by the author.
• Equivalence of commutative context-free grammars (Theorem 3.2) has been generalized

to the case where we allow terminal symbols to be produced in negative quantities.
• Universality of commutative context-free languages has been only proven to be in ΠP

2 in
[KT10]. Here, we prove that it is in fact ΠP

2 -complete.
• Full proofs are included.

1.2. Structure of the paper. The paper is structured as follows.
Section 2 introduces basic definitions and facts from linear algebra and language theory,

and then presents bounds on the size of runs and cycles of commutative grammars. The
techniques used to obtain these bounds are almost the same for regular and non-regular
grammars, but the results are much stronger in the regular case. This section culminates
in Theorem 2.13, which gives a compact representation of a commutative regular language
(equivalently, a Parikh image of a regular language). This compact representation will be
used in Section 5 to solve the membership problem of commutative regular languages in P.

The whole Section 3 presents a “window theorem” (Theorem 3.2) for (non-regular)
commutative grammars. This theorem roughly says that, in order to decide whether two
grammars are equivalent, we only have to look at a window of exponential size, and it will
be used in Section 5 to show that the equivalence of commutative grammars is in ΠP

2 . In
fact, most of Section 3 is the proof of Lemma 3.1 about semilinear sets, which does not refer
commutative grammars directly; Theorem 3.2 is a simple corollary. Lemma 3.1, as well as
some other lemmas in this section, thus could potentially have applications to semilinear
sets in general, whether they come from commutative grammars or not.

Section 4 presents a non-regular grammar over a three letter alphabet which has no
compact representation similar to one given by Theorem 2.13. We believe this example is of
interest, because it shows why we cannot prove Theorem 3.2 using a simpler approach.
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Section 5 gives the answers to questions about the complexity of the problems mentioned
in the introduction; some results are obtained directly, and for some we need our compact
representation and window theorems from Sections 2 and 3.

There is a conclusion in Section 6.
A reader interested only in the first main result (that the membership problem of

commutative regular languages in P) only has to read Section 2 (assuming that the grammar
is regular) and the respective part of Section 5. Due to the lack of branching, results in
subsections 2.3 and 2.4 can be obtained in a much more straightforward way for regular
grammars. A reader interested in the second main result (that the equivalence problem for
commutative context-free languages over a fixed alphabet is in ΠP

2 ) has to read Section 2
(without concentrating on regular grammars), Section 3, and the respective part of Section
5; Section 4 should also be of interest for such readers.

2. Preliminaries

2.1. Vectors and matrices, and semilinear sets. In this subsection we present the basic
notation, notions and facts from linear algebra, which will be used throughout the paper.

As usual, we denote the set of integers by Z, the set of non-negative integers by N, the
set of rational numbers with Q, and the set of real numbers with R. We also denote the
set of non-negative real numbers with P (we do not use the more standard notation R+ to
avoid double indexing).

We also use the notation [a, b] for the interval of all real numbers between a and b, and
[a..b] for the interval of all integers between a and b.

Let X be a finite set. We interpret NX as multisets over X: z ∈ NX represents a
multiset where each x ∈ X appears exactly zx times. For a x ∈ X, by [x] ∈ NX we represent
the multiset which represents x: [x](y) = 1 iff y = x, 0 otherwise. The set NX is a subset of
ZX (intuitively, we allow the elements of X to appear in negative quantities), QX , PX , and
RX .

For v ∈ RX , let |v| =
∑

x∈X |vx|, and ||v|| = maxx∈X |vx|.
We also interpret elements of RX as (column) vectors. By RX×Y we denote the set

of matrices over R with columns indexed by X, and rows indexed by Y ; AX×Y ⊆ RX×Y
denotes matrices where all entries are in A ⊆ R. For M ∈ RX×Y , we use the notation
Mx
y for the coefficient in row y ∈ Y and column x ∈ X. For M ∈ RX×Y , N ∈ RY×Z , and

v ∈ RX we define the multiplication in the usual way:

Mv ∈ RY , (Mv)y =
∑
x∈X

Mx
y vx

NM ∈ RX×Z , (NM)xz =
∑
y∈Y

Nx
yM

y
z

For a matrix M ∈ RX×Y and a set S ⊆ RX , by MS ⊆ RY we denote {Ms : s ∈ S}.
Similarly, for sets S1, S2 ⊆ RX , we define S1+S2 = {s1 + s2 : s1 ∈ S1, s2 ∈ S2} and S1−S2 =
{s1 − s2 : s1 ∈ S1, s2 ∈ S2} (the algebraic sum and difference).

For a finite set S ⊆ RX and A ⊆ R, we define
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S⊕A =

{∑
s∈S

sas : ∀s as ∈ A

}
.

Typically, A will be one of Z (S⊕Z is the additive group generated by S), N (S⊕N is the
additive monoid), R (S⊕R the linear space spanned by S), P (S⊕P is the cone spanned by
S), or [0..H] (we limit the number of uses of each element of S).

A set V ⊆ ZX is linear iff it can be written as V = v0 + P⊕N, where v0 ∈ ZX and the
set P ⊆ ZX is finite. The vector v0 is called the base of V , and the elements of P are called
periods. Moreover, we say that a linear set V is a simple linear set iff the elements of P
are linearly independent.

A set V ⊆ ZX is semilinear iff it is a union of finitely many linear sets.
A semilinear set V ⊆ ZX is called a simple bundle iff it can be written as V = W+P⊕N,

where W ⊆ ZX is finite and the elements of P are linearly independent. We say that a
bundle is bounded by (B, Y ) iff ||v|| ≤ B for each v ∈W , and ||p|| ≤ Y for each p ∈ P .

The following lemmas from the linear algebra will be important for us. We denote the
determinant of M ∈ RX×X by detM .

Lemma 2.1. Let M ∈ [−C,C]X×X be a matrix. Then the determinant of M is bounded

by H|X| (C) = |X|!C |X|. Moreover, if M ∈ ZX×X , the determinant of M is an integer.

Proof. This follows straightforwardly from the Leibniz formula for determinant. In fact,
Hadamard [Had93] has shown a better bound: H|X| (C) = C |X||X||X|/2.

Let us recall the well known Cramer’s rule [Cra50]:

Lemma 2.2. Let A ∈ RXX be a non-degenerate matrix, and b ∈ RX . Then the system of
equations Av = b has a unique solution given by vx = det(Ax)/ det(A), where Ax is obtained
by replacing the x-th column of A with the vector b. If A is not a non-degenerate matrix,
the system of equations either has no solution, or infinitely many solutions.

The following corollary is straightforward:

Lemma 2.3. Let X be a fixed set of indices, and A ∈ N. There is a number B, polynomial
in A, such that whenever the system of equations Mx = v, where M ∈ [−A..A]X×X ,
v ∈ [−A..A]X has a unique solution x ∈ RX , we have x = x′/C, where x′ ∈ [−B..B]X , and
C ∈ [−B..B].

Proof. We apply the Cramer’s rule (Lemma 2.2) and the Hadamard bound (Lemma 2.1).

Lemma 2.4. Let M ∈ [−C..C]X×X be a non-degenerate matrix. Then

(detM)ZX ⊆MZX .

Proof. Again, this is immediate from Cramer’s rule (Lemma 2.2). The intuition is as follows.
For u, v ∈ ZΣ, we say that u ≡ v iff u − v ∈ MZX . The quotient group ZΣ/≡ has detM
elements (intuitively, for |X| = 2, the number of elements is equal to the area of the
parallelogram given by columns of M ; this intuition also works in other dimensions). Thus,
(detM)v ≡ 0.
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Lemma 2.5. Let P ⊆ [−C..C]X be a linearly dependent set of vectors. Then for some
α ∈ ZP we have

∑
v∈P αvv = 0, where ||α|| ≤ H|X| (C), and αv > 0 for some v ∈ P .

Proof. Without loss of generality we can assume that P is a minimal linearly dependent set.
Let (βv) ∈ RP be the set of coefficients for which

∑
v∈V βvv = 0, and such that βv 6= 0 for

some v ∈ P . Since P is minimal, we know that (βv) is unique up to a constant: that is, if
(βv) and (β′v) have this property, then β′v = qβv for some q ∈ R.

Let u ∈ P be the element such that |βu| ≥ |βv| for each v ∈ P . Let P0 = P − {u}. We

know that the P⊕R0 = P⊕R.
Since P was minimal, we know that P0 is linearly independent set. Let P1 ⊇ P0 be such

that P1 ⊆ [−C..C]X , and P1 is a base of RX . This can be done by extending P0 by unit
vectors which are not yet in the subspace spanned by P0.

Let M ∈ [−C..C]X×X be a matrix whose columns are the elements of P1. Since P1 is
a base, each vector v can be written as a linear combination of elements of P1 with real
coefficients in a unique way. From Lemma 2.4 we know that for v = (detM)u the coefficients

are integers; moreover, since (detM)u ∈ P⊕R = P⊕R0 , the coefficients are 0 for elements of
P1\P0. Thus, we get

∑
v∈P αvv = 0, where αu = detM and αv are integers. Since (βv) was

unique up to a constant, and u was the vector with the largest coefficient, we know that the
same holds for (αv). From Lemma 2.1 we know that αv ≤ detM ≤ H|X| (C) for all v ∈ P .

