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Abstract. An infinite run of a timed automaton is Zeno if it spans only a finite amount
of time. Such runs are considered unfeasible and hence it is important to detect them, or
dually, find runs that are non-Zeno. Over the years important improvements have been
obtained in checking reachability properties for timed automata. We show that some of
these very efficient optimizations make testing for Zeno runs costly. In particular we show
NP-completeness for the LU-extrapolation of Behrmann et al. We analyze the source of this
complexity in detail and give general conditions on extrapolation operators that guarantee
a (low) polynomial complexity of Zenoness checking. We propose a slight weakening of
the LU-extrapolation that satisfies these conditions.

Introduction

Timed automata [1] are finite automata augmented with a finite number of clocks. The
values of the clocks increase synchronously along with time in the states of the automaton
and these values can be compared to a constant and reset to zero while crossing a transition.
This model has been successfully used for verification of real-time systems thanks to a
number of tools [4, 7, 21].

Since timed automata model reactive systems that continuously interact with the en-
vironment, it is interesting to consider questions related to their infinite executions. An
execution is said to be Zeno if an infinite number of events happen in a finite time interval.
Such executions are clearly unfeasible. During verification, the aim is to detect if there
exists a non-Zeno execution that violates a certain property. On the other hand while

2012 ACM CCS: [Software and its engineering]: Software creation and management—Software veri-
fication and validation—Formal software verification; [Theory of computation]: Computational complex-
ity and cryptography—Complexity classes; [Theory of computation]: Formal languages and automata
theory—Automata extensions.

Key words and phrases: Timed automata, Zeno runs, Abstractions, Verification.
∗ Extended abstract appeared at CONCUR2011.
a This work has been supported by ANR project DOTS ANR-06-SETI-003.
b The second author B. Srivathsan was at LaBRI, Univ. Bordeaux, when this work was first submitted.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(1:06)2013

c© F. Herbreteau and B. Srivathsan
CC© Creative Commons

http://creativecommons.org/about/licenses


2 F. HERBRETEAU AND B. SRIVATHSAN

implementing timed automata, it is required to check the presence of pathological Zeno
executions. This brings the motivation to analyze an automaton for the presence of such
executions.

The analysis of timed automata faces the challenge of handling its uncountably many
configurations. To tackle this problem, one considers a finite graph called the abstract
zone graph (also known as simulation graph) of the automaton. This finite graph captures
the semantics of the automaton. In this paper, we consider the problems of deciding if
an automaton has a non-Zeno execution, dually a Zeno execution, given its abstract zone
graph as input.

An abstract zone graph is obtained by over-approximating each zone of the so-called
zone graph with an abstraction function. The zone graph in principle could be infinite
and an abstraction function is necessary for reducing it to a finite graph. The coarser the
abstraction, the smaller the abstract zone graph, and hence the quicker the analysis of
the automaton. This has motivated a lot of research towards finding coarser abstraction
functions [3]. The classic maximum-bound abstraction uses as a parameter the maximal
constant a clock gets compared to in a transition. A coarser abstraction called the LU-
extrapolation was introduced in Behrmann et al. [3] for checking state reachability in timed
automata. This is the coarsest among all the implemented approximations and is at present
efficiently used in tools like UPPAAL [4].

It was shown in [19, 20] that even infinite executions of the automaton directly cor-
respond to infinite paths in the abstract zone graph when one uses the maximum-bound
approximation. In addition, it was proved that the existence of a non-Zeno infinite execu-
tion could be determined by adding an extra clock to the automaton to keep track of time
and analyzing the abstract zone graph of this transformed automaton [18, 20]. A similar
correspondence was established in the case of the LU-extrapolation by Li [16]. These results
answer our question about deciding non-Zeno infinite executions of the automaton from its
abstract zone graph. However, it was shown in [14] that adding a clock has an exponential
worst case complexity. A new polynomial construction was proposed for the case of the
classic maximum-bound approximation. But, the case of the LU-extrapolation was not
addressed.

In this paper, we prove that the non-Zenoness question turns out to be NP-complete
for the LU-extrapolation, that is, given the abstract zone graph over the LU-extrapolation,
deciding if the automaton has a non-Zeno execution is NP-complete. We study the source of
this complexity in detail and give conditions on abstraction operators to ensure a polynomial
complexity. To this regard, we extend the polynomial construction given in [14] to an
arbitrary abstraction function and analyze when it stays polynomial. It then follows that a
slight weakening of the LU-extrapolation makes the construction polynomial. In the second
part of the paper, we repeat the same for the dual question: given an automaton’s abstract
zone graph, decide if it has Zeno executions. Yet again, we notice NP-completeness for the
LU-extrapolation. We introduce an algorithm for checking Zenoness over an abstract zone
graph with conditions on the abstraction operator to ensure a polynomial complexity. We
provide a different weakening of LU-extrapolation that gives a polynomial solution to the
Zenoness question. Finally, we also prove that deciding if a given automaton has a non-Zeno
run (resp. Zeno run) is Pspace-complete when the input is restricted to the automaton
only.

Note that the reachability problem for timed automata is Pspace-complete [1, 8] and
the standard algorithms make use of the abstract zone graph to solve the reachability
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problem. Therefore one could expect an object as complex as the abstract zone graph
to solve the Zeno-related questions too. This makes the complexity analysis of the Zeno-
related questions, given both the automaton and abstract zone graph as input, all the more
relevant.

Related work. As mentioned above, the LU-extrapolation was proposed in [3] and shown
how it could be efficiently used in UPPAAL for the purpose of reachability. The correctness
of the classic maximum-bound abstraction was shown in [5]. Extensions of these results
to infinite executions occur in [20, 16]. Detection of non-Zeno runs was already addressed
in [1]. Their approach works on the region graph, but for correctness reasons, it cannot
be used on (abstract) zone graphs. The trick involving adding an extra clock for non-
Zenoness is discussed in [18, 20, 2, 14]. The problem of checking existence of Zeno runs
was formulated as early as in [18]. A bulk of the literature for this problem also directs
to [10, 6, 17]. All of these solutions provide a sufficient-only condition for the absence
of Zeno runs. This is different from our proposed solution which gives a complete solution
(necessary and sufficient conditions) by analyzing the abstract zone graph of the automaton.

Organization of the paper. We start with the formal definitions of timed automata, ab-
stract zone graphs, the Zenoness and non-Zenoness problems in Section 1. Subsequently, we
prove the NP-hardness of the non-Zenoness problem for the LU-extrapolation in Section 2.
We then recall in Section 3 the construction proposed for non-Zenoness in [14] and extend
it to a general abstraction operator giving conditions for polynomial complexity. Section 4
is dedicated to the dual Zenoness problem. In Section 5 we discuss some interesting obser-
vations arising out of the entire complexity analysis. We prove in Section 6 that finding if
an automaton has a (non-)Zeno run turns out to Pspace-complete when the input is re-
stricted to the automaton only. This gives a complete characterization of the complexity of
finding (non-)Zeno runs in timed automata. We conclude the paper with some perspectives
in Section 7.

A shorter version of this paper appeared at the 22nd International Conference on Con-
currency Theory in the year 2011 [12]. The current version includes the missing proofs, a
new discussion (Section 5) about two observations arising out of the complexity analysis,
and the new result about the Pspace-completeness of the Zeno-related problems when the
only input is the automaton (Section 6).

1. Zeno-related Problems for Timed Automata

1.1. Timed automata. Let R≥0 denote the set of non-negative real numbers. Let X be a
set of variables, named clocks hereafter. A valuation is a function v : X 7→ R≥0 that maps
every clock in X to a non-negative real value. We denote the set of all valuations by R

X
≥0,

and 0 the valuation that maps every clock in X to 0. For δ ∈ R≥0, we denote v + δ the
valuation mapping each x ∈ X to the value v(x) + δ. For a subset R of X, let [R]v be
the valuation that sets x to 0 if x ∈ R and assigns v(x) otherwise. A clock constraint is a
conjunction of constraints x#c for x ∈ X, # ∈ {<,≤,=,≥, >} and c ∈ N. We denote Φ(X)
the set of clock constraints over clock variables X. For a valuation v and a constraint φ we
write v � φ when v satisfies φ, that is, when φ holds after replacing every x by v(x).
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A Timed Automaton (TA) [1] A is a finite automaton extended with clocks that enable
or disable transitions. Formally, A is a tuple (Q, q0,X, T ) where Q is a finite set of states,
q0 ∈ Q is the initial state, X is a finite set of clocks and T ⊆ Q×Φ(X)× 2X ×Q is a finite
set of transitions. For each transition (q, g,R, q′) ∈ T , g is a clock constraint, also called a
guard that defines the valuations of the clocks that are allowed to cross the transition, and
R is a set of clocks that are reset on the transition.

The semantics of a timed automaton A is a transition system of its configurations. A
configuration of A is a pair (q, v) ∈ Q × R

X
≥0, with (q0,0) being the initial configuration.

We have two kinds of transitions:

delay: (q, v) →δ (q, v + δ) for some δ ∈ R≥0;

action: (q, v) →t (q′, v′) for some transition t = (q, g,R, q′) ∈ T such that v � g and
v′ = [R]v.

A run of A is a (finite or infinite) sequence of transitions starting from the initial
configuration (q0,0). Without loss of generality, we can assume that the first transtition

is a delay transition and that delay and action transitions alternate. We write (q, v)
δ,t−→

(q′, v′) if there is a delay transition (q, v) →δ (q, v + δ) followed by an action transition
(q, v + δ) →t (q′, v′). So a run of A can be written as:

(q0, v0)
δ0,t0−−−→ (q1, v1)

δ1,t1−−−→ (q2, v2) · · · (qi, vi) · · ·
where (q0, v0) represents the initial configuration (q0,0).

Definition 1.1 (Zeno/non-Zeno runs). An infinite run (q0, v0)
δ0,t0−−−→ . . . (qi, vi)

δi,ti−−→ . . .
is Zeno if time does not diverge, that is,

∑

i≥0 δi ≤ c for some c ∈ R≥0. Otherwise it is
non-Zeno.

Theorem 1.2. The problem of deciding if a timed automaton A has a non-Zeno run (resp.
Zeno run) is Pspace-complete if A is the only input.

A proof of Theorem 1.2 is given in Section 6 (page 27) that relies on results in Sections 3
and 4.2.

As can be seen, the number of configurations (q, v) could be uncountable. We now
define an abstract semantics for timed automata. The abstract semantics is usually used
for the verification of timed automata.

1.2. Symbolic semantics. We begin with the definition of special sets of valuations called
zones. A zone is a set of valuations defined by a conjunction of two kinds of clock constraints:
for xi, xj ∈ X

xi ∼ c

xi − xj ∼ c

where ∼∈ {≤, <,=, >,≥} and c ∈ Z. An example of a zone over two clocks x1 and x2 is
illustrated in Figure 1. The shaded area is the zone represented by the conjunction of the
six constraints shown in the figure.

Zones can be efficiently represented by Difference Bound Matrices (DBMs) [9]. A
DBM representation of a zone Z is a |X|+ 1 square matrix (Zij)i,j∈[0;|X|] where each entry
Zij = (cij ,4ij) represents the constraint xi − xj 4ij cij for cij ∈ Z and 4ij∈ {<,≤} or



COARSE ABSTRACTIONS MAKE ZENO BEHAVIOURS DIFFICULT TO DETECT 5

x1

x2

0

x2
−
x1
<
1

x1 > 1

x2 > 1

x1
−
x2
<
2

x1 < 5

x2 < 4

Figure 1: An example of a zone.

q0 q1q2

{x1}

x1 ≤ 2

x2 > 5

q0, 0 ≤ x1 = x2q2, 5 < x1 = x2 q1, 0 ≤ x1 ≤ x2

q0, 0 ≤ x1 ≤ x2q2, 0 ≤ x1 ≤ x2 ∧ x2 > 5

x2 > 5 {x1}

x2 > 5
x1 ≤ 2

{x1}

Figure 2: A timed automaton (top) and its zone graph (bottom).

