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Abstract. Efficient pattern matching is fundamental for practical term rewrite engines.
By preprocessing the given patterns into a finite deterministic automaton the matching
patterns can be decided in a single traversal of the relevant parts of the input term. Most
automaton-based techniques are restricted to linear patterns, where each variable occurs
at most once, and require an additional post-processing step to check so-called variable
consistency. However, we can show that interleaving the variable consistency and pattern
matching phases can reduce the number of required steps to find all matches. Therefore,
we take the existing adaptive pattern matching automata as introduced by Sekar et al and
extend these with consistency checks. We prove that the resulting deterministic pattern
matching automaton is correct, and show several examples where some reduction can be
achieved.

1. Introduction

Term rewriting is a universal model of computation that is used in various applications,
for example to evaluate equalities or simplify expressions in model checking and theorem
proving. In its simplest form, a binary relation on terms, which is described by the term
rewrite system, defines the available reduction steps. Term rewriting is then the process of
repeatedly applying these reduction steps when applicable. The fundamental step in finding
which reduction steps are applicable is pattern matching.

There are two variants for the pattern matching problem. Root pattern matching can be
described as follows: given a term t and a set of patterns, determine the subset of patterns
such that these are (syntactically) equal to t under a suitable substitution for their variables.
The other variant, called complete pattern matching, determines the matching patterns for
all subterms of t. Root pattern matching is often sufficient for term rewriting, because
applying reduction steps can make matches found for subterms obsolete. A root pattern
matching algorithm can also be used to naively solve the complete pattern matching problem
by applying it to every subterm.

As the matching patterns need to be decided at each reduction step, various term
indexing techniques [SRV01] have been proposed to determine matching patterns efficiently.
An adaptive pattern matching automaton [SRR95], abbreviated as APMA (plural: APMAs),
is a tree-like data structure that is constructed from a set of patterns. By using such
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an automaton one can decide the matching patterns by only examining each function
symbol of the input term at most once. Moreover, it allows for adaptive strategies, i.e.,
matching strategies that are fixed before construction such as the left-to-right traversal of
the automata in [Grä91]. The size of an APMA is worst-case exponential in the number
of patterns. However, in practice its size is typically smaller and this construction step is
beneficial when many terms have to be matched against a fixed pattern set.

The APMA approach works for sets of linear patterns, that is, in every pattern every
variable occurs at most once. As mentioned in other literature [Grä91, SRR95] the non-
linear matching problem can be solved by first preprocessing the patterns, then solving
the linear matching problem and lastly checking so-called variable consistency. We can
show that performing matching and consistency checking separately does not minimise the
amount of steps required to find all matches. Therefore, we extend the existing APMAs to
perform consistency checking as part of the matching process. Our extension preserves the
adaptive traversal of [SRR95] and allows information about the matching step to influence
the consistency checking, and the other way around. The influence of consistency checking
on the matching step is only beneficial in a setting where checking (syntactic) term equality,
which is necessary for consistency checking, can be performed in constant time. This is
typically the case in systems where (sub)terms are maximally shared, which besides constant
time equality checks also has the advantage of a compact representation of terms.

We introduce the notion of consistency automata, abbreviated as CA (plural: CAs), to
perform the variable consistency check efficiently for a set of patterns. The practical use of
these automata is based on similar observations as the pattern matching automata. Namely,
there may be overlapping consistency constraints for multiple patterns in a set. We prove
the correctness for these consistency automata and provide an analysis of its time and space
complexity. We prove that the consistency automaton approach yields a correct consistency
checking algorithm for non-linear patterns. Finally, we introduce adaptive non-linear pattern
matching automata (ANPMAs), a combination of adaptive pattern matching automata and
consistency automata. ANPMAs use information from both match and consistency checks
to allow the removal of redundant steps. We show that ANPMAs yield a correct matching
algorithm for non-linear patterns. To this end we also give a correctness proof for the APMA
approach from [SRR95], which was not given in the original work.

1.1. Structure of the paper. In Figure 1 there is a simple example ANPMA for the
pattern set {`1 : f(x, x), `2 : f(a, b), `3 : f(a, a)}. It has edges labelled with function symbols

ε

{1, 2}

1 2

{`1} {`1, `3} 1

{`2}

f

3 7

�
a b

a

Figure 1. An example ANPMA.
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(coming from states labelled with positions) and edges labelled with 3 or 7. In Section 5
we define ANPMAs formally. Since we will treat a correctness proof, we first discuss both
elements of ANPMAs.

• In Section 3 we recall APMAs from [SRR95]. We focus on formalities and give a correctness
proof of this method which was not in the original work. Correctness intuitively means
that the automaton that is constructed for a set of linear patterns, is suitable to efficiently
decide the matching problem. We also show that there are no redundancies in APMA
evaluation. That is, there is no state such that the same outgoing transition is taken, no
matter what the input term is.
• In Section 4 we define CAs, again with a focus on formalities and correctness proofs.

Given a set of patterns, a set of consistency partitions can be computed. The automaton
that is constructed for this set of partitions, is suitable to efficiently decide the variable
consistency problem. Although some redundancies can be removed, it is still difficult to
remove all redundancies from CAs.

These two sections provide a proper foundation for the formal details of ANPMAs
in Section 5, since ANPMAs are automata that can have an interleaving between APMA
states (with outgoing function symbol transitions) and CA states (with outgoing 3- and
7-transitions). We give the construction algorithm, a correctness proof based on the proofs
of the previous section, and show that ANPMAs are at least as efficient as first applying
APMAs and then consistency checking, or the other way around.

It is difficult to obtain an ANPMA without any redundancies. We give some examples
of pattern sets that are benefitted by consistency checks, but where it is difficult to define
a general construction procedure that can make use of these benefits. Lastly we state the
optimisation problem for ANPMAs such that it can be picked up for future work.

1.2. Related Work. We compare this work with other term indexing techniques. Most
techniques use tree-like data structures with deterministic [Car84, Grä91, SRR95, vW07]
or non-deterministic [FM01, Chr93, McC92, Vor95, Gra95] evaluation. In this setting a
deterministic evaluation guarantees that all positions in the input term are inspected at
most once. Non-deterministic approaches typically have smaller automata, but the same
position might be inspected multiple times for input terms as a result of backtracking.

Most of the mentioned techniques do not support matching non-linear patterns directly.
Discrimination trees [McC92], substitution trees [Gra95] can be extended with on-the-fly
consistency checks for matching non-linear patterns. However, their evaluation strategy is
restricted to left-to-right evaluation and variable consistency must be checked whenever a
variable which has already been bound occurs again at the position that is currently inspected
in the term. Our approach of introducing a state to check term equality is also present in
match trees [vW07], code trees [Vor95] and the decision trees used in Dedukti [HB20]. The
main advantage of ANPMAs is that consistency checks are allowed to occur at any point in
the automaton, the evaluation strategy is not limited to a fixed strategy and there are fewer
redundant checks, which makes the matching time shorter.

2. Preliminaries

In this section the preliminaries of first-order terms and the root pattern matching problem
are defined. We denote the disjoint union of two sets A and B by A ]B. Given two sets
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A and B we use A→ B, A ⇀ B and A ↪→ B to denote the sets of total, partial and total
injective functions from A to B respectively. We assume that a partial function yields a
special symbol ⊥ for elements in its domain for which it is undefined. Given a function
f : A→ B we use f [a 7→ b] to denote the mapping that satisfies f(x) = f [a 7→ b](x) if x 6= a
and f(x) = b if x = a.

Let F =
⊎
i∈N Fi be a ranked alphabet. We say that f ∈ Fi is a function symbol with

arity, written ar(f), equal to i. Let Σ = V ] F be a signature where V is a set of variables.
The set of terms over Σ, denoted by TΣ, is defined as the smallest set such that V ⊆ TΣ

and whenever t1, . . . , tn ∈ TΣ and f ∈ Fn, then also f(t1, . . . , tn) ∈ TΣ. We typically use
the symbols x, y for variables, symbols a, b for function symbols of arity zero (constants),
f, g, h for function symbols of other arities and t, u for terms. The head of a term, written
as head, is defined as head(x) = x for a variable x and head(f(t1, . . . , tn)) = f for a term
f(t1, . . . , tn). We use vars(t) to denote the set of variables that occur in term t. A term for
which vars(t) = ∅ is called a ground term. A pattern is a term of the form f(t1, . . . , tn). A
pattern is linear iff every variable occurs at most once in it.

We define the (syntactical) equality relation = ⊆ T2 as the smallest relation such that
x = x for all x ∈ V, and f(t1, . . . , tn) = f(t′1, . . . , t

′
n) if and only if ti = t′i for all 1 ≤ i ≤ n.

Furthermore, the equality relation modulo variables =ω ⊆ T2 is the smallest relation such
that x =ω y for all x, y ∈ V, and f(t1, . . . , tn) =ω f(t′1, . . . , t

′
n) if and only if ti =ω t

′
i for

all 1 ≤ i ≤ n. Both = and =ω satisfy reflexivity, symmetry and transitivity and thus are
equivalence relations, and we can observe that = ⊆ =ω.

A substitution σ is a total function from variables to terms. The application of a
substitution σ to a term t, denoted by tσ, is the term where variables of t have been replaced
by the term assigned by the substitution. This can be inductively defined as xσ = σ(x) and
f(t1, . . . , tn)σ = f(tσ1 , . . . , t

σ
n). We say that term u matches t, denoted by t ≤ u, iff there is

a substitution σ such that tσ = u. Terms t and u unify iff there is a substitution σ such
that tσ = uσ.

We define the set of positions P as the set of finite sequences over natural numbers
where the root position, denoted by ε, is the identity element and concatenation, denoted by
dot, is an associative operator. Given a term t we define t[ε] = t and if t[p] = f(t1, . . . , tn)
then t[p.i] for 1 ≤ i ≤ n is equal to ti. Note that t[p] may not be defined, e.g., f(x, y)[3] and
f(x, y)[1.1] are not defined. A position p is higher than q, denoted by p v q, iff there is
position r ∈ N∗ such that p.r = q. Position p is strictly higher than q, denoted by p @ q,
whenever p v q and p 6= q. We say that a term t[q] is a subterm of t[p] if p @ q and t[q] is
defined. The replacement of the subterm at position p by term u in term t is denoted by
t[p/u], which is defined as t[ε/u] = u and f(t1, . . . , tn)[(i.p)/u] = f(t1, . . . , ti[p/u], . . . , tn).
The fringe of a term t, denoted by F(t), is the set of all positions at which a variable occurs,
given by F(t) = {p ∈ P | t[p] ∈ V}.

We also define a restricted signature for terms with a one-to-one correspondence between
variables and positions. First, we define VP as the set of position variables {ωp | p ∈ P}.
Consider the signature ΣP = F ] VP. We say that a term t ∈ TΣP is position annotated
iff for all p ∈ F(t) we have that t[p] = ωp. For example, the terms ωε and f(ω1, g(ω2.1))
are position annotated, whereas the terms f(x) and f(ω1.1) are not. Position annotated
patterns are linear as each variable can occur at most once.

A matching function decides for a given term and a set of patterns the exact subset of
these patterns that match the given term.
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Definition 2.1. Let L ⊆ TΣ be a set of patterns. A function matchL : TΣ → 2TΣ is a
matching function for L iff for all terms t we have matchL(t) = {` ∈ L | ∃σ : `σ = t}. If L is
a set of linear patterns then matchL is a linear matching function.