Lemma 2.6. Let P ⊆ [−C..C]X be a finite set of vectors, and w ∈ P⊕N. Let H = H|X| (C).

Then there is a linearly independent set P0 ⊆ P such that w ∈ P⊕[0..H] + P⊕N0 . In other
words, we can assume that all the periods except ones from P0 are multiplied by factors
bounded by H.

Proof. Assume that w =
∑

v∈P nvv. Let H = H|X| (C).
Let P ∗ = {v ∈ P : nv ≥ H}. Induction over the cardinality of P ∗.
If P ∗ is linearly independent, we are done (we can simply set P0 = P ∗).
Otherwise, from Lemma 2.5 we know that there is a set of coefficients (αv) ∈ ZP0 such

that
∑

v∈P0
αvv = 0, and αv ≤ H for each v ∈ P0, and at least one αv is positive. For each

v ∈ P0, we subtract αv from nv; this does not effect the equation w =
∑

v∈P nvv. We repeat
this until we get nv − αv < 0 for some v ∈ P0 (this will have to eventually happen, since at
least one αv is positive). Since nv − αv < 0 and αv ≤ H, we get that nv < H. Thus, the
new set P ∗ is a subset of the old one, and we can apply the induction hypothesis.

2.2. Commutative grammars, runs, and cycles. A commutative grammar (see for
example [EN94]) is a tuple G = (Σ, Q, qI , δ), where Σ is a finite alphabet of terminal
symbols, Q is a set of non-terminal symbols, qI ∈ Q is the initial non-terminal
symbol, and δ ⊆ Q × ZΣ × NQ is the transition relation. We will write the transition

(q, a, t) ∈ δ as q
a→ t, or using a multiplicative notation: q

xy−1

→ q1q
2
2 denotes the transition

(q, [x]− [y], [q1] + 2[q2]). The intuition here is that our commutative grammar allows us to
use a non-terminal symbol q to produce the multiset of terminal and non-terminal symbols,
given by a and t; we allow our terminal symbols to be produced in negative quantities.
For a transition d = (q, a, t) ∈ δ, we denote q, a and t by source(d), Ψ(d) and target(d),
respectively.
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We say that a grammar is positive iff Ψ(d) ≥ 0 for each d ∈ δ. Note that our definition
is more general than the usual one (e.g., [EN94]), since we allow non-positive commutative
grammars.

Runs, paths, and cycles are usually defined as sequences or trees of transitions. However,
we will define them as multisets of transitions. The next subsection will show how our
definitions are related to the usual ones.

Let R ∈ Nδ be a multiset of transitions. Let source(R) =
∑

d∈δ Rd [source(d)], Ψ(R) =∑
d∈δ Rd Ψ(d), target(R) =

∑
d∈δ Rd target(d). Intuitively, the number source(R) counts

times each non-terminal symbol has been used, while target(R) counts the number of times
each non-terminal symbol has been produced, and Ψ(R) counts the number of times each
terminal symbol has been produced. For p, q ∈ Q we say that p→R q iff for some d ∈ δ such
that Rd > 0, p = source(d) and target(d)(q) > 0; i.e., a transition which produces q from p
appears in R with a non-zero quantity. By →∗R we denote the transitive reflexive closure of
→R. For a multiset s ∈ NQ and q ∈ Q, we say that s→∗R q iff p→∗R q for some p ∈ s. By
supp(R) ⊆ Q we denote the set of non-terminals q ∈ Q such that (source(R))q > 0.

We say that a multiset of transitions R ∈ Nδ is a (commutative) subrun from s ∈ NQ
to t ∈ NQ if the following two conditions are satisfied:

• Euler condition: source(R)− s = target(R)− t;
• Connectivity: whenever q ∈ source(R), we have s→∗R q.

Intuitively, in a subrun, for each state q, we start with sq copies of state q, during the
run we use up sourceq(R) copies and produce targetq(R) more copies, and tq copies remain
at the end. The Euler condition says that these numbers agree. In the case where s = t it
means that each state is produced exactly as many times as it is produced, just like in the
classic Euler condition which says that each vertex has the same in-degree and out-degree.
In the next subsection we will show that, as long as our conditions on a commutative subrun
are satisfied, there is an ordering such that we never use up something which has not yet
been produced.

The following kinds of subruns will be of most interest for us:

• A run from p is a subrun from [p] to 0.
• A path from p1 to p2 is a subrun from [p1] to [p2].
• A cycle from p is a path from p to p.

By Ψ(G) we denote the (commutative) language of G, or the set of Ψ(R) for all
commutative runs R from qI .

We say that G is in normal form iff for each transition (q, a, t) in δ we have |t| ≤ 2 and
|a| ≤ 1. Moreover, we say that G is regular iff for each transition (q, a, t) in δ we have |t| ≤ 1
and |a| ≤ 1. If G is not in normal form, it is straightforward to construct a grammar G′ in
normal form such that Ψ(G) = Ψ(G′). This is done by replacing each transition which does
not satisfy the restriction by several simpler transitions, adding additional non-terminals.

For example, q
a1a2→ q1q2q3 is replaced with q

a1→ q1q
′ and q′

a2→ q2q3, where q′ is a new
non-terminal.

Usually, we will assume that our grammars are in normal form; in this case, the size of
the grammar can be described by stating the number of non-terminals N and the size of the
alphabet A, since for a grammar in normal form the number of transitions is bounded by
O(N3A). In the sequel, many results will work both for regular grammars and the general
case, but be much stronger in the regular case – as a typical example, for regular grammars
we can achieve a polynomial bound, but for non-regular grammars in normal form we can
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only achieve an exponential one. Both the polynomial bound in the regular case and the
exponential bound in the general case will be of interest for us. The notation ΓNG introduced
in Lemma 2.11 below, which is linear in N for a regular G and exponential for a non-regular
G, should make it clear that a result is given both for regular and general grammars, but it
is stronger for regular ones.

We say that a cycle C is simple iff it is not a sum of two smaller non-zero cycles. We
say that a run R is a skeleton run iff it cannot be written as R = R0 + C, where C is a
cycle, and supp(R) = supp(R0).

2.3. Commutative subruns can be ordered. In this subsection we show that our com-
mutative subruns can be ordered correctly, that is, in each non-empty commutative subrun
from s we can choose the first transition δ such that the remaining part is a subrun from
s− source(δ) + target(δ); in other words, we can order the transitions in a subrun in such a
way that, if we start from s, and each transition consumes source(δ) and produces target(δ),
we can arrange the transitions in a way that we never consume something which has not
been produced yet. This result is practically equivalent to Theorem 3.1 in [Esp97], where it
has been stated in the setting of communication-free Petri nets. Also note that, for regular
grammars and |s| = 1, this can be seen as a restatement of the well known Euler’s theorem.

Theorem 2.7. If R is a non-empty subrun from s to t, then there is a δ ∈ R such that
source(δ) ∈ s, and R′ := R− δ is a subrun from s′ := s− source(δ) + target(δ) to t.

Proof. There are two cases:

• the relation →R has a cycle starting in s, i.e., there is a p ∈ s such that p →R q and
q →∗R p. In this case, there is a δ ∈ R such that source(δ) = p and target(δ) = q. We
have to show that R′ is a subrun from s′ to t. Let r ∈ source(R′). Since R was a subrun
from s, we know that s→∗R r, and we have to show that s′ →∗R′ r. Take a minimal path
π witnessing s→∗R r. Since π is minimal, only its first transition starts from an element
of s, and in particular, can be equal to δ.
– If π did not start in p, it is still a path for →R′ (δ was not in π).
– If π started with δ, we just remove δ from π, thus obtaining a path witnessing s′ →∗R r.
– If π started in p but not with δ, we know that q →∗R p→∗R r, and both subpaths do not

contain δ (provided that we take a minimal path q →∗R p) and thus they are still paths
for →R′ .

• otherwise, take any δ such that source(δ) = p ∈ s. Such a δ must exist from the
connectedness condition. Again, we have to show that R′ is a subrun from s′ to t. Let
r ∈ source(R′). Since R was a subrun from s, we know that s→∗R r, and we have to show
that s′ →∗R′ r. Take a minimal path witnessing s→∗R r. Since π is minimal, only its first
transition starts from an element of s, and in particular, can be equal to δ. There are four
subcases:
– If π did not start in p, it is still a path for →R′ (δ was not in π).
– If π started with δ, we just remove δ from π, thus obtaining a path witnessing s′ →∗R r.
– If π started in p but not with δ, and sp ≥ 2, then s′(p) ≥ 1, so p ∈ s′ and the path is

still valid for R′.
– If π started in p with δ′ 6= δ, and sp = 1, we know that sourcep(R)−sp = targetp(R)−tp.

Since source(δ) = source(δ′) = p and sp = 1, targetp(R) > 0, and thus there must be a
transition δ′′ such that p ∈ target(δ′′). We know that s→∗R source(δ′′), and the path
cannot include δ – otherwise, we get a sequence of paths s →∗R p →R target(δ) →∗R
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source(δ′′)→R p, and thus we get a cycle, which was dealt with in the previous case.
Thus, we have s→∗R′ source(δ′′)→R′ p→∗R′ r.

