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Abstract. One of the key aspects in component-based design is specifying the software ar-
chitecture that characterizes the topology and the permissible interactions of the components
of a system. To achieve well-founded design there is need to address both the qualitative
and non-functional aspects of architectures. In this paper we study the qualitative and
quantitative formal modelling of architectures applied on parametric component-based
systems, that consist of an unknown number of instances of each component. Specifically,
we introduce an extended propositional interaction logic and investigate its first-order
level which serves as a formal language for the interactions of parametric systems. Our
logics achieve to encode the execution order of interactions, which is a main feature in
several important architectures, as well as to model recursive interactions. Moreover, we
prove the decidability of equivalence, satisfiability, and validity of first-order extended
interaction logic formulas, and provide several examples of formulas describing well-known
architectures. We show the robustness of our theory by effectively extending our results
for parametric weighted architectures. For this, we study the weighted counterparts of
our logics over a commutative semiring, and we apply them for modelling the quantitative
aspects of concrete architectures. Finally, we prove that the equivalence problem of weighted
first-order extended interaction logic formulas is decidable in a large class of semirings,
namely the class (of subsemirings) of skew fields.

1. Introduction

Well-founded design is a key principle for complex systems in order to guarantee correctness
and performance. Rigorous formalisms in systems engineering are mainly component-
based that allow reconfigurability and validation [BS08]. Component-based design lies in
constructing multiple components which coordinate through their interfaces in order to
generate the global model for a system [GS11]. In such a setting, one of the main issues
in the modelling process is defining the communication patterns of systems. Coordination
principles among components can be specified by means of architectures, which characterize
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the permissible interactions and their implementation order, as well as the underlying
topology of the systems [MBBS16b, MG16]. Architectures have been proved important in
the modelling of systems since they enforce design rules on the components, and hence
ensure correctness by construction with respect to basic properties such as mutual exclusion
[BHM19, BIS19a, KG06, MBBS16b].

The formal modelling of architectures is a well-known problem of component-based
systems and has been investigated with versatile approaches. Some existing frameworks focus
on modelling only the components’ connections [MBBS16b, PR17], while other integrate the
specification of components’ behavior and communication in order to express requirements
[BIS19a, MG16]. In some cases the proposed formal approaches are further supported by
graphical languages for characterizing architectures or tools for the verification of component-
based systems and their architectures (cf. [KG06, KKW+16, MBBS16a, MT00]). Although,
there is several work on the qualitative modelling of architectures, this has not been the
case for their quantitative aspects. In this paper we propose a formal approach for the
characterization of architectures where components’ communication is expressed without
incorporating their behavior. Moreover, our framework addresses not only the qualitative
but also the weighted setting for specifying architectures, which is the main novelty of our
contribution. The consideration of the quantitative properties of architectures is crucial
for the efficient design of component-based systems. Cross-cutting concerns involve timing
constraints, available resources, energy consumption, probabilities, etc., for implementing
the communication among the systems’ components. Consequently, in order to model such
optimization issues there is need to study architectures in the weighted setup [ADFL19,
BF13, PR17].

The current paper introduces a generic framework for the qualitative and quantitative
modelling of architectures applied to a wide class of large systems, and specifically to
parametric systems. Parametric systems are component-based systems found in several
applications including communication protocols, concurrent processes, and distributed
algorithms [AD16, BJK+16, DYBH12]. Parametric systems are constructed by a finite
number of component types whose number of instances is unknown, i.e., is a parameter for
the system. Hence, specifying the architecture of parametric systems is challenging since
their components’ number is not known in advance, affecting in turn the interactions that
define their communication. On the other hand, efficient characterization of architectures is
important in parametric systems’ design for identifying decidable classes of their verification
problem, that is undecidable in general if unbounded data is exchanged [AKR+18, BJK+16,
EGLM16].

The formal characterization of parametric architectures proposed in this work is logic-
based. In particular, we firstly introduce and investigate a first-order extended interaction
logic, namely FOEIL, that models efficiently the qualitative characteristics of parametric archi-
tectures. In turn we consider its weighted counterpart, weighted FOEIL over a commutative
semiring K, in order to address the corresponding non-functional aspects. In contrast to exist-
ing logics for modelling parametric architectures [BIS19a, BIS19b, KKW+16, MBBS16b], our
FOEIL achieves to encode the execution order of the interactions imposed by the correspond-
ing architecture as well as to describe recursive interactions. Specifically, several parametric
architectures found in applications, including Publish/Subscribe and Request/Response,
impose restrictions on the order of the permissible interactions [Dai12, ZMJ12]. For instance,
in a Publish/Subscribe architecture a subscriber cannot receive a message from a topic of its
interest if beforehand a publisher has not transferred the message to the particular topic. On
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the other hand, distinct subscribers may express their interest to the same topic in any order.
Our logic is proved sufficient enough to model such order restrictions. Moreover, we allow
recursion in the components’ interactions which in turn implies that we can characterize the
subsequent implementation of an architecture during a parametric system’s operation. Then,
our weighted FOEIL maintains the qualitative attributes of FOEIL, and also models the
quantitative properties of parametric architectures, such as the total cost of the interactions
or the probability of the implementation of concrete interactions.

In our setting we model components with the standard formalism of labelled transitions
systems (cf. [AP11, APR06, BS08]). Then, communication of components is performed by
their associated set of labels, called ports. In turn, architectures are modelled by FOEIL
formulas encoding the order and recursion of the respective allowed interactions, which
are defined by nonempty sets of ports. The presented logic-based modelling framework of
architectures does not require the knowledge of the actual transitions of the components since
it is constructed on the corresponding set of ports of the given system. As a result our theory
does not consider the components’ behavior and can be applied to every component-based
framework where the system’s interface is described by a set of ports. For the weighted
setup we associate each port with a weight that represents the ‘cost’ of its participation
in an interaction. The weights of the ports range over a commutative semiring K and we
formalize the quantitative aspects of parametric architectures by weighted FOEIL formulas
over K. In particular, the contributions of the current paper are the following:

(1) We introduce Extended Propositional Interaction Logic (EPIL for short) over a
finite set of ports, which augments PIL from [MBBS16b] with three operators namely the
concatenation operator ∗, the shuffle operator �, and the iteration operator +. In contrast to
classical PIL, where the satisfaction relation is checked against interactions (nonempty sets of
ports), the formulas of EPIL are interpreted over finite words whose letters are interactions
over the given set of ports. Intuitively, the semantics of concatenation operator specifies
consecutive interactions while the semantics of shuffle operator encodes interleaving, i.e., all
possible orders for the execution of permissible interactions in the system. Moreover, the
iteration operator serves for modelling recursive interactions in the architecture. We apply
EPIL formulas for formalizing the architectures of component-based systems with ordered
interactions, and specifically we present three examples with the architectures Blackboard
[Cor91], Request/Response [Dai12], and Publish/Subscribe [EFGK03].

(2) We introduce the first-order level of EPIL, namely First-Order Extended Interaction
Logic (FOEIL for short), as a modelling language for the architectures of parametric systems.
The syntax of FOEIL is equipped with the syntax of EPIL, the common existential and
universal quantifiers, and four new quantifiers, namely existential and universal concatenation
and shuffle quantifiers. The new quantifiers achieve to encode the partial and whole
participation of component instances in sequential and interleaved interactions of parametric
architectures. For the semantics of FOEIL we consider triples consisting of a mapping
defining the number of component instances in the parametric system, an assignment that
attributes a unique identifier to the ports of each component instance, and a finite word of
interactions.

(3) We show the expressiveness of FOEIL by providing several examples for architectures
of parametric component-based systems. In particular we consider the architectures Black-
board, Request/Response and Publish/Subscribe which impose orders on the implementation
of their interactions, as well as Master/Slave [MBBS16b], Star [MBBS16b], Repository
[CGB+10], and Pipes/Filters [GS93] whose interactions may be executed in arbitrary order.
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(4) We study decidability results related with FOEIL. For this, we firstly state an
effective translation of FOEIL formulas to finite automata. The best case run time of our
translation algorithm is polynomial and the worst case is exponential. In turn, we obtain
the decidability of equivalence and validity for FOEIL sentences in doubly exponential time,
and the decidability of satisfiability for FOEIL sentences in exponential time.

(5) We introduce weighted Extended Propositional Interaction Logic (wEPIL for short)
over a finite set of ports and a commutative semiring K for representing the weights. wEPIL
extends weighted Propositional Interaction Logic (wPIL for short) from [PR17, PR20a] with
three new weighted operators, namely the weighted concatenation operator �, the weighted
shuffle operator $, and the weighted iteration operator ⊕. Intuitively these operators allow
to encode the weight of consecutive, interleaving, and recursive interactions in weighted
component-based systems, respectively. We interpret wEPIL formulas as series defined over
finite words and K. In turn, we study the first-order level of wEPIL, namely weighted
First-Order Extended Interaction Logic (wFOEIL for short) over K for modelling parametric
weighted architectures. wFOEIL is equipped with the corresponding operators and quantifiers
of FOEIL in the weighted setup, and is interpreted against series over K.

(6) We provide examples which show that wEPIL and wFOEIL serve sufficiently for
modelling the quantitative aspects of architectures with ordered and recursive interactions.
Then, for different instantiations of the semiring K in our examples we derive alternative
interpretations for the resulting cost of the allowed interactions, that corresponds to some
quantitative characteristic. Similarly to the unweighted setting, we show that we can also
apply wFOEIL, and hence wEPIL, for expressing weighted architectures whose interactions
may be executed in arbitrary order.

(7) Finally, we establish a translation of wFOEIL formulas to weighted automata. We
show that the worst case run time for our translation algorithm is doubly exponential and the
best case run time is exponential. Then, we prove the decidability of equivalence of wFOEIL
sentences in doubly exponential time over a large class of semirings, namely (subsemirings
of) skew fields. Therefore, the complexity remains the same with the one for the decidability
of equivalence of FOEIL sentences, which depicts the robustness of our theory.

A preliminary version of this paper appeared in [PR20b]. The present version extends
the work of [PR20b] as follows:

- We equip EPIL and FOEIL with the iteration operator +, and hence we model the
repetition of the interactions in parametric architectures. Therefore, the overall results in
the paper have been modified accordingly to incorporate recursion.

- We present extensive descriptions for the examples considered in [PR20b] and we
provide several new examples of architectures modelled by FOEIL sentences. Moreover, we
present the detailed proofs for the decidability results of FOEIL.

-We introduce a whole new section that actually comprises half of the current contribution,
and addresses the quantitative formal modelling of parametric architectures. In particular,
we provide the weighted counterparts of EPIL and FOEIL, we apply them on concrete
weighted architectures, and we investigate the corresponding decidability results.

The structure of the paper is as follows. In Section 2 we discuss related work and
in Section 3 we recall the basic notions for component-based systems and interactions.
Then, in Section 4 we introduce the syntax and semantics of EPIL and present examples of
architectures defined by EPIL formulas. In Section 5 we introduce the syntax and semantics
of our FOEIL and provide examples of FOEIL sentences describing concrete parametric
architectures. Section 6 deals with the decidability results for FOEIL sentences. Then,
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in Section 7, we introduce and study wEPIL and wFOEIL over a commutative semiring.
Finally, in Conclusion, we present open problems and future work.

2. Related work

Existing work in parametric architectures has investigated their formal modelling mainly
in the qualitative setting. Among the several instantiations of the problem is included
the study of static [BIS19a, KKW+16] or dynamic architectures [BJMS12, CST18, MG16],
of architectures with data [BHM19, Hea16] as well as of the architectures’ composition
problem [ABB+16, BHM19]. On the other hand, some work focus on the modelling of
architectures without considering the underlying behavior of the components [KKW+16,
MBBS16b, PR17], while other deal with the specification both of components’ behavior
and communication [BIS19a, MG16]. In some cases the proposed formal approaches are
supported by graphical languages or tools for characterizing and verifying architectures (cf.
[KG06, KKW+16, MBBS16a, MT00]). In the sequel we present an extensive description of
some work, in the qualitative and in the weighted setup, that is closely related with our
framework. Our modelling approach differs from each of the work discussed below in at
least one of following directions: 1) it is logic-based, 2) it deals with ordering constraints
and recursion in the parametric communication, 3) it addresses the quantitative modelling
of parametric architectures that has not been considered in most of the existing frameworks.

In [MBBS16b] the authors introduced a Propositional Configuration Logic (PCL for
short) as a modelling language for the description of architectures. A configuration was
defined as a set of interactions over a given set of ports. PCL formulas were obtained by the
formulas of PIL using the operations of union, intersection and complementation, as well
as a new operator, called coalescing operator, for expressing combination of configuration
sets. PCL was interpreted over configurations and the authors proved the decidability of
equivalence of its formulas in an automated way using the Maude language. In [MBBS16b]
it was also studied the first- and second-order configuration logic for describing parametric
architectures (called styles of architectures in that paper). The first-order level of PCL
was applied for modelling Master/Slave, Star, Pipes/Filters, Repository, Blackboard, and
Request/Response architectures, while the second-order level of PCL encoded Ring, Grid,
and Linear architectures. In the subsequent work [MBBS16a] the authors supported their
framework with a graphical language, based on architecture diagrams, for describing ar-
chitecture styles. Both our FOEIL and the first-order of PCL can express sufficiently the
same parametric architectures, while the study of second-order level of EPIL is work in
progress. Our contribution with respect to the work of [MBBS16b] is that our logics achieve
to model the order of implementing components’ interactions, that cannot be captured
by PCL. We further clarify this by Remark 4.6 presented in Section 4.1 that discusses an
example on a Blackboard architecture. Another difference is that we also consider recursion
in architectures, and mainly that we investigate the quantitative modelling of parametric
architectures that has not been addressed in [MBBS16b].

In [KKW+16] the first-order level of propositional interaction logic with arithmetics,
namely FOIL, was introduced to describe finitely many interactions for parametric systems
in BIP (Behavior-Interaction-Priority) framework (cf. [BS08]). The syntax of FOIL was
built on a set of ports (of the parametric components), the common disjunction and
conjunction operators, the existential and universal quantifiers, and formulas in Presburger
arithmetic. FOIL formulas modelled the permissible interactions of parametric architectures
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as sets. In [KKW+16] the authors provided also a framework and a prototype with FOIL
templates for identifying the architecture of a random parametric BIP model, which was
then associated with a known verification method for the particular type of communication.
FOIL served sufficiently for expressing several classical architectures including token-passing
rings, rendezvous cliques, broadcast cliques, and rendezvous stars. However, in contrast to
our logic, FOIL cannot encode order restrictions imposed on the execution of interactions
since its formulas return sets of interactions. For this, FOIL was not applied for modelling
complex architectures such as Request/Response or Publish/Subscribe. On the other hand,
the use of arithmetic constraints in FOIL formulas allowed the logic to describe token-passing
ring architectures, that in our setting could be expressed by the second-order level of EPIL.

In [BIS19a] the authors introduced Monadic Interaction Logic (MIL for short) as an
alternative logic for interactions of parametric systems. MIL syntax was equipped with
first-order variables referring to instances of the parametric components, equality checking
of variables, state and port symbols, the disjunction and negation operations, as well as with
the common existential quantifier of first order variables. Although, MIL achieved to encode
rendezvous and broadcast communication in parametric systems, it was not considered for
modelling architectures since it did not include cardinality constraints. The authors applied in
turn MIL for the development of an automated method for detecting deadlocks in parametric
systems. In the same line, in [BIS19b] the authors and introduced Interaction Logic with
One Successor (IL1S for short) for describing rendezvous and broadcast communication as
well as several architectures in parametric systems. In particular, IL1S preserved the syntax
and semantics of MIL with the difference that it also involved a cyclic modulo-type successor
function, and hence achieved to model architectures of ring, linear, and pipeline type, as
well as architectures with tree-like structures. IL1S was proved to be decidable and was used
to define parametric invariants for checking correctness of safety properties in parametric
systems.

Our work is positioned with respect to the logics presented in [BIS19a, BIS19b] as
follows. FOEIL achieves to model architectures in contrast to MIL that described only the
communication type among interactions. On the other hand, IL1S described architectures
that in our framework can be expressed with the second-order level of EPIL, which we study
in a forthcoming paper. However, the work of [BIS19b] did not include the modelling of
more involved architectures such as Request/Response or Publish/Subscribe. Moreover,
the semantics of MIL and IL1S formulas did not consider recursive interactions and their
execution order imposed by each architecture, which is one of our main contributions.
Extending our results for the verification of parametric systems against safety properties,
following a methodology similar to the work of [BIS19a, BIS19b], is left as future work.

BIP is a modelling framework that supports the rigorous design of behavior and
coordination of component-based systems. One of the main features in BIP framework
is ‘priorities among interactions’ in a component-based system (cf. for instance [BS08]).
A priority system is determined by a strict partial order ≺ among the set of permitted
interactions. Hence if a ≺ a′ for two interactions a and a′, then a′ must be implemented
before a since it has higher priority. It should be clear that the priority system of BIP
cannot describe the required orders of interactions in complex architectures. Specifically,
the set of strings of interactions satisfying an EPIL sentence containing a shuffle operator,
cannot be obtained by any strict partial order among the set of interactions.

Hennessy and Milner introduced in 1985 (cf. [HM85]) a logic, called HML, as a calculus
for the specification of concurrent programs and their properties. In [FAI17] the authors
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investigated µHML, i.e., HML with recursive formulas expressing least and greatest fixpoints
and focused on a fragment of that logic which can be monitored for runtime verification of
programs’ execution. That logic succeeded to describe simple client/server type processes
but it is far from describing complex architectures. Specifically our shuffle operator cannot
be described by means of µHML.

Coordination of distributed systems was also investigated in [GT19] (cf. also [TG18]).
Specifically, the authors developed a theoretical framework and a prototype for studying the
realizability problem of coordination in terms of pomsets. In that setting the repetition and
order of input and output components’ actions were considered. Though, due to the imposed
orders of pomsets, our shuffle operator cannot be sufficiently described in this framework.
For instance, the subfomula ϕ1�ϕ2 of the EPIL formula ϕ describing the Publish/Subscribe
architecture (cf. Example 4.8) cannot be described by means of pomsets.

Alternative modelling frameworks for the communication patterns of software compo-
nents include session types and behavioral contracts (cf. [Hea16]). In [DYBH12] the authors
introduced a type theory for multiparty sessions to globally specify parametric communi-
cation protocols whose interactions carry data and their topology is specified by the Ring,
Star, or Grid architectures. The authors showed that their type-checking algorithm ensured
type-safety and deadlock-freedom of parameterised multiparty communication protocols.
Moreover, in [CDA16] the authors introduced a novel session type system and a language to
describe multi-actor communication in parameterized protocols. The proposed type theory
included operators for describing exclusive, sequential, concurrent events as well as their
arbitrary reorderings using a shuffling operator. Then the authors applied their type system
for static verification of asynchronous communication protocols. In contrast to our setting,
the parametric framework of [DYBH12] did not address the sequential and interleaving
interactions of processes, while the work of [CDA16] did not consider the modelling problem
of architectures in parameterized systems.

Although there has been an abundance of work for parametric systems in the qualitative
setting this has not been the case for the quantitative one. Some work for quantitative
parametric systems was considered in [ADFL19, BF13, EGLM16, Fou15, KP20, PR17,
PR20a]. Specifically, in [EGLM16] the authors studied the model checking problem of
population protocols against linear-time specifications. Population protocols form a specific
class of parametric systems, in which a set of identical and anonymous finite-state processes
interact pairwise through rendezvous synchronization. The authors obtained a decidability
result for the qualitative problem i.e., deciding if a linear temporal logic formula holds with
probability 1, while undecidability was proved for the quantitative problem that is deciding
if the property holds with at least a given probability. Although the work of [EGLM16]
studied the quantitative model checking problem in the parameterized setting, it did not
actually modelled the quantitative aspects of parametric communication that we address
in our framework. Moreover, in contrast to our approach the systems’ architecture was
not considered in the design process of [EGLM16]. As result, the order restrictions and
recursion in parametric communication was not addressed in the modelling of the protocols’
topologies.

