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ABSTRACT. “Unidirectional channel systems” (Chambart & Schnoebelen, CONCUR 2008) are finite-
state systems where one-way communication from a Sender to a Receiver goes via one reliable and
one unreliable unbounded fifo channel. While reachability is decidable for these systems, equipping
them with the possibility of testing regular properties on the contents of channels makes it undecidable.
Decidability is preserved when only emptiness and nonemptiness tests are considered: the proof relies
on an elaborate reduction to a generalized version of Post’s Embedding Problem.

1. INTRODUCTION

Channel systems are a family of computational models where concurrent agents communicate
via (usually unbounded) fifo communication channels [BZ83]. They are sometimes called queue
automata when there is only one finite-state agent using the channels as fifo memory buffers.
These models are well-suited to the formal specification and algorithmic analysis of communication
protocols and concurrent programs [BG99, BH99, Mus10].

A particularly interesting class of channel systems are the lossy channel systems, “LCSes” for
short, popularized by Abdulla, Bouajjani, Jonsson, Finkel, et al. [CFP96, AJ96, ACBJ04]. Lossy
channels are unreliable and can lose messages nondeterministically and without any notification.
This weaker model is easier to analyse: safety, inevitability and several more properties are decidable
for LCSes [CFP96, AJ96, ABRS05, BBS07] while they are undecidable when channels are reliable.
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Let us stress that LCSes also are an important and fundamental computation model per se.
During the last decade, they have been used as an automaton model to prove the decidability (or the
hardness) of problems on Timed Automata, Metric Temporal Logic, modal logics, etc. [ADOW05,
OW06, Kur06, KKWZ06, LW08, BMO+12, LOW13, BFL13]. They also are a very natural low-
level computational model that captures some important complexity classes in the ordinal-recursive
hierarchy [CS08c, SS11, KS13, SS13, Sch13].

Unidirectional channel systems, “UCSes” for short, are channel systems where a Sender process
communicates to a Receiver process via one reliable and one lossy channel, see Fig. 1. They were
introduced by Chambart and Schnoebelen who identified them as a minimal setting to which one can
reduce reachability problems for more complex combinations of lossy and reliable channels [CS08a].
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Figure 1: UCS = buffered one-way communication via one reliable and one lossy channels

UCSes are limited to one-way communication: there are no channels going from Receiver to
Sender. One-way communication appears, e.g., in half-duplex protocols [IDP03] or in the acyclic
networks of [LMP08, ABT08].

The reachability problem for UCSes is quite challenging: it was proved decidable by refor-
mulating it more abstractly as the (Regular) Post Embedding Problem (PEP), which is easier to
analyze [CS07, CS08b, CS10]. We want to stress that, while PEP is a natural variant of Post’s Cor-
respondence Problem, it was first identified through questions on UCSes. Recently, PEP has proved
useful in other areas: graph logics for databases [BFL13] and fast-growing complexity [KS13].

Testing channel contents. In basic channel systems, the agents are not allowed to inspect the contents
of the channels. However, it is sometimes useful to enrich the basic setup with tests. For example, a
multiplexer process will check each of its input channels in turn and will rely on emptiness and/or
non-emptiness tests to ensure that this round robin policy does not block when one input channel is
empty [RY86]. In other settings, channel systems with insertion errors becomes more expressive
when emptiness tests are allowed [BMO+12].

In this article we consider such emptiness and non-emptiness tests, as well as more general
tests given by arbitrary regular predicates on channel contents. A simple example is given below in
Fig. 2 (see page 6) where some of Sender’s actions depend on the parity of the number of messages
currently in r. When verifying plain UCSes, one can reorder steps and assume a two-phase behaviour
where all Sender steps occur before all Receiver steps. When one has tests, one can no longer assume
this.
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Our contribution. We extend UCSes with the possibility of testing channel contents with regular
predicates (Section 2). This makes reachability undecidable even with restricted sets of simple tests
(Section 3). Our main result (Theorem 4.1) is that reachability is decidable for UCSes extended with
emptiness and non-emptiness tests. The proof goes through a series of reductions, some of them
nontrivial, that leave us with UCSes extended by only emptiness tests on a single side of a single
channel, called “Zl

1 tests” (sections 5 and 6). This minimal extension is then reduced (Section 7) to
PEP

partial
codir , or “PEP with partial codirectness”, a nontrivial extension of PEP that was recently proved

decidable [KS14]. This last reduction extends the reduction from UCS to PEP in [CS08b]. Finally,
Section 8 proves that emptiness and/or non-emptiness tests strictly enrich the basic UCS model.

Related work. Emptiness and non-emptiness tests have been considered already in [RY86], while
Promela (SPIN’s input language) offers head tests (that test the first available message without
consuming it) [Hol91]. Beyond such specific tests, we are not aware of results that consider models
with a general notion of tests on channel contents (except in the case of LCSes where very general
tests can be allowed without compromising the main decidability results, see [BS13, sect. 6]).

Regarding unidirectional channels, the decidability results in [ABT08, LMP08, HLMS12,
HLS12, CHSS13] apply to systems where communication between two agents is limited to a
single one-way channel (sometimes complemented with a finite shared memory, real-time clock,
integer-valued counter, or local pushdown stack). Finally let us mention the recent work by Clemente
et al. where fifo and “bag” channels can be mixed: one can see bag channels as unreliable channels
where the temporal ordering of messages is not preserved [CHS14].

2. UNIDIRECTIONAL CHANNEL SYSTEMS

2.1. Unidirectional Channel System with Tests. A UCST is a tuple S = (Ch,M,Q1,∆1,Q2,∆2),
where M is the finite alphabet of messages, Q1, Q2 are the disjoint finite sets of states of Sender and
Receiver, respectively, and ∆1, ∆2 are the finite sets of rules of Sender and Receiver, respectively.
Ch= {r,l} is a fixed set of channel names, just channels for short, where r is reliable and l is lossy
(since messages in l can spontaneously disappear).

A rule δ ∈ ∆i is a tuple (q,c,α,q′) ∈ Qi×Ch×Act×Qi where the set of actions Act contains
tests, checking whether the contents of c ∈ Ch belongs to some regular language R ∈ Reg(M), and
communications (sending a message a ∈ M to c in the case of Sender’s actions, reading it for
Receiver’s). Allowed actions also include the empty action (no test, no communication) that will be
treated as “sending/reading the empty word ε”; formally we put Act def

= Reg(M)∪M∪{ε}.
We also write a rule (q,c,α,q′) as q

c,α−→ q′, or specifically q c:R−→ q′ for a rule where the action is
a test on c, and q c!a−→ q′ or q c?a−→ q′ when the action is a communication by Sender or by Receiver,
respectively. We also write just q−→ q′ or q >−→ q′ when the action is empty.

In graphical representations like Fig. 1, Sender and Receiver are depicted as two disjoint directed
graphs, where states appear as nodes and where rules q

c,α−→ q′ appear as edges from q to q′ with the
corresponding labellings.
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2.2. Operational Semantics. The behaviour of a UCST is defined via an operational semantics
along standard lines. A configuration of S = (Ch,M,Q1,∆1,Q2,∆2) is a tuple C ∈Conf S

def
= Q1×Q2×

M∗×M∗. In C = (q1,q2,u,v), q1 and q2 are the current states of Sender and Receiver, respectively,
while u and v are the current contents of r and l, respectively.

The rules in ∆1∪∆2 give rise to transitions in the expected way. We use two notions of transitions,
or “steps”, between configurations. We start with so-called “reliable” steps: given two configurations

C = (q1,q2,u,v), C′= (q′1,q
′
2,u
′,v′) and a rule δ= (q,c,α,q′), there is a reliable step denoted C δ−→C′

if, and only if, the following four conditions are satisfied:
states: q = q1 and q′ = q′1 and q2 = q′2 (for Sender rules), or q = q2 and q′ = q′2 and q1 = q′1 (for

Receiver rules);
tests: if δ is a test rule q c:R−→ q′, then c= r and u ∈ R, or c= l and v ∈ R, and furthermore u′ = u

and v′ = v;
writes: if δ is a writing rule q c!x−→ q′ with x ∈ M∪{ε}, then c= r and u′ = ux and v′ = v, or c= l

and u′ = u and v′ = vx;
reads: if δ is a reading rule q c?x−→ q′, then c = r and u = xu′ and v′ = v, or c = l and u′ = u and

v = xv′.
This reliable behaviour is completed with message losses. For v,v′ ∈ M∗, we write v′ v1 v when v′ is
obtained by deleting a single (occurrence of a) symbol from v, and we let v denote the reflexive-
transitive closure of v1. Thus v′ v v when v′ is a scattered subword, i.e., a subsequence, of v. (E.g.,
aba v1 abba and aa v abba.) This is extended to configurations and we write C′ v1 C or C′ vC
when C′ = (q1,q2,u,v′) and C = (q1,q2,u,v) with v′ v1 v or v′ v v, respectively. Now, whenever
C′ v1 C, the operational semantics of S includes a step from C to C′, called a message loss step, and
denoted C los−→C′, considering that “los” is an extra, implicit rule that is always allowed.

Thus a step C δ−→C′ of S is either a reliable step, when δ ∈ ∆1∪∆2, or a (single) message loss,
when δ = los.

Remark 2.1 (On reliable steps). As is usual with unreliable channel systems, the reliable semantics
plays a key role even though the object of our study is reachability via not necessarily reliable steps.
First it is a normative yardstick from which one defines the unreliable semantics by extension. Then
many hardness results on lossy systems are proved via reductions where a lossy system simulates in
some way the reliable (and Turing-powerful) behaviour: proving the correctness of such reductions
requires having the concept of reliable steps.

Remark 2.2 (UCSTs and well-structured systems). It is well-known that (M∗,v) is a well-quasi-
order (a wqo): any infinite sequence v0,v1,v2, . . . of words over M contains an infinite increasing
subsequence vi0 v vi1 v vi2 v ·· · This classic result, called Higman’s Lemma, plays a fundamental
role in the algorithmic verification of lossy channel systems and other well-structured systems [CFP96,
FS01]. Here we note that (Conf ,v) is not a wqo since C v D requires equality on channel r, so that
UCSTs are not well-structured systems despite the presence of a lossy channel.