2.4. Derivation trees. In this subsection we compare our commutative runs and cycles
with the usual derivation trees. We obtain a subrun from a derivation tree simply by counting
how many times each transition has been used; using the result of the previous section, we
also show that this process can be reversed, i.e., a derivation tree exists for each commutative
subrun. We then use the derivation trees to show upper bounds on the size of simple cycles
and skeleton runs.

Again, this is much easier for regular grammars — in this case, derivation trees are
simply paths, i.e., sequences of transitions ∂0, ∂1, ∂2, . . . , ∂d such that [source(∂i+1)] equals
target(∂i).

Let G be a commutative grammar in normal form. A derivation tree from p ∈ Q is a
tuple T = (V, v0, P, ∂), such that:

• V is an arbitrary set of vertices,
• v0 ∈ V is a special vertex, called the root of V ,
• P is a function from V − {v0} to V (parent), such that for each v ∈ V there is a n ∈ N

(called the depth of v) such that Pn(v) = v0,
• ∂ is a function from V to δ. We will use source(v) and target(v) for source(∂(v)) and

target(∂(v)), respectively.
• source(∂(v0)) = p,
• for each v ∈ V , we have F (v) ≥ 0, where

F (v) = target(v)−
∑

w:P (w)=v

[source(w)].

We also denote F (T ) =
∑

v∈V F (v), source(T ) =
∑

v∈V [source(v)], and target(T ) =∑
v∈V target(v).

Intuitively, each vertex v of the derivation tree represents that we are using a non-
terminal and produce new terminals and non-terminals, according to the transition ∂(v).
Children of v can use the non-terminals produced. F (v) represents the “free” non-terminals
which have been produced, but have not been used by children; F (v) ≥ 0 represents the fact
that children cannot use non-terminals which have not been produced.

Let U(T ) : δ → N be the function counting the number of times each transition has
been used in the derivation tree T : (U(T ))d = | {v ∈ V : ∂(v) = d} |.

We say that a derivation tree T from p is full iff F (T ) = 0, and a path to p2 iff
F (T ) = [p2]. We say that a derivation tree T is cyclic from p iff it is a path derivation tree
from p to p.

Lemma 2.8. If T is a derivation tree from p, then U(T ) is a commutative subrun from [p]
to F (T ).
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Proof.

F (T ) =
∑
v∈V

target(v)−
∑

w:P (w)=v

[source(w)]


=

∑
v∈V

target(v)−
∑

v∈V−{v0}

[source(v)]

= target(T )− source(T ) + [source(v0)]

= target(U(T ))− source(U(T )) + [p].

We also have that P (v) →U(T ) v for each v ∈ V , thus U(T ) is indeed connected from
P (v0) = p.

Theorem 2.9. If p ∈ Q, and R ∈ Nδ is a commutative subrun from [p] to t ∈ NQ, then
R = U(T ) for some derivation tree T from p such that F (T ) = t.

Proof. We will construct the tree T inductively. We start with T0 = (V, v0, P, ∂), where ∂(v0)
is δ from Theorem 2.7 for R, and V = v0. We will keep the following invariant: U(T ) ≤ R,
and R−U(T ) is a subrun from F (T ) to t. From Theorem 2.7 the invariant is satisfied for T0.
Suppose that the invariant is also satisfied for T , and U(T ) < R. . From Theorem 2.7 again
there exists a δ′ ∈ R − U(T ) such that source(δ′) ∈ F (T ). Since source(δ′) ∈ F (T ), there
exists a v such that source(δ′) ∈ F (v). We obtain a new tree T ′ by adding a new vertex w
such that P (w) = v and ∂(w) = δ′. From Theorem 2.7, the invariant is also satisfied for T ′.

Finally, we get a tree T such that U(T ) = R. From Lemma 2.8 we know that F (T ) = t.

Corollary 2.10. The following two conditions are equivalent:

(1) R ∈ Nδ is a commutative run from p,
(2) R = U(T ) for some full derivation tree T from p.

Also, the following two conditions are equivalent:

(1) C ∈ Nδ is a path from p1 to p2,
(2) C = U(T ) for some path derivation tree T from p1 to p2.

In particular, the following two conditions are equivalent:

(1) C ∈ Nδ is a cycle from p,
(2) C = U(T ) for some cyclic derivation tree T from p.

Proof. Straightforward from Lemma 2.8 and Theorem 2.9.

Lemma 2.11. Let G be a grammar in normal form. Let D be a derivation tree such that
D has no vertices at depth M . Then |D| < ΓMG , where ΓMG = M + 1 if G is regular, and
2M+1 otherwise.

Proof. If each vertex has at most C children, then there are at most Cd vertices at depth d.
For regular grammars C = 1, and for grammars in normal form, C = 2. All the hypotheses
follow from simple calculations.

Theorem 2.12. Let G be a grammar in normal form with N non-terminals. If C is a

simple cycle, then |C| < ΓNG . If R is a skeleton run, then |R| < ΓN
2

G .

Proof. First, let C be a simple cycle. From Corollary 2.10 we know that C = U(T ) for some
cyclic derivation tree T = (V, v0, P, d) from p.
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We will show that T has no vertex at depth N . Indeed, suppose otherwise that T has a
vertex v at depth n > N . Consider a branch of the derivation tree: v, p(v), p2(v), . . . , pn(v) =
v0. Since n ≥ N , we have source(pi(v)) = source(pj(v)) for some i < j. Let V1 be all
the descendants of pi(v) (inclusive), V2 be all the other descendants of pj(v), and V3 be
all the other vertices. Then T1 = (V2, pi(v), P, d) is a cyclic derivation tree, and so is
T2 = (V1 ∪ V3, pi(v), P ∗, d), where P ∗(pi(v)) = P (pj(v)) and P ∗(w) = P (w) for all other
w ∈ V1 ∪ V3. Hence, C is not a simple cycle (C = U(T ) = U(T1) + U(T2)).

Now, let R be a skeleton run. From Corollary 2.10 we know that R = U(T ) for some
full derivation tree T = (V, v0, P, d) from q0.

We will show that T has no vertex at depth N2. Indeed, suppose otherwise that T has a
vertex v at depth n ≥ N2. Consider a branch of the derivation tree: v, p(v), p2(v), . . . , pn(v) =
v0. Since n ≥ N2, there are indices i0, i1, . . . , iN such that source(pik(v)) is the same non-
terminal q for each k. By repeating the construction above N times, we can decompose
R = R0 +

∑N
k=1Ck, where R0 is a run and Ck is the cycle between pik−1

(v) and pik(v).

Let UK = supp(R0 +
∑K

k=1Ck. Since U0 ⊆ U1 ⊆ U2 . . . ⊆ UN ⊆ Q, U0 is not empty,
and |Q| = N , there must be k such that Uk = Uk−1. Since Ck does not add any new
non-terminals to the support, we have that supp(R− Ck) = supp(R). This contradicts the
assumption that R was a skeleton run (R− Ck is a run).

All the hypotheses follow from the Lemma 2.11.

2.5. Compact Representation of a Commutative Regular Language. In this sub-
section, we will show how to obtain a compact representation of a regular commutative
language over a fixed alphabet: such a language is a union of polynomially many polynomially
bounded simple bundles. This compact representation will be used in Section 5 below to
prove that the membership problem is in P for regular commutative grammars over a fixed
terminal language. We also obtain a less compact representation in the non-regular case.

Theorem 2.13. Let G be a grammar in normal form with N non-terminals over an

alphabet of size A, and let R be a run. Let BG = ΓN
2

G + (2ΓNG )1+AHA

(
ΓNG
)
. Then

Ψ(R) = Ψ(R1) +
∑

Ψ(Ck)nk, where:

• R1 is a run such that |R1| ≤ BG,
• each Ck is a simple cycle from some q ∈ supp(R1),
• Ψ(Ck) are linearly independent,
• nk ∈ N.

Proof. Let R be a run. As long as R is not a skeleton run, we can decompose R as a sum of
a smaller run, and a simple cycle. Thus, we obtain that Ψ(R) = Ψ(R0) +

∑
k∈K Ψ(Ck)nk.

Suppose that Ψ(Ck) = Ψ(Cl) for some k 6= l. Then we remove l from K, and add nl to
nk. The equation Ψ(R) = Ψ(R0) +

∑
k∈K Ψ(Ck)nk still holds.

Let K∗ =
{
k ∈ K : nk ≥ HA

(
ΓNG
)}

. From Lemma 2.6 we can assume that Ψ(Ck) are
linearly independent for k ∈ K∗.

Since for each k we have |Ck| < ΓNG , and Ψ(Ck) is different for each k, we have
at most (2ΓNG )A cycles there. Let R0 = R1 +

∑
k∈K−K∗ Cknk. We have |R0| ≤ |R1| +

(2ΓNG )A+1HA

(
ΓNG
)
, and Ψ(R) = Ψ(R0) +

∑
k∈K∗ Ψ(Ck)nk.
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Corollary 2.14. If G is a regular grammar with N non-terminals over an alphabet of size

A, then Ψ(G) is a union of at most NA2
simple bundles bounded by (BG, N).

