
Logical Methods in Computer Science
Volume 17, Issue 4, 2021, pp. 15:1–15:36
https://lmcs.episciences.org/

Submitted Dec. 01, 2020
Published Dec. 02, 2021

A PROBABILISTIC HIGHER-ORDER FIXPOINT LOGIC

YO MITANI a, NAOKI KOBAYASHI a, AND TAKESHI TSUKADA b

a The University of Tokyo, Tokyo, Japan

b Chiba University, Chiba, Japan

Abstract. We introduce PHFL, a probabilistic extension of higher-order fixpoint logic,
which can also be regarded as a higher-order extension of probabilistic temporal logics
such as PCTL and the µp-calculus. We show that PHFL is strictly more expressive than
the µp-calculus, and that the PHFL model-checking problem for finite Markov chains is
undecidable even for the µ-only, order-1 fragment of PHFL. Furthermore the full PHFL is
far more expressive: we give a translation from Lubarsky’s µ-arithmetic to PHFL, which
implies that PHFL model checking is Π1

1-hard and Σ1
1-hard. As a positive result, we

characterize a decidable fragment of the PHFL model-checking problems using a novel type
system.

1. Introduction

Temporal logics such as CTL and CTL* have been playing important roles in system
verification. Among the most expressive temporal logics is the higher-order fixpoint logic
(HFL for short) proposed by Viswanathan and Viswanathan [VV04], which is a higher-order
extension of the modal µ-calculus [Koz83]. HFL is known to be strictly more expressive than
the modal µ-calculus but the model-checking problem against finite models is still decidable.

In view of the increasing importance of probabilistic systems, temporal logics for
probabilistic systems (such as PCTL [HJ94]) and their model-checking problems have been
studied and applied to verification and analysis of probabilistic systems and randomized
distributed algorithms [KNP11]. Recently Castro et al. [CKP15] have proposed a probabilistic
extension of the modal µ-calculus, called the µp-calculus. They showed that the µp-calculus is
strictly more expressive than PCTL and that the model-checking problem for the µp-calculus
belongs to NP ∩ co-NP.

In the present paper, we introduce PHFL, a probabilistic higher-order fixpoint logic,
and studies the model checking problem. PHFL can be regarded as a probabilistic extension
of HFL and as a higher-order extension of the µp-calculus. PHFL strictly subsumes the
µp-calculus [CKP15], which coincides with order-0 PHFL.

We prove that PHFL model checking for finite Markov chains is undecidable even for
the order-1 fragment of PHFL without fixpoint alternations, by giving a reduction from
the value problem of probabilistic automata [Rab63, Paz71]. In the presence of fixpoint
alternations (i.e., with both least and greatest fixpoint operators), PHFL model checking

Key words and phrases: Probabilistic logics, higher-order fixpoint logic, model checking.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-17(4:15)2021
© Y. Mitani, N. Kobayashi, and T. Tsukada
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

15:2 Y. Mitani, N. Kobayashi, and T. Tsukada Vol. 17:4

is even harder: the order-1 PHFL model-checking problem is Π1
1-hard and Σ1

1-hard. The
proof is by a reduction from the validity checking problem for µ-arithmetic [Lub89] to PHFL
model checking. This may be surprising, because both order-0 PHFL model checking (i.e.
µp-calculus model checking) for finite Markov chains [CKP15] and HFL model checking for
finite state systems [VV04] are decidable. The combination of probabilities and higher-order
predicates suddenly makes the model-checking problem highly undecidable.

As a positive result, we identify a decidable subclass of PHFL model-checking problems.
To characterize the subclass, we introduce a type system for PHFL formulas, which is
parameterized by a Markov chain M . We show that the model-checking problem M |= ϕ
is decidable provided that ϕ is typable in the type system for M , by giving a decision
procedure using the decidability of existential theories of reals. The decidable subclass
is reasonably expressive: the problem of computing termination probabilities of recursive
Markov chains [EY09] can be reduced to the subclass.

The rest of this article is organized as follows. Section 2 introduces PHFL and shows
that it is strictly more expressive than the µp-calculus. Section 3 proves undecidability of
the model-checking problem for µ-only and order-1 PHFL. Section 4 proves that the PHFL
model-checking problem is both Π1

1-hard and Σ1
1-hard. Section 5 introduces a decidable

subclass of PHFL model-checking problems, and shows that the subclass is reasonably
large. Section 6 discusses related work, and Section 7 concludes the paper. A preliminary
summary of this article has been published in Proceedings of FSCD 2020 [MKT20]. This
article contains details omitted in the preliminary summary, and also significantly extends
the decidable fragment of PHFL in Section 5.

2. PHFL: Probabilistic Higher-order Fixpoint Logic

This section introduces PHFL, a probabilistic extension of HFL [VV04]. PHFL is a logic
used for describing properties of Markov chains. We define its syntax and semantics and
show that it is more expressive than the µp-calculus [CKP15].

2.1. Markov Chains. We first recall the standard notion of Markov chains. Our definitions
follow those in [CKP15].

Definition 2.1. Let AP be a set of atomic propositions. A Markov chain over AP is a
tuple (S, P, ρAP , sin), where:

• S is a finite set of states,
• P : S × S → [0, 1] satisfying

∑
s′∈S P (s, s′) = 1 for every s ∈ S, describes transition

probabilities,
• ρAP : AP → 2S is a labeling function, and
• sin ∈ S is an initial state.

For a Markov chainM = (S, P, ρAP , sin), its embedded Kripke structure isK = (S,R, ρAP , sin)
where R ⊆ S × S is a relation such that R = {(s, s′)|P (s, s′) > 0}.

Intuitively, P (s, s′) denotes the probability that the state s transits to the state s′, and
ρAP (p) gives the set of states where p is true. Throughout the paper, we assume that the
set AP of atomic propositions is closed under negations, in the sense that for any p ∈ AP ,
there exists p ∈ AP such that ρAP (p) = S \ ρAP (p).

Given a Markov chain M , we often write SM , PM , ρAP ,M , sin,M for its components; we
omit the subscript M when it is clear from the context.

Vol. 17:4 A PROBABILISTIC HIGHER-ORDER FIXPOINT LOGIC 15:3

2.2. Syntax of PHFL Formulas. As in HFL [VV04, KLB17], we need the notion of types
to define the syntax of PHFL formulas.

The set of types, ranged over by τ , is given by:

τ ::= Prop | τ1 → τ2.

The type Prop describes quantitative propositions, whose values range over [0, 1]. Intuitively,
the value of a quantitative proposition represents the probability that the proposition holds.
The type τ1 → τ2 is for functions from τ1 to τ2. For example, (Prop → Prop) → Prop
represents the type of (higher-order, quantitative) predicates on unary predicates.

Remark 2.2. In the µp-calculus [CKP15] and the previous version of this paper [MKT20],
two kinds of propositions were considered: quantitative propositions, which take values in
[0, 1], and qualitative propositions, which take truth values. In the present paper, we consider
only quantitative propositions for the sake of simplicity, and regard qualitative propositions
as a special case of the former by treating 0 and 1 as the truth values “false” and “true”
respectively.

We assume a countably infinite set Var of variables, ranged over by X1, X2, The
set of PHFL (pre-)formulas, ranged over by φ, is given by:

φ ::= p |X |φ1 ∨ φ2 |φ1 ∧ φ2 | [φ]J |�φ |♦φ | © φ |µX.φ | νX.φ |λX.φ |φ1 φ2.

Here, p ranges over the set AP of atomic propositions (of the underlying Markov chains; we
thus assume that AP is closed under negations). The subscript J of [φ]J is either “> r” or
“≥ r” for some rational number r ∈ [0, 1]. We often identify J with an interval: for example,
“> r” is regarded as (r, 1] = {x | r < x ≤ 1 }. Given a quantitative proposition φ, the formula
[φ]>r (resp. [φ]≥r) is a qualitative formula, which is true just if the probability that φ holds is
greater than r (resp. no less than r). We exclude trivial bounds “> 1” and “≥ 0”; note that
[φ]>1 and [φ]≥0 are equivalent to false and true respectively. The formulas �φ, ♦φ, and ©φ
respectively mean the minimum, maximum, and average probabilities that φ holds after a
one-step transition. The formulas µX.φ and νX.φ respectively denote the least and greatest
fixpoints of λX.φ. Note that φ may denote higher-order predicates, as in HFL [VV04] (but
unlike in the modal µ-calculus and its probabilistic variants [CKP15, MS13, MM97], where
fixpoints are restricted to propositions). We have also λ-abstractions and applications, which
are used for manipulating higher-order predicates. The prefixes µX, νX and λX bind the
variable X. As usual, we identify formulas up to the renaming of bound variables and
implicitly apply α-conversions. We write [φ1/X] for the capture-avoiding substitution of φ1

for X, and [φ1/X]φ2 for the formula obtained by applying the substitution [φ1/X] to φ2.
In order to exclude out ill-formed formulas like (p1 ∨ p2)(φ), we restrict the shape of

formulas using a simple type system. A type environment is a map from a finite set of
variables to the set of types. A type judgment is of the form Γ ` φ : τ . The typing rules
are shown in Figure 1. A formula φ is well-typed if Γ ` φ : τ is derivable for some Γ and τ .
Henceforth, we consider only well-typed formulas.

Example 2.3. For a proposition p ∈ AP , the formula φ = (µF.λX.X ∨ F (©X))p is a
well-typed formula of type Prop. By unfolding the fixpoint formula (i.e., replacing µX.φ
with [µX.φ/X]φ, which will be justified by the semantics introduced later) and applying
β-reductions, we obtain:

φ ≡ (λX.X ∨ (µF.λX.X ∨ F (©X))(©X))p

≡ p ∨ (µF.λX.X ∨ F (©X))(©p)

15:4 Y. Mitani, N. Kobayashi, and T. Tsukada Vol. 17:4

Γ ` p : Prop Γ, X : τ ` X : τ

Γ ` φ : Prop

Γ ` [φ]J : Prop

Γ ` φ1 : Prop Γ ` φ2 : Prop

Γ ` φ1 ∨ φ2 : Prop

Γ ` φ1 : Prop Γ ` φ2 : Prop

Γ ` φ1 ∧ φ2 : Prop

Γ ` φ : Prop

Γ ` �φ : Prop

Γ ` φ : Prop

Γ ` ♦φ : Prop

Γ ` φ : Prop

Γ ` ©φ : Prop

Γ, X : τ ` φ : τ

Γ ` µX.φ : τ

Γ, X : τ ` φ : τ

Γ ` νX.φ : τ

Γ, X : τ1 ` φ : τ2

Γ ` λX.φ : τ1 → τ2

Γ ` φ : τ1 → τ2 Γ ` ψ : τ1

Γ ` φψ : τ2

Figure 1: Typing rules for PHFL formulas.

≡ p ∨©p ∨ (µF.λX.X ∨ F (©X))(©© p)

≡ p ∨©p ∨©© p ∨ · · ·
Thus, intuitively, the formula represents the function that maps the current state s to the
value supk≥0 qk where qk is the probability that a k-step transition sequence starting from
the state s ends in a state satisfying p.

Remark 2.4. Following the definition of HFL by Kobayashi et al. [KLB17], we have excluded
out negations. By a transformation similar to that in [Loz15] and our assumption that the
set of atomic propositions is closed under negations, any closed ground-type formula of
PHFL extended with negations can be transformed to an equivalent negation-free formula
(as long as the occurrences of negations are restricted as in the original HFL [VV04] so that
fixpoint operators are applied to only monotonic functions).

We define the order of a type τ by:

order(Prop) = 0 order(τ1 → τ2) = max(order(τ1) + 1, order(τ2)).

The order of a formula φ such that Γ ` φ : τ is the largest order of types used in the
derivation of Γ ` φ : τ . The order-k PHFL is the fragment of PHFL consisting of formulas
of order up to k. Order-0 PHFL coincides with the µp-calculus [CKP15].

2.3. Semantics. We first give the semantics of types. We write ≤R for the natural order
over the set R of real numbers, and often omit the subscript when there is no danger of
confusion. For a map f , we write dom(f) for the domain of f .

Definition 2.5 (Semantics of Types). Let M be a Markov chain. For each τ , we define a
partially ordered set JτKM = (Dτ ,vτ) inductively by:

DProp = SM → [0, 1] f vProp g
def⇐⇒ ∀s ∈ SM .f(s) ≤ g(s)

Dτ1→τ2 = {f ∈ Dτ1 → Dτ2 | ∀x, y ∈ Dτ1 .x vτ1 y =⇒ f(x) vτ2 f(y)}
f vτ1→τ2 g

def⇐⇒ ∀x ∈ Dτ1 .f(x) vτ2 g(x).

For a type environment Γ, we write JΓKM for the set of maps f such that dom(f) = dom(Γ)
and f(x) ∈ DΓ(x) for every x ∈ dom(Γ).

Vol. 17:4 A PROBABILISTIC HIGHER-ORDER FIXPOINT LOGIC 15:5

We omit the subscript M below. Note that JτK forms a complete lattice for each τ . We
write ⊥τ for the least element of JτK, and for a set V ⊆ Dτ , we write

⊔
τV (

d
τV , resp.)

for the least upper bound (greatest lower bound, resp.) of V with respect to vτ ; we often
omit the subscript τ if it is clear from the context. Note also that for every functional type
τ1 → τ2, every element of Dτ1→τ2 is monotonic. Thus, for every type τ and every function
f ∈ Dτ→τ , there exist the least and greatest fixed points of f , which we write LFP(f) and
GFP(f) respectively. They are given by:

LFP(f) =
d
τ{x ∈ Dτ | f x vτ x} GFP(f) =

⊔
τ{x ∈ Dτ | x vτ f x}.

We now define the semantics of formulas. Since the meaning of a formula depends on
its type environment, we actually define the semantics JΓ ` φ : τKM for each type judgment
Γ ` φ : τ . Here, the subscript M denotes the underlying Markov chain, which is often
omitted.

Definition 2.6 (Semantics of Type Judgement). Let M be a Markov chain and assume
that Γ ` φ : τ is derivable. Then its semantics JΓ ` φ : τKM ∈ JΓK → JτK is defined by
induction on the (unique) derivation of Γ ` φ : τ by:

JΓ ` p : PropKM (ρ) = λs ∈ SM .if s ∈ ρAP ,M (p) then 1 else 0

JΓ ` X : τKM (ρ) = ρ(X)

JΓ ` φ1 ∧ φ2 : PropKM (ρ) = λs ∈ SM . min
i∈{1,2}

JΓ ` φi : PropKM (ρ)(s)

JΓ ` φ1 ∨ φ2 : PropKM (ρ) = λs ∈ SM . max
i∈{1,2}

JΓ ` φi : PropKM (ρ)(s)

JΓ ` [φ]J : PropKM (ρ) = λs ∈ SM .if JΓ ` φ : PropKM (ρ)(s) ∈ J then 1 else 0

JΓ ` �φ : PropKM (ρ) = λs ∈ SM . min
s′:PM (s,s′)>0

JΓ ` φ : PropKM (ρ)(s′)

JΓ ` ♦φ : PropKM (ρ) = λs ∈ SM . max
s′:PM (s,s′)>0

JΓ ` φ : PropKM (ρ)(s′)

JΓ ` ©φ : PropKM (ρ) = λs ∈ SM .
∑
s′∈SM

(
PM (s, s′) · JΓ ` φ : PropKM (ρ)(s′)

)
JΓ ` µX.φ : τKM (ρ) = LFP(λv ∈ Dτ .JΓ, X : τ ` φ : τKM (ρ[X 7→ v]))

JΓ ` νX.φ : τKM (ρ) = GFP(λv ∈ Dτ .JΓ, X : τ ` φ : τKM (ρ[X 7→ v]))

JΓ ` λX.φ : τ1 → τ2KM (ρ) = λv ∈ Dτ1 .JΓ, X : τ1 ` φ : τ2KM (ρ[X 7→ v])

JΓ ` φ1 φ2 : τKM (ρ) = JΓ ` φ1 : τ2 → τKM (ρ) (JΓ ` φ2 : τ2KM (ρ))

In the last equality, τ2 is uniquely determined from Γ and φ2. In the definitions of the
semantics of �φ and ♦φ, the set {s′ ∈ SM |P (s, s′) > 0} is non-empty and finite, because∑

s′∈SM P (s, s′) = 1 and SM is finite by the definition of Markov chains. Thus the max/min

operations are well-defined. We also note that JΓ ` φ : τK is a monotone function from JΓK
to JτK (where JΓK is ordered by the component-wise ordering; note also Remark 2.7 below).
This ensures the well-definedness of the semantics of µX.φ, νX.φ, and λX.φ.