In [BF13, Fou15] the authors considered broadcast communication and clique’s topology
for networks of many identical probabilistic timed processes, where the number of processes
was a parameter. Then, they investigated the decidability results of several qualitative
parameterized verification problems for probabilistic timed protocols. In the subsequent
work of [ADFL19] the authors extended broadcast protocols and parametric timed automata
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and introduced a model of parametric timed broadcast protocols with two different types of
parameters, namely the number of identical processes and the timing features. Parametric
communication in [ADFL19] was defined by clique’s semantics where every message reached
every process, and by reconfigurable semantics where the set of receivers was chosen non-
deterministically. Then the decidability of reachability problems were studied for parametric
timed broadcast protocols in [ADFL19]. The main difference of our contribution and the work
of [ADFL19, BF13, Fou15] is that we introduce a logic-based approach for the quantitative
modelling of arbitrary parametric architectures. Also, the topologies of the protocols
studied in the aforementioned work did not consider recursion. Moreover, we investigate the
modelling problem of more complicated parametric architectures such as Publish/Subscribe
or Request/Response. On the other hand, the authors of [ADFL19, BF13, Fou15] obtained
several nice verification results for concrete parameterized protocols. Applying our framework
for the study of parametric verification is left as a future work direction.

Finally, according to our best knowledge the only weighted logic-based approach for the
modelling of architectures is found in the recent work of [KP20, PR17, PR20a]. Specifically, in
[PR17, PR20a] the authors studied PCL in the weighted setup for modelling the quantitative
aspects of architectures. The formulas of the resulting logic, namely weighted PCL (wPCL for
short), were interpreted as polynomials with values over a commutative semiring. Soundness
was proved for that logic and the authors obtained the decidability for the equivalence
problem of its formulas. In [KP20] the authors extended the work of [PR17, PR20a] and
studied weighted PCL over a product valuation monoid. That algebraic structure allowed
to compute the average cost as well as the maximum cost among all costs occurring most
frequently for executing the interactions within architectures. The authors applied that logic
to model several weighted software architectures and proved that the equivalence problem
of its formulas is decidable. In contrast to our setting, the work of [KP20, PR17, PR20a]
described architectures without addressing ordered or recursive interactions. Parametric
weighted architectures were considered only in [PR17] using the weighted first-order level
of weighted PCL, namely weighted FOCL. Nevertheless, weighted FOCL considered no
execution order of the interactions of parametric weighted architectures.

3. Preliminaries

3.1. Notations. For every natural number n ≥ 1 we denote by [n] the set {1, . . . , n}. Hence,
in the sequel, whenever we use the notation [n] we always assume that n ≥ 1. For every set
S we denote by P(S) the powerset of S. Let A be an alphabet, i.e., a finite nonempty set.
As usual we denote by A∗ the set of all finite words over A and we let A+ = A∗ \ {ε} where
ε denotes the empty word. For every word w ∈ A∗ we let |w| denote the length of w, i.e.,
the number of letters comprising w. Given two words w, u ∈ A∗, the shuffle product w� u
of w and u is a language over A defined by

w� u = {w1u1 . . . wmum | w1, . . . , wm, u1, . . . , um ∈ A∗ and w = w1 . . . wm, u = u1 . . . um}.
Let L1, L2, L ⊆ A∗ be languages over A. Then, the Cauchy product L1 ∗L2 of L1 and L2,

the shuffle product L1�L2 of L1 and L2, and the iteration L+ of L are defined respectively,
by:

- L1 ∗ L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2},
- L1 � L2 =

⋃
w1∈L1,w2∈L2

w1 � w2,
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- L+ =
⋃
ν≥1 L

ν , where L1 = L, Lν+1 = Lν ∗ L, and ν is a natural number.

Shuffle operation has been widely studied in formal languages and in concurrency theory
in order to model parallel composition semantics of concurrent processes [AI07, Res15].
According to the algebraic definition, the shuffle operator returns the set of all possible
interleavings of the corresponding objects. Similarly to the work of [CDA16, Hea16], the
motivation to introduce a shuffle type of operator and quantifier in our logics lies in encoding
any possible order (interleaving) of sequences of interactions within architectures. The study
of parametric systems with concurrent semantics is not considered here, though it could be
investigated in future work.

3.2. Semirings. A semiring (K,+, ·, 0, 1) consists of a set K, two binary operations + and
· and two constant elements 0 and 1 such that (K,+, 0) is a commutative monoid, (K, ·, 1)
is a monoid, multiplication · distributes over addition +, and 0 · k = k · 0 = 0 for every
k ∈ K. If the monoid (K, ·, 1) is commutative, then the semiring is called commutative. The
semiring is denoted simply by K if the operations and the constant elements are understood.
The result of the empty product as usual equals to 1. If no confusion arises, we denote
sometimes in the sequel the multiplication operation · just by juxtaposition. The following
algebraic structures are well-known commutative semirings.

• The semiring (N,+, ·, 0, 1) of natural numbers,

• the semiring (Q,+, ·, 0, 1) of rational numbers,

• the semiring (R,+, ·, 0, 1) of real numbers,

• the Boolean semiring B = ({0, 1},+, ·, 0, 1),

• the arctical or max-plus semiring Rmax = (R+ ∪ {−∞},max,+,−∞, 0) where R+ = {r ∈
R | r ≥ 0},
• the tropical or min-plus semiring Rmin = (R+ ∪ {∞},min,+,∞, 0),

• the Viterbi semiring ([0, 1] ,max, ·, 0, 1) used in probability theory,

• every bounded distributive lattice with the operations sup and inf, in particular the fuzzy
semiring F = ([0, 1],max,min, 0, 1).

A semiring (K,+, ·, 0, 1) is called a skew field if the monoids (K,+, 0) and (K \ {0}, ·, 1)
are groups. For instance, (Q,+, ·, 0, 1) and (R,+, ·, 0, 1) are skew fields, and more generally
every field is a skew field.

A formal series (or simply series) over A∗ and K is a mapping s : A∗ → K. The
support of s is the set supp(s) = {w ∈ A∗ | s(w) 6= 0}. A series with finite support

is called a polynomial. The constant series k̃ (k ∈ K) is defined, for every w ∈ A∗, by

k̃(w) = k. We denote by K 〈〈A∗〉〉 the class of all series over A∗ and K, and by K 〈A∗〉
the class of all polynomials over A∗ and K. Let s, r ∈ K 〈〈A∗〉〉 and k ∈ K. The sum
s ⊕ r, the products with scalars ks and sk, and the Hadamard product s ⊗ r are series in
K 〈〈A∗〉〉 and are defined elementwise, respectively by s⊕ r(w) = s(w) + r(w), (ks)(w) =
k · s(w), (sk)(w) = s(w) · k, s⊗ r(w) = s(w) · r(w) for every w ∈ A∗. It is a folklore result

that the structure
(
K 〈〈A∗〉〉 ,⊕,⊗, 0̃, 1̃

)
is a semiring. Moreover, if K is commutative,

then
(
K 〈〈A∗〉〉⊕,⊗, 0̃, 1̃

)
is also commutative. The Cauchy product s � r ∈ K 〈〈A∗〉〉 is

determined by s�r(w) =
∑

w=w1w2
s(w1)r(w2) for every w ∈ A∗, whereas the shuffle product
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s$r ∈ K 〈〈A∗〉〉 is defined by s$r(w) =
∑

w∈w1�w2
s(w1)r(w2) for every w ∈ A∗. The ν-th

iteration sν ∈ K 〈〈A∗〉〉 (ν ≥ 1) is defined inductively by s1 = s and sν+1 = sν � s, for every
natural number ν ≥ 1. A series s is called proper if s(ε) = 0. Then, the iteration s⊕ of
s is defined by s⊕ =

∑
ν≥1

sν . If s is proper, then for every w ∈ A+ and ν > |w| we have

sν(w) = 0. Hence, s⊕(w) =
∑

1≤ν≤|w|
sν(w) for every w ∈ A+.

Throughout the paper (K,+, ·, 0, 1) will denote a commutative semiring.

3.3. Component-based systems. In this subsection we deal with component-based sys-
tems comprised of a finite number of components of the same or different type. In our
setup, components are defined by labelled transition systems (LTS for short) like in several
well-known component-based modelling frameworks including BIP [BS08], REO [APR06],
and B [AP11]. Next we use the terminology of BIP framework for the basic notions and
definitions, though we focus only on the communication patterns of components building a
component-based system. This is justified by the fact that the presented logic-based mod-
elling framework for architectures does not require the knowledge of the actual transitions
of the components. Indeed, communication among components is achieved through their
corresponding interfaces. For an LTS, its interface is the associated set of labels, called ports.
Then, communication of components is defined by interactions, i.e., nonempty sets of ports.
Interactions can be represented by formulas of a propositional logic, namely propositional
interaction logic (PIL for short), which has been used for developing first- and second-order
logics applied for the modelling of parametric architectures [BIS19b, KKW+16, MBBS16b].

Let us firstly define the notion of atomic components.

Definition 3.1. An atomic component is an LTS B = (Q,P, q0, R) where Q is a finite set
of states, P is a finite set of ports, q0 is the initial state and R ⊆ Q× P ×Q is the set of
transitions.

For simplicity, we assume in the above definition, that every port p ∈ P occurs at most
in one transition. Then, we use this condition in the weighted setup in Section 7 in order to
associate a unique weight with each port.

In the sequel, we call an atomic component B a component, whenever we deal with
several atomic components. For every set B = {B(i) | i ∈ [n]} of components, with
B(i) = (Q(i), P (i), q0(i), R(i)), i ∈ [n], we consider in the paper, we assume that (Q(i) ∪
P (i)) ∩ (Q(i′) ∪ P (i′)) = ∅ for every 1 ≤ i 6= i′ ≤ n.

We now recall PIL. Let P be a finite nonempty set of ports. We let I(P ) = P(P ) \ {∅}
for the set of interactions over P and Γ(P ) = P(I(P )) \ {∅}. Then, the syntax of PIL
formulas φ over P is given by the grammar

φ ::= true | p | ¬φ | φ ∨ φ
where p ∈ P .

We set ¬(¬φ) = φ for every PIL formula φ and false = ¬true. As usual the conjunction
and the implication of two PIL formulas φ, φ′ over P are defined respectively, by φ ∧ φ′ :=
¬(¬φ ∨ ¬φ′) and φ→ φ′ := ¬φ ∨ φ′. PIL formulas are interpreted over interactions in I(P ).
More precisely, for every PIL formula φ and a ∈ I(P ) we define the satisfaction relation
a |=PIL φ by induction on the structure of φ as follows:

- a |=PIL true,
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- a |=PIL p iff p ∈ a,

- a |=PIL ¬φ iff a 6|=PIL φ,

- a |=PIL φ1 ∨ φ2 iff a |=PIL φ1 or a |=PIL φ2.

Note that PIL differs from propositional logic, since it is interpreted over interactions, and
thus the name “interaction” is assigned to it.

Two PIL formulas φ, φ′ are called equivalent, and we denote it by φ ≡ φ′, whenever
a |=PIL φ iff a |=PIL φ

′ for every a ∈ I(P ). A PIL formula φ is called a monomial over P if it
is of the form p1∧ . . .∧pl, where l ≥ 1 and pλ ∈ P or pλ = ¬p′λ with p′λ ∈ P , for every λ ∈ [l].
For every interaction a = {p1, . . . , pl} ∈ I(P ) we consider the monomial φa = p1 ∧ . . . ∧ pl.
Then, it trivially holds a |=PIL φa, and for every a, a′ ∈ I(P ) we get a = a′ iff φa ≡ φa′ .
We can describe a set of interactions as a disjunction of PIL formulas. More precisely, let

γ = {a1, . . . , am} ∈ Γ(P ), where aµ =
{
p
(µ)
1 , . . . , p

(µ)
lµ

}
∈ I(P ) for every µ ∈ [m]. Then, the

PIL formula φγ of γ is φγ = φa1 ∨ . . . ∨ φam , i.e., φγ =
∨

µ∈[m]

∧
λ∈[lµ]

p
(µ)
λ .

We can now define component-based systems. For this, let B = {B(i) | i ∈ [n]} be
a set of components where B(i) = (Q(i), P (i), q0(i), R(i)), for i ∈ [n]. We denote with
PB =

⋃
i∈[n] P (i) the set comprising all ports of the elements of B. Then an interaction of

B is an interaction a ∈ I(PB) such that |a ∩ P (i)| ≤ 1, for every i ∈ [n]. We denote by IB
the set of all interactions of B, i.e.,

IB = {a ∈ I(PB) | |a ∩ P (i)| ≤ 1 for every i ∈ [n]} ,
and let ΓB = P(IB) \ {∅}.

Definition 3.2. A component-based system is a pair (B, γ) where B = {B(i) | i ∈ [n]} is a
set of components, with B(i) = (Q(i), P (i), q0(i), R(i)) for every i ∈ [n], and γ is a set of
interactions in IB.

The set γ of interactions of a component-based system (B, γ) specifies the topology
with which the components are connected in the system, i.e., the architecture of the system.
Due to discussion before Definition 3.2 we can replace the set of interactions γ by its
corresponding PIL formula φγ , i.e., in a logical directed notation. Expression of software
architectures by logics has been considered in several work and gave nice results (cf. for
instance [BIS19b, KKW+16, MBBS16b]).

4. Extended propositional interaction logic

One of the most important characteristics of component-based systems is the architecture
which specifies the coordination primitives of the connected components. Although PIL
can describe nicely several architectures, it does not capture an important feature of more
complicated ones: the specified order required for the execution of the interactions. Such ar-
chitectures, with an increased interest in applications, are for instance the Request/Response
and Publish/Subscribe. In [PR20b] we introduced a propositional logic that extends PIL
by equipping it with two operators, namely the concatenation ∗ and the shuffle operator
�. With that logic we succeeded to represent architectures of component-based systems
where the order of the interactions is involved. Specifically, the concatenation operator
∗ modelled sequential interactions and the shuffle operator � interactions executed with
interleaving. Here, we further augment PIL with an iteration operator + that serves to
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encode sequential (at least one) repetition of interactions. This in turn implies, that the
resulting logic allows to describe the ongoing implementation of an architecture during the
system’s operation. Moreover, our propositional logic with its first-order level is proved to be
a sufficient modelling language for the symbolic representation of architectures of parametric
component-based systems.

Definition 4.1. Let P be a finite set of ports. The syntax of extended propositional
interaction logic (EPIL for short) formulas ϕ over P is given by the grammar

ζ ::= φ | ζ ∗ ζ | ζ � ζ

ϕ ::= ζ | ¬ζ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ ∗ ϕ | ϕ� ϕ | ϕ+

where φ is a PIL formula over P , ∗ is the concatenation operator, � is the shuffle operator,
and + is the iteration operator.

The binding strength, in decreasing order, of the operators in EPIL is the following:
negation, iteration, shuffle, concatenation, conjunction, and disjunction. The reader should
notice that we consider a restricted use of negation in the syntax of EPIL formulas. Specifi-
cally, negation is permitted in PIL formulas and EPIL formulas of type ζ. The latter will
ensure exclusion of erroneous interactions in architectures. The restricted use of negation
has no impact to description of models characterized by EPIL formulas since most of known
architectures can be described by formulas in our EPIL. Furthermore, it contributes to
a reasonable complexity of translation of first-order extended interaction logic formulas
to finite automata. This in turn implies the decidability of equivalence, satisfiability, and
validity of first-order extended interaction logic sentences (cf. Section 6).

For the satisfaction of EPIL formulas we consider finite words w over I(P ). Intuitively,
a word w encodes each of the distinct interactions within a system as a letter. Moreover,
the position of each letter in w depicts the order in which the corresponding interaction
is executed in the system, in case there is an order restriction. For the semantics of EPIL
formulas, we introduce the subsequent notation. For every EPIL formula ϕ over P and
natural number ν ≥ 1 we define the EPIL formula ϕν by induction on ν as follows:

- ϕ1 = ϕ,

- ϕν+1 = ϕν ∗ ϕ.

Definition 4.2. Let ϕ be an EPIL formula over P and w ∈ I(P )+. Then we define the
satisfaction relation w |= ϕ by induction on the structure of ϕ as follows:

- w |= φ iff w |=PIL φ,

- w |= ζ1 ∗ ζ2 iff there exist w1, w2 ∈ I(P )+ such that w = w1w2 and wi |= ζi for i = 1, 2,

- w |= ζ1 � ζ2 iff there exist w1, w2 ∈ I(P )+ such that w ∈ w1 � w2 and wi |= ζi for
i = 1, 2,

- w |= ¬ζ iff w 6|= ζ,

- w |= ϕ1 ∨ ϕ2 iff w |= ϕ1 or w |= ϕ2,

- w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 and w |= ϕ2,

- w |= ϕ1 ∗ϕ2 iff there exist w1, w2 ∈ I(P )+ such that w = w1w2 and wi |= ϕi for i = 1, 2,

- w |= ϕ1 � ϕ2 iff there exist w1, w2 ∈ I(P )+ such that w ∈ w1 � w2 and wi |= ϕi for
i = 1, 2,
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- w |= ϕ+ iff there exists ν ≥ 1 such that w |= ϕν .

The empty word is not included in the semantics of EPIL since in our framework we do not
consider architectures with no interactions.

If ϕ = φ is a PIL formula, then w |= φ implies that w is a letter in I(P ). Two EPIL
formulas ϕ,ϕ′ are called equivalent, and we denote it by ϕ ≡ ϕ′, whenever w |= ϕ iff w |= ϕ′

for every w ∈ I(P )+.
It can be easily seen that the concatenation operator is not commutative. The proof of

the next proposition is straightforward.

Proposition 4.3. Let ϕ,ϕ1, ϕ2, ϕ3 be EPIL formulas over P . Then,

(i) ϕ1 ∗ (ϕ2 ∗ ϕ3) ≡ (ϕ1 ∗ ϕ2) ∗ ϕ3,

(ii) ϕ ∗ (ϕ1 ∨ ϕ2) ≡ (ϕ ∗ ϕ1) ∨ (ϕ ∗ ϕ2),

(iii) (ϕ1 ∨ ϕ2) ∗ ϕ ≡ (ϕ1 ∗ ϕ) ∨ (ϕ2 ∗ ϕ).

Now, we define an updated version of component-based systems where in comparison to the
one in Definition 3.2, we replace the set of interactions γ (equivalently its corresponding PIL
formula φγ representing them) by an EPIL formula.

Definition 4.4. A component-based system is a pair (B, ϕ) where B = {B(i) | i ∈ [n]} is a
set of components and ϕ is an EPIL formula over PB.

We should note that the EPIL formula ϕ in the above definition is defined over PB.
Nevertheless, we will be interested in words w of interactions in IB satisfying ϕ.

Observe that in this work we develop no theory about the computation of the semantics
of component-based systems, a problem that will be studied in future work. Though it should
be clear that we specify how we model the components of systems in order to formalize the
corresponding architectures.