Also note that BG is polynomial for regular grammars over a fixed alphabet.

Proof. From Theorem 2.13 we know that for each run R we have Ψ(R) = Ψ(R1)+
∑

Ψ(Ck)nk,
where Ψ(R1) is bounded by BG and Ck is a simple cycle. We bundle the runs which use the
same cycles together. Since simple cycles are bounded by N , there are at most NA of them,
and there are at most (NA)A sets of linearly independent simple cycles.

It is possible to get a better bound on the number of simple bundles in dimension 2,
even for non-regular grammars.

Corollary 2.15. If G is a grammar in normal form with N non-terminals over a two-letter
alphabet, then Ψ(G) is a union of O(N2) simple bundles bounded by (BG,Γ

N
G ).

Proof. Let Σ = {a1, a2}. First assume that the grammar is positive.
For each non-terminal q, among all the cycles from q, let Ci(q) be the one with the

greatest proportional amount of ai, for i = 1, 2. All the other cycles from q fall in the angle
between C1(q) and C2(q).

Now, for each run R, let Ci(R) be the one with the greatest proportional amount of ai,
among all cycles from q ∈ supp(R).

Proceed as in the proof of Corollary 2.14, except now we can assume that the cycles
C1, C2 are always C1(R) and C2(R) (instead of arbitrary cycles), as all other cycles can be
written as positive linear combinations of these two. Since C1(R) and C2(R) are chosen
from Ci(q), there at at most N2 simple bundles.

For non-positive grammars, for each non-terminal q, one of the two cases holds:

• all cycles from q (and their positive combinations) fall in the angle between the two
extreme cycles C1(q) and C2(q),
• positive linear combinations of cycles from q cover the full plane, and can be written as

positive combinations of C1(q), C2(q) and C3(q) which are cycles from q.

Thus, we can always use one of the at most three cycles Ci(q) for some q ∈ supp(R). There
are still O(N2) combinations of them.

3. Window Theorem for Commutative Grammars

This section is devoted to the following result, which we call the window theorem: in order
to determine whether two commutative languages Ψ(G1) and Ψ(G2) over a fixed alphabet Σ
of size A defined by grammars G1 and G2 with N non-terminals are disjoint or equal, it is
enough to only examine a small window of size which is single exponential in N . This result
will be instrumental in the proof that inclusion, universality, and disjointness problems are
in ΠP

2 for commutative grammars over an alphabet of fixed size (Theorem 5.5 below).
The situation is much easier for A = 2 than in the general case. From Corollary 2.15

we know that each of Ψ(G1) and Ψ(G2) is a union of O(N2) simple bundles bounded by
(BG,Γ

N
G ). In this case, we can show the following result: for each v ∈ ZΣ we can find a v0 of

single exponential magnitude such that v0 is in exactly the same of our O(N2) bundles as v.
This is achieved in Lemma 3.5 in the following way:
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• Let W + Z⊕N be one of the bundles. From Lemma 2.4 we know that each member of
(detM)ZΣ, where M is the matrix whose columns are Z, is a member of Z⊕Z. Hence, if
w ∈ (detM)ZΣ, then v ∈W +Z⊕Z iff v+w ∈W +Z⊕Z. Since there is just a polynomial
number of bundles, we can use the least common multiple of the determinants to ensure
that the equivalence above is satisfied for each bundle.
• The bundle is W +Z⊕N, not v ∈W +Z⊕Z, thus we need to ensure that the signum of the

coefficients remains unchanged. This is done by partitioning RΣ into regions. Two points
v, v0 are in the same region if v ∈ w + Z⊕P iff v0 ∈ w + Z⊕P for each w,Z satisfying the
necessary bounds. We show that we can additionally ensure that the single exponentially
bounded v0 is in the same region as v, which proves the lemma.

However, this approach no longer works for A > 2, as Ψ(Gi) no longer needs to be a union
of polynomial number of simple bundles; section 4 below is devoted to showing an example
of such a grammar.

We solve this problem by using the regions again. Although Ψ(Gi) need not be a union
of a polynomial number of simple bundles, this is true when we consider regions separately:
for each region r, Ψ(Gi)∩ r equals U ∩ r, where U is a union of polynomial number of simple
bundles. This is proven in Lemma 3.4 below.

The rest of this section provides a detailed statement and proof of our window theorem.
In fact, we will prove the following Lemma about semilinear sets, without directly using the
assumption that our semiliner sets come from commutative grammars; the window theorem
about commutative grammars (Theorem 3.2 below) will follow easily from it.

Lemma 3.1. Let C ∈ N. Let S1 and S2 be two semilinear sets over the same fixed alphabet
Σ of size A, given as Sk =

⋃
i∈Ik Wi +Z⊕Ni , where Wi ⊆ [−C..C]Σ, Zi ⊆ [−Y..Y ]Σ, for every

i ∈ I1 ∪ I2. Then there exists a number B3.1 = O((C + Y )|I1∪I2|) such that S1 ⊆ S2 iff
S1 ∩ [−B3.1..B3.1]Σ ⊆ S2 ∩ [−B3.1..B3.1]Σ, and S1 is disjoint with S2 iff S1 ∩ [−B3.1..B3.1]Σ

is disjoint with S2 ∩ [−B3.1..B3.1]Σ.

Theorem 3.2. Let G1 and G2 be two commutative grammars in normal form with at most
N non-terminals each, over the same fixed alphabet Σ of size A. Then there exists a number
B3.2 which is single exponential in N , such that Ψ(G1) ⊆ Ψ(G2) iff Ψ(G1)∩ [−B3.2..B3.2]Σ ⊆
Ψ(G2)∩[−B3.2..B3.2]Σ, and Ψ(G1) is disjoint with Ψ(G2) iff Ψ(G1)∩[−B3.2..B3.2]Σ is disjoint
with Ψ(G2) ∩ [−B3.2..B3.2]Σ.

Proof of Theorem 3.2. Let Gu = (Σ, Qu, qu, δu). Without loss of generality we can assume
that the sets Qu are disjoint for u ∈ {1, 2}; this way, we will be able to identify the grammar
of each run and cycle by mentioning one of the non-terminals used.

For q ∈ Qu, let Zq = {Ψ(C) : C is a simple cycle from q}, and for S ⊆ Qu, let ZS =⋃
q∈S Zq.

From Theorem 2.13 we know that v ∈ Ψ(Gu) iff there exists a run R1 from qu such that
|R1| is bounded by BG and a linearly independent set of simple cycle outputs P ⊆ ZsuppR1

such that v ∈ Ψ(R1) + P⊕N.
In particular, we know that P is of cardinality at most A. Let Iu be the set of all subsets

of Qu of cardinality at most A. Thus, we know that v ∈ Ψ(Gu) iff there exists J ∈ Iu, a run
R1 of Gu such that J ⊆ supp(R1) and |R1| is bounded by BG, and a set P ⊆ ZJ such that v ∈
Ψ(R1)+P⊕N. Let WJ = {Ψ(R) : R is a run in Gu bounded by BG such that J ⊆ supp(R)}.
Thus, we get that Ψ(Gu) =

⋃
J∈Iu(WJ +Z⊕NJ ). We know that WJ is bounded by BG which

is single exponential, and ZJ is bounded by Y = ΓNG , which is also single exponential.
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Since the cardinality of Iu is polynomial in N , we get our claim by applying Lemma
3.1.

Proof of Lemma 3.1. We will need to introduce the notion of a region.
Let SY be the family of all linearly independent subsets of [−Y..Y ]Σ containing A− 1

elements. For each element S of SY and v ∈ RΣ, let φS(v) be the determinant of the matrix
MS,v whose A− 1 columns are the elements of S (ordered in an arbitrary way), and the last
column is v. From the properties of the determinant, we know that φS(v) =

∑
a∈Σ αava,

where αa is the (possibly negated) determinant of the (A − 1) × (A − 1) submatrix of
MS,v which misses the column v and the row a. In particular, αa ∈ [−Cφ..Cφ], where

Cφ = HA−1 (Y ). Intuitively, for each S, φ−1
S (0) is the A− 1-dimensional subspace containing

all elements of S. By calculating φS(v) we can tell whether v is above or below this

subspace. Let ΦY = {φS : S ∈ SY }. The cardinality of ΦY is bounded by (2Y + 1)A
2
, and

its elements have coefficients bounded by Cφ. In particular, if φ ∈ ΦY , then |φ(v)| ≤ Cφ|v|,
and ||φ(v)|| ≤ ACφ||v||.

Now, let LB = [−2B, 2B]Σ, and RB,Y be the set of all functions from ΦY × LB to
{−1, 0, 1}.

