
Logical Methods in Computer Science
Volume 18, Issue 1, 2022, pp. 2:1–2:31
https://lmcs.episciences.org/

Submitted Jan. 08, 2021
Published Jan. 07, 2022

THE DICHOTOMY OF EVALUATING HOMOMORPHISM-CLOSED

QUERIES ON PROBABILISTIC GRAPHS

ANTOINE AMARILLI a AND İSMAİL İLKAN CEYLAN b

a LTCI, Télécom Paris, Institut Polytechnique de Paris, France
e-mail address: antoine.amarilli@telecom-paris.fr

b Department of Computer Science, University of Oxford, United Kingdom
e-mail address: ismail.ceylan@cs.ox.ac.uk

Abstract. We study the problem of query evaluation on probabilistic graphs, namely,
tuple-independent probabilistic databases over signatures of arity two. We focus on the class
of queries closed under homomorphisms, or, equivalently, the infinite unions of conjunctive
queries. Our main result states that the probabilistic query evaluation problem is #P-hard
for all unbounded queries from this class. As bounded queries from this class are equivalent
to a union of conjunctive queries, they are already classified by the dichotomy of Dalvi and
Suciu (2012). Hence, our result and theirs imply a complete data complexity dichotomy,
between polynomial time and #P-hardness, on evaluating homomorphism-closed queries
over probabilistic graphs. This dichotomy covers in particular all fragments of infinite
unions of conjunctive queries over arity-two signatures, such as negation-free (disjunctive)
Datalog, regular path queries, and a large class of ontology-mediated queries. The dichotomy
also applies to a restricted case of probabilistic query evaluation called generalized model
counting, where fact probabilities must be 0, 0.5, or 1. We show the main result by reducing
from the problem of counting the valuations of positive partitioned 2-DNF formulae, or from
the source-to-target reliability problem in an undirected graph, depending on properties of
minimal models for the query.

1. Introduction

The management of uncertain and probabilistic data is an important problem in many
applications, e.g., automated knowledge base construction [DGH+14, HSBW13, MCH+15],
data integration from diverse sources, predictive and stochastic modeling, applications based
on (error-prone) sensor readings, etc. To represent probabilistic data, the most basic model
is that of tuple-independent probabilistic databases (TIDs) [SORK11]. In TIDs, every fact
of the database is viewed as an independent random variable, and is either kept or discarded
according to some probability. Hence, a TID induces a probability distribution over all
possible worlds, that is, all possible subsets of the database. The central inference task for

Key words and phrases: Probabilistic graphs, probabilistic databases, probabilistic query evaluation,
infinite unions of conjunctive queries, data complexity dichotomy, #P-hardness.
∗This paper has appeared as a conference paper at ICDT 2020 with the title: “A Dichotomy for

Homomorphism-Closed Queries on Probabilistic Graphs” [AC20].

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-18(1:2)2022
© A. Amarilli and İ.İ. Ceylan
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2:2 A. Amarilli and İ.İ. Ceylan Vol. 18:1

TIDs is then probabilistic query evaluation (PQE): given a query Q, compute the probability
of Q relative to a TID I, i.e., the total probability of the possible worlds where Q is satisfied.
We write PQE(Q) to denote the problem of PQE relative to a fixed query Q.

Dalvi and Suciu [DS12] obtained a dichotomy for evaluating unions of conjunctive
queries (UCQs) on tuple-independent probabilistic databases. Their dichotomy is measured
in data complexity, i.e., as a function of the input TID and with the query being fixed. More
specifically, they have shown that, for a given UCQ Q, PQE(Q) is either in polynomial time,
or it is #P-hard. In the terminology of Dalvi and Suciu, a UCQ Q is called safe if PQE(Q)
can be computed in polynomial time, and it is called unsafe otherwise. This dichotomy
result laid the foundation for many other studies on the complexity of probabilistic query
evaluation [ABS16, CDV21, FO16, JL12, OH08, OH09, RS09].

Despite this extensive research on TIDs, there is little known about probabilistic query
evaluation for monotone query languages beyond UCQs. In particular, only few results are
known for languages featuring recursion, which is an essential ingredient in many applications.
For instance, it is unknown whether PQE admits a dichotomy for Datalog queries, for regular
path queries, or for ontology-mediated queries [Cey17]. The main motivation of this paper
is thus to obtain a fine-grained classification for the complexity of probabilistic query
evaluation relative to these query languages. Our focus is on a large class of queries beyond
first-order: we study the queries that are closed under homomorphisms. We denote the
class of such queries by UCQ∞ as they are equivalent to infinite unions of conjunctive
queries. We distinguish between bounded UCQ∞ queries, which are logically equivalent to
a UCQ, and unbounded UCQ∞ queries, which cannot be expressed as a UCQ. Notably,
UCQ∞ captures (negation-free) disjunctive Datalog, regular path queries, and a large class
of ontology-mediated queries.

Our focus in this work is on probabilistic graphs, i.e., probabilistic databases where all
relations have at most arity two. Data models based on binary relations are quite common
in knowledge representation. Knowledge graphs such as NELL [MCH+15], Yago [HSBW13]
and Knowledge Vault [DGH+14] are solely based on binary relations, and are widely used
for tasks such as information and relation extraction [MBSJ09], rule mining [DRDT+15],
and knowledge graph completion [BUGD+13]. To encode more sophisticated domain
knowledge ontologies are employed. Ontologies are prominently formulated in description
logics [BCM+07], which is a family of languages, defined over unary relations (i.e., concepts)
and binary relations (i.e., roles). In these and similar contexts, we want to evaluate UCQ∞

queries on (graph-structured) data, while taking into account the uncertainty of the data.
Therefore, we study the complexity of probabilistic query evaluation on probabilistic graphs,
and ask whether evaluating UCQ∞ queries admits a data complexity dichotomy.