4.1. Examples of architectures described by EPIL formulas. Next we present three
examples of component-based models whose architectures have ordered interactions encoded
by EPIL formulas. Clearly, there exist several variations of the following architectures and
their order restrictions, that EPIL formulas could also model sufficiently by applying relevant
modifications. We need to define the following macro EPIL formula. Let P = {p1, . . . , pn}
be a set of ports. Then, for pi1 , . . . , pim ∈ P with m < n we let

#(pi1 ∧ . . . ∧ pim) ::= pi1 ∧ . . . ∧ pim ∧
∧

p∈P\{pi1 ,...,pim}

¬p.

Example 4.5. (Blackboard) We consider a component-based system (B, ϕ) with the
Blackboard architecture. Blackboard architecture is applied to multi-agent systems for solving
problems with nondeterministic strategies that result from multiple partial solutions (cf.
Chapter 2 in [BMR+96],[Cor91]). Applications based on a Blackboard architecture, include
planning and scheduling (cf. [SR14]) as well as artificial intelligence [Nii86]. Blackboard
architecture involves three component types, one blackboard component, one controller
component and the knowledge sources components [BMR+96, Cor91, Nii86]. Blackboard is
a global data store that presents the state of the problem to be solved. Knowledge sources,
simply called sources, are expertised agents that provide partial solutions to the given
problem. Knowledge sources are independent and do not know about the existence of other
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sources. If there is sufficient information for a source to provide its partial solution, then
the source is triggered i.e., is keen to write on the blackboard. Since multiple sources are
triggered and compete to provide their solutions, a controller component is used to resolve
any conflicts. Controller accesses both the blackboard to inspect the available data and the
sources to schedule them so that they execute their solutions on blackboard.

For our example we consider three knowledge sources components. Therefore, we have
B = {B(i) | i ∈ [5]} where B(1), B(2), B(3), B(4), B(5) refer to blackboard, controller
and the three sources components, respectively. The set of ports of each component is
P (1) = {pd, pa}, P (2) = {pr, pl, pe}, P (3) = {pn1 , pt1 , pw1}, P (4) = {pn2 , pt2 , pw2}, and
P (5) = {pn3 , pt3 , pw3}. Figure 1 depicts an instantiation of the permissible interactions
among the five components of our component-based system. Blackboard has two ports
pd, pa to declare the state of the problem and add the new data as obtained by a knowledge
source, respectively. Knowledge sources have three ports pnκ , ptκ , pwκ , for κ = 1, 2, 3, for
being notified about the existing data on blackboard, the trigger of the source, and for
writing the partial solution on blackboard, respectively. Controller has three ports, namely
pr used to record blackboard data, pl for the log process of triggered sources, and pe for
their execution on blackboard. Here we assume that all knowledge sources are triggered, i.e.,
that all available sources participate in the architecture. The permissible interactions in the
architecture range over IB and are obtained as follows:

• The sets {pd, pr} and {pd, pnκ}, for κ = 1, 2, 3, capture the interactions of blackboard with
controller and the three sources, respectively, for presenting the state of the problem. The
corresponding connections are shown in Figure 1 by the four black lines.

• The sets {pl, ptκ}, for κ = 1, 2, 3, refer to the log process of triggered sources in the
controller. The orange lines in Figure 1 depict a possible scenario of such connections
between the controller and each of the sources B(3) and B(5).

• Finally, the sets {pe, pwκ , pa}, for κ = 1, 2, 3, refer to the connection of the sources with
blackboard through its controller for adding the new data. These interactions are shown
with the green lines in Figure 1, for the case that sources B(3) and B(5) have been
triggered.

The EPIL formula ϕ describing the ordered and recursive interactions of Blackboard archi-
tecture is

ϕ =

(
#(pd ∧ pr) ∗

(
#(pd ∧ pn1)�#(pd ∧ pn2)�#(pd ∧ pn3)

)
∗

(
ϕ1 ∨ ϕ2 ∨ ϕ3 ∨ (ϕ1 � ϕ2) ∨ (ϕ1 � ϕ3) ∨ (ϕ2 � ϕ3) ∨ (ϕ1 � ϕ2 � ϕ3)

)+
)+

where

ϕi = #(pl ∧ pti) ∗#(pe ∧ pwi ∧ pa)
for i = 1, 2, 3. The first PIL subformula encodes the connection between blackboard and
controller. The EPIL subformula between the two concatenation operators represents the
connections of the three knowledge sources with blackboard in order to be informed for
existing data. The last part of ϕ captures the connection of some of the three knowledge
sources with controller and blackboard for the triggering and the writing process. The
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use of shuffle operator in ϕ serves for capturing any possible order, among the sources,
for implementing the corresponding connections with controller and blackboard. On the
other hand, the two concatenation operators in the first line of ϕ ensure respectively that
the sources are informed after the controller for the data on blackboard and before the
triggering and writing process. The use of the inner iteration operator allows the repetition
of the triggering and writing process of some of the sources based on the blackboard’s
data at one concrete point. Moreover, the outer iteration operator describes the recursive
permissible interactions in the architecture at several points. This implies that as new
data are added on blackboard, then the controller and the sources are informed anew in
each communication ‘cycle’ for these data, and then the sources decide whether they are
able to write on blackboard or not. Therefore, combining the two iteration operators we
achieve to describe the subsequent implementation of Blackboard architecture in the given
component-based system B.

pd

pa

Blackb.
B(1)

pr pl pe

Contr.
B(2)

pn1

pt1

pw1

Sour. 1
B(3)

pn2

pt2

pw2

Sour. 2
B(4)

pn3

pt3

pw3

Sour. 3
B(5)

Figure 1: Blackboard architecture. A possible execution for the interactions.

Before our second example we show the expressive difference among EPIL and PCL
formulas of [MBBS16b].

Remark 4.6. Consider the Blackboard architecture presented in the previous example.
Then the corresponding PCL formula ρ (cf. [MBBS16b]) describing that architecture is

ρ = #(pd ∧ pr) + #(pd ∧ pn1) + #(pd ∧ pn2) + #(pd ∧ pn3)+
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(
φ1 t φ2 t φ3 t (φ1 + φ2) t (φ1 + φ3) t (φ2 + φ3) t (φ1 + φ2 + φ3)

)
where + denotes the coalescing operator, t denotes the union operator, and

φi = #(pl ∧ pti) + #(pe ∧ pwi ∧ pa)
for i = 1, 2, 3.
Then, the PCL formula ρ is interpreted over sets of interactions in P(I(P )) \ {∅} which
trivially cannot express the required order for implementing the interactions. For instance the
set of interactions

{
{pd, pr}, {pd, pn1}, {pd, pn2}, {pd, pn3}, {pl, pt2}, {pe, pw2 , pa}

}
satisfies ρ

but represents no order of the interactions’ execution.

Note that the first-order logics studied in [BIS19a, BIS19b, KKW+16] were built over PIL.
Although PIL served as the basis for developing logics that encode parametric architectures
(still without addressing ordering constraints), it is far from describing complex architectures
like Blackboard, Request/Response, or Publish/Subscribe.

Example 4.7. (Request/Response) We consider a component-based system (B, ϕ) with
the Request/Response architecture. These architectures are classical interaction patterns
and widely used for web services [Dai12]. A Request/Response architecture refers to clients
and services. In order for a service to be made available it should be enrolled in the service
registry. The enrollment of a service in the registry allows service consumers, simply called
clients, to search the existing services. Once services are signed up, then clients search the
corresponding registry and take the address of the services. Each client that is interested in
a service sends a request to the service and waits until the service will respond. No other
client can be connected to the service until the response of the service to the client who sent
the request will be completed. In [MBBS16b] the authors described this process by adding,
for each service, a third component type called coordinator. Coordinator takes care that
only one client is connected to a service until the process among them is completed.

The Request/Response architecture of our component-based system consists of four
component types namely service registry, service, client, and coordinator (Figure 2). For our
example we consider seven components, and specifically, the service registry, two services with
their associated coordinators, and two clients. Therefore, we have that B = {B(i) | i ∈ [7]}
where B(1), . . . , B(7) refer to each of the aforementioned components, respectively. The set of
ports of each component is P (1) = {pe, pu, pt}, P (2) = {pr1 , pg1 , ps1}, P (3) = {pr2 , pg2 , ps2},
P (4) = {pm1 , pa1 , pd1}, P (5) = {pm2 , pa2 , pd2}, P (6) = {pl1 , po1 , pn1 , pq1 , pc1}, and P (7) =
{pl2 , po2 , pn2 , pq2 , pc2}. Figure 2 depicts the permissible interactions among the service
registry, service B(2) and the two clients components of our component-based system.
The corresponding interactions for service B(3), which have been omitted for simplicity,
are derived similarly. Service registry has three ports denoted by pe, pu, and pt used for
connecting with the service for its enrollment, for authorizing the client to search for a
service, and for transmitting the address (link) of the service to the client in order for
the client to send then its request, respectively. Services have three ports prκ , pgκ , psκ , for
κ = 1, 2, which establish the connection to the service registry for the signing up of the
service, and the connection to a client (via coordinator) for getting a request and responding,
respectively. Each client κ has five ports denoted by plκ , poκ , pnκ , pqκ and pcκ , for κ = 1, 2.
The first two ports are used for connection with the service registry to look up the available
services and for obtaining the address of the service. The latter three ports express the
connection of the client to coordinator, to service (via coordinator) for sending the request,
and to service (via coordinator) for collecting its response, respectively. Coordinators have
three ports namely pmκ , paκ , pdκ , for κ = 1, 2. The first port controls that only one client is
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connected to a service. The second one is used for acknowledging that the connected client
sends a request, and the third one disconnects the client when the service responds to the
request.
The allowed interactions in the architecture range over IB and are obtained as follows:

• The sets {pe, prκ} refer the enrollment of the two services in registry, while the sets
{plκ , pu} and {poκ , pt} express the interactions of the two clients with registry, for κ = 1, 2.
The corresponding connections are shown in Figure 2 with black and orange color for the
services and clients, respectively.

• The sets {pnκ , pmλ}, {pqκ , paλ , pgλ}, {pcκ , pdλ , psλ} capture the interactions of each of the
two clients with the two services through their coordinators, for κ, λ = 1, 2. The green
lines in Figure 2 depict a possible case for these connections, and specifically between the
two client components and service B(2) through its coordinator B(4).

Then, the EPIL formula ϕ describing the Request/Response architecture, with its permissible
ordered and recursive interactions, is

ϕ =
(
#(pe ∧ pr1)�#(pe ∧ pr2)

)
∗
(
ξ1 � ξ2

)
∗((

ϕ11 ∨ ϕ21 ∨ (ϕ11 ∗ ϕ21) ∨ (ϕ21 ∗ ϕ11)

)+∨(
ϕ12 ∨ ϕ22 ∨ (ϕ12 ∗ ϕ22) ∨ (ϕ22 ∗ ϕ12)

)+∨
((
ϕ11 ∨ ϕ21 ∨ (ϕ11 ∗ ϕ21) ∨ (ϕ21 ∗ ϕ11)

)+
�

(
ϕ12 ∨ ϕ22 ∨ (ϕ12 ∗ ϕ22) ∨ (ϕ22 ∗ ϕ12)

)+)+
)+

where

- ξ1 = #(pl1 ∧ pu) ∗#(po1 ∧ pt)
- ξ2 = #(pl2 ∧ pu) ∗#(po2 ∧ pt)
describe the interactions of the two clients with the service registry and

- ϕ11 = #(pn1 ∧ pm1) ∗#(pq1 ∧ pa1 ∧ pg1) ∗#(pc1 ∧ pd1 ∧ ps1)

- ϕ12 = #(pn1 ∧ pm2) ∗#(pq1 ∧ pa2 ∧ pg2) ∗#(pc1 ∧ pd2 ∧ ps2)

- ϕ21 = #(pn2 ∧ pm1) ∗#(pq2 ∧ pa1 ∧ pg1) ∗#(pc2 ∧ pd1 ∧ ps1)

- ϕ22 = #(pn2 ∧ pm2) ∗#(pq2 ∧ pa2 ∧ pg2) ∗#(pc2 ∧ pd2 ∧ ps2)

encode the connections of each of the two clients with the two services through their
coordinators.

The EPIL formula ϕ is interpreted as follows. The two subformulas at the left of the first
two concatenation operators encode the interleaving connections of the two services and the
two clients with registry, respectively. Then, each of the three subformulas connected with
the big disjunctions express that either one of the two clients or both of them (one at each
time) are connected with the first service only, the second service only, or both of the services,
respectively. Observe that in these subformulas we make use of the concatenation operator
for the connection of the two clients with the same service. This results from the fact that
the architecture requires that a unique client should be connected with each service through
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Figure 2: Request/Response architecture. The omitted interactions are derived similarly.

its coordinator. On the other hand, there is no restriction for the connection of a client
with multiple services, and hence we use the shuffle operator to connect the corresponding
subformulas at the third and fourth line of the EPIL formula ϕ. Then, the first iteration
operator in EPIL formula ϕ allows the repetition of the interactions of only first, only second,
or both of clients with the first service through its coordinator. Analogously, the next
four iteration operators encode the recursive interactions for some of the clients with the
second service or with both of the services (applied consecutively) through their coordinators.
Finally, the use of last iteration operator describes the repetition of the interactions for any
of the aforementioned cases.

Example 4.8. (Publish/Subscribe) We consider a component-based system (B, ϕ) with
the Publish/Subscribe architecture. The latter is widely used in IoT applications (cf.
for instance [ORM15, PJMT17]), and recently in cloud systems [YZJ+17] and robotics
[MLS+20]. Publish/Subscribe architecture involves three types of components, namely
publishers, subscribers, and topics. Publishers advertise and transmit to topics the type of
messages they are able to produce. Then, subscribers are connected with the topics they
are interested in, and topics in turn transfer the messages from publishers to corresponding
subscribers. Once a subscriber receives the message it has requested, then it is disconnected
from the relevant topic. Publishers cannot check the existence of subscribers and vice-versa
[EFGK03].

For our example we consider two publisher components, two topic components and three
subscriber components. Hence, we have that B = {B(i) | i ∈ [7]} where B(1), . . . , B(7) refer
to the aforementioned components, respectively. The set of ports of each component is P (1) =
{pa1 , pt1}, P (2) = {pa2 , pt2}, P (3) = {pn1 , pr1 , pc1 , ps1 , pf1}, P (4) = {pn2 , pr2 , pc2 , ps2 , pf2},
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P (5) = {pe1 , pg1 , pd1}, P (6) = {pe2 , pg2 , pd2}, and P (7) = {pe3 , pg3 , pd3}. Figure 3 depicts
one of the possible instantiations for the interactions among the components of our system.
The ports paκ and ptκ , for κ = 1, 2, are used from the publishers for advertising and
transferring their messages to topic components, respectively. Each of the two topics is
notified from the publishers and receives their messages through ports pnκ and prκ , for
κ = 1, 2, respectively. Ports pcκ , psκ and pfκ , for κ = 1, 2, are used from topic components for
the connection with a subscriber, the sending of a message to a subscriber and for finalizing
their connection (disconnection), respectively. Subscribers use the ports peµ , pgµ , pdµ , for
µ = 1, 2, 3, for connecting with the topic (express interest), getting a message from the
topic, and disconnecting from the topic, respectively. The permissible interactions in the
architecture range over IB which includes the following sets:

• The sets {paκ , pnλ} and {ptκ , prλ} that refer to the connections of the two publishers with
each of the two topics for advertising and transferring their messages, for κ, λ = 1, 2.
The black lines in Figure 3 depict a possible case for these interactions, and specifically
between publisher B(1) with topic B(3) and publisher B(2) with both topics.

• The sets {pcκ , peµ}, {psκ , pgµ} and {pfκ , pdµ} that capture the interactions between topics
and subscribers, for κ = 1, 2 and µ = 1, 2, 3. Figure 3 represents with orange lines a
possible instantiation of these connections, and in particular for topic B(3) with subscribers
B(5) and B(6) as well as for topic B(4) with subscriber B(7).

Then, the EPIL formula ϕ for the Publish/Subscribe architecture is ϕ =
(
ϕ1∨ϕ2∨(ϕ1�ϕ2)

)+
with

ϕ1 =

((
ξ1 ∗ ϕ11

)
∨
(
ξ1 ∗ ϕ12

)
∨
(
ξ1 ∗ ϕ13

)
∨(

ξ1 ∗ (ϕ11 � ϕ12)
)
∨
(
ξ1 ∗ (ϕ11 � ϕ13)

)
∨(

ξ1 ∗ (ϕ12 � ϕ13)
)
∨
(
ξ1 ∗ (ϕ11 � ϕ12 � ϕ13)

))
and

ϕ2 =

((
ξ2 ∗ ϕ21

)
∨
(
ξ2 ∗ ϕ22

)
∨
(
ξ2 ∗ ϕ23

)
∨(

ξ2 ∗ (ϕ21 � ϕ22)
)
∨
(
ξ2 ∗ (ϕ21 � ϕ23)

)
∨(

ξ2 ∗ (ϕ22 � ϕ23)
)
∨
(
ξ2 ∗ (ϕ21 � ϕ22 � ϕ23)

))
where we make use of the following auxiliary subformulas:

- ξ1 = ξ11 ∨ ξ12 ∨ (ξ11 � ξ12)

- ξ2 = ξ21 ∨ ξ22 ∨ (ξ21 � ξ22)

encode that each of the two topics connects only with the first publisher B(1), or with the
second publisher B(2) or with both of them, and

- ξ11 = #(pn1 ∧ pa1) ∗#(pr1 ∧ pt1)

- ξ12 = #(pn1 ∧ pa2) ∗#(pr1 ∧ pt2)

- ξ21 = #(pn2 ∧ pa1) ∗#(pr2 ∧ pt1)

- ξ22 = #(pn2 ∧ pa2) ∗#(pr2 ∧ pt2)
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describe the interactions of the two topics with each of the two publishers, and

- ϕ11 = #(pc1 ∧ pe1) ∗#(ps1 ∧ pg1) ∗#(pf1 ∧ pd1)

- ϕ12 = #(pc1 ∧ pe2) ∗#(ps1 ∧ pg2) ∗#(pf1 ∧ pd2)

- ϕ13 = #(pc1 ∧ pe3) ∗#(ps1 ∧ pg3) ∗#(pf1 ∧ pd3)

- ϕ21 = #(pc2 ∧ pe1) ∗#(ps2 ∧ pg1) ∗#(pf2 ∧ pd1)

- ϕ22 = #(pc2 ∧ pe2) ∗#(ps2 ∧ pg2) ∗#(pf2 ∧ pd2)

- ϕ23 = #(pc2 ∧ pe3) ∗#(ps2 ∧ pg3) ∗#(pf2 ∧ pd3).

describe the connections of the two topics with each of the three subscribers. Each of ϕ1 and
ϕ2 encode the interactions of first and second topic, respectively, with some of the publisher
and subscriber components. The use of the shuffle operator in each of ϕ1 and ϕ2 expresses
that the interactions among distinct subscribers may be executed with any order. Then,
the EPIL formula ϕ captures the participation of only the first, or only the second, or both
topics in the implementation of the architecture. Since there are no order restrictions for
the interactions among multiple topics, the EPIL subformulas ϕ1 and ϕ2 are connected
in ϕ with the shuffle operator. Finally, the use of the iteration operator in EPIL formula
ϕ permits the repetition of the interactions of one or both of the topics with some of the
available publishers and subscribers.

pa1

pt1

Publ. 1

B(1)

pf1

ps1

pc1pn1

pr1

Topic 1

B(3)

pd1

pg1

pe1

Subs. 1
B(5)

pd2

pg2

pe2

Subs. 2
B(6)

pa2

pt2

Publ. 2

B(2)

pf2

ps2

pc2pn2

pr2

Topic 2

B(4)

pd3

pg3

pe3

Subs. 3
B(7)

Figure 3: Publish/Subscribe architecture. A possible execution for the interactions.