(cij ,4ij) = (∞, <). A special variable x0 encodes the value 0. Hence, in a DBM xi > 4 is
encoded as x0 − xi < −4.

The symbolic semantics (or zone graph) of an automaton A is the transition system
ZG(A) given by the tuple (S, s0,⇒), where S is the set of nodes, s0 is the initial node and
⇒ is the transition relation. Each node in S is a pair (q, Z) consisting of a state q of the
automaton and a zone Z. The initial node s0 is (q0, Z0) where Z0 = {0+ δ | δ ∈ R≥0}. For
every t = (q, g,R, q′) ∈ T , there exists a transition ⇒t from a node (q, Z) as follows:

(q, Z) ⇒t (q′, Z ′) where Z ′ = {v′ | ∃v ∈ Z, ∃δ ∈ R≥0 : (q, v) →t→δ (q′, v′)}
In the above definition, →t→δ denotes the discrete transition t followed by a delay

transition of δ time units. It can be shown that if Z is a zone, then Z ′ is a zone. Moreover,
a DBM representation of Z ′ can be computed from the DBM representation of Z (see for
instance [5]). Figure 2 shows an example of an automaton and its zone graph.

Several definitions of ZG(A) have been considered in the literature. They differ on
the definition of ⇒. People have considered graphs with both action ⇒t and delay ⇒δ
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q0 q1

x2 = 1, {x2}

{x1, x2}

0 x1

x2

. . .

q0, x1 − x2 = 0
∧ x1 ≥ 0

q1, x1 − x2 = 0
∧ x1 ≥ 0

q1, x1 − x2 = 1
∧ x1 ≥ 0

{x1, x2} x2 = 1

{x2}

x2 = 1

{x2}
. . .

Figure 3: Automaton Ainf (top left), the graph of zones obtained at q1 (top right) and a
part of the infinite zone graph ZG(Ainf ) (bottom).

transitions or, with only combined transitions ⇒t, but corresponding to the reverse conse-
cution →δ→t (delay-then-action). Our results do not depend on a specific choice, but have
a simpler presentation using the chosen symbolic semantics.

Although the zone graph ZG(A) deals with sets of valuations instead of valuations
themselves, the zone graph could stil be infinite. Consider the automaton Ainf shown in
Figure 3, with two clocks x1 and x2. The initial node is given by (q0, x1 = x2 ∧ x1 ≥ 0).
The transition to q1 gives the node (q1, x1 = x2 ∧ x1 ≥ 0). The only transition from q1
taken from this node gives the node (q1, x1 − x2 = 1 ∧ x1 ≥ 0), which is a new node. This
node has its own successors and the process continues. Finally at q1 we have the following
zones in the zone graph ZG(Ainf ):

( x1 − x2 = k ∧ x1 ≥ 0 ) for all k ∈ N

This is pictorially shown in Figure 3. It is however sufficient to consider a finite abstraction
of the zone graph to capture all the behaviors of a timed automaton. Several abstractions
have been introduced to obtain a finite graph from ZG(A).

1.3. Abstract symbolic semantics. A finite abstraction is a function a : 2R
|X|
≥0 → 2R

|X|
≥0

such that for every zone Z: a(Z) is a zone, Z ⊆ a(Z), a(a(Z)) = a(Z) and a has a finite
range. An abstraction operator defines an abstract semantics.

(q, Z) ⇒t
a (q

′, a(Z ′))

when a(Z) = Z and (q, Z) ⇒t (q′, Z ′) in ZG(A).
The abstract symbolic semantics (or the abstract zone graph) of A is the transition

system ZGa(A) induced by ⇒a starting from the node (q0, a(Z0)), where (q0, Z0) is the
initial node of ZG(A).

A path π in ZGa(A) is a (finite or infinite) sequence of transitions

(q0, Z
′
0) ⇒t0

a (q1, Z
′
1) ⇒t1

a · · · (qi, Z ′
i) ⇒ti

a · · ·

We say that a run ρ: (q0, v0)
δ0,t0−−−→ . . . (qi, vi)

δi,ti−−→ . . . of A is an instance of the path
π of ZGa(A) as described above, if ρ and π agree on the sequence of transitions t0, t1, . . . ,
and if for every i ≥ 0, (qi, vi) and (qi, Z

′
i) coincide on qi, and vi ∈ Z ′

i. By definition of Z ′
i,

this implies vi + δi ∈ Z ′
i.
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Z

Extra
+
M ExtraLU

ExtraM

Extra
+
LU

Figure 4: Comparison of the finite abstractions [3].

An abstraction a is sound if every path of ZGa(A) can be instantiated as a run of A.
Conversely, a is complete when every run of A is an instance of some path in ZGa(A). If
an abstraction b satisfies b(Z) ⊆ a(Z) for every Z, it is easy to see that the abstract zone
graph ZGb(A) is bigger than ZGa(A).

1.4. Bounds and finite abstractions. A standard way to obtain finite abstractions is to
consider as a parameter, a bound function M : X 7→ N ∪ {−∞} that associates to each
clock x, the maximum integer c appearing in a guard involving x. Abstractions ExtraM [5]
and Extra

+
M [3] are well-known finite abstractions that depend on such a bound function M .

It has been observed that considering separately the guards that lower-bound clocks
and guards that upper-bound clocks leads to much coarser abstractions and hence to much
smaller abstract zone graphs. This has given rise to abstractions ExtraLU and Extra

+
LU [3]

which are currently used in implementations. We recall the definitions of ExtraLU and
Extra

+
LU below.
Let L : X 7→ N ∪ {−∞} and U : X 7→ N ∪ {−∞} be two maps that associate to each

clock in A its maximal lower bound and its maximal upper bound respectively: that is, for
every x ∈ X, L(x) is the maximal integer c such that x > c or x ≥ c appears in some guard
of A. We let L(x) = −∞ if no such c exists. Similarly, we define U(x) with respect to clock
constraints like x ≤ c and x < c. We define ExtraLU (Z) = ZLU and Extra

+
LU (Z) = ZLU+

as:

Z
LU
ij =











(∞, <) if cij > L(xi)

(−U(xj), <) if − cij > U(xj)

Zij otherwise

Z
LU+

ij =































(∞, <) if cij > L(xi)

(∞, <) if − c0i > L(xi)

(∞, <) if − c0j > U(xj), i 6= 0

(−U(xj), <) if − c0j > U(xj), i = 0

Zij otherwise

In the above, we set L(x0) = U(x0) = 0 for the special clock x0. The abstraction ExtraM

(resp. Extra
+
M ) is obtained from ExtraLU (resp. Extra

+
LU ) by replacing every occurrence of

L and U by M which maps every clock x to max(L(x), U(x)). These abstractions compare
in the following way (cf. Figure 4).

Theorem 1.3 ([3]). For every zone Z, we have: Z ⊆ ExtraM (Z) ⊆ Extra
+
M (Z); Z ⊆

ExtraLU (Z) ⊆ Extra
+
LU (Z) and Extra

+
M (Z) ⊆ Extra

+
LU (Z).
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0 x1

x2

U(x1) L(x1)

U(x2)

L(x2)

Z :

ExtraM (Z) :

Extra
+

M (Z) :

ExtraLU (Z) :

Extra
+

LU (Z) :

∪

∪

∪

∪

∪

∪

∪

∪

∪

∪

∪ ∪

Figure 5: An illustration of the abstraction hierarchy shown in Figure 4.

q0, x1 ≥ 0 ∧ x2 ≥ 0 q1, x1 ≥ 0 ∧ x2 ≥ 0
{x1, x2}

x2 = 1, {x2}

Figure 6: ZGa(Ainf ) for the automaton Ainf shown in Figure 3. We get the same abstract

zone graph ZGa(Ainf ) for a being either ExtraM ,Extra+M ,ExtraLU or Extra+LU .

Figure 5 shows a zone and depicts the action of the different abstractions on it. In the
rest of the paper, we say M -extrapolations for ExtraM and Extra

+
M ; and LU -extrapolations

for ExtraLU and Extra
+
LU .

Let us look at the timed automaton Ainf of Figure 3. For this automaton, the maximum
bounds function M sets M(x1) = −∞ and M(x2) = 1. Define:

for k ∈ N, Zk ≡ (x1 − x2 = k) ∧ (x1 ≥ 0)

By the definition of ExtraM , every zone Zk has ExtraM (Zk) given by the constraints (x1 ≥
0 ∧ x2 ≥ 0). Therefore, the zone graph ZGa(Ainf ) has two nodes for a being any of the
abstractions defined above.

1.5. Zenoness and non-Zenoness problems. A classical verification problem for timed
automata is to answer state reachability queries. For this purpose, we consider only the
runs of A and paths in ZGa(A) that are finite sequences of transitions. A reachability
query asks if there exists a run of A leading to a given state. Such problems can be solved
using ZGa(A) when a is sound and complete. This is true for the M -extrapolations and
LU -extrapolations.

Theorem 1.4 ([5, 3]). ExtraM , Extra+M , ExtraLU and Extra
+
LU are sound and complete for

finite sequences of transitions.
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q0q1 q2

{x1} {x2}

x2 ≤ 0 x1 ≤ 0

Automaton Azeno.

(q0, 0 = x1 = x2) (q1, 0 = x1 ≤ x2) (q0, 0 = x1 = x2) (q2, 0 = x2 ≤ x1)

A path in the abstract zone graph of Azeno with abstraction ExtraM .

(q0,⊤) (q1,⊤) (q0,⊤) (q2,⊤)

A path in the abstract zone graph of Azeno with abstraction ExtraLU .

Figure 7: Zenoness/non-Zenoness from abstract paths.

Liveness properties require the existence of an infinite run satisfying a given property.
For instance, does A visit state q infinitely often? Soundness and completeness of a with
respect to infinite runs allow to solve such problems from ZGa(A). It has also been proved
that the extrapolations mentioned above are also sound and complete for infinite paths/runs.

Theorem 1.5 ([19, 16]). ExtraM , Extra+M , ExtraLU and Extra
+
LU are sound and complete

for infinite sequences of transitions.

Thanks to Theorem 1.5, we know that every infinite path π in ZGa(A) can be instanti-
ated to a run of A. However, soundness is not sufficient to know if π can be instantiated to
a non-Zeno run. Additionally, it is also interesting to know when this path can be instanti-
ated to a Zeno run. In the sequel, we consider the following questions, given an automaton
A and an abstract zone graph ZGa(A).

Input A and ZGa(A)
Non-Zenoness problem (NZPa) Does A have a non-Zeno run?
Zenoness problem (ZPa) Does A have a Zeno run?

Observe that solving ZP
a does not solve NZP

a and vice-versa: one is not the negation of
the other. Note that the coarser the abstraction, the lesser is the information maintained
about the structure of a zone. Let us motivate by an example.

Figure 7 shows an automaton Azeno which has all runs Zeno. As we can see, the coarser
the abstraction used, the lesser is the information in the simulation graph that one could
tap to detect non-Zenoness or Zenoness.