2.3. Reachability. A run from C0 to Cn is a sequence of chained steps C0
δ1−→ C1

δ2−→ C2 · · ·
δn−→ Cn,

abbreviated as C0
∗−→Cn (or C0

+−→Cn when we rule out zero-length runs).
The (Generalized) Reachability Problem, or just “G-G-Reach” for short, is the question, given

a UCST S = (Ch,M,Q1,∆1,Q2,∆2), some states pin, pfi ∈ Q1, qin,qfi ∈ Q2, some regular languages
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U,V,U ′,V ′ ∈ Reg(M), whether there are some u ∈U , v ∈V , u′ ∈U ′ and v′ ∈V ′ such that S has a run
Cin = (pin,qin,u,v)

∗−→Cfi = (pfi,qfi,u′,v′).
Since U , V , U ′, V ′ can be taken as singleton sets, the G-G-Reach problem is more general than

asking whether S has a run Cin
∗−→Cfi for some given initial and final configurations. We shall need the

added generality in Section 6 in particular. However, sometimes we will also need to put restrictions
on U , V , U ′, V ′. We use E-G-Reach to denote the reachability problem where U = V = {ε}, i.e.,
where Cin has empty channels (E is for “Empty”), while U ′,V ′ ∈ Reg(M) are not constrained. We will
also consider the E-E-Reach restriction where U =V =U ′ =V ′ = {ε}. It is known —see [CS08a,
Theo 3.1]— that E-E-Reach is decidable for UCSes, i.e., UCSTs that do not use tests.

3. TESTING CHANNELS AND THE UNDECIDABILITY OF REACHABILITY

Despite their similarities, UCSes and LCSes (lossy channel systems) behave differently. The
algorithms deciding reachability for LCSes can easily accommodate regular (or even more expressive)
tests [BS13, Sect. 6]. By contrast, UCSes become Turing-powerful when equipped with regular tests.
The main result of this section is the undecidability of reachability for UCSTs. To state the respective
theorem in a stronger version, we first introduce a notation for restricting the (regular) tests.

3.1. Restricted sets of tests. When T ⊆ Reg(M), we write UCST[T ] to denote the class of UCSTs
where only tests, i.e. languages, belonging to T are allowed. Thus UCSTs and UCSes coincide with
UCST[Reg(M)] and UCST[∅], respectively. We single out some simple tests (i.e., languages) defined
via regular expressions:

Even def
= (M.M)∗, Odd def

= M.Even, Z def
= ε, N def

= M+, Ha
def
= a.M∗.

Thus P = {Even,Odd} is the set of parity tests, Z is the emptiness (or “zero”) test, N is the non-
emptiness test and H = {Ha | a ∈ M} is the set of head tests (that allows checking what is the first
message in a channel without consuming it). Note that the non-emptiness test can be simulated with
head tests.

Before proving (in later sections) the decidability of G-G-Reach for UCST[{Z,N}], we start by
showing that E-E-Reach is undecidable for both UCST[P ] and UCST[H ]: this demonstrates that we
get undecidability not only with simple “global” tests (parity tests) whose outcome depends on the
entire contents of a channel, but also with simple “local” tests (head tests).

In fact, we even show the stronger statement that E-E-Reach is undecidable for UCST[P r
1 ]

and UCST[H r
1 ], where the use of subscripts and/or superscripts means that we consider restricted

systems where only Sender (for subscript 1, only Receiver for subscript 2) may use the tests, and that
the tests may only apply on channel r or l (depending on the superscript). E.g., in UCST[P r

1 ] the
only allowed tests are parity tests performed by Sender on channel r.

Theorem 3.1. Reachability (E-E-Reach) is undecidable for both UCST[P r
1 ] and UCST[H r

1 ].

We now proceed to prove Theorem 3.1 by simulating queue automata with UCSTs.
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3.2. Simulating queue automata. Like queue automata, UCSes have a reliable channel but, unlike
them, Sender (or Receiver) cannot both read and write from/to it. If Sender could somehow read
from the head of r, it would be as powerful as a queue automaton, i.e., Turing-powerful. Now we
show that parity tests used by Sender on r allow us to construct a simple protocol making Receiver
act as a proxy for Sender and implement read actions on its behalf. See Fig. 2 for an illustrating
example of how Sender simulates a rule p1

r?a−→ p2.

qproxy

l?a

r?a

l?c r?c

l?b

r?b p1

p2

r:Odd

l!a

r:Even

r:Even

l!a

r:Odd

r

l

a b c a c

a

Figure 2: Sender simulates “p1
r?a−→ p2” with parity tests and proxy Receiver

Described informally, the protocol is the following:
(1) Channel l is initially empty.
(2) In order to “read” from r, Sender checks and records whether the length of the current contents

of r is odd or even, using a parity test on r.
(3) It then writes on l the message that it wants to read (a in the example).
(4) During this time Receiver waits in its initial qproxy state and tries to read from l. When it reads a

message a from l, it understands it as a request telling it to read a from r on behalf of Sender.
Once it has performed this read on r (when a really was there), it returns to qproxy and waits for
the next instruction.

(5) Meanwhile, Sender checks that (equivalently, waits until) the parity of the contents of r has
changed, and on detecting this change, concludes that the read was successful.

(6) Channel l is now empty and the simulation of a read by Sender is concluded.
If no messages are lost on l, the protocol allows Sender to read on r; if a message is lost on l, the
protocol deadlocks. Also, Sender deadlocks if it attempts to read a message that is not at the head of
r, in particular when r is empty; i.e., Sender has to guess correctly.

Our simulation of a queue automaton thus introduces many possible deadlocks, but it still
suffices for proving undecidability of reachability, namely of E-E-Reach for UCST[P r

1 ].
To prove undecidability for UCST[H r

1 ] we just modify the previous protocol. We use two copies
of the message alphabet, e.g., using two “colours”. When writing on r, Sender strictly alternates
between the two colours. If now Sender wants to read a given letter, say a, from r, it checks that an a
(of the right colour) is present at the head of r by using H r

1 tests. It then asks Receiver to read a by
sending a message via l. Since colours alternate in r, Sender can check (i.e., wait until), again using
head tests, that the reading of a occurred.

4. MAIN THEOREM AND A ROADMAP FOR ITS PROOF

We will omit set-brackets in the expressions like UCST[{Z,N}], UCST[{Z1,N1}], UCST[{Zl
1}]; we

thus write UCST[Z,N], UCST[Z1,N1], UCST[Zl
1 ], etc. We now state our main theorem:

Theorem 4.1. Reachability (G-G-Reach) is decidable for UCST[Z,N].
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Hence adding emptiness and nonemptiness tests to UCSes does not compromise the decidability
of reachability (unlike what happens with parity or head tests).

Our proof of Theorem 4.1 is quite long, being composed of several consecutive reductions, some
of which are nontrivial. A scheme of the proof is depicted in Fig. 3, and we give a brief outline in the
rest of this section.

We first recall that the reachability problem for UCSes (i.e., for UCST[∅]) was shown decidable
via a reduction to PEP (Post’s Embedding Problem) in [CS08b]. Relying on this earlier result (by
reducing UCST[Z,N] to UCST[∅]) or extending its proof (by reducing UCST[Z,N] to PEP directly)
does not seem at all trivial. At some point PEPpartial

codir , a non-trivial generalization of the basic PEP
problem, was introduced as a certain intermediate step and shown decidable in [KS14].

Once it is known that PEPpartial
codir is decidable, our proof for Theorem 4.1 is composed of two

main parts:

(1) One part, given in Section 7, is a reduction of E-E-Reach for UCST[Zl
1 ] to PEP

partial
codir . It

is relatively compact, since we have found a suitable intermediate notion between runs of
UCST[Zl

1 ] and solutions of PEPpartial
codir .

G-G-Reach[Z, N]

G-G-Reach[Z1, N1]

E-G-Reach[Z1, N1]

E-G-Reach[Z1]

E-E-Reach[Z1] G-G-Reach[Zl
1 ]

E-E-Reach[Zl
1 ]

PEP
partial
codir

Sec. 5.2

Sec. 5.3

Sec. 5.4

Sec. 5.5

Sec. 6
Turing reduction

reuse

Sec. 7

Figure 3: Roadmap of the reductions from G-G-Reach[Z, N] to PEP
partial
codir

(2) The other part of the proof, given in sections 5 and 6, reduces G-G-Reach for UCST[Z,N] to
E-E-Reach for UCST[Zl

1 ]. It has turned out necessary to decompose this reduction in a series of
smaller steps (as depicted in Fig. 3) where features such as certain kinds of tests, or general initial
and final conditions, are eliminated step by step. The particular way in which these features are
eliminated is important. For example, we eliminate Z2 and N2 tests by one simulation reducing
G-G-Reach[Z, N] to G-G-Reach[Z1, N1] (Sec. 5.2); the simulation would not work if we wanted
to eliminate Z2 and N2 separately, one after the other.

One of the crucial steps in our series is the reduction from E-E-Reach[Z1] to G-G-Reach[Zl
1 ]. This

is a Turing reduction, while we otherwise use many-one reductions. Even though we start with a
problem instance where the initial and final configurations have empty channel contents, we need
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oracle calls to a problem where the initial and final conditions are more general. This alone naturally
leads to considering the G-G-Reach instances.

We note that, when UCSes are equipped with tests, reducing from G-G-Reach to E-E-Reach
is a problem in itself, for which the simple “solution” that we sketched in our earlier extended
abstract [JKS12] does not work.

It seems also worth noting that all reductions in Section 5 treat the two channels in the same
way; no special arrangements are needed to handle the lossiness of l. The proofs of correctness, of
course, do need to take the lossiness into account.

5. REDUCING G-G-REACH FOR UCST[Z,N] TO E-E-REACH FOR UCST[Z1]

This section describes four simulations that, put together, entail Point 1 in Theorem 5.1 below.
Moreover, the last three simulations also yield Point 2. We note that the simulations are tailored to
the reachability problem: they may not preserve other behavioural aspects like, e.g., termination or
deadlock-freedom.

Theorem 5.1.
(1) G-G-Reach[Z,N] many-one reduces to E-E-Reach[Z1].
(2) G-G-Reach[Zl

1 ] many-one reduces to E-E-Reach[Zl
1 ].

Before proceeding with the four reductions, we present a simple Commutation Lemma that lets
us reorder runs and assume that they follow a specific pattern.

5.1. Commuting steps in UCST[ZZZ,,,NNN] systems. We say that two consecutive steps C δ1−→C′ δ2−→C′′

(of some S) commute if C δ2−→ D δ1−→C′′ for some configuration D of S. The next lemma lists some
conditions that are sufficient for commuting steps in an arbitrary UCST[Z,N] system S:

Lemma 5.2 (Commutation). Two consecutive steps C δ1−→C′ δ2−→C′′ commute in any of the following
cases:
(1) No contact: δ1 is a read/write/test by Sender or Receiver acting on one channel c (or a message

loss on c= l), while δ2 is a rule of the other agent acting on the other channel (or is a loss).
(2) Postponable loss: δ1 is a message loss that does not occur at the head of (the current content of)

l.
(3) Advanceable Sender: δ1 is a Receiver’s rule or a loss, and δ2 is a Sender’s rule but not a Z1-test.
(4) Advanceable loss: δ2 is a loss and δ1 is not an “l:N” test or a Sender’s write on l.