For r ∈ RB,Y , we define strict regions Reg(r), weak regions reg(r), and ray regions τ(r)
as follows:

Reg(r) =
{
x ∈ RΣ : ∀φ ∈ ΦY ∀l ∈ LB sgn(φ(x− l)) = rφ,l

}
reg(r) =

{
x ∈ RΣ : ∀φ ∈ ΦY ∀l ∈ LB sgn(φ(x− l)) rφ,l ≥ 0

}
τ(r) =

{
x ∈ RΣ : ∀φ ∈ ΦY ∀l ∈ LB sgn(φ(x)) rφ,l ≥ 0

}
The following picture shows what is going on for A = 2 and Y = 3.

The gray square in the center is LB. From each point of the square, and for each
tuple of A− 1 vectors in [−Y..Y ]Σ, we shoot a hyperplane which is parallel to each of these
vectors. For A = 2, this means that we shoot a line in each direction given by some vector in
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[−Y..Y ]Σ. There are 32 directions, and for each of them we get a bundle of lines, by taking
different points of LB to shoot from; such bundles of lines are marked gray on the picture
above. Each strict region Reg(r) is given by its relation to each of these lines (above, below,
or on one of these lines). There are four types of regions:

• empty regions (the relations are inconsistent),
• a single point (r says that the point is on two (non-parallel) lines at once),
• a semiline (r says that the point is on a line and above some other line),
• a wedge (r says that the point is below line l1 and above line l2, where l1 and l2 are not

parallel).

There are 32 wedge-shaped regions, an infinite number of semiline-shaped regions (bundled
into 32 packs of parallel semilines), and an infinite number of points.

Strict regions Reg(r) are disjoint and partition the plane, while the weak regions reg(r)
are their closures. Ray regions τ(r) look similar to Reg(r), but we shoot lines only from 0,
instead of each point from LB. There are 32 wedge-shaped and 32 semiline-shaped regions,
each of them start at 0 (which is included into each τ(r)). If Reg(r) is a single point or the
empty set, then τ(r) = {0}.

The situation is more complicated in three dimensions, and it is also harder to draw.
We will show how τ(r) looks for A = 3 and Y = 2. From the definition of τ(r) we know that
for each α > 0 we have x ∈ τ(r) iff αx ∈ τ(r). Thus, it is sufficient to draw only a situation
on a planar section of RΣ. Let ∆ = {v ∈ RΣ : v ≥ 0, |v| = 1}. The set ∆ is a triangle; this
triangle is shown on the picture below.

The 19 white dots on the picture denote elements of [0..Y ]Σ; for each such v, its
projection v

|v| is shown as a white dot on the triangle (in fact, we should also have white dots

for elements of [−Y..Y ]Σ with negative coordinates, but this would obfuscate the picture too
much — their projections on our planar section do not fit in the triangle). S is the set of

pairs of linearly independent elements of [−Y ..Y ]Σ, or pairs of distinct white dots. For each
S ∈ S, we have the linear function φS , which equals 0 on both elements of S. These are
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represented by the black lines: for each two white dots, we have a black line going through
these white dots.

Now, let r ∈ RB,Y . The set τ(r) is the set of points which are on the side of the
semispace φ declared by rφ,l, for each φ and l (or on this semispace, in case if rφ,l = 0). In
our case, semispaces are the black lines. Therefore, τ(r)∩∆ could be either an empty set (if
this is inconsistent – this happens for example when rφ,l1 6= rφ,l2), or a region of the triangle
bounded by the black lines, or one of the white dots, or one of the points where the black
lines cross, or a segment of a black line between two points where it crosses the other lines.
The set τ(r) can be described by multiplying τ(r) ∩∆ by each scalar α ≥ 0. Thus, each
black line becomes a black plane, each white dot or black line crossing becomes a semiline,
each black line segment becomes an infinite triangle, and each bounded region becomes an
infinite cone.

Regions reg(r) and Reg(r) are harder to visualize — we have to replace each black plane
by a pack of black planes by moving it by each vector in LB, and again split RΣ by these
new black planes.

The following lemma describes the shape of the regions.

Lemma 3.3. Let r ∈ RB,Y . Then:

• τ(r) can be written as T⊕Pr , where Tr ⊆ [−C3.3..C3.3]Σ,
• reg(r) = Wr + τ(r), where Wr ⊆ [−B3.3, B3.3]Σ.

In particular, if reg(r) is bounded, then τ(r) = {0}. C3.3 is bounded polynomially by Y ,
and B3.3 is bounded polynomially by B and Y .

For example, let us consider the two-dimensional case from the picture on page 14.
Take r such that reg(r) is an infinite wedge with a vertex in some point w. Then τ(r) is a
congruent wedge with a vertex in point 0, bounded by semilines parallel to some two vectors
v1, v2 ∈ [−Y..Y ]Σ. Tr will be simply {v1, v2}, and Wr will be {w}. Our lemma says that w
is bounded polynomially in B and Y ; since the picture is big enough to already show all
the 32 wedge vertices, we can take B3.3 to be (half of) the edge of the square shown on the
picture. In the three-dimensional case the situation will be more difficult: elements ot Tr
will be bounded by a polynomial in Y (instead of Y itself), Wr will no longer have to be
a singleton, and the cardinality of set Tr might be relatively large – for example, on the
picture on page 15 there are ray regions τ(r) ∩∆ bounded by five black lines, so we will
need a Tr with five elements to describe the respective τ(r).

Having introduced the regions, we can use the following lemma:

Lemma 3.4. Let B, Y ∈ N. Then there is a C3.4, bounded polynomially in B and Y , such
that the following holds:

Let S = W +Z⊕N, where Z ⊆ [−Y ..Y ]Σ and W ⊆ [−B..B]Σ, and r ∈ RB,Y . Then there

is a linearly independent subset Z0 ⊆ Z and W1 ⊆ [−C3.4..C3.4]Σ such that S ∩ reg(r) =

(W1 + Z⊕N0 ) ∩ reg(r).

This lemma says that, if we restrict ourselves to a single region, we can improve our
presentation Su =

⋃
i∈Iu(Wi + Z⊕Ni ) by making the sets Zi linearly independent, while still

keeping the bound on Wi exponential. Thus, in each region, Su is a union of |Iu| simple
bundles bounded by (C3.4, Y ).

Now, we use the following lemma:
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Lemma 3.5. Let Σ be a fixed alphabet, C3.4, Y ∈ N, and I be a set of indices. Then there
exists a number B3.5 = O((C3.4 + Y )|I|) such that the following holds:

Let Vi = Wi + Z⊕Ni be a simple bundle bounded by (C3.4, Y ), for each i ∈ I, and

r ∈ RC3.4,Y . Then for each v ∈ ZΣ ∩Reg(r) there exists a v0 ∈ [−B3.5, B3.5]Σ ∩Reg(r) such
that for each i ∈ I we have v ∈ Vi iff v0 ∈ Vi.

By applying the lemma above to I = I1 ∪ I2 and taking B3.1 = B3.5, we obtain our
hypothesis.

Proof of Lemma 3.3. Without loss of generality we can assume that Reg(r) ≥ 0. Indeed,
for each a ∈ A, The set ΦY includes the linear function φa given by φa(x) = xa. If rφ,0 ≥ 0,
then xa ≥ 0 for all x ∈ Reg(r); similarly if rφ,0 ≤ 0. In the second case, we can take the
mirror image, which is also a region.

Take φ ∈ ΦY . We can write the definitions of reg(r) and τ(r) as follows: reg(r) =⋂
φH

reg
φ , τ(r) =

⋂
φH

τ
φ , where

Hreg
φ =

⋂
l∈LB

{
x ∈ RΣ : sgn(φ(x− l)) rφ,l ≥ 0

}
,

Hτ
φ =

⋂
l∈LB

{
x ∈ RΣ : sgn(φ(x)) rφ,l ≥ 0

}
.

The sets H∗φ are half-spaces or closed hyperplanes; Hτ
φ (or its boundary) goes through 0,

and Hreg
φ is parallel.

Let σ(v) =
∑

i vi, and ∆ = {v ≥ 0 : σ(v) = 1}. The set τ(r) is described by τ(r) ∩∆:
for x ∈ ∆ and α > 0, we have αx ∈ τ(r) iff x ∈ τ(r) ∩ ∆. The set ∆ is a bounded
A− 1-dimensional polytope (simplex), and τ(r) ∩∆ is its intersection with a finite number
of closed halfspaces and hyperplanes (Hτ

φ). Thus, τ(r)∩∆ is also a bounded polytope. Each

vertex of this polytope is the point where A− 1 hyperplanes of form φ(v) = 0 (where φ ∈ Φ)
cross ∆. The coefficients of φ are bounded polynomially by Y , so each vertex can be written
as t′i = ti/σ(ti), where σ(ti) is bounded polynomially by some C3.3 (by Lemma 2.3). Let
Tr = {t1, t2, . . . , tN}. Note that the number of vertices, N , is bounded polynomially.

It is easy to check that the set reg(r) is upward closed, i.e., if x ∈ reg(r), i ∈ [1..N ], and
α ≥ 0, then x+ αti ∈ reg(r).