In this paper, we focus on the complexity of deciding ZP
a and NZP

a for different ab-
stractions a. We denote NZP

M and ZP
M when the M -extrapolations are considered. We

similarly define NZP
LU and ZP

LU for the LU -extrapolations.
The non-Zenoness problem is known to be solvable in polynomial time when abstraction

ExtraM is considered [14]. This is not true for abstraction ExtraLU : in Section 2 we show
that NZPLU is NP-hard. As the LU -extrapolations are coarser, one might expect the non-
Zenoness question to be tougher to infer. But, it is surprising that the difficulty rises to
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q0 q1 q2 q3 r0 r1 r2

{x1}

{x1}

{x2}

{x2}

{x3}

{x3}

x1 ≤ 0

x2 ≤ 0

x3 ≤ 0

x1 ≤ 0

x2 ≤ 0

x3 ≤ 0

Figure 8: ANZ
φ for φ = (p1 ∨ ¬p2 ∨ p3) ∧ (¬p1 ∨ p2 ∨ p3)

the extent of leading to NP-hardness as opposed to a low polynomial complexity for M -
extrapolations. The same asymmetry appears in the Zenoness problem as well, which is
shown in Section 4.

In addition to these complexity results, in Section 3, we generalize the construction for
non-Zenoness given in [14] to an arbitrary finite abstraction operator and describe the class
of abstractions for which NZP

a stays polynomial. TheM -extrapolations satisfy this criteria.
We show that a small weakening of the LU -extrapolations that preserves an ordering prop-
erty between clocks also satisfies this criterion. In Section 4, we give an algorithm for ZPa

and describe the class of abstractions that give a polynomial complexity. Yet again, the M -
extrapolations satisfy these criteria. We will see that a weakening of the LU -extrapolations
that maintains some lower-bound information also satisfies this criterion.

2. Non-Zenoness is NP-hard for LU-extrapolations

We give a reduction from the 3SAT problem: given a 3CNF formula φ, we build an au-
tomaton ANZ

φ that has a non-Zeno run iff φ is satisfiable. The size of the automaton will

be linear in the size of φ. We will then show that the abstract zone graph ZGLU (ANZ
φ ) is

isomorphic to ANZ
φ , thus completing the polynomial reduction from 3SAT to NZP

LU .

Automaton ANZ
φ . Let P = {p1, . . . , pk} be a set of propositional variables and let φ =

C1 ∧ · · · ∧ Cn be a 3CNF formula with n clauses. We define the timed automaton ANZ
φ

as follows. Its set of clocks X equals {x1, x1, . . . , xk, xk}. For a literal λ, let cl(λ) denote
the clock xi when λ = pi and the clock xi when λ = ¬pi. The set of states of ANZ

φ is

{q0, . . . , qk, r0, . . . , rn} with q0 being the initial state. The transitions are as follows:

• for each proposition pi we have transitions qi−1
{xi}−−→ qi and qi−1

{xi}−−→ qi,

• for each clause Cm = λm
1 ∨λm

2 ∨λm
3 , m = 1, . . . , n, there are three transitions rm−1

cl(λ)≤0−−−−−→
rm for λ ∈ {λm

1 , λm
2 , λm

3 },
• transitions qk −→ r0 and rn −→ q0 with no guards and resets.

Figure 8 shows the automaton for the formula (p1∨¬p2∨p3)∧ (¬p1∨p2∨p3). The part
from q0 to q3 encodes an assignment with the following convention: a reset of xi represents
pi 7→ true and a reset of xi means pi 7→ false. Then, from r0 to r2 we check if the formula
is satisfied by this guessed assignment.

The above formula is satisfied by every assignment that maps p3 to true. Any path that
encodes this assignment using the convention mentioned above should pick the transition

q2
{x3}−−−→ q3. Then, it has the possibility to follow transitions r0

x3≤0−−−→ r1 and r1
x3≤0−−−→ r2.
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On any cycle containing these three transition, time can elapse (for instance in state q0)
since x3 is reset before being checked for zero. Therefore, this assignment that makes the
formula true corresponds to a non-Zeno run of ANZ

φ .
Conversely, consider the assignment p1 7→ false, p2 7→ true and p3 7→ false that does

not satisfy the formula. Take a cycle that resets x1, x2 and x3 according to the encoding of
assignments. Then none of the clocks that are checked for zero on the transitions from r0
to r1 has been reset. Notice that these transitions come from the first clause in the formula
that evaluates to false according to the assignment. To take a transition from r0, one of
x1, x2 and x3 must be zero and hence time cannot elapse in the path corresponding to this
assignment.

Lemma 2.1 below states that if the formula is satisfiable, there exists a sequence of
resets that allows time elapse in every loop. Conversely, if the formula is unsatisfiable, in
every iteration of the loop, there is a zero-check that prevents time from elapsing.

Lemma 2.1. A 3CNF formula φ is satisfiable iff ANZ
φ has a non-Zeno run.

Proof. Let φ be a conjunction of n clauses C1, . . . , Cn. Assume that φ is satisfiable. Then,
there exists a variable assignment χ : P 7→ {true, false} that evaluates φ to true. This
entails that in every clause Cm there is a literal λm that evaluates to true with χ.

We will now build a non-Zeno run ρ of ANZ
φ using this variable assignment χ. Clearly,

it should have the following sequence of states repeated infinitely often:

q0 −→ . . . qk −→ r0 −→ r1 −→ . . . rn
Additionally, ρ satisfies the following conditions:

• from each configuration (qi−1, v) for i ∈ [1; k], ρ takes the transition qi−1
{xi}−−→ qi when

χ(pi) = true and the transition qi−1
{xi}−−→ qi otherwise;

• from each configuration (rm−1, v) for m ∈ [1;n], ρ takes a transition rm−1
cl(λm)≤0−−−−−−→ rm

where λm is the literal evaluating to true with respect to χ in Cm;
• and ρ lets 1 time unit elapse from each configuration with state rn and moves to the state
q0; in all other states, there is no time elapse.

Note that as rn occurs infinitely often, the run ρ is non-Zeno. It remains to prove that ρ is
indeed a valid run of ANZ

φ . For this, we need to prove that all zero-checked transitions can
be crossed regardless of the unit time elapse. Consider the part of ρ between two successive
configurations with state rn.

· · · (rn, v) 1−→ · · · {cl(λm)}−−−−−→ · · · (rm−1, v
′′)

cl(λm)≤0−−−−−−→ (rm, v′′) · · · (rn, v′) 1−→ · · ·
By definition of ρ, λm is a literal that evaluates to true according to χ. Hence, clock cl(λm)
is reset in the corresponding qj−1 −→ qj transition, before being checked for zero. As cl(λm)
is reset and since ρ does not elapse time in states other than rn, we have v′′(cl(λm

j )) = 0.

This permits the transition from rm−1 to rm for all m ∈ [1;n] and shows that the run ρ
exists.

For the other direction, consider a non-Zeno run ρ of ANZ
φ . Since ρ is non-Zeno,

time elapses on infinitely many transitions in the run. Every infinite run of ANZ
φ visits a

configuration with state rn infinitely often. Consider two consecutive occurences of rn in ρ
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such that time elapses on some transition in the segment in between:

· · · (rn, v) −→ · · · (qk, v′) −→ · · · (rm−1, v
′′)

cl(λm)≤0−−−−−−→ (rm, v′′) · · · −→ (rn, v
′′) · · ·

By construction, for each i ∈ [1; k] either xi or xi is reset on the segment from (rn, v) to
(qk, v

′). Let χ be the variable assignment that associates true to pi when xi is reset, and
false otherwise, that is when xi is reset. We prove that χ satisfies φ.

Consider the transition (rm−1, v
′′)

cl(λm)≤0−−−−−−→ (rm, v′′). For the transition to be enabled,
we need to have v′′(cl(λm)) = 0. Let (qj−1, vj−1) −→ (qj , vj) be the transition that resets

either cl(λm) or cl(λm). Notice that time cannot elapse between (qj , vj) and (rm−1, v
′′).

So the time elapse should have occured between (rn, v) to (qj−1, vj−1). Thus it should be
clock cl(λm) that is reset in the transition (qj−1, vj−1) −→ (qj, vj). From the above definition
of χ, we have λm evaluating to true with χ and hence Cm evaluates to true with χ too.
This holds for all the clauses. This shows that φ is satisfiable with χ being the satisfying
assignment.

The NP-hardness of NZPLU then follows due to the small size of ZGLU (ANZ
φ ).

Theorem 2.2. The abstract zone graph ZGLU (ANZ
φ ) is isomorphic to ANZ

φ . The non-

Zenoness problem is NP-hard for abstractions ExtraLU and Extra
+
LU .

Proof. We first prove that ZGLU (ANZ
φ ) is isomorphic to ANZ

φ . For every clock x, L(x) =
−∞, hence ExtraLU abstracts all the constraints xi−xj 4ij cij to xi−xj < ∞ except those
of the form x0 − xi 40i c0i that are kept unchanged. Due to the guards in ANZ

φ , for every

reachable zone Z in ZG(ANZ
φ ) we have x0 − xi ≤ 0 (i.e. xi ≥ 0). Therefore ExtraLU (Z) is

the zone defined by
∧

x∈X x ≥ 0 which is RX
≥0. For each state of ANZ

φ , the zone R
X
≥0 is the

only reachable zone in ZGLU (ANZ
φ ), hence showing the isomorphism.

NP-hardness then follows from Lemma 2.1. The result transfers to Extra
+
LU thanks to

Theorem 1.3.

Notice that the type of zero checks in ANZ
φ is crucial to Theorem 2.2. Replacing zero-

checks of the form x ≤ 0 by x = 0 does not modify the semantics of ANZ
φ . However, this

yields L(x) = 0 for every clock x. Hence, the constraints of the form xi − xj ≤ 0 are
not abstracted: ExtraLU then preserves the ordering among the clocks. Each sequence of
clock resets leading from q0 to qk yields a distinct ordering on the clocks. Thus, there are
exponentially many LU-abstracted zones with state qk. As a consequence, the polynomial
reduction from 3SAT is lost. We indeed provide in Section 3 below an algorithm for detecting
non-Zeno runs from ZGLU (A) that runs in polynomial time when L(x) ≥ 0 for all clocks
x. On the other hand, notice that changing x = 0 to x ≤ 0 reduces the size of the abstract
zone graph, in some cases, by an exponential amount. We will see in Section 5 how this has
led to an improvement in the reachability analysis for timed automata.

3. Finding non-Zeno runs

Recall the non-Zenoness problem (NZPa):

Given an automaton A and its abstract zone graph ZGa(A), decide if A has
a non-Zeno run.
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A standard solution to this problem involves adding one auxiliary clock to A to detect
non-Zenoness [19]. This solution was shown to cause an exponential blowup in [14]. In the
same paper, a polynomial method has been proposed in the case of the ExtraM abstraction.
We briefly recall this construction below.

An infinite run of the timed automaton could be Zeno due to two factors:

• blocking clocks: these are clocks bounded from above (i.e. x ≤ c for some c > 0) infinitely
often in the run, but are reset only finitely many times,

• zero checks: these are guards of the form x ≤ 0 or x = 0 that occur infinitely often in a
manner that prevents time elapse in the run.

To solve NZP
a, the task is to find if there exists an infinite run in ZGa(A) that neither has

blocking clocks nor zero-checks that prevent time-elapse. The method in [14] tackles these
two problems as follows. Blocking clocks are handled by first detecting a maximal strongly
connected component (SCC) of the zone graph and repeatedly discarding the transitions
that bound some blocking clock until a non-trivial SCC with no such clocks is obtained.
This algorithm runs in time polynomial for every abstraction. For zero checks, a guessing
zone graph construction has been introduced to detect nodes where time can elapse.

3.1. Guessing zone graph GZGa(A). The necessary and sufficient condition for time
elapse in a node inspite of zero-checks is to have every reachable zero-check from that node
preceded by a corresponding reset (cf. Figure 9).