The main result of this paper is that PQE(Q) is #P-hard for any unbounded UCQ∞

query on probabilistic graphs. Our result thus implies a dichotomy on PQE for UCQ∞ over
such graphs: as bounded UCQ∞ queries are equivalent to UCQs, they are already classified
by Dalvi and Suciu, and we show that all other UCQ∞ queries are unsafe, i.e., the PQE
problem is #P-hard for them. Of course, it is not surprising that some unbounded queries in
UCQ∞ are unsafe for similar reasons as unsafe UCQs, but the challenge is to show hardness
for every unbounded UCQ∞ query: we do this by leveraging model-theoretic properties of
this query class.

The proof consists of two main parts. First, we study UCQ∞ queries with a model featur-
ing a so-called non-iterable edge. For all such queries, we show #P-hardness by reducing from
the problem of counting the valuations of positive partitioned 2-DNF formulae (#PP2DNF).

Vol. 18:1 EVALUATING HOMOMORPHISM-CLOSED QUERIES ON PROBABILISTIC GRAPHS 2:3

Second, we focus on all other unbounded queries in UCQ∞, i.e., UCQ∞ queries with no
model featuring such a non-iterable edge. For these queries, we give a reduction from the
source-to-target connectivity problem in an undirected graph (#U-ST-CON). This second
reduction is considerably harder and relies on a careful study of minimal models.

This paper is organized as follows. We start by discussing closely related work for
probabilistic query evaluation with a particular focus on existing classification results in
Section 2. We introduce preliminaries in Section 3, and formally state our result in Section 4.
We prove the result in Sections 5–7. We first deal in Section 5 with the case of queries
having a model with a non-iterable edge (reducing from #PP2DNF), then argue in Section 6
that unbounded queries must have a model with a minimal tight edge, before explaining in
Section 7 how to use this (when the edge is iterable) to reduce from #U-ST-CON. We then
present two generalizations of our main result in Section 8. We conclude in Section 9.

2. Related Work

Research on probabilistic databases is a well-established field; see e.g. [SORK11]. The
first dichotomy for queries on such databases was shown by Dalvi and Suciu [DS07]: a
self-join-free conjunctive query is safe if it is hierarchical, and #P-hard otherwise. They
then extended this result to a dichotomy for all UCQs [DS12]. Beyond UCQs, partial
dichotomy results are known for some queries with negation [FO16], with disequality (6=)
joins in the queries [OH08], or with inequality (<) joins [OH09]. Some results are known
for extended models, e.g., the dichotomy of Dalvi and Suciu has been lifted from TIDs to
open-world probabilistic databases [CDV21]. However, we are not aware of dichotomies
in the probabilistic database literature that apply to Boolean queries beyond first-order
logic, or to queries with fixpoints. Query evaluation on probabilistic databases has also
been studied in restricted contexts, e.g., when probabilistic tuples are only allowed to have
probability 0.5. This is for instance the focus of the recent paper of Kenig and Suciu [KS21],
which we discuss in Section 8.

Query evaluation on probabilistic graphs has also been studied in the context of ontology-
mediated queries (OMQs) [JL12, BCL17, BCL19]. An OMQ is a composite query that
typically consists of a UCQ and an ontology. The only classification result on PQE for
OMQs beyond first-order-rewritable languages is given for the description logic ELI [JL12].
This result applies to a class of queries that go beyond first-order logic. Our work generalizes
this result (Theorem 6 of [JL12]) by showing hardness for any unbounded UCQ∞, not just
the ones expressible as OMQs based on ELI . Part of our techniques (Section 5) are related
to theirs, but the bulk of our proof (Sections 6 and 7) uses new techniques, the need for
which had in fact been overlooked in [Jun14, JL12]. Specifically, we identified a gap in the
proofs of Theorem 6 of [JL12] and Theorem 5.31 of [Jun14] concerning a subtle issue of
“back-and-forth” matches related to the use of inverse roles of ELI. We have communicated
this with the authors of [Jun14, JL12], which they kindly acknowledged [JL20]. Our proof
thus completes the proof of Theorem 6 in [JL12], and generalizes it to all unbounded UCQ∞.

3. Preliminaries

In this section, we introduce all technical preliminaries relevant to our study. In particular, we
introduce the query languages studied in this paper, and the tuple-independent probabilistic

2:4 A. Amarilli and İ.İ. Ceylan Vol. 18:1

database model. We also discuss briefly the complexity classes relevant to our study, as well
as two canonical #P-hard problems which are used later in the reductions.

Vocabulary. We consider a relational signature σ which is a set of predicates. In this work,
the signature is required to be arity-two, i.e., it consists only of predicates of arity two. Our
results can easily be extended to signatures with relations having predicates of arity one
and two, as we show in Section 8.

A σ-fact is an expression of the form F = R(a, b) where R is a predicate and a, b are
constants. By a slight abuse of terminology, we call F a unary fact if a = b, and a non-unary
fact otherwise. A σ-atom is defined in the same way with variables instead of constants. For
brevity, we will often talk about a fact or an atom when σ is clear from context. We also
speak of R-facts or R-atoms to specifically refer to facts or atoms that use the predicate R.

It will be convenient to write σ↔ the arity-two signature consisting of the relations of σ
and of the relations R− for R ∈ σ, with a semantics that we define below.

Database instances. A database instance over σ, or a σ-instance, is a set of facts over σ.
All instances considered in this paper are finite. The domain of a fact F , denoted dom(F),
is the set of constants that appear in F , and the domain of an instance I, denoted dom(I),
is the set of constants that appear in I, i.e., the union of the domains of its facts.