Proof. By a simple case analysis. For example, for (2) we observe that if δ1 loses a symbol behind
the head of l, then there is another message at the head of l, and thus commuting is possible even if
δ2 is an “l?a” read or an “l:Z” test.

We will use Lemma 5.2 several times and in different ways. For the time being, we consider
in particular the convenient restriction to “head-lossy” runs. Formally, a message loss C los−→C′ is
head-lossy if it is of the form (p,q,u,av) los−→ (p,q,u,v) where a ∈ M (i.e., the lost message was the
head of l). A run Cin

∗−→Cfi is head-lossy if all its message loss steps are head-lossy, or occur after
all the reliable steps in the run (it is convenient to allow unconstrained losses at the end of the run).
Repeated use of Point (2) in Lemma 5.2 easily yields the next corollary:

Corollary 5.3. If there is a run from Cin to Cfi then there is a head-lossy run from Cin to Cfi.
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5.2. Reducing G-G-Reach[ZZZ,,,NNN] to G-G-Reach[ZZZ111,,,NNN111]. Our first reduction eliminates Z and N
tests by Receiver. These tests are replaced by reading two special new messages, “z” and “n”, that
Sender previously put in the channels.

Formally, we consider an instance of G-G-Reach[Z,N], made of a given UCST S = ({r,l},
M,Q1,∆1,Q2,∆2), given states pin, pfi ∈ Q1, qin,qfi ∈ Q2, and given languages U,V,U ′,V ′ ∈ Reg(M).
We construct a new UCST S′ from S as follows (see Fig. 4):

(1) We add two special new messages z,n to M, thus creating the alphabet M′ def
= M]{z,n}.

(2) For each channel c ∈ {r,l} and each Sender’s state p ∈ Q1 we add new states p1
c, p2

c and an
“(emptiness) testing loop” p c:Z−→ p1

c
c!z−→ p2

c
c:Z−→ p (i.e., three new rules).

(3) For every Sender’s writing rule θ of the form p c!x−→ p′ we add a new state pθ and the following
three rules: p >−→ pθ, pθ

c!n−→ pθ (a “padding loop”), and pθ

c!x−→ p′.
(4) For every Receiver’s rule q c:Z−→ q′ (testing emptiness of c) we add the rule q c?z−→ q′.
(5) For every Receiver’s rule q c:N−→ q′′ (testing non-emptiness of c) we add the rule q c?n−→ q′′.
(6) At this stage, the resulting system is called Saux.
(7) Finally we remove all Receiver’s tests, i.e., the rules q c:Z−→ q′ and q c:N−→ q′′. We now have S′.

q

q′ q′′

c:Z c
′:N

p

p′

c!a

S

r

l

a
⇒

q

q′ q′′

c?z c
′?n

p

p′

pθ

p1
c

p2
c

p1
c′

p2
c′

c:Z
c!z

c:Z

c!a
⊤

c!a

c!n

S′

r

l

n a

z

Figure 4: Reducing G-G-Reach[Z,N] to G-G-Reach[Z1,N1]: eliminating Receiver’s tests

The intuition behind S′ is that Sender runs a small protocol signaling to Receiver what the status of
the channels is. When a channel is empty, Sender may write a z to it that Receiver can read in place
of testing for emptiness. For correctness, it is important that Sender does not proceed any further
until this z has disappeared from the channel. For non-emptiness tests, Sender can always write
several extraneous n messages before writing an original message. Receiver can then read these n’s
in place of testing for nonemptiness.

For w = a1a2 . . .a` ∈ M∗, we let pad(w) def
= n∗a1n

∗a2 . . .n
∗a` denote the set (a regular language)

of all paddings of w, i.e., words obtained by inserting any number of n’s in front of the original
messages. Note that pad(ε) = {ε}. This is extended to arbitrary languages in the usual way:
for L ⊆ M∗, pad(L) =

⋃
w∈L pad(w) and we note that, when L is regular, pad(L) is regular too.

Furthermore, one easily derives an FSA (a finite-state automaton) or a regular expression for pad(L)
from an FSA or a regular expression for L.

By replacing S, U , V with S′, pad(U), pad(V ) (and keeping pin, pfi, qin, qfi, U ′, V ′ unchanged),
the initial G-G-Reach[Z,N] instance is transformed into a G-G-Reach[Z1,N1] instance. The correct-
ness of this reduction is captured by the next lemma, that we immediately proceed to prove in the
rest of section 5.2:

Lemma 5.4. For any u,v,u′,v′ ∈ M∗, S has a run (pin,qin,u,v)
∗−→ (pfi,qfi,u′,v′) if, and only if, S′ has

a run (pin,qin, û, v̂)
∗−→ (pfi,qfi,u′,v′) for some padded words û ∈ pad(u) and v̂ ∈ pad(v).
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Though we are ultimately interested in S and S′, it is convenient to consider special runs of Saux
since Saux “contains” both S and S′. We rely on Corollary 5.3 and tacitly assume that all runs are head-

lossy. We say that a (head-lossy) run C0
δ1−→C1

δ2−→ ·· · δn−→Cn of Saux is faithful if C0 = (p0,q0,u0,v0)
with u0,v0 ∈ pad(M∗), Cn =(pn,qn,un,vn) with un,vn ∈ M∗, p0, pn ∈Q1, q0,qn ∈Q2, and the following
two properties are satisfied (for all i = 1,2, . . . ,n):

– if δi is some p c:Z−→ p1
c then δi+1, δi+2, and δi+3 are p1

c
c!z−→ p2

c, q c?z−→ q′, p2
c
c:Z−→ p (for some

q,q′ ∈ Q2). In this case, the subrun Ci−1
∗−→Ci+3 is called a P1-segment of the run.

(P1)

– if δi is some p >−→ pθ then there is some j > i such that δi+1,δi+2, . . . ,δ j are pθ

c!n−→ pθ

c!n−→
·· · c!n−→ pθ

c!a−→ p′ for some a ∈ M and p′ ∈ Q1. The subrun Ci−1
∗−→C j is called a P2-segment.

(P2)

Informally, a run is faithful if it uses the new rules (introduced in Saux) in the “intended” way: e.g.,
P1 enforces that each z written by Sender (necessarily via a rule pc1

c!z−→ pc2) is immediately read after
being written in the empty channel. We note that any run of S is trivially faithful since it does not use
the new rules.

We now exhibit two reversible transformations of runs of Saux, one for Z tests in §5.2.1, the other
for N tests in §5.2.2, that preserve faithfulness. This will allow us to translate runs of S, witnessing
the original instance, to faithful runs of S′, witnessing the created instance, and vice versa. Finally
we show in §5.2.3 that if there is a run of S′ witnessing the created instance, then there is a faithful
one as well.

When describing the two transformations we shall assume, in order to fix notations, that
we transform a test on channel l; the case for the channel r is completely analogous. For both
transformations we assume a faithful (head-lossy) run π of Saux in the following form:

(pin,qin,u0,v0) =C0
δ1−→C1

δ2−→C2 · · ·
δn−→Cn = (pfi,qfi,un,vn) (π)

where δ1, . . . ,δn can be rules of Saux or the “los” symbol for steps where a message is lost. For
i = 0,1, . . . ,n, we let Ci = (pi,qi,ui,vi).

5.2.1. Trading Z2 tests for P1-segments. Assume that the step Cm
δm+1−−→Cm+1 in π is a Z2-test (an

emptiness test by Receiver), hence has the form (p,q,w,ε) l:Z−→ (p,q′,w,ε) if we assume c= l. We
may replace this step with the following steps

(p,q,w,ε) l:Z−→ (p1
l,q,w,ε)

l!z−→ (p2
l,q,w,z)

l?z−→ (p2
l,q
′,w,ε) l:Z−→ (p,q′,w,ε) (5.1)

using the rules introduced in Saux. This transforms (the faithful run) π into another faithful run π′,
decreasing the number of Receiver’s tests (by one occurrence of a Z2-test). In the other direction, if
π contains a P1-segment Cm−1

∗−→Cm+3, it must be of the form (5.1), when the involved channel is
c= l, and we can replace it with one step Cm−1

c:Z−→Cm+3, preserving faithfulness.

5.2.2. Trading N2 tests for occurrences of n. Now assume that the step Cm
δm+1−−→Cm+1 is an Nl

2 -test,

hence has the form (p,q,u,xv) l:N−→ (p,q′,u,xv) for some message x ∈ M′. Now x 6= z since there
was no z’s in v0 and, as noted above, any z written by Sender in a faithful run is immediately read.
Hence x ∈ M∪{n}. We want to replace the q l:N−→ q′ test (by Receiver) with a q l?n−→ q′ but this requires
inserting one n in l, i.e., using a new rule pθ

l!n−→ pθ at the right moment.
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We now follow the (occurrence of) x singled out in Cm and find the first configuration, say
Ck, where this x appears already; we can thus write vi = wi xw′i, i.e., Ci = (pi,qi,ui,wi xw′i), for
i = k,k+1, . . . ,m. Here x always depicts the same occurrence, and e.g., wm xw′m = xv entails wm = ε

and w′m = v. By adding n in front of x in each Ci for i = k,k+1, . . . ,m, we obtain new configurations

C′k,C
′
k+1, . . . ,C

′
m given by C′i = (pi,qi,ui,winxw′i). Now C′k

δk+1−−→C′k+1
δk+2−−→ ·· · δm−→C′m is a valid run of

Saux since x is not read during Ck
∗−→Cm and since, thanks to the presence of x, adding one n does not

change the (non)emptiness status of l in this subrun. Moreover, since q l:N−→ q′ is a rule of S, there is
a rule q l?n−→ q′ in Saux, where C′m = (p,q,u,nxv) l?n−→ (p,q′,u,xv) =Cm+1 is a valid step.

If k = 0 (i.e., if x is present at the beginning of π), we have exhibited a faithful run C′0
∗−→C′m

l?n−→
Cm+1

∗−→Cn, starting from C′0 = (pin,qin,u0,w0nxw′0), where w0nxw′0 ∈ pad(v0) since v0 = w0 xw′0.