Let Wr be the set of points in reg(r) such that for all α > 0 and i, Wr − αti /∈ reg(r).
We have that reg(r) = Wr + T⊕Pr . Indeed, ⊇ follows from upward closedness, and for ⊆,
take x0 ∈ reg(r). For i from 1 to N , let xi = xi−1 − αiti, where αi ∈ P is the greatest
number such that xi−1 − αiti is still in reg(r) – such an α must exist, since reg(r) is closed,
reg(r) ≥ 0, and xi−1−αti has a negative coordinate for large enough values of α. We obtain
a point xN , which must be in Wr. Indeed, suppose that x′ = xN − αti ∈ reg(r). In that

case, xi−1− (αi +α)ti = x′+
∑N

j=i+1 αjtj ∈ reg(r) because x′ ∈ reg(r) and reg(r) is upward
closed. This contradicts the assumption that the value of αi was maximum.

Take x ∈Wr. Let Hb
φ = Hreg

φ in case if Hreg
φ is a hyperplane, or the boundary hyperplane

of Hreg
φ if Hreg

φ is a half-space. Let Ψx ⊆ ΦY =
{
φ : x ∈ Hb

φ

}
. The set Hx :=

⋂
φ∈Ψx

Hb
φ is

an intersection of hyperplanes, and thus it is a subspace.
The set Hx ∩Wr has to be bounded. Indeed, suppose that Hx ∩Wr is not bounded.

Take a sequence (vi) of elements of Hx∩Wr such that limi→∞ σ(vi) =∞. Let wi = vi/σ(vi);
we have wi ∈ ∆. Since ∆ is compact, wi has a cluster point, w. For φ ∈ ΦY and l ∈ LB , we
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have φ(w) = φ(wi − l)/σ(wi) + φ(l)/σ(wi). The first component is zero or has sign r(φ, l)
(since vi ∈ reg(r)) and the second component tends to 0, thus φ(w) is either 0, or it has sign
r(φ, l). Thus, w ∈ τ(r), and also w ∈ Hx −Hx (the subspace parallel to Hx going through
0). The set Hx ∩Wr is a polytope which is unbounded in the direction of w, but this is
impossible, since x and x+ αw cannot be both in Wr (from the definition of Wr). Hence, a
contradiction.

Moreover, the set Hx ∩Wr has to be bounded polynomially. Indeed, the vertices of
Hx ∩Wr are points where some A hyperplanes of form Hreg

φ cross. These hyperplanes have

coefficients bounded polynomially, and from Lemma 2.3 we get that the coordinates of
vertices of Hx ∩Wr are bounded polynomially.

Thus, Wr =
⋃
x∈Wr

(Hx ∩Wr) is bounded polynomially.

Proof of Lemma 3.4. If Reg(r) is bounded, then it is bounded polynomially in B and Y
(Lemma 3.3), and therefore we are done. Thus, we can assume that Reg(r) is unbounded.

Suppose that there is a t ∈ τ(r) such that t /∈ Z⊕P. We will show that in this case
Reg(r) and S = W + Z⊕P are disjoint, and therefore we are done.

Indeed, note that Z⊕P is a d-dimensional cone (for some d), whose faces are hyperplanes
going through 0 and parallel to sets of (d − 1) vectors in [−Y, Y ]Σ. The ray region τ(r)
cannot be subdivided into two smaller regions by such a hyperplane, therefore there is one of
these hyperplanes, say φ, such that φ(t) < 0, φ(τ(r)) ≤ 0, and φ(Z) ≥ 0. Take x ∈ Reg(r)
such that x = w +

∑
αiZi, where w ∈ [−B..B]Σ. Since φ(t) < 0, for each l ∈ LB we have

rφ,l < 0, and thus, since x ∈ Reg(r), we have φ(x− l) ≤ 0. Since LB = [−2B, 2B]Σ, there is
a l0 ∈ LB such that φ(l0) < φ(w). Thus, φ(x) ≤ φ(l0) < φ(w) ≤ φ(w) +

∑
αiφ(Zi) = φ(x),

which is a contradiction.
Thus, we can assume that τ(r) ⊆ Z⊕P. Each point in Z⊕P can be written as

∑
αiZi,

where αi is positive only for a linearly independent set of vectors in Z (otherwise, if αi are
positive in a linearly dependent subset of Z, we can modify the values so that one of them
is 0 – just like in Lemma 2.6). Therefore, τ(r) ⊆

⋃
F∈F F

⊕P, where F is the family of all

linearly independent subsets of Z. Again, each F⊕P is a d-dimensional cone, whose faces are
hyperplanes going through 0 and parallel to sets of (d − 1) vectors in [−Y, Y ]A. The ray
region τ(r) cannot be subdivided into two smaller regions by such a hyperplane, thus there
is a F ∈ F such that τ(r) ⊆ F⊕P. Let Z0 be this F , and let D be determinant of the matrix
whose columns are Z0 (we add unit vectors if there are less than A vectors in Z0). From
Lemma 2.1 we know that D ≤ HA (Y ), which is single exponential.

Now, let W1 = S ∩ [−C3.4..C3.4]Σ; the sufficient value of C3.4 will be apparent from the
sequel of the proof. By induction over |v|, we will prove that each v ∈ S can be written as

v = w1 + Z⊕N0 , where w1 ∈W1.
For v ∈ S such that |v| ≤ C3.4, the hypothesis obviously holds.
For v ∈ S such that |v| ≥ C3.4 we apply the following Lemma:

Lemma 3.6. Let Σ be a fixed alphabet, and B, Y,D ∈ N. Then there exists a constant B3.6

polynomial in B, Y and D, such that for each r ∈ RB,Y and each v ∈ reg(r), if ||v|| ≥ B3.6,

then v = v0 +Dt, where v0 ∈ reg(r) and t ∈ τ(r)∩ [−C3.3..C3.3]Σ (where C3.3 is from Lemma
3.3). Moreover, v0 ∈ Reg(r) iff v ∈ Reg(r).

Take v ∈ S. By applying Lemma 3.6 iteratively, we know that v = v0 +D(t1 + . . .+ tK),
where ti ∈ τ(r) ∩ [−C3.3..C3.3]Σ, and ||v0|| ≤ B3.6.
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On the other hand, we know that v = w0 + w12, where w0 ∈W and w12 =
∑

v∈Z βvv,
where βv ∈ N. From Lemma 2.6 we can assume that βv exceed H = HA (Y ) only in a
linearly independent P ⊆ Z. Take a large enough J0 ≥ H, polynomial in B and Y (the

required value will be apparent below). We can write v = w0 +w1 +w2, where w1 ∈ Z⊕[0..J0]

and w2 =
∑

v∈P βvv, where each βv ≥ J0, and P is linearly independent.

Suppose that, for some i, ti ∈ P⊕P. From Lemma 2.4 we obtain that Dti =
∑

v∈P γvv,
where γv ∈ Z. Moreover, from Lemma 2.3, γv ≤ J0, if J0 is large enough. Therefore,
w2 = w′2 +Dti, where w′2 =

∑
v∈P (βv−γvv). Take v′ = v−Dti; we have v′ = w0 +w1 +w′2 ∈

W +Z⊕N = S. From the induction hypothesis, v′ ∈W1 +Z⊕N0 , and Dti ∈ Z⊕N0 from Lemma

2.4. Since v = v′ +Dti, we obtain that v ∈W1 + Z⊕N0 .

Otherwise, {ti : i = 1, . . . ,K} is disjoint from P⊕P. Therefore, {ti}⊕P is disjoint from
P⊕P (except 0). By the same arguments as in the beginning of this proof, there is a
hyperplane φ ∈ ΦY such that φ(ti) < 0 for each i, and φ(P ) ≥ 0.

What is the value of φ(v)? On one hand, we have φ(v) = φ(v0)+D
∑

i φ(ti) < ACφB3.6−
DK. On the other hand, we have φ(v) = φ(w0 +w1 +w2) = φ(w0)+φ(w1)+φ(w2) = φ(w0)+∑

v∈Z αvφ(v)+
∑

v∈P βvφ(v) ≥ −BACφ−J0|Z|Y ACφ. From applying the triangle inequality
to v = v0 +D

∑
i ti, we get that |v| ≤ |v0|+DKAC3.3, and hence, K ≥ (C3.4−B3.6)/DAC3.3.

Thus, ACφHB3.6−D(C3.4−B3.6)/DAC3.3 ≥ −BACφ−J0|Z|Y ACφ. This is a contradiction
for a large enough (but still polynomial) C3.4.

Proof of Lemma 3.5. Let Di be the determinant of Zi (if Zi includes less than A vectors,
add unit vectors as usual). Let D∗ be the least common multiple of all Di. We know that

Di is bounded polynomially in Y , so D∗ is bounded polynomially by Y |I|.
By applying Lemma 3.6 (with D = D∗) we get constants C3.3 and B3.6. We know that

each v ∈ Reg(r) such that |v| ≥ B3.6 can be written as v0 +D∗t, where t ∈ τ(r). We repeat
this construction (adding all the t’s together), until we get |v0| < B3.6.

