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Abstract. We investigate conditions under which a co-computably enumerable set in a
computable metric space is computable. Using higher-dimensional chains and spherical
chains we prove that in each computable metric space which is locally computable each
co-computably enumerable sphere is computable and each co-c.e. cell with co-c.e. boundary
sphere is computable.

1. Introduction

A closed subset of Rm is said to be computable if it can be effectively approximated by
a finite set of points with rational coordinates with arbitrary given precision on arbitrary
given bounded region of Rm. A closed subset of Rm is said to be co-computable enumerable
(co-c.e.) if its complement can be effectively covered by open balls. Each computable set is
co-c.e. On the other hand, there exist co-c.e. sets which are not computable. In fact, while
each nonempty computable set contains computable points, there exists a nonempty co-c.e.
set which contains no computable points ([9]). Although the implication

S co-computably enumerable ⇒ S computable (1.1)

does not hold in general, there are certain conditions under which it does hold. The following
result has been proved in [7]:

(i) if S ⊆ Rm is homeomorphic to Sn, where Sn ⊆ Rn+1 is the unit sphere, then (1.1)
holds;

(ii) if S ⊆ Rm is such that there exists a homeomorphism f : Bn → S, where Bn ⊆ Rn is
the unit ball, such that f(Sn−1) is a co-c.e. set, then (1.1) holds.

In the case n = 1, i.e. in the case when S is a topological circle or when S is a co-c.e. arc with
computable endpoints, the preceding result has been generalized in [5] to computable metric
spaces with the effective covering property and compact closed balls. Furthermore, by [6],
the assumption of the effective covering property and compact closed balls can be replaced
here by the weaker assumption that a computable metric space is locally computable.

In this paper we prove that this result holds for every m ≥ 1, i.e. we prove that if
(X, d, α) is a computable metric space which is locally computable, then

1998 ACM Subject Classification: F.1.1, F.4.1, G.0.
Key words and phrases: computable metric space, computable set, co-c.e. set, n-chain, spherical n−chain.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-7 (3:05) 2011
c© Z. Iljazović
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(i) if S is a co-c.e. set in (X, d, α) homeomorphic to Sn, then S is computable in (X, d, α);
(ii) if f : Bn → S is a homeomorphism, where S is co-c.e. in (X, d, α), such that f(Sn−1)

is also co-c.e., then S is computable.

In order to prove this, we use techniques similar to those in [5]. In Section 3 we examine
the topological side of the problem. We define the notions of n−chain and spherical n−chain
in a metric space. These notions play the same role as the notions of a chain and a circular
chain play in the proof of the main results of [5]. However, the higher-dimensional aspect
of the problem will require some deeper topological facts and we will rely here on a result
proved in [4]. In Section 4 we include computability into consideration and we prove the
main results of the paper: Theorem 4.8 and Theorem 4.9.

2. Preliminaries

If X is a set, let P(X) denote the set of all subsets of X.
For m ∈ N let Nm = {0, . . . ,m}. For n ≥ 1 let

Nnm = {(x1, . . . , xn) | x1, . . . , xn ∈ Nm}.
We say that a function Φ : Nk → P(Nn) is computable if the function Φ : Nk+n → N

defined by
Φ(x, y) = χΦ(x)(y),

x ∈ Nk, y ∈ Nn is computable (i.e. recursive). Here χS : Nn → {0, 1} denotes the character-
istic function of S ⊆ Nn. A function Φ : Nk → P(Nn) is said to be computably bounded
if there exists a computable function ϕ : Nk → N such that Φ(x) ⊆ Nnϕ(x), for all x ∈ Nk.

We say that a function Φ : Nk → P(Nn) is c.c.b. if Φ is computable and computably
bounded.

Proposition 2.1.

(1) If Φ,Ψ : Nk → P(Nn) are c.c.b. functions, then the sets {x ∈ Nk | Φ(x) = Ψ(x)} and
{x ∈ Nk | Φ(x) ⊆ Ψ(x)} are decidable.

(2) Let Φ : Nk → P(Nn) and Ψ : Nn → P(Nm) be c.c.b. functions. Let Λ : Nk → P(Nm) be
defined by

Λ(x) =
⋃

z∈Φ(x)

Ψ(z),

x ∈ Nk. Then Λ is a c.c.b. function.
(3) Let Φ : Nk → P(Nn) be c.c.b. and let T ⊆ Nn be c.e. Then the set S = {x ∈ Nk |

Φ(x) ⊆ T} is c.e.

A function F : Nk+1 → Q is called computable if there exist computable functions a, b, c :
Nk+1 → N such that

F (x) = (−1)c(x) a(x)

b(x) + 1

for each x ∈ Nk+1. A number x ∈ R is said to be computable if there exists a computable
function g : N→ Q such that |x− g(i)| < 2−i for each i ∈ N.

By a computable function Nk → R we mean a function f : Nk → R for which there
exists a computable function F : Nk+1 → Q such that

|f(x)− F (x, i)| < 2−i
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for all x ∈ Nk and i ∈ N.
In the following proposition we state some elementary facts about computable functions

Nk → R.

Proposition 2.2.

(1) If f, g : Nk → R are computable, then f + g, f − g : Nk → R are computable.
(2) If f : Nk → R and F : Nk+1 → R are functions such that F is computable and
|f(x)− F (x, i)| < 2−i, ∀x ∈ Nk, ∀i ∈ N, then f is computable.

(3) If f : Nn+1 → R and ϕ : N→ N are computable functions, then the function g : N→ R
defined by

g(l) = max
0≤j1,...,jn≤ϕ(l)

f(l, j1, . . . , jn)

is computable.
(4) If f, g : Nk → R are computable functions, then the set {x ∈ Nk | f(x) > g(x)} is c.e.

A tuple (X, d, α) is said to be a computable metric space if (X, d) is a metric space and
α : N → X is a sequence dense in (X, d) (i.e. a sequence which range is dense in (X, d))
such that the function N2 → R,

(i, j) 7→ d(αi, αj)

is computable (we use notation α = (αi)).
If (X, d, α) is a computable metric space, then a sequence (xi) in X is said to be

computable in (X, d, α) if there exists a computable function F : N2 → N such that

d(xi, αF (i,k)) < 2−k

for all i, k ∈ N. A point a ∈ X is said to be computable in (X, d, α) if the constant
sequence a, a, . . . is computable.

Let (X, d, α) be a computable metric space. Let q : N → Q be some fixed computable
function whose image is Q∩〈0,∞〉 and let τ, τ ′ : N→ N be some fixed computable functions
such that {(τ(i), τ ′(i)) | i ∈ N} = N2. For i ∈ N we define

Ii = B(ατ(i), qτ ′(i)), Îi = B̂(ατ(i), qτ ′(i)).

Here, for x ∈ X and r > 0, we denote by B(x, r) the open ball of radius r centered at

x and by B̂(x, r) the corresponding closed ball, i.e. B(x, r) = {y ∈ X | d(x, y) < r},
B̂(x, r) = {y ∈ X | d(x, y) ≤ r}. For A ⊆ X we will denote the closure of A by A.

As a consequence of Proposition 2.2 we get the following corollary.

Corollary 2.3. Let (X, d, α) be a computable metric space. The set {(k, i) ∈ N2 | αk ∈ Ii}
is c.e.