3. Adaptive Pattern Matching Automata

For a single linear pattern to match a given term it is necessary that every function symbol
of the pattern occurs at the same position in the given term. This can be decided by a single
traversal of the input pattern.

Proposition 3.1. Let ` be linear pattern and t any term. We have that ` ≤ t if and only if
for all positions p: if head(`[p]) ∈ F then head(`[p]) = head(t[p]).

For linear patterns a naive matching algorithm follows directly from this proposition:
to find all matches for term t one can check the requirement stated on positions in the
proposition for every pattern separately. However, for a set of linear patterns we can observe
that whenever a specific position of the given term is inspected, a decision can be made for
all patterns at the same time. Exploiting these kind of observations to yield an efficient
decision procedure is the purpose of so-called term indexing techniques [SRV01]. Sekar et
al. [SRR95] describe the construction of a so-called adaptive pattern matching automaton,
abbreviated as APMA. Given a set of linear patterns L an APMA can be constructed that
can be used to decide for every term t ∈ TΣ which patterns of L are matches for t. The
main advantage of an APMA over other indexing techniques and the naive approach is that
every position of any input term is inspected at most once.

As an introduction to the techniques that are developed in later sections, we recall the
evaluation and construction procedures of APMAs. The presentation that we use is slightly
more formal compared to the presentation by Sekar et al. The extra formalities provide a
more convenient foundation for our extensions. Moreover we present a correctness proof
that did not appear in the original work, which also mainly serves as a stepping stone to the
correctness proofs for our extensions.

APMAs are state machines in which every state is a match state, which is labelled with
a position, or final state, which is labelled with a set of patterns. Match states indicate that
the term under evaluation is being inspected at the labelled position. Final states indicate
that a set of matching patterns is found. The transitions are labelled by function symbols
or an additional fresh symbol � /∈ F. Let F� = F ] {�}.

Definition 3.2. An APMA is a tuple (S, δ, L, s0) where:

• S = SM ] SF is a finite set of states consisting of a set of match states SM and a set of
final states SF ;
• δ : SM × F� ⇀ S is a partial transition function;
• L = LM ] LF is a state labelling function with LM : SM → P and LF : SF → 2TΣ ; and
• s0 ∈ SM is the initial state.

We only consider APMAs that have a tree structure that is rooted in s0. That is, δ is an
injective partial mapping and there is no pair (s, f) with δ(s, f) = s0.

We illustrate the evaluation of an APMA by means of an example. Consider the patterns
f(a, b, x), f(c, b, x) and f(c, b, c) with a, b, c ∈ F0, f ∈ F3 and x ∈ V. Figure 2 shows an
APMA that can be used to decide which of these patterns match for any given term. Every
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Figure 2. An APMA constructed from the patterns f(a, b, x), f(c, b, x) and
f(c, b, c) with a, b, c ∈ F0, f ∈ F3 and x ∈ V.

state with outgoing transitions is a match state, and the other states at the bottom are the
final states. The match states are labelled with the position that is inspected during the
evaluation of that state.

The evaluation of an APMA for a given term is defined in the function Match defined
in Algorithm 1. Upon reaching a final state s ∈ SF the evaluation yields the set of terms
LF (s), because these patterns match by construction. In a match state s ∈ SM the head
symbol head(t[LM (s)]) is examined. If there is an outgoing transition labelled with the
examined head symbol then evaluation continues with the reached state; otherwise the
�-transition is taken. Whenever there is also no outgoing �-transition then there is no
match by construction and the evaluation returns the empty set as a result.

Algorithm 1 Given a state s of the APMA M = (S, δ, L, s0) and a term t, this algorithm
computes the pattern matches for t by evaluating M on t.

Match(M, t, s) =


LF (s) if s ∈ SF
Match(M, t, δ(s, f)) if s ∈ SM ∧ δ(s, f) 6= ⊥
Match(M, t, δ(s,�)) if s ∈ SM ∧ δ(s,�) 6= ⊥ ∧ δ(s, f) = ⊥
∅ if s ∈ SM ∧ δ(s,�) = δ(s, f) = ⊥

where f = head(t[LM (s)])

Consider the APMA M of Figure 2 and let the initial state s0 be the topmost state
in the figure. We have Match(M,f(a, b, a), s0) = Match(M,f(a, b, a), δ(s0, f)) = . . . =
{f(a, b, x)}. Similarly, we derive that Match(M,f(b, b, b), s0) = ∅ and that evaluating term
f(c, b, b) yields the pattern set {f(c, b, x)}.

The construction procedure for APMAs is defined in Algorithm 2. We use ‘:=’ to denote
assignments to variables, and we use M [S := S′] to denote that the element S of the tuple
M gets updated to the value S′. For example, M := M [SF := SF ∪ {s}] means that s is
added to the set of final states in the APMA M .

Intuitively, the function Construct constructs the APMA from the root state to final
states based on the set of patterns L that could still result in a match and a selection function
Select : 2P → P. For convenience we assume that the patterns in L are position-annotated
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and as such these patterns are also linear. In later sections we drop this assumption and
treat arbitrary (non-linear) patterns. The algorithm is initially called with the initial state
s0, after which every recursive call corresponds to a state deeper in the tree. The parameter
Select is a function that determines in each recursive call which position from work becomes
the label for the current state. Based on the selected position, the current state and the
pattern set, outgoing transitions are created to fresh states where the construction continues
recursively.

The parameter pref denotes the prefix for a state s. The function symbols in pref represent
which function symbols have been matched so far and the variables in pref represent which
positions have not been inspected yet. The special symbol � is used to indicate that none
of the patterns have the function symbol of the given term at that position. For example,
the prefix f(ω1, ω2, ω3) represents that f occurs at position ε of the input term and the
variables at positions 1, 2 and 3 encode that these positions have not been inspected yet, or
equivalently that these subterms are unknown. The prefix can be reconstructed by following
the transitions from s0 to s.

Each recursive call starts by removing all the patterns from L that do not unify with
pref. Any match for the removed patterns cannot reach this state of the subautomaton
that is currently being constructed. Therefore, the removed patterns do not have to be
considered for the remainder of the construction. If pref has the symbol � at position p
then none of the patterns in L that have a non-variable subterm at position p can unify
with the prefix any more, because � does not occur in the patterns. If there are no variables
in pref then there is nothing to be inspected anymore. This is the termination condition for
the construction; the current state s will be labelled with the patterns that unify with pref.
Otherwise, the work that still has to be done, i.e., the set of positions that still have to be
inspected, is the fringe of pref, denoted by F(pref).

Algorithm 2 Given a finite set of patterns L, this algorithm constructs an APMA for L.
Initially, it is called with M = (∅, ∅, ∅, s0), the initial state s = s0 and the prefix pref = ωε.

1: procedure Construct(L,Select,M, s, pref)
2: L′ := {` ∈ L | ` unifies with pref}
3: work := F(pref)
4: if work = ∅ then
5: M := M [SF := (SF ∪ {s}), LF := LF [s 7→ L′]]
6: else
7: pos := Select(work)
8: M := M [SM := (SM ∪ {s}), LM := LM [s 7→ pos]]
9: F := {f ∈ F | ∃` ∈ L′ : head(`[pos]) = f}

10: for f ∈ F do
11: M := M [δ := δ[(s, f) 7→ s′]] where s′ is a fresh unbranded state w.r.t. M
12: M := Construct(L,Select,M, s′, pref[pos/f(ωpos.1, . . . , ωpos.ar(f))])

13: if ∃` ∈ L′ : ∃pos′ v pos : head(`[pos′]) ∈ V then
14: M := M [δ := δ[(s,�) 7→ s′]] where s′ is a fresh unbranded state w.r.t. M
15: M := Construct(L,Select,M, s′, pref[pos/�])

16: return M
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3.1. Proof of Correctness. We prove that this construction yields an APMA that is
suitable to solve the matching problem for non-empty finite sets of linear patterns. Meaning
that the evaluation of the constructed APMA for any term t is a linear matching function
as defined in Definition 2.1.

We make use of the following auxilliary definitions. A path to sn is a sequence of state
and function symbol pairs (s0, f0), . . . , (sn−1, fn−1) ∈ SM × F� such that δ(si, fi) = si+1 for
all i < n. Because δ is required to be an injective partial mapping there is a unique path to
s for every state s, which we denote by path(s). A match state s is top-down iff L(s) = ε
or there is a pair (si, fi) in path(s) with L(si).j = L(s) for some 1 ≤ j ≤ ar(fi). State s
is canonical iff there are no two states in path(s) that are labelled with the same position.
Finally we say that an APMA is well-formed iff all match states are top-down and canonical.

Well-formed APMAs allow us to inductively reconstruct the prefix of a state s as it
was created in the construction algorithm. We allow slight overloading of the notation and
denote the prefix of state s by pref(s). It is constructed inductively for well-formed APMAs by
pref(s0) = ωε and if δ(si, f) = si+1 then pref(si+1) = pref(si)[L(si)/f(ωL(si).1, . . . , ωL(si).ar(f))].
Similarly, we denote the patterns of state s by L(s) = {` ∈ L | ` unifies with pref(s)} for
all states. Lastly we use an arbitrary function Select : 2P → P such that for all sets of
positions work we have Select(work) ∈ work.

Lemma 3.3. For all finite, non-empty sets of patterns L we have that the procedure
Construct(L,Select, (∅, ∅, ∅, s0), s0, ωε) terminates and yields a well-formed APMA M =
(S, δ, L, s0).

Proof. Since L is finite, the set F that is computed on line 9 is also finite. Therefore the
for loop only treats finitely many function symbols. It remains to show that the recursion
terminates. The prefixes of the recursive calls are ordered by the strict matching ordering
<. Observe that whenever pref[p] is defined, there must be a pattern ` ∈ L such that `[p]
is defined as well. There are only finitely many positions defined by the patterns of L.
Therefore < is a well-founded ordering on the recursive calls, which guarantees termination.

Upon termination the result M is indeed an APMA. For every function symbol in F
exactly one transition is created and at most one �-transition is created, so δ is a partial
mapping. Since the target states of these transitions are fresh we have that δ is injective.
Moreover there is no transition to s0 since the algorithm is initially called with s0. Hence
M is an APMA.

We check that M is well-formed. By construction we have L(s0) = ε since the construc-
tion procedure is called with the prefix ωε. Let s be an arbitrary non-final state and consider
the stage of the construction algorithm Construct(L,Select,M, s, pref). A position label
p.i is only chosen if it occurs in the fringe of pref. Therefore there must have been a state
labelled with p where the variable ωp.i was put in the prefix, so s must be top-down. Lastly
s is canonical because once a position p is chosen, it cannot be chosen again since the
variable ωp is replaced by an element of F� in the prefix. Hence M meets all requirements
for well-formedness.

For the remainder of the correctness proof assume an arbitrary finite, non-empty set of
position annotated patterns L and let M = (S, δ, L, s0) be the APMA for L that results
from Construct(L,Select, (∅, ∅, ∅, s0), s0, ωε).

The following lemma states some claims about final states. They are mostly necessities
for the other lemmas. A final state is characterised by a ground prefix and a non-empty set
of patterns.
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Lemma 3.4. For every every final state s: (a) the set L(s) is non-empty, (b) pref(s) is a
ground term, and (c) for all ` ∈ L(s) we have ` ≤ pref(s). Moreover (d) for every pattern
` ∈ L there is at least one final state s with ` ∈ L(s).