•

√

• • • •{x}
x = 0

Figure 9: Time can elapse in the node
√

Therefore, the aim is to check if there exists a node (q, Z) in ZGa(A) such that there is
a path from (q, Z) back to itself in which every zero-check is preceded by a corresponding
reset. This would instantiate to an infinite run of A that can elapse time despite the
zero-checks.

This is what the guessing zone graph construction achieves. The nodes of the guessing
zone graph are triples (q, Z, Y ) where Y ⊆ X is a set of clocks. The sets Y are called the
guess sets. Whenever a clock is reset, it is added to the guess set of the resulting node.
A transition with a zero-check can be crossed only if the clock that is checked for zero is
already present in the guess set, that is, if it was reset somewhere in the past. The guess
set Y in a node (q, Z, Y ) therefore gives the set of clocks that can potentially be checked for
zero before being reset in a path starting from (q, Z, Y ). In particular, clocks that are not
in Y cannot be checked for zero in the future before being reset. Hence, on a path from a
node with an empty guess set, all the zero checks are preceded by the corresponding reset,
and time can elapse in that node.

For a valuation v, we write v |= (X − Y > 0) for the constraint saying that all the

variables in X − Y are greater than 0 in v, that is: v �

(
∧

x∈(X−Y ) v(x) > 0
)

. For every

transition t = (q, g,R, q′) of A, GZGa(A) has a transition (q, Z, Y ) ⇒t
a (q

′, Z ′, Y ′) only if:

• there is a transition (q, Z) ⇒t
a (q

′, Z ′) in ZGa(A);
• there is a valuation v ∈ Z such that v � (X − Y > 0) and v � g;
• and Y ′ = Y ∪R.
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Observe that if the guess set is empty in a node, then the following transition can be taken
by a valuation that has all clocks greater than zero. This shows that if there is a path
from a node (q, Z, ∅), zero-checks do not hinder time-elapse in this node. When a clock is
reset, this is remembered in Y ′. This in turn allows the clock to be checked for zero from
(q′, Z ′, Y ′).

The guessing zone graph also contains special transitions:

• (q, Z, Y ) ⇒τ
a (q, Z, Y ′) with Y ′ = ∅ or Y ′ = Y .

Hence, from any node (q, Z, Y ), by taking a τ transition that leads to (q, Z, ∅), one can non-
deterministically check if there is a path from that node where every zero-check is preceded
by a corresponding reset.

Figure 10 depicts a timed automaton A1 along with its zone graph ZGa(A1) and the
reachable part of its guessing zone graph GZGa(A1) where τ -loops have been omitted. The
loop that checks x for zero is disabled from node (1, x = z, ∅) since x does not belong
to the guess set. This indicates that it is not possible to let time elapse and then take
this transition. Time can elapse in every node with an empty guess set (nodes with ∅
as a third component) since, by construction, every zero check must be preceded by the
corresponding reset. In particular, the cycle (2, x − z ≥ 1, ∅) ⇒a (3, x − z ≥ 1, {z}) ⇒a

(2, x− z ≥ 1, {z}) ⇒τ
a (2, x− z ≥ 1, ∅) is the suffix of a non-Zeno run.

It has been shown in [14] that the number of guess sets for every node (q, Z) reachable in
ZGa(A) is bound by |X|+1 when the abstraction a is ExtraM . The case of other abstractions
was not considered. The same construction does not give polynomial complexity even for
Extra

+
M . We first optimize this construction by considering an arbitrary abstraction.

3.2. Reduced guessing zone graph rGZGa(A). The reduced guessing zone graph is a
slight modification that restricts the guess sets to a subset of the set of clocks. A clock
that is never checked for zero need not be remembered in sets Y . We restrict Y sets to
only contain clocks that can indeed be checked for zero and we show that this is sound and
complete for non-Zenoness.

We say that a clock x is relevant if there exists a guard x ≤ 0 or x = 0 in the automaton.
We denote the set of relevant clocks by Rl(A). For a zone Z, let C0(Z) denote the set of
clocks x such that there exists a valuation v ∈ Z with v(x) = 0. The clocks that can be
checked for zero before being reset in a path from (q, Z), lie in Rl(A) ∩ C0(Z).

Definition 3.1 (Reduced guessing zone graph). Let A be a timed automaton with clocks
X. The reduced guessing zone graph rGZGa(A) has nodes of the form (q, Z, Y ) where
(q, Z) is a node in ZGa(A) and Y ⊆ Rl(A)∩C0(Z). The initial node is (q0, Z0,Rl(A)), with
(q0, Z0) the initial node of ZGa(A). The transitions are as follows:

• For t = (q, g,R, q′), there is a transition (q, Z, Y ) ⇒t
a (q

′, Z ′, Y ′) with:

Y ′ = (Y ∪R) ∩ Rl(A) ∩ C0(Z ′)

if there is (q, Z) ⇒t
a (q

′, Z ′) in ZGa(A) and some valuation v ∈ Z such that v � (Rl(A)−
Y ) > 0 and v � g.

• A new auxiliary letter τ is introduced that adds transitions (q, Z, Y ) ⇒τ
a (q, Z, Y ′) for

Y ′ = ∅ or Y ′ = Y .
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1 2 3

x = 0, {x}

{y}
x ≥ 1, {z}

z = 0

1, x = z 2, x = z 3, x− z ≥ 1 2, x− z ≥ 1

x = 0, {x}

{y} x ≥ 1, {z}

z = 0

x ≥ 1, {z}

1, x = z, {x, y, z} 1, x = z, ∅

2, x = z, {x, y, z} 2, x = z, {y} 2, x = z, ∅

3, x− z ≥ 1, {x, y, z} 3, x− z ≥ 1, {y, z} 3, x− z ≥ 1, {z} 3, x− z ≥ 1, ∅

2, x− z ≥ 1, {x, y, z} 2, x− z ≥ 1, {y, z} 2, x− z ≥ 1, {z} 2, x− z ≥ 1, ∅

x = 0, {x}

{y}
{y}

x ≥ 1, {z} x ≥ 1, {z} x ≥ 1, {z}

z = 0 z = 0 z = 0x ≥ 1, {z} x ≥ 1, {z} x ≥ 1, {z} x ≥ 1, {z}

τ

τ

τ

τ

τ

τ

τ

τ

τ

Figure 10: A timed automaton A1 (top), its zone graph ZGa(A1) (middle) and the reachable
part of the guessing zone graph GZGa(A1) (bottom) with τ self-loops omitted
for clarity.

Observe that similar to the case of the guessing zone graph, we require v � (Rl(A)−Y ) >
0 and v � g for some v ∈ Z, a transition that checks x ≤ 0 (or x = 0) is allowed from a
node (q, Z, Y ) only if x ∈ Y . Thus, from a node (q, Z, ∅) every reachable zero-check x = 0
should be preceded by a transition that resets x, and hence adds it to the guess set. Such
a node is called clear. The presence of such nodes would ensure a time-elapse even in the
presence of zero-checks.
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1, x = z, {x, z} 1, x = z, ∅

2, x = z, {x, z} 2, x = z, ∅

3, x− z ≥ 1, {z} 3, x− z ≥ 1, ∅

2, x− z ≥ 1, {z} 2, x− z ≥ 1, ∅

x = 0, {x}

{y} {y}

x ≥ 1, {z}x ≥ 1, {z}

z = 0x ≥ 1, {z} x ≥ 1, {z}

τ

τ

τ

τ

Figure 11: The reachable part of the reduced guessing zone graph rGZGa(A1) of automaton
A1 in Figure 10 (with τ self-loops omitted for clarity).

Figure 11 shows the reachable part of the reduced guessing zone graph rGZGa(A1) for
the automaton A1 in Figure 10. Notice that since y 6∈ Rl(A1), the clock y is not added to
the sets Y when it is reset. Observe also that clock x cannot belong to the guess sets in the
nodes (3, x− z ≥ 1) and (2, x− z ≥ 1) as x > 0. The resulting reduced guessing zone graph
rGZGa(A1) is a lot smaller than the guessing zone graph GZGa(A1) in Figure 10. It still
contains all the information needed to detect non-Zeno runs.

Before we prove our result about the reduced guessing zone graph, we define some
notions.

Definition 3.2. A node (q, Z, Y ) of rGZGa(A) is called clear if the third component is
empty: Y = ∅. A variable x is bounded in a transition of rGZGa if the guard of the
transition implies x ≤ c for some constant c. A path of rGZGa is said to be blocked if there
is a variable that is bounded infinitely often and reset only finitely often by the transitions
on the path. Otherwise the path is called unblocked.

An unblocked path says that there are no blocking clocks to bound time and clear nodes
suggest that inspite of zero-checks that might possibly occur in the future, time can still
elapse. We get the following theorem.

Proposition 3.3. A timed automaton A has a non-Zeno run iff there exists an unblocked
path in rGZGa(A) visiting a clear node infinitely often.

The proof of Proposition 3.3 is in the same lines as for the guessing zone graph in [14].
It follows from the following two lemmas.

Lemma 3.4. If A has a non-Zeno run, then in rGZGa(A) there is an unblocked path
visiting a clear node infinitely often.
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Proof. Let ρ be a non-Zeno run of A:

(q0, v0)
δ0,t0−−−→ (q1, v1)

δ1,t1−−−→ · · ·
Since a is complete, ρ is an instantiation of a path π in ZGa(A):

(q0, Z0) ⇒t0
a (q1, Z1) ⇒t1

a · · ·
Let σ be the following sequence of transitions:

(q0, Z0, Y0) ⇒τ
a (q0, Z0, Y

′
0) ⇒t0

a (q1, Z1, Y1) ⇒τ
a (q1, Z1, Y

′
1) ⇒t1

a · · ·
where Y0 = Rl(A), Yi is determined by the transition relation in rGZGa(A), and Y ′

i = Yi

unless δi > 0 when we put Y ′
i = ∅.

Since ρ is non-Zeno, there are infinitely many i such that δi > 0, hence σ contains
infinitely many clear nodes with Y ′

i = ∅. From the non-Zenoness of ρ, we also get that σ is
unblocked.

Now, it remains to show that σ is indeed a path in rGZGa(A). For this we need to see
that every transition (qi, Zi, Y

′
i ) ⇒ti

a (qi+1, Zi+1, Yi+1) is realizable from a valuation v ∈ Zi

such that both v � (Rl(A)− Y ′
i ) > 0 and v � gi where gi is the guard of ti. We prove this

by an induction on the run. As by the definition of ρ, vi+ δi � gi for all i ≥ 0, we only need
to prove that vi + δi � (Rl(A)− Y ′

i ) > 0. This is clearly true for valuation v0 + δ0 ∈ Z0.
Assume that vi + δi � (Rl(A) − Y ′

i ) > 0. We now prove that vi+1 + δi+1 � (Rl(A) −
Y ′
i+1) > 0. Firstly, observe that Yi+1 = (Y ′

i ∪ Ri) ∩ C0(Zi+1) ∩ Rl(A). Therefore a clock
x ∈ Rl(A)−Yi+1 either belongs to Rl(A)−Y ′

i in which case it is greater than 0 by induction
hypothesis, or otherwise we have x ∈ Y ′

i but x /∈ C0(Zi+1). By the definition of C0(Zi+1),
all valuations v ∈ Zi+1 satisfy v(x) > 0 and so in particular, vi+1(x) > 0. This leads to
vi+1 � (Rl(A)− Yi+1) > 0 which easily extends to vi+1 + δi+1 � (Rl(A)− Y ′

i+1) > 0.

Lemma 3.5. Suppose rGZGa(A) has an unblocked path visiting a clear node infinitely often
then A has a non-Zeno run.