If k > 0, the highlighted occurrence of x necessarily appears in Ck via δk = pk−1
l!x−→ pk and we have

vk = vk−1x. If δk is a rule of S, we may exhibit a sequence Ck−1
∗−→C′k using the new rules

Ck−1
>−→ (pδk ,qk−1,uk−1,vk−1)

l!n−→ (pδk ,qk−1,uk−1,vk−1n)
l!x−→ (pk,qk−1,uk−1,vk−1nx) =C′k ,

while if δk is a new rule pθ

l!x−→ pk, we can use Ck−1
l!n−→l!x−→C′k. In both cases we can use Ck−1

∗−→C′k
to construct a new faithful run C0

∗−→Ck−1
∗−→C′k

∗−→C′m −→Cm+1
∗−→Cn. We have again decreased the

number of Receiver’s tests, now by one occurrence of an N2-test.
For the backward transformation we assume that n occurs in a configuration of π. We select one

such occurrence and let Ck,Ck+1, . . . ,Cm (0≤ k ≤ m < n) be the part of π where this occurrence of
n appears. For i = k,k+1, . . . ,m, we highlight this occurrence of n by writing vi in the form winw′i
(assuming w.l.o.g. that the n occurs in l), i.e., we write Ci = (pi,qi,ui,winw′i). Removing the n

yields new configurations C′k,C
′
k+1, . . . ,C

′
m given by C′i = (pi,qi,ui,wi w′i).

We claim that C′k
δk+1−−→ C′k+1 · · ·

δm−→ C′m is a valid run of Saux. For this, we only need to check
that removing n does not make channel l empty in some C′i where δi+1 is an Nl-test. If k = 0
then n in v0 = w0nw′0 is followed by a letter x ∈ M∪ {n} since v0 ∈ pad(M∗). This x remains
in l until at least Cm+1 since it cannot be read while n remains, nor can it be lost before the
Ci −→ Ci+1 step since the run is head-lossy. If k > 0, then our n appeared in a step of the form
Ck−1 = (pθ,qk−1,uk−1,vk−1)

l!n−→Ck = (pθ,qk−1,uk−1,vk−1n) (for some write rule θ of S, inducing

pθ

l!n−→ pθ in Saux). Since p0 = pin is not pθ, a rule p`
>−→ pθ was used before step k, and π has a

P2-segment C`
>−→ ·· ·Ck−1

l!n−→Ck
l!x−→ ·· ·C`′ where `′≤m and x∈ M∪{n} is present in all Ck+1, . . . ,Cm.

As before, this x guarantees that Ck−1 =C′k
δk+1−−→C′k+1 · · ·

δm−→C′m is a valid run of Saux.

We now recall that m < n and that δm+1 is either qm
l?n−→ qm+1 or the loss of n. In the first case,

Saux has a step C′m
l:N−→Cm+1, while in the second case C′m =Cm+1.

The corresponding run C′0
∗−→ C′m

∗−→ Cm+1
∗−→ Cn in the case k = 0, or C0

∗−→ Ck−1 −→ C′k+1
∗−→

C′m
∗−→ Cm+1

∗−→ Cn in the case k > 0, is a faithful run; we have thus removed an occurrence of n,
possibly at a cost of introducing one N2 test.

5.2.3. Handling S′ runs and faithfulness. Since a witness run of S is (trivially) faithful, the above
transformations allow us to remove one by one all occurrences of Receiver’s Z and N tests, creating
a (faithful) witness run for S′ (with a possibly padded C0). We have thus proved the “only-if” part
of Lemma 5.4. The “if” part is shown analogously, now using the two transformations in the other
direction and removing occurrences of the new z and n messages, with one proviso: we only transform
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faithful runs. We thus need to show that if S′ has a (head-lossy) run (pin,qin, û, v̂)
∗−→ (pfi,qfi,u′,v′)

then it also has a faithful one.
Let us assume that π above, of the form C0

∗−→Cn, is a witness run of S′, not necessarily faithful,
having minimal length. We show how to modify it locally so that the resulting run is faithful.

Assume that some rule δi = p >−→ pθ is used in π, and that P2 fails on this occurrence of δi. Since
π does not end in state pθ, Sender necessarily continues with some (possibly zero) pθ

c!n−→ pθ steps,
followed by some δ j = pθ

c!x−→ p′. Now all Receiver or message loss steps between δi and δ j can be
swapped and postponed after δ j since Receiver has no tests and Sender does not test between δi and
δ j (recall Lemma 5.2(3)). After the transformation, δi and the rules after it form a P2-segment. Also,
since message losses have been postponed, the run remains head-lossy.

Consider now a rule δi of the form p c:Z−→ p1
c in π and assume that P1 fails on this occurrence.

Sender necessarily continues with some δ j = p1
c
c!z−→ p2

c and δk = p2
c
c:Z−→ p, interleaved with Receiver’s

steps and/or losses. It is clear that the z written on c by δ j must be lost, or read by a Receiver’s

δ` = q c?z−→ q′ before δk can be used. The read or loss occurs at some step ` with j < ` < k. Note that
Receiver does not read from c between steps i and k, except perhaps at step `. Since Sender only tests
for emptiness of c between steps i and k, all Receiver’s steps and losses between steps i and ` can be
swapped and put before δi. The run remains head-lossy since the swapped losses do not occur on c,
which is empty at step i. Similarly, all non-Sender steps between steps ` and k can be swapped after
δk, preserving head-lossiness. The obtained run has a segment of the form C c:Z−→c!z−→c?z−→c:Z−→C′ that is
now a P1-segment, or of the form C c:Z−→c!z−→ los−→c:Z−→C′ =C, i.e., a dummy loop C +−→C that contradicts
minimality of π.

5.3. Reducing G-G-Reach[ZZZ111,,,NNN111] to E-G-Reach[ZZZ111,,,NNN111]. A G-G-Reach[Z1,N1] instance where
the initial contents of r and l are restricted to (regular languages) U and V respectively can be
transformed into an equivalent instance where U and V are both replaced with {ε}. For this, one adds
a new (fresh) initial state pnew to Sender, from which Sender first nondeterministically generates
some word u ∈U , writing it on r, then generates some word v ∈V , writing it on l, and then enters
pin, the original initial state. The resulting S′ is just S with extra states and rules between pnew and
pin that mimic FSAs for U and V .

Stating the correctness of this reduction has the form

S has a run (pin,qin,u,v)
∗−→C for some u ∈U and v ∈V iff S′ has a run (pnew,qin,ε,ε)

∗−→C . (?)

Now, since S′ can do (pnew,qin,ε,ε)
∗−→ (pin,qin,u,v) for any u ∈ U and v ∈ V , the left-to-right

implication in (?) is clear. Note that, in the right-to-left direction, it is essential that Receiver has no
tests and this is what we missed in [JKS12]. Indeed, it is the absence of Receiver tests that allows us
to reorder any S′ run from (pnew,q,ε,ε) so that all steps that use the new “generating” rules (from
pnew to pin) happen before any Receiver steps.

5.4. Reducing E-G-Reach[ZZZ111,,,NNN111] to E-G-Reach[ZZZ111]. When there are no Receiver tests and a
run starts with the empty channels, then N1 tests can be easily eliminated by a buffering technique on
Sender’s side. Each channel c ∈ {r,l} gets its one-letter buffer Bc, which can be emptied at any
time by moving its content to c. Sender can only write to an empty buffer; it passes a Zc

1 test if both
channel c and Bc are empty, while any Nc

1 test is replaced with the (weaker) “test” if Bc is nonempty.
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Formally, we start with an instance (S, pin, pfi,qin,qfi,{ε},{ε},U ′,V ′) of E-G-Reach[Z1,N1],
where S = ({r,l},M,Q1,∆1,Q2,∆2), and we create S′ = ({r,l},M,Q′1,∆′1,Q2,∆2) arising from S as
follows (see Fig. 5).

p

q r

S (Sender only)

l!a

l:N r!a

r:Z

⇒

p,a,a

p,a,ε p,ε,a

p,ε,ε

q,a,a

q,a,ε q,ε,a

q,ε,ε

r,a,a

r,a,ε r,ε,a

r,ε,εS′

r!a l!a
r!al!a

r!a l!a
r!al!a

r!a l!a
r!al!a

⊤!

⊤!

⊤!

⊤!

⊤N

⊤N

r:Z

r:Z

Figure 5: Reducing E-G-Reach[Z1,N1] to E-G-Reach[Z1]

We put Q′1 = Q1× (M∪{ε})× (M∪{ε}); the components x,y in a state 〈q,x,y〉 denote the contents

of the buffers for r and l, respectively. We now replace each rule q r!x−→ q′ with 〈q,ε,y〉 >−→ 〈q′,x,y〉
for all y ∈ M∪{ε} (Fig. 5 uses “>!” to highlight these transformed rules). Each q r:N−→ q′ is replaced

with 〈q,x,y〉 >−→ 〈q′,x,y〉 for all x,y where x 6= ε (Fig. 5 uses “>N”). Each q r:Z−→ q′ is replaced with
〈q,ε,y〉 r:Z−→ 〈q′,ε,y〉 (for all y). Analogously we replace all q l!x−→ q′, q l:N−→ q′, and q l:Z−→ q′. Moreover,

we add the rules 〈q,x,y〉 r!x−→ 〈q,ε,y〉 (for x 6= ε) and 〈q,x,y〉 l!y−→ 〈q,x,ε〉 (for y 6= ε). Our desired
reduction is completed, by the next lemma:

Lemma 5.5. S has a run Cin = (pin,qin,ε,ε)
∗−→ (pfi,qfi,u′,v′) = Cfi if, and only if, S′ has a run

C′in = (〈pin,ε,ε〉,〈qin,ε,ε〉,ε,ε)
∗−→ (〈pfi,ε,ε〉,〈qfi,ε,ε〉,u′,v′) =C′fi.

Proof. ⇐ : A run C′in =C′0
δ′1−→C′1

δ′2−→C′2 · · ·
δ′n−→C′n =C′fi of S′ can be simply translated to a run of S by

the following transformation: each C′i = (〈pi,x,y〉,qi,ui,vi) is translated to Ci = (pi,qi,uix,viy), each

step C′i−1
δ′i−→C′i where δ′i is 〈q,ε,y〉 >−→ 〈q′,x,y〉 is replaced with Ci−1

δ−→Ci where δ is q r!x−→ q′, etc. It
can be easily checked that the arising run C0

∗−→Cn is indeed a valid run of S (that can be shorter

because it “erases” the steps by the rules 〈q,x,y〉 r!x−→ 〈q,ε,y〉 and 〈q,x,y〉 l!y−→ 〈q,x,ε〉).
⇒ : A run Cin =C0

δ1−→C1
δ2−→C2 · · ·

δn−→Cn =Cfi of S can be translated into a run of S′ by a suitable
transformation, starting with C′0 = (〈pin,ε,ε〉,〈qin,ε,ε〉,ε,ε). Suppose that C0

∗−→Ci = (p,q,ux,vy)

has been translated to C′0
∗−→ C′i = (〈p,x,y〉,q,u,v) (for some x,y ∈ M∪ {ε}). If δi+1 is p r!a−→ p′,

then we translate Ci
δi−→ Ci+1 in the case x = ε to C′i −→ C′i+1 = (〈p′,a,y〉,q,u,v) (using the rule

〈p,ε,y〉 >−→ 〈p′,a,y〉), and in the case x 6= ε to C′i −→ (〈p,ε,y〉,q,ux,v) −→ (〈p′,a,y〉,q,ux,v) = C′i+1

(using the rules 〈p,x,y〉 r!x−→ 〈p,ε,y〉 and 〈p,ε,y〉 >−→ 〈p′,a,y〉). We handle the other forms of δi+1 in
the obvious way; e.g., if δi+1 is a loss at (the head of) l while C′i = (〈p,x,y〉,q,u,ε), then we also

use two steps: C′i −→ (〈p,x,ε〉,q,u,y) los−→ (〈p,x,ε〉,q,u,ε) =C′i+1. This process obviously results in a
valid run of S′.
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5.5. Reducing E-G-Reach[ZZZ111] to E-E-Reach[ZZZ111]. The idea of the reduction is similar to what
was done in section 5.3. The regular final conditions “u′ ∈U ′” and “v′ ∈V ′” are checked by Receiver
consuming the final channel contents. When Sender (guesses that it) is about to write the first
message that will be part of the final u′ in r (respectively, the final v′ in l), it signals this by inserting
a special symbol # just before. After it has written # to a channel, Sender is not allowed to test that
channel anymore.