A closed subset S of (X, d) is said to be computably enumerable in (X, d, α) if

{i ∈ N | S ∩ Ii 6= ∅}
is a c.e. subset of N. A closed subset S is said to be co-computably enumerable in
(X, d, α) if there exists a computable function f : N→ N such that

X \ S =
⋃
i∈N

If(i).
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It is easy to see that these definitions do not depend on functions τ, τ ′ and q. We say that
S is a computable set in (X, d, α) if S is both computably enumerable and co-computably
enumerable ([2, 10]).

Let σ : N2 → N and η : N→ N be some fixed computable functions with the following
property: {(σ(j, 0), . . . , σ(j, η(j))) | j ∈ N} is the set of all finite sequences in N excluding
the empty sequence, i.e. the set {(a0, . . . , an) | n ∈ N, a0, . . . , an ∈ N}. Such functions, for
instance, can be defined using the Cantor pairing function. We use the following notation:
(j)i instead of σ(j, i) and j instead of η(j). Hence

{((j)0, . . . , (j)j) | j ∈ N}
is the set of all finite sequences in N. For j ∈ N let [j] be defined by

[j] = {(j)i | 0 ≤ i ≤ j}. (2.1)

Note that the function N→ P(N), j 7→ [j], is c.c.b.
Let (X, d, α) be a computable metric space. For j ∈ N we define

Jj =
⋃
i∈[j]

Ii, Ĵj =
⋃
i∈[j]

Îi.

The sets Jj represent finite unions of rational balls and the sets Ĵj finite unions of closed
rational balls.

Corollary 2.4. Let (X, d, α) be a computable metric space. The set {(k, j) ∈ N2 | αk ∈ Jj}
is c.e.

Proof. We have αk ∈ Jj if and only if there exists i ∈ N such that i ≤ j and αk ∈ I(j)i and
the claim follows from Corollary 2.3.

A computable metric space (X, d, α) has the effective covering property if the set

{(w, j) ∈ N2 | Îw ⊆ Jj}
is computably enumerable ([2]). It is not hard to see that this definition does not depend
on the choice of the functions q, τ, τ ′, σ, η which are necessary in the definitions of sets Iw
and Jj .

For example, if α : N→ Rn is a computable function (in the sense that the component
functions of α are computable) whose image is dense in Rn and d is the Euclidean metric
on R, then (Rn, d, α) is a computable metric space. A sequence (xi) is computable in this
computable metric space if and only if (xi) is a computable sequence in Rn and (x1, . . . , xn) ∈
Rn is a computable point in this space if and only if x1,. . . ,xn are computable numbers.
This computable metric space has the effective covering property (see e.g. [5]).

If (X, d, α) is a computable metric space, then a compact set K in (X, d) is said to
be computably compact in (X, d, α) if K is computably enumerable in (X, d, α) and if
the set {j ∈ N | K ⊆ Jj} is c.e. ([1]). A computable metric space (X, d, α) is locally
computable ([1]) if for each compact set A in (X, d) there exists a computably compact
set K in (X, d, α) such that A ⊆ K.

Let (X, d, α) be a computable metric space. A computable metric space (Y, d′, β) is said
to be a subspace of (X, d, α) if Y ⊆ X, d′ : Y ×Y → R is the restriction of d : X ×X → R
and β is a computable sequence in (X, d, α).

The proofs of the following propositions can be found in [6].
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Proposition 2.5. Let (Y, d′, β) be a subspace of a computable metric space (X, d, α) and
let S ⊆ Y .

(i) If S is co-c.e. in (X, d, α), then S is co-c.e. in (Y, d′, β).
(ii) If S is c.e. in (X, d, α), then S is c.e. in (Y, d′, β). Conversely, if S is closed in (X, d)

and c.e. in (Y, d′, β), then S is c.e. in (X, d, α).

Proposition 2.6. Let (X, d, α) be a computable metric space and let K be a nonempty
compact set in (X, d). Then K is computably compact in (X, d, α) if and only if there exist
a metric d′ on K and a sequence β in K such that (K, d′, β) is a subspace of (X, d, α) and
(K, d′, β) has the effective covering property.

3. n−chains and spherical n−chains

For n ≥ 1 let
Bn = {x ∈ Rn | ‖x‖ ≤ 1}

and
Sn−1 = {x ∈ Rn | ‖x‖ = 1}.

A topological space X is called an n−cell if it is homeomorphic to Bn. We say that X is
an n−sphere if it is homeomorphic to Sn.

By the boundary sphere of an n−cell E we mean the set f(Sn−1), where f : Bn → E
is a homeomorphism. (Note that the boundary sphere of E, when E is a subspace of
some topological space X, need not be equal to the topological boundary of E in X.)
The definition of the boundary sphere does not depend on a particular homeomorphism
f : Bn → E. Namely, this a consequence of the fact that each homeomorphism Bn → Bn

maps Sn−1 onto Sn−1 (or equivalently Bn \ Sn−1 onto Bn \ Sn−1) which follows from the
Invariance of domain theorem (see [8]): if h : U → Rn is continuous and injective, where U
is an open subset of Rn, then h(U) is open.

The result that we want to prove can now be restated in this way: if (X, d, α) is a
computable metric space which is locally computable, then

(1) each co-c.e. n−sphere is computable;
(2) each co-c.e. n−cell whose boundary sphere is co-c.e. is computable.

Let us first note that it is enough to prove this result in the case when (X, d, α) is
a computable metric space which has the effective covering property and compact closed
balls. Namely, suppose that the result holds for such computable metric spaces and let
(X, d, α) be a computable metric space which is locally computable. Let S ⊆ X be a co-c.e.
n-sphere. Then S ⊆ K, where K is computably compact in (X, d, α). By Proposition 2.6
there exist d′ and β such that (K, d′, β) is a subspace of (X, d, α) and such that (K, d′, β) has
the effective covering property. By Proposition 2.5(i) S is co-c.e. in (K, d′, β) and therefore
S is computable in (K, d′, β). Proposition 2.5(ii) implies now that S is c.e. in (X, d, α),
hence S is computable in (X, d, α). In the same way we get that each co-c.e. n−cell in
(X, d, α) whose boundary sphere is co-c.e. is computable.

Let us observe how the statement (2) was proved in [5] in the case n = 1. Let E be a
co-c.e. arc with computable endpoints a and b. For each ε > 0 there exists a finite sequence
of open sets C0, . . . , Cm such that

(i) E ⊆ C0 ∪ · · · ∪ Cm;
(ii) a ∈ C0, b ∈ Cm;
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(iii) Ci ∩ Cj = ∅ for all i, j such that |i− j| > 1;
(iv) each Ci is the finite union of rational balls, i.e. it is equal to some Jj ;
(v) diamCi < ε,

where diamCi denotes the diameter of the set Ci (see Figure 1). Since S is co-c.e. and
(X, d, α) has the effective covering property and compact closed balls, it is possible to find
effectively for each k ∈ N sets C0, . . . , Cm with properties (i)–(v), where ε = 2−k.

Figure 1. Figure 2.

However, this means that we can effectively approximate S, namely properties (i)–(v) imply
that C0∪· · ·∪Cm is a 2−k−approximation of S in the following sense: for each x ∈ E there
exists y ∈ C0 ∪ · · · ∪Cm such that d(x, y) < 2−k and for each y ∈ C0 ∪ · · · ∪Cm there exists
x ∈ E such that d(y, x) < 2−k. Using this fact we can prove that E is computable.