Every σ-instance I can be seen as a σ↔-instance consisting of all the σ-facts in I, and
all the facts R−(b, a) for each fact R(a, b) of I. Thus, for a σ-instance I, and for an element
a ∈ dom(I), we define the set of all σ↔-facts of the form F = R(a, b) in I as:

{S(a, a) | S ∈ σ, S(a, a) ∈ I}
∪ {S(a, b) | S ∈ σ, b ∈ dom(I), S(a, b) ∈ I}
∪ {S−(a, b) | S ∈ σ, b ∈ dom(I), S(b, a) ∈ I}.

If we say that we create a fact R(a, b) for R ∈ σ↔, we mean that we create S(a, b) if R = S
for some S ∈ σ, and S(b, a) if R = S− for some S ∈ σ.

The Gaifman graph of an instance I is the undirected graph having dom(I) as vertex
set, and having an edge {u, v} between any two u 6= v in dom(I) that co-occur in some
fact of I. An instance is connected if its Gaifman graph is connected. We call {u, v} an
(undirected) edge of I, and the facts of I that it covers are the σ-facts of I whose domain is
a subset of {u, v}. Note that a fact of the form R(u, u) is covered by all edges involving u.
Slightly abusing notation, we say that an ordered pair e = (u, v) is a (directed) edge of I if
{u, v} is an edge of the Gaifman graph, and say that it covers the following σ↔-facts of I:

{S(u, u) | S ∈ σ, S(u, u) ∈ I}
∪ {S(v, v) | S ∈ σ, S(v, v) ∈ I}
∪ {S(u, v) | S ∈ σ, S(u, v) ∈ I}
∪ {S−(u, v) | S ∈ σ, S(v, u) ∈ I}.

Note that the directed edge (v, u) covers the same facts as (u, v), except that in non-unary
facts the relations S ∈ σ and the reverse relations S− are swapped.

In the course of our proofs, we will often modify instances in a specific way, which we
call copying an edge. Let I be an instance, let (u, v) be a directed edge of I, and let u′, v′

be any elements of dom(I). If we say that we copy the edge e on (u′, v′), it means that

Vol. 18:1 EVALUATING HOMOMORPHISM-CLOSED QUERIES ON PROBABILISTIC GRAPHS 2:5

we modify I to add a copy of each fact covered by the edge e, but using u′ and v′ instead
of u and v. Specifically, we create S(u′, v′) for all σ-facts of the form S(u, v) in I, we create
S(v′, u′) for all σ-facts of the form S(v, u) in I, and we create S(u′, u′) and S(v′, v′) for all
σ-facts respectively of the form S(u, u) and S(v, v) in I. Of course, if some of these facts
already exist, they are not created again. Note that (u′, v′) is an edge of I after this process.

An instance I is a subinstance of another instance I ′ if I ⊆ I ′, and I is a proper
subinstance of I ′ if I (I ′. Given a set S ⊆ dom(I) of domain elements, the subinstance
of I induced by S is the instance formed of all the facts F ∈ I such that dom(F) ⊆ S.

A homomorphism from an instance I to an instance I ′ is a function h from dom(I)
to dom(I ′) such that, for every fact R(a, b) of I, the fact R(h(a), h(b)) is a fact of I ′. In
particular, whenever I ⊆ I ′ then I has a homomorphism to I ′. An isomorphism is a bijective
homomorphism whose inverse is also a homomorphism.

Query languages. Throughout this work, we focus on Boolean queries. A (Boolean) query
over a signature σ is a function from σ-instances to Booleans. An instance I satisfies a
query Q (or Q holds on I, or I is a model of Q), written I |= Q, if Q returns true when
applied to I; otherwise, I violates Q. We say that two queries Q1 and Q2 are equivalent if
for any instance I, we have I |= Q1 iff I |= Q2. In this work, we study the class UCQ∞ of
queries that are closed under homomorphisms (also called homomorphism-closed), i.e., if I
satisfies the query and I has a homomorphism to I ′ then I ′ also satisfies the query. Note
that queries closed under homomorphisms are in particular monotone, i.e., if I satisfies the
query and I ⊆ I ′, then I ′ also satisfies the query.

One well-known subclass of UCQ∞ is bounded UCQ∞: every bounded query in UCQ∞ is
logically equivalent to a union of conjunctive queries (UCQ), without negation or inequalities.
Recall that a conjunctive query (CQ) is an existentially quantified conjunction of atoms,
and a UCQ is a disjunction of CQs. For brevity, we omit existential quantification when
writing UCQs, and abbreviate conjunction with a comma. The other UCQ∞ queries are
called unbounded, and they can be seen as an infinite disjunction of CQs, with each disjunct
corresponding to a model of the query.

A natural query language captured by UCQ∞ is Datalog, again without negation or
inequalities. A Datalog program defines a signature of intensional predicates, including a
0-ary predicate Goal(), and consists of a set of rules which explain how intensional facts can
be derived from other intensional facts and from the facts of the instance (called extensional).
The interpretation of the intensional predicates is defined by taking the (unique) least
fixpoint of applying the rules, and the query holds if and only if the Goal() predicate can
be derived. For formal definitions of this semantics, we refer the reader to the standard
literature [AHV95]. Datalog can in particular be used to express regular path queries (RPQs)
and conjunctions of regular path queries with inverses (C2RPQs) [Bar13].

As Datalog queries are homomorphism-closed, we can see each Datalog program as a
UCQ∞, with the disjuncts intuitively corresponding to derivation trees for the program.

Example 3.1. Consider the following Datalog program with one monadic intensional
predicate U over extensional signature R,S, T :

R(x, y)→ U(x),

U(x), S(x, y)→ U(y),

U(x), T (x, y)→ Goal().

2:6 A. Amarilli and İ.İ. Ceylan Vol. 18:1

This program tests if the instance contains a path of factsR(a0, a1), S(a1, a2), . . . , S(an−1, an),
T (an, an+1) for some n > 0, intuitively corresponding to the regular path query RS∗T . This
is an unbounded UCQ∞.

However, note that the class UCQ∞ is a larger class than Datalog, because there are
homomorphism-closed queries that are not expressible in Datalog [DK08].