Proof. First observe that L(s) is non-empty for all states s. Let s be a final state.

a) Since L(s) = L(s) and L(s) is non-empty the claim holds.
b) The prefix pref(s) is ground for final states s because the construction only creates final

states if pref(s) has no variables.
c) By construction we have L(s) = {` ∈ L | ` unifies with pref(s)}. Since pref(s) is ground

we have that for all ` ∈ L(s) that ` ≤ pref(s).
d) Let ` ∈ L. The following invariant holds for constructed APMAs. For all match states

s′, if ` ∈ L(s′) then there exist an f and an s′′ such that δ(s′, f) = s′′ and ` ∈ L(s′′).
From the fact that L(s0) = L it then follows that every pattern will end up in some final
state.

Lemma 3.5 is an invariant that relates the construction algorithm to the evaluation
function Match. It means that whenever t matches `, then ` will invariantly be in the set
of patterns that is associated with the states that are visited by Match. The proof is an
induction on the length of the path to the state under consideration. The details of this
proof can be found in the appendix.

Lemma 3.5. Let t be an arbitrary term and let Lt = {` ∈ L | ` ≤ t}. For all states s such
that Match(M, t, s0) = Match(M, t, s) it holds that Lt ⊆ L(s).

Lemma 3.6 claims two straightforward correctness properties. Firstly, if no pattern
matches t, then the evaluation function Match will yield the empty set of patterns. Secondly,
if at least one pattern matches t, then the evaluation function will reach a final state. The
proof details are in the appendix.

Lemma 3.6. Let t be an arbitrary term and let Lt = {` ∈ L | ` ≤ t}.
a) If Lt = ∅ then Match(M, t, s0) = ∅;
b) If Lt 6= ∅ then Match(M, t, s0) = Match(M, t, sf ) for some final state sf .

From the invariant claimed in Lemma 3.5, it follows that all pattern matches of t are
returned by the evaluation. The following lemma additionally claims the converse: all
patterns returned by the evaluation are indeed pattern matches for t. A detailed proof can
be found in the appendix.

Lemma 3.7. Let t be an arbitrary term and let Lt = {` ∈ L | ` ≤ t}. If Match(M, t, s0) =
Match(M, t, sf ) for some final state sf then L(sf ) = Lt.

From these lemmas the following correctness theorem follows.

Theorem 3.8. The function λt.Match(M, t, s0) is a linear matching function for pattern
set L.

Proof. Let t be an arbitrary term and let Lt = {` ∈ L | ` ≤ t}. If Lt = ∅ then by Lemma 3.6
we get that Match(M, t, s0) = ∅ = Lt as required. If Lt is non-empty then by Lemma 3.6 we
have that Match(M, t, s0) = Match(M, t, sf ) for some final state sf . Then by definition
of Match we get Match(M, t, sf ) = L(sf ). From Lemma 3.7 it follows that L(sf ) = Lt,
by which we can conclude Match(M, t, s0) = Lt. Hence λt.Match(M, t, s0) is a linear
matching function for L.
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3.2. Redundancy. Algorithm 2 follows a very simple kind of construction. At every state,
figure out what still needs to be observed and then choose one of the positions from work.
Sekar et al. already observed that one kind of redundancy can be completely removed
from the computed set work. If there is a position in work where no pattern in L has a
function symbol at that position, then there is nothing worthwhile to observe. In such
cases Algorithm 2 creates no outgoing function symbol transitions, but it does create a
�-transition. However, by definition of Match this transition is then taken regardless of
the input term. The evaluation of this state always takes an unnecessary step. In this case
we call the state �-redundant. Formally, we identify two types of redundancies.

Definition 3.9 (Redundancy for match states). Let s be a match state and let M =
(S, δ, L, s0) be an APMA.

• Given f ∈ F�, we say that s is f -redundant iff for all terms t, whenever Match(M, t, s0) =
Match(M, t, s), then Match(M, t, s) = Match(M, t, δ(s, f)).
• We say that s is dead iff for all terms t, whenever Match(M, t, s0) = Match(M, t, s),

then Match(M, t, s) = ∅.

In Figure 2 the leftmost state labelled by position 3 is �-redundant. The procedure
Match will always take the �-transition upon reaching that state. Avoiding this kind of
redundancies reduces the number of steps needed to declare a match, which yields a more
efficient matching algorithm. Algorithm 2 only allows �-redundancies, as described above,
so this notion of f -redundancy is more general than needed for this section. In Section 5 we
will see that f -redundant states, with f ∈ F, can occur due to interleaving with consistency
checks. To avoid redundancies, Sekar et al. included the following in their construction
procedure.

Lemma 3.10. Consider Algorithm 2 where Line 3 is replaced by

work := F(pref) \
⋂
`∈L′
{p ∈ P | head(`[p]) 6∈ F} .

Then the correctness argument of Theorem 3.8 still applies, and every state of every APMA
resulting from the construction is not dead and not f -redundant, for every f .

Proof. For correctness we only point out the one reparation that needs to be done to the
proof of Lemma 3.4. It no longer holds that pref(s) is ground for every final state s. So it
only remains to show that ` ≤ pref(s) for all final states. The prefix of a final state can still
have variables, but then for every position p ∈ F(pref(s)) the pattern ` ∈ L′ has a variable
at that position or a higher position. This means that we still have ` ≤ pref(s) for every
` ∈ L(s).

To show that there are no redundancies, let s be a match state of M and let t be a
term such that Match(M, t, s0) = Match(M, t, s). Since M is canonical, we know that
L(s) 6= L(s′) for all states s′ in path(s). No position is observed twice, thus we only need to
observe non-redundancy locally per state.

• If s has at least one outgoing f -transition with f 6= � then by definition Match(M, t, s) =
Match(M, t, δ(s, f)). In this case we can easily construct a term t′ with t 6= t′ and
Match(M, t′, s0) = Match(M, t′, s) such that one of the following holds:
– Match(M, t′, s) = Match(M, t′, δ(s, g)), for some g ∈ F with f 6= g;
– Match(M, t′, s) = Match(M, t′, δ(s,�)), if there is a �-transition from s
– Match(M, t′, s) = ∅, if s has no outgoing transition save for the f -transition.
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In all three cases the evaluation of t′ continues differently, so s is not f -redundant.
• Otherwise, if s has no outgoing f -transition, then it could have an outgoing �-transition

and no other transitions. By the definition of Construct this can only occur if no pattern
in L(s) has a function symbol on position L(s). However, the alternative Construct
defined in this lemma ensures that the chosen position for L(s) is not a part of work(s)
and therefore this case cannot occur.
• Otherwise, if s has no outgoing transitions at all, then it must be that s is dead. This

case can only occur if L(s) is empty, which is impossible.

So in the simple case of linear terms, an APMA can be constructed that has no
redundancies. In later sections we see that avoiding redundancies for the non-linear matching
algorithm is difficult.

3.3. Strategies. In this section we recall some of the known results on the time and space
complexity of APMAs [SRR95]. These results also carry over to the extensions that we
propose later on. The reason for providing a selection function in the construction procedure
is to define a strategy for the order in which the positions of the input term are inspected. The
chosen strategy influences both the size and the matching time of the resulting automaton.
For the size of an automaton it is quite natural to count the number of states. For example,
consider the APMA for the patterns in Figure 2 where position one was chosen before
position two. The resulting APMA has nine states instead of eight.

There are heuristics described for the selection function based on local strategies, which
only look at the prefix and the pattern set during the construction presented in [SRR95].
For example taking the position with the highest number of alternative function symbols in
the patterns to maximise the breadth of the automaton. However, these heuristics can all
be shown to be inefficient in certain cases [SRR95]. Due to the following result it is unlikely
that optimal choices can be made locally.

It was already known that minimisation of the number of states is NP-complete [SRR95].
This result is based on the NP-completeness of minimising the number of states for Trie
indexing structures [CS76]. Alternatively, one can consider the breadth of the resulting
automaton, which is given by the number of final states, as the measurement of size. The
reason for this is that the total number of states is at most bounded by the height of the
automaton times the number of final states. The upper bound on breadth for the optimal
selection function for a set of patterns {`0, . . . , `n} is O(

∏n
i=0 |`i|) [SRR95]. The lower bound

on breadth for any selection function is O(αn−1), where α is the average number of function
symbols and n the number of patterns.

The matching time of an APMA can be defined in two different ways. We can consider
a notion of average matching time based on a distribution of input terms. However, this
information is not typically available and assuming a uniform distribution seems unrealistic
in practice. Therefore, we consider the upper bound on the matching time to be determined
by the final state with the highest depth for the optimal selection function, and the lower
bound is the lowest depth for any selection function. Here, the depth of a state is defined
by the length of the path to the root of the automaton. For any pattern sets the upper
bound on the depth is S, where S is the total number of non-variable positions, and the
lower bound on the depth is Ω(S) [SRR95].

An alternative approach is to define a notion of relative efficiency that compares two
APMAs. For a given APMA M and a given term t we define the matching time as the
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evaluation depth, denoted by ED(M, t), based on the number of recursive Match calls
required to reach a final state. Then one can consider a notion of relative efficiency that
compares two APMAs.

Definition 3.11. Given two APMAs M = (S, δ, L, s0) and M ′ = (S′, δ′, L′, s′0) for a set of
patterns P . We say that M �M ′ iff for all terms t ∈ TΣ it holds that ED(M, t) ≤ ED(M ′, t).

An interesting observation for the selection function is that choosing so-called index
positions always yields a more efficient APMA as in the definition above and in the number
of states. These index positions are positions where all the patterns that can still match (the
set L in the construction algorithm) have a function symbol. As such, taking these index
positions (if they are available) always yields the optimal choice. Furthermore, avoiding
redundant states can also be shown to always yield a more efficient APMA. Aside from
these observations, two selection functions can easily yield APMAs that are incomparable
with respect to �. A number of heuristics for selection functions can be found in [Mar08].

4. Consistency Automata

A linear matching algorithm can be used to solve the non-linear matching problem by
renaming the patterns and checking so-called variable consistency after the matching
phase [Grä91, SRV01, SRR95]. As a preprocessing step a renaming procedure is applied.
It renames each pattern to a linear pattern by introducing new variables. The variable
consistency check ensures that the newly introduced variables which correspond to variables
in the non-linear pattern can be assigned a single value in the matching substitution. This
can be seen as a many-to-one context where multiple introduced variables correspond to a
single variable in the original pattern. For the non-linear matching algorithm we can first
use a linear matching algorithm to determine matches for the renamed patterns. Followed
by a consistency check to remove the linear patterns for which the matching substitution is
not valid for the original patterns.

4.1. Pattern Renaming. A straightforward way to achieve the renaming would be to
introduce new variables for each position in the fringe of each pattern. However, for patterns
f(x, a) and f(x′, y′) the variables x and x′ could be identical such that the assignment for
x (or equally x′) yields a substitution for both patterns. We can use position annotated
variables for this purpose, which are identical for the same position in different patterns, to
obtain these overlapping assignments.

For the consistency check it is necessary to keep track of equality constraints between
variables that correspond to a single variable before a non-linear pattern is renamed. For
this purpose we use the notion of consistency classes [SRV01]. A consistency class is a set
of positions that are expected to be equal in order to yield a match.

Definition 4.1. Given a term t and a consistency class C ⊆ P we say that t is consistent
with respect to C if and only if t[p] = t[q] for all p, q ∈ C.