Why properties (i)–(v) imply that C0 ∪ · · · ∪ Cm is an 2−k−approximation of S? The
fact that for each x ∈ E there exists y ∈ C0 ∪ · · · ∪ Cm such that d(x, y) < 2−k follows
trivially from (i). On the other hand, the fact that for each y ∈ C0 ∪ · · · ∪ Cm there exists
x ∈ E such that d(y, x) < 2−k can be easily deduced from (v) and the fact that

Ci ∩ S 6= ∅ for each i ∈ {0, . . . ,m}. (3.1)

But why (3.1) holds? If we assume Ci ∩ E = ∅ for some i ∈ {0, . . . ,m}, then 0 < i < m
and C0 ∪ · · · ∪Ci−1 and Ci+1 ∪ · · · ∪Cm are two disjoint open sets (Figure 2.) which cover
E and each of them intersects E which contradicts the fact that E is connected.

Suppose now that E is a 2−cell which is co-c.e. and whose boundary sphere is co-c.e.
In order to prove that E is computable, we would like to proceed similarly as in the case
of an arc. Naturally, in this case we are trying to find sets Ci,j , 0 ≤ i, j ≤ m, which satisfy
properties similar to properties (i)–(v) with basic difference that instead of (iii) we require

Ci,j ∩ Ci′,j′ = ∅ if |i− i′| > 1 or |j − j′| > 1. (3.2)



CO-C.E. SPHERES AND CELLS IN COMPUTABLE METRIC SPACES 7

Figure 3. The sets Ci,j cover the 2-cell whose boundary sphere is the red curve

The main question here is what other properties we should require so that those properties
imply

Ci,j ∩ E 6= ∅ for all i, j ∈ {0, . . . ,m}; (3.3)

the fact (3.3) is important since we want to conclude that
⋃
i,j Ci,j approximates E in the

same way as in the case of an arc.
If we suppose that i0 and j0 are such that 0 < i0 < m, 0 < j0 < m and such that

Ci0,j0 ∩ E = ∅, then we cannot conclude in general that E is covered by two disjoint open
sets as in the case of an arc, but we can define the sets

U =
⋃
i<i0

⋃
j

Ci,j , U
′ =

⋃
i>i0

⋃
j

Ci,j ,

V =
⋃
j<j0

⋃
i

Ci,j , V
′ =

⋃
j>j0

⋃
i

Ci,j ,

and then these sets cover E and we have U ∩ U ′ = ∅, V ∩ V ′ = ∅. (See Figure 4. The
missing set is Ci0,j0 . The vertical blue sets are U and U ′, the horizontal blue sets are V and
V ′.)

Figure 4.

Since E is homeomorphic to I2 = [0, 1] × [0, 1], this raises the following question: is it
possible to cover I2 by open sets U , U ′, V and V ′ so that U ∩ U ′ = ∅, V ∩ V ′ = ∅ and so
that (see Figure 5.)

{0} × [0, 1] ⊆ U, {1} × [0, 1] ⊆ U ′, [0, 1]× {0} ⊆ V, [0, 1]× {1} ⊆ V ′?
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Figure 5.

Let X be a topological space and let A, B, L be subsets of X. We say that L is a partition
between A and B (see [4]) if there exist open sets U and W in X such that

A ⊆ U, B ⊆W, U ∩W = ∅ and X \ L = U ∪W.
For n ≥ 1 let

In = {(x1, . . . , xn) ∈ Rn | x1, . . . , xn ∈ [0, 1]}.
For n ≥ 1 and i ∈ {1, . . . , n} let

An,0i = {(x1, . . . , xn) ∈ In | xi = 0},

An,1i = {(x1, . . . , xn) ∈ In | xi = 1}.
When the context is clear, we write A0

i and A1
i instead of An,0i and An,1i . Let ∂In denote

the boundary of In in Rn, hence

∂In = A0
1 ∪ · · · ∪A0

n ∪A1
1 ∪ · · · ∪A1

n.

It is a well known fact that there is a homeomorphism h : Bn → In such that h(Sn−1) = ∂In.
Hence if E is an n−cell, then there is a homeomorphism f : In → E. In this case f(∂In) is
the boundary sphere of E.

The following theorem can be found in [4] (Theorem 1.8.1).

Theorem 3.1. Let n ≥ 1. If Li is a partition between A0
i and A1

i in In for i ∈ {1, . . . , n},
then

⋂n
i=1 Li 6= ∅.

Corollary 3.2. Let n ≥ 1. Suppose U1, . . . , Un and V1, . . . , Vn are open subsets of In such
that

Ui ∩A1
i = ∅, Vi ∩A0

i = ∅ and Ui ∩ Vi = ∅
for all i ∈ {1, . . . , n}. Then In 6= U1 ∪ · · · ∪ Un ∪ V1 ∪ · · · ∪ Vn.

Proof. Suppose the opposite. Then {U1, . . . , Un, V1, . . . , Vn} is an open cover of In and let
λ be its Lebesgue number. We can certainly find finitely many closed subsets B1, . . . , Bl of
In whose union is In and each of which has the diameter less than λ. Then each of the sets
B1, . . . , Bl is contained in some of the sets U1, . . . , Un, V1, . . . , Vn.

For i ∈ {1, . . . , n} we define F 0
i to be the union of A0

i and all sets B1, . . . , Bl which are
subsets of Ui and F 1

i to be the union of A1
i all B1, . . . , Bl which are subsets of Vi. Then

F 0
1 , . . . , F

0
n , F

1
1 , . . . , F

1
n are closed subsets of In, their union is In and for each i ∈ {1, . . . , n}

we have
A0
i ⊆ F 0

i , A
1
i ⊆ F 1

i and F 0
i ∩ F 1

i = ∅.
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Let i ∈ {1, . . . , n}. Since F 0
i and F 1

i are closed and disjoint, there exist open sets W 0
i and

W 1
i in In which are disjoint and such that F 0

i ⊆W 0
i , F 1

i ⊆W 1
i . Let Li = In \ (W 0

i ∪W 1
i ).

Then Li is a partition between A0
i and A1

i . We have
n⋂
i=1

Li = In \
n⋃
i=1

(W 0
i ∪W 1

i ) ⊆ In \
n⋃
i=1

(F 0
i ∪ F 1

i ) = ∅,

which is impossible by Theorem 3.1.

Corollary 3.3. Let n ≥ 2. Suppose U1, . . . , Un−1 and V1, . . . , Vn−1 are open subsets of ∂In

such that

Ui ∩
(
An,1i ∩A

n,0
n

)
= ∅, Vi ∩

(
An,0i ∩A

n,0
n

)
= ∅ and Ui ∩ Vi = ∅

for all i ∈ {1, . . . , n − 1}. Let E be the union of all Aρi such that 1 ≤ i ≤ n, ρ ∈ {0, 1},
(i, ρ) 6= (n, 0), i.e.

E = An,01 ∪ · · · ∪An,0n−1 ∪A
n,1
1 ∪ · · · ∪An,1n .

Then E is not contained in the union U1 ∪ · · · ∪ Un−1 ∪ V1 ∪ · · · ∪ Vn−1.