Remark 2.7. Recall that in a formula [φ]J , we allow the predicate J to be “> r” or
“≥ r” (where r ∈ [0, 1]), but neither “< r” nor “≤ r”. Allowing “< r” would break the
monotonicity of the semantics of a formula. For example, J∅ ` λX.[X]<1 : Prop → PropK =
λv ∈ DProp .λs ∈ S.(if v(s) < 1 then 1 else 0) is not monotonic.

15:6 Y. Mitani, N. Kobayashi, and T. Tsukada Vol. 17:4

We often omit M , the type of the formula, and the type environment, and just write
JφK or JΓ ` φK for JΓ ` φ : τKM when there is no danger of confusion. For a Markov
chain M = (S, P, ρAP , sin) and a closed PHFL formula φ of type Prop, we write M |= φ if
JφK(sin) = 1.

Example 2.8. Recall the PHFL formula φ = ψ p where ψ = µF.λX.X ∨ F (©X) in
Example 2.3. We have:

JψK = LFP
(
λv ∈ DProp→Prop .λx ∈ DProp .λs ∈ S.

max
(
x s, v (λs′ ∈ S.

∑
s′′

P (s′, s′′) · (xs′′)) s
))

≥
(
λv.λx.λs.max

(
x s, v (λs′ ∈ S.

∑
s′′

P (s′, s′′) · (xs′′)) s
))n+1

(⊥Prop→Prop)

= λx.λs. max
0≤k≤n

∑
s0s1...sk∈Sk+1,s0=s

(
x(sk) ·

∏
0≤j≤k−1

P (sj , sj+1)
)

for every n ≥ 0. Thus, we have:

JψK ≥ λx.λs ∈ S. sup
k≥0

∑
s0s1...sk∈Sk+1,s0=s

(
x(sk) ·

∏
0≤j≤k−1

P (sj , sj+1)
)
.

Actually, the equality holds, because the righthand side is a fixpoint of

λv ∈ DProp→Prop .λx ∈ DProp .λs ∈ S.max(x s, v(λs ∈ S.
∑
s′

P (s, s′) · (xs′))).

The semantics of φ is, therefore, given by

JφK = λs ∈ S. sup
k≥0

∑
s0s1...sk∈Sk+1,s0=s,sk∈ρAP (p)

∏
0≤j≤k−1

P (sj , sj+1).

2.4. Expressive Power. PHFL obviously subsumes the µp-calculus [CKP15], which coin-
cides with order-0 PHFL. Hence PHFL also subsumes PCTL [HJ94], since the µp-calculus
subsumes PCTL [CKP15].

PHFL is strictly more expressive than the µp-calculus.

Theorem 2.9. Order-1 PHFL is strictly more expressive than the µp-calculus, i.e., there
exists an order-1 PHFL proposition φ such that φ is not equivalent to any µp-formula.

Proof. Let M be the set of Markov chains M = (S, P, ρAP , sin) that satisfy the following
conditions.

• S = {s0, s1, . . . , sn} for a positive integer n,
• P (si, si+1) = 1 (0 ≤ i ≤ n− 1), P (sn, sn) = 1 and P (si, sj) = 0 otherwise.
• There are three atomic propositions a, b, c with ρAP (a) ∪ ρAP (b) = {s0, s1, . . . , sn−1},
ρAP (a) ∩ ρAP (b) = ∅ and ρAP (c) = {sn}.
• The initial state is sin = s0.

Let φ be the order-1 PHFL formula of type Prop:

(µF.λX.a ∧ ♦(X ∨ F (b ∧ ♦X)))(b ∧ ♦c).

Vol. 17:4 A PROBABILISTIC HIGHER-ORDER FIXPOINT LOGIC 15:7

Note that, for M ∈ M, M |= φ holds just if n is even, ρAP (a) = {s0, s1, . . . , sn
2
−1} and

ρAP (b) = {sn
2
, sn

2
+1, . . . , sn−1}.

We show that there is no µp-formula equivalent to φ. Suppose that a µp-formula φ′ were
equivalent to φ, which would imply that M |= φ if and only if M |= φ′ for any M ∈M. For
M ∈M, let us write KM for the embedded Kripke structure of M . Since all the transitions
in M are deterministic, there exists a modal µ-calculus formula φ′′ such that M |= φ′ if and
only if KM |= φ′′ (note that φ′′ is obtained by replacing © with ♦, and replacing [φ1]J with
true if J is “≥ 0” and with φ1 otherwise). That would imply that KM |= φ′′ for M ∈M, just
if n is even and ρAP satisfies ρAP (a) = {s0, s1, . . . , sn

2
−1} and ρAP (b) = {sn

2
, sn

2
+1, . . . , sn−1}.

But then φ′′ would describe the non-regular language {ambm | m ≥ 1}, which contradicts
the fact that the modal µ-calculus can express only regular properties.

Remark 2.10. For non-probabilistic logics, HFL was known to be strictly more expressive
than the modal µ-calculus [VV04]. The above proof can be easily adapted to show that fact.

3. Undecidability of PHFL Model Checking

In this section we prove the undecidability of the following problem.

Definition 3.1 (PHFL Model Checking). The PHFL model-checking problem for finite
Markov chains is the problem of deciding whether M |= φ, given a (finite) Markov chain M
and a closed PHFL formula φ of type Prop as input.

We prove that the problem is undecidable even for the order-1 fragment of PHFL without
fixpoint alternations, by a reduction from the undecidability of the value-1 problem [GO10]
for probabilistic automata [Rab63]. In contrast to the undecidability of PHFL model
checking, the corresponding model-checking problems are decidable for the full fragments
of the µp-calculus [CKP15] and (non-probabilistic) HFL [VV04], with fixpoint alternations.
Thus, the combination of probabilities and higher-order predicates introduces a new difficulty.

In Section 3.1, we review the definition of probabilistic automata and the value-1 problem.
Section 3.2 shows the reduction from the value-1 problem to the PHFL model-checking
problem.

3.1. Probabilistic Automata. We review probabilistic automata [Rab63] and the unde-
cidability of the value-1 problem. Our definition follows [Fij17].

Definition 3.2 (Probabilistic Automata). A probabilistic automaton A is a quintuple
(Q,Σ, qI ,∆, F) where

• Q is a finite set of states,
• Σ is a finite set of input symbols,
• qI ∈ Q is an initial state,
• ∆ : Q × Σ → D(Q), where D(Q) := { f : Q → [0, 1] |

∑
q∈Q f(q) = 1 } is the set of

probabilistic distributions over the set Q, represents transition probabilities, and
• F ⊆ Q is a set of accepting states.

15:8 Y. Mitani, N. Kobayashi, and T. Tsukada Vol. 17:4

For a word w = w1 · · ·wn ∈ Σn, the probability that w is accepted by A = (Q,Σ, qI ,∆, F),
written A(w), is defined by:

A(w) :=
∑

q0,...,qn−1∈Q,qn∈F
s.t . q0=qI

∏
1≤i≤n

∆(qi−1, wi)(qi).

The value of a probabilistic automaton A, denoted by val(A), is defined by

val(A) := sup
w∈Σ∗

A(w).

The problem of deciding whether val(A) = 1, called the value-1 problem, is known to be
undecidable.

Theorem 3.3 (Undecidability of The Value-1 Problem [GO10]). Given a probabilistic
automaton A, whether val(A) = 1 is undecidable.

3.2. The Undecidability Result. Let A = (Q,Σ, qI ,∆, F) be a probabilistic automaton,
where Σ = {c1, . . . , c|Σ|} with |Σ| > 0. We shall construct a Markov chain MA and a PHFL
formula φA, so that val(A) = 1 if and only if MA |= φA. The undecidability of PHFL model
checking then follows immediately from Theorem 3.3.

We first construct the Markov chain MA. The set AP of atomic propositions is { pc |
c ∈ Σ }] { pF }. The Markov chain MA = (S, P, ρAP , sin) is defined as follows.

• The set S of states is Q] (Q× Σ).
• The transition probability P is given by:

P ((q, c), q′) = ∆(q, c)(q′) (c ∈ Σ and q, q′ ∈ Q)

P (q, (q, c)) =
1

|Σ|
(c ∈ Σ and q ∈ Q)

P (s, s′) = 0 (otherwise)

The first transition (from (q, c) to q′) is used to simulate the transition of A from q to
q′ for the input symbol c. The second transition (from q to (q, c)) is used to choose the
next input symbol to be supplied to the automaton; the probability is not important, and
replacing 1/|Σ| with any non-zero probability does not affect the arguments below.
• ρAP is defined by:

ρAP (pc) = { (q, c) | q ∈ Q } ρAP (pF) = { q | q ∈ F }.

• The initial state is sin = qI .

Intuitively, the Markov chain MA simulates the behavior of A. The atomic proposition pc
means that A is currently reading the symbol c, and pF means that A is in a final state.

Based on this intuition, we now construct the PHFL formula φA. For each c ∈ Σ, we
define a formula fc of type Prop → Prop by:

fc := λX.♦(pc ∧©X).

Intuitively fc(φ) denotes the probability that the automaton transits to a state satisfying φ
given c as the next input. Given a word w = w1w2 . . . wn ∈ Σ∗, we define the formula gw by

gw := fw1(fw2(. . . (fwnpF) . . .)).

Vol. 17:4 A PROBABILISTIC HIGHER-ORDER FIXPOINT LOGIC 15:9

We write Aq for the automaton obtained from A by replacing the initial state with q.
The following lemma states that gw represents the probability that w is accepted by the
automaton from the current state q.

Lemma 3.4. Aq(w) = JgwKMA
(q) for every q ∈ Q.

Proof. Let A = (Q,Σ, qI ,∆, F). The proof proceeds by induction on the length |w| of w.

• Case where |w| = 0, i.e., w = ε: By the definition of Aq, Aq(ε) = 1 if q ∈ F and 0 otherwise.
We have the required result, as gε = pF .
• Case where |w| > 0: Let w = w1 · · ·wn = w1w

′. We have:

Aq(w) =
∑

q0,...,qn−1∈Q,qn∈F s.t . q0=q

∏
1≤i≤n

∆(qi−1, wi)(qi)

=
∑
q′∈Q

∆(q, w1)(q′) · (
∑

q1...,qn−1∈Q,qn∈F s.t . q1=q′

∏
2≤i≤n

∆(qi−1, wi)(qi))

=
∑
q′∈Q

∆(q, w1)(q′) ·Aq′(w′).

Since gw = fw1(gw′) ≡ ♦(pw1 ∧©gw′), we have:

JgwKMA
(q) = max

c∈Σ
Jpw1 ∧©gw′K(q, c)

= J©gw′K(q, w1)

=
∑
q′∈Q

∆(q, w1)(q′) · Jgw′K(q′)

By the induction hypothesis, we have Aq′(w
′) = Jgw′K(q′), which implies the the required

result.

Using Lemma 3.4, we obtain val(A) = supn∈ωJ
∨
w∈Σ≤n gwKMA

(qI), where Σ≤n is the set
of words of length up to n. This can be expressed by using the least fixpoint operator.

Theorem 3.5. Let θA be the formula of type Prop → Prop defined by:

θA := µF.
(
λX.X ∨

∨
c∈Σ

F (fcX)
)
.

Then val(A) = JθA pF KMA
(qI). Therefore MA |= φA if and only if val(A) = 1, for φA :=

[θA pF]≥1.

Proof. Let

ξ := λF.λX.X ∨
∨
c∈Σ

F (fcX).

Then, we have

JθAKM = JµF.ξ F KM =
⊔

Prop→Prop{Jξ
n(⊥)K | n ∈ ω}

where ⊥ := λZ.µU.U is the formula of type Prop → Prop, and ξn(x) denotes n-times
applications of ξ to x. In fact,

⊔
Prop→Prop{Jξn(⊥)K | n ∈ ω} is a fixpoint of JξK, because:

JξK(
⊔

Prop→Prop{Jξ
n(⊥)K | n ∈ ω})

= λx ∈ DProp .x
⊔

Prop

(⊔
c∈Σ (

⊔
Prop→Prop{Jξ

n(⊥)K | n ∈ ω})(JfcK x)
)

15:10 Y. Mitani, N. Kobayashi, and T. Tsukada Vol. 17:4

= λx ∈ DProp .x
⊔

Prop

(⊔
c∈Σ (

⊔
Prop{Jξ

n(⊥)K(JfcK x) | n ∈ ω})
)

= λx ∈ DProp .
⊔

Prop {x
⊔

Prop

(⊔
c∈Σ Jξn(⊥)K(JfcK x)

)
| n ∈ ω}

=
⊔

Prop→Prop{Jξ
n+1(⊥)K | n ∈ ω}.

Since JξK is monotonic and J⊥K is the least element, we also have:

JµF.ξ F KM = Jξn(µF.ξ F)K w Jξn(⊥)K

for any n ∈ ω hence also

JµF.ξ F KM w
⊔

Prop→Prop{Jξ
n(⊥)K | n ∈ ω}.

Thus, we have the equality.
By a straightforward induction on n, we also have: Jξn+1(⊥) pF KM = J

∨
w∈Σ≤n gwKM .

Therefore, by using also Lemma 3.4, we obtain:

val(A) = sup
n

(J
∨

w∈Σ≤n

gwKMA
(qI)) = sup

n
(Jξn+1(⊥)pF K(qI)) = JθA pF KMA

(qI),

which implies the required result.

The following is an immediate corollary of Theorems 3.3 and 3.5.

Corollary 3.6 (Undecidability of PHFL Model-Checking Problem). There is no algorithm
that, given a Markov chain M and a closed order-1 formula φ of type Prop, decides whether
M |= φ.

We close this section with some remarks.1

Remark 3.7. Note that the value val(A) of a probabilistic automaton cannot even be
approximately computed [Fij17]: there is no algorithm that outputs “Yes” if val(A) =
1 and “No” if val(A) ≤ 1

2 . Thus, the proof of Theorem 3.5 (in particular, the result
val(A) = JθA pF KMA

(qI)) also implies that for a qualitative formula of PHFL ψ, JψK is not
approximately computable in general.

Remark 3.8. It would be interesting to study a converse encoding, i.e., to find an encoding
of some fragment of the PHFL model checking problem into the value-1 problem. Such an
encoding may help us find a decidable class of the PHFL model checking problem, based on
decidable subclasses for the value-1 problem, such as the one studied in [FGKO15].