The presented examples illustrate that EPIL formulas are expressive enough to encode
the execution order of the permissible interactions as well as to specify the subsequent
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implementation of a component-based system’s architecture through recursive interactions.
We note that in [PR20b] we described Blackboard, Publish/Subscribe, and Request/Response
architectures, without applying any iteration operator, and hence without allowing recursion
in the corresponding interactions.

5. Parametric component-based systems

In this section we deal with component-based systems in the parametric setting. Component-
based systems considered in Subsection 3.3 are comprised of a finite number of components
which are of the same or distinct type. On the other hand, in the parametric setting a
component-based model is comprised of a finite number of distinct component types where
the cardinality of the instances of each type is a parameter for the system. It should be
clear, that in real world applications we do not need an unbounded number of components.
Nevertheless, the number of instances of every component type is unknown or it can be
modified during a process. Therefore, we consider parametric component-based systems, i.e.,
component-based systems with infinitely many instances of every component type.

Let B = {B(i) | i ∈ [n]} be a set of component types. For every i ∈ [n] and j ≥
1 we consider a copy B(i, j) = (Q(i, j), P (i, j), q0(i, j), R(i, j)) of B(i), namely the j-th
instance of B(i). Hence, for every i ∈ [n] and j ≥ 1, the instance B(i, j) is also a
component and we call it a parametric component or a component instance. We assume that
(Q(i, j)∪ P (i, j))∩ (Q(i′, j′)∪ P (i′, j′)) = ∅ whenever i 6= i′ or j 6= j′ for every i, i′ ∈ [n] and
j, j′ ≥ 1. This restriction is needed in order to identify the distinct parametric components.
It also permits us to use, without any confusion, the notation P (i, j) = {p(j) | p ∈ P (i)} for
every i ∈ [n] and j ≥ 1. We set pB = {B(i, j) | i ∈ [n], j ≥ 1} and call it a set of parametric
components. The set of ports of pB is given by PpB =

⋃
i∈[n],j≥1 P (i, j).

Remark 5.1. Observe that in the parametric setting we use an index “i” in order to specify
the type of a component. Specifically, we let B(i, j) denote the j-th instance of a component
of type i, for i ∈ [n] and j ≥ 1. On the other hand, for simplicity we avoided such a notation
for component-based systems in the non-parametric setting. In particular we presented a
sequential enumeration of the several, finite in number, components of the same or different
type by B(i), for i ∈ [n]. This explains why in the parametric setting we use the term
“component type”. For instance in the Request/Response architecture of Example 4.7, we
denote by B(2), B(3) the two service components. On the other hand, in a parametric
Request/Response architecture we would let B(2, 1) and B(2, 2) refer to two component
instances of the service component type. For this, we arbitrarily choose i = 2 to denote the
type of service, and in turn we let j = 1, 2 refer to the two instances of that type.

As it is already mentioned, in practical applications we do not know how many instances
of each component type are connected at a concrete time. This means that we cannot
define interactions of pB in the same way as we did for finite sets of components. Hence,
we need a symbolic representation to describe interactions, and in turn architectures, of
parametric systems. For this, we introduce the first-order extended interaction logic which
is proved sufficient to describe a wide class of architectures of parametric component-based
systems. Similarly to EPIL the semantics of our logic encodes the order and iteration of the
interactions implemented within a parametric architecture. Formalization of such aspects is
important for constructing well-defined architectures, and hence parametric systems which
are less error prone and satisfy most of their requirements [AKR+18, BJK+16, DYBH12].
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5.1. First-order extended interaction logic. In this subsection we introduce the first-
order extended interaction logic as a modelling language for describing the interactions
of parametric component-based systems. For this, we need to equip EPIL formulas with
variables. Due to the nature of parametric systems we need to distinguish variables referring
to different component types. Let pB = {B(i, j) | i ∈ [n], j ≥ 1} be a set of parametric com-

ponents. We consider pairwise disjoint countable sets of first-order variables X (1), . . . ,X (n)

referring to instances of component types B(1), . . . , B(n), respectively. First-order vari-

ables in X (i), for every i ∈ [n], will be denoted by small letters with the corresponding

superscript. Hence by x(i) we understand that x(i) ∈ X (i), i ∈ [n], is a first-order variable

referring to an instance of component type B(i). We let X = X (1) ∪ . . . ∪ X (n) and set

PpB(X ) =
{
p
(
x(i)
)
| i ∈ [n], x(i) ∈ X (i), and p ∈ P (i)

}
.

Definition 5.2. Let pB = {B(i, j) | i ∈ [n], j ≥ 1} be a set of parametric components.
Then the syntax of first-order extended interaction logic (FOEIL for short) formulas ψ over
pB1 is given by the grammar

ψ ::= ϕ | x(i) = y(i) | ¬(x(i) = y(i)) | ψ ∨ ψ | ψ ∧ ψ | ψ ∗ ψ | ψ� ψ | ψ+ |

∃x(i).ψ | ∀x(i).ψ | ∃∗x(i).ψ | ∀∗x(i).ψ | ∃�x(i).ψ | ∀�x(i).ψ

where ϕ is an EPIL formula over PpB(X ), i ∈ [n], x(i), y(i) are first-order variables in X (i), ∃∗
denotes the existential concatenation quantifier, ∀∗ the universal concatenation quantifier,
∃� is the existential shuffle quantifier, and ∀� is the universal shuffle quantifier. Furthermore,
we assume that whenever ψ contains a subformula of the form ∃∗x(i).ψ′ or ∃�x(i).ψ′, then
the application of negation in ψ′ is permitted only in PIL formulas and formulas of the form
x(j) = y(j).

Let ψ be a FOEIL formula over pB. As usual, we denote by free(ψ) the set of free
variables of ψ. If ψ has no free variables, then it is a sentence. We consider a mapping
r : [n] → N. The value r(i), for every i ∈ [n], intends to represent the finite number
of instances of the component type B(i) in the parametric system, affecting in turn, the
corresponding interactions. Hence, for different mappings we obtain a different parametric
system. We let pB(r) = {B(i, j) | i ∈ [n], j ∈ [r(i)]} and call it the instantiation of pB
w.r.t. r. We denote by PpB(r) the set of all ports of components’ instances in pB(r), i.e.,
PpB(r) =

⋃
i∈[n],j∈[r(i)] P (i, j). The set IpB(r) of interactions of pB(r) is given by IpB(r) =

{a ∈ I(PpB(r)) | |a ∩ P (i, j)| ≤ 1 for every i ∈ [n] and j ∈ [r(i)]}.
Let V ⊆ X be a finite set of first-order variables. We let PpB(V) = {p(x(i)) ∈ PpB(X ) |

x(i) ∈ V}. To interpret FOEIL formulas over pB we use the notion of an assignment defined
with respect to the set of variables V and the mapping r. Formally, a (V, r)-assignment is a

mapping σ : V → N such that σ(V∩X (i)) ⊆ [r(i)] for every i ∈ [n]. If σ is a (V, r)-assignment,

then σ[x(i) → j] is the (V ∪ {x(i)}, r)-assignment which acts as σ on V \ {x(i)} and assigns

j to x(i). If ϕ is an EPIL formula over PpB(V), then σ(ϕ) is an EPIL formula over PpB(r)
which is obtained by ϕ by replacing every port p(x(i)) in ϕ by p(σ(x(i))). Intuitively, a
(V, r)-assignment σ assigns unique identifiers to each instance in a parametric system, w.r.t.
the mapping r.

1According to our terminology for EPIL formulas, a FOEIL formula should be defined over the set of
ports of pB. Nevertheless, we prefer for simplicity to refer to the set pB of parametric components.
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We interpret FOEIL formulas over triples consisting of a mapping r : [n] → N, a
(V, r)-assignment σ, and a word w ∈ I+pB(r). As for EPIL formulas, we define for every

FOEIL formula ψ over pB and natural number ν ≥ 1, the FOEIL formula ψν over pB by
induction on ν: ψ1 = ψ and ψν+1 = ψν ∗ ψ. The semantics of formulas of the form ∃∗x(i).ψ
and ∀∗x(i).ψ (resp. ∃�x(i).ψ and ∀�x(i).ψ) refer to satisfaction of ψ by subwords of w. The
subwords correspond to component instances which are determined by the application of
the assignment σ to x(i), and w results by the ∗ (resp. �) operator among the subwords.

Definition 5.3. Let ψ be a FOEIL formula over a set pB = {B(i, j) | i ∈ [n], j ≥ 1} of
parametric components and V ⊆ X a finite set containing free(ψ). Then for every r : [n]→
N, (V, r)-assignment σ, and w ∈ I+pB(r) we define the satisfaction relation (r, σ, w) |= ψ,

inductively on the structure of ψ as follows:

- (r, σ, w) |= ϕ iff w |= σ(ϕ),

- (r, σ, w) |= x(i) = y(i) iff σ(x(i)) = σ(y(i)),

- (r, σ, w) |= ¬(x(i) = y(i)) iff (r, σ, w) 6|= x(i) = y(i),

- (r, σ, w) |= ψ1 ∨ ψ2 iff (r, σ, w) |= ψ1 or (r, σ, w) |= ψ2,

- (r, σ, w) |= ψ1 ∧ ψ2 iff (r, σ, w) |= ψ1 and (r, σ, w) |= ψ2,

- (r, σ, w) |= ψ1 ∗ ψ2 iff there exist w1, w2 ∈ I+pB(r) such that w = w1w2 and (r, σ, wi) |= ψi
for i = 1, 2,

- (r, σ, w) |= ψ1�ψ2 iff there exist w1, w2 ∈ I+pB(r) such that w ∈ w1�w2 and (r, σ, wi) |= ψi
for i = 1, 2,

- (r, σ, w) |= ψ+ iff there exists ν ≥ 1 such that (r, σ, w) |= ψν ,

- (r, σ, w) |= ∃x(i).ψ iff there exists j ∈ [r(i)] such that (r, σ[x(i) → j], w) |= ψ,

- (r, σ, w) |= ∀x(i).ψ iff (r, σ[x(i) → j], w) |= ψ for every j ∈ [r(i)],

- (r, σ, w) |= ∃∗x(i).ψ iff there exists 1 ≤ k ≤ r(i) and wl1 , . . . , wlk ∈ I+pB(r) with 1 ≤
l1 < . . . < lk ≤ r(i) such that w = wl1 . . . wlk and (r, σ[x(i) → j], wj) |= ψ for every
j = l1, . . . , lk,

- (r, σ, w) |= ∀∗x(i).ψ iff there exist w1, . . . , wr(i) ∈ I+pB(r) such that w = w1 . . . wr(i) and

(r, σ[x(i) → j], wj) |= ψ for every j ∈ [r(i)],

- (r, σ, w) |= ∃�x(i).ψ iff there exists 1 ≤ k ≤ r(i) and wl1 , . . . , wlk ∈ I
+
pB(r) with 1 ≤ l1 <

. . . < lk ≤ r(i) such that w ∈ wl1 � . . . � wlk and (r, σ[x(i) → j], wj) |= ψ for every
j = l1, . . . , lk,

- (r, σ, w) |= ∀�x(i).ψ iff there exist w1, . . . , wr(i) ∈ I+pB(r) such that w ∈ w1 � . . .� wr(i)

and (r, σ[x(i) → j], wj) |= ψ for every j ∈ [r(i)].

By definition of parametric systems, all instances of each component type are identical, hence
the order specified above in the semantics of ∃∗,∀∗, ∃�, ∀� quantifiers causes no restriction
in the derived architecture. Moreover, it is important for the complexity of the translation
algorithm of FOEIL formulas to finite automata (cf. proof of Proposition 6.3).
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If ψ is a FOEIL sentence over pB, then we simply write (r, w) |= ψ. Let also ψ′ be a
FOEIL sentence over pB. Then, ψ and ψ′ are called equivalent w.r.t. r whenever (r, w) |= ψ
iff (r, w) |= ψ′, for every w ∈ I+pB(r).

In the sequel, we shall write also x(i) 6= y(i) for ¬(x(i) = y(i)).

Let β be a boolean combination of atomic formulas of the form x(i) = y(i) and ψ a
FOEIL formula over pB. Then, we define β → ψ ::= ¬β ∨ ψ.

For simplicity sometimes we denote boolean combinations of formulas of the form x(i) =
y(i) as constraints. For instance we write ∃x(i)∀y(i)∃x(j)∀y(j)((x(i) 6= y(i)) ∧ (x(j) 6= y(j))).ψ

for ∃x(i)∀y(i)∃x(j)∀y(j).(((x(i) 6= y(i)) ∧ (x(j) 6= y(j)))→ ψ).
Note that in [MBBS16b] the authors considered a universe of component types and

hence, excluded in their logic formulas the erroneous types for each architecture. Such a
restriction is not needed in our setting since we consider a well-defined set [n] of component
types for each architecture. Now we are ready to formally define the concept of a parametric
component-based system.

Definition 5.4. A parametric component-based system is a pair (pB, ψ) where pB =
{B(i, j) | i ∈ [n], j ≥ 1} is a set of parametric components and ψ is a FOEIL sentence over
pB.

In the sequel, for simplicity we refer to parametric component-based systems as para-
metric systems. We remind that in this work we focus on the architectures of parametric
systems. The study of parametric systems’ semantics is left for investigation in future work
as a part of parametric verification.

For our examples in the next subsection, we shall need the following macro FOEIL
formula. Let pB = {B(i, j) | i ∈ [n], j ≥ 1} and 1 ≤ i1, . . . , im ≤ n be pairwise different
indices. Then we set

#
(
pi1(x(i1)) ∧ . . . ∧ pim(x(im))

)
::=

(
pi1(x(i1)) ∧ . . . ∧ pim(x(im))

)
∧( ∧

j=i1,...,im

∧
p∈P (j)\{pj}

¬p(x(j))
)
∧
( ∧
j=i1,...,im

∀y(j)(y(j) 6= x(j)).
∧

p∈P (j)

¬p(y(j))
)
∧

( ∧
k∈[n]\{i1,...,im}

∧
p∈P (k)

∀x(k).¬p(x(k))
)
.

The first m − 1 conjunctions, in the above formula, express that the ports appearing in
the argument of # participate in the interaction. In the second line, the double indexed
conjunctions in the first pair of big parentheses disable all the other ports of the participating
instances of component type i1, . . . , im described by variables x(i1), . . . , x(im), respectively;
conjunctions in the second pair of parentheses disable all ports of remaining instances of
component types i1, . . . , im. Finally, the last conjunct in the third line ensures that no ports
in instances of remaining component types participate in the interaction.

5.2. Examples of FOEIL sentences for parametric architectures. In this subsection
we present several examples of FOEIL sentences describing concrete parametric architectures.
In what follows we often refer to a component instance simply by instance. Moreover,
whenever is defined a unique instance for a component type we may also consider the
corresponding set of variables as a singleton.
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Example 5.5. (Parametric Master/Slave) We present a FOEIL sentence for the para-
metric Master/Slave architecture. Master/Slave architecture concerns two types of compo-
nents, namely masters and slaves [MBBS16b]. We denote by pm the unique port of master
component and by ps the unique port of slave component. Every slave must be connected
with exactly one master. Interactions among masters (resp. slaves) are not permitted. An
instantiation of the architecture for two masters and two slaves with all the possible cases of
the allowed interactions is shown in Figure 4.
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Figure 4: Master/Slave architecture.

We let X (1),X (2) denote the sets of variables of master and slave component instances,
respectively. Then, the FOEIL sentence ψ representing parametric Master/Slave architecture
is

ψ = ∀∗x(2)∃x(1).#(pm(x(1)) ∧ ps(x(2))).
In the above sentence, the universal concatenation quantifier accompanied with the existential
one encodes that every slave instance should be connected with a master instance through
their corresponding ports, and the distinct slave instances may apply these interactions
consecutively.

Example 5.6. (Parametric Star) Star architecture has only one component type with a
unique port namely p. One instance is considered as the center in the sense that every other
instance has to be connected with it. No other interaction is permitted. Figure 5 represents
the Star architecture for five instances.

p

p p p p

Figure 5: Star architecture.

The FOEIL sentence ψ for parametric Star architecture is as follows:

ψ = ∃x(1)∀∗y(1)(x(1) 6= y(1)).#(p(x(1)) ∧ p(y(1))).
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The universal concatenation quantifier preceded by the existential quantifier in ψ encodes
that each of the instances in the architecture should be connected with the center instance
consecutively.

Example 5.7. (Parametric Pipes/Filters) Pipes/Filters architecture involves two types
of components, namely pipes and filters [GS93]. Pipe (resp. filter) component has an entry
port pe and an output port po (resp. fe, fo). Every filter F is connected to two separate
pipes P and P ′ via interactions {fe, po} and {fo, p′e}, respectively. Every pipe P can be
connected to at most one filter F via an interaction {po, fe}. Any other interaction is not
permitted. An instantiation of the architecture for four pipe and three filter components is
shown in Figure 6. We denote by X (1) and X (2) the sets of variables corresponding to pipe
and filter component instances, respectively. The subsequent FOEIL sentence ψ describes
the parametric Pipes/Filters architecture.

ψ = ∀∗x(2)∃x(1)∃y(1)(x(1) 6= y(1)).

(
#(po(x

(1)) ∧ fe(x(2))) ∗#(pe(y
(1)) ∧ fo(x(2)))

)∧
(
∀z(1)∀y(2).

((
∀z(2)(y(2) 6= z(2)).θ1

)
∨ θ2

))
where the EPIL formulas θ1 and θ2 are given respectively, by:

θ1 =
((

(po(z
(1)) ∧ fe(y(2)))� true

)
∧
(
¬
(
(po(z

(1)) ∧ fe(z(2)))� true
)))

and

θ2 =
(
¬
(
(po(z

(1)) ∧ fe(y(2)))� true
))

.

In the above sentence, the universal concatenation quantifier (∀∗x(2)) in conjunction with

the two existential ones (∃x(1),∃y(1)) describe that every filter instance is connected with
two distinct pipe instances, and these interactions are implemented consecutively. The
arguments of # express the connection of a filter entry (resp. output) port with a pipe
output (resp. entry) port excluding by definition erroneous port connections. Then, the
subformula after the big conjunction ensures that no more than one filter entry port will be
connected to the same pipe output port.
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Figure 6: Pipes/Filters architecture.
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Example 5.8. (Parametric Repository) Repository architecture involves two types of
components, namely repository and data accessor [CGB+10]. Repository component is
unique and all data accessors are connected to it. No connection among data accessors
exists. Both repository and data accessors have one port each denoted by pr, pd, respectively.
Figure 7 shows an instantiation of the architecture with four data accessors.

pr

pd pd pd pd

Figure 7: Repository architecture.

The subsequent FOEIL sentence ψ characterizes the parametric Repository architecture.
Variable set X (1) refers to instances of repository component and variable set X (2) to
instances of data accessor component. Then, the use of the universal concatenation operator
combined with the existential one serves to encode that each of the data accessor instances
interact with the repository instance in consecutive order.

ψ = ∃x(1)∀∗x(2).#(pr(x
(1)) ∧ pd(x(2))).

Observe that in Examples 5.5-5.8 we use the concatenation quantifier to describe the
execution of the interactions for the several component instances. On the other hand, the
shuffle quantifier would not provide the encoding of any different implementation of the
corresponding architectures. This is because the above parametric architectures do not
impose order restrictions on the execution of the permissible interactions. For this reason,
we also omit the application of the iteration operator in these examples. Hence, FOEIL
can describe sufficiently parametric architectures with no order restrictions in the allowed
interactions. Next, we provide three more examples of parametric architectures, namely
Blackboard, Request/Response, and Publish/Subscribe, where the order of interactions
constitutes a main feature.