Figure 6.

Proof. See Figure 6. (case n = 3): the left and right blue sets are U1 and U2 respectively,
and the left and right green sets are V1 and V2 respectively. In this figure E equals the
union of vertical faces of the cube and the upper face of the cube.

Let f : E → In−1 be defined by

f(x1, . . . , xn) =

(
1

2
+

1

2xn + 1

(
x1 −

1

2

)
, . . . ,

1

2
+

1

2xn + 1

(
xn−1 −

1

2

))
.

It is straightforward to check that f is bijective. Since E is compact and f clearly continuous,
f is a homeomorphism. For each i ∈ {1, .., n− 1} we have

f
(
An,0i ∩A

n,0
n

)
= An−1,0

i , f
(
An,1i ∩A

n,0
n

)
= An−1,1

i .

Suppose that E ⊆ U1 ∪ · · · ∪ Un−1 ∪ V1 ∪ · · · ∪ Vn−1. Then

In−1 = f(E ∩ U1) ∪ · · · ∪ f(E ∩ Un−1) ∪ f(E ∩ V1) ∪ · · · ∪ f(E ∩ Vn).

For each i ∈ {1, . . . , n− 1} the sets f(E ∩ Ui) and f(E ∩ Vi) are open in In−1, disjoint and

f(E ∩ Ui) ∩An−1,1
i = ∅, f(E ∩ Vi) ∩An−1,0

i = ∅.
This is impossible by Corollary 3.2.
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For i ∈ {1, . . . , n} let

∂0
i Nnm = {(x1, . . . , xn) ∈ Nnm | xi = 0}, ∂1

i Nnm = {(x1, . . . , xn) ∈ Nnm | xi = m}
and let

∂Nnm =

 ⋃
1≤i≤n

∂0
i Nnm

 ∪
 ⋃

1≤i≤n
∂1
i Nnm

 .

Let X be a set, n ≥ 1 and m ∈ N. A function

C : Nnm → P(X)

is called an n-chain in X (of length m) if

Ci1,...,in ∩ Cj1,...,jn = ∅ (3.4)

for all (i1, . . . , in), (j1, . . . , jn) ∈ Nnm such that |il − jl| > 1 for some l ∈ {1, . . . , n}. Here we
use Ci1,...,in to denote C(i1, . . . , in).

A spherical (n− 1)-chain in X (of length m) is a function

C : ∂Nnm → P(X)

such that (3.4) holds for all (i1, . . . , in), (j1, . . . , jn) ∈ ∂Nnm such that |il − jl| > 1 for some
l ∈ {1, . . . , n}.

Figure 7. A 2-chain and a spherical 1-chain

If C : Nnm → P(X) is a function, we define its boundary ∂C as the restriction of C
to ∂Nnm. For i ∈ {1, . . . , n} and ρ ∈ {0, 1} we define ∂ρi C as the restriction of C to ∂ρi Nnm.
Note: if C is an n-chain, then ∂C is a spherical (n− 1)-chain.

If C : ∂Nnm → P(X) is a function and i ∈ {1, . . . , n}, ρ ∈ {0, 1}, we also use ∂ρi C to
denote the restriction of the function C to ∂ρi Nnm.

If (X, d) is a metric space, then we say that an n−chain C = (Ci1,...,in)0≤i1,...,in≤m in
X is open if Ci1,...,in is an open set in (X, d) for all i1, . . . , in ∈ Nm. We similarly define
the notion of a compact n-chain in (X, d) and the notions of open spherical n-chain and
compact spherical n-chain.

In general, if A is a set and f : A→ P(X) a function, we will denote by
⋃
f the union⋃

a∈A f(a) and we will say that f covers S, where S ⊆ X, if S ⊆
⋃
f . If (X, d) is a metric

space and f(a) a nonempty bounded set for each a ∈ A, then we define mesh(f) as the
number

mesh(f) = max
a∈A

(diam f(a)) .

Let ε > 0. A (spherical) n-chain C in a metric space (X, d) is said to be a (spherical)
ε− n-chain if mesh(C) < ε.
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A function C : A→ P(X), where A ⊆ Nnm, is said to be ε−proper if for all (i1, . . . , in),
(j1, . . . , jn) ∈ A such that |i1 − j1| ≤ 1,. . . ,|in − jn| ≤ 1 there exist x ∈ Ci1,...,in and
y ∈ Cj1,...,jn such that d(x, y) < ε.

The proof of the following lemma is straightforward.

Lemma 3.4. Let (X, d) be a metric space, ε > 0 and A ⊆ Nnm. Let C,D : A → P(X)
be such that D(a) 6= ∅ and D(a) ⊆ C(a) for each a ∈ A. Suppose C is ε−proper and
mesh(C) < ε. Then D is 3ε−proper.

Lemma 3.5. Let (X, d) be a metric space and let K be a compact (spherical) n-chain of
length m in (X, d). Suppose U1, . . . , Uk are open sets. Then there exists an open (spherical)
n-chain C of length m in (X, d) such that Ka ⊆ Ca for all a ∈ Nnm and such that Ca ⊆ Ui
whenever i ∈ {1, . . . , k} is such that Ka ⊆ Ui. Moreover, if mesh(K) < r, we can choose C
so that mesh(C) < 2r.

Proof. If S ⊆ X and ε > 0 let

Sε =
⋃
s∈S

B(s, ε).

This is clearly an open set. If S is a compact set contained is some open set V , then there
exists ε > 0 such that Sε ⊆ V . Furthermore, if S and T are disjoint compact sets, then
there exists ε > 0 such that Sε ∩ Tε = ∅. It follows readily from this that there exists ε > 0
such that C : Nnm → P(X) (or C : ∂Nnm → P(X)) defined by Ca = (Ka)ε is a desired
n-chain (spherical n-chain).

Proposition 3.6. Let n ≥ 2. Suppose f : ∂In → S is a homeomorphism, where S is a
subspace of a metric space (X, d). Let Uρi , 1 ≤ i ≤ n, ρ ∈ {0, 1}, be open sets in (X, d) such
that

f(Aρi ) ⊆ U
ρ
i

for all i ∈ {1, . . . , n} and ρ ∈ {0, 1}. Then for each ε > 0 there exists an open spherical
ε− (n− 1)-chain C in (X, d) which is ε−proper, which covers S and such that

f(Aρi ) ⊆
⋃

(∂ρi C) ⊆ Uρi
for all i ∈ {1, . . . , n} and ρ ∈ {0, 1}.

Proof. For m ∈ N let Dm : Nnm → P(In) be defined by

Dm
i1,...,in =

[
i1

m+ 1
,
i1 + 1

m+ 1

]
× · · · ×

[
in

m+ 1
,
in + 1

m+ 1

]
.

Then Dm is a compact n−chain in In which covers In. Clearly for each ε > 0 there exists
m ∈ N such that mesh(Dm) < ε. Note that for all (i1, . . . , in), (j1, . . . , jn) ∈ Nnm such that
|i1 − j1| ≤ 1,. . . ,|in − jn| ≤ 1 we have

Dm
i1,...,in ∩D

m
j1,...,jn 6= ∅.

We easily conclude from this that for each ε > 0 there exists m ∈ N such that mesh(Dm) < ε
and such that Dm is ε−proper.