Proof. The proof follows the same lines as the proof of Lemma 6 in [14] with the additional
information that for all clocks x that do not belong to Rl(A), we have g∧ (x > 0) consistent
for every guard g.

Let π : (q0, Z0, Y0) ⇒t0
a . . . be the unblocked path of rGZGa(A) that visits a clear node

infinitely often. Since a is sound, take an instantiation ρ : (q0, v0)
δ0,t0−−−→ . . . of A. If ρ is

non-Zeno, we are done.
Assume that ρ is Zeno. It has a suffix where less than 1/2 time unit elapses. Let Xr

denote the set of clocks that are reset infinitely often on ρ. We can thus find an index
m such that vn(x) < 1/2 for all x ∈ Xr and for all n ≥ m. Take indices i, j ≥ m such
that Yi = Yj = ∅ and all clocks in Xr are reset between i and j. We look at the sequence

(qi, vi)
δi,ti−−→ . . . (qj, vj) and claim that every sequence of the form

(qi, v
′
i)

δi,ti−−→ (qi+1, v
′
i+1)

δi+1,ti+1−−−−−→ . . . (qj, v
′
j)

is a part of a run of A provided there is ζ ∈ R≥0 such that the following three conditions
hold for all k = i, . . . , j:

(1) ν ′k(x) = νk(x) + ζ + 1/2 for all x 6∈ Xr,
(2) ν ′k(x) = νk(x) + 1/2 if x ∈ Xr and x has not been reset between i and k.
(3) ν ′k(x) = νk(x) otherwise, i.e., when x ∈ Xr and x has been reset between i and k.
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It is easy to see that the run obtained by replacing every such i − j interval of ρ by
the above sequence gives a non-Zeno run, since a 1/2 time unit has been elapsed infinitely
often.

We now show that the above is indeed a valid run of A. For this we need to first show
that v′k + δk satisfies the guard in tk. Let g be the guard.

For x 6∈ Xr, from the assumption that ρ is unblocked, we know that g could only be of
the form x > c or x ≥ c. So v′k(x) clearly satisfies g. If x ∈ Xr and is reset between i and k,
v′k(x) = vk(x) and so we are done. Consider the case when x ∈ Xr and is not reset between
i and k. Observe that x 6∈ Yk. This is because Yi = ∅, and then only variables that are reset
are added to Y . Since x is not reset between i and k, it cannot be in Yk. By definition of
transitions in rGZGa(A), if x ∈ Rl(A) this means that g ∧ (x > 0) is consistent. But for
x 6∈ Rl(A) by definition, g ∧ (x > 0) is consistent. We have that 0 ≤ (vk + δk)(x) < 1/2 and
1/2 ≤ (v′k + δk)(x) < 1. So v′k + δk satisfies all the constraints in g concerning x as vk + δk
does.

It can also be seen that the valuation obtained from v′k by resetting the clocks in
transition tk is the valuation v′k+1.

3.3. Polynomial algorithms for NZP
a. Since we have a node in rGZGa(A) for every

(q, Z) in ZGa(A) and every subset Y of Rl(A), it can in principle be exponentially bigger
than ZGa(A). Below, we see that depending on abstraction a, not all subsets Y need to be
considered. Let us first define the notion of a zone ordering clocks.

Definition 3.6. Let X ′ be a subset of X. We say that a zone Z orders the clocks in X ′ if
for all clocks x, y ∈ X ′, Z implies that at least one of x ≤ y or y ≤ x hold, that is either all
valuations v ∈ Z satisfy v(x) ≤ v(y) or all valuations v ∈ Z satisfy v(y) ≤ v(x).

Definition 3.7 (Weakly order-preserving abstractions). An abstraction a weakly preserves
orders if for all clocks x, y ∈ Rl(A) ∩ C0(Z), Z � x ≤ y iff a(Z) � x ≤ y.

It has been observed in [14] that all the zones that are reachable in the unabstracted
zone graph ZG(A) order the entire set of clocks X. Assume that a weakly preserves orders,
then for every reachable node (q, Z, Y ) in rGZGa(A), the zone Z orders the clocks in
Rl(A)∩C0(Z). We now show that Y is downward closed with respect to this order given by
Z: for clocks x, y ∈ Rl(A) ∩ C0(Z), if Z � x ≤ y and y ∈ Y , then x ∈ Y . This entails that
there are at most |Rl(A)| + 1 downward closed sets to consider, thus giving a polynomial
complexity.

Proposition 3.8. Let A be a timed automaton. If a weakly preserves orders, then the
reachable part of rGZGa(A) is O(|Rl(A)|) bigger than the reachable part of ZGa(A).

Proof. We prove by induction on the transitions in rGZGa(A) that for every reachable
node (q, Z, Y ) the set Y is downward closed with respect to the order on the clocks in
Rl(A) ∩ C0(Z) implied by Z. This is true for the initial node (q0, Z0,Rl(A)).

Now, assume that this is true for (q, Z, Y ). Take a transition (q, Z, Y ) ⇒t
a (q′, Z ′, Y ′)

with t = (q, g,R, q′). By definition, Y ′ = (Y ∪ R) ∩ Rl(A) ∩ C0(Z ′). Suppose Z ′ � x ≤ y
for some x, y ∈ Rl(A) ∩ C0(Z ′) and suppose y ∈ Y ′. This could mean y ∈ Y or y ∈ R. If
y ∈ R, then x is also in R since Z ′ � x ≤ y. If y /∈ R then we get y ∈ Y and Z � x ≤ y. By
hypothesis that Y is downward closed, x ∈ Y . In both cases x ∈ Y ′.
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The following lemma shows that the M -extrapolations weakly preserve orders. Hence,
rGZGM (A) yields a polynomial algorithm for NZP

M . Thanks to the reduction of the
guessing zone graph to the relevant clocks, this algorithm is more efficient than the algorithm
in [14] even while using the same abstraction.

Theorem 3.9. The abstractions ExtraM and Extra
+
M weakly preserve orders. The non-

Zenoness problem is solved in polynomial time for ExtraM and Extra
+
M .

Proof. It has been proved in [14] that ExtraM weakly preserves orders. We now prove this
for Extra

+
M . Firstly note that for a clock x in Rl(A) we have M(x) ≥ 0. Moreover if

x ∈ C0(Z) we have that Z is consistent with x ≤ 0. Hence, for a clock x ∈ Rl(A) ∩ C0(Z),
Z is consistent with x ≤ M(x). Therefore, by definition, Extra+M (Z) restricted to clocks in
Rl(A) ∩ C0(Z) is identical to ExtraM (Z) restricted to the same set of clocks. Since ExtraM

weakly preserves orders, we get that Extra+M weakly preserves orders too.

The algorithm in Proposition 3.3 is thus polynomial for ExtraM and Extra
+
M by Propo-

sition 3.8.

However, the polynomial complexity is not preserved by the coarser LU -extrapolations.

Theorem 3.10. The abstractions ExtraLU and Extra
+
LU do not weakly preserve orders. The

non-Zenoness problem is NP-complete for ExtraLU and Extra
+
LU .

Proof. From the definition of ExtraLU we have that all constraints of the form xi−xj 4ij cij
are abstracted to xi − xj < ∞ when L(xi) = −∞. Thus, information about the relative
ordering between xi and xj is lost. This shows that ExtraLU does not weakly preserve orders
when L(x) = −∞ for relevant clocks. This also holds for Extra+LU by Theorem 1.3.

NP hardness is proven in Theorem 2.2. It remains to discuss NP membership. Let N
be the number of nodes in ZGLU (A). Let us non-deterministically choose a node (q, Z).
We assume that (q, Z) is reachable as this can be checked in polynomial time on ZGLU (A).

We augment (q, Z) with an empty guess set of clocks. From the node (q, Z, ∅), we non-
deterministically simulate a path π of the (non-reduced) guessing zone graph [14] obtained
from Definition 3.1 with Rl(A) = X and C0(Z) = X for every zone Z. We avoid taking τ
transitions on this path. This ensures that the guess sets accumulate all the resets on π.
During the simulation, we also keep track of a separate set U containing all the clocks that
are bounded from above on a transition in π.

We write⇒∗
a to denote the transitive closure of⇒a. If during the simulation one reaches

a node (q, Z, Y ) such that U ⊆ Y , then we have a cycle (q, Z, ∅) ⇒∗
a (q, Z, Y ) ⇒τ

a (q, Z, ∅)
that is unblocked and that visits a clear node infinitely often. Also, since (q, Z) is reachable
in ZGLU (A), (q, Z,X) is reachable in the guessing zone graph. Then (q, Z, ∅) is reachable
from (q, Z,X) with a τ transition. From [14] and from the fact that ExtraLU and Extra

+
LU

are sound and complete [3] we get a non-Zeno run of A.
Notice that it is sufficient to simulate N × (|X| + 1) transitions since we can avoid

visiting a node (q′, Z ′, Y ′) twice in π.

3.4. Modified LU-extrapolations for polynomial NZP
a. The LU -extrapolations do

not weakly preserve orders in zones due to relevant clocks with L(x) = −∞ and U(x) ≥ 0.
We show that this is the only reason for NP-hardness. We slightly modify ExtraLU to get
an abstraction ExtraLU that is coarser than ExtraM , but it still weakly preserves orders.
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Definition 3.11 (Weak L bounds). Let A be a timed automaton. Given the bounds L(x)
and U(x) for every clock x ∈ X, the weak lower bound L is given by: L(x) = 0 if x ∈ Rl(A),
L(x) = −∞ and U(x) ≥ 0, and L(x) = L(x) otherwise.

We denote ExtraLU the ExtraLU abstraction obtained by choosing L instead of L. Notice
that ExtraLU and ExtraLU coincide when zero-checks are written x = 0 instead of x ≤ 0 in
the automaton. By definition of ExtraLU and Proposition 3.8, we get the following.

Theorem 3.12. The abstraction ExtraLU weakly preserves orders. The non-Zenoness prob-
lem is solved in polynomial time for ExtraLU .

ExtraLU coincides with ExtraLU for a wide class of automata. For instance, when the
automaton does not have a zero-check, ExtraLU is exactly ExtraLU , and the existence of a
non-Zeno run can be decided in polynomial time. For some automata however, the zone
graph obtained with ExtraLU is exponentially bigger than the zone graph obtained with

ExtraLU . This is for instance the case for the automaton ANZ
φ used to prove NP-hardness

of NZP
LU in Section 2. Similar to ExtraLU we can define Extra

+
LU

which again weakly

preserves orders and yield a polynomial algorithm to solve the non-Zenoness problem.

4. The Zenoness problem

In this section we consider the Zenoness problem (ZPa):

Given an automaton A and its abstract zone graph ZGa(A), decide if A has
a Zeno run.

As in the case of non-Zenoness, this problem turns out to be NP-complete when the ab-
straction operator a is ExtraLU . We subsequently give the hardness proof by providing a
reduction from 3SAT.

4.1. Reducing 3SAT to ZP
a with abstraction ExtraLU . Let P = {p1, . . . , pk} be a set

of propositional variables. Let φ = C1 ∧ · · · ∧ Cn be a 3CNF formula with n clauses. Each
clause Cm, m = 1, 2, . . . , n is a disjunction of three literals λm

1 , λm
2 and λm

3 . We construct
in polynomial time an automaton AZ

φ and its zone graph ZGLU (AZ
φ ) such that AZ

φ has a
Zeno run iff φ is satisfiable, thus proving the NP-hardness.