4. Hardness of the PHFL Model-Checking Problem

In the previous section, we have seen that PHFL model checking is undecidable even for the
fragment of PHFL without fixpoint alternations. In this section, we give a lower bound of
the hardness of the PHFL model-checking problem in the presence of fixpoint alternations.
The following theorem states the main result of this section.

Theorem 4.1. The order-1 PHFL model-checking problem is Π1
1-hard and Σ1

1-hard.

1We would like to thank an anonymous reviewer of our FSCD 2020 submission for pointing them out.

Vol. 17:4 A PROBABILISTIC HIGHER-ORDER FIXPOINT LOGIC 15:11

Γ, X :A `µ X : A Γ `µ Z : N

Γ `µ s : N

Γ `µ S s : N

Γ `µ s : N Γ `µ t : N

Γ `µ s ≤ t : Ω

Γ `µ ϕ1 : Ω Γ `µ ϕ2 : Ω

Γ `µ ϕ1 ∧ ϕ2 : Ω

Γ `µ ϕ1 : Ω Γ `µ ϕ2 : Ω

Γ `µ ϕ1 ∨ ϕ2 : Ω

Γ, X : A `µ ϕ : T

Γ `µ λX.ϕ : A→ T

Γ `µ ϕ1 : A→ T Γ `µ ϕ2 : A

Γ `µ ϕϕ2 : T

Γ, X : T `µ ϕ : T

Γ `µ µX.ϕ : T

Γ, X : T `µ ϕ : T

Γ `µ νx.ϕ : T

Figure 2: Typing Rules for the Higher-order Fixpoint Arithmetic.

Note that Π1
1 and Σ1

1, defined in terms of the second-order arithmetic, contain very
hard problems. For example, those classes contain the problem of deciding whether a given
first-order Peano arithmetic formula is true.

We prove this theorem by reducing the validity checking problem of the µ-arithmetic [Lub89]
to the PHFL model-checking problem. Even the validity checking problem of a higher-order
extension of the µ-arithmetic can be reduced to the PHFL model-checking problem. The
key in the proof is a representation of natural numbers as quantitative propositions such
that all the operations on natural numbers in the µ-arithmetic are expressible in PHFL.

This section is structured as follows. Section 4.1 reviews the basic notions of the
µ-arithmetic. Section 4.2 describes the reduction and proves the theorem above.

4.1. Higher-Order Fixpoint Arithmetic. The µ-arithmetic [Lub89] is a first-order arith-
metic with fixpoint operators. This section briefly reviews its higher-order extension, studied
by Kobayashi et al. [KTW18].

As in PHFL, we first define the types of µ-arithmetic formulas. The set of types, ranged
over by A, is given by:

A ::= N |T T ::= Ω |A→ T.

The type N is for natural numbers, Ω for (qualitative) propositions, and A → T for
functions. We do not allow functions to return values of type N . We define the order of
types of the µ-arithmetic similarly to the PHFL types, by: order(N) = order(Ω) = 0 and
order(A→ T) = max(order(A) + 1, order(T)).

Assume a countably infinite set Var of variables ranged over by X. The set of formulas,
ranged over by ϕ, is given by the following grammar.

s ::= X |Z |Ss ϕ ::= s | s1 ≤ s2 |ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2 |λX.ϕ |ϕ1 ϕ2 |µX.ϕ | νX.ϕ.

Here, Z and S respectively denote the constant 0 and the successor function on natural
numbers.

The typing rules are shown in Fig. 2; they are just standard typing rules for the simply-
typed λ-calculus, with several constructors such as Z :N , S :N → N , and ∧ : Ω→ Ω. We
shall consider only well-typed formulas. We define the order of a formula as the largest
order of the types of its subformulas.

Definition 4.2 (Semantics of Types). The semantics of a type A is a partially ordered set
JAKµ = (DA,vA) defined inductively on the structure of A as follows.

15:12 Y. Mitani, N. Kobayashi, and T. Tsukada Vol. 17:4

(1) The semantics of N and Ω:

DN = N n vN m
def⇐⇒ n = m

DΩ = {0, 1} p vΩ q
def⇐⇒ p ≤ q

(2) The semantics of A→ T :

DA→T = { f : DA → DT | ∀u, v ∈ DA.u vA v =⇒ f(u) vT f(v) }

f vA→T g
def⇐⇒ ∀v ∈ DA.f(v) vT g(v)

The semantics JT Kµ of a type T forms a complete lattice (while JNKµ is not); we write⊔
T (resp.

d
T) for the least upper bound (resp. greatest lower bound) operation, and ⊥T

for the least element.
The interpretation JΓKµ of a type environment Γ is the set of functions θ such that

dom(θ) = dom(Γ) and that θ(X) ∈ JΓ(X)Kµ for every X ∈ dom(Γ). It is ordered by the
point-wise ordering.

Definition 4.3 (Semantics of Formulas). The semantics of a formula ϕ with judgment
Γ `µ ϕ : A is a monotone map from JΓKµ to JAKµ, defined as follows.

JΓ `µ X : AKµ(θ) := θ(X)

JΓ `µ Z : NKµ(θ) := 0

JΓ `µ Ss : NKµ(θ) := JΓ `µ s : NKµ(θ) + 1

JΓ `µ s ≤ t : ΩKµ(θ) :=

{
1 (if JΓ `µ s : NKµ(θ) ≤ JΓ `µ t : NKµ(θ))

0 (if JΓ `µ s : NKµ(θ) > JΓ `µ t : NKµ(θ))

JΓ `µ ϕ1 ∧ ϕ2 : ΩKµ(θ) := JΓ `µ ϕ1 : ΩKµ(θ)
⊔

Ω JΓ `µ ϕ2 : ΩKµ(θ)

JΓ `µ ϕ1 ∨ ϕ2 : ΩKµ(θ) := JΓ `µ ϕ1 : ΩKµ(θ)
d

ΩJΓ `µ ϕ2 : ΩKµ(θ)

JΓ `µ λX.ϕ : A→ T Kµ(θ) := λv ∈ JAKµ.JΓ, X : A `µ ϕ : T Kµ(θ[X 7→ v])

JΓ `µ ϕ1 ϕ2 : T Kµ(θ) := JΓ `µ ϕ1 : A→ T Kµ(θ) (JΓ `µ ϕ2 : AKµ(θ))

JΓ `µ µX.ϕ : T Kµ(θ) := LFP(λv ∈ DT .JΓ, X : T `µ ϕ : T K(θ[X 7→ v]))

JΓ `µ νX.ϕ : T Kµ(θ) := GFP(λv ∈ DT .JΓ, X : T `µ ϕ : T K(θ[X 7→ v]))

As in the case of PHFL, we write JϕKµ(θ) for JΓ `µ ϕ : AKµ(θ) and just JϕKµ for JϕKµ(∅)
when there is no confusion.

Example 4.4. Let ϕ = µF.λX.(X = 100∨ F (S(S X))) where 100 is an abbreviation of the
term S(S(. . . S︸ ︷︷ ︸

100

Z) . . .). The semantics JϕKµ is a function f : N → {0, 1} where f(n) = 1

just if n is an even number no greater than 100.

The validity checking problem of the higher-order fixpoint arithmetic is the problem
of, given a closed formula ϕ of type Ω, deciding whether JϕKµ = 1. The following result is
probably folklore, which follows from the well-known fact that the fair termination problem
for programs is Π1

1-complete (see, e.g., Harel [Har86]), and the fact that the fair termination
of a program can be reduced to the validity of a first-order fixpoint arithmetic formula (see,
e.g., [KTW18] for the reduction).

Vol. 17:4 A PROBABILISTIC HIGHER-ORDER FIXPOINT LOGIC 15:13

����
s′0

����
s0

����
s′1

����
s1

�
0.5

�

0.5

-0.5
�

1

-
0.5

� 1

Figure 3: The Markov Chain for Reduction from Higher-order Fixpoint Arithmetic to PHFL.

Theorem 4.5. The validity checking problem of the first-order fixpoint arithmetic is Π1
1-hard

and Σ1
1-hard.

Remark 4.6. As for an upper bound, Lubarsky [Lub89] has shown that predicates on
natural numbers definable by µ-arithmetic formulas belong to ∆1

2. One can prove that the
validity problem for the µ-arithmetic is ∆1

2 as well.

4.2. Hardness of PHFL Model Checking. We give a reduction from the validity checking
problem of the higher-order fixpoint arithmetic to the PHFL model-checking problem. The
main theorem of this section (Theorem 4.1) is an immediate consequence of this reduction
and Theorem 4.5.

Given a formula ϕ of the higher-order fixpoint arithmetic, we need to effectively construct
a pair (φ,M) of a formula of PHFL and a Markov chain such that ϕ is true if and only if
M |= φ. The Markov chain M is independent of the formula ϕ. We first define the Markov
chain and then explain the intuition of the translation of formulas.

The Markov chain M = (S, P, ρAP , sin) is shown in Figure 3. It is defined as follows.

• The set of states is S = {s0, s
′
0, s1, s

′
1}.

• The transition probability satisfies P (s0, s1) = P (s0, s
′
0) = P (s′0, s0) = P (s′0, s

′
1) = 1

2 ,
P (s1, s0) = P (s′1, s

′
0) = 1 and P (si, sj) = 0 for all other pairs of states.

• There are four atomic propositions p0, p
′
0, p1, and p′1, representing each state (e.g. ρAP (p0) =

{s0}).
• The initial state sin is s0.

For notational convenience, we write v ∈ JPropKM as a tuple (v(s0), v(s′0), v(s1), v(s′1)).
As mentioned at the beginning of this section, the key of the reduction is the represen-

tation of natural numbers, as well as operations on natural numbers. We encode a proposi-
tional formula ϕ into a quantitative propositional formula φ such that JφKM = (JϕKµ, , ,),
and encode a natural number n into a quantitative propositional formula ψ such that
JφKM = (1

2n , 1−
1

2n , ,). Here, denotes a “don’t care” value. We implement primitives on
natural numbers Z, S and ≤, as follows.

The constant Z can be represented by p0. Indeed, Jp0KM = (1, 0, 0, 0) = (1/20, 1 −
(1/20), 0, 0) as expected.

Assuming that φ represents n (i.e. JφKM = (1/2n, 1− (1/2n), ,)), the successor n+ 1
can be represented by

φ′ := ©((©φ ∧ (p1 ∨ p′1)) ∨ p0).

15:14 Y. Mitani, N. Kobayashi, and T. Tsukada Vol. 17:4

Indeed, we have:

J©φKM = (, ,
1

2n
, 1− 1

2n
)

J©φ ∧ (p1 ∨ p′1)KM = (0, 0,
1

2n
, 1− 1

2n
)

J(©φ ∧ (p1 ∨ p′1)) ∨ p0KM = (1, 0,
1

2n
, 1− 1

2n
)

J©((©φ ∧ (p1 ∨ p′1)) ∨ p0)KM = (
1

2
× 1

2n
,
1

2
+

1

2
× (1− 1

2n
), ,)

= (
1

2n+1
, 1− 1

2n+1
, ,).

It remains to encode ≤. We use the fact that, for any natural numbers n and m,

n ≤ m ⇔ 1

2n
≥ 1

2m
⇔ 1

2n
+ (1− 1

2m
) ≥ 1.

The s′0-component of the representation of a natural number plays an important role below.
Assume that φ and χ represent n and m respectively. Then we have

J©φ ∧ p1KM = (0, 0,
1

2n
, 0) Jχ ∧ p′0KM = (0, 1− 1

2m
, 0, 0)

and thus

J(©φ ∧ p1) ∨ (χ ∧ p′0)KM = (0, 1− 1

2m
,

1

2n
, 0).

Therefore

J©((©φ ∧ p1) ∨ (χ ∧ p′0))KM = (
1

2
×
(1

2n
+ (1− 1

2m
)
)
, , ,).

Thus, n ≤ m if and only if the s0-component of the above formula is ≥ 1
2 . In other words,

n ≤ m just if:

J[©((©φ ∧ p1) ∨ (χ ∧ p′0))] 1
2
KM = (1, , ,).

Let us formalize the above argument. We first give the translation of types:

tr(N) = Prop tr(Ω) = Prop tr(A→ T) = tr(A)→ tr(T).

The translation can be naturally extended to type environments. Following the above
discussion, the translation of formulas of type N is given by

tr(Z) = p0 and tr(S s) =©((©tr(s) ∧ (p1 ∨ p′1)) ∨ p0).

The comparison operator can be translated as follows:

tr(s ≤ t) = [©((©tr(s) ∧ p1) ∨ (tr(t) ∧ p′0))]≥ 1
2
.

The translation of other connectives is straightforward:

tr(ϕ1 ∧ ϕ2) = tr(ϕ1) ∧ tr(ϕ2) tr(ϕ1 ∨ ϕ2) = tr(ϕ1) ∨ tr(ϕ2) tr(λX.ϕ) = λX.tr(ϕ)

tr(X) = X tr(ϕ1 ϕ2) = tr(ϕ1) tr(ϕ2) tr(µX.ϕ) = µX.tr(ϕ) tr(νX.ϕ) = νX.tr(ϕ).

The following lemma states that the translation preserves types.

Lemma 4.7. If Γ `µ ϕ : A, then tr(Γ) ` tr(ϕ) : tr(A).

Proof. This follows by straightforward induction on the derivation of Γ `µ ϕ : A.

Vol. 17:4 A PROBABILISTIC HIGHER-ORDER FIXPOINT LOGIC 15:15

We prove the correctness of the translation. For each type A of the higher-order fixpoint
arithmetic, we define a relation (∼A) ⊆ JAKµ × Jtr(A)KM by induction on A as follows:

n ∼N (r0, r
′
0, r1, r

′
1)

def⇐⇒ r0 =
1

2n
and r′0 = 1− 1

2n

b ∼Ω (r0, r
′
0, r1, r

′
1)

def⇐⇒ b = r0

f ∼A→T g
def⇐⇒ ∀x ∈ JAKµ.∀y ∈ Jtr(A)KM . x ∼A y =⇒ f x ∼T g y.

This relation can be naturally extended to the interpretations of type environments: given a
type environment Γ of the µ-arithmetic, the relation (∼Γ) ⊆ JΓKµ × Jtr(Γ)KM is defined by

θ ∼Γ ρ
def⇐⇒ ∀X ∈ dom(Γ). θ(X) ∼Γ(X) ρ(X).

The following theorem states the correspondence between the source and the target of
the translation. A proof is provided in Appendix A.

Theorem 4.8. Let Γ `µ ϕ : A be a formula of the higher-order fixpoint arithmetic. Assume
θ ∈ JΓKµ and ρ ∈ Jtr(Γ)K. If θ ∼Γ ρ, then JΓ `µ ϕ : AKµ(θ) ∼A Jtr(Γ) ` tr(ϕ) : tr(A)KM (ρ).

Corollary 4.9. The validity problem of the order-k fixpoint arithmetic is reducible to the
order-k PHFL model-checking problem.

Proof. Assume ∅ `µ ϕ : Ω. By Theorem 4.8, JϕKµ ∼Ω Jtr(ϕ)KM . Therefore, JϕKµ = 1 if and
only if Jtr(ϕ)KM (s0) = 1, i.e. M |= tr(ϕ). The mapping ϕ 7→ (tr(ϕ),M) is obviously effective,
and preserves the order.

Theorem 4.1 is an immediate consequence of Theorem 4.5 and Corollary 4.9.