Formally we start with an instance (S, pin, pfi,qin,qfi,{ε},{ε},U ′,V ′) of E-G-Reach[Z1], where
S = ({r,l},M,Q1,∆1,Q2,∆2). With S we associate S′ where M′ = M]{#}, as sketched in Fig. 6.
This yields the instance (S′, p′in, p′fi,qin,qf ,{ε},{ε},{ε},{ε}) of E-E-Reach[Z1], for the new final
Receiver state qf .

qfi

p

p′

l:Z

S

r

l

a

⇒

qfi

qc,1

qc,2

· · ·

qf

r?#

l?#

r?u ∈U ′

l?v′ ∈V ′

p⊤,⊤

p#,⊤

p⊤,#

p#,#

p′⊤,⊤

p′#,⊤

p′⊤,#

p′#,#

r!#

r!#

r!#

r!#
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l!#

l!#

l!#

l:Zl:Z

S′

r

l

# a
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Figure 6: Reducing E-G-Reach[Z1] to E-E-Reach[Z1]

We define S′ = ({r,l},M′,Q′1,∆′1,Q′2,∆′2) with the Receiver part Q′2,∆
′
2 obtained from Q2,∆2 by

adding qf and other necessary states and so called cleaning rules so that qf is reachable from qfi
precisely by sequences of read-steps r?#, l?#, r?a1, r?a2, . . . , r?am1 , l?b1, l?b2, . . . , l?bm2 , where
u′ = a1a2 . . .am1 ∈U ′ and v′ = b1b2 . . .bm2 ∈V ′. (The new states and cleaning rules mimic finite-state
automata accepting {#} ·U ′ and {#} ·V ′.)

The Sender part Q′1, ∆′1 of S′ is obtained from Q1,∆1 as follows. We put Q′1
def
= Q1×{>,#}×

{>,#}, and p′in = 〈pin,>,>〉, p′fi = 〈pfi,#,#〉. A state 〈p,x,y〉 “remembers” if # has been already
written to r (x = #) or not (x =>); similarly for l (by y = # or y =>). For changing the status (just
once for each channel), ∆′1 contains the rules 〈p,>,y〉 r!#−→ 〈p,#,y〉 and 〈p,x,>〉 l!#−→ 〈p,x,#〉 for each
p ∈ Q1 and x,y ∈ {>,#}. Moreover, any rule p

c,α−→ p′ in ∆1 induces the rules 〈p,x,y〉 c,α−→ 〈p′,x,y〉,
except for the rules 〈p,#,y〉 r:Z−→ . . . and 〈p,x,#〉 l:Z−→ . . . (i.e., Zc

1 tests are forbidden after # has been
written to c). The next lemma shows that the above reduction is correct.

Lemma 5.6. S has a run (pin,qin,ε,ε)
∗−→ (pfi,qfi,u′,v′) for some u′ ∈U ′ and v′ ∈V ′ if, and only if,

S′ has a run (〈pin,>,>〉,qin,ε,ε)
∗−→ (〈pfi,#,#〉,qf ,ε,ε).

Proof. “⇒”: Suppose C0 = (pin,qin,ε,ε)
δ1−→C1 · · ·

δn−→Cn = (pfi,qfi,u′,v′), where u′ ∈U ′, v′ ∈V ′, is
a run of S. We first transform it into a mimicking run C′0 = (〈pin,>,>〉,qin,ε,ε)

∗−→C′n = (〈pfi,#,#〉,
qfi,#u′,#v′). This amounts to find some right points for inserting two steps of the forms (〈p,>,y〉,q,
u,v) r!#−→ (〈p,#,y〉,q,u#,v) and (〈p,x,>〉,q,u,v) l!#−→ (〈p,x,#〉,q,u,v#) (in some order). For the first
one, if u′ 6= ε then we find the least index i1 such that δi1+1 is some r!a and the written occurrence of

a is permanent, i.e., Ci1
r!a−→Ci1+1 is the step that actually writes the symbol occurring at the head of

u′ in Cn = (pfi,qfi,u′,v′); if u′ = ε then we find the least i1 such that no r!a and no r:Z are performed
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in C j
δ j+1−−→C j+1 with j ≥ i1. For l (and v′) we find i2 analogously. In either case, after i1 (respectively,

i2) the channel r (respectively, l) is not tested for r:Z.
Having C′0

∗−→C′n = (〈pfi,#,#〉,qfi,#u′,#v′), the “cleaning rules” are used to continue with C′n
∗−→

(〈pfi,#,#〉,qf ,ε,ε).
“⇐”: Consider a run C0 = (〈pin,>,>〉,qin,ε,ε)

∗−→ (〈pfi,#,#〉,qf ,ε,ε) =Cn of S′. Since Receiver
is in state qin at the beginning and in qf at the end, the Receiver step sequence must be composed
of two parts: the first from qin to qfi, and the second from qfi to qf ; the latter corresponds to a
sequence of cleaning (reading) rules. The cleaning steps can be commuted after message losses
(recall Lemma 5.2(4)), and after Sender’s rules (Lemma 5.2(3)) since the first cleaning steps are r?#
and l?# and Sender does not test the channels after having written # on them.

Hence we can assume that the run C0
∗−→Cn of S′ has the form

C0 = (〈pin,>,>〉,qin,ε,ε)
∗−→ Cm = (〈pfi,#,#〉,qfi,#u′,#v′) ∗−→ Cn = ((〈pfi,#,#〉,qfi,ε,ε)

with only Receiver steps in Cm
∗−→Cn, which entails u′ ∈U ′ and v′ ∈V ′. If we now just ignore the

two mode-changing steps in the subrun C0
∗−→Cm (relying on the fact that S′ has no N tests) we obtain

a new run C0
∗−→C′m with C′m = (〈pfi,>,>〉,qfi,u′,v′). This new run can be directly translated into a

run (pin,qin,ε,ε)
∗−→ (pfi,qfi,u′,v′) in S.

6. REDUCING E-E-REACH[Z1] TO G-G-REACH[Zl
1 ]

We now describe an algorithm deciding E-E-Reach[Z1] instances, assuming a procedure deciding
instances of G-G-Reach[Zl

1 ]. This is a Turing reduction. The main idea is to partition a run of
a UCST[Z1] system into subruns that do not use the Zr

1 tests (i.e., that only use the Zl
1 tests) and

connect them at configurations where r is known to be empty.
For a UCST S = ({r,l},M,Q1,∆1,Q2,∆2), we let Confr=ε be the subset of configurations

in which r is empty; they are thus of the form (p,q,ε,v). We have put C = (p,q,u,v) v C′ =
(p′,q′,u′,v′) iff p = p′, q = q′, u = u′, and v v v′. Hence Confr=ε is a well-quasi-ordered by v,
unlike Conf .

Slightly abusing terminology, we say that a subset W ⊆ Confr=ε is regular if there are some
state-indexed regular languages (Vp,q)p∈Q1,q∈Q2 in Reg(M) such that W = {(p,q,ε,v) | v∈Vp,q}. Such
regular subsets of Confr=ε can be finitely represented using, e.g., regular expressions or finite-state
automata.

W ⊆ Confr=ε is upward-closed (in Confr=ε) if C ∈W , C vC′ and C′ ∈ Confr=ε imply C′ ∈W .
It is downward-closed if Confr=εrW is upward-closed. The upward-closure ↑W of W ⊆ Confr=ε is
the smallest upward-closed set that contains W . A well-known consequence of Higman’s Lemma
(see Remark 2.2) is that upward-closed and downward-closed subsets of Confr=ε are regular, and
that upward-closed subsets can be canonically represented by their finitely many minimal elements.

For W ⊆ Confr=ε, we let Pre∗(W )
def
= {C ∈ Confr=ε | ∃D ∈W : C ∗−→ D}: note that Pre∗(W )⊆

Confr=ε by our definition.

Lemma 6.1. If S is a UCST[Zl
1 ] system and W is a regular subset of Confr=ε, then Pre∗(W ) is

upward-closed; moreover, given an oracle for G-G-Reach[Zl
1 ], Pre∗(W ) is computable from S and

W.

Proof. We note that Pre∗(W ) is upward-closed since C v D is equivalent to D(
los−→)∗C, hence D ∈

Pre∗(C).
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We now assume that an oracle for G-G-Reach[Zl
1 ] is available, and we construct a finite set

F ⊆ Pre∗(W ) whose upward-closure ↑F is Pre∗(W ). We build up F in steps, starting with F0 =∅;
clearly ↑F0 =∅⊆ Pre∗(W ). The (i+1)th iteration, starting with Fi, proceeds as follows.

We put W ′ def
= Confr=εr↑Fi; note that W ′ is regular. We check whether there exist some C ∈W ′

and D ∈W such that C ∗−→ D; this can be decided using the oracle (it is a finite disjunction of
G-G-Reach[Zl

1 ] instances, obtained by considering all possibilities for Sender and Receiver states).
If the answer is “no”, then ↑Fi = Pre∗(W ); we then put F = Fi and we are done.

Otherwise, the answer is “yes” and we look for some concrete C ∈W ′ s.t. C ∗−→ D for some
D ∈W . This can be done by enumerating all C ∈W ′ and by using the oracle for G-G-Reach[Zl

1 ]
again. We are bound to eventually find such a C since W ′∩Pre∗(W ) is not empty.

Once some C is found, we set Fi+1
def
= Fi∪{C}. Clearly Fi+1, and so ↑Fi+1, is a subset of Pre∗(W ).