A pattern can give rise to multiple consistency classes. For instance, consider the
pattern f(x, x, y, y, y, z). Based on the occurrences of variables x, y and z we derive the
three consistency classes {1, 2}, {3, 4, 5} and {6}. This means that for the input term
t = f(t1, . . . , t6) that t[1] = t[2] and t[3] = t[4] = t[5] must hold, and finally t[i] = t[i] holds
trivially for all 1 ≤ i ≤ 6, for this term to be consistent w.r.t. these classes. A set of disjoint
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consistency classes is referred to as a consistency partition. The notion of term consistency
w.r.t. a consistency class is extended as follows. A term t is consistent with respect to a
consistency partition P iff t is consistent with respect to C for every C ∈ P .

First, we illustrate the renaming procedure by means of an example. Consider three
patterns f(x, x, z), f(x, y, x) and f(x, x, x). After renaming we obtain the following
pairs of a linear pattern and the corresponding consistency partition: (f(ω1, ω2, ω3), P1),
(f(ω1, ω2, ω3), P2) and (f(ω1, ω2, ω3), P3); with the consistency partitions P1 = {{1, 2}, {3}},
P2 = {{1, 3}, {2}} and P3 = {{1, 2, 3}}. The term f(a, a, b) matches f(ω1, ω2, ω3) as wit-
nessed by the substitution id[ω1 7→ a, ω2 7→ a, ω3 7→ b], but f(a, a, b) is only consistent w.r.t.
partition P1. We can verify that the given term only matches pattern f(x, x, z).

We define a rename function that yields a position annotated term and a consistency
partition over F(t) for any given term.

Definition 4.2. The term rename function rename : TΣ → (TΣP × 22P) is defined as

rename(t) = (rename1(t, ε), {{p ∈ P | t[p] = x} | x ∈ vars(t)})
where rename1(t, ε) : (TΣ × P)→ TΣP renames the variables of the given term to position
annotated variables as follows.

rename1(x, p) = ωp if x ∈ V
rename1(f(t1, . . . , tn), p) = f(rename1(t1, p.1), . . . , rename1(tn, p.n))

Note that for linear patterns, the renaming results in a position annotated term with
just trivial consistency partitions that only consist of singleton consistency classes. We
show a number of characteristic properties of the rename function which are essential for the
correctness of the described two-phase non-linear matching algorithm.

Lemma 4.3. For all terms t ∈ TΣ if (t′, P ) = rename(t) then:

• t =ω t
′, and

• for all p ∈ F(t): t′[p] = ωp, and
• for all u ∈ TΣ it holds that u matches t if and only if u matches t′ and u is consistent

w.r.t. P .

Proof. We can show by induction on t that t =ω rename1(t, ε) to prove the first statement.
For the second statement let p ∈ F(t). First, we can show that t′[p] = rename1(t[p], p) by
induction on position p. From t[p] ∈ V it follows that t′[p] is equal to ωp.

For the last property let P be equal to {{p ∈ P | t[p] = x} | x ∈ vars(t)} and let u be an
arbitrary term. Assume that u is consistent w.r.t. P and u matches t′. The latter means
that there is a substitution σ such that t′σ = u. It follows that for all positions p ∈ F(t′)
that σ(t′[p]) = u[p]. As u is consistent w.r.t. P it means that for all x ∈ V and p, q ∈ P
that if t[p] = t[q] = x then u[p] = u[q]. Therefore, we can construct the substitution ρ such
that for all p ∈ F(t) we assign u[p] to t[p], where the latter is some variable in vars(t). The
observation of consistency above lets us conclude that there is only one such substitution ρ.
From t =ω t

′ it follows that tρ = t′σ and as such tρ = u, which means that u matches t.
Otherwise, if u matches t then there is a substitution σ such that tσ = u. Let ρ be the

substitution such that for all positions p ∈ F(t) we assign σ(t[p]) (which is equal to u[p]) to ωp.
As t′ is linear it follows that each ωp is assigned once and thus ρ(ωp) = σ(t[p]) by definition.
Again, from t =ω t

′ it follows that t′ρ = tσ and as such u matches t′. Finally, for all positions
p and q such that t[p] = t[q] = x for variable x ∈ V it follows that u[p] = u[q] = σ(x). We
can thus conclude that u is consistent w.r.t. P .
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For the variable consistency check a straightforward implementation follows directly from
Definition 4.1. Let P = {C1, . . . , Cn} be a consistency partition. For each consistency class
Ci, for 1 ≤ i ≤ n, there are |Ci| − 1 comparisons to perform, after which the consistency of a
term w.r.t. Ci is determined. This can be extended to partitions by performing such a check
for every consistency class in the given partition. We use the function is-consistent(t, P ) to
denote this naive algorithm. For a set of partitions {P1, . . . , Pm} the (naive) consistency check
requires exactly

∑
1≤j≤m

∑
C∈Pj

|C|− 1 comparisons if t is consistent w.r.t. P . Furthermore,

it requires at least m comparisons for any term t.
For the renaming procedure we must consider that the patterns f(x, x) and f(x, y) are

both renamed to the linear pattern f(ω1, ω2). However, then it is no longer possible to
identify the corresponding original pattern. This can be solved by considering an indexed
family of patterns, which is defined as follows. We assume the existence of an index set
I and use L × I to denote the indexed family of patterns with elements denoted by i : `
for ` ∈ L and i ∈ I. We adapt the rename function to preserve the index assigned to each
pattern. Now, when given an indexed linear pattern that resulted from renaming we can
identify the corresponding original pattern by its index. We now combine these results to
obtain a non-linear matching algorithm. The correctness of the following lemma follows
directly from the third property of Lemma 4.3.

Lemma 4.4. Let L ⊆ TΣ×I be an indexed family of patterns and let Lr ⊆ TΣP ×22P ×I be
the indexed family of renamed patterns and corresponding consistency partitions resulting from
renaming; i.e., Lr = {rename(i : `) | i : ` ∈ L}. Let match-linear : TΣ×2TΣ×I → 2TΣ×I
be a linear matching function that preserves indices. For any term t ∈ TΣ we define

match : (TΣ × (TΣP × 22P × I))→ TΣ as:

match(t,Lr) = {` | i : `′ ∈ L′ ∧ i : (`′, P ) ∈ Lr ∧ is-consistent(t, P )}

where L′ is equal to match-linear(t, {i : `′ | i : (`′, P ) ∈ Lr}). The function match is a
matching function.

4.2. Consistency Automata. In this section, we are going to focus on solving the consis-
tency checking efficiently by exploiting overlapping partitions to obtain an efficient linear
pattern matching algorithm. This is inspired by the APMA where overlapping patterns are
exploited to obtain an efficient matching algorithm. Consider the consistency partitions
P1 = {{1, 2}, {3}}, P2 = {{1, 3}, {2}} and P3 = {{1, 2, 3}} again. In this case we can use the
result of comparisons from overlapping partitions to determine the subset of all consistent
partitions efficiently. We would expect that at most three comparisons t[1] = t[2], t[2] = t[3]
and t[1] = t[3] would have to be performed to determine the consistent partitions.

To exploit this, we define consistency automata which are constructed from a set of
consistency partitions. A consistency automaton, abbreviated by CA, is a state machine
where every state is either a consistency state, which is labelled with a pair of positions,
or a final state, which is labelled with set of partitions. Each consistency state is labelled
with a pair of positions that should be compared. Similar labelling is also present in other
matching algorithms [Vor95]. The transitions of a CA are labelled with either 3 or 7 to
indicate that the compared positions are equal or unequal respectively. The evaluation of a
CA determines the consistency of a term w.r.t. a given set of partitions.
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Figure 3. The CA for the partitions P1 = {{1, 2}, {3}}, P2 = {{1, 3}, {2}}
and P3 = {{1, 2, 3}} where positions 1 and 2 are compared first, followed
by 1 and 3 and finally 2 and 3. The grey states are redundant and can be
removed as shown later on.

Definition 4.5. A consistency automaton is a tuple (S, δ, L, s0) where:

• S = SC ]SF is a set of states consisting of a set of consistency states SC and a set of final
states SF ;
• δ : (SC × {3,7})→ S is a transition function;
• L = LC ] LF is a state labelling function with LC : SC → P2 and LF : SF → 2I ;
• s0 ∈ S is the initial state.

We show an example to illustrate the intuition behind the evaluation function of
a CA. Consider the consistency partitions P1 = {{1, 2}, {3}}, P2 = {{1, 3}, {2}} and
P3 = {{1, 2, 3}} again. Figure 3 shows a CA that can be used to decide the consistency of a
given term t w.r.t. any of these partitions. In the state labelled with {1, 2}, the subterms t[1]
and t[2] are compared. Whenever these are equal the evaluation continues with the 3-branch
and it continues with the 7-branch otherwise. If a final state (labelled with partitions) is
reached then t is consistent w.r.t. these partitions by construction. Afterwards, we show
that redundant comparisons can be removed such that this example requires at most two
comparisons.

The evaluation function of a CA is defined in Algorithm 3. If the current state is final
then the label L(s) indicates the set of indices such that t is consistent w.r.t. the partitions
Pi for i ∈ L(s). Otherwise, evaluation proceeds by considering the pair of positions given by
SC(s). The positions given by SC(s) are unordered pairs of positions (or 2-sets), denoted
by P2, with elements {p, q} such that p 6= q. These unordered pairs avoid unnecessary
comparisons by the reflexivity and symmetry of term equality. If the comparison yields true,
the evaluation proceeds with the state of the outgoing 3-transition; otherwise it proceeds
with the state of the outgoing 7-transition.

The construction procedure of a CA is defined in Algorithm 4. Its parameters are the
automaton M that has been constructed so far, the set of partitions P and the current state
s. Additionally, parameter E contains the pairs of positions where the subterms are known
to be equal, and similarly N is the set of pairs that are known to be different. Lastly, a
selection function Select is used to define the strategy for choosing the next positions that
are compared.

The partitions in P for which a pair {p, q} of positions is known to be different are
removed as these can not be consistent. The remaining partitions form the set P ′. To denote
the remaining work concisely we introduce the notation ⊆∈ for the composition of ⊆ and



21:16 R. Erkens and M. Laveaux Vol. 17:4

Algorithm 3 Given the CA M = (S, δ, L, s0) and a term t ∈ TΣ then eval-ca(M, t)
returns the set of indices given by eval-ca(M, t, s0) such that t is consistent w.r.t. the
corresponding partitions used for constructing M .

eval-ca(M, t, s) =


LF (s) if s ∈ SF
eval-ca(M, t, δ(s,3)) if s ∈ SC ∧ t[p] = t[q] where {p, q} = LC(s)

eval-ca(M, t, δ(s,7)) if s ∈ SC ∧ t[p] 6= t[q] where {p, q} = LC(s)

∈; formally A ⊆∈ B iff ∃C ∈ B : A ⊆ C. Each pair of E that has already been compared
is removed from work. The condition on line 4 checks whether there are no choices left to
be made. If this is the case then all partitions in P ′ are consistent by construction and the
labelling function is set to yield the partitions P ′.

Otherwise, a pair {p, q} of positions in work is chosen by the Select function and two
outgoing transitions are created. A 3-transition is created that is taken during evaluation
whenever the subterms at positions p and q are equal and this information is recorded
in E. Otherwise, the fact that these are not equal is recorded in N and a corresponding
7-transition is created.

Algorithm 4 Given a set of partitions P = {P1, . . . , Pn} and a selec-
tion function Select then construct-ca(P,Select) computes a CA using
construct-ca(P,Select, (∅, ∅, ∅, s0), s0, ∅, ∅) that can be used to evaluate the consistent
partitions using eval-ca.