5. Decidable Subclass of Order-1 PHFL Model Checking

As we have seen in Section 3, PHFL model checking is undecidable, even for order 1. In
this section, we identify a decidable subclass of the order-1 PHFL model-checking problems
(i.e., a set of pairs (φ,M) such that whether M |=φ is decidable). We identify the subclass
by using a type system: we define a type system TM for PHFL formulas, parameterized by
M , so that if φ is a proposition well-typed in TM , then M |=φ is decidable.

This section is structured as follows. In Section 5.1, we introduce the type system
TM , and prove that the semantics of any order-1 well-typed formula is an affine function.
Section 5.2 introduces a matrix representation of affine functions and shows the decidability
of M |=φ by appealing to the decidability of the first-order theory of reals [Tar51]. Section 5.3
shows that the restricted fragment is reasonably expressive, by giving an encoding of the
termination problem for recursive Markov chains into the restricted fragment of PHFL model
checking.

5.1. Type-based Restriction of Order-1 PHFL. We first explain the idea of the re-
striction imposed by our type system. By definition, the semantics of a (closed) order-
1 PHFL formula φ of type Prop → Prop with respect to the Markov chain M is a
map fφ from the set of functions S → [0, 1] to the same set, where S is the set of
states of M . Thus, if S = {s1, s2, . . . , sn} is fixed, fφ can be regarded as a function
from [0, 1]n to [0, 1]n. Now, if the function fφ were affine, i.e., if there are functions
f1, f2, . . . , fn such that fφ(r1, r2, . . . , rn) = (f1(r1, r2, . . . , rn), . . . , fn(r1, r2, . . . , rn)), where

15:16 Y. Mitani, N. Kobayashi, and T. Tsukada Vol. 17:4

fi(r1, r2, . . . , rn) = ci,0 + ci,1r1 + · · ·+ ci,nrn for some real numbers ci,j , then the function fφ
would be representable by a finite number of reals ci,j . The semantics of a fixpoint formula
would then be given as a solution of a fixpoint equation on the coefficients, which is solvable
by appealing to the decidability of first-order theories of reals [Tar51].

Based on the observation above, we introduce a type system to restrict the formulas so
that the semantics of every well-typed order-1 formula is affine. The conjunction φ1 ∧ φ2 is
one of the problematic logical connectives that may make the semantics of an order-1 formula
non-affine: recall that the min operator was used to define the semantics of conjunction. We
require that for every subformula of the form φ1 ∧ φ2 and for each state s ∈ S, one of the
values Jφ1K(s) and Jφ2K(s) is the constant 0 or 1. We can then remove the min operator,
since we have min(0, x) = 0 and min(1, x) = x for every x ∈ [0, 1].

We parameterize the type system by the Markov chain M , since it often depends on
M whether the semantics of an order-1 formula is affine. For example, the semantics of
(p ∧ φ1) ∨ (q ∧ φ2) is affine if the semantics of φ1 and φ2 are affine and if p and q cannot be
simultaneously true (i.e., if ρAP ,M (p) ∩ ρAP ,M (q) = ∅). Without the parameterization, the
resulting type system would be too conservative.

The discussion above motivates us to refine the type Prop of propositions to PropT,U

where T,U ⊆ S and T ∩U = ∅. Intuitively, the type PropT,U describes propositions φ ∈ Prop
such that JφK(s) = 0 for all s ∈ T and JφK(s) = 1 for all s ∈ U ; there is no guarantee on the
value of JφK(s) for s ∈ S \ (T ∪ U). The syntax of refined types is given by:

κ ::= PropT,U |PropT,U → κ

where T and U range over the set of subsets of S satisfying T ∩ U = ∅. Note that each type
κ can be expressed as PropT1,U1 → PropT2,U2 → · · · → PropTk,Uk → PropT,U where k ≥ 0.

We define the translation from the set of refined types to the set of types in PHFL by

tr(PropT,U) = Prop tr(κ1 → κ2) = tr(κ1)→ tr(κ2)

and the translation of type environment K by (tr(K))(x) = tr(K(x)). The semantics of
refined types is defined as follows. As explained above, the values of function types are
restricted to affine functions.

Definition 5.1. For each refined type κ, we define the subset JκK ⊆ Jtr(κ)K as follows.

JPropT,U K = {v ∈ DProp | ∀s ∈ T.v(s) = 0,∀s ∈ U.v(s) = 1}
JPropT1,U1 → . . .PropTk,Uk → PropT,U K =

{f ∈ JPropk → PropK |
f is affine on JPropT1,U1K× · · · × JPropTk,UkK, and
∀v1 ∈ JPropT1,U1K, . . . , vk ∈ JPropTk,UkK.f v1 · · · vk ∈ JPropT,U K}

In the definition above, by “f is affine on D1×· · ·×Dk”, we mean that, for each state s` ∈ S,
there exist some coefficients c`0, c

`
1,1, . . . , c

`
k,n such that, for every (v1, . . . , vk) ∈ D1×· · ·×Dk,

f v1 · · · vk s` = c`0 +
∑

i∈{1,...,k},j∈{1,...,n}

c`i,jvi(sj).

Remark 5.2. Note that JκK is not closed under various operations. For example, the greatest
lower bound of affine functions λ(x, y).x and λ(x, y).y ∈ [0, 1]2 → [0, 1] is λ(x, y).min(x, y),
which is not affine. This means that the conjunction does not preserve affinity, as mentioned
above. A similar observation applies to fixpoints: for a monotone function h on Jtr(κ)K,
even if hx ∈ JκK for every x ∈ JκK, it is not necessarily the case that LFP(h) ∈ JκK. For

Vol. 17:4 A PROBABILISTIC HIGHER-ORDER FIXPOINT LOGIC 15:17

example, let S = {s}, κ = Prop∅,∅ → Prop∅,{s}, and h(f) = λv.λs.max(f(v)(s), v(s)2). For

any f ∈ JκK and v ∈ Prop∅,∅, h(f)(v)(s) = max(f(v)(s), v(s)2) = max(1, v(s)2) = 1, hence
h(f) ∈ JκK. However, LFP(h) = λv.λs.v(s)2 6∈ JκK.

We restrict PHFL formulas by a type system parameterized by a Markov chain M .
We consider a type judgment of the form: K; ∆ `M φ : κ. Here, K is a type environment
of the form X1 : κ1, . . . , Xk : κk; it is for fixpoint variables, i.e., those bound by µ or ν.
The other type environment ∆ is of the form Y1 : PropT1,U1 , . . . , Ym : PropT`,U` ; it is for
variables bound by λ. We require that the domains of K and ∆ are disjoint. The intended
meaning of the judgment K; ∆ `M φ : κ, where ∆ = Y1 : PropT1,U1 , . . . , Y` : PropT`,U`

and κ = PropT`+1,U`+1 → · · · → PropT`+m,U`+m → PropT,U is as follows. Assume: (i)
each fixpoint variable X is bound to an affine function as described by K(X), (ii) each
Yi (1 ≤ i ≤ `+m) is bound to a value (xi,1, . . . , xi,n) described by PropTi,Ui . Then the value
of φY`+1 · · · Y`+m is an affine function on xi,j . Note that the value of φY`+1 · · · Y`+m need
not be affine on the values of fixpoint variables. Below ∆ is treated as a sequence of type
bindings, while K is treated as a set.

The typing rules are given in Figure 4. We explain key rules below. The rule T-WeakTU
is for weakening the information represented by T and U ; this rule is required, for example,
for adjusting the types between a function and its argument. The rule T-Weak is a usual
weakening rule for adding type bindings to ∆. The rule T-AP is for atomic propositions;
recall that ρAP (p) denotes the set of states where p holds with probability 1. The rule
T-Mu is for least fixpoint formulas. The second premise means that κ is of the form
PropT1,U1 → · · · → PropTk,Uk → PropT,U , where U = ∅.2 Without this restriction, the value
of φφ1 · · · φk at a state in U may be wrongly estimated to be 1. For example, consider
the case where φ = X and the simple type of X is Prop. Then, the value of µX.X should
be the map f such that f(s) = 0 for every state. Without the restriction, however, we

could wrongly derive µX.X : Prop∅,SM . Note also that ∆ is empty in T-Mu; this is just
for technical convenience, and is not a fundamental restriction. Indeed, if µX.φ contains a
free variable Y of type PropT,U , then we can replace it with (µX ′.λY.[X ′ Y/X]φ)Y , without
changing the semantics. Analogous conditions are imposed in the rule T-Nu for greatest
fixpoint formulas. In the rule T-Conj for conjunctions, the first two premises imply that
the value of φi at a state in Ti is 0; therefore, the value of φ1 ∧ φ2 at a state in T1 ∪ T2 is
0, which explains T1 ∪ T2 in the conclusion. Similarly for U1 ∩ U2. The third premise (on
the second line) ensures that the value of φ1 ∧ φ2 is an affine function on the value of the
variables in ∆. That is guaranteed if ∆ = ∅. Otherwise, we require T1 ∪ U1 ∪ T2 ∪ U2 = SM ;
recall the earlier discussion on a sufficient condition for the semantics of an order-1 formula
to be affine. The rule T-Disj for disjunctions is analogous. In the rules T-J, T-Min, and
T-Max, we require that the type environment ∆ for λ-bound variables be empty, since the
operators [·]J ,�, and ♦ break the affinity. The sets T ′ and U ′ in the conclusions of those
rules are conservatively approximated. In T-J, recall that we have excluded out trivial

2The condition U = ∅ is sometimes too restrictive. For example, consider the formula µX.true. We can
only assign Prop∅,∅, although Prop∅,SM can be assigned to the equivalent formula true. To remedy this
problem, it suffices to add the rule for unfolding:

K; ∆ `M [µX.φ/X]φ : κ

K; ∆ `M µX.φ : κ

For the sake of simplicity, we do not consider this rule.

15:18 Y. Mitani, N. Kobayashi, and T. Tsukada Vol. 17:4

K; ∆ `M φ : PropT,U

T ′ ⊆ T U ′ ⊆ U
K; ∆ `M φ : PropT

′,U ′

(T-WeakTU)

K; ∆ `M φ : κ

K;X : PropT,U ,∆ `M φ : κ
(T-Weak)

K; ∅ `M p : PropρAP (p),ρAP (p)
(T-AP)

K, X : κ; ∅ `M X : κ
(T-FVar)

K;X : PropT,U `M X : PropT,U

(T-Var)

K, X : κ; ∅ `M φ : κ

κ is of the form · · · → PropT,∅

K; ∅ `M µX.φ : κ
(T-Mu)

K, X : κ; ∅ `M φ : κ

κ is of the form · · · → Prop∅,U

K; ∅ `M νX.φ : κ
(T-Nu)

K; ∆, X : PropT,U `M φ : κ

K; ∆ `M λX.φ : PropT,U → κ
(T-Abs)

K; ∆ `M φ1 : PropT,U → κ
K; ∆ `M φ2 : PropT,U

K; ∆ `M φ1φ2 : κ
(T-App)

K; ∆1, X : PropT,U , Y : PropT
′,U ′ ,∆2 `M φ : κ

K; ∆1, Y : PropT
′,U ′ , X : PropT,U ,∆2 `M φ : κ

(T-Ex)

K; ∆ `M φ1 : PropT1,U1 K; ∆ `M φ2 : PropT2,U2

∆ 6= ∅ ⇒ T1 ∪ U1 ∪ T2 ∪ U2 = SM

K; ∆ `M φ1 ∧ φ2 : Prop(T1∪T2),(U1∩U2)

(T-Conj)

K; ∆ `M φ1 : PropT1,U1 K; ∆ `M φ2 : PropT2,U2

∆ 6= ∅ ⇒ T1 ∪ U1 ∪ T2 ∪ U2 = SM

K; ∆ `M φ1 ∨ φ2 : Prop(T1∩T2),(U1∪U2)

(T-Disj)

K; ∅ `M φ : PropT,U

K; ∅ `M [φ]J : PropT,U
(T-J)

K; ∅ `M φ : PropT,U

T ′ = {s ∈ SM | ∃s′ ∈ T.PM (s, s′) > 0}
U ′ = {s ∈ SM | ∀s′ ∈ SM .PM (s, s′) > 0⇒ s′ ∈ U}

K; ∅ `M �φ : PropT
′,U ′

(T-Min)

K; ∅ `M φ : PropT,U

T ′ = {s ∈ SM | ∀s′ ∈ SM .PM (s, s′) > 0⇒ s′ ∈ T}
U ′ = {s ∈ SM | ∃s′ ∈ U.PM (s, s′) > 0}

K; ∅ `M ♦φ : PropT
′,U ′

(T-Max)

K; ∆ `M φ : PropT,U

T ′ = {s ∈ SM | ∀s′ ∈ SM .PM (s, s′) > 0⇒ s′ ∈ T}
U ′ = {s ∈ SM | ∀s′ ∈ SM .PM (s, s′) > 0⇒ s′ ∈ U}

K; ∆ `M ©φ : PropT
′,U ′

(T-Avg)

Figure 4: Typing Rules for the Decidable Fragment

bounds such as > 1 and ≥ 0; thus, the value of [φ]J is 0 (1, resp.) if the value of φ is 0
(1, resp.). In the rule T-Avg, we need not require ∆ to be empty, as the average of affine
functions is again affine.

Example 5.3. Let M be an element ofM in the proof of Theorem 2.9, i.e., a Markov chain
(S, P, ρAP , sin) that satisfies the following conditions.

• S = {s0, s1, . . . , sn} for a positive integer n,
• P (si, si+1) = 1 (0 ≤ i ≤ n− 1), P (sn, sn) = 1 and P (si, sj) = 0 otherwise.
• There are three atomic propositions a, b, c with ρAP (a) ∪ ρAP (b) = {s0, s1, . . . , sn−1},
ρAP (a) ∩ ρAP (b) = ∅ and ρAP (c) = {sn}.
• The initial state is sin = s0.

Vol. 17:4 A PROBABILISTIC HIGHER-ORDER FIXPOINT LOGIC 15:19

Let φ1 be the formula:

(µF.λX.a ∧©(X ∨ F (b ∧©X)))(b ∧ ♦c),

which is a variation of the formula φ considered in the proof, obtained by replacing two
occurrences of ♦ with ©. Since M has only deterministic transitions, φ1 has the same value
as φ. Let K = F : PropρAP (a),∅ → PropρAP (b)∪ρAP (c),∅ and ∆ = X : PropρAP (a),∅. Then, we
have:

K; ∆ `M a : PropρAP (b)∪ρAP (c),ρAP (a)

K; ∆ `M X : PropρAP (a),∅
· · ·

K; ∆ `M F (b ∧©X) : PropρAP (b)∪ρAP (c),∅

K; ∆ `M X ∨ F (b ∧©X) : Prop∅,∅

K; ∆ `M ©(X ∨ F (b ∧©X)) : Prop∅,∅

K; ∆ `M a ∧©(X ∨ F (b ∧©X)) : PropρAP (b)∪ρAP (c),∅

Here, K; ∆ `M F (b ∧©X) : PropρAP (b)∪ρAP (c),∅ is derived as follows.

K; ∆ `M F : PropρAP (a),∅ → PropρAP (b)∪ρAP (c),∅

K; ∆ `M b : PropρAP (a)∪ρAP (c),ρAP (b)

K; ∆ `M X : PropρAP (a),∅

K; ∆ `M ©X : Prop∅,∅

K; ∆ `M b ∧©X : PropρAP (a)∪ρAP (c),∅

K; ∆ `M b ∧©X : PropρAP (a),∅

K; ∆ `M F (b ∧©X) : PropρAP (b)∪ρAP (c),∅

We can thus obtain

∅; ∅ `M (µF.λX.a ∧©(X ∨ F (b ∧©X)))(b ∧ ♦c) : PropρAP (b)∪ρAP (c),∅.