Now, we have to show that v ∈ Vi iff v0 ∈ Vi.
Suppose that v ∈ Vi. Thus, we have v = w0 +

∑
k αkPk, where αk ≥ 0, and (Pk) are

the members of Zk. We can write similarly v0 = w0 +
∑

k βkPk. Note that v and v0 are in
the same (C3.4, Y )-region r. In particular, v − w0 and v0 − w0 are on the same side of each

hyperplane going through a member of LC3.4 and parallel to A− 1 members of [−Y ..Y ]Σ;
therefore, since αk ≥ 0, we also have βk ≥ 0. Moreover, since v − v0 = D∗t, by Lemma 2.4,
v − v0 ∈ Z⊕Zi . Therefore, αk − βk has to be an integer, and therefore βk ∈ N. Thus, v0 ∈ Vi.

The proof in the other direction goes in the same way.

Proof of Lemma 3.6. Take v ∈ reg(r). From Lemma 3.3 we know that v = w +
∑
αiti,

where {ti : i ∈ {1, . . . , N}} = Ti ⊆ [−C3.3..C3.3]Σ, and w ∈ [−B3.3..B3.3]Σ. By taking a large
enough B3.6, we can ensure that if |x| ≥ B3.6, then some αi is greater than D. We have that
v0 = v−Dti is a proper convex combination of v and v1 = v−αiti, which are both in reg(r),
thus v0 is also in reg(r). And if v ∈ Reg(r), then so is v0 (φ(v0 − l) from the definition of
reg(r) is a proper convex combination of φ(v− l) and φ(v1− l), φ(v− l) has the correct sign,
and φ(v1 − l) either has the correct sign or is 0).

4. A hard grammar

As mentioned in the introduction to Section 3, for A > 2 Ψ(G) is not a union of polynomial
number of simple bundles, which makes it impossible to use the simple reasoning mentioned.
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In this section, we will show an example of a grammar over an alphabet with three symbols
where this is the case. We believe this example is interesting in its own right.

The proof has two parts. In the first part, we create a sequence of grammars (Gn)
over four terminal symbols (x, y, and two temporary ones), such that, if we ignore the
two temporary terminal symbols, the convex hull of Ψ(Gn) is a bounded polygon with 2n

vertices. It is then straightforward to create a grammar over three terminal symbols (x, y,
z) which has the required property.

Theorem 4.1. There is a positive grammar Gn of linear size with terminal symbols x, y,
Sn+1 and An, and non-terminal symbols S0 and Xn (where S0 is initial), such that the

vertices of the convex hull of Ψ(Gn) are exactly the points yixi(i+1)/2S2i+1
n+1 A

2N−2i−1
n for

i = 0, . . . , N − 1, and Xn generates only xN , where N = 2n.

Proof. The proof is by induction. For n = 0 we simply put S0 → S1A0, X0 → x.
Take the grammar Gn; we will construct the grammar Gn+1. The symbol Xn+1 is

obtained by the following rule: Xn+1 → X2
n.

We replace the terminal An with a non-terminal with two transition rules:

• (1) An → A2
n+1

• (2) An → S2
n+2Xny

The new vertices of the convex hull will be obtained by choosing one of the two rules for
An, and applying it consistently. Thus, from each vertex yixi(i+1)/2S2i+1

n+1 A
2N−2i−1
n of the

convex hull of Ψ(Gn), we get the following vertices:

• (1) yixi(i+1)/2S2i+1
n+1 A

4N−4i−2
n+1

• (2) y2N−1−ixi(i+1)/2+N(2N−2i−1)S2i+1
n+1 S

4N−4i−2
n+2

Now, we replace the terminal Sn+1 with a non-terminal with a single transition rule
Sn+1 → An+1Sn+2. Hence, we get the following vertices:

• (1) yixi(i+1)/2S2i+1
n+2 A

4N−2i−1
n+1

• (2) y2N−1−ixi(i+1)/2+N(2N−2i−1)A2i+1
n+1 S

4N−2i−1
n+2

By taking j = 2N − 1− i, we can rewrite the second row of vertices as follows:

• (1) yixi(i+1)/2S2i+1
n+2 A

4N−2i−1
n+1

• (2) yjxj(j+1)/2S2j+1
n+2 A

4N−2j−1
n+1

Note that i runs from 0 to N − 1, and j runs from N to 2N − 1. We can thus combine
our two rows of vertices into one, indexed by i running from 0 to 2N − 1, and thus obtain
the induction thesis.

Now, let G′n be obtained from Gn by removing all the terminals An+1 and Sn+2. The
convex hull of Ψ(G′n) is the polygon P with vertices xiyi(i+1)/2, for i ∈ [0..N − 1].

Now, we create a new grammar G◦n over x, y, z whose Parikh image will be geometrically
the infinite cone with base P . This is done simply by adding a new initial symbol S◦ to G′n,

with two transitions S◦
z→ S0S

◦ and S◦
0→ 0. It can be easily seen that periods are single

exponential, and since Ψ(G◦n) is an infinite cone with 2n edges, we cannot write Ψ(G◦n) as
a union of a polynomial number of simple bundles – indeed, each simple bundle can cover
only at most 3 edges.
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5. Complexity results

In this section, we provide the tight complexity bounds for the pproblems we are considering.
Some of the results have been previously known (e.g., [Huy84, Esp97]), we include all the
proofs for completeness.

Theorem 5.1. The following membership problem in commutative regular grammars is in
P for a fixed Σ:

Given: a regular grammar G, v ∈ ZΣ

Decide whether v ∈ Ψ(G)

To prove this Theorem, we will need the following two lemmas:

Lemma 5.2. For P ⊆ Q, let

Rn(P, q) = {Ψ(R) : R is a run from q, |R| ≤ n, and P ⊆ supp(R)} .
For a regular grammar G over Σ of size A with N nonterminals, the sets Rn(P, q) for all
P of cardinality at most k and all n ≤ B can be calculated in time O((2B)A|G|Nk+1) and
space O((2B)ANk+1).

Proof. Note that a run of length n from q consists of a transition from q to [q′] and a run
from q′ of length n− 1. Thus, we get the following recursive formula:

R1(P, q) = {Ψ(d) : d ∈ δ, source(d) = q, target(d) = 0, {q} ⊆ P}
Rn(P, q) = Rn−1(P, q) ∪Rn(P − {q} , q) ∪

{Ψ(d) +Rn−1(P, r) : d ∈ δ, target(d) = [r], source(d) = q}

We know that Rn(P, q) ⊆ [−n..n]Σ. This allows us to calculate all the sets Rn(p, q) using
dynamic programming.

Lemma 5.3. Let

Pn(q1, q2) = {Ψ(R) : R is a path from q1 to q2 and |R| ≤ n} .
For a regular grammar G over Σ of size A with N nonterminals, the sets Pn(q1, q2) for all
n ≤ B can be calculated in time O((2B)A|G|N2) and space O((2B)ANk+2).

Proof. The idea is essentially the same as in Lemma 5.2. We use the following recursive
formula:

P0(q1, q2) = ∅ if q1 6= q2

P0(q, q) = {0}
Pn(q1, q2) = Pn−1(P, q) ∪

{Ψ(d) + Pn−1(r, q2) : d ∈ δ, target(d) = [r], source(d) = q1}
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Proof of Theorem 5.1. The algorithm is as follows.

(1) Let BG be the bound on R1 from Theorem 2.13.
(2) Using Lemma 5.2 we find the sets RBG

(P, qI) for all P such that |P | ≤ A.
(3) Using Lemma 5.3 we find the sets PN (q, q) for all P such that |P | ≤ A.
(4) For each P such that |P | ≤ A:

For each linearly independent subset Z of ∪q∈PPN (q, q):
For each element w of RBG

(P, qI):
if v − w ∈ Z⊕N:

return YES.
(5) Otherwise return NO.

Since Z is linearly independent, we can check whether v − w ∈ Z⊕N using Gaussian
elimination.

It is straightforward from Theorem 2.13 that this algorithm will return YES if v ∈ Ψ(G).
It is also straightforward that v ∈ Ψ(G) if the algorithm answers YES.

This algorithm runs in time O
(
(2BG)A|G|NA+1 +NA+1

)
. It uses space O((2B)ANk+2).

Theorem 5.4. The membership problem in commutative grammars is in NP.

This result was previously known [Esp97].

Proof. From Theorem 2.13 we know that if v ∈ Ψ(G), then v = Ψ(R1) +
∑

Ψ(Ck)nk, where
R1 and Ck are bounded exponentially, and Ck are linearly independent. We can simply
guess R1 and Ck.

Theorem 5.5. The inclusion, universality, and disjointness problems in commutative
grammars over an alphabet of fixed size are in ΠP

2 .

Proof. We will consider inclusion; the other problems can be solved in the same way.
Let G1 and G2 be two commutative grammars in normal form with at most N non-

terminals each, over the same fixed alphabet Σ.
By Theorem 3.2, there exists a number B3.2 which is single exponential in N , such that

Ψ(G1) ⊆ Ψ(G2) iff Ψ(G1)∩ [−B3.2..B3.2]Σ ⊆ Ψ(G2)∩ [−B3.2..B3.2]Σ. Thus, we need to check
the membership in Ψ(G2) for all the elements of the set [−B3.2..B3.2]Σ ∩Ψ(G1). This can
be done in ΠP

2 .