Ontology-mediated queries, or OMQs [BCLW14], are another subclass of UCQ∞. An
OMQ is a pair (Q, T), where Q is (typically) a UCQ, and T is an ontology. A database
instance I satisfies an OMQ (Q, T) if the instance I and the logical theory T entail the
query Q in the standard sense – see, e.g., [BCLW14], for details. There are ontological
languages for OMQs based on description logics [BCM+07] and on existential rules, also
known as tuple-generating dependencies (TGDs) [CGK13, CGL12]. It is well known that
every OMQ (Q, T) ∈ (UCQ,TGD) is closed under homomorphisms. Thus, the dichotomy
result of the paper applies to every OMQ from (UCQ,TGD) over unary and binary predicates,
which, in turn, covers several OMQ languages based on description logics. There are also many
OMQs that can be equivalently expressed as a query in Datalog or in disjunctive Datalog
over an arity-two signature [BCLW14, EOŠ+12, GS12], thus falling in the class UCQ∞.
In particular, this is the case of any OMQ involving negation-free ALCHI (Theorem 6
of [BCLW14]), and of fragments of ALCHI, e.g., ELHI, and ELI as in [JL12].

Probabilistic query evaluation. We study the problem of probabilistic query evaluation
over tuple-independent probabilistic databases. A tuple-independent probabilistic data-
base (TID) over a signature σ is a pair I = (I, π) of a σ-instance I, and of a function π that
maps every fact F to a probability π(F), given as a rational number in [0, 1]. Formally, a
TID I = (I, π) defines the following probability distribution over all possible worlds I ′ ⊆ I:

π(I ′) :=

(∏
F∈I′

π(F)

)
×

 ∏
F∈I′\I

(1− π(F))

 .

Then, given a TID I = (I, π), the probability of a query Q relative to I, denoted PI(Q), is
given by the sum of the probabilities of the possible worlds that satisfy the query:

PI(Q) :=
∑

I′⊆I,I′|=Q

π(I ′).

The probabilistic query evaluation problem (PQE) for a query Q, written PQE(Q), is then
the task of computing PI(Q) given a TID I as input.

Complexity background. FP is the class of functions f : {0, 1}∗ 7→ {0, 1}∗ computable
by a polynomial-time deterministic Turing machine. The class #P, introduced by Valiant
in [Val79], contains the computation problems that can be expressed as the number of
accepting paths of a nondeterministic polynomial-time Turing machine. Equivalently, a
function f : {0, 1}∗ 7→ N is in #P if there exists a polynomial p : N 7→ N and a polynomial-
time deterministic Turing machine M such that for every x ∈ {0, 1}∗, it holds that:

f(x) =
∣∣∣{y ∈ {0, 1}p(|x|) |M answers 1 on the input (x, y)

}∣∣∣ .
For a query Q, we study the data complexity of PQE(Q), which is measured as a function

of the input instance I, i.e., the signature and Q are fixed. For a large class of queries, in

Vol. 18:1 EVALUATING HOMOMORPHISM-CLOSED QUERIES ON PROBABILISTIC GRAPHS 2:7

particular for any UCQ Q, the problem PQE(Q) is in the complexity class FP#P : we can
use a nondeterministic Turing machine to guess a possible world according to the probability
distribution of the TID (i.e., each possible world is obtained in a number of runs proportional
to its probability), and then check in polynomial time data complexity if Q holds, with
polynomial-time postprocessing to renormalize the number of runs to a probability. Our
goal in this work is to show that the problem is also #P-hard.

To show #P-hardness, we use polynomial-time Turing reductions [Coo71]. A function f
is #P-complete under polynomial time Turing reductions if it is in #P and every g ∈ #P
is in FPf . Polynomial-time Turing reductions are the most common reductions for the class
#P and they are the reductions used to show #P-hardness in the dichotomy of Dalvi and
Suciu [DS12], so we use them throughout this work.

Problems. We will show hardness by reducing from two well-known #P-hard problems.
For some queries, we reduce from #PP2DNF [PB83], which is a standard tool to show
hardness of unsafe UCQs. The original problem uses Boolean formulae; here, we give an
equivalent rephrasing in terms of bipartite graphs.

Definition 3.2. Given a bipartite graph H = (A,B,C) with edges C ⊆ A×B, a possible
world of H is a pair ω = (A′, B′) with A′ ⊆ A and B′ ⊆ B. We call the possible world good
if it is not an independent set, i.e., if one vertex of A′ and one vertex of B′ are adjacent
in C; and call it bad otherwise. The positive partitioned 2DNF problem (#PP2DNF) is the
following: given a bipartite graph, compute how many of its possible worlds are good.

It will be technically convenient to assume that H is connected. This is clearly without
loss of generality, as otherwise the number of good possible worlds is simply obtained as the
product of the number of good possible worlds of each connected component of H.

For other queries, we reduce from a different problem, known as the undirected st-
connectivity problem (#U-ST-CON) [PB83]:

Definition 3.3. An st-graph is an undirected graph G = (W,C) with two distinguished
vertices s ∈ W and t ∈ W . A possible world of G is a subgraph ω = (W,C ′) with C ′ ⊆ C.
We call the possible world good if C ′ contains a path connecting s and t, and bad otherwise.
The source-to-target undirected reachability problem (#U-ST-CON) is the following: given
an st-graph, compute how many of its possible worlds are good.

4. Result Statement

The goal of this paper is to extend the dichotomy of Dalvi and Suciu [DS12] on PQE for
UCQs. Their result states:

Theorem 4.1 [DS12]. Let Q be a UCQ. Then, PQE(Q) is either in FP or it is #P-hard.