Note that, by the same argument as the proof of Theorem 2.9, there exists no µp-calculus
formula equivalent to φ1.

The following lemma states that a formula that is well-typed in TM is also well-typed in
the original PHFL type system.

Lemma 5.4. Let φ be a PHFL formula such that K; ∆ `M φ : κ. Then we have tr(K,∆) `
φ : tr(σ).

Proof. This follows by a straightforward induction on the derivation of K; ∆ `M φ : κ.

The following lemma states that the refined type system does not impose any restriction
on the order-0 fragment of PHFL. Thus, together with the observation in Example 5.3, the
lemma implies that our decidable fragment is strictly more expressive than the µp-calculus.

Lemma 5.5. If Γ ` φ : τ , and φ is an order-0 formula, then K; ∅ `M φ : Prop∅,∅ where
K is the type environment such that dom(K) = dom(Γ) and K(X) = Prop∅,∅ for every
X ∈ dom(K).

Proof. This follows by a straightforward induction on the derivation of Γ ` φ : τ . Note
that since ∆ is always empty, the condition T1 ∪ U1 ∪ T2 ∪ U2 in T-Conj and T-Disj is
irrelevant.

In the rest of this subsection, we prove the following properties.

(1) The type system is sound in the sense that the semantics of any formula φ of type κ
indeed belongs to JκK; see Theorem 5.8 for the precise statement.

15:20 Y. Mitani, N. Kobayashi, and T. Tsukada Vol. 17:4

(2) The calculation of the semantics of a well-typed formula (especially, the least/greatest
fixpoint computation) can be performed up to the equivalence relation ∼κ, where
f ∼PropT1,U1→···→PropTm,Um→PropT,U g just if f and g are equivalent on the intended

domain, i.e., if f v1 · · · vm = g v1 · · · vm for any v1 ∈ JPropT1,U1K, . . . , vm ∈ JPropTm,UmK;
see Lemmas 5.10 and 5.11.

The reason why the type system ensures affinity has been intuitively explained already,
except for the fixpoints. Here we show (in Lemma 5.7) that the fixpoint of a typable fixpoint
operator is indeed affine. The key observation is that JκK ⊆ Jtr(κ)K is closed under the limit
of chains, as stated in the following lemma.

Lemma 5.6. Let κ be a refined type and γ be an ordinal number. For every increasing
chain (fα)α<γ of elements in JκK, the limit

⊔
α<γ fα in Jtr(κ)K belongs to JκK. Similarly, for

every decreasing chain (fα)α<γ, the limit
d
α<γ xα is in JκK.

Proof. We prove the former. Assume κ = PropT1,U1 → · · · → PropTk,Uk → PropT,U .
We first give an alternative characterization of affinity. For each i ≤ k, given vi ∈

JPropTi,UiK and r ∈ [0, 1], we define r · vi by (r · vi)(s) = r(vi(s)). Note that r · vi may not be
a member of JPropTi,UiK, but r · vi + (1− r) · v′i ∈ JPropTi,UiK for every vi, v

′
i ∈ JPropTi,UiK

and r ∈ [0, 1] (here the sum is the point-wise sum on reals). Then f ∈ JPropk → PropK is
affine on JPropT1,U1K× · · · × JPropTk,UkK if and only if, for every (v1, . . . , vk), (v

′
1, . . . , v

′
k) ∈

JPropT1,U1K× · · · × JPropTk,UkK and r ∈ [0, 1],

f(r · v1 + (1− r) · v′1) . . . (r · vk + (1− r) · v′k) = r(f v1 . . . vk) + (1− r)(f v′1 . . . v′k).

Let (fα)α<γ be an increasing chain and f =
⊔
α<γ fα. Then f can be characterized in

terms of the limits in real numbers as f y1 . . . yk = limα<γ(fα y1 . . . yk) for every y1, . . . , yk ∈
JPropK. Since limα<γ commutes with linear operations, for every (v1, . . . , vk), (v′1, . . . , v

′
k) ∈

JPropT1,U1K× · · · × JPropTk,UkK and r ∈ [0, 1], we have:

f (r · v1 + (1− r) · v′1) . . . (r · vk + (1− r) · v′k)
= lim

α<γ
(fα (r · v1 + (1− r) · v′1) . . . (r · vk + (1− r) · v′k)

= lim
α<γ

(
r(fα v1 . . . vk) + (1− r)(fα v′1 . . . v′k)

)
= r
(

lim
α<γ

(fα v1 . . . vk)
)

+ (1− r)
(

lim
α<γ

(fα v
′
1 . . . v

′
k)
)

= r(f v1 . . . vk) + (1− r)(f v′1 . . . v′k).

The latter is the dual of the former, and can be proved in the same manner, by just
replacing

⊔
with

d
.

Lemma 5.7. Let κ = PropT1,U1 → · · · → PropTk,Uk → PropT,U be a refined type and h be
a monotone function on tr(κ) such that x ∈ JκK implies hx ∈ JκK.

• If U = ∅, then LFP(h) ∈ JκK.
• If T = ∅, then GFP(h) ∈ JκK.

Here LFP and GFP are taken in Jtr(κ)K.

Vol. 17:4 A PROBABILISTIC HIGHER-ORDER FIXPOINT LOGIC 15:21

Proof. We prove the former; the latter can be proved similarly. We define hα(⊥) for ordinals
α as follows:

hα(⊥) =

⊥tr(κ) if α = 0

h(hβ(⊥)) if α = β + 1⊔
β<α h

β(⊥) if α is a limit ordinal.

Then LFP(h) = hα(⊥) for some sufficiently large α.
It suffices to show that hα(⊥) ∈ JκK for every α. We prove this claim by transfinite

induction. For α = 0, ⊥tr(κ) ∈ JκK since U = ∅. For α = β + 1, we have h(hβ(⊥)) ∈ JκK
since hβ(⊥) ∈ JκK. If α is a limit cardinal, we appeal to Lemma 5.6; note that (fβ(⊥))β<α
is an increasing chain.

Note that in the above lemma, LFP(h) ∈ JκK would not hold if we drop the condition
U = ∅; recall Remark 5.2. That justifies the corresponding conditions in rule T-Mu and
T-Nu.

The following theorem is soundness of the type system. Let JKK be the subset of
Jtr(K)K consisting of interpretations ρ such that ρ(X) ∈ JK(X)K for every X ∈ dom(K). For
∆ = (Y1 : PropT1,U1 , . . . , Ym : PropTm,Um), we write λ∆.ϕ for λY1. . . . λYm.ϕ and ∆→ κ for
PropT1,U1 → · · · → PropTm,Um → κ.

Theorem 5.8. Let φ be a PHFL formula such that K; ∆ `M φ : κ. Then, for every ρ ∈ JKK,
we have Jtr(K) ` λ∆.φ : tr(∆→ κ)K(ρ) ∈ J∆→ κK.

Proof. By induction on the structure of derivation K; ∆ `M φ : κ, with case analysis on
the last rule used. We use Lemma 5.7 for the cases of T-Mu and T-Nu. For the cases of
T-Conj and T-Disj, the condition T1 ∪ U1 ∪ T2 ∪ U2 = SM plays the key role. Note that
if s belongs to Ti ∪ Ui, then the semantics of λ∆.φ0 ∧ φ1 at s coincides with either that of
λ∆.φ1−i or a constant function λṽ.0. Other cases are easy.

Let us discuss another important property of the type system. For κ = PropT1,U1 →
· · · → PropTk,Uk → PropT,U and f, g ∈ Jtr(κ)K, we write f -κ g if f v1 . . . vk vProp

g v1 . . . vk for every (v1, . . . , vk) ∈ JPropT1,U1K × · · · × JPropTk,UkK. For interpretations
ρ0, ρ1 ∈ JKK, we write ρ0 -K ρ1 if ρ0(X) -K(X) ρ1(X) for every X ∈ dom(K). We write
f ∼κ g for f �κ g ∧ g �κ f , and analogously for interpretations. The results in the rest of
this subsection allows us to compute the semantics of a formula of type κ up to ∼κ.

Lemma 5.9. Let κ = PropT1,U1 → · · · → PropTk,Uk → PropT,U be a refined type and h0

and h1 be monotone functions on tr(κ) such that x ∈ JκK implies h0 x, h1 x ∈ JκK and that
x0 -κ x1 implies h0 x0 -κ h1 x1.

• If U = ∅, then LFP(h0) -κ LFP(h1).
• If T = ∅, then GFP(h0) -κ GFP(h1).

Here LFP and GFP are taken in Jtr(κ)K.

Proof. We prove the former; the proof of the latter is analogous. As discussed in the proof of
Lemma 5.7, LFP(h0) = hα0 (⊥) and LFP(h1) = hα1 (⊥) for some sufficiently large ordinal α.
We prove hα0 (⊥) -κ hα1 (⊥) by induction on α. Trivially hα0 (⊥) = ⊥ -κ ⊥ = hα1 (⊥). For α =

β + 1, since hβ0 (⊥) -κ h
β
1 (⊥) by the induction hypothesis, h0(hβ0 (⊥)) -κ h1(hβ1 (⊥)) follows

from the assumption. If α is a limit cardinal, then hαi =
⊔
β<α h

β
i (⊥). For every (v1, . . . , vk) ∈

JPropT1,U1K × · · · × JPropTk,UkK, we have hαi (⊥)(v1) . . . (vk) =
⊔
β<α(hβi (⊥)(v1) . . . (vk)) by

15:22 Y. Mitani, N. Kobayashi, and T. Tsukada Vol. 17:4

definition. Since hβ0 (⊥)(v1) . . . (vk) -κ hβ1 (⊥)(v1) . . . (vk) holds for every β < α by the
induction hypothesis, we have hα0 (⊥)(v1) . . . (vk) -κ hα1 (⊥)(v1) . . . (vk).

Lemma 5.10. Let φ be a PHFL formula such that K; ∆ `M φ : κ. Then, for every
ρ, ρ′ ∈ JKK such that ρ -K ρ′, we have Jλ∆.φK(ρ) -∆→κ Jλ∆.φK(ρ′).

Proof. By induction on the structure of derivation K; ∆ `M φ : κ. The most cases are easy.
For fixpoints, we appeal to Lemma 5.9. The details are given in Appendix A.

The above lemma shows that the semantic domain for κ can be regarded as JκK modulo
∼κ. Furthermore the least and greatest fixpoints can be characterized in terms of the
preorder -κ.

Lemma 5.11. Let κ be a refined type and h be a monotone function on tr(κ) such that
x ∈ JκK implies hx ∈ JκK and that x -κ x′ implies hx -κ hx′. If LFP(h) ∈ JκK, then
LFP(h) is a least element in {x ∈ JκK | hx -κ x} with respect to -κ. Similarly, if
GFP(h) ∈ JκK, then GFP(h) is a greatest postfixpoint of h w.r.t -κ.

Proof. Assume κ = PropT1,U1 → · · · → PropTk,Uk → PropT,U . Let ⊥κ be the least element
of JκK, which is defined by: for every s ∈ SM ,

⊥PropT,U (s) =

{
1 if s ∈ U
0 otherwise.

⊥κ v1 . . . vk =

{
⊥PropT,U if vi w ⊥PropTi,Ui for every i

λs.0 otherwise.

For an ordinal number α, we define xα by x0 = ⊥κ, xβ+1 = h(xβ) and xα =
⊔
β<α xβ

if α is a limit ordinal. By the monotonicity of h and Lemma 5.6, the sequence {xα}α is
well-defined and forms an increasing chain. Thus, there exists an ordinal α such that xα
is a fixpoint of h, and in particular, an element of {x ∈ JκK | hx -κ x}. It follows by
straightforward induction on α that xα is also a least element of {x ∈ JκK | hx -κ x}. Now,
by the assumption that LFP(h) ∈ JκK, LFP(h) is also an element of {x ∈ JκK | hx -κ x},
and since LFP(h) v xα, LFP(h) is also a least element of {x ∈ JκK | hx -κ x}. The proof
for GFP(h) is analogous.

If K; ∅ `M µX.φ : κ and ρ ∈ JKK, then h = JλX.φK(ρ) satisfies the condition of the lemma
above (recall Lemma 5.10). Hence JµX.φK(ρ) is ∼κ-equivalent to every least fixpoint of
JλX.φK(ρ) with respect to -κ; in other words, to compute JµX.φK(ρ) up to ∼κ, it suffices
to compute a least fixpoint of JλX.φK(ρ) in the quotient set JκK/ ∼κ. A similar statement
holds for νX.φ.

5.2. Decidability. This subsection gives a description of the interpretation of a PHFL
formula using the first-order theory of reals, and obtains the decidability of the restricted
fragment of PHFL model checking. To this end, we need to represent an element in JκK
as a tuple of reals. Each element of JPropT,U K can be naturally written as an n-tuple of
[0, 1] where n is the number of states in M . What remains is a representation of functions
JPropT1,U1 → · · · → PropTm,Um → PropT,U K.

The key result is Lemma 5.10, which allows us to identify x, y ∈ JκK if x ∼κ y. Let
κ = PropT1,U1 → · · · → PropTm,Um → PropT,U .) Since x ∈ JκK is affine on JPropT1,U1K ×

Vol. 17:4 A PROBABILISTIC HIGHER-ORDER FIXPOINT LOGIC 15:23

· · · × JPropTm,UmK, the ∼κ-equivalence class of x contains an affine function on [0, 1]m, i.e.,
x ∼κ f holds for some

f v1 . . . vk s = cs +
m∑
i=1

∑
s′∈S

cs,i,s′vi(s
′).

We can use the tuple of coefficients (cs, (cs,i,s′)i≤k,s′∈S)s∈S as a representation of x.
Henceforth, we assume the set SM of states of M is {1, . . . , n}. We define the affine

semantics (|Propm → Prop |) of type Propm → Prop by

(|Propm → Prop |) = {(ci,j,k)i∈{1,...,n},j∈{0,...,m},k∈{0,...,n} ∈ [0, 1]n(m+1)(n+1) |
m∑
j=0

n∑
k=0

ci,j,k ≤ 1 for every i = 1, . . . , n.}

The tuple (ci,j,k)i,j,k ∈ (|κ |) represents the function f ∈ JPropm → PropK such that, for each
i ∈ SM = {1, . . . , n},

f g1 · · · gm i = ci,0,0 + Σj∈{1,...,m},k∈{1,...,n}ci,j,k · gj(k).

We write (ci,j,k)†i,j,k for the function f above. The affine semantics (|κ |) of refined type κ is

defined by

(|κ |) = {(ci,j,k)i,j,k ∈ (| tr(κ) |) | (ci,j,k)†i,j,k ∈ JκK}.

Lemma 5.12. For every x ∈ JκK, there exists c = (ci,j,k)i,j,k ∈ (|κ |) such that x ∼κ c†.

Proof. Let κ = PropT1,U1 → · · · → PropTm,Um → PropT,U . Since x ∈ JκK, it is affine on
JPropT1,U1K×· · ·×JPropTm,UmK, i.e. for every (v1, . . . , vm) ∈ JPropT1,U1K×· · ·×JPropTm,UmK
and i ∈ SM ,

x v1 . . . vm i = ci,0,0 +
m∑
j=1

n∑
k=1

ci,j,kvj(k).