The automaton AZ
φ has clocks {x1, x1, . . . , xk, xk} with xi and xi corresponding to the

literals pi and ¬pi respectively. We denote the clock associated to a literal λ by cl(λ). The
set of states of AZ

φ is given by {q0, q1, . . . , qk} ∪ {r0, r1, r2, . . . , rn} with q0 being the initial
state. The transitions are as follows:

• transitions qi−1
{xi}−−→ qi and qi−1

{xi}−−→ qi for i = 1, 2, . . . , k,
• a transition qk −→ r0 with no guards and resets,

• for each clause Cm there are three transitions rm−1
cl(¬λ)≥1−−−−−→ rm for each literal λ ∈

{λm
1 , λm

2 , λm
3 },

• a transition rn −→ q0 with no guards and resets. This transition creates a cycle in AZ
φ .

As an example, Figure 12 shows the automaton for the formula (p1 ∨¬p2∨ p3)∧ (¬p1∨
p2 ∨ p3). Observe that the transitions rm−1

cl(¬λ)≥1−−−−−→ rm check if the clock corresponding to

the negation of λ is greater than 1. That is, cl(¬λ) = cl(λ).
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q0 q1 q2 q3 r0 r1 r2

{x1}

{x1}

{x2}

{x2}

{x3}

{x3}

x1 ≥ 1

x2 ≥ 1

x3 ≥ 1

x1 ≥ 1

x2 ≥ 1

x3 ≥ 1

Figure 12: AZ
φ for φ = (p1 ∨ ¬p2 ∨ p3) ∧ (¬p1 ∨ p2 ∨ p3)

Clearly, AZ
φ can be constructed from φ in O(|φ|) time. We now show that φ is satisfiable

iff AZ
φ has a Zeno run.

Lemma 4.1. A 3CNF formula φ is satisfiable iff AZ
φ has a Zeno run.

Proof. For the left-to-right direction, suppose that φ is satisfiable. Then there exists a
variable assignment χ : P 7→ {true, false} that evaluates φ to true. We now build the Zeno
run of AZ

φ using χ.

Pick an infinite run ρ of AZ
φ . Clearly, it should have the following sequence of states

repeated infinitely often:

q0 −→ . . . qk −→ r0 −→ r1 −→ . . . rn (4.1)

We choose the transitions for ρ that allow time elapse only by a finite amount. If χ(pi) =

true, then we put qi−1
{xi}−−→ qi wherever qi−1 −→ qi occurs in ρ. Otherwise χ(pi) = false and

we put qi−1
{xi}−−→ qi. We now need to choose the transitions rm−1 −→ rm for m = 1, . . . , n.

Since χ is a satisfying assignment, every clause Cm has a literal λ that evaluates to true with

χ. We choose the corresponding transition rm−1
cl(¬λ)≥1−−−−−→ rm. Observe that if λ evaluates

to true, it implies that cl(λ) was reset in one of the qi −→ qi+1 transitions but not cl(¬λ).
Therefore, the above construction yields a sequence of transitions with the property

that all clocks that are reset are never checked for greater than 1. This sequence can be
taken by elapsing 1 time unit in the very first state, and then subsequently elapsing no time
at all, thus giving a Zeno run in AZ

φ .

We now prove the right-to-left direction. Let ρ be an infinite Zeno run of AZ
φ . An

infinite run should repeat the sequence of states given in (4.1). Since ρ is Zeno, it has a
suffix ρs such that for every clock x that is reset in ρs, x ≥ 1 never occurs in the transitions
of ρs. This is because if every suffix of ρ contains a clock that is both reset and checked
for greater than 1, this would mean that there is a time elapse of one time unit occurring
infinitely often, contradicting the hypothesis that ρ is Zeno.

Consider a segment S = q0 −→ . . . qn −→ r0 −→ r1 −→ . . . rk in ρs. We construct a satisfying
assignment χ : P 7→ {true, false} for φ from S.

• if S contains qi−1
{xi}−−→ qi then set χ(pi) = true

• otherwise, it implies that S contains qi−1
{xi}−−→ qi in which case we set χ(pi) = false.

This shows that for a literal λ, if cl(λ) is reset in S, then χ(λ) = true. From the property

of ρs that no clock that is reset is checked in a guard, for every transition rm−1
cl(¬λ)≥1−−−−−→ rm
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in S, it is clock cl(λ) that is reset and hence χ(λ) = true. By construction of AZ
φ , λ is a

literal in Cm. Therefore, we get a literal that is true in every clause evaluating φ to true.

It remains to show that ZGLU (AZ
φ ) can also be calculated in polynomial time from AZ

φ .

We indeed note that the size of the ZGLU (AZ
φ ) is the same as that of the automaton. That

will conclude the proof that a polynomial algorithm for ZPLU yields a polynomial algorithm
for the 3SAT problem.

Proposition 4.2. The zone graph ZGLU (AZ
φ ) is isomorphic to AZ

φ . The Zenoness problem

is NP-hard for ExtraLU and Extra
+
LU .

Proof. By looking at the guards in the transitions, we get that for each clock x, L(x) = 1
and U(x) = −∞. The initial node of the zone graph ZGLU (AZ

φ ) is (q0,ExtraLU (Z0)) where

Z0 is the set of valuations given by (x1 ≥ 0)∧(x1 = x1 = · · · = xk = xk). By definition, since
for each clock x, U(x) = −∞, we have ExtraLU (Z0) = R

X
≥0, the non-negative half-space.

On taking a transition with a guard x ≥ 1 from R
X
≥0, we come to a zone R

X
≥0 ∧ x ≥ 1.

However, since U(x) = −∞, ExtraLU (R
X
≥0 ∧ x ≥ 1) gives back R

X
≥0. Same for transitions

that reset a clock. It follows that ZGLU (AZ
φ ) is isomorphic to AZ

φ . This extends to Extra
+
LU

by Theorem 1.3. Then NP-hard immediately follows from Lemma 4.1.

In the next section, we provide an algorithm for the zenoness problem ZP
a and give

conditions on abstraction a for the solution to be polynomial.

4.2. Finding Zeno paths. We say that a transition is lifting if it has a guard that implies
x ≥ 1 for some clock x. The idea is to find if there exists a run of an automaton A in which
every clock x that is reset infinitely often is lifted only finitely many times, ensuring that
the run is Zeno. This amounts to checking if there exists a cycle in ZG(A) where every

clock that is reset is not lifted. Observe that when (q, Z)
x≥c
=⇒ (q′, Z ′) is a transition of

ZG(A), then Z ′ remembers that x has been lifted to a value bigger than c, that is to say
Z ′ entails x ≥ c. Therefore, if a node (q, Z) is part of a cycle of our required form, then in
particular, all the clocks that are greater than 1 in Z should not be reset in the cycle.

Based on the above intuition, our solution begins with computing the zone graph on-
the-fly. At some node (q, Z) the algorithm non-deterministically guesses that this node is
part of a cycle that yields a zeno run. This node transits to what we call the slow mode. In
this mode, a reset of x in a transition is allowed from (q′, Z ′) only if Z ′ is consistent with
x < 1: there is at least one valuation v ∈ Z ′ that has v(x) < 1.

Before we define our construction formally, recall that we would be working with the
abstract zone graph ZGa(A) and not ZG(A). Therefore for our solution to work, the
abstraction operator a should remember the fact that a clock has a value greater than 1.
For an automaton A over the set of clocks X, let Lf(A) denote the set of clocks that appear
in a lifting transition of A.

Definition 4.3 (Lift-safe abstractions). An abstraction a is called lift-safe if for every zone
Z and for every clock x ∈ Lf(A), Z � x ≥ 1 iff a(Z) � x ≥ 1.

We are now in a position to define our slow zone graph construction to decide if an
automaton has a Zeno run.
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q0

q1

{x} x ≥ 1

q0, x ≥ 0, free

q1, x ≥ 0, free

q0, x ≥ 1, free

q0, x ≥ 0, slow

q1, x ≥ 0, slow

q0, x ≥ 1, slow

{x}

x ≥ 1 {x}

{x}

x ≥ 1

τ

τ

τ

free mode slow mode

Figure 13: A timed automaton (left) and corresponding slow zone graph (right).

Definition 4.4 (Slow zone graph). Let A be a timed automaton over the set of clocks
X. Let a be a lift-safe abstraction. The slow zone graph SZGa(A) has nodes of the form
(q, Z, l) where l = {free, slow}. The initial node is (q0, Z0, free) where (q0, Z0) is the initial
node of ZGa(A). For every transition (q, Z) ⇒t

a (q
′, Z ′) in ZGa(A) with t = (q, g,R, q′), we

have the following transitions in SZGa(A):

• a transition (q, Z, free) ⇒t
a (q

′, Z ′, free),
• a transition (q, Z, slow) ⇒t

a (q′, Z ′, slow) if for all clocks x ∈ R, Z ∧ g is consistent with
x < 1,

A new letter τ is introduced that adds transitions (q, Z, free) ⇒τ
a (q, Z, slow).

A node of the form (q, Z, slow) is said to be a slow node. A path of SZGa(A) is said
to be slow if it has a suffix consisting entirely of slow nodes. The τ -transitions take a node
(q, Z) from the free mode to the slow mode. Note that the transitions of the slow mode
are constrained further. Figure 13 shows an example of an automaton and corresponding
slow zone graph. The free mode is identical to the zone graph of the automaton. However,

in the slow mode, the transition q0
{x}−−→ q1 is not allowed from node (q0, x ≥ 1, slow) since

x has been lifted. Hence, the only infinite paths in the slow mode instantiate the loop on
state q0 which correpond to the zeno runs of the automaton. The τ transitions allow to non
deterministically guess a node which has a slow path.

The correctness follows from the fact that there is a cycle in SZGa(A) consisting entirely
of slow nodes iff A has a Zeno run. This is detailed in the following two lemmas.

Lemma 4.5. If A has a Zeno run, then there exists an infinite slow path in SZGa(A).

Proof. Let ρ be a Zeno run of A:

(q0, v0)
δ0,t0−−−→ (q1, v1)

δ1,t1−−−→ . . .

Let π be the corresponding path in ZGa(A):

(q0, Z0) ⇒t0
a (q1, Z1) ⇒t1

a . . .
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We construct an infinite slow path in SZGa(A) from the path π. Let X l be the set of clocks
that are lifted infinitely often in π and let Xr be the set of clocks that are reset infinitely
often in π. Let πi denote the suffix of π starting from the position i.

Clearly, there exists an indexm such that all the clocks that are lifted in πm belong toX l

and the ones that are reset in πm belong to Xr. Since ρ is Zeno, we have X l∩Xr = ∅. This
shows that all the clocks that are reset in πm are never lifted in its transitions. Therefore,
there exists an index k ≥ m such that for all j ≥ k, Zj is consistent with x < 1 for all clocks
x ∈ Xr and we get the following path of SZGa(A):

(q0, Z0, free) ⇒t0
a . . . (qj, Zj , free) ⇒τ

a (qj, Zj , slow) ⇒tj
a (qj+1, Zj+1, slow) ⇒tj+1

a . . .

Lemma 4.6. If SZGa(A) has an infinite slow path, then A has a Zeno run.

Proof. Let π be the slow path of SZGa(A):

(q0, Z0, free) ⇒t1
a . . . (qj, Zj , free) ⇒τ

a (qj, Zj , slow) ⇒tj
a (qj+1, Zj+1, slow) ⇒tj+1

a . . .

Take the corresponding path in ZGa(A) and an instance ρ = (q0, v0)
δ0,t0−−−→ (q1, v1) . . . which

is a run of A, as we have assumed that a is a sound abstraction.
Let Xr be the set of clocks that are reset infinitely often and let X l be the set of

clocks that are lifted infinitely often in ρ. By the semantics of the slow mode and from our
hypothesis of a being lift-safe, after the index j, all clocks that are lifted once can never be
reset again. Therefore, there exists an index k ≥ j such that the following hold:

• all clocks that are reset in ρk belong to Xr and all clocks that are lifted in a transition of
ρk belong to X l,

• for all x ∈ X l and for all i ≥ k, vi(x) ≥ c where c is the maximum constant appearing in
a lifting transition of ρk.