1: procedure construct-ca(P,Select,M, s,E,N)
2: P ′ := {Pi ∈ P | ¬∃C ∈ Pi : ∃{p, q} ∈ N : p, q ∈ C}
3: work := {{p, q} ∈ P2 | {p, q} ⊆∈ Pi ∧ Pi ∈ P ′} \ E
4: if work = ∅ then
5: M := M [SF := (SF ∪ {s}), LF := LF [s 7→ P ′]]
6: else
7: {p, q} := Select(work)
8: M := M [SC := (SC ∪ {s}), LC := LC [s 7→ {p, q}]]
9: M := construct-ca(P,Select,M [δ := δ[(s,3) 7→ s′]], s′, E ∪ {{p, q}}, N)

where s′ is a fresh unbranded state w.r.t. M .
10: M := construct-ca(P,Select,M [δ := δ[(s,7) 7→ s′]], s′, E,N ∪ {{p, q}})

where s′ is a fresh unbranded state w.r.t. M .
11: return M

The consistency automata obtained from this construction are not optimal, but later on
we show that these redundancies can be removed.

4.3. Proof of Correctness. We show the correctness of the construction and evaluation
of a CA as defined in Theorem 4.8. In the following statements let P = {P1, . . . , Pn}
be a set of partitions where each partition is a finite set of finite consistency classes and

let Select : 2P
2 → P2 be any selection function such that Select(work) ∈ work for all

non-empty work ⊆ 2P
2
. For the termination of the construction procedure we can show that

the number of choices in work strictly decreases at each recursive call.
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Lemma 4.6. The procedure construct-ca(P,Select) terminates.

Proof. Consider the pair of positions {p, q} that is taken from work at line 7. It is easy to
see that {p, q} /∈ E, and {p, q} /∈ N follows directly from the fact that P ′ only consists of
partitions of which the consistency classes do not contain positions together in a pair of
N . Therefore, it follows that in subsequent recursive calls {p, q} cannot be in work again
as either E or N is extended with {p, q} and no elements are ever removed from E or N .
Furthermore, the execution of all other statements terminates as #(P ) is finite, which also
means that |E| and |N | are finite as inserted pairs satisfy {p, q} ⊆∈ P ′. Finally, the selection
function terminates by assumption.

For the construction procedure we can show that for parameter s it holds that s /∈ S
as a precondition. Therefore, we can use work(s) : S → 2P, E(s) : S → 2P

2
and N(s) :

S → 2P
2

to denote the values of work, E and N respectively during the recursive call of
construct-ca(P,Select,M, s,E,N). For the termination of the evaluation procedure
we can show that work(s) strictly decreases for the visited states.

For the proof of partial correctness we show a relation between the pairs in E(s) and
N(s) and the comparisons performed in the evaluation function. First, we define for a term

t ∈ TΣ and parameters E,N ⊆ 2P
2

the notion of consistency where t is consistent w.r.t. E
and N , denoted by (E,N) |= t, iff:

• ∀{p, q} ∈ E : t[p] = t[q], and
• ∀{p, q} ∈ N : t[p] 6= t[q]

A consistency automaton M = (S, δ, L, s0) is well-formed iff for all terms t ∈ TΣ and all
recursive calls eval-ca(M, t, s0) = eval-ca(M, t, sn) it holds that (E(sn), N(sn)) |= t.

Lemma 4.7. Let M = (S, δ, L, s0) be the result of construct-ca(P,Select). Then M is
well-formed.

Proof. The recursive calls form an evaluation series (s0, a0), . . . , (sn, an) for si ∈ S and ai ∈
{3,7} for 0 ≤ i < n such that eval-ca(M, si, t) = eval-ca(M, si+1, t) and δ(si, ai) = si+1.
Let t ∈ TΣ be any term. We prove the statement by induction on the length of the evaluation
series.

Base case. We have E(s0) = N(s0) = ∅ and as such the statement holds vacuously.
Inductive step. Suppose that for eval-ca(M, t, s0) = eval-ca(M, t, s) the statement

holds. Suppose that eval-ca(M, t, s) = eval-ca(M, t, s′) where s′ = δ(s, a) for a ∈ {3,7}
and let LC(s) = {p, q}. There are two cases to consider:

• t[p] = t[q] in which case E(s′), where s′ is equal to δ(s,3), is E(s) extended with {p, q}
and N(s′) = N(s).
• Otherwise, t[p] 6= t[q] in which case N(s′) is equal to N(s) extended with {p, q} and
E(s′) = E(s).

In both cases (E(s′), N(s′)) |= t holds by definition.

Finally, we can show the correctness of using consistency automata to evaluate the
consistency of a given term w.r.t. partitions in P .

Theorem 4.8. Let M = (S, δ, L, s0) be the result of construct-ca(P,Select). Consider
an arbitrary term t and suppose that eval-ca(M, s0, t) = P ′. Then for all Pj ∈ P it holds
that Pj ∈ P ′ iff the term t is consistent w.r.t. Pj.
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Figure 4. Two CAs for the partitions P1 = {{1, 2}, {3, 4}} and P2 =
{{1, 2, 3}}. The CA on the left chooses {2, 3} first. However, as shown on
the right selecting {1, 2} first removes both partitions, and leads to a smaller
CA.

Proof. We have already shown termination of the construction procedure in Lemma 4.6. Let
P ′ be the set of partitions returned by eval-ca(M, t, s0), let Pi ∈ P be any partition and
eval-ca(M, t, s0) = eval-ca(M, t, sn) for some final state sn ∈ SF . By Lemma 4.7 it holds
for all {p, q} ∈ E(sn) that t[p] = t[q] and for all {p, q} ∈ N(sn) that t[p] 6= t[q].

=⇒ ) Assume that Pj ∈ P ′. For all p, q such that {p, q} ⊆∈ Pj it holds that {p, q} ∈ E(sn)
as work(sn) is equal to ∅ for sn to become a final state in the construction. Therefore, for
all p, q ∈ C for consistency class C ∈ Pj it holds that t[p] = t[q] and as such t is consistent
w.r.t. Pj .
⇐= ) Assume that term t is consistent w.r.t. Pj . Proof by contradiction, assume that
Pj /∈ P ′. As such, there is a position pair {p, q} ⊆∈ Pj such that {p, q} ∈ N(sn). However,
then it follows that t[p] 6= t[q], from which we conclude that t can not be consistent
w.r.t. Pj .

4.4. Efficiency. Similarly to APMAs we can consider the space and time measurements for
CAs. Given a CA M = (S, δ, L, s0) and a term t we define the evaluation depth, denoted by
ED(M, t), as the number of recursive eval-ca calls performed to reach the final state. The
size, denoted by |M |, is given by the number of states |S|. Note that here we refer to the
total number of states for its size, instead of only the number of final states or equivalently
its breadth. We also define the notion of relative efficiency for CAs.

Definition 4.9. Given two consistency automata M = (S, δ, L, s0) and M ′ = (S′, δ′, L′, s′0)
for a set of consistency partitions P . We say that M �M ′ iff for all terms t ∈ TΣ it holds
that ED(M, t) ≤ ED(M ′, t).

We present two ways to improve the time and space efficiency of consistency automata.
First of all, the selection function used for construction influences the size and the evaluation
time for the resulting CA as shown in Figure 4. Choosing the pair of positions {2, 3} before
{1, 2} in this example yields a CA that is both larger in size and less efficient. Therefore,
it makes sense to consider heuristics for the selection function in practice. For instance,
taking the selection function that always picks positions {p, q} to minimise the size of work
in both branches would immediately yield the right CA in Figure 4. In cases where there is
no overlap between the partitions the choice would be arbitrary.

Changing the selection function by itself does not necessarily result in the most relatively
efficient CA. If we consider Figure 3 again, we can observe that the resulting automaton
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is not optimal, despite being the smallest w.r.t. the selection function, because some of
the final states are not reached during evaluation of any term. For example, the final state
labelled with {P1, P2} is not reachable, because any term t ∈ TΣ that satisfies t[1] = t[2] and
t[1] = t[3] can not have that t[2] 6= t[3] by the transitivity of term equality. Therefore, we
can consider removing these states such that the evaluation depth of terms where evaluation
reaches these states is lower. This is essentially the notion of redundancies that was previously
defined for APMAs.

Given a CA M = (S, δ, L, s0) and a non-final state s ∈ SC we give the following
conditions for its redundancy.

Definition 4.10 (Redundancy for CAs). Let M = (S, δ, L, s0) be a CA.

• A consistency state s is 3-redundant iff for all terms t, whenever eval-ca(M, t, s0) =
eval-ca(M, t, s), then eval-ca(M, t, s) = eval-ca(M, t, δ(s,3)).
• A consistency state s is 7-redundant iff for all terms t, whenever eval-ca(M, t, s0) =
eval-ca(M, t, s), then eval-ca(M, t, s) = eval-ca(M, t, δ(s,7)).

The notion of dead states does not apply for CAs, because we explicitly keep final states
labelled with the empty set for easier definitions.

Redundant states can be removed from the automata without affecting the correctness
of its evaluation in the following way. A state s that is 3-redundant can be removed by
updating δ such that the incoming transition δ(r, a) = s, for some r ∈ S and a ∈ {3,7},
is updated to δ(s,3). A similar transformation of δ can be applied for states that are
7-redundant using δ(s,7). We can observe that such a removal reduces the evaluation depth
for terms where evaluation reached this state by one and that the size of the CA is reduced
by the number of states in the 3-branch (or 7-branch) respectively if states unreachable
by the transition relation are removed. Next, we prove that removal does not influence the
correctness of evaluation.

Lemma 4.11. Let M = (S, δ, L, s0) be any CA that is well-formed. Then the resulting CA
M ′ where a 3-redundant or 7-redundant state v ∈ S is removed remains well-formed.

Proof. The recursive calls form an evaluation series (s0, a0), . . . , (sn, an) for si ∈ S and
ai ∈ {3,7} for 0 ≤ i < n such that eval-ca(M, si, t) = eval-ca(M, si+1, t) and δ(si, ai) =
si+1. By well-formedness of M we know, for all terms t ∈ TΣ and all evaluation series
(s0, a0), . . . , (sk, ak) ∈ (S×{3,7}) of eval-ca(M, s0, t), that for all states si, with 0 ≤ i ≤ k,
it holds that (E(si), N(si)) |= t. Now, we only have to consider sequences that contain the
state v as the other evaluation sequences remain the same. Consider any such sequence and
let u be the state in that sequence such that δ(u, a) = v, for some a ∈ {3,7}, and let t be
an arbitrary term. Let {p, q} be the value of LC(v) then there are two cases to consider:

• v is 3-redundant. It follows that t[p] = t[q] for {p, q} := LC(v). All sequences such that
v occurs in it must contain exactly the pair (v,3) by definition of 3-redundancy. We
conclude that (E(u) ∪ {{p, q}}, N(u)) |= t holds and the term remains consistent with all
extensions to E and N for the remaining states in the sequence.
• v is 7-redundant. Similarly, with the observation that (E(u), N(u) ∪ {{p, q}}) |= t.