By construction, ↑F0  ↑F1  ↑F2  · · · is a strictly increasing sequence of upward-closed sets. By
the well-quasi-ordering property, this sequence cannot be extended indefinitely: eventually we will
have ↑Fi = Pre∗(W ), signalled by the answer “no”.

Lemma 6.2. E-E-Reach[Z1] is Turing reducible to G-G-Reach[Zl
1 ].

Proof. Assume S = ({r,l},M,Q1,∆1,Q2,∆2) is a UCST[Z1], and we ask if there is a run Cin =

(pin,qin,ε,ε)
∗−→ (pfi,qfi,ε,ε)=Cfi. By S′ we denote the UCST[Zl

1 ] system arising from S by removing
all Zr

1 rules. Hence Lemma 6.1 applies to S′. The set of configurations of S and S′ is the same, so
there is no ambiguity in using the notation Conf and Confr=ε.

We aim at computing Pre∗({Cfi}) for S. For k ≥ 0, let Tk ⊆ Confr=ε be the set of C ∈ Confr=ε

for which there is a run C ∗−→Cfi of S with at most k steps that are Zr
1 tests; hence ↑{Cfi} ⊆ T0 (by

message losses). For each k, Tk is upward-closed and Tk ⊆ Tk+1. Defining T =
⋃

k∈NTk, we note
that Cin

∗−→ Cfi iff Cin ∈ T . Since Confr=ε is well quasi-ordered, the sequence T0 ⊆ T1 ⊆ T2 ⊆ ·· ·
eventually stabilizes; hence there is n such that Tn = Tn+1, which implies that Tn = T .

By Lemma 6.1, and using an oracle for G-G-Reach[Zl
1 ], we can compute Pre∗S′({Cfi}), where

the “S′” subscript indicates that we consider runs in S′, not using Zr
1 tests. Hence T0 = Pre∗S′({Cfi}) is

computable. Given Tk, we compute Tk+1 as follows. We put

T ′k = {C ∈ Confr=ε | ∃D ∈ Tk : C r:Z−→ D}

= {(p,q,ε,w) | ∃p′ ∈ Q1 : p r:Z−→ p′ ∈ ∆1 and (p′,q,ε,w) ∈ Tk} .
Thus T ′k ⊆ Confr=ε is the set of configurations from which one can reach Tk with one Zr

1 step. Clearly
T ′k is upward-closed (since Tk is) and can be computed from a finite representation of Tk, e.g., its
minimal elements. Then Tk+1 = Tk∪Pre∗S′(T

′
k ), and we use Lemma 6.1 again to compute it.

Iterating the above process, we compute the sequence T0,T1, . . ., until the first n such that
Tn = Tn+1 (recall that Tn = T then). Finally we check if Cin ∈ Tn.

7. REDUCING E-E-REACH[Zl
1 ] TO A POST EMBEDDING PROBLEM

As stated in Theorem 5.1 (see also Fig. 3), our series of reductions from G-G-Reach[Z1,N1] to E-E-
Reach[Z1] also reduces G-G-Reach[Zl

1 ] to E-E-Reach[Zl
1 ]; this can be easily checked by recalling

that the respective reductions do not introduce new tests. In Subsection 7.1 we show a (polynomial)
many-one reduction from E-E-Reach[Zl

1 ] to PEP
partial
codir , a generalization of Post’s Embedding Problem.

Since PEP
partial
codir was shown decidable in [KS14], our proof of Theorem 4.1 will be thus completed.
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We also add Subsection 7.2 that shows a simple reduction in the opposite direction, from PEP
partial
codir

to E-E-Reach[Zl
1 ].

7.1. E-E-Reach[ZZZl
111] reduces to PEP

partial
codir .

Definition 7.1 (Post embedding with partial codirectness [KS14]). PEP
partial
codir is the question, given

two finite alphabets Σ,Γ, two morphisms u,v : Σ∗→ Γ∗, and two regular languages R,R′ ∈ Reg(Σ),
whether there is σ ∈ R (called a solution) such that u(σ)v v(σ), and such that furthermore u(σ′)v
v(σ′) for all suffixes σ′ of σ that belong to R′.

The above definition uses the same subword relation, denoted v, that captures message losses.
PEP

partial
codir and PEP (which is the special case where R′ =∅) are a variant of Post’s Correspondence

Problem, where the question is whether there exists σ ∈ Σ+ such that u(σ) = v(σ); see also [BFL13]
for applications in graph logics.

Lemma 7.2. E-E-Reach[Zl
1 ] reduces to PEP

partial
codir (via a polynomial reduction).

We now prove the lemma. The reduction from E-E-Reach[Zl
1 ] to PEP

partial
codir extends an earlier

reduction from UCS to PEP [CS08b]. In our case the presence of Zl
1 tests creates new difficulties.

We fix an instance S = ({r,l},M,Q1,∆1,Q2,∆2), Cin = (pin,qin,ε,ε), Cfi = (pfi,qfi,ε,ε) of E-
E-Reach[Zl

1 ], and we construct a PEP
partial
codir instance P = (Σ,Γ,u,v,R,R′) intended to express the

existence of a run from Cin to Cfi.
We first put Σ

def
= ∆1∪∆2 and Γ

def
= M so that words σ ∈ Σ∗ are sequences of rules of S, and their

images u(σ),v(σ) ∈ Γ∗ are sequences of messages. With any δ ∈ Σ, we associate write_r(δ) defined
by write_r(δ) = x if δ is a Sender rule of the form p r!x−→ p′, and write_r(δ) = ε in all other cases.
This is extended to sequences with write_r(δ1 · · ·δn) = write_r(δ1) · · ·write_r(δn). In a similar way
we define write_l(σ) ∈ M∗, the message sequence written to l by the rule sequence σ, and read_r(σ)
and read_l(σ), the sequences read by σ from r and l, respectively. We define Er ∈ Reg(Σ) as
Er

def
= E1∪E2 where

E1
def
={δ ∈ Σ | write_r(δ) = read_r(δ) = ε} ,

E2
def
={δ1δ2 ∈ Σ

2 | write_r(δ1) = read_r(δ2) 6= ε} .
In other words, E1 gathers the rules that do not write to or read from r, and E2 contains all pairs of
Sender/Receiver rules that write/read the same letter to/from r.

Let now P1 ⊆ ∆∗1 be the set of all sequences of Sender rules of the form pin = p0
..−→ p1

..−→
p2 · · ·

..−→ pn = pfi, i.e., the sequences corresponding to paths from pin to pfi in the graph defined by
Q1 and ∆1. Similarly, let P2 ⊆ ∆∗2 be the set of all sequences of Receiver rules that correspond to
paths from qin to qfi. Since P1 and P2 are defined by finite-state systems, they are regular languages.
We write P1‖P2 to denote the set of all interleavings (shuffles) of a word in P1 with a word in P2.
This operation is regularity-preserving, so P1‖P2 ∈ Reg(Σ). Let Tl ⊆ ∆1 be the set of all Sender rules
that test the emptiness of l (which are the only test rules in S). We define R and R′ as the following
regular languages:

R = E∗r ∩ (P1‖P2), R′ = Tl ·
(
∆1∪∆2

)∗
.

Finally, the morphisms u,v : Σ∗→ Γ∗ are given by u def
= read_l and v def

= write_l. This finishes the
construction of the PEP

partial
codir instance P = (Σ,Γ,u,v,R,R′).
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We will now prove the correctness of this reduction, i.e., show that S has a run Cin
∗−→Cfi if, and

only if, P has a solution. Before starting with the proof itself, let us illustrate some aspects of the
reduction by considering a schematic example (see Fig. 7).

qin q1 qfi
δ′1 δ′2

l?b r?c pin p1 p2 p3 pfi
δ1 δ2 δ3 δ4

l!a r!c l!b l:Z

r

l

Figure 7: A schematic UCST[Zl
1 ] instance

Let us consider σsol = δ1δ′1δ2δ′2δ3δ4 and check whether it is a solution of the P instance obtained
by our reduction. For this, one first checks that σsol ∈ R, computes u(σsol) = read_l(σsol) = b and
check that bv v(σsol) = write_l(σsol) = ab. There remains to check the suffixes of σsol that belong
to R′, i.e., that start with a l:Z rule. Here, only σ′ = δ4 is in R′, and indeed u(σ′) = εv v(σ′). Thus
σsol is a solution.

However, a solution like σsol does not directly correspond to a run of S. For instance, any run
Cin

∗−→Cfi in the system from Fig. 7 must use δ3 (write b on l) before δ′1 (read it).
Reciprocally, a run Cin

∗−→Cfi does not directly lead to a solution. For example, on the same
system the following run

Cin
δ1−→C1

δ2−→C2
δ3−→C3 = (p3,qin,c,ab) los−→C4 = (p3,qin,c,b)

δ′1−→C5
δ4−→C6

δ′2−→Cfi (π)

has an action in “C3
los−→C4” that is not accounted for in Σ and cannot appear in solutions of P . Also,

the Σ-word σπ = δ1δ2δ3δ′1δ4δ′2 obtained from π is not a solution. It belongs to P1‖P2 but not to E∗r
(which requires that each occurrence of δ2 is immediately followed by some .

r?c−→ . rule). Note that
σsol had δ2 followed by δ′2, but it is impossible in a run Cin

∗−→Cfi to have δ2 immediately followed
by δ′2.

With these issues in mind, we introduce a notion bridging the difference between runs of S and
solutions of P . We call σ ∈ (∆1∪∆2)

∗ a pre-solution if the following five conditions hold:
(c1) σ ∈ P1‖P2;
(c2) read_r(σ) = write_r(σ);
(c3) read_r(σ1) is a prefix of write_r(σ1) for each prefix σ1 of σ;
(c4) read_l(σ)v write_l(σ);
(c5) read_l(σ2)v write_l(σ2) for each factorization σ = σ1δσ2 where δ ∈ Tl (i.e., δ is a l:Z rule).
A pre-solution σ has a Receiver-advancing switch if σ = σ1δδ′σ2 where δ is a Sender rule, δ′ is a
Receiver rule, and σ′ = σ1δ′δσ2 is again a pre-solution. A Receiver-postponing switch is defined
analogously, for δ being a Receiver rule and δ′ being a Sender rule. For example, the sequence σπ

above is a pre-solution. It has a Receiver-advancing switch on δ3 and δ′1, and one on δ4 and δ′2.
Note that when σ is a pre-solution, checking whether a potential Receiver-advancing or Receiver-
postponing switch leads again to a pre-solution only requires checking (c3) or, respectively, (c5).
Considering another example, σsol, being a solution is a pre-solution. It has two Receiver-postponing
switches but only one Receiver-advancing switch since switching δ2 and δ′2 does not maintain (c3).