Following Dalvi and Suciu’s terminology, we call a UCQ safe if PQE(Q) is in FP, and
unsafe otherwise. This dichotomy characterizes the complexity of PQE for UCQs, but
does not apply to other homomorphism-closed queries beyond UCQs. Our contribution,
when restricting to the arity-two setting, is to generalize this dichotomy to UCQ∞, i.e., to
any query closed under homomorphisms. Specifically, we show that all such queries are
intractable unless they are equivalent to a safe UCQ.

2:8 A. Amarilli and İ.İ. Ceylan Vol. 18:1

Theorem 4.2 (Dichotomy). Let Q be a UCQ∞ over an arity-two signature. Then, either Q
is equivalent to a safe UCQ and PQE(Q) is in FP, or it is not and PQE(Q) is #P-hard.

Our result relies on the dichotomy of Dalvi and Suciu for UCQ∞ queries that are
equivalent to UCQs. The key point is then to show intractability for unbounded UCQ∞

queries. Hence, our technical contribution is to show:

Theorem 4.3. Let Q be an unbounded UCQ∞ query over an arity-two signature. Then,
PQE(Q) is #P-hard.

This result applies to the very general class of unbounded UCQ∞. It implies in particular
that the PQE problem is #P-hard for all Datalog queries that are not equivalent to a UCQ,
as in Example 3.1: this is the case of all Datalog queries except the ones that are nonrecursive
or where recursion is bounded [HKMV95].

Effectiveness and uniformity. We do not study whether our dichotomy result in Theo-
rem 4.2 is effective, i.e., we do not study the problem of determining, given a query, whether
it is safe or unsafe. The dichotomy of Theorem 4.1 for UCQs is effective via the algorithm
of [DS12]: this algorithm has a super-exponential bound (in the query), with the precise
complexity being open. Our dichotomy concerns the very general query language UCQ∞,
and its effectiveness depends on how the input is represented: to discuss this question, we
need to restrict queries to some syntactically defined fragment. If we restrict to Datalog
queries, it is not clear whether our dichotomy is effective, because it is undecidable, given an
arbitrary Datalog program as input, to determine whether it is bounded [GMSV93]. This
means that there is little hope for our dichotomy to be decidable over arbitrary Datalog
queries, but on its own it does not imply undecidability, so the question remains open.
However, our dichotomy is effective for query languages for which boundedness is decidable,
e.g., monadic Datalog, its generalization GN-Datalog [BTCCB15], C2RPQs [BFR19], or
ontology-mediated query answering with guarded existential rules [BBLP18].

For unsafe queries, we also do not study the complexity of reduction as a function of the
query, or whether this problem is even decidable. All that matters is that, once the query is
fixed, some reduction procedure exists, which can be performed in polynomial time in the
input instance. Such uniformity problems seem unavoidable, given that our language UCQ∞

is very general and includes some queries for which non-probabilistic evaluation is not even
decidable, e.g., “there is a path from R to T whose length is the index of a Turing machine
that halts”. We leave for future work the study of the query complexity of our reduction
when restricting to better-behaved query languages such as Datalog or RPQs.

Proof outline. Theorem 4.3 is proven in Sections 5–7. There are two cases, depending on
the query. We study the first case in Section 5, which covers queries for which we can find a
model with a so-called non-iterable edge. Intuitively, this is a model where we can make
the query false by replacing the edge by a back-and-forth path of some length between two
neighboring facts that it connects. For such queries, we can show hardness by a reduction from
#PP2DNF, essentially like the hardness proof for the query Q0 : R(w, x), S(x, y), T (y, z)
which is the arity-two variant of the unsafe query of [DS07, Theorem 5.1]. This hardness
proof covers some bounded queries (including Q0) and some unbounded ones.

In Section 6, we present a new ingredient, to be used in the second case, i.e., when there
is no model with a non-iterable edge. We show that any unbounded query must always have

Vol. 18:1 EVALUATING HOMOMORPHISM-CLOSED QUERIES ON PROBABILISTIC GRAPHS 2:9

a model with an edge that is tight, i.e., the query no longer holds if we replace that edge
with two copies, one copy connected only to the first element and another copy connected
only to the second element. What is more, we can find a model with a tight edge which is
minimal in some sense, which we call a minimal tight pattern.

In Section 7, we use minimal tight patterns for the second case, covering unbounded
queries that have a minimal tight pattern where the tight edge of the pattern is iterable.
This applies to all queries to which Section 5 did not apply (and also to some queries to
which it did). Here, we reduce from the #U-ST-CON problem: intuitively, we use the
iterable edge for a kind of reachability test, and we use the minimality and tightness of the
pattern to show the soundness and completeness of the reduction.

Generalizations. In Section 8, we give two generalizations of our result. First, we observe
that our reductions only use tuple probabilities from {0, 0.5, 1}. This means that all #P-
hardness results hold even when restricting the probabilistic query evaluation problem to
the so-called generalized model counting problem studied for instance in [KS21], so we can
also state our dichotomy in this context. Second, we show that all our results also apply
when we consider signatures featuring predicates with arity 1 and 2.

5. Hardness with Non-Iterable Edges

In this section, we present the hardness proof for the first case where we can find a model of
the query with a non-iterable edge. This notion will be defined relative to an incident pair
of a non-leaf edge:

Definition 5.1. Let I be an instance. We say that an element u ∈ dom(I) of I is a leaf if
it occurs in only one undirected edge. We say that an edge (directed or undirected) is a leaf
edge if one of its elements (possibly both) is a leaf; otherwise, it is a non-leaf edge.

Let I be an instance and let e = (u, v) be a non-leaf edge of I. A σ↔-fact of I is
left-incident to e if it is of the form RL(l, u) with l /∈ {u, v}. It is right-incident to e if it is of
the form RR(v, r) with r /∈ {u, v}. An incident pair of e is a pair of σ↔-facts Π = (FL, FR),
where FL is left-incident to e and FR is right-incident to e. We write Ie,Π to denote an
instance I with a distinguished non-leaf edge e and a distinguished incident pair Π of e in I.