Using Lemma 4.11 and the fact that removing redundant states does not change the
labelling of any state we have shown that eval-ca(M, s0, t) = eval-ca(M ′, s0, t) for all t.
Instead of removing redundant states after constructing the CA we could also remove them
on-the-fly during the construction. Whenever a pair of positions {p, q} would result in a
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3-redundant (or 7-redundant) state we could instead change the parameters N and E to
avoid such a choice. Namely, whenever choice {p, q} would result in a 3-redundant state
then we could update E to become E ∪ {{p, q}}, and similarly for parameter N in case of a
7-redundant state. This means that the construction essentially continues as if this choice
had already been made, thus avoiding the creation of redundant states.

If we consider Figure 3 again it follows from transitivity that the left indicated state is
3-redundant and the right indicated state 7-redundant. If the indicated states are removed
then all states of the resulting CA are reachable, which could be argued for as a form of
optimum. For transitivity it is relatively straightforward to construct a procedure to identify
and remove these states. However, it would be more interesting to devise a method that
determines all redundant states. For example, there can also be redundancies due to the
fact that a term can never be equal to any of its subterms. Later on, we see that even more
redundancies can be observed from the interleaving of matching and consistency states.

4.5. Time and Space Complexity. For the time complexity we consider the number
of comparisons performed to determine the consistency. Given a set of partitions P =
{P1, . . . , Pn} we have already established a worst-case time complexity for naive consistency
checking as being O(

∑
1≤j≤n

∑
C∈Pj

|C| − 1) with a worst-case space complexity of O(1).

We establish several upper and lower bounds on the space and time complexity for CAs.
The number of comparisons performed for a given term is determined by the evaluation
depth, which is the measurement for time complexity. The upper bound is then given
by maxt∈TΣ

(ED(M, t)). Similarly, we could define the minimal evaluation depth as the
lower bound. However, since we include final states labelled with the empty set in the
CA this would simply be 1. Therefore, we consider the lower bound to be the minimum
evaluation depth reaching any final state labelled with at least one consistency partition.
The selection function is a parameter and thus we need to consider what CA will be used
for the complexity analysis. For the upper bound on time we consider the automaton where
the bound is minimised w.r.t. all possible selection function, and similarly for the upper
bound on space. On the other hand, the lower bound for both the time and space is for any
selection function.

For the upper bound of time complexity of consistency automata we can show that
each pair of positions is compared at most once. Let m be the number of unique position
pairs in the given partitions, where each pair of positions is counted at most once. First, we
show that the worst-case time complexity of the consistency automata evaluation is tightly
bounded by O(m). This is essentially the size of work for the first call to the construction
procedure, which reduces in each recursive call.

Lemma 4.12. Let P = {P1, . . . , Pn} be a set of partitions and let M be the optimal CA
resulting from construct-ca(P,Select) for some selection function Select. For any
term t ∈ TΣ the evaluation depth ED(M, t) is of complexity O(m), where m is the number
of unique position pairs in P .

Proof. Initially work = {{p, q} ⊆∈ P ′} contains at most m pairs by assumption. As shown in
the proof of Lemma 4.6 each choice of work can be made at most once by Select. Therefore,
the length of the root to a final state of the resulting CA is at most O(m), which is also an
upper bound for number of comparisons.
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Furthermore, each recursive call leads to exactly two branches, which means that the
size of any CA is bounded by O(2m). The given bounds are also tight as we can construct
the following example where the evaluation depth requires exactly m comparisons, which in
this example coincides with the number of comparisons in the naive approach.

Example 4.13. Let P be a set of partitions {{p, q} | p, q ∈ {1, . . . , k}}, which contains

exactly k(k−1)
2 consistency classes. In each recursive call |work| decreases by exactly one,

which means that it takes k(k−1)
2 comparisons to yield the set of partitions in the worst case.

Then the automaton without removing redundant states contains 2
k(k−1)

2 states.

Therefore, it follows that the upper bound on time complexity of the consistency
automata is tightly bounded up to k2 position pairs, where k is the number of positions.
Any additional partition, which necessarily only contains pairs of positions that have already
been compared, can be inferred from the comparisons that have already been made. Note
that the upper bound on evaluation depth in this example cannot be reduced by removing
redundant states, because every state on the path consisting of only 7-transitions does not
contain redundant states. Namely, it is fairly straightforward to show that there is a term
f(t0, . . . , tn) where the subterms at two positions are equal and the subterms at any other
pair of positions are unequal. Therefore, at any chain of 7-transitions it is still necessary to
check whether the 3-transition should be taken and as such the maximum evaluation depth
also remains strict for CAs where redundant states have been removed.

The lower bound on evaluation depth for CAs where redundant states have been removed
is given by number of positions in the smallest consistency partition. This bound is also
strict, because we can simply give an example with a single consistency partition. Removing
redundant states by taking transivity into account is sufficient to ensure that the evaluation
depth of the consistency automata never exceeds the worst-case time required for the naive
consistency check. However, the space required for using CAs is always higher than the
naive consistency check.

5. Adaptive Non-linear Pattern Matching Automata

We have shown in Lemma 4.4 that a naive matching algorithm for non-linear patterns can be
obtained by using a linear matching function followed by a consistency check. In that case
we have to check the consistency of all partitions returned by the linear matching function.
However, as shown in the following example overlapping patterns can unify with the same
prefix, but no term can match both patterns at the same time.

Consider the patterns: `1 : f(x, x) and `2 : f(a, b). After renaming we obtain the
following pairs `1 : (f(ω1, ω2), {{1, 2}}) and `2 : (f(a, b)), {∅}). Now, the resulting APMA
has a final state labelled with both patterns as shown in Figure 5a. We can observe that the
consistency check of positions one and two always yields false whenever the evaluation of a
term ends up in the final state labelled with {`1, `2}, because terms a and b are not equal.
Therefore, this comparison would be unnecessary.

We could also consider an alternative where the consistency phase is performed first,
but then we have the problem that whenever the given term is consistent w.r.t. partition
{1, 2} that matching on f(a, b) should be avoided. To avoid such redundancies, we propose
a combination of APMAs and CAs to obtain a matching automaton for non-linear patterns
called adaptive non-linear pattern matching automata, abbreviated as ANPMAs. The result
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Figure 5. The resulting APMA shown on the left and the corresponding
ANPMA with a grey 7-redundant state on the right.

is an automaton that has three kinds of states; match states of APMAs, consistency states
of CAs and final states, and two transition functions; one for match states and one for
consistency states.

Definition 5.1. An adaptive non-linear pattern matching automaton (ANPMA) is a tuple
(S, δ, L, s0) with

• S = SM ] SC ] SF is a set of states where SM is a set of match states, SC is a set of
consistency states and SF is a set of final states;
• δ = δF ]δC is a partial transition function with δF : SM×F⇀ S and δC : SC×{3,7} → S;
• L = LM ] LC ] LF is a state labelling function with LM : SM → P, LC : SC → P2 and
LF : SF → 2T;
• s0 ∈ SM is the initial state.

We only consider ANPMAs that have a tree structure rooted in s0. Given an ANPMA
M = (S, δ, L, s0) and a term t the procedure Match(M, s0, t) defined in Algorithm 5 defines
the evaluation of the ANPMA. It is essentially the combination of the evaluation functions
for the APMAs and CAs depending on the current state.

Algorithm 5 Given a state s of the ANPMA M = (S, δ, L, s0) and a term t, the following
algorithm computes the pattern matches of t by evaluating M on t.

Match(M, t, s) =



LM (s) if s ∈ SF

Match(M, t, δF (s, f)) if s ∈ SM ∧ δ(s, f) 6= ⊥
Match(M, t, δF (s,�)) if s ∈ SM ∧ δ(s,�) 6= ⊥ ∧ δ(s, f) = ⊥
∅ if s ∈ SM ∧ δ(s,�) = δ(s, f) = ⊥
Match(M, t, δC(s,3)) if s ∈ SC ∧ t[p] = t[q]

Match(M, t, δC(s, 7)) if s ∈ SC ∧ t[p] 6= t[q]

where f = head(t[LM (s)]) and {p, q} = LC(s)

The construction algorithm of the ANPMA is defined in Algorithm 6. It combines the
construction algorithm of APMAs (Algorithm 2) and the construction algorithm for CAs
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(Algorithm 4). The parameters that remain the same value during the recursion are the
original set L, the result of renaming Lr and the selection function Select. Next, we have
the ANPMA M , a state s and finally the current prefix pref similar to the APMA construction
and the sets of position pairs E and N as in the consistency automata construction.

Algorithm 6 Given an indexed family of patterns L ⊆ TΣ × I and an indexed family of

renamed patterns Lr ⊆ TΣP × 22P ×I this algorithm computes an ANPMA for L. Initially it
is called with M = (∅, ∅, ∅, s0), the initial state s = s0, the prefix pref = ωε, and E = N = ∅.

1: procedure ConstructANPMA(L,Lr,Select,M, s, pref, E,N)
2: L′r := {i : (`, P ) ∈ Lr | ` unifies with pref ∧ ¬∃C ∈ P : ∃{p, q} ∈ N : p, q ∈ C}
3: workF := F(pref)
4: workC := {{p, q} ∈ P2 | {p, q} ⊆∈ Pi ∧ (i : `, i : Pi) ∈ L′r ∧ pref[p] and pref[q] are defined} \ E
5: if (workF = ∅ and workC = ∅) or (L′r = ∅) then
6: M := M [SF := SF ∪ {s}, L := L[s 7→ {i : ` ∈ L | ∃`′, P : i : (`′, P ) ∈ L′r}]]
7: else
8: next := Select(workF,workC)
9: if next = pos for some position pos then

10: M := M [SM := (SM ∪ {s}), LM := LM [s 7→ pos]]
11: F := {f ∈ F | ∃(i : (`, P )) ∈ L′r : head(`[pos]) = f}
12: for f ∈ F do
13: M := M [δ := δ[(s, f) 7→ s′]] where s′ is a fresh unbranded state w.r.t. M
14: M := ConstructANPMA(L,Lr,Select,M, s′, pref[pos/f(ωpos.1, . . . , ωpos.ar(f))], E,N)

15: if ∃(i : (`, P )) ∈ L′r : ∃pos′ ≤ pos : head(`[pos′]) ∈ V then
16: M := M [δ := δ[(s,�) 7→ s′]] where s′ is a fresh unbranded state w.r.t. M
17: M := ConstructANPMA(L,Lr,Select,M, s′, pref[pos/�], E,N)

18: else if next = {p, q} for some pair {p, q} ∈ P2 then
19: M := M [SC := (SC ∪ {s}), LC := LC [s 7→ {p, q}]]
20: M := ConstructANPMA(L,Lr,Select,M [δC := δC [(s,3) 7→ s′]], s′, pref, E ∪ {{p, q}}, N)

where s′ is an unbranded state w.r.t. M .
21: M := ConstructANPMA(L,Lr,Select,M [δC := δC [(s, 7) 7→ s′]], s′, pref, E,N ∪ {{p, q}})

where s′ is an unbranded state w.r.t. M .
22: return M

First we remove the terms that do not have to be considered anymore. These are the
elements i : (`, P ) from Lr such that P is inconsistent due to the pairs in N and pref does
not unify with `. Obtaining work for both types of choices is almost the same as before.
However, for workC we have added the condition that the positions must be defined in
the prefix to ensure that these positions are indeed defined when evaluating a term. The
termination condition is that both workF and workC are empty, or that the set of patterns L′r
has become empty. The latter can happen when the inconsistency of two positions removes
a pattern, which could still have other positions to be matched.