The boundary ∂Dm is a spherical (n− 1)-chain in In which covers ∂In.
For m ∈ N let Gm : ∂Nnm → P(∂In) be defined by

Gm(a) = (∂Dm)(a) ∩ ∂In.
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Then Gm is a compact spherical (n− 1)-chain in ∂In which covers ∂In, moreover

Aρi ⊆
⋃

(∂ρiG
m)

for all i ∈ {1, . . . , n} and ρ ∈ {0, 1}. Note that these sets need not be equal, however:

for each x ∈
⋃

(∂ρiG
m) there exists y ∈ Aρi such that d′(x, y) ≤ 1

m+ 1
, (3.5)

where d′ is the Euclidean metric on Rn. We also have that for each ε > 0 there exists m ∈ N
such that mesh(Gm) < ε and such that Gm is ε−proper.

For m ∈ N let Fm : ∂Nnm → P(S) be defined by

Fm(a) = f(Gm(a)).

Then Fm is a compact spherical (n− 1)-chain in S which covers S and such that

f(Aρi ) ⊆
⋃

(∂ρi F
m)

for all i ∈ {1, . . . , n} and ρ ∈ {0, 1}.

Figure 8. D3, ∂D3, G3 and F 3 (in the case n = 2)

The fact that f is uniformly continuous implies, together with (3.5), that for each ε > 0
there exists m ∈ N with the property that Fm is ε−proper, mesh(Fm) < ε and with the
property that for all i ∈ {1, . . . , n}, ρ ∈ {0, 1} and x ∈

⋃
(∂ρi F

m) there exists y ∈ f(Aρi )
such that d(x, y) < ε.

Let ε > 0. Using the fact that the sets Aρi are compact and Uρi are open, it is not hard
to conclude now that there exists m ∈ N such that Fm is ε−proper, mesh(Fm) < ε

2 and

f(Aρi ) ⊆
⋃

(∂ρi F
m) ⊆ Uρi

for all i ∈ {1, . . . , n} and ρ ∈ {0, 1}. Now we apply Lemma 3.5 to F and the sets Uρi and
we get an open spherical ε− (n− 1)-chain C in (X, d) which is ε−proper such that

f(Aρi ) ⊆
⋃

(∂ρi C) ⊆ Uρi
for all i ∈ {1, . . . , n} and ρ ∈ {0, 1}.

In the same way we prove the following proposition.

Proposition 3.7. Let n ≥ 1. Suppose f : In → E is a homeomorphism, where E is a
subspace of a metric space (X, d). Let Uρi , 1 ≤ i ≤ n, ρ ∈ {0, 1}, be open sets in (X, d) such
that

f(Aρi ) ⊆ U
ρ
i

for all i ∈ {1, . . . , n} and ρ ∈ {0, 1}. Then for each ε > 0 there exists an open ε− n-chain
C in (X, d) which is ε−proper, which covers E and such that

f(Aρi ) ⊆
⋃

(∂ρi C) ⊆ Uρi
for all i ∈ {1, . . . , n} and ρ ∈ {0, 1}.
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If (X, d) is a metric space, then for nonempty subsets S and T of X we denote the
number inf{d(x, y) | x ∈ S, y ∈ T} by d(S, T ).

The next proposition provides conditions under which a spherical (n−1)-chain approx-
imates an (n− 1)-sphere.

Proposition 3.8. Let f : ∂In → S be a homeomorphism, where S is a subspace of a metric
space (X, d). Let W ρ

i , 1 ≤ i ≤ n, ρ ∈ {0, 1}, be open sets in (X, d) such that W 0
i ∩W 1

i = ∅
for all i ∈ {1, . . . , n}. Let ε > 0 be such that

2ε < d(f(A0
i ), f(A1

i )) (3.6)

for each i ∈ {1, . . . , n}. Suppose C is an open spherical ε− (n− 1)-chain in (X, d) of length
m which is ε−proper, which covers S and suppose that

f(Aρi ) ⊆W
ρ
i ,
⋃

(∂ρi C) ⊆W ρ
i

for all i ∈ {1, . . . , n} and ρ ∈ {0, 1}. Then for each x ∈
⋃
C there exists y ∈ S such that

d(x, y) < 3ε.

Proof. It is enough to prove the following: for each (p1, . . . , pn) ∈ ∂Nnm with the property
that pk ∈ {0,m} for exactly one k ∈ {1, . . . , n} the set Cp1,...,pn intersects S. Namely,
if this holds, then for each (q1, . . . , qn) ∈ ∂Nnm there exists (p1, . . . , pn) ∈ ∂Nnm such that
|q1 − p1| ≤ 1, . . . , |qn − pn| ≤ 1 and such that Cp1,...,pn ∩ S 6= ∅. Since C is an ε− (n− 1)-
chain and ε−proper, we now easily get that for each x ∈

⋃
C there exists y ∈ S such that

d(x, y) < 3ε.
Suppose the opposite, that there exists (p1, . . . , pn) ∈ ∂Nnm such that pk ∈ {0,m} for

exactly one k ∈ {1, . . . , n} and such that Cp1,...,pn ∩ S = ∅. We may assume pn = m (all
other cases can be reduced to this one if we modify C and f by interchange of appropriate
coordinates). It follows 0 < p1 < m, . . . , 0 < pn−1 < m.

For i ∈ {1, . . . , n− 1} we define the set Ui as the union of all sets of the following form:

Cj1,...,ji−1,l,ji+1,...,jn−1,m, where l < pi; (3.7)

Cj1,...,ji−1,0,ji+1,...,jn ; (3.8)

Cj1,...,jn−1,0, where this set is such that it intersects f(A0
i ). (3.9)

Furthermore, let Vi be the union of all sets of the following form:

Cj1,...,ji−1,l,ji+1,...,jn−1,m, where l > pi; (3.10)

Cj1,...,ji−1,m,ji+1,...,jn ; (3.11)

Cj1,...,jn−1,0, where this set is such that it intersects f(A1
i ). (3.12)

Let i ∈ {1, . . . , n − 1}. The sets Ui and Vi are open and it is straightforward to check
that they are disjoint. (Figures 9. and 10. show C in case n = 3 and m = 5; the red set is
Cp1,p2,p3 , in this case C2,2,5, the blue sets in Figure 9. are U1 and V1, the blue sets in Figure
10. are U2 and V2. For example, note that in Figure 11. the black set is C3,0,2, the red set
is C5,0,1 and the blue set is C5,0,5.)
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Figure 9. Figure 10.

Figure 11.

We also have
Ui ∩ f(A1

i ∩A0
n) = ∅. (3.13)

Otherwise, the set f(A1
i ∩ A0

n) = f(A1
i ) ∩ f(A0

n) would intersect one of the sets in (3.7),
(3.8) or (3.9). The sets in (3.7) are contained in W 1

n which is disjoint with f(A0
n). The sets

in (3.8) are contained in W 0
i which is disjoint with f(A1

i ). Finally, f(A1
i ) cannot intersect

a set in (3.9) since (3.6) holds. In the same way we get

Vi ∩ f(A0
i ∩A0

n) = ∅. (3.14)

Let
Ω = U1 ∪ · · · ∪ Un−1 ∪ V1 ∪ · · · ∪ Vn−1.