Note that an incident pair chooses two incident facts (not edges): this is intuitively
because in the PQE problem, we will give probabilities to single facts and not edges. It is
clear that every non-leaf edge e must have an incident pair, as we can pick FL and FR from
the edges incident to u and v which are not e. Moreover, we must have FL 6= FR, and neither
FL nor FR can be unary facts. However, as the relations RL and RR are σ↔-relations, we
may have RL = RR or RL = R−R , and the elements l and r may be equal if the edge (u, v) is
part of a triangle with some edges {u,w} and {v, w}.

Let us illustrate the notion of incident pair on an example.

Example 5.2. Given an instance I = {R(a, b), T (b, b), S(c, b), R(d, c)}, the edge (b, c) is
non-leaf and the only possible incident pair for it is (R(a, b), R−(c, d)).

We can now define the iteration process on an instance Ie,Π, which intuitively replaces
the edge e by a path of copies of e, keeping the facts of Π at the beginning and end of the
path, and copying all other incident facts. Note that, while the instances that we work with
are over the signature σ, we will see them as σ↔ instances in the definition of this process,

2:10 A. Amarilli and İ.İ. Ceylan Vol. 18:1

e
eL with FL

eL without FL

eR with FR

eR without FR

other incident
edges

l

l1

u v

r

r1 l

l1

u=u1

u2

u3

v1

v2

v=v3

r

r1

Figure 1. Example of iteration from an instance Ie,Π (left) to I3
e,Π (middle).

We write Π = (FL, FR) and call eL and eR the edges of FL and FR. Each line
represents an edge covering in general multiple σ↔-facts. A key is given at
the top.

e.g., when creating copies of facts, in particular of the σ↔-facts FL and FR; but the facts
that we actually create are σ-facts, and the resulting instance is a σ-instance. The iteration
process is represented in Figure 1, and defined formally below:

Definition 5.3. Let Ie,Π be a σ-instance where e = (u, v), Π = (FL, FR), FL = RL(l, u),
FR = RR(v, r), and let n ≥ 1. The n-th iterate of e in I relative to Π, denoted Ine,Π, is a

σ-instance with domain dom(Ine,Π) := dom(I)∪{u2, . . . , un}∪{v1, . . . , vn−1}, where the new
elements are fresh, and where we use u1 to refer to u and vn to refer to v for convenience.
The facts of Ine,Π are defined by applying the following steps:

• Copy non-incident facts: Initialize Ine,Π as the induced subinstance of I on dom(I) \ {u, v}.
• Copy incident facts FL and FR: Add FL and FR to Ine,Π, using u1 and vn, respectively.

• Copy other left-incident facts: For each σ↔-fact F ′L = R′L(l′, u) of I that is left-incident
to e (i.e., l′ /∈ {u, v}) and where F ′L 6= FL, add to Ine,Π the fact R′L(l′, ui) for each 1 ≤ i ≤ n.

• Copy other right-incident facts: For each σ↔-fact F ′R = R′R(v, r′) of I that is right-incident
to e (i.e., r′ /∈ {u, v}) and where F ′R 6= FR, add to Ine,Π the fact R′R(vi, r

′) for each
1 ≤ i ≤ n.
• Create copies of e: Copy the edge e (in the sense defined in the Preliminaries) on the

following pairs: (ui, vi) for 1 ≤ i ≤ n, and (ui+1, vi) for 1 ≤ i ≤ n− 1.

Note that, for n = 1, we obtain exactly the original instance. Intuitively, we replace e by
a path going back-and-forth between copies of u and v (and traversing e alternatively in
one direction and another). The intermediate vertices have the same incident facts as the
original endpoints except that we have not copied the left-incident fact and the right-incident
fact of the incident pair.

We first notice that larger iterates have homomorphisms back to smaller iterates:

Observation 5.4. For any instance I, for any non-leaf edge e of I, for any incident pair Π

for e, and for any 1 ≤ i ≤ j, it holds that Ije,Π has a homomorphism to Iie,Π.

Proof. Simply merge ui, . . . , uj , and merge vi, . . . , vj .

Hence, choosing an instance I that satisfies Q, a non-leaf edge e of I, and an incident
pair Π, there are two possibilities. Either all iterates Ine,Π satisfy Q, or there is some iterate

Vol. 18:1 EVALUATING HOMOMORPHISM-CLOSED QUERIES ON PROBABILISTIC GRAPHS 2:11

In0
e,Π with n0 > 1 that violates Q (and, by Observation 5.4, all subsequent iterates also do).

We call e iterable relative to Π in the first case, and non-iterable in the second case:

Definition 5.5. A non-leaf edge e of a model I of a query Q is iterable relative to an
incident pair Π if Ine,Π satisfies Q for each n ≥ 1; otherwise, it is non-iterable relative to Π.
We call e iterable if it is iterable relative to some incident pair, and non-iterable otherwise.

The goal of this section is to show that if a query Q has a model with a non-leaf edge
which is not iterable, then PQE(Q) is intractable:

Theorem 5.6. For every UCQ∞ Q, if Q has a model I with a non-leaf edge e that is
non-iterable, then PQE(Q) is #P-hard.

Let us illustrate on an example how to apply this result:

Example 5.7. Consider the RPQ RS∗T . This query has a model {R(a, b), S(b, c), T (c, d)}
with an edge (b, c) that is non-leaf and non-iterable. Indeed its iterate with n = 2 relative
to the only possible incident pair yields {R(a, b), S(b, c′), S(b′, c′), S(b′, c), T (c, d)} which
does not satisfy the query. Hence, Theorem 5.6 shows that PQE is #P-hard for this RPQ.
Importantly, the choice of the model matters, as this query also has models where all
non-leaf edges are iterable, for instance {R(a, b), S(b, c), T (c, d), R(a′, b′), S(b′, c′), T (c′, d′)},
or {R(a, b), T (b, c)} which has no non-leaf edge at all.