Example 5.9. (Parametric Blackboard) The subsequent FOEIL sentence ψ encodes
the interactions of Blackboard architecture, described in Example 4.5, in the parametric
setting. We consider three sets of variables, namely X (1),X (2),X (3) for the instances of
blackboard, controller, and knowledge sources components, respectively.

ψ =

(
∃x(1)∃x(2).

(
#(pd(x

(1)) ∧ pr(x(2))) ∗
(
∀�x(3).#(pd(x

(1)) ∧ pn(x(3)))

)
∗

(
∃�y(3).

(
#(pl(x

(2)) ∧ pt(y(3))) ∗#(pe(x
(2)) ∧ pw(y(3)) ∧ pa(x(1)))

))+
))+

.

We interpret the above FOEIL sentence as follows: There exists a blackboard and a controller
instance (∃x(1),∃x(2)) so that the former informs the latter for the available data. In turn,
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the parentheses with the universal shuffle quantifier (∀�x(3)) encodes that all the sources
instances are informed from blackboard in arbitrary order. Finally, the parenthesis with the
existential shuffle quantifier (∃�y(3)) describes the triggering and writing process of some of
the sources instances, implemented with interleaving. Similarly to the non-parametric version
of the architecture, the iteration operators describe the repetition of the corresponding
parametric interactions. An instantiation of parametric Blackboard architecture with three
sources is presented in Example 4.5 of Subsection 4.1.

Example 5.10. (Parametric Request/Response) Next we present a FOEIL sentence ψ
for Request/Response architecture, described in Example 4.7, in the parametric setting. We

consider the variable sets X (1),X (2),X (3), and X (4) referring to instances of service registry,
service, client, and coordinator component, respectively.

ψ =

(
∃x(1).

((
∀�x(2).#(pe(x

(1)) ∧ pr(x(2)))
)
∗

(
∀�x(3).(#(pl(x

(3)) ∧ pu(x(1))) ∗#(po(x
(3)) ∧ pt(x(1))))

)))
∗(

∃�y(2)∃x(4)∃∗y(3).ξ ∧
(
∀y(4)∀z(3)∀z(2).

(
θ ∨

(
∀t(3)∀t(2)(z(2) 6= t(2)).θ′

))))+

where the EPIL formulas ξ, θ, and θ′ are given respectively, by:

ξ = #(pn(y(3))∧pm(x(4)))∗#(pq(y
(3))∧pa(x(4))∧pg(y(2)))∗#(pc(y

(3))∧pd(x(4))∧ps(y(2))),

θ = ¬((pq(z
(3)) ∧ pa(y(4)) ∧ pg(z(2)))� true),

and

θ′ = (#(pq(z
(3)) ∧ pa(y(4)) ∧ pg(z(2)))� true) ∧

¬((pq(t
(3)) ∧ pa(y(4)) ∧ pg(t(2)))� true).

The first two lines of FOEIL sentence ψ express the connections of every service and client
instance with the service registry instance, respectively. Moreover, the several instances of
services as well as of clients interact with the registry instance in arbitrary order and for
this, we use the universal shuffle quantifiers ∀�x(2) and ∀�x(3), respectively. Then, the last
line of ψ captures that for some of the service instances (∃�y(2)) there exist some client

instances (∃∗y(3)) that are interested in the former, and hence are connected consecutively

through the services’ coordinator instance (∃x(4)). Recall that only a unique client instance
is allowed to interact with a service instance which justifies the use of the concatenation
quantifier ∃∗y(3). On the other hand, the interactions of the distinct service instances with
the interested client instances are implemented with interleaving, since there are no order
restrictions from the architecture, which is expressed by the shuffle quantifier ∃�y(2). Then,
the subformula ∀y(4)∀z(3)∀z(2).

(
θ ∨

(
∀t(3)∀t(2)(z(2) 6= t(2)).θ′

))
in ψ serves as a constraint to

ensure that a unique coordinator instance is assigned to each service instance. Finally, the
application of the iteration operator allows the repetition of the permissible interactions in
the parametric architecture. An instantiation of the parametric architecture for two clients
and two services is discussed in Example 4.7 of Subsection 4.1.
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Example 5.11. (Parametric Publish/Subscribe) We consider Publish/Subscribe ar-
chitecture, described in Example 4.8, in the parametric setting. In the subsequent FOEIL
sentence ψ, we let variable sets X (1),X (2),X (3) correspond to publisher, topic, and subscriber
component instances, respectively.

ψ =

(
∃�x(2).

((
∃�x(1).

(
#(pa(x

(1)) ∧ pn(x(2))) ∗#(pt(x
(1)) ∧ pr(x(2)))

))
∗

(
∃�x(3).

(
#(pe(x

(3)) ∧ pc(x(2))) ∗#(pg(x
(3)) ∧ ps(x(2))) ∗#(pd(x

(3)) ∧ pf (x(2)))
))))+

.

The FOEIL sentence ψ is interpreted as follows: The big parenthesis with the existential
shuffle quantifier ∃�x(1) preceded by ∃�x(2) describes that given some topic instances, some
of the publisher instances advertise and in turn transmit their messages to the former with
interleaving. For the same topic instances, in turn, the parenthesis at the second line with the
existential shuffle quantifier ∃�x(3) encodes the arbitrary order among some of the subscriber
instances for executing three types of consecutive interactions, namely the connection with
the interested subscriber instance, the transfer of the message and their disconnection.
The communication steps described above are implemented for the distinct topic instances
with interleaving (captured by the first existential shuffle quantifier ∃�x(2)). Finally, the
iteration operator is applied to the whole sentence in order to describe the recursion of
the aforementioned interactions, and hence models the subsequent implementation of the
architecture within the parametric system. Example 4.8 presented in Subsection 4.1 is an
instantiation of the parametric Publish/Subscribe architecture for two publishers, two topics,
and three subscribers.

In [MBBS16b] the authors described a simpler version of Request/Response and Black-
board architectures. Though the resulting sets of interactions do not depict the order in
which they should be performed (cf. Remark 4.6). Publish/Subscribe architecture has not
been considered in the related work [BIS19b, KKW+16, MBBS16b]. A weighted version of
Publish/Subscribe architecture was described by a weighted propositional configuration logic
formula in [PR17]. Nevertheless, even if we consider that formula without weights, it is not
possible to express the required order of the implementation of the interactions. Moreover,
the versions of the parametric architectures studied in [BIS19b, KKW+16, MBBS16b, PR17]
do not allow recursive interactions. Our Examples 5.9, 5.10, and 5.11 show that for a para-
metric component-based system with any of the aforementioned architectures, the semantics
of the corresponding FOEIL formula encodes the required order of recursive interactions.

6. Decidability results for FOEIL

In this section, we prove decidability results for FOEIL sentences. Specifically, we show
that the equivalence and validity problems for FOEIL sentences are decidable in doubly
exponential time, whereas the satisfiability problem is decidable in exponential time. For
this, we establish an effective translation of every FOEIL formula to an expressive equivalent
finite automaton, and hence we take advantage of well-known computational results for
finite automata. For the reader’s convenience we briefly recall basic notions and results on
finite automata.
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Let A be an alphabet. A (nondeterministic) finite automaton (NFA for short) over A
is a five-tuple A = (Q,A, I,∆, F ) where Q is the finite state set, I ⊆ Q is the set of initial
states, ∆ ⊆ Q×A×Q is the set of transitions, and F is the final state set.

Let w = a1 . . . an ∈ A∗. A path ofA over w is a sequence of transitions ((qi−1, ai, qi))1≤i≤n.
The path is called successful if q0 ∈ I and qn ∈ F . A word w ∈ A∗ is accepted (or recognized)
by A if there a successful path of A over w. The language L(A) of A is the set of all words
accepted by A.

The finite automaton A is called deterministic (DFA for short) (resp. complete) if
I = {q0} and for every q ∈ Q and a ∈ A there is at most (resp. exactly) one state q′ ∈ Q
such that (q, a, q′) ∈ ∆. In this case we write A = (Q,A, q0,∆, F ). Two finite automata
A and A′ over A are called equivalent if L(A) = L(A′). For our translation algorithm of
FOEIL formulas to finite automata we shall need folklore results in automata theory. We
collect them in the following proposition (cf. for instance [KN01, Sak09a, Sip13]).

Proposition 6.1.

1) Let A = (Q,A, I,∆, F ) be an NFA over A. Then, we can construct an equivalent complete
finite automaton A′ with state set P(Q) over A. The run time of the algorithm is
exponential.

2) Let A1 = (Q1, A, I1,∆1, F1) and A2 = (Q2, A, I2,∆2, F2) be two NFA’s over A. Then, the
intersection L(A1) ∩ L(A2) is accepted by the NFA A = (Q1 ×Q2, A, I1 × I2,∆, F1 × F2)
where ∆ = {((q1, q2), a, (q′1, q′2)) | (q1, a, q

′
1) ∈ ∆1, (q2, a, q

′
2) ∈ ∆2}. If A1 and A2 are

DFA’s, then A is also a DFA. The finite automaton A is called the product automaton of
A1 and A2.
The union L(A1)∪L(A2) is accepted by the NFA A′ = (Q1∪Q2, A, I1∪I2,∆1∪∆2, F1∪F2)
where without loss of generality we assume that Q1 ∩Q2 = ∅. The NFA A′ is called the
disjoint union of A1 and A2.

3) If A1, A2, and A are finite automata over A, then we can construct, from A1, A2, and A
NFA’s B, C, and D accepting respectively, the languages L(A1) ∗ L(A2), L(A1)� L(A2),
and L(A)+. The run time for all the constructions is polynomial.

4) Let A1 = (Q1, A, q0,1,∆1, F1) and A2 = (Q2, A, q0,2,∆2, F2) be two complete finite au-
tomata over A. Then, the union L(A1)∪L(A2) is accepted by the complete finite automaton
A = (Q1 ×Q2, A, (q0,1, q0,2),∆, (Q1 × F2) ∪ (F1 ×Q2)) where ∆ = {((q1, q2), a, (q′1, q′2)) |
(q1, a, q

′
1) ∈ ∆1, (q2, a, q

′
2) ∈ ∆2}.

5) Let A = (Q,A, q0,∆, F ) be a DFA over A. Then, we can construct an equivalent complete
finite automaton A′ = (Q∪{q̄}, A, q0,∆′, F ) where q̄ is a new state and ∆′ = ∆∪{(q, a, q̄) |
there is no state q′ ∈ Q such that (q, a, q′) ∈ ∆} ∪ {(q̄, a, q̄) | a ∈ A}.

6) Let A = (Q,A, q0,∆, F ) be a complete finite automaton over A. Then, the complement of
L(A) is accepted by the complete finite automaton Ā = (Q,A, q0,∆, Q \ F ).

7) Let A = (Q,A, I,∆, F ) be an NFA over A. Then, we can decide in linear time whether
L(A) = ∅ or not (emptiness problem).

8) Let A = (Q,A, I,∆, F ) be an NFA over A. Then, we can decide in exponential time
whether L(A) = A∗ or not (universality problem).
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Next we present the translation algorithm of FOEIL sentences to finite automata. Our
algorithm requires an exponential time at its worst case. Specifically, we state the following
theorem.

Theorem 6.2. Let ψ be a FOEIL sentence over a set pB = {B(i, j) | i ∈ [n], j ≥ 1}
of parametric components and r : [n] → N. Then, we can effectively construct a finite
automaton Aψ,r over IpB(r) such that (r, w) |= ψ iff w ∈ L(Aψ,r) for every w ∈ I+pB(r).

The worst case run time for the translation algorithm is exponential and the best case is
polynomial.

We shall prove Theorem 6.2 using the subsequent proposition. For this, we need the
following notations. Let V ⊆ X be a finite set of variables. For every i ∈ [n] and x(i) ∈ V , we

define the set P (i)(x(i)) = {p(x(i)) | p ∈ P (i) and x(i) ∈ V} and let IpB(V) = {a ∈ I(PpB(V)) |
|a ∩ P (i)(x(i))| ≤ 1 for every i ∈ [n] and x(i) ∈ V}. Next let σ be a (V, r) assignment and
L a language over IpB(V). We shall denote by σ(L) the language over I(PpB(r))

2 which is
obtained by L by replacing every variable x ∈ V by σ(x).

Proposition 6.3. Let ψ be a FOEIL formula over a set pB = {B(i, j) | i ∈ [n], j ≥ 1} of
parametric components. Let also V ⊆ X be a finite set of variables containing free(ψ) and
r : [n]→ N. Then, we can effectively construct a finite automaton Aψ,r over IpB(V) such that

for every (V, r)-assignment σ and w ∈ I+pB(r) we have (r, σ, w) |= ψ iff w ∈ σ(L(Aψ,r))∩I+pB(r).
The worst case run time for the translation algorithm is exponential and the best case is
polynomial.

Proof. We prove our claim by induction on the structure of the FOEIL formula ψ.

i) If ψ = true, then we consider the complete finite automaton Aψ,r = ({q}, IpB(V), q,∆, {q})
where ∆ = {(q, a, q) | a ∈ IpB(V)}.

ii) If ψ = p(x(i)), then we construct the DFA Aψ,r = ({q0, q1}, IpB(V), q0,∆, {q1}) with

∆ = {(q0, a, q1) | a ∈ IpB(V) and p(x(i)) ∈ a}.

iii) If ψ = ¬φ′ or ψ = φ1 ∨ φ2 where φ′, φ1, φ2 are PIL formulas, and Aφ′,r, Aφ1,r, and Aφ2,r
are DFA’s, then we construct Aψ,r by applying Proposition 6.1(5),(6) and (4), respectively.
Trivially, the finite automaton Aψ,r is deterministic.

iv) If ψ = ζ1 ∗ ζ2, then we construct Aψ,r by taking the finite automaton accepting the Cauchy
product of L(Aζ1,r) and L(Aζ2,r) (cf. Proposition 6.1(3)).

v) If ψ = ζ1� ζ2, then we construct Aψ,r by taking the finite automaton accepting the shuffle
product of L(Aζ1,r) and L(Aζ2,r) (cf. Proposition 6.1(3)).

vi) If ψ = ¬ζ, then we construct firstly, from Aζ,r, an equivalent complete finite automaton
A′ (cf. Proposition 6.1(1)). Then, we get Aψ,r from A′ by applying Proposition 6.1(6).

vii) If ψ = ϕ1 ∨ ϕ2 or ψ = ϕ1 ∧ ϕ2 or ψ = ϕ1 ∗ ϕ2 or ψ = ϕ1 � ϕ2 or ψ = ϕ+ where ϕ1, ϕ2, ϕ
are EPIL formulas, then we construct Aψ,r by taking respectively, the disjoint union and
the product automaton of Aϕ1,r and Aϕ2,r, the NFA accepting the Cauchy product of
L(Aϕ1,r) and L(Aϕ2,r), the NFA accepting the shuffle product of L(Aϕ1,r) and L(Aϕ2,r),
and the NFA accepting the iteration of L(Aϕ,r).
2The language σ(L) is not always over IpB(r). For instance, assume that a ∈ L, with a ∈ IpB(V),

p(x(i)), p′(y(i)) ∈ a for some i ∈ [n], p, p′ ∈ P (i), and σ(x(i)) = σ(y(i)). Then σ(a) /∈ IpB(r).
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viii) If ψ = x(i) = y(i), then we consider the DFA Aψ,r = ({q}, IpB(V), q,∆, {q}) where ∆ =

{(q, a, q) | a ∈ IpB(V) such that for every p, p′ ∈ P (i) if p(x(i)) ∈ a, then p′(y(i)) /∈ a}.

ix) If ψ = ¬(x(i) = y(i)), then we get firstly a complete finite automaton by the DFA

corresponding to formula x(i) = y(i) (Proposition 6.1(5)). Then, we obtain Aψ,r by
applying Proposition 6.1(6).

x) If ψ = ψ1 ∨ψ2 or ψ = ψ1 ∧ψ2 or ψ = ψ1 ∗ψ2 or ψ = ψ1�ψ2 or ψ = ψ′+ where ψ1, ψ2, ψ
′

are FOEIL formulas, then we apply the same arguments as in (vii) for EPIL formulas.

xi) If ψ = ∃x(i).ψ′, then we get Aψ,r as the disjoint union of the finite automata A(j)
ψ′,r,

j ∈ [r(i)], where A(j)
ψ′,r is obtained by Aψ′,r by replacing x(i) by j in IpB(V).

xii) If ψ = ∀x(i).ψ′, then we get Aψ,r as the product automaton of the finite automata A(j)
ψ′,r,

j ∈ [r(i)], where A(j)
ψ′,r is obtained by Aψ′,r by replacing x(i) by j in IpB(V).

xiii) If ψ = ∃∗x(i).ψ′, then we compute firstly all nonempty subsets J of [r(i)]. For every such
subset J = {l1, . . . , lk}, with 1 ≤ k ≤ r(i) and 1 ≤ l1 < . . . < lk ≤ r(i), we consider the

NFA A(J)
ψ,r accepting the Cauchy product of the languages L(A(l1)

ψ′,r), . . . , L(A(lk)
ψ′,r) where

A(j)
ψ′,r, j ∈ J , is obtained by Aψ′,r by replacing x(i) by j in IpB(V). Then, we get Aψ,r as

the disjoint union of all finite automata A(J)
ψ′,r with ∅ 6= J ⊆ [r(i)].

xiv) If ψ = ∀∗x(i).ψ′, then we get Aψ,r as the NFA accepting the Cauchy product of the

languages L(A(1)
ψ′,r), . . . , L(A(r(i))

ψ′,r ) where A(j)
ψ′r, j ∈ [r(i)], is obtained by Aψ′,r by replacing

x(i) by j in IpB(V).

xv) If ψ = ∃�x(i).ψ′, then we compute firstly all nonempty subsets J of [r(i)]. For every such
subset J = {l1, . . . , lk}, with 1 ≤ k ≤ r(i) and 1 ≤ l1 < . . . < lk ≤ r(i), we consider the

NFA A(J)
ψ,r accepting the shuffle product of the languages L(A(l1)

ψ′,r), . . . , L(A(lk)
ψ′,r) where

A(j)
ψ′,r, j ∈ J , is obtained by Aψ′,r by replacing x(i) by j in IpB(V). Then, we get Aψ,r as

the disjoint union of all finite automata A(J)
ψ′,r with ∅ 6= J ⊆ [r(i)].

xvi) If ψ = ∀�x(i).ψ′, then we get Aψ,r as the NFA accepting the shuffle product of the

languages L(A(1)
ψ′,r), . . . , L(A(r(i))

ψ′,r ) where A(j)
ψ′,r, j ∈ [r(i)], is obtained by Aψ′,r by replacing

x(i) by j in IpB(V).

By our constructions above, we immediately get that for every (V, r)-assignment σ and
w ∈ I+pB(r) we have (r, σ, w) |= ψ iff w ∈ σ(L(Aψ,r)) ∩ I+pB(r). Hence, it remains to deal with

the time complexity of our translation algorithm.
Taking into account the above induction steps, we show that the worst case run time for

our translation algorithm is exponential. Indeed, if ψ is a PIL formula, then the constructed
finite automaton Aψ,r in steps (i)-(iii) is a DFA and its state-size is polynomial in the size

of ψ. Specifically, if ψ = p(x(i)), then the state-size of Aψ,r is the same as the size of ψ. If
ψ = ¬ζ, then by step (vi) we need an exponential time since we construct firstly a complete
finite automaton equivalent to the one corresponding to ζ. The cases (iv), (v), (vii)-(xii),
(xiv), and (xvi) trivially require polynomial time constructions. Finally, the translations in
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steps (xiii) and (xv) require an exponential run time since we need to compute all nonempty
subsets of [r(i)]; every such subset corresponds to a polynomial time construction of a finite
automaton. Moreover, this is an upper bound for the complexity in that steps because of
the following reasons. Firstly, the FOEIL formula ψ′ contains no EPIL subformulas of the
form ¬ζ. Secondly, if ψ′ contains a subformula of the form ∃∗x(i′).ψ′′ or ∃�x(i′).ψ′′, then
the computation of the subsets of [r(i′)] is independent of the computation of the subsets of
[r(i)].
On the other hand, the best case run time of the algorithm is polynomial since if ψ needs
no translation of steps (vi), (xiii), or (xv), then no exponential blow up occurs.