Let i ∈ {1, . . . , n} and ρ ∈ {0, 1} such that (i, ρ) 6= (n, 0). We claim that

f(Aρi ) ⊆ Ω. (3.15)

Suppose that there exists x ∈ f(Aρi ) such that x /∈ Ω. Since C covers S, there exists
(j1, . . . , jn) ∈ ∂Nnm such that

x ∈ Cj1,...,jn .
We have (j1, . . . , jn) 6= (p1, . . . , pn) since Cp1,...,pn ∩S = ∅. So, if jn = m, then Cj1,...,jn must
be one of the sets in (3.7) or (3.10). But this is impossible since x /∈ Ω. So jn < m. Now,
if jn > 0, then Cj1,...,jn is one of the sets in (3.8) or (3.11), impossible. Therefore jn = 0.

We have Cj1,...,jn ∩ f(Aρi ) 6= ∅ and this also yields to contradiction. Namely, if i < n,
then Cj1,...,jn is one of the sets in (3.9) or (3.12). And if i = n, then ρ = 1 and

f(A1
n) ⊆W 1

n , Cj1,...,jn ⊆
⋃

(∂0
nC) ⊆W 0

n ,

which is impossible since W 0
n ∩W 1

n = ∅. Hence (3.15) holds.
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Let
E = A0

1 ∪ · · · ∪A0
n−1 ∪A1

1 ∪ · · · ∪A1
n.

For each i ∈ {1, . . . , n− 1} the sets f−1(Ui) and f−1(Vi) are open in ∂In, they are disjoint,
by (3.13) and (3.14)

f−1(Ui) ∩ (A1
i ∩A0

n) = ∅, f−1(Vi) ∩ (A0
i ∩A0

n) = ∅
and by (3.15)

E ⊆ f−1(U1) ∪ · · · ∪ f−1(Un−1) ∪ f−1(V1) ∪ · · · ∪ f−1(Vn−1).

This is impossible by Corollary 3.3.

The next proposition provides conditions under which an n-chain approximates an n-
cell.

Proposition 3.9. Let f : In → E be a homeomorphism, where E is a subspace of a metric
space (X, d). Suppose C is an open ε − n-chain in (X, d) of length m which is ε−proper,
which covers E and such that ∂C covers f(∂In) and suppose that W ρ

i , 1 ≤ i ≤ n, ρ ∈ {0, 1},
are open sets in (X, d) such that

2ε < d(W 0
i ,W

1
i ),

f(Aρi ) ⊆W
ρ
i and

⋃
(∂ρi C) ⊆W ρ

i

for all i ∈ {1, . . . , n} and ρ ∈ {0, 1}. Then for each x ∈
⋃
C there exists y ∈ E such that

d(x, y) < 7ε.

Proof. It is enough to prove that for each (p1, . . . , pn) ∈ Nnm with the property that 1 <
pk < m− 1 for each k ∈ {1, . . . , n} the set Cp1,...,pn intersects E. Why is it enough to prove
this? Suppose that this fact holds. Assume that m ≥ 4. Let x ∈

⋃
C. Then x ∈ Cq1,...,qn

for some (q1, . . . , qn) ∈ Nnm. For i ∈ {1, . . . , n} let

q′i =

 1 if qi = 0,
m− 1 if qi = m,
qi otherwise.

Then |q1− q′1| ≤ 1, . . . , |qn− q′n| ≤ 1 and 1 ≤ q′i ≤ m− 1 for each i ∈ {1, . . . , n}. Since C is
ε−proper, there exist x′ ∈ Cq1,...,qn and x′′ ∈ Cq′1,...,q′n such that d(x′, x′′) < ε. Now, let the
numbers p1, . . . , pn be defined by

pi =

 2 if q′i = 1,
m− 2 if q′i = m− 1,
q′i otherwise,

i ∈ {1, . . . , n}. We have |q′1 − p1| ≤ 1, . . . , |q′n − pn| ≤ 1| and therefore there exist
y′′ ∈ Cq′1,...,q′n and y′ ∈ Cp1,...,pn such that d(y′′, y′) < ε. Clearly 1 < pi < m − 1 for

each i ∈ {1, . . . , n} and therefore there exists y ∈ Cp1,...,pn ∩ E. Using the fact that the
diameters of the sets Cq1,...,qn , Cq′1,...,q′n and Cp1,...,pn are less than ε, we obtain

d(x, y) ≤ d(x, x′) + d(x′, x′′) + d(x′′, y′′) + d(y′′, y′) + d(y′, y) < 5ε.

If m ≤ 3, then for all (a1, . . . , an), (b1, . . . , bn) ∈ Nnm we have, for each i ∈ {1, . . . , n},
that ai, bi ∈ {0, . . . ,m} ⊆ {0, 1, 2, 3} and therefore there exist ci, di ∈ {0, . . . ,m} such that
|ai − ci| ≤ 1, |ci − di| ≤ 1, |di − bi| ≤ 1 which, together with the fact that C is ε−proper,
implies that there exist x ∈ Ca1,...,an , x′, y′ ∈ Cc1,...,cn , y′′, z′′ ∈ Cd1,...,dn and z ∈ Cb1,...,bn



16 Z. ILJAZOVIĆ

such that d(x, x′) < ε, d(y′, y′′) < ε and d(z′′, z) < ε. It follows d(x, z) < 5ε. This proves
that d(Ca, Cb) < 5ε for all a, b ∈ Nnm. Since E is nonempty and contained in

⋃
C, there

exists b ∈ Nnm such that Cb ∩E 6= ∅. It follows d(Ca, E) < 6ε for each a ∈ Nnm and therefore
for each x ∈

⋃
C we have d(x,E) < 7ε.

So, let (p1, . . . , pn) ∈ Nnm be such that 1 < pk < m−1 for each k ∈ {1, . . . , n}. We want
to prove that Cp1,...,pn ∩ E 6= ∅. Suppose Cp1,...,pn ∩ E = ∅.

For i ∈ {1, . . . , n} let Ui be the union of all sets Cj1,...,jn such that

ji < pi and 1 < jk < m− 1 for all k ∈ {1, . . . , n} (3.16)

or
ji ∈ {0, 1}. (3.17)

Let Vi be the union of all sets Cj1,...,jn such that

ji > pi and 1 < jk < m− 1 for all k ∈ {1, . . . , n}
or

ji ∈ {m− 1,m}.
For each i ∈ {1, . . . , n} the sets Ui and Vi are open and disjoint. Note that every Cj1,...,jn ,
where (j1, . . . , jn) 6= (p1, . . . , pn), is contained in some Ui or Vi. Therefore

E ⊆ U1 ∪ · · · ∪ Un ∪ V1 ∪ · · · ∪ Vn. (3.18)

Let i ∈ {1, . . . , n}. We prove now that

Ui ∩ f(A1
i ) = ∅. (3.19)

Suppose the opposite, that Ui ∩ f(A1
i ) 6= ∅. It follows from the definition of Ui that there

exist j1, . . . , jn ∈ Nm such that (3.16) or (3.17) hold and such that Cj1,...,jn ∩ f(A1
i ) 6= ∅.

However, if (3.16) holds, then 1 < jk < m − 1 for all k ∈ {1, . . . , n} which implies that
Cj1,...,jn is disjoint with

⋃
(∂C). But we have the assumption that ∂C covers f(∂In) and

this implies that Cj1,...,jn is disjoint with f(∂In) which is impossible. Therefore, (3.16) does
not hold which means that (3.17) holds. Hence we have

Cj1,...,jn ∩ f(A1
i ) 6= ∅ and ji ∈ {0, 1}.