It is obvious that if there is a pre-solution σ then there is an advance-stable pre-solution σ′,
which means that σ′ has no Receiver-advancing switch; there is also a postpone-stable pre-solution
σ′′ which has no Receiver-postponing switch.



ON REACHABILITY FOR UNIDIRECTIONAL CHANNEL SYSTEMS 19

Claim 7.3. Any advance-stable pre-solution σ is in E∗r , and it is thus a solution of P .

Proof. Let us write an advance-stable pre-solution σ as σ1σ2 where σ1 is the longest prefix such that
σ1 ∈ E∗r ; hence read_r(σ1) = write_r(σ1) by the definition of Er = E1∪E2. Now suppose σ2 6= ε.
Then σ2 = δ1δ2 · · ·δk where δ1 6∈ E1. Since read_r(σ1) = write_r(σ1), δ1 must be of the form .

r!x−→ .

to guarantee (c3). Let us pick the smallest ` such that δ` = .
r?x−→ . —which must exist by (c2)— and

note that ` > 2 since δ1δ2 6∈ E2 by maximality of σ1. If we now pick the least j in {1, . . . , `−1}
such that δ j is a Sender rule and δ j+1 is a Receiver rule, then switching δ j and δ j+1 leads again to a
pre-solution as can be checked by inspecting (c1–c5). This contradicts the assumption that σ is an
advance-stable pre-solution.

Claim 7.4. If σ = δ1 . . .δn is a postpone-stable pre-solution, S has a run of the form Cin
δ1−→ los∗−→

·· · δn−→ los∗−→Cfi.

Proof. Assume that we try to fire δ1, . . . ,δn in that order, starting from Cin, and sometimes inserting
message losses. Since σ belongs to P1‖P2, we can only fail because at some point the current channel
contents does not allow the test or the read action carried by the next rule to be fired, i.e., not because
we end up in a control state that does not carry the next rule.

So let us consider channel contents, starting with r. For i = 0, . . . ,n, let xi = read_r(δ1 . . .δi)
and yi = write_r(δ1 . . .δi). Since σ satisfies (c3), yi is some xix′i (and x′0 = ε). One can easily verify
by induction on i that after firing σ1 . . .σi from Cin, r contains exactly x′i. In fact (c3) implies that if
δi+1 reads on r, it must read the first letter of x′i (and δi+1 cannot be a read on r when x′i = ε).

Now, regarding the contents of l, we can rely on (c4) and conclude that the actions in σ write
on l everything that they (attempt to) read, but we do not know that messages are written before
they are needed for reading, i.e., we do not have an equivalent of (c3) for l. For this, we rely on
the assumption that σ is postpone-stable. Write σ under the form σ0z1σ1z2σ2 . . .zkσk where the zi’s
are the test rules from Tl, and where the σi’s factors contain no test rules. Note that, inside a σi, all
Sender rules occur before all Receiver rules thanks to postpone-stability.

We claim that read_l(σi)v write_l(σi) for all i = 0, . . . ,k: assume, by way of contradiction,
that read_l(σi) 6v write_l(σi) for some i ∈ {0, . . . ,k} and let δ be the last rule in σi. Necessarily δ

is a reading rule. Now (c4) and (c5) entail i < k and

read_l(σizi+1σi+1 . . .σk)v write_l(σizi+1σi+1 . . .σk) .

Then read_l(σi) 6v write_l(σi) entails

read_l(δzi+1σi+1 . . .zkσk)v write_l(σi+1 . . .zkσk) . (??)

There is now a Receiver-postponing switch since (??) ensures that (c5) holds after switching δ and
zi+1, which contradicts the assumption that σ is postpone-stable.

Now, with read_l(σi) v write_l(σi), it is easy to build a run Cin
δ1−→ los∗−→ ·· · δn−→ los∗−→ Cfi and

guarantee that l is empty before firing any zi rule.

We now see that our reduction is correct. Indeed, if Cin
σ−→ Cfi is a run of S then σ with all

occurrences of los removed is a pre-solution; and there is also an advance-stable pre-solution, i.e., a
solution of P . On the other hand, if σ is a solution of P then σ is a pre-solution, and there is also a
postpone-stable pre-solution, which corresponds to a run Cin

∗−→Cfi of S. This finishes the proof of
Lemma 7.2, and of Theorem 4.1.
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7.2. PEP
partial
codir reduces to E-E-Reach[ZZZl

111]. We now prove a converse of Lemma 7.2, thus showing
that PEPpartial

codir and E-E-Reach[Zl
1 ] are equivalent problems. Actually, PEPpartial

codir can be easily reduced
to E-E-Reach[Zc

i ] for any i ∈ {1,2} and c ∈ Ch, but we only show a reduction for i = 1 and c= l

explicitly. (The other reductions would be analogous.)

Lemma 7.5. PEP
partial
codir reduces to E-E-Reach[Zl

1 ] (via a polynomial reduction).

Proof. Given a PEP
partial
codir -instance (Σ,Γ,u,v,R,R′), we construct a UCST[Zl

1 ] system (denoted S)
with distinguished states pin, pfi,qloop, such that

the instance has a solution iff S has a run (pin,qloop,ε,ε)
∗−→ (pfi,qloop,ε,ε) . (???)

The idea is simple: Sender nondeterministically guesses a solution σ, writing u(σ) on r and v(σ) on
l, and Receiver validates it, by reading identical sequences from r and l (some messages from l

might be lost). We now make this idea more precise.
Let M and M′ be deterministic FSAs recognizing R and the complement of R′, respectively.

Sender stepwise nondeterministically generates σ = a1a2 . . . ,am, while taking the “commitment” that
σ belongs to R; concretely, after generating a1a2 . . .ai Sender also remembers the state reached by M
via a1a2 . . .ai, and Sender cannot enter pfi when the current state of M is non-accepting. Moreover, for
each i ∈ {1,2, . . . ,m}, i.e., at every step, Sender might decide to take a further commitment, namely
that aiai+1 . . . ,am 6∈ R′; for each such commitment Sender starts a new copy of M′, remembering
the states visited by M′ via aiai+1 . . .am, and it cannot enter pfi if a copy of M′ is in a non-accepting
state. Though we do not bound the number of copies of M′, it suffices to remember just a bounded
information, namely the set of current states of all these copies.

When generating ai, Sender writes u(ai) on r and v(ai) on l. To check that r contains a subword
of l, Receiver behaves as in Fig. 8 (that illustrates another reduction). So far we have guaranteed that
there is a run (pin,qloop,ε,ε)

∗−→ (pfi,qloop,ε,ε) iff there is σ = a1a2 . . . ,am ∈ R such that u(σ)v v(σ)
(using the lossiness of l where v(σ) has been written).

We finish by adding a modification guaranteeing u(aiai+1 . . . ,am)v v(aiai+1 . . . ,am) for each
i ∈ {1,2, . . . ,m} where Sender does not commit to aiai+1 . . . ,am 6∈ R′. For such steps, and before
writing u(ai) and v(ai), Sender must simply wait until l is empty, i.e., Sender initiates step i by
(nondeterministically) either committing to aiai+1 . . . ,am 6∈ R′ or by taking a Zl

1 -step.
It is now a routine exercise to verify that (???) holds.

Remark 7.6 (On complexity). Based on known results on the complexity of PEPpartial
codir (see [SS11,

KS14, KS13]), our reductions prove that reachability for UCST[Z,N] is Fωω-complete, using the
ordinal-recursive complexity classes introduced in [Sch13].

8. TWO UNDECIDABLE PROBLEMS FOR UCST[Z,N]

The main result of this article is Theorem 4.1, showing the decidability of the reachability problem
for UCST[Z,N]. In this section we argue that the emptiness and non-emptiness tests (“Z” and “N”)
strictly increase the expressive power of UCSes. We do this by computational arguments, namely
by exhibiting two variants of the reachability problem that are undecidable for UCST[Z,N]. Since
these variants are known to be decidable for plain UCSes (with no tests), we conclude that there is
no effective procedure to transform a UCST[Z,N] into an equivalent UCS in general. Subsection 8.1
deals with the problem of recurrent reachability of a control state. In Subsection 8.2 we consider the
usual reachability problem but we assume that messages can be lost only during writing to l (i.e., we
assume that channel l is reliable and that the unreliability is limited to the writing operation).
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8.1. Recurrent reachability. The Recurrent Reachability Problem asks, when given S and its states
pin,qin, p,q, whether S has an infinite run Cin = (pin,qin,ε,ε)

∗−→ (p,q,u1,v1)
+−→ (p,q,u2,v2)

+−→
(p,q, . . .) · · · visiting the pair (p,q) infinitely often (NB: with no constraints on channel contents),
called a “pq∞-run” for short.

The next theorem separates UCSes from UCSTs, even from UCST[Zr
1 ], i.e., UCSTs where the

only tests are emptiness tests on r by Sender. It implies that Zr
1 tests cannot be simulated by UCSes.

Theorem 8.1. Recurrent reachability is decidable for UCSes, and is Σ0
1-complete (hence undecidable)

for UCST[Zr
1 ].

We start with the upper bounds. Consider a UCST[Zr
1 ] system S and assume it admits a pq∞-run

π. There are three cases:
case 1: If π uses infinitely many Z tests, it can be written under the form

Cin
∗−→ D1

r:Z−→ ∗−→ (p,q, . . .) ∗−→ D2
r:Z−→ ∗−→ (p,q, . . .) · · · ∗−→ Dn

r:Z−→ ∗−→ (p,q, . . .) · · ·
Observe that D1,D2, . . . belong to Confr=ε since they allow a r:Z test. By Higman’s Lemma, there

exists two indexes i < j such that Di vD j. Then D j(
los−→)∗Di

∗−→ (p,q, . . .) ∗−→D j and we conclude
that S also has a “looping” pq∞-run, witnessed by a finite run of the form Cin

∗−→ (p,q,u,v) +−→
(p,q,u,v).

case 2: Otherwise, if π only uses finitely many Z tests, it can be written under the form Cin
∗−→C =

(p,q,u,v) −→ ·· · such that no test occur after C. After C, any step by Sender can be advanced
before Receiver steps and message losses, according to Lemma 5.2(3). Assuming that π uses
infinitely many Sender steps, we conclude that S has a pq∞ run that eventually only uses Sender
rules (but no Z tests). At this point, we can forget about the contents of the channels (they are not
read or tested anymore). Hence a finite witness for such pq∞-runs is obtained by the combination

of a finite run Cin
∗−→ (p,q,u,v) and a loop p = p1

δ1−→ p2
δ2−→ ·· · pn

δn−→ p1 in Sender’s rules that does
not use any testing rule.

case 3: The last possibility is that π uses only finitely many Sender rules. In that case, the contents
of the channels is eventually fixed hence there is a looping pq∞-run of the form Cin

∗−→ C =

(p,q,u,v) +−→ C such that the loop from C to C only uses Receiver rules. A finite witness for

such cases is a finite run Cin
∗−→ (p,q,u,v) combined with a loop q = q1

δ1−→ q2
δ2−→ ·· ·qn

δn−→ q1 in
Receiver’s rules that only uses rules reading ε.