Proof of Theorem 6.2. We apply Proposition 6.3. Since ψ is a sentence it contains no free
variables. Hence, we get a finite automaton Aψ,r over IpB(r) such that (r, w) |= ψ iff

w ∈ L(Aψ,r) for every w ∈ I+pB(r), and this concludes our proof.

We should note that several of the constructions described in the proof of Proposition
6.3 can be simplified according to the form of the FOEIL sentence ψ. For instance consider
two ports p, p′ and the EPIL formula ϕ = #(p ∧ p′). Clearly ϕ is satisfied only by the
interaction a = {p, p′} which in turns implies that we get in a straightforward way a finite
automaton for ϕ. We clarify this in the following example.

Example 6.4. We consider the parametric Repository architecture and its corresponding
FOEIL sentence ψ = ∃x(1)∀∗x(2).#(pr(x

(1)) ∧ pd(x(2))) (cf. Example 5.8). We let r(1) = 1
and r(2) = 3, i.e., we assume one repository component instance, as required, and three
instances of the data accessor component. Hence, the set of available ports of the architecture
w.r.t. r is {pr(1), pd(1), pd(2), pd(3)}. We consider the interactions a1 = {pr(1), pd(1)}, a2 =
{pr(1), pd(2)}, and a3 = {pr(1), pd(3)} and the DFA’s A1 = ({q1,0, q1,1}, {a1}, q1,0, {(q1,0, a1,
q1,1)}, {q1,1}), A2 = ({q2,0, q2,1}, {a2}, q2,0, {(q2,0, a2, q2,1)}, {q2,1}), and A3 = ({q3,0, q3,1},
{a3}, q3,0, {(q3,0, a3, q3,1)}, {q3,1}). Trivially we get L(A1) = {a1}, L(A2) = {a2}, and
L(A3) = {a3}, hence we can consider the normalized DFA’s A1, A2, and A3 (cf. for instance
[KN01, Sak09a, Sip13]) as the ones corresponding to EPIL formulas #(pr(1) ∧ pd(1)),
#(pr(1) ∧ pd(2)), and #(pr(1) ∧ pd(3)), respectively. Then, we construct the DFA Aψ,r,
depicted in Figure 8, which corresponds to FOEIL sentence ψ w.r.t. r.

q1,0 q q′ q3,1
a1 a2 a3

Figure 8: The DFA Aψ,r corresponding to sentence ψ w.r.t. r.

Now we are ready to state the decidability result of the equivalence of FOEIL sentences.
Specifically, we prove the following theorem.

Theorem 6.5. Let pB = {B(i, j) | i ∈ [n], j ≥ 1} be a set of parametric components and
r : [n]→ N a mapping. Then, the equivalence problem for FOEIL sentences over pB w.r.t.
r is decidable in doubly exponential time.
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Proof. Let ψ1, ψ2 be FOEIL sentences over pB. Then, by Theorem 6.2 we construct, in
exponential time, finite automata Aψ1,r and Aψ2,r such that (r, w) |= ψi iff w ∈ L(Aψi,r) for

every w ∈ I+pB(r) and i = 1, 2. The finite automata Aψ1,r and Aψ2,r are in general nondeter-

ministic, hence by Proposition 6.1(1) we construct complete finite automata A′ψ1,r
and A′ψ2,r

equivalent to Aψ1,r and Aψ2,r, respectively. In this construction another exponential blow
up occurs. Finally, the decidability of equivalence of the complete finite automata A′ψ1,r

and

A′ψ2,r
requires a linear time (cf. pages 143–145 in [AHU74]), and we are done.

Next, we deal with the decidability of satisfiability and validity results for FOEIL
sentences. For this, we recall firstly these notions. More precisely, a FOEIL sentence ψ over
pB is called satisfiable w.r.t. r whenever there exists a w ∈ I+pB(r) such that (r, w) |= ψ, and

valid w.r.t. r whenever (r, w) |= ψ for every w ∈ I+pB(r).

Theorem 6.6. Let pB = {B(i, j) | i ∈ [n], j ≥ 1} be a set of parametric components and
r : [n]→ N a mapping. Then, the satisfiability problem for FOEIL sentences over pB w.r.t.
r is decidable in exponential time.

Proof. Let ψ be a FOEIL sentence over pB. By Theorem 6.2 we construct, in exponential
time, an NFA Aψ,r such that (r, w) |= ψ iff w ∈ L(Aψ,r) for every w ∈ I+pB(r). Then, ψ is

satisfiable iff L(Aψ,r) 6= ∅ which is decidable in linear time (Proposition 6.1(7)), and this
concludes our proof.

Theorem 6.7. Let pB = {B(i, j) | i ∈ [n], j ≥ 1} be a set of parametric components and
r : [n]→ N a mapping. Then, the validity problem for FOEIL sentences over pB w.r.t. r is
decidable in doubly exponential time.

Proof. Let ψ be a FOEIL sentence over pB. By Theorem 6.2 we construct, in exponential
time, an NFA Aψ,r such that (r, w) |= ψ iff w ∈ L(Aψ,r) for every w ∈ I+pB(r). Then, ψ is

valid iff L(Aψ,r) = I+pB(r) which is decidable in exponential time (Proposition 6.1(8)). Hence,

we can decide whether ψ is valid or not in doubly exponential time.

7. Parametric weighted architectures

7.1. Weighted EPIL and component-based systems. In this subsection, we introduce
the notion of weighted EPIL over a set of ports P and the semiring K. Furthermore, we
define weighted component-based systems and provide examples of architectures in the
weighted setup.

Definition 7.1. Let P be a finite set of ports. Then the syntax of weighted EPIL (wEPIL
for short) formulas over P and K is given by the grammar

ϕ̃ ::= k | ϕ | ϕ̃⊕ ϕ̃ | ϕ̃⊗ ϕ̃ | ϕ̃� ϕ̃ | ϕ̃$ϕ̃ | ϕ̃⊕

where k ∈ K, ϕ is an EPIL formula over P , and ⊕, ⊗, �, $, and ⊕ are the weighted
disjunction, conjunction, concatenation, shuffle, and iteration operator, respectively.
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If ϕ̃ is composed by elements in K and PIL formulas connected with ⊕ and ⊗ operators
only, then it is called also a weighted PIL (wPIL for short) formula over P and K [PR17,

PR20a] and it will be denoted also by φ̃. The binding strength, in decreasing order, of
the operators in wEPIL is the following: weighted iteration, weighted shuffle, weighted
concatenation, weighted conjunction, and weighted disjunction.

For the semantics of wEPIL formulas we consider finite words w over I(P ) and interpret
wEPIL formulas as series in K 〈〈I(P )+〉〉.

Definition 7.2. Let ϕ̃ be a wEPIL formula over P and K. Then the semantics of ϕ̃ is a
series ‖ϕ̃‖ ∈ K 〈〈I(P )+〉〉. For every w ∈ I(P )+ the value ‖ϕ̃‖ (w) is defined inductively on
the structure of ϕ̃ as follows:

- ‖k‖ (w) = k,

- ‖ϕ‖ (w) =

{
1 if w |= ϕ
0 otherwise

,

- ‖ϕ̃1 ⊕ ϕ̃2‖ (w) = ‖ϕ̃1‖ (w) + ‖ϕ̃2‖ (w),

- ‖ϕ̃1 ⊗ ϕ̃2‖ (w) = ‖ϕ̃1‖ (w) · ‖ϕ̃2‖ (w),

- ‖ϕ̃1 � ϕ̃2‖ (w) =
∑

w=w1w2

(‖ϕ̃1‖ (w1) · ‖ϕ̃2‖ (w2)),

- ‖ϕ̃1$ϕ̃2‖ (w) =
∑

w∈w1�w2

(‖ϕ̃1‖ (w1) · ‖ϕ̃2‖ (w2)),

- ‖ϕ̃⊕‖ (w) =
∑
ν≥1
‖ϕ̃‖ν .

By definition, the series ‖ϕ̃‖ is proper for every wEPIL formula ϕ̃ over P and K. Two wEPIL
formulas ϕ̃1, ϕ̃2 over P and K are called equivalent and we write ϕ̃1 ≡ ϕ̃2 if ‖ϕ̃1‖ = ‖ϕ̃2‖.
Next we define weighted component-based systems. For this, we introduce the notion of a
weighted atomic component.

Definition 7.3. A weighted atomic component over K is a pair wB = (B,wt) where
B = (Q,P, q0, R) is an atomic component and wt : R→ K is a weight mapping.

Since every port in P occurs in at most one transition in R, we consider, in the sequel, wt
as a mapping wt : P → K. If a port p ∈ P occurs in no transition, then we set wt(p) = 0.

We call a weighted atomic component wB over K a weighted component, whenever
we deal with several weighted atomic components and the semiring K is understood. Let
wB = {wB(i) | i ∈ [n]} be a set of weighted components where wB(i) = (B(i), wt(i))
with B(i) = (Q(i), P (i), q0(i), R(i)) for every i ∈ [n]. The set of ports and the set of
interactions of wB are the sets PB and IB respectively, of the underlying set of components
B = {B(i) | i ∈ [n]}. Let a = {pj1 , . . . , pjm} be an interaction in IB such that pjl ∈ P (jl) for

every l ∈ [m]. Then, the weighted monomial φ̃a of a is given by the wPIL formula

φ̃a = (wt(j1)(pj1)⊗ pj1)⊗ . . .⊗ (wt(jm)(pjm)⊗ pjm)

≡ (wt(j1)(pj1)⊗ . . .⊗ wt(jm)(pjm))⊗ (pj1 ⊗ . . .⊗ pjm)

≡ (wt(j1)(pj1)⊗ . . .⊗ wt(jm)(pjm))⊗ (pj1 ∧ . . . ∧ pjm)

where the first equivalence holds sinceK is commutative and the second one since p⊗p′ ≡ p∧p′
for every p, p′ ∈ PB.
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Definition 7.4. A weighted component-based system (over K) is a pair (wB, ϕ̃) where
wB = {wB(i) | i ∈ [n]} is a set of weighted components and ϕ̃ is a wEPIL formula over PB
and K.

We should note that, as in the unweighted case, the wEPIL formula ϕ̃ is defined over
the set of ports PB and is interpreted as a series in K

〈〈
I+B
〉〉

.

Next we consider three examples of weighted component-based models whose architec-
tures have ordered interactions encoded by wEPIL formulas. We recall from the Subsection
4.1 the following macro EPIL formula. Let P = {p1, . . . , pn} be a set of ports. Then, for
pi1 , . . . , pim ∈ P with m < n we let

#(pi1 ∧ . . . ∧ pim) ::= pi1 ∧ . . . ∧ pim ∧
∧

p∈P\{pi1 ,...,pim}

¬p.

Let us now assume that we assign a weight kil ∈ K to pil for every l ∈ [m]. We define the
subsequent macro wEPIL formula

#w(pi1 ⊗ . . .⊗ pim) ::= (ki1 ⊗ pi1)⊗ . . .⊗ (kim ⊗ pim)⊗
∧

p∈P\{pi1 ,...,pim}

¬p.

Then, we get

#w(pi1 ⊗ . . .⊗ pim) ≡ (ki1 ⊗ . . .⊗ kim)⊗ (pi1 ⊗ . . .⊗ pim)⊗
∧

p∈P\{pi1 ,...,pim}

¬p

≡ (ki1 ⊗ . . .⊗ kim)⊗
(

(pi1 ∧ . . . ∧ pim) ∧
∧

p∈P\{pi1 ,...,pim}

¬p
)

= (ki1 ⊗ . . .⊗ kim)⊗#(pi1 ∧ . . . ∧ pim).

Clearly the above macro formula #w(pi1 ⊗ . . . ⊗ pim) depends on the values ki1 , . . . , kim .
Though, in order to simplify our wEPIL formulas, we make no special notation about this.
If the macro formula is defined in a weighted component-based system, then the values
ki1 , . . . , kim are unique in the whole formula.

Example 7.5. (Weighted Blackboard) Consider a weighted component-based system
(wB, ϕ̃) with the Blackboard architecture described in Example 4.5. We assume the
existence of three knowledge source weighted components. Therefore, we have wB =
{wB(1), wB(2), wB(3), wB(4), wB(5)} referring to blackboard, controller, and the three
source weighted components, respectively. Figure 9 depicts each of the weighted components
in the system and a possible execution of the permissible interactions. The weight associated
with each port in the system is shown at the outside of the port.

The allowed interactions range over IB, i.e., they are defined as in the corresponding
(unweighted) component-based system B with Blackboard architecture. Then, the wEPIL
formula ϕ̃ for the weighted Blackboard architecture with three source weighted components
is

ϕ̃ =

(
#w(pd ⊗ pr)�

(
#w(pd ⊗ pn1)$#w(pd ⊗ pn2)$#w(pd ⊗ pn3)

)
�
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(
ϕ̃1 ⊕ ϕ̃2 ⊕ ϕ̃3 ⊕ (ϕ̃1$ϕ̃2)⊕ (ϕ̃1$ϕ̃3)⊕ (ϕ̃2$ϕ̃3)⊕ (ϕ̃1$ϕ̃2$ϕ̃3)

)⊕)⊕
where

ϕ̃i = #w(pl ⊗ pti)�#w(pe ⊗ pwi ⊗ pa)
for i = 1, 2, 3. The first wPIL subformula expresses the cost for the connection of blackboard
and controller. The wEPIL subformula between the two weighted concatenation operators
represents the cost of the connection of the three sources to blackboard in order to be
informed for existing data. The last part of ϕ̃ captures the cost of applying the connection
of some of the three sources with controller and blackboard for the triggering and writing
process. The weighted iteration operators describe the cost of executing recursive interactions
in ϕ̃. Let w1, w2 ∈ I+B encode two distinct sequences of interactions permitted in the given
weighted Blackboard architecture. The values ‖ϕ̃‖ (w1) and ‖ϕ̃‖ (w2) represent the cost
for executing these interactions with the order encoded by w1 and w2, respectively. Then,
‖ϕ̃‖ (w1) + ‖ϕ̃‖ (w2) is the ‘total’ cost for implementing w1 and w2. For example, if we
consider the max-plus semiring, then the value max{‖ϕ̃‖ (w1), ‖ϕ̃‖ (w2)} gives information
for the communication with the maximum cost. Such information would be important in
systems with restricted resources such as battery capacity for instance, in order for the
systems to opt for implementing the least ‘expensive’ sequence of interactions.

pdkd
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wB(1)
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kr
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ke
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pn2 kn2

pt2 kt2
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Figure 9: A possible execution of the interactions in a weighted Blackboard architecture.
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Example 7.6. (Weighted Request/Response) Let (wB, ϕ̃) be a weighted component-
based system with the Request/Response architecture presented in Example 4.7. Our
weighted system, shown in Figure 10, consists of seven weighted components, and specifically,
the service registry, two services with their associated coordinators, and two clients. Therefore,
we have that wB = {wB(1), . . . , wB(7)} referring to each of the aforementioned weighted
components, respectively. The allowed interactions range over IB, and the wEPIL formula ϕ̃
describing the weighted Request/Response architecture is

ϕ̃ =
(
#w(pe ⊗ pr1)$#w(pe ⊗ pr2)

)
�
(
ξ̃1$ξ̃2

)
�((

ϕ̃11⊕ ϕ̃21⊕ (ϕ̃11� ϕ̃21)⊕ (ϕ̃21� ϕ̃11)

)⊕⊕(
ϕ̃12⊕ ϕ̃22⊕ (ϕ̃12� ϕ̃22)⊕ (ϕ̃22� ϕ̃12)

)⊕⊕
((
ϕ̃11 ⊕ ϕ̃21 ⊕ (ϕ̃11 � ϕ̃21)⊕ (ϕ̃21 � ϕ̃11)

)⊕
$

(
ϕ̃12 ⊕ ϕ̃22 ⊕ (ϕ̃12 � ϕ̃22)⊕ (ϕ̃22 � ϕ̃12)

)⊕)⊕)⊕
where

- ξ̃1 = #w(pl1 ⊗ pu)�#w(po1 ⊗ pt)

- ξ̃2 = #w(pl2 ⊗ pu)�#w(po2 ⊗ pt)
capture the cost of the interactions of the two clients with the service registry and

- ϕ̃11 = #w(pn1 ⊗ pm1)�#w(pq1 ⊗ pa1 ⊗ pg1)�#w(pc1 ⊗ pd1 ⊗ ps1)

- ϕ̃12 = #w(pn1 ⊗ pm2)�#w(pq1 ⊗ pa2 ⊗ pg2)�#w(pc1 ⊗ pd2 ⊗ ps2)

- ϕ̃21 = #w(pn2 ⊗ pm1)�#w(pq2 ⊗ pa1 ⊗ pg1)�#w(pc2 ⊗ pd1 ⊗ ps1)

- ϕ̃22 = #w(pn2 ⊗ pm2)�#w(pq2 ⊗ pa2 ⊗ pg2)�#w(pc2 ⊗ pd2 ⊗ ps2)

describe the connection’s cost of each of the two clients with the two services through their
coordinators.
The two wEPIL subformulas at the left of the first two weighted concatenation operators
encode the cost for the connections of the two services and the two clients with registry,
respectively. Then, each of the three wEPIL subformulas connected with

⊕
represent the

cost for the connection of either one of the two clients or both of them (one at each time)
with the first service only, the second service only, or both of the services, respectively.
Also, the weighted iteration operators in ϕ̃ express the cost of repeating the corresponding
permissible interactions in the architecture.

Let w1, w2 ∈ I+B encode two distinct sequences of interactions in the presented weighted
Request/Response architecture. Then, the value min{‖ϕ̃‖ (w1), ‖ϕ̃‖ (w2)} expresses in min-
plus semiring for instance, the communication with the minimum cost. Furthermore, if we
interpret the cost as the energy consumption required for implementing the architecture in
a network, then we would be able to derive which pattern of interactions, w1 or w2, requires
the minimum energy.