We can assume without loss of generality that ci,j,k = 0 if k ∈ Tj since vj(k) = 0 in this case.

Let ci,0,k = ci,j,0 = 0 for j, k ≥ 0. Then (ci,j,k)i,j,k ∈ (|Propm → Prop |) and (ci,j,k)
†
i,j,k ∼κ x.

Therefore (ci,j,k)i,j,k ∈ (|κ |) since the latter implies (ci,j,k)
†
i,j,k ∈ JκK.

Remark 5.13. For x ∈ JκK, c ∈ (|κ |) such that x ∼κ c† is not necessarily unique. The
representation becomes unique if one imposes the following conditions. Assume that κ =
PropT1,U1 → · · · → PropTm,Um → PropT,U .

• ci,j,0 = ci,0,k = 0 for j, k > 0. Note that these coefficients are not used in (ci,j,k)
†
i,j,k.

• ci,j,k = 0 if k ∈ Tj . If k ∈ Tj , then vj(k) = 0 and thus ci,j,k does not affect the value of

(ci,j,k)
†
i,j,k. So we can assume without loss of generality that ci,j,k = 0.

• ci,j,k = 0 if k ∈ Uj . If k ∈ Uj , then vj(k) = 1. So, by adding ci,j,k to the constant part ci,0,0
if necessarily, we obtain another representation that belongs to the same ∼κ-equivalence
class and that ci,j,k = 0.

A representation c ∈ (|κ |) is canonical if it satisfies the above conditions. It is not difficult
to see that each ∼κ-equivalence class has exactly one canonical representation.

The second and third conditions are convenient for computing the affine semantics of
φ1∨φ2 and φ1∧φ2. Suppose ∅; ∆ `M φi : PropTi,Ui for i ∈ {1, 2} and T1∪U1∪T2∪U2 = SM .
If (ci,j,k)i,j,k and (c′i,j,k)i,j,k are canonical representations for the (affine) semantics of λ∆.φ1

15:24 Y. Mitani, N. Kobayashi, and T. Tsukada Vol. 17:4

and λ∆.φ2 respectively, then the semantics (c′′i,j,k)i,j,k) of λ∆.φ1∧φ2 is also obtained pointwise
by:

c′′i,j,k =

min(ci,0,0, c

′
i,0,0) if j = k = 0

c′i,j,k if i ∈ U1

ci,j,k if i ∈ U2 \ U1

0 otherwise

As stated before, we will describe the affine semantics of a well-typed PHFL formula
using the first-order theory of reals. Before doing so, however, we show an example of
directly computing the affine semantics.

Example 5.14. Let M be the Markov chain ({1, 2}, P, ρAP , 1) where ρAP (pi) = {i} for
i ∈ {1, 2}, and P (1, 1) = P (1, 2) = 0.5 and P (2, 2) = 1, as depicted below.

1 20.5

10.5

Let φ be µX.λY.(p2∧Y)∨©(p1∧X(Y)). For ρ ∈ (| K |), we write (| K; ∆ `M φ : κ |)(ρ) for the
(canonical) matrix representation of Jtr(K) ` λtr(∆).φK(ρ†). Let us compute (| ∅; ∅ `M φ : κ |)
where κ = Prop∅,∅ → Prop∅,∅.

Let ρ be {X 7→ (vi,j,k)i∈{1,2},j∈{0,1},k∈{0,1,2}}. We write below an element (ci,j,k)i,j,k of
(|κ |) as a matrix (M1 M2), where Mi denotes (ci,j,k)j,k. We can compute the affine semantics
of subexpressions as follows.

(|X : κ;Y : Prop∅,∅ `M Y : Prop∅,∅ |)(ρ) =

(
0 0 0 0 0 0
0 1 0 0 0 1

)
(|X : κ;Y : Prop∅,∅ `M p2 : Prop{1},{2} |)(ρ) =

(
0 0 0 1 0 0
0 0 0 0 0 0

)
(|X : κ;Y : Prop∅,∅ `M p2 ∧ Y : Prop{1},∅ |)(ρ)=

(
0 0 0 0 0 0
0 0 0 0 0 1

)
(Recall the discussion in the latter half of Remark 5.13.)

(|X : κ;Y : Prop∅,∅ `M X(Y) : Prop∅,∅ |)(ρ) =

(
v1,0,0 0 0 v2,0,0 0 0
0 v1,1,1 v1,1,2 0 v2,1,1 v2,1,2

)
(|X : κ;Y : Prop∅,∅ `M ©X(Y) : Prop∅,∅ |)(ρ)

=

(
1
2(v1,0,0 + v2,0,0) 0 0 v2,0,0 0 0
0 1

2(v1,1,1 + v2,1,1) 1
2(v1,1,2 + v2,1,2) 0 v2,1,1 v2,1,2

)
(© can be computed pointwise)

(|X : κ;Y : Prop∅,∅ `M p1 : Prop{2},{1} |)(ρ) =

(
1 0 0 0 0 0
0 0 0 0 0 0

)
(|X : κ;Y : Prop∅,∅ `M p1 ∧©X(Y) : Prop{2},∅ |)(ρ)

=

(
1
2(v1,0,0 + v2,0,0) 0 0 0 0 0
0 1

2(v1,1,1 + v2,1,1) 1
2(v1,1,2 + v2,1,2) 0 0 0

)
(Remark 5.13.)

Vol. 17:4 A PROBABILISTIC HIGHER-ORDER FIXPOINT LOGIC 15:25

(|X : κ;Y : Prop∅,∅ `M (p2 ∧ Y) ∨ (p1 ∧©X(Y)) : Prop∅,∅ |)(ρ)

=

(
1
2(v1,0,0 + v2,0,0) 0 0 0 0 0
0 1

2(v1,1,1 + v2,1,1) 1
2(v1,1,2 + v2,1,2) 0 0 1

)
(Analogous to the computation of ∧ discussed in Remark 5.13.)

(|X : κ; ∅ `M λY.(p2 ∧ Y) ∨ (p1 ∧©X(Y)) : κ |)(ρ)

=

(
1
2(v1,0,0 + v2,0,0) 0 0 0 0 0
0 1

2(v1,1,1 + v2,1,1) 1
2(v1,1,2 + v2,1,2) 0 0 1

)
Thus, we have:

(| ∅; ∅ `M φ : κ |)(∅)

= LFP(λ

(
v1,0,0 v2,0,0

v1,1,1 v1,1,2 v2,1,1 v2,1,2

)
.(

1
2 (v1,0,0 + v2,0,0) 0 0 0 0 0
0 1

2 (v1,1,1 + v2,1,1) 1
2 (v1,1,2 + v2,1,2) 0 0 1

)
=

(
0 0 0 0 0 0
0 0 1 0 0 1

)
.

Using the result above, we obtain:

(| ∅; ∅ `M φ(p) : κ |)(∅) =
(

1 0 0 1 0 0
)
.

Thus, φ(p2) holds at state 1 with probability 1.

In the example above, we have directly computed the affine semantics. In general,
however, we describe the affine semantics (ci,j,k)i,j,k by using logical formulas, to deal with
arbitrary alternations of fixpoint operators. All the operations and properties on JκK required
for computing the affine semantics are definable by using the first-order theory of reals.
Assume κ = PropT1,U1 → · · · → PropTm,Um → PropT,U and let c = (ci,j,k)i,j,k ∈ (|κ |). For

example, the value c† v1 . . . vm i can be represented as a term

ci,0,0 +
m∑
j=1

n∑
k=1

ci,j,kvj(k).

Then, for c,d ∈ (|κ |), the relation c -κ d is written as

∀v1, . . . , vm ∈ [0, 1]n.(∧
j=1,...,m

vj ∈ (|PropTj ,Uj |)
)
⇒

∧
i=1,...,n

[(
c† v1 . . . vk i

)
≤
(
d† v1 . . . vk i

)]
and c† ∼κ d† as

c† -κ d† ∧ d† -κ c†.

The meets and joins are also describable: for example, c†1 u c†2 ∼κ d† is equivalent to

∀v1, . . . , vm ∈ [0, 1]n.
(∧
j=1,...,m

vj ∈ (|PropTj ,Uj |)
)

⇒
∧

i=1,...,n

[(
d† v1 . . . vk i

)
= max

(
(c†1 v1 . . . vk i), (c†2 v1 . . . vk i)

)]
;

note that max as well as min is an operation definable in the first-order theory of reals.

15:26 Y. Mitani, N. Kobayashi, and T. Tsukada Vol. 17:4

Lemma 5.15. Suppose K; ∆ `M φ : κ and K = {X1 : κ1, . . . , XN : κN}. Then one
can effectively construct a formula Φ of the first-order real arithmetic such that, for every
c` ∈ (|κ` |) (` = 1, . . . , N) and d ∈ (|∆→ κ |),

Φ(c1, . . . , cN ,d) ⇔ Jλ∆.φK({X` 7→ c†` | 1 ≤ ` ≤ N}) ∼∆→κ d†.

Proof. By induction on the structure of derivation K; ∆ `M φ : κ. The most cases are
easy. For example, consider the case that the last rule is (T-Conj). Then φ = φ1 ∧ φ2 and
K; ∆ `M φi : PropTi,Ui for i = 1, 2. By the induction hypothesis, we have predicates Φ1 and
Φ2 representing Jλ∆.φ1K and Jλ∆.φ2K. Then Φ(c1, . . . , cN ,d) is defined as

∃d1 ∈ (|∆→ PropT1,U1 |) . ∃d2 ∈ (|∆→ PropT2,U2 |) .

Φ1(c1, . . . , cN ,d1) ∧ Φ2(c1, . . . , cN ,d2) ∧ d† ∼κ d†1 u d†2.

Since Jλ∆.φiK({X` 7→ c†` | 1 ≤ ` ≤ N}) ∈ J∆ → PropTi,UiK by Theorem 5.8, there exists a

di ∈ (|∆→ PropTi,Ui |) such that Φi(c1, . . . , cN ,di).
The only non-trivial cases are fixpoints. Consider the case that the last rule is (T-Mu).

Then φ = νX.φ0 and K, X : κ; ∆ `M φ0 : κ. By the induction hypothesis, we have Φ0

representing the semantics of φ0. Then Φ(c1, . . . , cN ,d) is defined as

Φ0(c1, . . . , cN ,d,d) ∧ ∀d′ ∈ (|κ |) .Φ0(c1, . . . , cN ,d
′,d′)⇒ d† -κ d′†.

The first condition says that d† is a fixpoint of JλX.φ0K modulo ∼κ. The second condition
says that d† is a least element in the set of fixpoints d′† of JλX.φ0K modulo ∼κ. Correctness
of the above formula follows from Corollary 5.11.

Theorem 5.16. Given a closed formula φ and a Markov chain M such that ∅; ∅ `M φ :
PropT,U , it is decidable whether M |= φ.

Proof. Assume that sin,M = 1. By Lemma 5.15, one can effectively construct a formula Φ of
the first-order real arithmetic such that Φ(r1, . . . , rn) is valid if and only if JφKM (∅)(i) = ri
for every i = 1, . . . , n. Hence M |= φ if and only if ∃r2, . . . , rn.Φ(1, r2, . . . , rn). The validity
of this formula is decidable [Tar51].

Remark 5.17. The formula obtained in the proof above contains both universal and existen-
tial quantifiers in general; hence the complexity is doubly exponential time in general [DH88].
However, if φ is of the form [φ′]≥r where φ′ contains no occurrences of ν and [·]J , then we
can express Φ using only existential quantifiers, and appeal to a decision algorithm for the
existential theory of the reals, whose complexity is PSPACE [Can88]. In fact, to deal with
µ-formulas in the restricted fragment, it suffices to consider only inequalities of the form
LFP(h) �κ x, which can be represented by an existential formula ∃x′.(x′ -κ x ∧ hx′ -κ x′).
Note that - is definable by a quantifier-free formula, as stated in the lemma below. Note
also that the semantics of conjunctions and disjunctions can be expressed without using
quantifiers, as discussed in Remark 5.13.

Lemma 5.18. Let κ = PropT1,U1 → · · · → PropTm,Um → PropT,U . For J ⊆ {1, . . . ,m} ×
{1, . . . , n}, we write J ∈ J (κ) if the characteristic function belongs to

∏m
i=1JPropTi,UiK, i.e.,

• if k ∈ Tj, then (k, j) /∈ J , and
• if k ∈ Uj, then (k, j) ∈ J .

Vol. 17:4 A PROBABILISTIC HIGHER-ORDER FIXPOINT LOGIC 15:27

Let (ci,j,k)i,j,k, (c
′
i,j,k)i,j,k ∈ (|κ |). Then, (ci,j,k)

†
i,j,k �κ (c′i,j,k)

†
i,j,k if and only if:

∧
i∈{1,...,n}

∧
J∈J (κ)

ci,0,0 +
∑

(j,k)∈J

ci,j,k ≤ c′i,0,0 +
∑

(j,k)∈J

c′i,j,k

 .

Proof. If: Suppose g1 ∈ JPropT1,U1K, . . . , gm ∈ JPropTm,UmK. We regard (g1, . . . , gm) =
(gj(k))j∈{1,...,m},k∈{1,...,n} as an mn-dimensional vector. We also identify J ∈ J (κ) with
(hj(k))j,k where hj(k) = 1 if (j, k) ∈ J and hj(k) = 0 if (j, k) /∈ J .

Let 0 = s0 < s1 < s2 < · · · < sN = 1 be the sequence obtained by sorting {gj(k) | 1 ≤
j ≤ m, 1 ≤ k ≤ n} ∪ {0, 1}. For each ` > 0, we define J` and r` by

J` = {(j, k) | s` ≤ hj(k)} and r` = s` − s`−1.

Then

(g1, . . . , gm) =
∑
`

r`J`.

Hence

(ci,j,k)
†
i,j,k g1 . . . gm i =

∑
`

r`(ci,0,0 +
∑

(j,k)∈J`

ci,j,k)

≤
∑
`

r`(c
′
i,0,0 +

∑
(j,k)∈J`

c′i,j,k)

= (ci,j,k)
†
i,j,k g1 . . . gm i.

Only if: For each J ∈ J (κ), let gj be the element of JPropK such that gj(k) = 1 if

(j, k) ∈ J and gj(k) = 0 if (j, k) 6∈ J . Then gj ∈ JPropTj ,Uj K for every j = 1, . . . ,m. We
have

ci,0,0 +
∑

(j,k)∈J

ci,j,k = (ci,j,k)
†
i,j,k g1 · · · gm i ≤ (c′i,j,k)

†
i,j,k g1 · · · gm i = c′i,0,0 +

∑
(j,k)∈J

c′i,j,k,

as required.

5.3. Expressivity. We have already seen in Example 5.3 and Lemma 5.5 that the decidable
fragment of the order-1 PHFL model checking problem strictly subsumes µp-calculus model
checking. To provide a further evidence of the expressivity of the decidable fragment,
in this subsection, we show that the termination problem for recursive Markov chains
(or, probabilistic pushdown systems) [EY09, BEKK13] can be encoded into the decidable
fragment of order-1 PHFL model checking. Since recursive Markov chains are known to be
equivalent to order-1 probabilistic higher-order recursion schemes (PHORS) [KLG20], we
encode below the termination problem for the latter into the PHFL model checking problem.

We first recall the definition of PHORS, specialized for order 1.