This, together with
⋃

(∂0
i C) ⊆ W 0

i and f(A1
i ) ⊆ W 1

i , implies d(W 0
i ,W

1
i ) < 2ε (namely, if

ji = 0, then W 0
i ∩W 1

i 6= ∅, and if ji = 1, then d(Cj1,...,jn ,W
0
i ) < ε since C is ε−proper and

this implies d(W 0
i ,W

1
i ) < 2ε). A contradiction. Hence (3.19) holds. In the same way we

get
Vi ∩ f(A0

i ) = ∅. (3.20)

For each i ∈ {1, . . . , n} the sets f−1(Ui) and f−1(Vi) are open in In and disjoint. By
(3.18)

In = f−1(U1) ∪ · · · ∪ f−1(Un) ∪ f−1(V1) ∪ · · · ∪ f−1(Vn),

and by (3.19) and (3.20)

f−1(Ui) ∩A1
i = ∅, f−1(Vi) ∩A0

i = ∅.
This is impossible by Corollary 3.2.
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4. Computability of co-c.e. spheres and cells

Let n ≥ 1. A finite n−sequence in N is any function of the form

{0, . . . ,m}n → N.
Recall that any finite sequence i0, . . . , im in N is of the form (j)0, . . . , (j)j for some j ∈ N.

Let f : Nn → N be some computable injection and let τ and τ ′ be the functions from the
section Preliminaries. We define Σ : Nn+1 → N by

Σ(i, j1, . . . , jn) = (τ(i))f(j1,...,jn).

Then for any finite n−sequence a in N there exists i ∈ N such that a equals the function

{0, . . . , τ ′(i)}n → N,
(j1, . . . , jn) 7→ Σ(i, j1, . . . , jn).

We will use the following notation: î instead of τ ′(i) and, for n ≥ 2, (i)j1,...,jn instead of
Σ(i, j1, . . . , jn).

Let (X, d, α) be a computable metric space. For l ∈ N let Hl be the finite n−sequence
of sets in X defined by

Hl =
(
J(l)j1,...,jn

)
0≤j1,...,jn≤l̂

(i.e. Hl is the function {0, . . . , l̂}n → P(X) which maps (j1, . . . , jn) to J(l)j1,...,jn
).

For l ∈ N let Ĥl be defined by

Ĥl =
(
Ĵ(l)j1,...,jn

)
0≤j1,...,jn≤l̂

.

In Euclidean space Rn we can effectively calculate the diameter of the finite union
of rational balls. However, in a general computable metric space the function N → R,
j 7→ diam(Jj), need not be computable. For that reason we are going to use the notion
of the formal diameter. Let (X, d) be a metric space and x0, . . . , xk ∈ X, r0, . . . , rk ∈ R+.
The formal diameter associated to the finite sequence (x0, r0), . . . , (xk, rk) is the number
D ∈ R defined by

D = max
0≤v,w≤k

d(xv, xw) + 2 max
0≤v≤k

rv.

Let (X, d, α) be a computable metric space. We define the function fdiam : N → R in
the following way. For j ∈ N the number fdiam(j) is the formal diameter associated to the
finite sequence (

ατ((j)0), qτ ′((j)0)

)
, . . . ,

(
ατ((j)j), qτ ′((j)j)

)
.

We have the following proposition (for the proof see [5]).

Proposition 4.1. Let (X, d, α) be a computable metric space.

(1) For all j ∈ N, diam(Ĵj) ≤ fdiam(j).
(2) fdiam : N→ R is a computable function.
(3) Let S be a compact subset of (X, d), r ∈ R+ and C0, . . . , Cm a finite sequence of open

sets which covers S and such that diam(Ci) < r for each i ∈ {0, . . . ,m}. Then there

exist j0, . . . , jm ∈ N such that the finite sequence of sets Jj0 , . . . , Jjm covers S, Ĵji ⊆ Ci
and fdiam(ji) < r for each i ∈ {0, . . . ,m}.
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Let the function fmesh : N→ R be defined by

fmesh(l) = max
0≤j1,...,jn≤l̂

fdiam((l)j1,...,jn).

It is immediate from Proposition 4.1 and Proposition 2.2 that fmesh is a computable func-
tion.

Proposition 4.2. Let (X, d, α) be a computable metric space. The sets

Ω = {(l, k) ∈ N2 | Hl is 2−k − proper}
and

Ω′ = {(l, k) ∈ N2 | ∂Hl is 2−k − proper}
are c.e.

Proof. Let Φ : N2 → P(N2n+2) be defined in the following way. For l, k ∈ N let Φ(l, k) be
the set of all

(l, k, i1, .., in, j1, . . . , jn)

such that i1, .., in, j1, . . . , jn ∈ N
l̂

and |i1 − j1| ≤ 1, . . . , |in − jn| ≤ 1. Then Φ is c.c.b.
On the other hand, let S be the set of all (l, k, i1, . . . , in, j1, . . . , jn) for which there exists
x ∈ J(l)i1,...,in

and y ∈ J(l)j1,...,jn
such that d(x, y) < 2−k. This is equivalent to the fact that

there exist p, q ∈ N such that

αp ∈ J(l)i1,...,in
, αq ∈ J(l)j1,...,jn

and d(αp, αq) < 2−k (4.1)

The set T of all (l, k, i1, . . . , in, j1, . . . , jn, p, q) such that (4.1) holds is c.e. by Corollary 2.4
and Proposition 2.2. Therefore S is c.e. Since

Ω = {(l, k) | Φ(l, k) ⊆ S}
we have that Ω is c.e. by Proposition 2.1. We similarly get that Ω′ is c.e.

Lemma 4.3. Let (X, d, α) be a computable metric space. There exists a computable function
ζ : N → N such that Jζ(l) =

⋃
Hl for each l ∈ N. There exists a computable function

ζ ′ : N → N such that Jζ′(l) =
⋃

(∂Hl) for each l ∈ N. Furthermore, for all i ∈ {1, . . . ,m}
and ρ ∈ {0, 1} there exists a computable function ζ ′′ : N → N such that Jζ′′(l) =

⋃
(∂ρiHl)

for each l ∈ N. Similar statements hold for Ĵj and Ĥl, ∂Ĥl, ∂ρi Ĥl.

Proof. It is enough to prove the following: if Φ : N→ P(Nn) and Ψ : Nn → P(N) are c.c.b.
functions such that Φ(l) 6= ∅ and Ψ(a) 6= ∅ for all l ∈ N and a ∈ Nn, then there exists a
computable function ζ : N→ N such that

Jζ(l) =
⋃

a∈Φ(l)

⋃
i∈Ψ(a)

Ii. (4.2)

However, if Φ and Ψ are such functions, by Proposition 2.1 there exists a c.c.b. function
Λ : N→ P(N) such that ⋃

i∈Λ(l)

Ii =
⋃

a∈Φ(l)

⋃
i∈Ψ(a)

Ii.