Example 7.7. (Weighted Publish/Subscribe) Let (wB, ϕ̃) be a weighted component-
based system with the Publish/Subscribe architecture described in Example 4.8. Our
weighted system, shown in Figure 11, is comprised of two publisher, two topic, and three
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Figure 10: A possible execution of the interactions in a weighted Request/Response archi-
tecture.

subscriber weighted components, hence wB = {wB(1), . . . , wB(7)} referring to these compo-
nents, respectively. The permissible interactions range over IB, and the wEPIL formula ϕ̃
for the weighted Publish/Subscribe architecture is ϕ̃ = (ϕ̃1 ⊕ ϕ̃2 ⊕ (ϕ̃1$ϕ̃2))

⊕ with

ϕ̃1 =

((
ξ̃1 � ϕ̃11

)
⊕
(
ξ̃1 � ϕ̃12

)
⊕
(
ξ̃1 � ϕ̃13

)
⊕(

ξ̃1 � (ϕ̃11$ϕ̃12)
)
⊕
(
ξ̃1 � (ϕ̃11$ϕ̃13)

)
⊕(

ξ̃1 � (ϕ̃12$ϕ̃13)
)
⊕
(
ξ̃1 � (ϕ̃11$ϕ̃12$ϕ̃13)

))
and

ϕ̃2 =

((
ξ̃2 � ϕ̃21

)
⊕
(
ξ̃2 � ϕ̃22

)
⊕
(
ξ̃2 � ϕ̃23

)
⊕(

ξ̃2 � (ϕ̃21$ϕ̃22)
)
⊕
(
ξ̃2 � (ϕ̃21$ϕ̃23)

)
⊕(

ξ̃2 � (ϕ̃22$ϕ̃23)
)
⊕
(
ξ̃2 � (ϕ̃21$ϕ̃22$ϕ̃23)

))
where the following auxiliary subformulas:

- ξ̃1 = ξ̃11 ⊕ ξ̃12 ⊕ (ξ̃11$ξ̃12)

- ξ̃2 = ξ̃21 ⊕ ξ̃22 ⊕ (ξ̃21$ξ̃22)
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represent the cost for the connection of each of the two topics with the first publisher wB(1),
or the second publisher wB(2) or with both of them, and

- ξ̃11 = #w(pn1 ⊗ pa1)�#w(pr1 ⊗ pt1)

- ξ̃12 = #w(pn1 ⊗ pa2)�#w(pr1 ⊗ pt2)

- ξ̃21 = #w(pn2 ⊗ pa1)�#w(pr2 ⊗ pt1)

- ξ̃22 = #w(pn2 ⊗ pa2)�#w(pr2 ⊗ pt2)

describe the cost of the interactions of the two topics with each of the two publishers, and

- ϕ̃11 = #w(pc1 ⊗ pe1)�#w(ps1 ⊗ pg1)�#w(pf1 ⊗ pd1)

- ϕ̃12 = #w(pc1 ⊗ pe2)�#w(ps1 ⊗ pg2)�#w(pf1 ⊗ pd2)

- ϕ̃13 = #w(pc1 ⊗ pe3)�#w(ps1 ⊗ pg3)�#w(pf1 ⊗ pd3)

- ϕ̃21 = #w(pc2 ⊗ pe1)�#w(ps2 ⊗ pg1)�#w(pf2 ⊗ pd1)

- ϕ̃22 = #w(pc2 ⊗ pe2)�#w(ps2 ⊗ pg2)�#w(pf2 ⊗ pd2)

- ϕ̃23 = #w(pc2 ⊗ pe3)�#w(ps2 ⊗ pg3)�#w(pf2 ⊗ pd3)

describe the cost of the connections of the two topics with each of the three subscribers.
Each of ϕ̃1 and ϕ̃2 capture the cost for implementing the interactions of topics wB(3)
and wB(4), respectively, with some of the publisher and subscriber components. Then,
ϕ̃1 ⊕ ϕ̃2 ⊕ (ϕ̃1$ϕ̃2) expresses the cost for the participation of some of the topics in the
architecture, and in turn the use of the weight iteration operator in ϕ̃ allows to encode the
overall cost of applying these interactions with recursion. Consider for instance the words
w1, w2 ∈ I+B encoding two interactions in the given weighted Publish/Subscribe architecture.
Then, in the Viterbi semiring the value max{‖ϕ̃‖ (w1), ‖ϕ̃‖ (w2)} shows the sequence of
interactions executed with the maximum probability.

7.2. Parametric weighted component-based systems. In this subsection we deal with
the parametric extension of weighted component-based systems, i.e., with systems comprised
of a finite number of weighted component types where the cardinality of the instances of
each type is a parameter for the system.

Let wB = {wB(i) | i ∈ [n]} be a set of weighted component types. For every i ∈ [n]
and j ≥ 1 we consider a weighted component wB(i, j) = (B(i, j), wt(i)), where B(i, j) =
(Q(i, j), P (i, j), q0(i, j), R(i, j)) is the j-th instance of B(i), and it is called a parametric
weighted component or a weighted component instance. We set pwB = {wB(i, j) | i ∈
[n], j ≥ 1} and call it a set of parametric weighted components. We impose on pwB the same
assumptions as for pB. Abusing notations, we denote by wt(i), i ∈ [n], the weight mapping
of wB(i, j), j ≥ 1, meaning that it assigns the value wt(i)(p) to every port p(j) ∈ P (i, j).

Now we can introduce the weighted first-order extended interaction logic as a modelling
language for describing the weight of the interactions in parametric weighted component-
based systems.

As in FOEIL we equip wEPIL formulas with variables. Let pwB = {wB(i, j) | i ∈ [n], j ≥
1} be a set of parametric weighted components. We consider pairwise disjoint countable sets

of first-order variables X (1), . . . ,X (n) referring to instances of weighted component types
wB(1), . . . , wB(n), respectively.
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Figure 11: A possible execution of the interactions in a weighted Publish/Subscribe archi-
tecture.

Definition 7.8. Let pwB = {wB(i, j) | i ∈ [n], j ≥ 1} be a set of parametric weighted
components. Then the syntax of weighted first-order extended interaction logic (wFOEIL

for short) formulas ψ̃ over pwB and K is given by the grammar

ψ̃ ::= k | ψ | ψ̃ ⊕ ψ̃ | ψ̃ ⊗ ψ̃ | ψ̃ � ψ̃ | ψ̃$ψ̃ | ψ̃⊕ |
∑
x(i).ψ̃ |

∏
x(i).ψ̃ |∑�x(i).ψ̃ |

∏�x(i).ψ̃ |∑$x(i).ψ̃ |
∏

$x(i).ψ̃

where k ∈ K, ψ is a FOEIL formula over pB, x(i), y(i) are first-order variables in X (i),
∑

(resp.
∏

) denotes the weighted existential (resp. universal) quantifier,
∑� (resp.

∏�)
denotes the weighted existential (resp. universal) concatenation quantifier, and

∑
$ (resp.∏

$) the weighted existential (resp. universal) shuffle quantifier. Furthermore, we assume

that when ψ̃ contains a subformula of the form
∑�x(i).ψ̃′ or

∑
$x(i).ψ̃′, and ψ̃′ contains a

FOEIL formula ψ, then the application of negation in ψ is permitted only in PIL formulas,
and formulas of the form x(j) = y(j).

Let ψ̃ be a wFOEIL formula over pwB and r : [n]→ N a mapping. As for (unweighted)
parametric systems the value r(i), for every i ∈ [n], intends to represent the finite number
of instances of the weighted component type wB(i) in the parametric system. We let
pwB(r) = {wB(i, j) | i ∈ [n], j ∈ [r(i)]} and call it the instantiation of pwB w.r.t. r. The
set of ports and the set of interactions of pwB(r) are the same as the corresponding ones in
pB(r), hence we use for simplicity the same symbols PpB(r) and IpB(r), respectively.
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We interpret wFOEIL formulas ψ̃ as series ‖ψ̃‖ over triples consisting of a mapping
r : [n] → N, a (V, r)-assignment σ, and a word w ∈ I+pB(r), and K. Intuitively, the use of

weighted existential and universal concatenation (resp. shuffle) quantifiers
∑�x(i).ψ̃ and∏�x(i).ψ̃ (resp.

∑
$x(i).ψ̃ and

∏
$x(i).ψ̃) serves to compute the weight of the partial and

whole participation of the weighted component instances, determined by the application of
the assignment σ to x(i), in sequential (resp. interleaving) interactions.

Definition 7.9. Let ψ̃ be a wFOEIL formula over a set pwB = {wB(i, j) | i ∈ [n], j ≥ 1}
of parametric weighted components and K, and V ⊆ X a finite set containing free(ψ). Then

for every r : [n]→ N, (V, r)-assignment σ, and w ∈ I+pB(r) we define the value ‖ψ̃‖(r, σ, w),

inductively on the structure of ψ̃ as follows:

- ‖k‖(r, σ, w) = k,

- ‖ψ‖(r, σ, w)

{
1 if (r, σ, w) |= ψ
0 otherwise

,

- ‖ψ̃1 ⊕ ψ̃2‖(r, σ, w) = ‖ψ̃1‖(r, σ, w) + ‖ψ̃2‖(r, σ, w),

- ‖ψ̃1 ⊗ ψ̃2‖(r, σ, w) = ‖ψ̃1‖(r, σ, w) · ‖ψ̃2‖(r, σ, w),

- ‖ψ̃1 � ψ̃2‖(r, σ, w) =
∑

w=w1w2
(‖ψ̃1‖(r, σ, w1) · ‖ψ̃2‖(r, σ, w2)),

- ‖ψ̃1$ψ̃2‖(r, σ, w) =
∑

w∈w1�w2
(‖ψ̃1‖(r, σ, w1) · ‖ψ̃2‖(r, σ, w2)),

- ‖ψ̃⊕‖(r, σ, w) =
∑

ν≥1 ‖ψ̃‖ν(r, σ, w),

-
∥∥∥∑x(i).ψ̃

∥∥∥ (r, σ, w) =
∑

j∈[r(i)]
‖ψ̃‖(r, σ[x(i) → j], w),

-
∥∥∥∏x(i).ψ̃

∥∥∥ (r, σ, w) =
∏

j∈[r(i)]
‖ψ̃‖(r, σ[x(i) → j], w),

-
∥∥∥∑�x(i).ψ̃

∥∥∥ (r, σ, w) =
∑

1≤t≤r(i)

∑
1≤l1<...<lt≤r(i)

∑
w=wl1 ...wlt

∏
j=l1,...,lt

‖ψ̃‖(r, σ[x(i) → j], wj),

-
∥∥∥∏�x(i).ψ̃∥∥∥ (r, σ, w) =

∑
w=w1...wr(i)

∏
1≤j≤r(i)

‖ψ̃‖(r, σ[x(i) → j], wj),

-
∥∥∥∑$x(i).ψ̃

∥∥∥ (r, σ, w) =
∑

1≤t≤r(i)

∑
1≤l1<...<lt≤r(i)

∑
w∈wl1�...�wlt

∏
j=l1,...,lt

‖ψ̃‖(r, σ[x(i) → j], wj),

-
∥∥∥∏$x(i).ψ̃

∥∥∥ (r, σ, w) =
∑

w∈w1�...�wr(i)

∏
1≤j≤r(i)

‖ψ̃‖(r, σ[x(i) → j], wj).

Similarly to the unweighted setup, all instances of each weighted component type in para-
metric weighted component-based systems are identical. Hence the order specified above
in the semantics of

∑�,
∏�,∑$,

∏
$ weighted quantifiers causes no restriction in the

resulting architecture.
If ψ̃ is a wFOEIL sentence over pwB and K, then we simply write ‖ψ̃‖(r, w). Let also

ψ̃′ be a wFOEIL sentence over pwB and K. Then, ψ̃ and ψ̃′ are called equivalent w.r.t. r
whenever ‖ψ̃‖(r, w) = ‖ψ̃′‖(r, w), for every w ∈ I+pB(r).
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Now we are ready to formally define the concept of a parametric weighted component-
based system.

Definition 7.10. A parametric weighted component-based system over K is a pair (pwB, ψ̃)

where pwB = {wB(i, j) | i ∈ [n], j ≥ 1} is a set of parametric weighted components and ψ̃ is
a wFOEIL sentence over pwB and K.

In the sequel, for simplicity we refer to parametric weighted component-based systems
by parametric weighted systems, and we often omit the term “weighted” when we refer to
instances.

For our examples in the sequel, we need the following macro wFOEIL formula. Let
pwB = {wB(i, j) | i ∈ [n], j ≥ 1} and 1 ≤ i1, . . . , im ≤ n be pairwise different indices.
Let pi1 ∈ P (i1), . . . , pim ∈ P (im) and ki1 , . . . , kim denote the weights in K assigned to
pi1 , . . . , pim , respectively, i.e., ki1 = wt(i1)(pi1), . . . , kim = wt(im)(pim). We set

#w

(
pi1(x(i1))⊗ . . .⊗ pim(x(im))

)
::=

(
(ki1 ⊗ pi1(x(i1)))⊗ . . .⊗ (kim ⊗ pim(x(im)))

)
⊗(( ∧

j=i1,...,im

∧
p∈P (j)\{pj}

¬p(x(j))
)
∧
( ∧
j=i1,...,im

∀y(j)(y(j) 6= x(j)).
∧

p∈P (j)

¬p(y(j))
)
∧

( ∧
τ∈[n]\{i1,...,im}

∧
p∈P (τ)

∀x(τ).¬p(x(τ))
))

.

The weighted conjunctions in the right-hand side of the first line, in the above formula,
express that the ports appearing in the argument of #w participate in the interaction with
their corresponding weights. In the second line, the double indexed conjunctions in the
first pair of big parentheses disable all the other ports of the participating instances of
weighted components of type i1, . . . , im described by variables x(i1), . . . , x(im), respectively;
conjunctions in the second pair of parentheses disable all ports of remaining instances of
weighted component types i1, . . . , im. Finally, the last conjunct in the third line ensures that
no ports in instances of remaining weighted component types participate in the interaction.
Then we get

#w

(
pi1(x(i1))⊗ . . .⊗ pim(x(im))

)
≡
(
ki1 ⊗ . . .⊗ kim

)
⊗
((
pi1(x(i1)) ∧ . . . ∧ pim(x(im))

)
∧
( ∧
j=i1,...,im

∧
p∈P (j)\{pj}

¬p(x(j))
)
∧
( ∧
j=i1,...,im

∀y(j)(y(j) 6= x(j)).
∧

p∈P (j)

¬p(y(j))
)
∧

( ∧
τ∈[n]\{i1,...,im}

∧
p∈P (τ)

∀x(τ).¬p(x(τ))
))

.

Next we present three examples of wFOEIL sentences describing concrete parametric
architectures with ordered interactions in the weighted setup. We note that as for the
examples of FOEIL sentences, whenever is defined a unique instance for a weighted component
type we may also consider the corresponding set of variables as a singleton.

Example 7.11. (Parametric weighted Blackboard) We consider weighted Blackboard
architecture, described in Example 7.5, in the parametric setting. Therefore, blackboard’s
instance interacts with controller’s instance and all the source instances for presenting the
current state of the problem. Then, some of the source instances are triggered and logged
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in the controller in arbitrary order, and in turn these triggered source instances add the
new information on blackboard through the controller, again in any order. Hence we need
to describe the overall weight for any possible scenario of the aforementioned interactions
among the several instances. We consider three sets of variables, namely X (1),X (2),X (3)

for the instances of blackboard, controller, and knowledge source weighted components,
respectively. Therefore, the wFOEIL sentence ψ̃ that encodes the cost of the interactions of
parametric weighted Blackboard architecture is

ψ̃ =

(∑
x(1)

∑
x(2).

(
#w(pd(x

(1))⊗ pr(x(2)))�
(∏$ x(3).#w(pd(x

(1))⊗ pn(x(3)))

)
�(∑$ y(3).

(
#w(pl(x

(2))⊗ pt(y(3)))�#w(pe(x
(2))⊗ pw(y(3))⊗ pa(x(1)))

))⊕))⊕
.

The weighted subformula #w(pd(x
(1))⊗pr(x(2))) with the associated quantifiers

∑
x(1),

∑
x(2)

expresses the weight for the connection of blackboard with the controller in order for the
latter to be informed for the available information. The subformula with the weighted
universal shuffle quantifier

∏$ x(3) captures the weight for the respective connections of
blackboard with each of the source instances, in arbitrary order. Then, the last subformula
with the weighted existential shuffle quantifier

∑$ y(3) encodes the weight for the triggering
process of some source instances, and in turn for updating the information in blackboard
through the controller. These interactions may be applied in any order for some instances of
the source weighted component, which justifies the use of

∑$ for the variables y(3). The
application of the weighted iteration operators allows computing the cost of the repetition of
the respective interactions in the architecture. An instantiation of the parametric weighted
architecture for three sources is presented in Figure 9 of Example 7.5.

Example 7.12. (Parametric weighted Request/Response) Next we consider the
weighted Request/Response architecture, described in Example 7.6, in the parametric
setting. We recall that all the service instances interact with registry through interleaving
for their enrollment, and in turn all the client instances interact with registry in any order
for taking the address of the service instances. Then, for some of the service instances
there exist some client instances that interact with each of them through their associated
coordinator instance. The interactions of distinct client instances take place sequentially
for the same service instance and with interleaving, otherwise. Next we present a wFOEIL
sentence ψ̃ encoding the weight of any possible combination of the permissible interactions
in parametric weighted Request/Response architecture described above. We consider the

variable sets X (1),X (2),X (3), and X (4) referring to weighted component instances of service
registry, service, client, and coordinator component, respectively. Therefore,

ψ̃ =

(∑
x(1).

((∏$ x(2).#w(pe(x
(1))⊗ pr(x(2)))

)
�

(∏$ x(3).(#w(pl(x
(3))⊗ pu(x(1)))�#w(po(x

(3))⊗ pt(x(1))))
)))
�(∑$ y(2)

∑
x(4)

∑� y(3).ξ̃ ⊗ (∀y(4)∀z(3)∀z(2).(θ ∨ (∀t(3)∀t(2)(z(2) 6= t(2)).θ′
))))⊕

where the wEPIL formula ξ̃ is given by:
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ξ̃ = #w(pn(y(3))⊗ pm(x(4)))�#w(pq(y
(3))⊗ pa(x(4))⊗ pg(y(2)))�

#w(pc(y
(3))⊗ pd(x(4))⊗ ps(y(2))),

and the EPIL formulas θ and θ′ are given respectively, by:
θ = ¬((pq(z

(3)) ∧ pa(y(4)) ∧ pg(z(2)))� true),

and

θ′ = (#(pq(z
(3)) ∧ pa(y(4)) ∧ pg(z(2)))� true) ∧

¬((pq(t
(3)) ∧ pa(y(4)) ∧ pg(t(2)))� true).

The wFOEIL subformula at the first line of ψ̃ with the weighted universal shuffle quantifier∏$ x(2) encodes the weight of the interleaving interactions between registry instance (
∑
x(1))

and each of the service instances for their enrollment. The wFOEIL subformula in the
second line of ψ̃ captures the weight of the interactions between registry and each of the
client instances in order for the latter to connect and take the services’ address from registry.
These interactions take place in arbitrary order for each of the distinct client instances,
hence their weight should be computed accordingly, which is ensured by the use of the
weighted universal shuffle quantifier

∏$ x(3). The wFOEIL subformula in the third line

of ψ̃ expresses the weight of the connections among client and service instances through
their coordinator instance, applying the quantifiers

∑$ y(2),
∑
x(4), and

∑� y(3). The use

of quantifier
∑� y(3) is justified by the fact that only one client instance should interact

with each service instance, and hence the respective weight is computed analogously. On the
other hand, for different instances of services interleaving among several client instances is
permitted, and hence we derive the respective weight by the wFOEIL subformula quantified
by
∑$ y(2). The EPIL subformula ∀y(4)∀z(3)∀z(2).

(
θ∨
(
∀t(3)∀t(2)(z(2) 6= t(2)).θ′

))
in ψ̃ serves

as a constraint to ensure that a unique coordinator instance is assigned to each service
instance. Finally, the weighted iteration operator returns the cost of implementing the
corresponding interactions with recursion. An instantiation of the parametric weighted
architecture for two clients and services is presented in Figure 10 of Example 7.6.