Definition 5.19. An order-1 PHORS G is a triple (X ,R, t), where:

• X is a finite map from (order-1) variables to their arities;

15:28 Y. Mitani, N. Kobayashi, and T. Tsukada Vol. 17:4

• R is a finite set of rules of the form:

X y1 · · · , yX (X) → tL ⊕p tR,
where tL, tR range over the set of (X , {y1, . . . , yX (X)})-terms. Here, the set of (X , V)-terms,
ranged over by t, is defined by the grammar:

t ::= e | y | X t1 · · · , tX (X),

where y and X range over V and dom(X) respectively, and e is a special symbol denoting
termination.
• t is a (X , ∅)-term.

For G = (XG ,RG , tG), the reduction relation t
π,p−→G t′ on terms (where π ∈ {L,R}∗ and

p ∈ [0, 1]) is defined by:

t
ε,1−→G t

t
π,q−→G X t1 · · · tk X y1 · · · yk → tL ⊕p tR ∈ RG

t
πL,q·p−→ G [t1/y1, . . . , tk/yk]tL

t
π,q−→G X t1 · · · tk X y1 · · · yk → tL ⊕p tR ∈ RG

t
πR,q·(1−p)−→ G [t1/y1, . . . , tk/yk]tR

Note that the reduction is deterministic: for π ∈ {L,R}∗, there exists at most one (p, t′)

such that t
π,p−→G t′. The termination probability of G = (XG ,RG , tG), written ProbT (G), is

defined by:

ProbT (G, t, π) =

{
p if t

π,p−→G e
0 otherwise

ProbT (G) =
∑

π∈{L,R}∗ ProbT (G, tG , π).

The following example has been taken from [KLG20].

Example 5.20. Let G be the order-1 PHORS (X ,R, X0), where:

X = {X0 7→ 0, F 7→ 1}
R = {X0 = X1 e⊕1 X0, X1 y = y ⊕p X1(X1 y)}.

Then, we have X0
L,1−→G X1 e

L,p−→G e and X0
L,1−→G X1 e

R,1−p−→ G X1(X1 e)
L,p−→G X1 e

L,p−→G e.
The termination probability ProbT (G) is 1 if p ≥ 1

2 and p
1−p if p < 1

2 .

We now encode an order-1 PHORS G into a Markov chain MG and a closed order-1 PHFL

formula φG such that ∅; ∅ `M φG : Prop∅,∅ and ProbT (G) coincides with the probability
that φG holds at the initial state of MG (i.e., ProbT (G = JφGK(∅)(sin)). We first give a
construction of M . Let {p1, . . . , pm} be the set {p, 1 − p | ⊕p occurs in G}. We assume
p1 < p2 < · · · < pm. We define the Markov chain MG = (S, P, ρAP , sin) as follows.

• S = {s0, s1, . . . , sm+1},
• P satisfies P (s0, s1) = p1, P (s0, si) = pi − pi−1 for 2 ≤ i ≤ m, P (s0, sm+1) = 1 − pm,
P (si, s0) = 1 for 1 ≤ i ≤ m+ 1 and P (si, sj) = 0 otherwise,
• ρAP (Pi) = {si} for each 0 ≤ i ≤ m+ 1, and

Vol. 17:4 A PROBABILISTIC HIGHER-ORDER FIXPOINT LOGIC 15:29

• sin = s0.

Note that J©(P1∨· · ·∨Pi)K(∅)(s0) = pi and J©(Pi+1∨· · ·∨Pm+1)K(∅)(s0) = 1−pi. Now for
each term of t of PHORS G, we construct a formula 〈t〉, so that the termination probability
of t coincides with the probability that φt holds at s0. The translation is given by:

〈e〉 = true 〈y〉 = y 〈Xi t1 · · · tk〉 = Xi 〈t1〉 · · · 〈tk〉 .
For each rule Xi yi · · · yX (Xi) = tL⊕pi tR of R, we construct the following equality on PHFL
formulas:

Xi = λy1, . . . , yX (Xi).© (((P1 ∨ · · · ∨ Pi) ∧©〈tL〉) ∨ ((Pi+1 ∨ · · · ∨ Pm+1) ∧©〈tR〉)).

We thus obtain a system of mutually recursive equations {X1 = φ1, · · · , Xk = φk}, whose
least solution θ (which maps each Xi to a formula ψi that satisfies ψi = θφi) can be
represented by using the least fixpoint operators in an obvious manner. We then let φG be
θ 〈tG〉.

Example 5.21. Recall G in Example 5.20. Assuming p < 1
2 , MG is:

• S = {s0, s1, s2, s3, s4}.
• P (s0, s1) = p, P (s0, s2) = 1 − 2p, P (s0, s3) = p, P (s0, s4) = 0, P (si, s0) = 1 for i ∈
{1, 2, 3, 4} and P (si, sj) = 0 for i, j > 0.
• ρAP (Pi) = {si} for each i ∈ {0, . . . , 4}, and
• sin = s0.

The rules of G are translated to the following equations:

X0 =©(((P1 ∨ P2 ∨ P3) ∧©(X1 e)) ∨ (P4 ∧©X0))
X1 = λy.© ((P1 ∧©y) ∨ ((P2 ∨ P3 ∨ P4) ∧©(X1(X1 y))))

Thus, φG is given as:

µX0.© (((P1 ∨ P2 ∨ P3) ∧©(ψ1 e)) ∨ (P4 ∧©X0)),

where ψ1 is:

µX1.λy.© ((P1 ∧©y) ∨ ((P2 ∨ P3 ∨ P4) ∧©(X1(X1 y)))).

Actually, φG can be simplified to ψ1 e in this case.

To see the correctness of the above encoding, recall that J©(P1 ∨ · · · ∨ Pi)K(∅)(s0) = pi
and J©(Pi+1 ∨ · · · ∨ Pm+1)K(∅)(s0) = 1 − pi. Thus, by the equality on Xi above, the
probability that θ(Xi 〈t1〉 · · · ,

〈
tX (Xi)

〉
) holds at s0 is equivalent to pi · qL + (1 − pi) · qR,

where qL and qR are respectively the probabilities that θ(
〈
[t1/y1, . . . , tX (Xi)/yX (Xi)]tL

〉
)

and θ(
〈
[t1/y1, . . . , tX (Xi)/yX (Xi)]tR

〉
) hold at s0. Thus, the formula θ(Xi 〈t1〉 · · · ,

〈
tX (Xi)

〉
)

mimics the termination probability of Xi 〈t1〉 · · · ,
〈
tX (Xi)

〉
, which is equivalent to pi ·

q′L + (1 − pi) · q′R, where q′L and q′R are respectively the termination probabilities of
[t1/y1, . . . , tX (Xi)/yX (Xi)]tL and [t1/y1, . . . , tX (Xi)/yX (Xi)]tR. We omit a formal proof of
correctness of the encoding.

We now check that φG belongs to the restricted fragment. To this end, it suffices to
check that, for each rule X y1 · · · yk → tL ⊕p tR ∈ R, the type judgment:

KX ; ∆ `MG ©(((P1 ∨ · · · ∨ Pi) ∧©〈tL〉) ∨ ((Pi+1 ∨ · · · ∨ Pm+1) ∧©〈tR〉)) : Prop∅,∅

holds for KX = {X : (Prop∅,∅)X (X) → Prop∅,∅ | X ∈ dom(X)} and ∆ = y1 : Prop∅,∅, . . . , yk :

Prop∅,∅.

15:30 Y. Mitani, N. Kobayashi, and T. Tsukada Vol. 17:4

By a straightforward induction on the structure of tL, we have: KX ; ∆ `MG 〈tL〉 : Prop∅,∅,

which implies KX ; ∆ `MG ©〈tL〉 : Prop∅,∅. We also have:

KX ; ∆ `MG P1 ∨ · · · ∨ Pi : Prop{P0,Pi+1,...,Pm+1},{P1,...,Pi}.

Thus, by using T-And, we have:

KX ; ∆ `MG (P1 ∨ · · · ∨ Pi) ∧©〈tL〉 : Prop{P0,Pi+1,...,Pm+1},∅.

Similarly, we have:

KX ; ∆ `MG (Pi+1 ∨ · · · ∨ Pm+1) ∧©〈tR〉 : Prop{P0,P1,...,Pi},∅.

Thus, by using T-Or and T-Avg, we obtain

KX ; ∆ `MG ©(((P1 ∨ · · · ∨ Pi) ∧©〈tL〉) ∨ ((Pi+1 ∨ · · · ∨ Pm+1) ∧©〈tR〉)) : Prop∅,∅

as required.

6. Related Work

As mentioned in Section 1, PHFL can be regarded as a probabilistic extension of the higher-
order fixpoint logic, and as a higher-order extension of the µp-calculus. We thus compare our
work with previous studies on (non-probabilistic) higher-order fixpoint logic and those on
(non-higher-order) probabilistic logics. As already mentioned, for (non-probabilistic) HFL,
model checking of finite-state systems is known to be decidable [VV04], and k-EXPTIME
complete [ALS07]. This is in a sharp contrast with our result that PHFL model checking is
highly undecidable (both Π1

1-hard and Σ1
1-hard) even at order 1.

As for studies on probabilistic logics, besides the µp-calculus, there are other probabilistic
extensions of the modal µ-calculus [MM97, HK97, MS13]. Lukasiewicz µ-calculus introduced
by Mio and Simpson [MS13] is among the most expressive ones, which has, in addition to ∧
and ∨, another kind of conjunction (�) and disjunction (⊕), called Lukasiewicz operations.
To our knowledge, ours is the first higher-order and probabilistic extension of the modal
µ-calculus. The decidable fragment of PHFL studied in Section 5 is strictly more expressive
than the µp-calculus. We conjecture that the expressive power of PHFL is incomparable to
that of Lukasiewicz µ-calculus. On the one hand, the property defined by the PHFL formula
in the proof of Theorem 2.9 cannot be expressed in Lukasiewicz µ-calculus, hence PHFL is
not subsumed by Lukasiewicz µ-calculus. On the other hand, Lukasiewicz operations do
not seem expressible in PHFL. It would be interesting to study a higher-order extension of
 Lukasiewicz µ-calculus (in other words, an extension of PHFL with Lukasiewicz operations).

Recently, Kobayashi et al. [KLG19] introduced PHORS, a probabilistic extension of
higher-order recursion schemes (HORS), which can also be viewed as a higher-order extension
of recursive Markov chains (or probabilistic pushdown systems), and proved that the almost
sure termination problem is undecidable. Although the problem setting is quite different (in
our work, the logic is higher-order whereas the system to be verified is higher-order in their
work), our encoding of the µ-arithmetic in Section 4 has been partially inspired by their
undecidability proof; they also represented a natural number n as the probability 1

2n .
In Section 3, we have used the undecidability of the value-1 problem for probabilistic

automata to prove the undecidability of PHFL model checking. Fijalkow et al. [FGKO15]
studied a decidable subclass of probabilistic automata called leaktight automata. The idea
of their restriction appears to be quite different from our type-based restriction of the PHFL
model checking problem.

Vol. 17:4 A PROBABILISTIC HIGHER-ORDER FIXPOINT LOGIC 15:31

7. Conclusion

We have introduced PHFL, a probabilistic logic which can be regarded as both a probabilistic
extension of HFL and a higher-order extension of the probabilistic logic µp-calculus. We have
shown that the model-checking problem for PHFL for a finite Markov chain is undecidable
for the µ-only and order-1 fragment. We have also shown that the model-checking problem
for the full order-1 fragment of PHFL is Π1

1-hard and Σ1
1-hard. As positive results, we have

introduced a decidable subclass of the PHFL model-checking problem, and showed that the
termination problem of Recursive Markov Chains can be encoded in the subclass.

Finding an upper bound of the hardness of the PHFL model-checking problem is left
for future work. It is also left for future work to find a larger decidable class of PHFL
model-checking problems.

Acknowledgements. We would like to thank anonymous referees for useful comments.
This work was supported by JSPS KAKENHI Grant Number JP15H05706 and JP20H00577,
and JP20H05703.

References

[ALS07] Roland Axelsson, Martin Lange, and Rafal Somla. The complexity of model checking higher-order
fixpoint logic. Logical Methods in Computer Science, 3(2), 2007.

[BEKK13] Tomás Brázdil, Javier Esparza, Stefan Kiefer, and Antońın Kucera. Analyzing probabilistic
pushdown automata. Formal Methods in System Design, 43(2):124–163, 2013.

[Can88] John F. Canny. Some algebraic and geometric computations in PSPACE. In Janos Simon, editor,
Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA, pages 460–467. ACM, 1988.

[CKP15] Pablo F. Castro, Cecilia Kilmurray, and Nir Piterman. Tractable probabilistic mu-calculus that
expresses probabilistic temporal logics. In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd
International Symposium on Theoretical Aspects of Computer Science, STACS 2015, March 4-7,
2015, Garching, Germany, volume 30 of LIPIcs, pages 211–223. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2015.

[DH88] James H. Davenport and Joos Heintz. Real quantifier elimination is doubly exponential. J. Symb.
Comput., 5(1/2):29–35, 1988.

[EY09] Kousha Etessami and Mihalis Yannakakis. Recursive markov chains, stochastic grammars, and
monotone systems of nonlinear equations. J. ACM, 56(1):1:1–1:66, 2009.

[FGKO15] Nathanaël Fijalkow, Hugo Gimbert, Edon Kelmendi, and Youssouf Oualhadj. Deciding the value
1 problem for probabilistic leaktight automata. Logical Methods in Computer Science, 11(2), 2015.

[Fij17] Nathanaël Fijalkow. Undecidability results for probabilistic automata. SIGLOG News, 4(4):10–17,
2017.

[GO10] Hugo Gimbert and Youssouf Oualhadj. Probabilistic automata on finite words: Decidable and
undecidable problems. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer
auf der Heide, and Paul G. Spirakis, editors, Automata, Languages and Programming, 37th
International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part II,
volume 6199 of Lecture Notes in Computer Science, pages 527–538. Springer, 2010.

[Har86] David Harel. Effective transformations on infinite trees, with applications to high undecidability,
dominoes, and fairness. J. ACM, 33(1):224–248, 1986.

[HJ94] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability. Formal Asp.
Comput., 6(5):512–535, 1994.

[HK97] Michael Huth and Marta Z. Kwiatkowska. Quantitative analysis and model checking. In Proceed-
ings, 12th Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland, June 29 -
July 2, 1997, pages 111–122. IEEE Computer Society, 1997.

15:32 Y. Mitani, N. Kobayashi, and T. Tsukada Vol. 17:4

[KLB17] Naoki Kobayashi, Étienne Lozes, and Florian Bruse. On the relationship between higher-order
recursion schemes and higher-order fixpoint logic. In Giuseppe Castagna and Andrew D. Gordon,
editors, Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18-20, 2017, pages 246–259. ACM, 2017.

[KLG19] Naoki Kobayashi, Ugo Dal Lago, and Charles Grellois. On the termination problem for probabilistic
higher-order recursive programs. In 34th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–14. IEEE, 2019.

[KLG20] Naoki Kobayashi, Ugo Dal Lago, and Charles Grellois. On the Termination Problem for Prob-
abilistic Higher-Order Recursive Programs. Logical Methods in Computer Science, Volume 16,
Issue 4, October 2020.

[KNP11] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of proba-
bilistic real-time systems. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided
Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings, volume 6806 of Lecture Notes in Computer Science, pages 585–591. Springer, 2011.

[Koz83] Dexter Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci., 27:333–354, 1983.
[KTW18] Naoki Kobayashi, Takeshi Tsukada, and Keiichi Watanabe. Higher-order program verification

via HFL model checking. In Amal Ahmed, editor, Programming Languages and Systems - 27th
European Symposium on Programming, ESOP 2018, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018,
Proceedings, volume 10801 of Lecture Notes in Computer Science, pages 711–738. Springer, 2018.