The function Select is a function that chooses a position from workF or a pair of
positions from workC. Its result determines the kind of state that s becomes and as such
also the outgoing transitions. If a position is selected then s will become a match state
and the construction continues as in Algorithm 2. Otherwise, similar to Algorithm 4 two
fresh states and two outgoing transition labelled with 3 and 7 are created, after which the
parameters E and N are updated.

At this point we can also see that ANPMAs are a natural extension of APMAs and
CAs. In the worst case we can first select only choices in workF and whenever workF is
empty we construct only consistency states. This would be exactly the same as performing
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a linear matching algorithm using APMAs followed by a consistency check using CAs, which
is exactly the two-phase approach.

5.1. Correctness. The ANPMA construction algorithm yields an ANPMA that is suitable
to solve the matching problem for non-empty finite sets of (non-linear) patterns. This can
be shown by combining the efforts of Theorem 3.8 and Theorem 4.8.

Let L be a finite non-empty indexed family of (non-linear) patterns and let (Lr, P ) =

rename(L). Suppose that Select : 2P × 2P
2 → P ] P2 is any function such that for all

sets of positions workF and position pairs workC we have that Select(workF,workC) ∈
workF ] workC.

We extend the auxiliary definitions for APMAs as follows. A path to sn is a sequence with
both types of labels (s0, a0), . . . , (sn−1, an−1) ∈ S × (F� ] {3,7}) such that δ(si, ai) = si+1

for all i < n. A position p is called visible for state s iff there is a pair (si, ai) in path(s) such
that L(si).i = p for some 1 ≤ i ≤ ar(fi) or L(s) = ε. A state s is top-down iff s ∈ SM and
LM (s) is visible or s ∈ SC and both positions in LC(s) are visible. State s is canonical iff
there are no two match states in path(s) that are labelled with the same position. Finally we
say that an ANPMA is well-formed iff L(s0) = ε, and all states are top-down and canonical.

Lemma 5.2. The procedure ConstructANPMA(Lr, P,Select, (∅, ∅, ∅, s0), s0, ωε, ∅, ∅)
terminates and yields a well-formed ANPMA.

Proof. We only show that the recursion terminates. The rest is similar to the proof for
Lemma 3.3, with the additional observation that positions in P are only chosen when they
are defined in the prefix. Given the parameters pref1, E1, N1 and pref2, E2, N2 we can fix
the ordering:

(pref1 < pref2 ∧ E1 = E2 ∧N1 = N2) ∨
(pref1 = pref2 ∧ E1 ⊂ E2 ∧N1 = N2) ∨
(pref1 = pref2 ∧ E1 = E2 ∧N1 ⊂ N2) .

The prefixes are again only defined on positions that are defined in patterns of L and the sets
E and N are bounded by a finite product of positions, hence the ordering is well-founded.
The recursive calls conform to to this ordering; therefore the recursion terminates.

Let M = (S, δ, L, s0) be the ANPMA resulting from ConstructANPMA(L,Select). Let
t ∈ TΣ be a term and Lt be equal to {i : ` ∈ L | ` ≤ t}. For every state s ∈ S we define L(s)
to be equal to {i : ` ∈ L | i : (`′, P ) ∈ L′r(si)}. We show that the evaluation algorithm on M
satisfies a number of invariants.

Lemma 5.3. For all s ∈ S such that Match(M, t, s0) = Match(M, t, s) it holds that: (a)
(E(si), N(si)) |= t, (b) Lt ⊆ L(s) and (c) if s ∈ SF then L(sf ) = Lt.

Proof. Take an arbitrary term t. We prove the first two invariants by induction on the
length of path(s).

Base case, the empty path and as such s = s0. E(s0) = N(s0) = ∅ and Lt ⊆ L, and
L = L(s0) = L(s), as such the statements hold vacuously.

Inductive step. Let s be an arbitrary state and suppose that the statements hold for
Match(A, t, s0) = Match(A, t, s). Suppose Match(A, t, s) = Match(A, t, s′) for some
s′ = δ(s, x) such that x ∈ (F� ] {3,7})). Now, there are two cases to consider:

• s ∈ SC . Let {p, q} be the value of LC(sk). Again, there are two cases to consider:
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– t[p] = t[q] in which case E(s′) is E(s)∪{p, q} andN(s′) = N(s). Therefore, (E(s′), N(s′)) |=
t holds. Furthermore, L(s′) = L(s) because also pref(s′) = pref(s).

– Otherwise, t[p] 6= t[q] in which case N(s′) is equal to N(s) ∪ {p, q} and E(s′) = E(s).
Therefore, (E(s′), N(s′)) |= t holds. Consider any i : ` ∈ L(s) such that i : ` /∈ L(s′).
From pref(s′) = pref(s) it follows that for i : (`′, P ) ∈ Lr it holds that P is not consistent
w.r.t. t by observation that positions {p, q} ⊆∈ P are included in N and t[p] 6= t[q].
Therefore, by Lemma 4.3 it holds that i : ` /∈ Lt.

• s ∈ SM . It holds that E(s′) = E(s) and N(s′) = N(s). Therefore, (E(s′), N(s′)) |= t
remains true. Now, we can use the same argument as before to argue that any pattern
removed must not unify with pref(s′). Then the same arguments as given in Lemma 3.5
can be used to show that Lt ⊆ L(s′) holds.

Finally, if s ∈ SF from the fact that L(s) = L(s) we know that Lt ⊆ L(s). It only
remains show that L(sf ) ⊆ Lt. There are two cases for this state to become a final state
during construction:

• Both workC = ∅ and workF = ∅. Suppose for a contradiction that there is some i : ` ∈ L(sf )
such that i : ` /∈ Lt. It follows that ` � t, which means that for i : (`′, P ) ∈ Lr that
`′ 6≤ t or t is not consistent w.r.t. P by Lemma 4.3. We show that both cases lead to a
contradiction:
– Case `′ 6≤ t. This follows essentially from the same observations as Lemma 3.7.
– Case t is not consistent w.r.t. P . From the fact that pref(sf ) unifies with t and that

it is a ground term due to workF = ∅ it follows that for all p, q such that {p, q} ⊆∈ Pi
they are defined in pref(s) and therefore it holds that {p, q} ∈ E(s). Therefore, for all
p, q ∈ C for consistency class C ∈ Pi it holds that t[p] = t[q] and as such t is consistent
w.r.t. Pi. As such i is not an element of L(sf ), contradicting our assumption.

• The set L(s) is empty. In this case L(sf ) is empty and L(sf ) ⊆ Lt by definition.

Lemma 5.4. If Lt = ∅ then Match(M, t, s0) = ∅.

Proof. We show that Match(M, t, s0) 6= L(s) for all final states s for which L(s) 6= ∅. Let
sf be an arbitrary final state such that L(sf ) 6= ∅ and pick some pattern i : ` ∈ L(sf ). By
assumption ` 6≤ t and by Lemma 4.3 it holds for the pair i : (`′, P ) ∈ Lr that `′ 6≤ t or t is
not consistent w.r.t. P .

• If `′ 6≤ t then by Proposition 3.1 it follows that there is a position p and a function
symbol f ∈ F such that head(`[p]) = f and head(t[p]) 6= f . By Lemma 3.4 it must be
that head(pref(s)[p]) = f , by which there must be a pair (si, f) ∈ path(s). Since Match
is a function we again have that Match(M, t, s0) = Match(M, t, si) = Match(M, t, sf ).
However, by its definition we know that head(t[p]) = f , which contradicts the assumption
that i : ` ∈ L(sf ).
• If t is not consistent w.r.t. P . By Lemma 5.3 we know that (E(sf ), N(sf )) |= t and for

all pairs {p, q} ⊆∈ P it holds that {p, q} ∈ E for workC to become empty, because all
positions of pattern ` are defined in the prefix pref(sf ). As such t must be consistent w.r.t.
P , which contradicts the assumption that i : ` ∈ L(sf ).

Theorem 5.5. Then λt.Match(M, t, s0) is a matching function for L.

Proof. If Lt is empty then by Lemma 5.4 we get that Match(M, t, s0) = ∅ = Lt as
required. Otherwise, we have that Match(M, t, s0) = Match(M, t, sf ) for some final state
sf . Then by the definition of Match and Lemma 5.3 we conclude Match(M, t, s0) =
Match(M, t, sf ) = L(sf ) = Lt.
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5.2. The redundancy problem for ANPMAs. We have seen the notion of f -redundant
states and dead states for APMAs in Section 3. In particular Lemma 3.10 shows that the
construction by Sekar et al. eliminates all such redundancies. We have also discussed the
notion of 3-redundancy and 7-redundancy in Section 4. We repeat the notions here.

Definition 5.6. We observe the following redundancies for ANPMAs.

• Given f ∈ F�, we say that a consistency state s is f -redundant iff for all terms t, whenever
Match(M, t, s0) = Match(M, t, s), then Match(M, t, s) = Match(M, t, δ(s, f)).
• A consistency state s is 3-redundant iff, for all terms t, whenever Match(M, t, s0) =
Match(M, t, s), then Match(M, t, s) = Match(M, t, δ(s,3)).
• A consistency state s is 7-redundant iff, for all terms t, whenever Match(M, t, s0) =
Match(M, t, s), then Match(M, t, s) = Match(M, t, δ(s,7)).
• We say that a state s is dead iff for all terms t, whenever Match(M, t, s0) = Match(M, t, s),

then Match(M, t, s) = ∅.

There is a connection between the pairs in E and N , and the observed function symbols
that are represented by pref. For example, if one has (partial) knowledge of the function
symbols in t1 and one also knows that t1 = t2, then the same knowledge of the function
symbols of t2 follows by definition of term equality. The other way around we have that full
knowledge of the function symbols of both t1 and t2 makes the equality check between them
redundant. And even though checking the functions symbols of t1 first and then comparing
t1 with t2 to determine a match, we also need to be able to do this the other way around for
completeness of the optimisation.

The removal of redundant states in ANPMAs is a difficult problem in its full generality.
We describe some observations and some examples in the remainder of this section, but we
leave the full problem open for future work.

Suppose that we have a recursive call in the construction with the parameters Lr, pref, E
and N . Consider a position p ∈ F(pref). Suppose that we can derive that a match state
s with L(s) = p, would be f -redundant during the construction. Then p can be removed
from workF. From Lemma 3.10 it follows that removing redundant positions from workF is
easy in the absence of consistency partitions. But when we have partial information about
term (un)equality recorded in E and N , then it could be that the function symbols of many
positions in workF are already known.

Example 5.7. Consider the patterns `1 : f(x, x) and `2 : f(s999(x), s999(y)) where s999(x)
denotes the application of 999 unary successor symbols to the variable x. In the lucky case,
we can detect that f(t1, t2) satisfies t1 = t2. The best strategy to also detect a match for `2
would be to check whether t1 matches s999(x). This means that t2 matches s999(y) as well,
so almost half the work of checking the function symbols can be skipped.

Suppose we can derive that a consistency state s with L(s) = {p, q} will be 3-redundant.
Then (p, q) can be removed from workC as well.

Example 5.8. Consider the patterns `1 : f(x, x), `2 : f(g(a), y) and `3 : f(x, g(a)) and
suppose that the selection function prioritises checking all function symbols. Then a
consistency check for the term f(g(a), g(a)) would be redundant, since we already have full
knowledge of all function symbols.

Suppose we can derive that a consistency state s with L(s) = {p, q} will be 7-redundant.
Then the partition that gave rise to the comparison of positions p and q can be removed
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since it is inconsistent. Since this partition could have given rise to pairs in workC, and also
to positions in workF, these sets should be computed again with a reduced set of partitions
and patterns.