For each l ∈ N there exists j ∈ N such that Λ(l) = [j] (recall definition (2.1)). Since
the set S = {(l, j) | Λ(l) = [j]} is computable (Proposition 2.1) and for each l ∈ N there
exists j ∈ N such that (l, j) ∈ S, there exists a computable function ζ : N → N such that
(l, ζ(l)) ∈ S for each l ∈ N. It follows (4.2).
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The proof of the following proposition can be found in [5].

Proposition 4.4. Let (X, d, α) be a computable metric space which has the effective cover-
ing property and compact closed balls.

(1) The set {(i, j) ∈ N2 | Ĵi ⊆ Jj} is c.e.
(2) Let S be a co-c.e. set in (X, d, α) which is compact. Then the set {j ∈ N | S ⊆ Jj} is

c.e.

Corollary 4.5. Let (X, d, α) be a computable metric space which has the effective covering
property and compact closed balls and let S be a co-c.e. set in (X, d, α) which is compact.
Then the sets

{l ∈ N | Hl covers S} and {l ∈ N | ∂Hl covers S}
are c.e.

Proof. This follows from Lemma 4.3 and Proposition 4.4.

The following proposition can be proved in the same way as Proposition 32 in [5].

Proposition 4.6. Let (X, d, α) be a computable metric space which has the effective cov-

ering property and compact closed balls. The sets Ω = {l ∈ N | Ĥl is an n-chain} and

Ω′ = {l ∈ N | ∂Ĥl is a spherical (n− 1)-chain} are computably enumerable.

The following lemma can be proved similarly as Lemma 14 in [5].

Lemma 4.7. Let (X, d, α) be a computable metric space. Let S be a compact set in this
space such that that there exists a computable function f : N→ N with the property that for
each k ∈ N the following holds:

S ⊆ Jf(k) and for each x ∈ Jf(k) there exists y ∈ S such that d(x, y) < 2−k.

Then S is computable.

Theorem 4.8. Let (X, d, α) be a computable metric space which is locally computable. Let
S be an (n−1)−sphere in (X, d) and suppose S is co-c.e. in (X, d, α). Then S is computable.

Proof. As we have seen, we may assume that (X, d, α) has compact closed balls and the
effective covering property. Let f : ∂In → S be a homeomorphism. Choose sets W ρ

i ,
1 ≤ i ≤ n, ρ ∈ {0, 1}, so that each of these sets is a finite union of rational balls (i.e. of the
form Jj) and so that

W 0
i ∩W 1

i = ∅ and f(Aρi ) ⊆W
ρ
i

for all i ∈ {1, . . . , n} and ρ ∈ {0, 1}.
Let k0 ∈ N be such that

2 · 2−k0 < d(f(A0
i ), f(A1

i ))

for each i ∈ {1, . . . , n}.
By Proposition 3.6 for each ε > 0 there exists an open spherical ε− (n− 1)-chain C in

(X, d) which is ε−proper, which covers S and such that

f(Aρi ) ⊆
⋃

(∂ρi C) ⊆W ρ
i

for all i ∈ {1, . . . , n} and ρ ∈ {0, 1}.
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From this, Lemma 3.4 and Proposition 4.1 we conclude that for each k ∈ N there exists
l ∈ N with the following properties:

∂Ĥl is a spherical (n− 1)-chain, (4.3)

∂Hl covers S, (4.4)

fmesh(l) < 2−(k+k0), (4.5)

∂Hl is 2−(k+k0) − proper (4.6)

and ⋃(
∂ρi Ĥl

)
⊆W ρ

i (4.7)

for all i ∈ {1, . . . , n} and ρ ∈ {0, 1}.
Let Ω be the set of all (k, l) such that (4.3), (4.4), (4.5), (4.6) and (4.7) hold. Then

Ω is c.e., which follows from Proposition 4.6, Corollary 4.5, Proposition 4.2, Lemma 4.3,
Proposition 4.4(1) and the fact that fmesh is a computable function. The fact that Ω is c.e.
and the fact that for each k ∈ N there exists l ∈ N such that (k, l) ∈ Ω imply that there
exists a computable function g : N→ N such that (k, g(k)) ∈ Ω for each k ∈ N.

Let k ∈ N. By Proposition 3.8 for each x ∈
⋃

(∂Hg(k)) there exists y ∈ S such that

d(x, y) < 3 · 2−k. Now Lemma 4.3 and Lemma 4.7 imply that S is computable.

Theorem 4.9. Let (X, d, α) be a computable metric space which is locally computable.
Let E be an n−cell in (X, d) and suppose E and the boundary sphere of E are co-c.e. in
(X, d, α). Then E is computable.

Proof. We proceed in a similar way as in the proof of Theorem 4.8. First, we may assume
that (X, d, α) has compact closed balls and the effective covering property. Let f : In → E
be a homeomorphism. Let S = f(∂In). Choose sets W ρ

i , 1 ≤ i ≤ n, ρ ∈ {0, 1}, so that

each of these sets is a finite union of rational balls and so that the closures W 0
i and W 1

i
are disjoint and f(Aρi ) ⊆ W ρ

i for all i ∈ {1, . . . , n} and ρ ∈ {0, 1}. Let k0 ∈ N be such that

2 · 2−k0 < d(W 0
i ,W

1
i ) for each i ∈ {1, . . . , n} (such k0 certainly exists since W 0

i and W 1
i are

compact and disjoint for each i ∈ {1, . . . , n}).
Using Proposition 3.7, Lemma 3.4 and Proposition 4.1 we conclude that for each k ∈ N

there exists l ∈ N with the following properties:

Ĥl is an n-chain, Hl covers E, ∂Hl covers S, (4.8)

fmesh(l) < 2−(k+k0), Hl is 2−(k+k0) − proper (4.9)

and ⋃(
∂ρi Ĥl

)
⊆W ρ

i (4.10)

for all i ∈ {1, . . . , n} and ρ ∈ {0, 1}.
As in the proof of Theorem 4.8 we conclude that there exists a computable function

g : N → N such that (4.8), (4.9) and (4.10) hold for each k ∈ N and l = g(k). Let k ∈ N.
By Proposition 3.9 for each x ∈

⋃
Hg(k) there exists y ∈ E such that d(x, y) < 7 · 2−k and

therefore E is computable.
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Let us mention that a computable n-cell need not be computably homeomorphic to
the unit ball in Rn. It has been shown in [7] that there exists a computable arc E in R2

with computable endpoints, but such that there exists no homomorphism [0, 1]→ E which
is a computable function. Similarly, a computable (n− 1)-sphere need not be computably
homeomorphic to the unit sphere in Rn ([7]).

5. Conclusion

In this paper we have seen that topology plays an important role regarding the computability
of co-c.e. sets in computable metric space. We have seen that the topological types of
an arbitrary dimensional sphere and an arbitrary dimensional cell behave well from this
viewpoint not just in Euclidean space but in any computable metric space which is locally
computable, in particular in any computable metric space which has the effective covering
property and which is locally compact. Such a computable metric space is for example the
Hilbert cube I∞, equipped with a natural computability structure (see e.g. [5]).

It should be mentioned that co-c.e. spheres, as well as co-c.e. cells with co-c.e. bound-
ary spheres, need not be computable in a computable metric space which is not locally
computable. Moreover, by [6], there are examples of computable metric spaces X and Y
such that X has the effective covering property and Y is compact, but such that both X
and Y have noncomputable co-c.e. topological circles and a noncomputable co-c.e. arcs with
computable endpoints.
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