[Loz15] Étienne Lozes. A type-directed negation elimination. In Ralph Matthes and Matteo Mio, editors,
Proceedings Tenth International Workshop on Fixed Points in Computer Science, FICS 2015,
Berlin, Germany, September 11-12, 2015, volume 191 of EPTCS, pages 132–142, 2015.

[Lub89] Robert S. Lubarsky. mu-definable sets of integers. In Proceedings of the Fourth Annual Symposium
on Logic in Computer Science (LICS ’89), Pacific Grove, California, USA, June 5-8, 1989, pages
343–352. IEEE Computer Society, 1989.

[MKT20] Yo Mitani, Naoki Kobayashi, and Takeshi Tsukada. A probabilistic higher-order fixpoint logic. In
Zena M. Ariola, editor, 5th International Conference on Formal Structures for Computation and
Deduction, FSCD 2020, June 29-July 6, 2020, Paris, France (Virtual Conference), volume 167 of
LIPIcs, pages 19:1–19:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[MM97] Carroll Morgan and Annabelle McIver. A probabilistic temporal calculus based on expectations.
In Proc. Formal Methods Pacific, pages 4–22. Springer, 1997.

[MS13] Matteo Mio and Alex Simpson. Lukasiewicz mu-calculus. In David Baelde and Arnaud Carayol,
editors, Proceedings Workshop on Fixed Points in Computer Science, FICS 2013, Turino, Italy,
September 1st, 2013, volume 126 of EPTCS, pages 87–104, 2013.

[Paz71] Azaria Paz. Introduction to probabilistic automata. Academic Press, 1971.
[Rab63] Michael O Rabin. Probabilistic automata. Information and control, 6(3):230–245, 1963.
[Tar51] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. University of California

Press, 1951.
[VV04] Mahesh Viswanathan and Ramesh Viswanathan. A higher order modal fixed point logic. In

Philippa Gardner and Nobuko Yoshida, editors, CONCUR 2004 - Concurrency Theory, 15th
International Conference, London, UK, August 31 - September 3, 2004, Proceedings, volume 3170
of Lecture Notes in Computer Science, pages 512–528. Springer, 2004.

Appendix A. Proofs

This section proofs omitted in the main text.

A.1. Proof of Theorem 4.8. The following lemma states that the relation ∼ is preserved
by the least upper bound operation.

Lemma A.1. Let I be a set and T be a type of µ-arithmetic. Assume families {vi}i∈I and
{ui}i∈I of elements of JT Kµ and Jtr(T)K, respectively, and suppose that vi ∼T ui for every
i ∈ I. Then

⊔
i∈I vi ∼T

⊔
i∈I ui.

Vol. 17:4 A PROBABILISTIC HIGHER-ORDER FIXPOINT LOGIC 15:33

Proof. By induction on the structure of T . The base case T = Ω is obvious. Assume that
T = A→ T ′.

Let x ∈ JAKµ and y ∈ Jtr(A)K and assume that x ∼A y. For each i ∈ I, since vi ∼T ui,
we have vi x ∼T ′ ui y. By the induction hypothesis,⊔

i∈I
(vi x) ∼T ′

⊔
i∈I

(ui y).

Since the order on functions are component-wise, we have(⊔
i∈I

vi

)
x =

⊔
i∈I

(vi x) and

(⊔
i∈I

ui

)
y =

⊔
i∈I

(ui y).

So (⊔
i∈I

vi

)
x ∼T ′

(⊔
i∈I

ui

)
y.

Since x ∼A y is arbitrary, we have:(⊔
i∈I

vi

)
∼A→T ′

(⊔
i∈I

ui

)
.

We are now ready to prove Theorem 4.8.

Proof of Theorem 4.8. We prove the theorem by induction on the structure of ϕ. In this
proof, we omit the subscript M of J−KM for simplicity.

• Case ϕ = X. In this case, tr(ϕ) = X and Γ(X) = A. Thus, we have:

JΓ `µ ϕ : AKµ(θ) = θ(X) ∼Γ(X) ρ(X) = Jtr(Γ) ` tr(ϕ) : tr(A)K(ρ),

as required.
• Case ϕ = Z. In this case, tr(ϕ) = p′0 and A = N . We have

JΓ `µ ϕ : AKµ(θ) = 0 ∼N (1, 0, 0, 0) = Jtr(Γ) ` tr(ϕ) : tr(A)K(ρ).

• Case ϕ = S t. In this case, A = N . Let n = JΓ `µ t : NKµ(θ). By the induction hypothesis,
we have

Jtr(Γ) ` tr(t) : tr(N)K(ρ) =

(
1

2n
, 1− 1

2n
, ,

)
.

By the definition of tr(ϕ) and calculation, we have

Jtr(Γ) ` tr(ϕ) : tr(A)K(ρ) =

(
1

2n+1
, 1− 1

2n+1
, ,

)
,

which implies JΓ `µ S t : AKµ(θ) = n+ 1 ∼N Jtr(Γ) ` tr(ϕ) : tr(A)K(ρ).
• Case ϕ = (s ≤ t). In this case, A = Ω. Let n = JΓ `µ s : NKµ(θ) and m = JΓ `µ t : NKµ(θ).

By the induction hypothesis, we have

Jtr(Γ) ` tr(s) : tr(N)K(ρ) = (
1

2n
, , 1− 1

2n
, ,)

Jtr(Γ) ` tr(t) : tr(N)K(ρ) = (
1

2m
, , 1− 1

2m
, ,).

15:34 Y. Mitani, N. Kobayashi, and T. Tsukada Vol. 17:4

By the definition of tr(s ≤ t) and calculation, we have

Jtr(Γ) ` tr(s ≤ t) : tr(A)K(ρ) =

{
(1, , ,) (if 1

2 ×
(

1
2n + (1− 1

2m)
)
≥ 1

2 , i.e. if n ≤ m)

(0, , ,) (if 1
2 ×

(
1

2n + (1− 1
2m)
)
< 1

2 , i.e., if n > m).

Thus, we have JΓ `µ s ≤ t : AKµ(θ) ∼A Jtr(Γ) ` tr(s ≤ t) : tr(A)K(ρ) as required.
• Case ϕ = ϕ1 ∧ ϕ2.

In this case, we have A = Ω.
By the induction hypothesis, we have

JΓ `µ ϕi : AKµ(θ) ∼A Jtr(Γ) ` tr(ϕi) : tr(A)K(ρ)

for each i = 1, 2.
By the definition of ∼Ω, we have

Jtr(Γ) ` tr(ϕi) : tr(Ω)K(ρ) = (JΓ `µ ϕi : ΩKµ(θ), , ,)

for each i = 1, 2. Therefore we have

JΓ `µ ϕ1 ∧ ϕ2 : ΩKµ(θ) = JΓ `µ ϕ1 : ΩKµ(θ)
d

ΩJΓ `µ ϕ2 : ΩKµ(θ)

∼Ω (JΓ ` ϕ1 : ΩKµ(θ)
d

ΩJΓ ` ϕ2 : ΩKµ(θ), , ,)

= Jtr(Γ) ` ϕ1 : PropK(ρ)
d

Jtr(Γ) ` ϕ2 : PropK(ρ)

= Jtr(Γ) ` ϕ1 ∧ ϕ2 : PropK(ρ)

as desired.
• Case ϕ = ϕ1 ∨ ϕ2. Similar to the above case.
• Case ϕ = λX.ϕ′. In this case, A is of the form B → T , with Γ, X : B `µ ϕ′ : T . For any
v ∈ JBK and u ∈ Jtr(B)K such that v ∼B u, we have:

JΓ `µ ϕ : AKµ(θ)(v) = JΓ, X : B `µ ϕ′ : T Kµ(θ[X 7→ v])

∼T Jtr(Γ, X : B) ` tr(ϕ′) : tr(T)K(ρ[X 7→ u])

(by the induction hypothesis)

= Jtr(Γ) ` tr(ϕ) : tr(A)xK(θ)(u)

Therefore, we have

JΓ `µ ϕ : B → T Kµ(θ) ∼B→T Jtr(Γ) ` tr(ϕ) : tr(B → T)K(ρ)

as required.
• Case ϕ = ϕ1 ϕ2. We have A = T , with Γ `µ ϕ1 : B → T and Γ `µ ϕ2 : B.

By the induction hypothesis, we have JΓ `µ ϕ1 : B → T Kµ(θ) ∼B→T Jtr(Γ) ` tr(ϕ1) :
tr(B → T)K(ρ) and JΓ `µ ϕ2 : BKµ(θ) ∼B Jtr(Γ) ` tr(ϕ2) : tr(B)K(ρ). Therefore by the
definition of ∼B→T , we have

JΓ `µ ϕ1 ϕ2 : AKµ(θ) = JΓ `µ ϕ1 : B → T Kµ(θ) (JΓ `µ ϕ2 : BKµ(θ))

∼A Jtr(Γ) ` tr(ϕ1) : tr(B → T)K(ρ) (Jtr(Γ) ` tr(ϕ2) : tr(B)K(ρ))

= Jtr(Γ) ` tr(ϕ1 ϕ2) : tr(A)K(ρ)

as required.
• Case ϕ = µX.ϕ′.

In this case, A = T , with Γ, X : T `µ ϕ′ : T . By the induction hypothesis, for any
v ∈ JT Kµ and u ∈ Jtr(T)K such that v ∼T u, we have

JΓ, X : T `µ ϕ′ : T Kµ(θ[X 7→ v]) ∼T Jtr(Γ), X : tr(T) ` tr(ϕ′) : tr(T)K(ρ[X 7→ u]).

Vol. 17:4 A PROBABILISTIC HIGHER-ORDER FIXPOINT LOGIC 15:35

Since tr(µX.ϕ′) = µX.tr(ϕ′), it suffices to show:

JΓ `µ µX.ϕ′ : T Kµ(θ) ∼T Jtr(Γ) ` µX.tr(ϕ′) : tr(T)K(ρ).

Let F : JT Kµ → JT Kµ and G : Jtr(T)K→ Jtr(T)K be the functions defined by:

F(v) := JΓ, X : T `µ ϕ′ : T Kµ(θ[X 7→ v])

G(u) := Jtr(Γ), X : tr(T) ` tr(ϕ′) : tr(T)K(ρ[X 7→ u]).

By the reasoning above, we have F ∼T→T G. By the definitions of the semantics, we have
JΓ `µ µX.ϕ′ : T Kµ(θ) = LFP(F) and Jtr(Γ) ` µX.tr(ϕ′) : tr(T)K(ρ) = LFP(G). Then
there exists an ordinal α such that

LFP(F) = Fα(⊥T) and LFP(G) = Gα(⊥tr(T)),

where fβ(x) is defined by f0(x) = x, fβ+1 = f(fβ(x)), and fβ =
⊔
γ<βf

γ(x) if β is a

limit ordinal. We shall prove by (transfinite) induction on β that Fβ(⊥T) ∼T Gβ(⊥tr(T)),
which would imply

LFP(F) = Fα(⊥T) ∼T Gα(⊥tr(T)) = LFP(G)

as required.
The base case F0(⊥T) = ⊥T ∼T ⊥tr(T) = G0(⊥tr(T)) follows by a straightforward

induction on the structure of T . The case where β is a successor ordinal follows immediately
from the induction hypothesis and F ∼T→T G. If β is a limit ordinal, then

Fβ(⊥T) =
⊔
γ<βF

γ(⊥T) and Gβ(⊥T) =
⊔
γ<βG

γ(⊥T).

By the induction hypothesis (of the transfinite induction),

Fγ(⊥T) ∼T Gγ(⊥T)

for every γ < β. By Lemma A.1 below, we have

Fβ(⊥T) ∼T Gβ(⊥T)

as required.
• Case ϕ = νX.ϕ′. Similar to the case for ϕ = µX.ϕ′ above.

A.2. Proof of Lemma 5.10. The proof proceeds by induction on the derivation for
K; ∆ `M φ : κ, with case analysis on the last rule used.

• Cases for T-WeakTU and T-Weak: Trivial by the induction hypothesis.
• Cases for T-AP and T-Var: Since Jλ∆.φK(ρ) does not depend on ρ, we have Jλ∆.φK(ρ) =

Jλ∆.φK(ρ′).
• Case for T-FVar: In this case, ∆ = ∅ and φ = X. We have

Jλ∆.φK(ρ) = ρ(X) -∆→κ ρ
′(X) = Jλ∆.φK(ρ′),

as required.
• Case for T-Mu: In this case, ∆ = ∅ and φ = µX.φ′, with K, X : κ; ∅ `M φ′ : κ, where κ is

of the form · · · → PropT,∅. Let h0 = λx.JφKρ{X 7→ x} and h1 = λx.Jφ′Kρ′{X 7→ x}. By
the induction hypothesis, x0 �κ x1 implies h0 x0 �κ h1 x1. Thus, by Lemma 5.9, we have

Jλ∆.φK(ρ) = LFP(h0) -κ LFP(h1) = Jλ∆.φK(ρ′),

as required.
• Case for T-Nu: Similar to the case for T-Mu above.

15:36 Y. Mitani, N. Kobayashi, and T. Tsukada Vol. 17:4

• Case for T-Abs: In this case, φ = λX.φ′. The result follows immediately from the
induction hypothesis, as λ∆.λX.φ′ = λ(∆, X : PropT,U).φ′.
• Case for T-App: In this case, φ = φ1φ2. By the induction hypothesis, we have:

Jλ∆.φ1K(ρ) -∆→PropT,U→κ Jλ∆.φ1K(ρ′) and Jλ∆.φ2K(ρ) -∆→PropT,U Jλ∆.φ2K(ρ′). Sup-

pose ∆ = X1 :PropT1,U1 , . . . , Xk :PropTk,Uk and let xi ∈ JPropTi,UiK for each i ∈ {1, . . . , k}.
Then, we have:

Jλ∆.φK(ρ)
= λx1 ∈ JPropK. · · ·λxk ∈ JPropK.JφKρ{X1 7→ x1, . . . , Xk 7→ xk}
= λx1 ∈ JPropK. · · ·λxk ∈ JPropK.(Jλ∆.φ1Kρ x1 · · · , xk)(Jλ∆.φ2Kρ x1 · · · , xk)

-∆→κ λx1 ∈ JPropK. · · ·λxk ∈ JPropK.(Jλ∆.φ1Kρ′ x1 · · · , xk)(Jλ∆.φ2Kρ′ x1 · · · , xk)
= Jλ∆.φK(ρ′)

as required.
• The remaining cases follow immediately from the induction hypothesis.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. PHFL: Probabilistic Higher-order Fixpoint Logic
	2.1. Markov Chains
	2.2. Syntax of PHFL Formulas
	2.3. Semantics
	2.4. Expressive Power

	3. Undecidability of PHFL Model Checking
	3.1. Probabilistic Automata
	3.2. The Undecidability Result

	4. Hardness of the PHFL Model-Checking Problem
	4.1. Higher-Order Fixpoint Arithmetic
	4.2. Hardness of PHFL Model Checking

	5. Decidable Subclass of Order-1 PHFL Model Checking
	5.1. Type-based Restriction of Order-1 PHFL
	5.2. Decidability
	5.3. Expressivity

	6. Related Work
	7. Conclusion
	Acknowledgements

	References
	Appendix A. Proofs
	A.1. Proof of Theorem 4.8
	A.2. Proof of Lemma 5.10