Example 7.13. (Parametric weighted Publish/Subscribe) We consider weighted
Publish/Subscribe architecture, described in Example 7.7, in the parametric setting. We
have that for some of the topic instances there are some publisher instances that advertise
and transmit their messages. In turn, the same topic instances perform three consecutive
interactions with some of the subscriber instances, in order for the latter to express their
interest in some messages, receive the requested messages, and disconnect from the topic
instances. In each case the interactions among the distinct instances are executed with
interleaving. In the subsequent wFOEIL sentence ψ̃ we encode the weight of all the
possible cases for the aforementioned permissible interactions. We let X (1),X (2),X (3) denote
the variable sets that correspond to publisher, topic, and subscriber weighted component
instances, respectively.

ψ̃ =

(∑$ x(2).

((∑$ x(1).
(
#w(pa(x

(1))⊗ pn(x(2)))�#w(pt(x
(1))⊗ pr(x(2)))

))
�
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(∑$ x(3).
(
#w(pe(x

(3))⊗pc(x(2)))�#w(pg(x
(3))⊗ps(x(2)))�#w(pd(x

(3))⊗pf (x(2)))
))))⊕

.

We interpret the wFOEIL sentence ψ̃ as follows. The wFOEIL subformula in the first
line encodes the weight for the interactions among some of the topic instances (weighted

existential shuffle quantifier
∑$ x(2)) and some publisher instances (weighted existential

shuffle quantifier
∑$ x(1)) in order for the latter to advertise and in turn transmit their

messages to the former. These interactions may take place in any order for the distinct
instances, hence the associated weight needs to be computed accordingly. Then, in the
second line the subformula with the weighted existential shuffle quantifier

∑$ x(3) captures
the weight of three sequential interactions between each of the topic instances, specified
in the first line, and some of the subscriber instances. Since there is no restriction for the
execution order of these interactions with respect to the distinct instances, we describe
their weight with the corresponding weighted shuffle quantifiers. Finally, the use of the
weighted iteration operator serves for computing the cost of the ongoing implementation
of the architecture. An instantiation of the parametric weighted architecture is shown in
Figure 11 of Example 7.7.

Parametric architectures of the above examples were considered in [BIS19b, MBBS16b],
in the qualitative setting, and in the weighted setup in [PR17]. Though, neither the execution
order nor the recursion of interactions was assumed in the work of [BIS19b, MBBS16b, PR17].

Note that similarly to FOEIL, its weighted counterpart, wFOEIL, can also be applied
for the quantitative modelling of parametric architectures without order restrictions, i.e.,
for Examples 5.5-5.8. Next we present the wFOEIL sentences describing the parametric
weighted Master/Slave and Repository, while the rest of the architectures can be described
in the weighted setup analogously.

Example 7.14. (Parametric weighted Master/Slave) We consider the parametric
Master/Slave architecture, described in Example 5.5, in the weighted setting. We let

X (1),X (2) denote the sets of variables of master and slave weighted component instances,
respectively. Then, the wFOEIL sentence ψ̃ representing parametric weighted Master/Slave
architecture is

ψ̃ =
∏�x(2)∑x(1).#w(pm(x(1))⊗ ps(x(2))).

In the above sentence the weighted universal concatenation quantifier accompanied with the
existential one encodes the weight of the interactions between every slave instance and a
master instance. These connections are applied consecutively for the distinct slave instances,
hence their weight is computed accordingly. Consider the instantiation of the architecture
with two master and two slave weighted component instances. We let w1, w2, w3, and w4

correspond to the four possible connections for the components in the system, defined as
in the unweighted case and shown in Figure 4. Then, the values ‖ψ̃‖(r, w1), ‖ψ̃‖(r, w2),

‖ψ̃‖(r, w3), and ‖ψ̃‖(r, w4) return the cost of the implementation of each of the four possible
connections in the architecture, according to the underlying semiring. In turn, the ‘sum’
‖ψ̃‖(r, w1) + ‖ψ̃‖(r, w2) + ‖ψ̃‖(r, w3) + ‖ψ̃‖(r, w4) equals in the semiring of natural numbers
for instance, to the total cost for executing these connections in the architecture.

Example 7.15. (Parametric weighted Repository) The subsequent wFOEIL sentence

ψ̃ characterizes the parametric Repository architecture, presented in Example 5.8, with
weighted features. We let X (1) and X (2) denote the variable sets that refer to instances of
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repository and data accessor weighted components, respectively. Then,

ψ̃ =
∑
x(1)

∏�x(2).#w(pr(x
(1))⊗ pd(x(2))).

Let a1, a2, a3, a4 represent each of the four interactions for the architecture instantiation of
Figure 7, in the weighted setup. Then, the value ‖ψ̃‖(r, w) for w = a1a2a3a4 is the ‘total’
cost for implementing the interactions in the system.

7.3. Decidability results for wFOEIL. In this subsection, we state an effective transla-
tion of wFOEIL sentences to weighted automata. For this, we use the corresponding result of
Theorem 6.2, namely for every FOEIL sentence we can effectively construct, in exponential
time, an expressively equivalent finite automaton. Then, we show that the equivalence of
wFOEIL sentences over specific semirings is decidable. Firstly, we briefly recall basic notions
and results on weighted automata.

Let A be an alphabet. A (nondeterministic) weighted finite automaton (WFA for short)
over A and K is a quadruple A = (Q, in,wt, ter) where Q is the finite state set, in : Q→ K
is the initial distribution, wt : Q×A×Q→ K is the mapping assigning weights to transitions
of A, and ter : Q→ K is the terminal distribution.

Let w = a1 . . . an ∈ A∗. A path Pw of A over w is a sequence of transitions Pw =
((qi−1, ai, qi))1≤i≤n. The weight of Pw is given by weight(Pw) = in(q0)·

∏
1≤i≤nwt(qi−1, ai, qi)·

ter(qn). The behavior of A is the series ‖A‖ : A∗ → K which is determined by ‖A‖(w) =∑
Pw
weight(Pw).

Two WFA A and A′ over A and K are called equivalent if ‖A‖ = ‖A′‖. For our
translation algorithm, of wFOEIL formulas to WFA, we shall need folklore results in WFA
theory. We collect them in the following proposition (cf. for instance [DKV09, Sak09a]).

Proposition 7.16. Let A1 = (Q1, in1, wt1, ter1), A2 = (Q2, in2, wt2, ter2) and A =
(Q, in,wt, ter) be three WFA’s over A and K. Then, we can construct in polynomial
time WFA’s B, C,D, E over A and K accepting the sum, and the Hadamard, Cauchy and
shuffle product of ‖A1‖ and ‖A2‖, respectively. Moreover, if ‖A‖ is proper, then we can
construct in polynomial time WFA A′ over A and K accepting the iteration of ‖A‖.

Next we present the translation algorithm of wFOEIL formulas to WFA’s. Our algorithm
requires a doubly exponential time at its worst case. Specifically, we prove the following
theorem.

Theorem 7.17. Let pwB = {wB(i, j) | i ∈ [n], j ≥ 1} be a set of parametric weighted
components over a commutative semiring K, and r : [n] → N. Then, for every wFOEIL

sentence ψ̃ over pwB and K we can effectively construct a WFA Aψ̃,r over IpB(r) and K

such that ‖ψ̃‖(r, w) = ‖Aψ̃,r‖(w) for every w ∈ I+pB(r). The worst case run time for the

translation algorithm is doubly exponential and the best case is exponential.

We shall prove Theorem 7.17 using the subsequent Proposition 7.19. For this, we need
to slightly modify the corresponding result of Proposition 6.3. More precisely, we state the
next proposition.

Proposition 7.18. Let ψ be a FOEIL formula over a set pB = {B(i, j) | i ∈ [n], j ≥ 1}
of parametric components. Let also V ⊆ X be a finite set of variables containing free(ψ),
r : [n]→ N, and σ a (V, r)-assignment. Then, we can effectively construct a finite automaton
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Aψ,r,σ over IpB(r) such that (r, σ, w) |= ψ iff w ∈ L(Aψ,r,σ) for every w ∈ I+pB(r). The worst

case run time for the translation algorithm is exponential and the best case is polynomial.

Proof. We modify the proof of Proposition 6.3 as follows. If ψ = true, then we consider
the complete finite automaton Aψ,r,σ = ({q}, IpB(r), q,∆, {q}) with ∆ = {(q, a, q) | a ∈
IpB(r)}. If ψ = p(x(i)), then we consider the deterministic finite automaton Aψ,r,σ =

({q0, q1}, IpB(r), q0,∆, {q1}) with ∆ = {(q0, a, q1) | p(σ(x(i))) ∈ a}. Then, we follow accord-
ingly the same induction steps. Concerning the complexity of the translation we use the
same arguments (we do not take into account the trivial case ψ = true where the complexity
of the translation is constant).

Proposition 7.19. Let ψ̃ be a wFOEIL formula over a set pwB = {wB(i, j) | i ∈ [n], j ≥ 1}
of parametric weighted components and K. Let also V ⊆ X be a finite set of variables
containing free(ψ), r : [n]→ N and σ a (V, r)-assignment. Then, we can effectively construct

a WFA Aψ̃,r,σ over IpB(r) and K such that ‖ψ̃‖(r, σ, w) = ‖Aψ̃,r,σ‖(w) for every w ∈ I+pB(r).
The worst case run time for the translation algorithm is doubly exponential and the best case
is exponential.

Proof. We prove our claim by induction on the structure of the wFOEIL formula ψ̃.

i) If ψ̃ = k, then we consider the WFA Aψ̃,r,σ = ({q}, in, wt, ter) over IpB(r) and K with

in(q) = k, wt(q, a, q) = 1 for every a ∈ IpB(r), and ter(q) = 1.

ii) If ψ̃ = ψ, then we consider the finite automaton Aψ,r,σ derived in Proposition 7.18. Next,
we construct, in exponential time, an equivalent complete finite automaton A′ψ,r,σ =

(Q, IpB(r), q0,∆, F ). Then, we construct, in linear time, the WFA Aψ̃,r,σ = (Q, in,wt, ter)

where in(q) = 1 if q = q0 and in(q) = 0 otherwise, for every q ∈ Q, wt(q, a, q′) = 1 if
(q, a, q′) ∈ ∆ and wt(q, a, q′) = 0 otherwise, for every (q, a, q′) ∈ Q×A×Q, and ter(q) = 1
if q ∈ F and ter(q) = 0 otherwise, for every q ∈ Q.

iii) If ψ̃ = ψ̃1 ⊕ ψ̃2 or ψ̃ = ψ̃1 ⊗ ψ̃2 or ψ̃ = ψ̃1 � ψ̃2 or ψ̃ = ψ̃1$ψ̃2, then we rename firstly

variables in free(ψ̃1)∩free(ψ̃2) as well variables which are free in ψ̃1 (resp. ψ̃2) and bounded

(i.e., not free) in ψ̃2 (resp. in ψ̃1). Then, we extend σ on free(ψ̃1)∪ free(ψ̃2) in the obvious
way, and construct Aψ̃,r,σ from Aψ̃1,r,σ

and Aψ̃2,r,σ
by applying Proposition 7.16.

iv) If ψ̃ = ψ̃′⊕, then we get Aψ̃,r,σ as the WFA for the iteration of the series ‖Aψ̃′,r,σ‖ by

applying Proposition 7.16.

v) If ψ̃ =
∑
x(i).ψ̃′, then we get Aψ̃,r,σ as the WFA for the sum of the series ‖Aψ̃′,r,σ[x(i)→j]‖,

j ∈ [r(i)] (Proposition 7.16).

vi) If ψ̃ =
∏
x(i).ψ̃′, then we get Aψ̃,r,σ as the WFA for the Hadamard product of the series

‖Aψ̃′,r,σ[x(i)→j]‖, j ∈ [r(i)] (Proposition 7.16).

vii) If ψ̃ =
∑� x(i).ψ̃′, then we compute firstly all nonempty subsets J of [r(i)]. For every such

subset J = {l1, . . . , lt}, with 1 ≤ t ≤ r(i) and 1 ≤ l1 < . . . < lt ≤ r(i), we consider the WFA

A(J)

ψ̃,r,σ
accepting the Cauchy product of the series ‖Aψ̃′,r,σ[x(i)→l1]‖, . . . , ‖Aψ̃′,r,σ[x(i)→lt]‖.

Then, we get Aψ̃,r,σ as the WFA for the sum of the series ‖A(J)

ψ̃,r,σ
‖ with ∅ 6= J ⊆ [r(i)]

(Proposition 7.16).
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viii) If ψ̃ =
∏� x(i).ψ̃′, then we get Aψ̃,r,σ as the WFA for the Cauchy product of the series

‖Aψ̃′,r,σ[x(i)→j]‖, j ∈ [r(i)] (Proposition 7.16).

ix) If ψ̃ =
∑$ x(i).ψ̃′, then we compute firstly all nonempty subsets J of [r(i)]. For every such

subset J = {l1, . . . , lt}, with 1 ≤ t ≤ r(i) and 1 ≤ l1 < . . . < lt ≤ r(i), we consider the WFA

A(J)

ψ̃,r,σ
accepting the shuffle product of the series ‖Aψ̃′,r,σ[x(i)→l1]‖, . . . , ‖Aψ̃′,r,σ[x(i)→lt]‖.

Then, we get Aψ̃,r,σ as the WFA for the sum of the series ‖A(J)

ψ̃,r,σ
‖ with ∅ 6= J ⊆ [r(i)]

(Proposition 7.16).

x) If ψ̃ =
∏$ x(i).ψ̃′, then we get Aψ̃,r,σ as the WFA for the shuffle product of the series

‖Aψ̃′,r,σ[x(i)→j]‖, j ∈ [r(i)] (Proposition 7.16).

By our constructions above, we immediately get ‖ψ̃‖(r, σ, w) = ‖Aψ̃,r,σ‖(w) for every

w ∈ I+pB(r) . Hence, it remains to deal with the time complexity of our translation algorithm.

Taking into account the above induction steps, we show that the worst case run time for
our translation algorithm is doubly exponential. Indeed, if ψ̃′ = ψ is a FOEIL formula, then
our claim holds by (ii) and Proposition 7.18. Then the constructions in steps (iii)-(vi), (viii)
and (x) require a polynomial time (cf. Proposition 7.16). Finally, the translations in steps
(vii) and (ix) require at most a doubly exponential run time because of the following reasons.
Firstly, we need to compute all nonempty subsets of [r(i)] which requires an exponential time.

Then, due to our restrictions for ψ̃′ in ψ̃ =
∑� x(i).ψ̃′ and ψ̃ =

∑$ x(i).ψ̃′, and Proposition

7.18 (recall also the proof of Proposition 6.3), if a FOEIL subformula ψ occurs in ψ̃′, then
we need a polynomial time to translate it to a finite automaton and by (ii) an exponential

time to translate it to a WFA. We should note that if ψ̃′ contains a subformula of the form
∃∗x(i′).ψ′′ or ∃�x(i′).ψ′′ or

∑� x(i′).ψ̃′′ or
∑$ x(i

′).ψ̃′′, then the computation of the subsets
of [r(i′)] is independent of the computation of the subsets of [r(i)]. On the other hand, the
best case run time of the algorithm is exponential. Indeed, if in step (ii) we get Aψ,r,σ in
polynomial time (cf. Proposition 7.18) and we need no translations of steps (vii) and (ix),
then the required time is exponential.

Now we are ready to state the proof of Theorem 7.17.

Proof of Theorem 7.17. We apply Proposition 7.19. Since ψ̃ is a weighted sentence it contains
no free variables. Hence, we get a WFA Aψ̃,r over IpB(r) and K such that ‖ψ̃‖(r, w) =

‖Aψ̃,r‖(w) for every w ∈ I+pB(r), and this concludes our proof. The worst case run time for

the translation algorithm is doubly exponential and the best case is exponential.

Next we prove the decidability of the equivalence of wFOEIL sentences over (subsemirings
of) skew fields. It is worth noting that the complexity remains the same with the one for
the decidability of equivalence for FOEIL sentences (see Section 6).

Theorem 7.20. Let K be a (subsemiring of a) skew field, pwB = {wB(i, j) | i ∈ [n], j ≥ 1}
a set of parametric weighted components over K, and r : [n] → N a mapping. Then, the
equivalence problem for wFOEIL sentences over pwB and K w.r.t. r is decidable in doubly
exponential time.
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Proof. It is well known that the equivalence problem for weighted automata, with weights
taken in (a subsemiring of) a skew field, is decidable in cubic time (cf. Theorem 4.10 in
[Sak09a], [Sak09b]). Hence, we conclude our result by Theorem 7.17.

Corollary 7.21. Let pwB = {wB(i, j) | i ∈ [n], j ≥ 1} be a set of parametric weighted
components over Q and r : [n]→ N a mapping. Then, the equivalence problem for wFOEIL
sentences over pwB and Q w.r.t. r is decidable in doubly exponential time.

8. Conclusion

Efficient modelling of architectures plays a key role in component-based systems in order to
be well-defined. In this paper we propose the formal study of architectures for parametric
component-based systems that consist of a finite number of component types with an
unknown number of instances. Specifically, we introduce a propositional logic, EPIL, which
augments PIL from [MBBS16b] with a concatenation, a shuffle, and an iteration operator.
We then interpret EPIL formulas on finite words over the set of interactions defined for
a given set of ports. We also study FOEIL, the first-order level of EPIL, as a modelling
language for the architectures of parametric systems. EPIL and FOEIL are proved expressive
enough to return the permissible interactions and the order restrictions of architectures,
as well as to encode recursive interactions. Several examples are presented for modelling
parametric architectures with or without ordered interactions by FOEIL sentences. Also,
we show that the equivalence and validity problems for FOEIL sentences are decidable in
doubly exponential time, and the satisfiability problem for FOEIL sentences is decidable
in exponential time. Moreover, we show the robustness of our theory by extending our
results for the quantitative modelling of parametric architectures. For this, we introduce
and study wEPIL and wFOEIL over a commutative semiring. Our weighted logics maintain
the qualitative attributes of EPIL and FOEIL, and also model the quantitative properties
of architectures, such as the ‘total’ cost or the maximum probability of implementing
concrete interactions. We show that the equivalence problem for wFOEIL sentences over (a
subsemiring of) a skew field is decidable in doubly exponential time, hence the complexity
remains the same with the one for the decidability of FOEIL sentences. Furthermore, we
apply wFOEIL for describing the quantitative aspects of several parametric architectures.

Work in progress involves the study of the second-order level of EPIL and wEPIL in
order to model parametric architectures in the qualitative and weighted setup, respectively,
that cannot be formalized by first-order logics such as Ring, Linear, and Grid [DYBH12,
MBBS16b]. Future work is also investigating the verification problem of parametric systems
against formal properties [AD16, BIS19b], and specifically the application of architectures
modelled by our logics for studying the behavior and proving properties (such as deadlock-
freedom) in parametric systems. Moreover, it would be interesting to extend our logic-based
framework for the investigation of dynamic and reconfigurable architectures [BJMS12, CST18,
MG16] as well as for addressing the architecture composition problem [ABB+16, BHM19].
Another research direction is the study of our logics over alternative weight structures, found
in applications, like for instance valuation monoids [DM11, KP20]. Formal approaches for
architectures are often extended with tools or graphical languages for supporting architectures’
specification (cf. [APR06, KG06, KKW+16, MBBS16a, MT00]). Therefore, in addition to
theoretical directions, future work includes also the development of a tool and a language
in order to facilitate the architecture modelling and identification process of parametric
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(weighted) systems. Finally, in a subsequent work we investigate parametric systems and
their architectures in the fuzzy framework in order to address uncertainty and imprecision
resulting from the components’ communication.
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[ADFL19] É. André, B. Delahaye, P. Fournier, and D. Lime. Parametric timed broadcast protocols. In
C. Enea and R. Piskac, editors, Verification, Model Checking, and Abstract Interpretation - 20th
International Conference, volume 11388 of LNCS, pages 491–512, 2019.

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.
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