We now modify the time delays of ρk to construct a run that elapses a bounded amount of
time. Pick the sequence of indices i1, i2, . . . in ρk such that δim > 0, for all m ∈ N. Define
the new delays δ′i for all i ≥ k as follows:

δ′i =

{

min(δi,
1
2j
) if i = ij for some j

0 otherwise

Consider the run ρ′ obtained by elapsing δ′i time units after the index k:

(q0, v0)
δ0,t0−−−→ . . .

δk−1,tk−1−−−−−−→ (qk, vk)
δ′
k
,tk−−−→ (qk+1, v

′
k+1)

δ′
k+1

,tk+1−−−−−−→ . . .

Clearly, ρ′ is Zeno. It remains to prove that ρ′ is a run of A. Denote vk by v′k. We need to
show that for all i ≥ k, v′i + δ′i satisfies the guard in the transition ti. Call this guard gi.
Clearly, since v′i+ δ′i ≤ vi+ δi by definition, if gi is of form x < c or x ≤ c then it is satisfied
by the new valuation. Let us now consider the case when gi is of the form x ≥ c or x > c.
If c ≥ 1, then we know that x ∈ X l from the assumption on k. But since vk(x) ≥ c and x
is not reset anywhere in ρk, v′i(x) ≥ c for all i and hence the new valuation satisfies gi. We
are left with the case when gi is of the form x > 0. However this follows since by definition
of the new δ′i, v

′
i + δ′i = 0 iff vi + δi = 0.
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From the definition of SZGa(A) it follows clearly that for each node (q, Z) of the
zone graph there are two nodes in SZGa(A): (q, Z, free) and (q, Z, slow). We thus get the
following theorem.

Proposition 4.7. Let a be a lift-safe abstraction. The automaton A has a Zeno run iff
SZGa(A) has an infinite slow path. The number of reachable nodes of SZGa(A) is atmost
twice the number of reachable nodes in ZGa(A).

We now turn our attention towards some of the abstractions existing in the literature.
We observe that both ExtraM and Extra

+
M are lift-safe and hence the Zenoness problem

can be solved using the slow zone graph construction. However, in accordance to the NP-
hardness of the problem for ExtraLU , we get that ExtraLU is not lift-safe.

Theorem 4.8. The abstractions ExtraM and Extra
+
M are lift-safe. The Zenoness problem

is solved in polynomial time for ExtraM and Extra
+
M .

Proof. Observe that for every clock that is lifted, the bound M is at least 1. It is now direct
from the definitions that ExtraM and Extra

+
M are lift-safe. A polynomial algorithm is easily

obtained from Proposition 4.7.

Theorem 4.9. The abstractions ExtraLU and Extra
+
LU are not lift-safe. The Zenoness

problem for ExtraLU and Extra
+
LU is NP-complete.

Proof. That ExtraLU and Extra
+
LU are not lift-safe follows from the proof of Proposition 4.2.

We show the NP-membership using a technique similar to the slow zone graph construc-
tion. Since ExtraLU is not lift-safe, the reachable zones in ZGLU (A) do not maintain the
information about the clocks that have been lifted. Therefore, at some reachable zone (q, Z)
we non-deterministically guess the set of clocks W that are allowed to be lifted in the future
and go to a node (q, Z,W ). From now on, there are transitions (q, Z,W ) ⇒t

a (q′, Z ′,W )
when:

• (q, Z) ⇒t
a (q

′, Z ′) is a transition in ZGLU (A),
• if t contains a guard x ≥ c with c ≥ 1, then x ∈ W ,
• if t resets a clock x, then x /∈ W

If a cycle is obtained that contains (q, Z,W ), then the clocks that are reset and lifted in
this cycle are disjoint and hence A has a Zeno run.

This shows that if A has a Zeno run we can non-deterministically choose a path of
the above form and the length of this path is bounded by twice the number of zones in
ZGLU (A) (which is our other input). This proves the NP-membership. The NP-hardness
is proven in Proposition 4.2.

4.3. Weakening the U bounds. We saw in Theorem 4.9 that the extrapolation ExtraLU

is not lift-safe. This is due to clocks x that are lifted but have U(x) = −∞. These are
exactly the clocks x with L(x) ≥ 1 and U(x) = −∞. We propose to weaken the U bounds
so that the information about a clock being lifted is remembered in the abstracted zone.

Definition 4.10 (Weak U bounds). Given the bounds L(x) and U(x) for each clock x ∈ X,
the weak upper bound U(x) is given by: U(x) = 1 if L(x) ≥ 1 and U(x) = −∞, and
U(x) = U(x) otherwise.
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Let ExtraLU denote the ExtraLU abstraction, but with U bound for each clock instead
of U . This definition ensures that for all lifted clocks, that is, for all x ∈ Lf(A), if a zone
entails that x ≥ 1 then ExtraLU(Z) also entails that x ≥ 1. This is summarized by the
following proposition, the proof of which follows by definitions and Proposition 4.7.

Theorem 4.11. For all zones Z, ExtraLU is lift-safe. The Zenoness problem is solved in
polynomial time for ExtraLU .

The Zenoness problem is polynomial for ExtraLU , however, there is a price to pay.
Weakening the U bounds leads to zone graphs exponentially bigger in some cases. For
example, for the automaton AZ

φ that was used to prove the NP-hardness of the Zenoness

problem with ExtraLU , note that the zone graph ZGLU (AZ
φ ) obtained by applying ExtraLU

is exponentially bigger than ZGLU (AZ
φ ). This leads to a slow zone graph SZGLU (AZ

φ ) with

size polynomial in ZGLU (AZ
φ ). Similar to ExtraLU we can define Extra

+
LU

which is again

lift-safe and yields a polynomial algorithm for the Zenoness problem.

5. Discussion on LU-extrapolations

In this section, we discuss two observations arising out of the analysis of the non-Zeno/Zeno
runs in an automaton. The first observation relates to an optimization in the reachability
and liveness algorithms for timed automata. For the second observation, we consider the
weak LU -extrapolations ExtraLU and ExtraLU and look at when these abstractions coincide
with the LU -extrapolation ExtraLU . We note that this happens for a wide class of timed
automata.

5.1. Optimization. Although this paper focuses on the complexity of finding Zeno and
non-Zeno behaviours from abstract zone graphs, our analysis showing the NP-hardness of
the non-Zenoness problem on LU -abstract zone graphs leads to an interesting side-effect for
the classical reachability and liveness problems for timed automata. We have pointed out
in the introduction that the reachability and liveness problems are solved via the abstract
zone graph. The LU -extrapolations are the standard abstractions used in state-of-the-
art implementations [3] as they give rise to small abstract zone graphs. The following
observation helps in reducing the abstract zone graph even further in some cases.

Recall the proof of NP-completeness of NZPLU given in Theorem 2.2. For a 3CNF
formula φ we built an automaton Aφ that has a non-Zeno run iff φ is satisfiable. The rest

of the proof relies on the crucial fact that the zone graph ZGLU (Aφ) is isomorphic to A.
This was indeed possible as L(x) was −∞ for all x thanks to the guards of the form x ≤ 0.
Note that modifying x ≤ 0 to x = 0 does not change the semantics of the automaton, but
obliges L(x) to be 0 for all clocks. In this case, the zone graph ZGLU (Aφ) is no longer
isomorphic to Aφ and in fact it is exponentially larger than Aφ.

This gives us the easy optimization for analyzing an automaton A for both reachability
and liveness. Since both these algorithms go through the zone graph construction, reducing
the abstract zone graph, and even trying to get a zone graph isomorphic to the automaton,
can produce considerable gain. The optimization consists in changing all the guards in A
that are of the form x = 0 to x ≤ 0 and in removing all the guards x ≥ 0. Thus, we
make sure that L(x) = −∞ unless there is a guard x ≥ c or x > c in the automaton. This
modification has been incorporated in UPPAAL 4.1.5. Experimental results have shown a
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remarkable gain, in particular for timed Petri nets as the translation to timed automata
may generate many guards like x = 0 and x ≥ 0. For instance, checking reachability on a
model of Fischer’s protocol only explored 2541 nodes instead of 23042 nodes thanks to this
optimization.

5.2. How weak are the weak LU-extrapolations. We saw that slightly weakening the
LU -bounds makes the NZPa and ZP

a polynomial (Definitions 3.11, 4.10 and Theorems 3.12,
4.11). Of course, this would indeed increase the size of the zone graph instead. However
in many cases the weak abstractions coincide with ExtraLU and Extra

+
LU respectively. This

shows that in all these cases, one can use the zone graph crafted by ExtraLU itself, or
alternatively Extra

+
LU , and additionally checking for Zeno behaviours is not costly either.

Hence one can expect an efficient procedure for checking Zeno behaviours for these classes
of automata.

Assume that we are given an automaton A. Recall the abstraction ExtraLU . This
abstraction makes use of weak L bounds for every clock (cf. Definition 3.11). If all clocks
that are checked for x ≤ 0 have a guard of the form x ≥ c then the weak abstraction
coincides with ExtraLU . Notice that this is particularly the case for Timed Automata that
do not have zero checks (i.e. guards like x ≤ 0). Most models of “real systems” do not have
such guards.

For the abstraction ExtraLU , the abstraction makes use of weak U bounds (cf. Defini-
tion 4.10). Notice that if all clocks that are checked for a lower bound guard are also checked
for an upper bound then the two abstractions coincide. So, the wide class of systems where
each clock is both bounded from above (i.e. x ≤ c) and from below (i.e. x ≥ c′) have
polynomial-time detection of Zeno runs, even using ExtraLU and Extra

+
LU .

6. Pspace-Completeness of (non-)Zeno Run Detection with Input A
In the previous sections, we have characterized the complexity of finding (non-)Zeno runs
given an automaton A and an abstract zone graph ZGa(A). We now show that in the
classical setting, where automaton A is the only input, the two problems turn out to be
harder. We prove the following theorem.

Theorem 6.1. Given an automaton A, deciding whether there exists a non-Zeno run is
Pspace-complete. Similarly for deciding if there exists a Zeno run.

Our proof follows the same lines as the proof of Pspace-completeness of the emptiness
problem for timed automata [1, 8].

Pspace-membership

In Theorems 3.10 and 4.9 we have proved that given A and ZGLU (A), there is a non-
deterministic polynomial algorithm for NZPLU and ZP

LU . Essentially both the algorithms
do the following. They begin by non-deterministically guessing a node (q, Z) of ZGLU (A)
and augmenting it with a guessed subset of clocks S ⊆ X to give the node (q, Z, S). Starting
from this node, the algorithms construct a cycle of ZGLU (A) containing (q, Z) and satisfying
certain constraints specified by this newly augmented component:

(q, Z, S) ⇒t1 (q1, Z1, S1) ⇒t2 . . . ⇒tn (qn, Zn, Sn) ⇒t (q, Z, S′)
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Since Z can be represented in space O(|X|2) using a DBM, nodes of the form (q, Z, S) can
be represented in space polynomial in the size of A. Note that each integer in the (LU-
abstracted) zones Z that we consider is less than the maximum constant occuring in A. To
find the above cycle, it is enough to maintain the initially guessed node (q, Z, S) and the
current node whose successor has to be computed. Clearly, the non-deterministic algorithm
needs space that is polynomial in the size of the input A. By Savitch’s theorem, this shows
that deciding if a timed automaton has a non-Zeno run, or dually a Zeno run, is in Pspace.