Note that Theorem 5.6 does not assume that the query is unbounded, and also applies
to some bounded queries. For instance, the unsafe CQ Q0 : R(w, x), S(x, y), T (y, z) can be
shown to be unsafe using this result, with the model {R(a, b), S(b, c), T (c, d)} and edge (b, c).
However, Theorem 5.6 is too coarse to show #P-hardness for all unsafe UCQs; for instance,
it does not cover Q′0 : R(x, x), S(x, y), T (y, y), or Q1 : (R(w, x), S(x, y)) ∨ (S(x, y), T (y, z)).
It will nevertheless be sufficient for our purposes when studying unbounded queries, as we
will see in the next sections.

Hence, in the rest of this section, we prove Theorem 5.6. Let Ie,Π be the instance with
the non-iterable, non-leaf edge, and let us take the smallest n0 > 1 such that In0

e,Π violates

the query. The idea is to use In0
e,Π to show hardness of PQE by reducing from #PP2DNF

(Definition 3.2). Thus, let us explain how we can use Ie,Π to code a bipartite graph H in
polynomial time into a TID I. The definition of this coding does not depend on the query Q,
but we will use the properties of Ie,Π and n0 to argue that it defines a reduction between
#PP2DNF and PQE, i.e., there is a correspondence between the possible worlds of H and
the possible worlds of I, such that good possible worlds of H are mapped to possible worlds
of I which satisfy Q. Let us first define the coding, which we also illustrate on an example
in Figure 2:

Definition 5.8. Let Ie,Π be a σ-instance where e = (u, v), Π = (FL, FR), FL = RL(l, u),
FR = RR(v, r), and let n ≥ 1. Let H = (A,B,C) be a connected bipartite graph. The coding
of H relative to Ie,Π and n is a TID I = (J, π) with domain dom(J) := (dom(I)\{u, v})∪{ua |
a ∈ A} ∪ {vb | b ∈ B} ∪ {uc,2, . . . , uc,n | c ∈ C} ∪ {vc,1, . . . , vc,n−1 | c ∈ C}, where the new
elements are fresh. The facts of the σ-instance J and the probability mapping π are defined
as follows:

• Copy non-incident facts: Initialize J as the induced subinstance of I on dom(I) \ {u, v}.
• Copy incident facts FL and FR: Add to J the σ↔-fact RL(l, ua) for each a ∈ A, and add

to J the σ↔-fact RR(vb, r) for each b ∈ B.

2:12 A. Amarilli and İ.İ. Ceylan Vol. 18:1

e
eL with FL

eL without FL

eR with FR

eR without FR

other incident
edges

α

β

γ

α′

β′

γ′

(a) A bipartite graph H.

l

l1
u v

r1

r

r2

(b) An instance Ie,Π.

l

l1

u

u2

v1

v

r1

r

r2

(c) The instance I2
e,Π.

l

l1

uα

uαα′,2

uβ

uβα′,2

uββ′,2

uγ

uγα′,2

uγβ′,2

uγγ′,2

vαα′,1

vβα′,1

vγα′,1

vα′

vββ′,1

vγβ′,1

vβ′

vγγ′,1

vγ′

r1

r

r2

(d) Coding of the bipartite graph H relative to I2
e,Π. Bold elements correspond to vertices of H.

For brevity, we write the edge (x, ξ) simply as xξ.

Figure 2. Example of the coding of a bipartite graph H shown in Figure 2a.
We encode H relative to an instance Ie,Π (Figure 2b), with a non-leaf edge e
and an incident pair Π. The result I2

e,Π of iterating e in I with n = 2

(Definition 5.3) is shown in Figure 2c. The coding of H relative to Ie,Π and
n = 2 (Definition 5.8) is shown in Figure 2d, with the probabilistic facts
being the copies of FL and FR in the edges in solid blue and black.

• Copy other left-incident facts: For each σ↔-fact F ′L = R′L(l′, u) of I that is left-incident
to e (i.e., l′ /∈ {u, v}) and where F ′L 6= FL, add to J the facts R′L(l′, ua) for each a ∈ A,
and add to J the facts R′L(l′, uc,j) for each 2 ≤ j ≤ n and c ∈ C.
• Copy other right-incident facts: For each σ↔-fact F ′R = R′R(v, r′) of I that is right-incident

to e (i.e., r′ /∈ {u, v}) and where F ′R 6= FR, add to J the facts R′R(vb, r
′) for each b ∈ B

and add to J the facts R′R(vc,j , r
′) for each 1 ≤ j ≤ n− 1 and c ∈ C.

• Create copies of e: For each c ∈ C with c = (a, b), copy e on the following pairs: (uc,i, vc,i)
for 1 ≤ i ≤ n, and (uc,i+1, vc,i) for 1 ≤ i ≤ n− 1, where we use uc,1 to refer to ua and vc,n
to refer to vb.

Finally, we define the function π such that it maps all the facts created in the step “Copy
incident facts FL and FR” to 0.5, and all other facts to 1.

Vol. 18:1 EVALUATING HOMOMORPHISM-CLOSED QUERIES ON PROBABILISTIC GRAPHS 2:13

e
eL with FL

eL without FL

eR with FR

eR without FR

other incident
edges

A B
α

β
γ

α′

β′

γ′

(a) A possible world ω of H from Fig-
ure 2a, containing all circled nodes.

A B A B
α α′ β

γ
α′

β′

γ′

(b) The way H is considered in the complete-
ness proof of Proposition 5.9.

l

l1

uα

uαα′,2

uβ

uβα′,2

uββ′,2

uγ

uγα′,2

uγβ′,2

uγγ′,2

vαα′,1

vβα′,1

vγα′,1

vα′

vββ′,1

vγβ′,1

vβ′

vγγ′,1

vγ′

r1

r

r2

(c) The possible world φ(ω) of the coding (Figure 2d) for ω. The edges (l, uβ), (l, uγ), and (vα′ , r)
are changed to dashed lines, as they correspond to vertices of H that are not kept in ω.