Only the last two cases are possible for UCSes: for these systems, deciding Recurrent reachability
reduces to deciding whether some (p,q, ...) is reachable and looking for a loop (necessarily with no
tests) starting from p in Sender’s graph, or a loop with no reads starting from q in Receiver’s graph.

For UCST[Zr
1 ], one must also consider the general looping “case 1”, i.e., ∃u,v : Cin

∗−→ (p,q,u,
v) +−→ (p,q,u,v). Since reachability is decidable, this case is in Σ0

1, as is Recurrent reachability for
UCST[Zr

1 ].

Now for the lower bound. We prove Σ0
1-hardness by a reduction from the looping problem for

semi-Thue systems.
A semi-Thue system T = (Γ,R) consists of a finite alphabet Γ and a finite set R ⊆ Γ∗×Γ∗ of

rewrite rules; we write α→ β instead of (α,β) ∈ R. The system gives rise to a one-step rewrite

relation→R⊆ Γ∗×Γ∗ as expected: x→R y def⇔ x and y can be factored as x = zαz′ and y = zβz′ for
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some rule α→ β and some strings z,z′ ∈ Γ∗. As usual, we write x +−→R y if x can be rewritten into y
by a nonempty sequence of steps.

We say that T = (Γ,R) is length-preserving if |α| = |β| for each rule in R, and that it has a
loop if there is some x ∈ Γ∗ such that x +−→R x. The following is standard (since the one-step relation
between Turing machine configurations can be captured by finitely many length-preserving rewrite
rules).

Fact 8.2. The question whether a given length-preserving semi-Thue system has a loop is Σ0
1-

complete.

We now reduce the existence of a loop for length-preserving semi-Thue systems to the recurrent
reachability problem for UCST[Zr

1 ].
Let T = (Γ,R) be a given length-preserving semi-Thue system. We construct a UCST S, with

message alphabet M def
= Γ]{#}. The reduction is illustrated in Fig. 8, assuming Γ = {a,b}. The

resulting S behaves as follows:
(a) Sender starts in state pin, begins by nondeterministically sending some y0 ∈ Γ∗ on l, then moves
to state ploop. In state ploop, Sender performs the following steps in succession:
(1) check that (equivalently, wait until) r is empty;
(2) send # on l;
(3) nondeterministically send a string z ∈ Γ∗ on both l and r;
(4) nondeterministically choose a rewrite rule α→ β (from R) and send α on r and β on l;
(5) nondeterministically send a string z′ ∈ Γ∗ on both l and r;
(6) send # on r;
(7) go back to ploop (and repeat 1–7).

qloop

l?a

r?a

l?# r?#

l?b

r?b pinploop

...
...

l!a

l!b

r:Z

l!#

l!ar!a
l!b

r!b

l!ar!a

l!b

r!b

r!α1 l!β1

r!αk l!βk

r!#

r

l

a b a # a a

a a

Figure 8: Solving the looping problem for semi-Thue systems

The loop 1–7 above can be also summarized as: check that r is empty, nondeterministically guess
two strings x and y such that x→R y, writing x# on r and #y on l.
(b) Receiver starts in state qloop from where it reads any pair of identical symbols from r and l,
returns to qloop, and repeats this indefinitely.

Claim 8.3 (Correctness of the reduction). S has an infinite run starting from Cin = (pin,qloop,ε,ε)

and visiting the control pair (ploop,qloop) infinitely often if, and only if, x +−→R x for some x ∈ Γ∗.

Proof. For the “⇐” direction we assume that T has a loop x = x0 →R x1 →R . . .→R xn = x with
n > 0. Let Ci

def
= (ploop,qloop,ε,xi). S obviously has a run Cin

∗−→C0, sending x0 on l. For each i≥ 0,
S has a run Ci

+−→Ci+1: it starts with appending the pair xi→R xi+1 on the channels, hence visiting
(., .,xi #,xi #xi+1), from which Receiver can read the xi # prefix on both channels, thus reaching
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Ci+1. Note that no messages are lost in these runs. Chaining them gives an infinite run that visits
(ploop,qloop) infinitely many times.

For the “⇒” direction, we assume S has an infinite run starting from Cin that visits (ploop,qloop)
infinitely often. Since Sender checks the emptiness of r before running through its loop, we conclude
that no # character written to l is lost during the run. Let y0 be written on l before the first visit
of ploop; for i≥ 1, let (xi,yi) be the pair of strings guessed by Sender during the ith iteration of its
loop 1–7 (xi written on r and yi on l). Receiver can only empty the reliable channel r if xi v yi−1 for
all i≥ 1. This implies |xi| ≤ |yi−1|. We also have |xi|= |yi| since T is length-preserving. Therefore
eventually, say for all i ≥ n, all xi and yi have the same length. Then xi = yi−1 for i > n (since
xi v yi−1 and |xi|= |yi−1|). Hence T admits an infinite derivation of the form

xn→R yn = xn+1→R yn+1 = xn+2→R · · ·
Since there are only finitely many strings of a given length, there are two positions m′ > m≥ n such
that xm = xm′ ; hence T has a loop xm

+−→R xm.

8.2. Write-lossy semantics. As another illustration of the power of tests, we consider UCSTs with
write-lossy semantics, that is, UCSTs with the assumption that messages are only lost during steps
that write them to l. Once messages are in l, they are never lost. If we start with the empty channel
l and we only allow the emptiness tests on l, then any computation in normal lossy semantics can
be mimicked by a computation in write-lossy semantics: any occurrence of a message that gets
finally lost will simply not be written. Adding the non-emptiness test makes a difference, since the
reachability problem becomes undecidable.

We now make this reasoning more formal, using the new transition relation C −→wrlo C′ that is
intermediary between the reliable and the lossy semantics.

Each l-writing rule δ of the form p l!x−→ p′ in a UCST S will give rise to write-lossy steps
of the form (p,q,u,v) wrlo−−→ (p′,q,u,v), where δ is performed but nothing is actually written. We
write C −→wrlo C′ when there is a reliable or a write-lossy step from C to C′, and use C −→rel C′ and
C −→los C′ to denote the existence of a reliable step, and respectively, of a reliable or a lossy step.
Then −→rel⊆−→wrlo⊆

∗−→los.
Now we make precise the equivalence of the two semantics when we start with the empty l and

only use the emptiness tests:

Lemma 8.4. Assume S is a UCST[Z] system. Let Cin = (p,q,u,ε) be a configuration (where l is
empty). Then, for any Cfi configuration, Cin

∗−→los Cfi iff Cin
∗−→wrlo Cfi.

Proof. The “⇐” direction is trivial. For the “⇒” direction we claim that

if C −→wrlo C′ w1 C′′, then also C w D−→wrlo C′′ for some D. (†)

Indeed, if (the occurrence of) the message in C′ that is missing in C′′ occurs in C, then it is possible
to first lose this message, leading to D, before mimicking the step that went from C to C′ (we rely
here on the fact that S only uses Z tests). Otherwise, C′′ is obtained by losing the message that has
just been (reliably) written when moving from C to C′, and taking D =C is possible.

Now, since ∗−→los is
(
−→wrlo ∪ w1

)∗ and since
(
w1

)∗ is w, we can use (†) and conclude that
C ∗−→los D implies that CwC′ ∗−→wrlo D for some C′. Finally, in the case where C =Cin and l is empty,
only C′ =Cin is possible.
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Corollary 8.5. E-G-Reachability is decidable for UCST[Z] with write-lossy semantics.

The write-lossy semantics is meaningful when modeling unreliability of the writing actions as
opposed to unreliability of the channels. In the literature, write-lossy semantics is mostly used as
a way of restricting the nondeterminism of message losses without losing any essential generality,
relying on equivalences like Lemma 8.4 (see, e.g., [CS08c, section 5.1]).

However, for our UCST systems, the write-lossy and the standard lossy semantics do not
coincide when N tests are allowed. In fact, Theorem 4.1 does not extend to write-lossy systems.

Theorem 8.6. E-E-Reach is undecidable for UCST[Zl
1 ,N

l
1 ] with write-lossy semantics.

Proof Idea. As in Section 3.2, Sender simulates a queue automaton using tests and the help of
Receiver. See Fig. 9. Channel l is initially empty. To read, say, a from r, Sender does the following:
(1) write a on l; (2) check that l is nonempty (hence the write was not lost); (3) check that, i.e., wait
until, l is empty. Meanwhile, Receiver reads identical letters from r and l.

qproxy

l?a

r?a

l?c r?c

l?b

r?b p1

p2

l!a

l:N

l:Z

r

l

a b c a c

Figure 9: Write-lossy Sender simulates “p1
r?a−→ p2” with N and Z tests and proxy Receiver

Thus, at least in the write-lossy setting, we can separate UCST[Z] and UCST[Zl
1 ,N

l
1 ] w.r.t. decida-

bility of reachability.

9. CONCLUSION

UCSes are communicating systems where a Sender can send messages to a Receiver via one reliable
and one unreliable, lossy, channel, but where no direct communication is possible in the other
direction. We introduced UCSTs, an extension of UCSes where steps can be guarded by tests, i.e.,
regular predicates on channel contents. This extension introduces limited but real possibilities for
synchronization between Sender and Receiver. For example, Sender (or Receiver) may use tests to
detect whether the other agent has read (or written) some message. As a consequence, adding tests
leads to undecidable reachability problems in general. Our main result is that reachability remains
decidable when only emptiness and non-emptiness tests are allowed. The proof goes through a
series of reductions from UCST[Z,N] to UCST[Zl

1 ] and finally to PEP
partial
codir , an extension of Post’s

Embedding Problem that was motivated by the present article and whose decidability was recently
proved by the last two authors [KS14].

These partial results do not yet provide a clear picture of what tests on channel contents make
reachability undecidable for UCSTs. At the time of this writing, the two most pressing questions we
would like to see answered are:
(1) what about occurrence and non-occurrence tests, defined as {Oa,NOa | a∈ M} with Oa = M∗.a.M∗

and NOa = (Mr{a})∗? Such tests generalize N and Z tests and have been considered for channel
systems used as a tool for questions on Metric Temporal Logic [BMOW07].
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(2) what about UCSTs with tests restricted to the lossy l channel? The undecidable reachability
questions in Theorem 3.1 all rely on tests on the reliable r channel.
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