Example 5.9. Consider again the patterns of Example 5.8. The term f(g(a), b) only
matches `2. A consistency check to rule out `1 is redundant after checking all function
symbols, because a mismatching function symbols has already been detected.

These ideas could be captured in a procedure that replaces the first three lines in the
ANPMA construction. We expect that it is possible to define a procedure that computes
minimal sets workF and workC, along with a smaller pattern set L′r from which all derivable
inconsistent patterns have been removed. Note that to ensure correctness this procedure
also has to adapt the parameters pref, E and N internally in a similar way as the algorithm.

Conjecture 5.10. There is an algorithm RemoveRedundancies that takes the parameters
Lr, pref, E and N , and yields a (reduced) pattern set L′r ⊆ Lr and two sets workF and workC
such that: replacing lines 2-4 of ConstructANPMA by

(L′r,workF,workC) := RemoveRedundancies(Lr, pref, E,N) ,

makes ConstructANPMA yield a correct ANPMA without redundant states, for every
pattern set Lr and every selection function Select.

Note that the comparison in Example 5.7 could also be useful in the case of only the
pattern `2 : f(s999(x), s999(y)). However, the current technique does not allow us to choose
arbitrary positions to compare. Therefore, it could also be interesting to either extend the
given patterns with new patterns to allow these choices, or to extend the technique to choose
arbitrary positions for consistency checks. Similarly, it might be useful to add a comparison
state where one of the pairs is not a position, but rather a fixed term without variables.
This could be used to exploit constant time comparisons to further improve the efficiency of
the matching procedure, which would be especially useful for switch statements over natural
numbers.

We now focus on a final example to show that identifying these redundant states can be
non-trivial. However, this example shows that interleaving the matching and consistency
states can be advantageous in practice. Consider the following patterns: `1 : f(x, x),
`2 : f(x, f(x, y)), `3 : f(x, f(y, x)), `4 : f(f(x, y), x) and `5 : f(f(y, x), x). These patterns
can occur as part of an optimisation where applications of an expensive operation f can
be avoided. For example, if the f operator implements set union then f(x, x) represents
the case where the set union is computed of two equivalent sets. Similarly f(x, f(x, y))
represents the case where set union if applied to a set that already contains the set x.

These patterns are non-linear and therefore we first apply the rename function to obtain
the corresponding linear pattern and consistency partitions. This result in the following
renamed pattern set.

`1 : (f(ω1, ω2), {{1, 2}})
`2 : (f(ω1, f(ω2.1, ω2.2)), {{1, 2.1}}) `3 : (f(ω1, f(ω2.1, ω2.2)), {{1, 2.2}})
`4 : (f(f(ω1.1, ω1.2), ω2), {{1.1, 2}}) `5 : (f(f(ω1.1, ω1.2), ω2), {{1.2, 2}})

If we consider the APMA for the set of linear patterns: f(ω1, ω2), f(ω1, f(ω2.1, ω2.2)) and
f(f(ω1.1, ω1.2), ω2) then we can easily see that it takes three steps to reach any of the final
states. Namely, we check the positions ε, one and two for the occurrence of the head symbol
f and then we obtain the subset of patterns that match, which can be either {`1}, {`1, `2, `3},
{`1, `4, `5} or {`1, `2, `3, `4, `5}. After that a consistency automaton or naive consistency
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check requires exactly one comparison for each element in the set to determine the set of
consistent partitions.

However, the consistency automaton contains some redundancies. For example, whenever
the partition of `1 is consistent w.r.t. a term t it cannot be the case that any of the other
partitions are consistent w.r.t. term t, because a term cannot be equal to any of its subterms.
Formally, this means that t 6= t[i] for any natural number i, which can be proven by structural
induction on terms. We can generalise this statement such that for any positions p and
r 6= ε it holds that t[p.r] 6= t[p].

This observation can be used to avoid the previously mentioned redundancy. If for any
term t it holds that t[1] = t[2] then only partition {1, 2} can be consistent with respect to
t. Furthermore, if we know that for a term t[1.1] = t[2] then t[1.1.1] = t[2.1] by definition
of equality and since t[1] 6= t[1.1.1] by the observation above it follows that t[1] 6= t[2.1].
Therefore, we can conclude that if t[1.1] = t[2] then only patterns `4 and `5 can match.
Similarly, if t[1] = t[2.1] then only patterns `2 and `3 can match. Using these observations
we can construct the ANPMA without redundancies that is shown in Figure 6.

ε

{1, 2}

{`1} 1

{1.1, 2} 2

{1.2, 2} {1.2, 2} {1, 2.1}

{`4, `5} {`4} {`5} 2 {1, 2.2} {1, 2.2}

{1, 2.1} {`2, `3} {`2} {`3} ∅

{1, 2.2} {1, 2.2}

{`2, `3} {`2} {`3} ∅

f

3
7
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3
7

f

3
7 3

7
3

7

f
3

7 3
7

3
7

3
7 3

7

Figure 6. The pruned ANPMA for the patterns `1 : f(x, x), `2 :
f(x, f(x, y)), `3 : f(x, f(y, x)), `4 : f(f(x, y), x) and `5 : f(f(y, x), x).

This ANPMA is both smaller in the number of states when compared to an APMA
followed by individual CAs. Furthermore, its evaluation depth for all terms that match the
patterns `1, `2 and `3 is strictly smaller than without interleaving. For the patterns `4 and
`5 the evaluation depth remains the same. Therefore, this example shows that interleaving
the two phases and removing redundancies can yield a more efficient non-linear matching
procedure in practice.
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6. Conclusion and Future Work

In this paper, we presented a formal proof for the correctness of APMAs. Furthermore, we
introduced as a deterministic automaton to perform the consistency checking, from which
some redundant states could be removed by taking the previous choices into account. These
two automata are then combined to obtain an ANPMA which could be evaluated by only
performing comparisons and taking the corresponding outgoing edge.

ANPMAs offer a formal platform to study the relations between linear pattern matching
and consistency checking. There are still some questions that have arisen from this work.
As mentioned in the previous section, the current ANPMA construction algorithm can
contain redundant states. We expect that there is an optimisation function as described in
Conjecture 5.10 that takes care of this problem. But it might just as well be the case that
this problem is undecidable altogether.

Secondly we did not study selection functions in this work. All three automaton
construction algorithms in this paper are parametrised in a selection function that decides
for each node what will happen next. We have shown that all constructions yield correct
automata for every selection function, with the side note that the selection indeed yields
an element from its input set. The size of all three kinds of automata depends heavily on
the selection function that is used. For APMAs some selection functions have already been
studied in [SRR95].

Finally, it would be interesting to implement this approach. This work is a theoretical
approach to ultimately reduce the number of steps that matching requires in for example
a term rewrite engine. However, many of the existing pattern matching problems do not
support non-linear pattern matching as discussed in the introduction. It would be interesting
to find out whether exploiting O(1) term equality checking is worth the construction time
and in particular the identification of redundant states in practice.
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Appendix A. Proof details of Section 3

A.1. Proof details of Lemma 3.5.

Proof. By induction on the length of path(s). If there are no pairs in path(s) then it must
be that s = s0. From pref(s0) = ωε it follows that L(s0) = L. Then the base case follows
from Lt ⊆ L = L(s0) = L(s).

Let s be an arbitrary state and suppose that Match(M, t, s0) = Match(M, t, s) and as-
sume the induction hypothesis Lt ⊆ L(s). Now suppose Match(M, t, s) = Match(M, t, s′)
where s′ = δ(s, f) for some f ∈ F� and let L(s) = p.

• If f ∈ F then pref(s′) = pref(s)[p/f(ωp.1, . . . , ωp.ar(f))]. By definition of Match we know
that head(t[p]) = f .

Let ` ∈ Lt. We show that ` unifies with pref(s′). We know that ` ≤ t by assumption.
From the induction hypothesis it follows that ` unifies with pref(s). So there is a term u
such that ` ≤ u and pref(s) ≤ u. Then we distinguish two cases.
– If `[p′] is a variable for some p′ v p then ` unifies with pref(s′).
– If head(`[p]) is a function symbol then by ` ≤ t it must be that head(`[p]) = f , so `

unifies with pref(s′).
• If f = � then pref(s′) = pref(s)[p/�]. By definition of Match we know that δ(s, head(t[p]))

is undefined.
From the construction algorithm we then know that there is no pattern ` ∈ L(s) such

that head(`[p]) ∈ F and there is at least one pattern ` ∈ L(s) such that `[p′] is a variable
for some position p′ v p.

Let ` ∈ Lt. By induction hypothesis we know that ` unifies with pref(s). We show that
` unifies with pref(s′) by showing that `[p′] = ωp′ for some position p′ v p.
– Suppose that `[p] exists. Since ` ≤ t and head(t[p]) 6= head(`[p]) it must be that
`[p] = ωp.

– Suppose that `[p] does not exist. Pick the lowest position p′ such that p′ @ p and `[p′]
exists and assume for a contradiction that head(`[p′]) = f for some function symbol
f . Then it must be that head(pref(s)[p′]) = f by the induction hypothesis. However,
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pref(s)[p] exists and from p′ @ p it follows that `[p] has subterms of the function symbol
f , which contradicts the assumption that p′ is the lowest position strictly higher than p.
So `[p′] = ωp′ .

A.2. Proof details of Lemma 3.6.

Proof. a) We show that Match(M, t, s0) 6= L(s) for all final states s. Let sf be an
arbitrary final state and pick some pattern ` ∈ L(sf ). By assumption ` 6≤ t and by
Proposition 3.1 it follows that there is a position p and a function symbol f ∈ F such that
head(`[p]) = f and head(t[p]) 6= f . By Lemma 3.4 it must be that head(pref(s)[p]) = f ,
by which there must be a pair (si, f) ∈ path(s). Since Match is a function we have
Match(M, t, s0) = Match(M, t, si) = Match(M, t, sf ). Then, by definition of Match
we obtain head(t[p]) = f , a contradiction.

b) Let ` ∈ Lt. We prove that for all s such that Match(M, s0, t) = Match(M, s, t), we
have that δ(s, head(t[L(s)])) or δ(s,�) is defined.

Suppose that Match(M, s0, t) = Match(M, s, t). From Lemma 3.5 it follows that
` ∈ L(s). If head(`[L(s)]) = f for some function symbol f then the construction
algorithm created an f -transition to a new state, by which δ(s, f) exists. Otherwise if
head(`[L(s)]) does not exist then by ` ≤ t there must be a position p @ L(s) such that
`[p] = ωp. In that case a �-transition is created and hence δ(s,�) exists.

By definition of Match we then have that Match(M, s0, t) cannot yield the empty
set, so it must terminate in a final state.

A.3. Proof details of Lemma 3.7.

Proof. Since L(sf ) = L(sf ) we know that Lt ⊆ L(sf ) by Lemma 3.5. It only remains show
that L(sf ) ⊆ Lt. Since sf is a final state we have that L(sf ) = {` ∈ L | ` ≤ pref(sf )}.
Suppose for a contradiction that there is some ` ≤ pref(sf ) such that ` 6≤ t. Then there
is a position p such that head(`[p]) ∈ F and head(t[p]) 6= head(`[p]). We have head(`[p]) =
head(pref(sf )[p]) by assumption. So, there is a pair (si, fi) in path(sf ) such that L(si) = p.
By definition of Match we then have head(t[p]) = fi = head(`[p]), a contradiction.
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