Pspace-hardness

The problem of deciding if a deterministic Linear Bounded Automaton1 (LBA) B accepts
a word w is known to be Pspace-complete [15]. We reduce the acceptance problem for
deterministic LBAs to the problem of deciding if a timed automaton has a Zeno or a non-
Zeno run.

Let B be a deterministic LBA and let w be a finite word on the input alphabet of
B. Without loss of generality, we can assume that B has a single accepting state qF from
which there are no outgoing transitions. We also assume that the tape alphabet of B is
Γ = {1, . . . , k − 1}. Let n be the length of the input word w (hence the size of the tape of
B).

We build a timed automaton A that reads the sequence σ of configurations of B on
input w encoded as:

γ01γ
0
2 · · · γ0n k γ11γ

1
2 · · · γ1n k · · · k γi1γ

i
2 · · · γin k · · ·

where:

• γ01γ
0
2 · · · γ0n is the word w, which is the initial content in the tape;

• γi1γ
i
2 · · · γin is the content in the tape after the first i transitions of B.

For every word w, there is a unique encoding σ as B is deterministic. Observe that σ is a
sequence of integers in 1, . . . , k and k acts as a separator between successive configurations.
The automaton A that we construct below accepts the sequence σ iff B accepts w.

Call γi1γ
i
2 · · · γin as the ith block. Each block i can be mapped to a position pi ∈ {1, . . . , n}

which represents the position of the tape head after the ith transition. The position p0 is
the initial position of the tape head which is 1. Similarly, each block i can be mapped to a
state qi of the the LBA B representing the state of B after the first i transitions.

We construct the automaton A as follows.

States. The states of the automaton encode the state of B and the position of the tape
head. So each state of the automaton is of the form (q, p) where q is a state of B and
p ∈ {1, . . . , n} is a position of the tape head. There is an extra auxiliary state (qinit, 0) to
read the initial block of σ which is the word w itself. The goal is to make the automaton
come to (qi, pi) after reading the first i blocks:

γ01γ
0
2 · · · γ0n k

︸ ︷︷ ︸

(qinit,0)

γ11γ
1
2 · · · γ1n k

︸ ︷︷ ︸

(q0,p0)

· · · k γi1γ
i
2 · · · γin k

︸ ︷︷ ︸

(qi−1,pi−1)

γi+1
1 γi+1

2 · · · γi+1
n k

︸ ︷︷ ︸

(qi,pi)

· · ·

1Linear Bounded Automata are Turing Machines with tape bounded by the length of the input word.
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The initial block is read in the initial state (qinit, 0) after which the automaton moves
to (q0, p0). In general, after reading block i, the automaton should move to (qi, pi) which
represents the state qi of B and the position pi of the tape head at the time of taking the
ith transition. While reading the i + 1th block from state (qi, pi) the automaton has to
check if the symbol at position pi of the block corresponds to the modification of the i+1th

transition of B which is of the form (qi, γ, γ
′,∆, qi+1).

Clocks. We intend to make the automaton A spend k+1 time units at each symbol. This
is facilitated by a clock x. Spending k + 1 time units will also help us to recognize the
current symbol which is a number between 1 and k. To this regard, to read a symbol s ∈ σ,
we use a transition with guard (x = s) followed by a transition with guard (x = k + 1)
that resets x. As reading a symbol requires (k+1) time units, reading a tape configuration
(followed by separator symbol k) takes (n + 1).(k + 1) time units.

To store the currently read symbol, we introduce a clock xj for each cell j of the tape.
If the currently read symbol is γij , then clock xj is reset on the transition with guard x = γij .

Hence, when the symbol γi+1
j is read, the previous content of the cell j, given by the symbol

γij , is remembered in xj by the value (n+1).(k+1)− γij + γi+1
j . This is illustrated in (6.1).

· · ·

γi
j t.u.

︷ ︸︸ ︷

(x=γi
j),{xj}−−−−−−−→ (x=k+1),{x}−−−−−−−−→ · · ·

︸ ︷︷ ︸

(n+1)·(k+1) time units

γi+1

j t.u.
︷ ︸︸ ︷

(x=γi+1

j ),{xj}−−−−−−−−−→ (x=k+1),{x}−−−−−−−−→ · · · (6.1)

Transitions. Consider a state (q, p) of A. For each transition (q, γ, γ′,∆, q′) of B, there is
a sequence of transitions in A that reads a block and does the following:

• ensures that the pth symbol corresponds to the modification of the pth tape cell forced by
this transition,

• ensures that all other symbols are left unchanged corresponding to all other cells being
unchanged,

• moves to state (q′, p+∆) after reading the block.

Moreover, the cells have to be read in the right order, that is, cell 1 should be read followed
by cell 2, etc. Recall that xj is the clock associated with every cell. For every j 6= p, we
check if xj = (n + 1).(k + 1) and for j = p we check if xj = (n + 1).(k + 1)− γ + γ′. This
will ensure the first two conditions above and will also ensure that the cells are read in the
correct succession.

The complete widget for transition (q, γ, γ′,∆, q′) is depicted in Figure 14. There is
one such widget in A for each state (q, p) such that p+∆ is a valid position (i.e. p+∆ ∈
{1, . . . , n}).

Initialization. We need to read the word w from state (qinit, 0) and assign the initial value
of the clocks x1, . . . , xn to w1, . . . , wn where wj represents the jth symbol of w. As w is
given as an input, we can easily add transitions from (qinit, 0) to ensure this and jump to
(q0, 1).

Observe that since B is deterministic, A is also deterministic. Furthermore, A is time-
deterministic as all the guards are equalities. Hence, A has a single run given the word
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q, p

•

•

• q′, p+∆

x = 1, . . . , k − 1
xj = (n+ 1).(k + 1), j 6= p, n

{xj}
x = k + 1

{x}

x = γ′

xp = (n+ 1).(k + 1)− γ + γ′

{xp}

x = k + 1
{x}

x = k & xn = (n+ 1).(k + 1)

{xn}

x = k + 1

{x}

Figure 14: Widget for transition (q, γ, γ′,∆, q′) on state (q, p).

w. Furthermore, if B does not terminate on w, the corresponding run of A is infinite and
non-Zeno.

Recall that qF is the sole accepting state of B and there are no transitions outgoing
from qF . From the construction described above, one easily gets the following theorem:

Theorem 6.2. A reaches a state (qF , p) iff B reaches qF on input w. The size of A is
polynomial in the size of B and w.

Existence of a Non-Zeno Run. We show that an algorithm for deciding if A has a non-Zeno
run yields an algorithm to decide if B accepts w. This algorithms has two phases.

In the first phase, it determines if A has a non-Zeno run:

• if the answer is yes, we can conclude that B does not accept w. Indeed, if A has a non-
Zeno run, then it does not reach (qF , p) for any p as the run is infinite (recall qF is a sink
state by hypothesis), hence neither does B reach qF ;

• if the answer is no, we cannot conclude. We only gain information that A has no infinite
run, but it may stop in a state (qF , p) as well as in a non-accepting state.

In the second phase, we transform A into A′ by adding a loop on all (qF , p) with guard
(x ≥ 1) and that resets x. Now, if the run of A′ is infinite, then it visits some (qF , p).
Furthermore, it is the only non-Zeno run in A′ as we know from the first phase that A has
no infinite run. We now ask if A′ has a non-Zeno run:

• if the answer is yes, we can conclude that B accepts w;
• if the answer is no, the run of A′ is finite and does not reach any (qF , p). We can conclude
that B does not accept w.

Existence of a Zeno Run. Now, we show that an algorithm that decides if A has a Zeno
run yields an algorithm to decide if B accepts w. Recall that A is deterministic: it has a
unique run and if that run is infinite, then it is non-Zeno.

We transform A into A′ by adding a loop on all states (qF , p) with guard (x ≤ 0). Then
we ask if A′ has a Zeno run:

• if the answer is yes, then some (qF , p) has to be reachable, hence B reaches qF and accepts
w;

• if the answer is no, then no (qF , p) is reachable, and B does not accept w.
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7. Conclusion

We have shown a striking fact that the problem of deciding existence of Zeno or non-
Zeno behaviours from abstract zone graphs depends heavily on the abstractions, to the
extent that the problem changes from being polynomial to becoming NP-complete as the
abstractions get coarser. Of course, it is but natural that checking for Zeno/non-Zeno
behaviours becomes difficult when the abstraction gets coarser, as lesser information is
maintained. However, the fact this difficulty ranges from a low polynomial to NP-hardness
is surprising.

We have proved NP-completeness for the coarse abstractions ExtraLU and Extra
+
LU . In

contrast, the fundamental problems of finding accepting runs for finitary accepting condi-
tions (reachability), and for Büchi accepting conditions, over abstract zone graphs have a
mere linear complexity, independent of the abstraction. As a consequence of the difficulty
of detecting non-Zeno runs, the Büchi emptiness problem which consists in finding a run
that is both accepting and non-Zeno is NP-complete for abstractions ExtraLU and Extra

+
LU .

On the positive side, from our study on the conditions for an abstraction to give a
polynomial solution, we see that a small modification of the LU-extrapolation works. We
have defined two weaker abstractions: ExtraLU for detecting non-Zeno runs and ExtraLU for

detecting Zeno runs. The weak bounds L and U can also be used with Extra
+
LU to achieve

similar results. Despite leading to a polynomial solution for checking Zeno or non-Zeno
behaviours from abstract zone graphs, these abstractions transfer the complexity to the
input: they could lead to exponentially bigger abstract zone graphs themselves. However,
for a fairly large class of automata described in the previous section, we see that this is not
the case as the weak abstractions coincide with ExtraLU .

While working with abstract zone graphs, coarse abstractions (and hence small abstract
zone graphs) are essential to handle big models of timed automata. These, as we have seen,
work against the Zenoness questions in the general case. Our results therefore provide a
theoretical motivation to look for cheaper substitutes to the notion of Zenoness.

All the abstractions we have considered are convex abstractions. However, there also
exist non-convex abstractions [5, 3] that are known to be coarser that the convex ones.
Since non-convex sets are particularly difficult to manipulate, only the convex abstractions
have been considered for implementation. Recently, new algorithms have been introduced
to solve the reachability problem efficiently using non-convex abstractions [11, 13]. Future
work includes adaptation of these algorithms to the detection of (non-)Zeno behaviors.
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efficiently. Formal Methods in System Design, 26(3):267–292, 2005.
[21] Farn Wang. REDLIB for the formal verification of embedded systems. In ISoLA, pages 341–346. IEEE,

2006.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany


	Introduction
	Related work
	Organization of the paper

	1. Zeno-related Problems for Timed Automata
	1.1. Timed automata
	1.2. Symbolic semantics
	1.3. Abstract symbolic semantics
	1.4. Bounds and finite abstractions
	1.5. Zenoness and non-Zenoness problems

	2. Non-Zenoness is NP-hard for LU-extrapolations
	Automaton ANZphi

	3. Finding non-Zeno runs
	3.1. Guessing zone graph GZGabs(Aa)
	3.2. Reduced guessing zone graph RGZGabs(Aa)
	3.3. Polynomial algorithms for NZPabs
	3.4. Modified LU-extrapolations for polynomial NZPabs

	4. The Zenoness problem
	4.1. Reducing 3SAT to ZPabs with abstraction ExtraLU
	4.2. Finding Zeno paths
	4.3. Weakening the U bounds

	5. Discussion on LU-extrapolations
	5.1. Optimization
	5.2. How weak are the weak LU-extrapolations

	6. Pspace-Completeness of (non-)Zeno Run Detection with Input Aa
	Pspace-membership
	Pspace-hardness
	States.
	Clocks.
	Transitions.
	Initialization

	7. Conclusion
	References