Theorem 5.6. The inclusion and universality problems in regular grammars over an
alphabet of fixed size are in coNP.

Proof. The proof is just like for Theorem 5.5. Again, we need to check the membership
in Ψ(G2) for all the elements v of [−B3.2..B3.2]Σ ∩ Ψ(G1). However, this time checking
membership of v can be done in P, so the whole algorithm works in coNP.

Theorem 5.7. The problem of inclusion of commutative grammars over Σ = {a} is ΠP
2 hard.

This result was previously known [Huy84].

Proof. We will reduce the following problem (3-CNF-QSAT2). Let the clauses Cj (0 ≤
j < m) be disjunctions of at most three literals of form xi, ¬xi, ¬yi = or ¬yi. Does the
formula

∀x0∀x1 . . . ∀xk−1∃y0∃y1 . . . ∃yl−1

∧
j<m

Cj
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hold? Quantifiers run over two possible values of each variable (either xj or ¬xj is true).

The symbol Ai (i < k) generates a2i , for i < k. This can be realized with the following
rules: A0 → a, Ai → Ai−1Ai−1 for i > 0.

The symbol A?
i (i < k) generates a2i or nothing. This can be realized with the following

rules: A?
i → 0, A?

i → Ai.

The symbol Cj (j < m) generates (a2k)4j . This can be realized with the following rules:
Cj → Ak−1Ak−1, Cj → Cj−1Cj−1Cj−1Cj−1 for j > 0.

The symbol C?
j (j < m) generates (a2k)4j or nothing. This can be realized with the

following rules: C?
j → 0, C?

j → Cj .

The symbol Xi (i < k) has the following two rules: Xi → Ai
∏
j<m(C?

j : xi ∈
Cj)|

∏
j<m(C?

j : ¬xi ∈ Cj).
The symbol Yi (i < l) has the following rules: Yi →

∏
j<m(C?

j : yi ∈ Cj)|
∏
j<m(C?

j :

¬yi ∈ Cj).
The symbol S1 has the following rules: S1 →

∏
i<k A

?
i

∏
j<mCj .

The symbol S2 has the following rules: S2 →
∏
i<kXi

∏
i<l Yi.

We ask whether the language generated by S1 is a subset of the language generated by
S2.

Note that each Ai is generated at most once, and each Cj is generated at most three
times. The definitions of these symbols ensure that we can treat them as independent: for
each combinations of Ai and Cj in S1, we need to find the same combination in S2.

The language generated by S1 has 2k elements (for each Ai, we can either add it or not).
These correspond to possible valuations of variables of xi. To match the given element of S1

in S2, we need to make the same choices in Xi. We also need to generate C0C1C2 . . . Cj−1.
This means that we have to make choices in Yi which generate all the clauses which were
not covered by our choices in Xi. Therefore, S1 ⊆ S2 iff the formula is true.

Theorem 5.8. The problem of universality (is Ψ(G) = ZΣ?) of commutative grammars
over Σ = {a} is ΠP

2 hard.

Proof. We use the same reduction as in Theorem 5.7. It is enough to have a symbol S3 which
generates the complement of S1. Indeed, add a new symbol S4, with rules S4 → S2|S3. The
universality of S4 is equivalent to S1 (the complement of S3) being included in S2, which is
equivalent to our 3-CNF-QSAT2 formula being true.

This can be done as follows:
The symbol CHj generates 0, 2, or 3 copies of Cj . This can be done with the following

rules: CHj → 0|CjCj |CjCjCj .
The symbol Z+ generates any number of a’s which is at least 2k4m. This can be realized

as follows: Z+ → Cm−1Cm−1Cm−1Cm−1|aZ+.
The symbol Z− generates any negative number of a’s. This can be realized as follows:

Z− → a−1Z−|a−1.
Now, we can define S3 as S3 → Z+|Z−|

∏
i<k A

?
i

∏
j<mC

H
j .

Proposition 5.9. The problem of membership in commutative grammars over Σ = {a} is
NP hard.

Proof. We reduce the 3-CNF-SAT problem. The proof is the same as in Theorem 5.7,
except that we take k = 0.
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Proposition 5.10. Let G be a commutative regular grammar over Σ = {a}. Then the
problem of deciding universality (

∏
(G) = NΣ) is coNP-hard.

Proof. We reduce the 3CNF-SAT problem. Let φ =
∧

1≤i≤k Ci be a 3CNF-formula with

n variables x1 . . . xn (which can be 0 or 1) and k clauses. Let p1, p2, . . . , pn be n distinct
prime numbers. Let i ∈ [1..k]. Suppose that clause Ci is of form

∨
k∈[1..3] xak = vak . Our

grammar will have states Sij , where 0 ≤ j < Mi = pa1pa2pa3 ; we have cyclic transitions

Sij
a→ Si(j+1)modMi

, and Sij
0→ 0 for each j not satisfying

∨
k∈[1..3] j mod pak = vak . We also

have transitions s0
0→ Si0 for each i.

From simple number theoretic arguments we get that x /∈
∏

(G) iff the formula φ is
satisfied for xi = x mod pi.

Proposition 5.11. For a commutative regular grammar G over Σ (whose size is not fixed),
and K ∈ NΣ, the problem of deciding whether K ∈

∏
(G) is NP-hard.

Proof. We show a reduction from the Hamiltonian circuit problem. Let (V,E) be a graph.

We take Σ = Q = V , and for each edge (v1, v2) we add a transition v1
v2→ v2. We pick an

initial state s0 and add a final transition s0
0→ 0. The graph (V,E) has a Hamiltonian circuit

iff K = (1, 1, . . .) ∈ Ψ(G).

Proposition 5.12. The disjointness problem in commutative regular grammars (over an
alphabet of unfixed size) is coNP-complete.

Proof. From Proposition 5.11 we know that membership is NP-hard. We can easily construct
a grammar G2 such that Ψ(G2) = {K} (where K is from the proof of Proposition 5.11),
and ask for non-disjointness of G and G2.

From Theorem 5.4 we also know that membership is in NP (even for non-regular
grammars). We reduce non-disjointness of G1 and G2 to membership in the following way.
It is sufficient to check whether 0 ∈ Ψ(G1)−Ψ(G2), where Ψ(G1)−Ψ(G2) = {v1− v2 : v1 ∈
Ψ(G1), v2 ∈ Ψ(G2)}. We create a grammar G1−G2 such that Ψ(G1−G2) = Ψ(G1)−Ψ(G2):
first, create the grammar −G2 such that Ψ(−G2) = {−v : v ∈ Ψ(G2) by replacing each
production by its negative, and then create the grammar G1 −G2 by replacing each final
transition in G1 (i.e., δ such that target(δ) = 0) by transitions going to each initial state of
G2.

The following table summarizes the complexities of various problems regarding com-
mutative grammars. Alphabet size F means fixed, and U means unfixed. We include the
very recent result regarding unfixed alphabets [HH14] that inclusion for regular grammars
over an unfixed alphabet is coNEXP hard; it is likely that the proof can be also adapted for
universality. On the other hand, it is known from [Huy85] that inclusion and universality
for context-free grammars over an unfixed alphabet is in coNEXP. For completeness, we
also include N (the non-commutative case – note that the membership problem is actually a
different problem in the non-commutative case, since we cannot encode long words succinctly
with the length of the word in binary); these results are known from other sources ([MS72],
also see [HU79] for a reference). The letter c means complete. Note that inclusion and
equivalence problems easily reduce to each other.
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regular languages
alphabet size 1 2 F U N
membership P P P NPc P
universality coNPc coNPc coNPc ? PSPACEc

inclusion coNPc coNPc coNPc coNEXPc PSPACEc
disjointness P P P coNPc P

context-free languages
alphabet size 1 2 F U N
membership NPc NPc NPc NPc P
universality ΠP

2 c ΠP
2 c ΠP

2 c ? undecidable
inclusion ΠP

2 c ΠP
2 c ΠP

2 c coNEXPc undecidable
disjointness coNPc coNPc coNPc ? undecidable

6. Conclusion

The table above contains question marks for languages of unfixed size. It is known that
these problems are ΠP

2 -hard for context-free grammars, and they are in NEXP. Our method
heavily uses the fact that the size of the alphabet is fixed, so we probably cannot easily
generalize it. As mentioned above, coNEXP hardness of inclusion for regular grammars has
been shown recently [HH14].

A natural question extending this research is counting. We can answer the question
whether v ∈ Ψ(G), but what about the number of paths (or words) which lead to the given
v? This number is exponential in |v|, and thus it could be very large, so we cannot always
hope for the exact answer—but we could count up to some threshold T , modulo M , or count
approximately. We can answer the question whether Ψ(G1) ⊆ Ψ(G2), but is the number of
paths smaller in the first case than in the second case?

Thanks to everyone on AUTOBÓZ 2009 for the great atmosphere of research, especially
to S lawek Lasota for introducing me to these problems. Also I would like to thank Anthony
Widjaja Lin for our collaboration on the merged paper [KT10], and the anonymous referees
for their insightful comments. This work is supported by the Polish National Science Centre
Grant DEC - 2012/07/D/ST6/02435.
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