Figure 3. Example for the completeness direction of the proof of Proposi-
tion 5.9. Figure 3a shows a bad possible world ω of the bipartite graph. The
corresponding possible world of the coding of Figure 2d (using the instance
I2
e,Π of Figure 2b) is given in Figure 3c. In the proof, we explore H as depicted

in Figure 3b to argue that Figure 3c has a homomorphism to I5
e,Π.

Observe how this definition relates to the definition of iteration (Definition 5.3): we
intuitively code each edge of the bipartite graph as a copy of the path of copies of e in the
definition of the n-th iterate of (u, v). Note also that there are exactly |A|+ |B| uncertain
facts, by construction. It is clear that, for any choice of Ie,Π and n, this coding is in
polynomial time in H.

We now define the bijection φ, mapping each possible world ω of the connected bipartite
graph H to a possible world of the TID I. For each vertex a ∈ A, we keep the copy of FR

incident to ua in φ(ω) if a is kept in ω, and we do not keep it otherwise; we do the same
for vb, and FL. It is obvious that this correspondence is bijective, and that all possible
worlds have the same probability, namely, 0.5|A|+|B|. Furthermore, we can use φ to define a
reduction, thanks to the following statement:

2:14 A. Amarilli and İ.İ. Ceylan Vol. 18:1

Proposition 5.9. Let the TID I = (J, π) be the coding of a connected bipartite graph
H = (A,B,C) relative to an instance Ie,Π and to n ≥ 1 as described in Definition 5.8, and
let φ be the bijective function defined above from the possible worlds of H to those of I.
Then:

(1) For any good possible world ω of H, φ(ω) has a homomorphism from Ine,Π.

(2) For any bad possible world ω of H, φ(ω) has a homomorphism to I3n−1
e,Π .

Proof. Observe that (1) corresponds to the soundness of the reduction, and (2) to the
completeness. Intuitively, (1) holds because φ(ω) then contains a subinstance isomorphic
to Ine,Π. To show (2), we need a more involved argument, see e.g. Figure 3: when ω is bad,

we can show how to “fold back” φ(ω), going from the copies of FL to the copies of FR, into
the iterate I3n−1

e,Π . This uses the fact that ω is bad, so the copies of FL and FR must be
sufficiently far from one another.

(1) Let us assume that φ(ω) = J ′. We more specifically claim that J ′ has a subinstance
which is isomorphic to Ine,Π. To see why, drop all copies of u from J ′ except ua and the
uc,i, and all copies of v except vb and the vc,i, along with all facts where these elements
appear. All of the original instance I except for the facts involving u and v can be found
as-is in J ′. Now, for the others, ua has an incident copy of all edges incident to u in J ′

(including FL), the same is true for vb and v (including FR), and we can use the ue,i and
ve,i to witness the requisite path of copies of e.

(2) As before, let us assume that φ(ω) = J ′. Let us describe the homomorphism from J ′

to I3n−1
e,Π . To do this, first map all facts of J ′ that do not involve a copy of u or v to

the corresponding facts of I3n−1
e,Π using the identity mapping. We will now explain how

the copies of u and v in J ′ are mapped to copies of u and v in I3n−1
e,Π : this is clearly

correct for the facts in J ′ that use these copies of u and v and that were created as
copies of left-incident or right-incident facts to e in I except FL and FR. Thus, we must
simply ensure that this mapping respects the facts in J ′ that were created as copies
of FL, of FR, or of the edge e, as we have argued that all other facts of J ′ are correctly
mapped to I3n−1

e,Π .
Our way to do this is illustrated in Figure 3. The first step is to take all copies of FL

in J ′, which correspond to vertices in a ∈ A that were kept, and to map them all to the
element u in I3n−1

e,Π , which is possible as it has the incident fact FL. In Figure 3c, this is

only the copy of FL on (l, uα). Now, we start at the elements of the form ua, and we
follow the paths of 2n− 1 copies of e back-and-forth from these elements until we reach
elements of the form vb: we map these paths to the first 2n − 1 edges of the path of
copies of e from u to v in I3n−1

e,Π . In Figure 3c, we reach vα′ . From our assumption about

the possible world J ′, none of the vb reached at that stage have an incident copy of FR,
as we would otherwise have a witness to the fact that we kept two adjacent a ∈ A and
b ∈ B in the possible world ω of H, which is impossible as ω is bad.

The second step is to go back in J ′ on the copies of e incident to these elements that
were not yet visited, and we follow a path of copies of e that were not yet mapped. We
map these to the next 2n− 1 copies of e, going forward in the path from u to v in I3n−1

e,Π .
We then reach elements of the form ua, and they do not have any incident copies of FL

because all such edges and their outgoing paths were visited in the first step. In Figure 3c,
we reach uβ and uγ .

Vol. 18:1 EVALUATING HOMOMORPHISM-CLOSED QUERIES ON PROBABILISTIC GRAPHS 2:15

The third step is to go forward in J ′ on the copies of e incident to these elements
that were not yet visited, and follow a path of copies of e that goes to elements of the
form vb, mapping this to the last 2n− 1 edges of the path from u to v in I3n−1

e,Π . Some

of these vb may now be incident to copies of FR, but the same is true of v in I3n−1
e,Π , and

we have just reached v. Indeed, note that we have followed (2n− 1)× 3 copies of e in J ′

in total (going forward each time), and this is equal to 2 × (3n − 1) − 1, the number
of copies of e in the path from u to v in I3n−1

e,Π . Thus, we can map the copies of FR

correctly. In Figure 3c, we reach vβ′ and vγ′ .
In Figure 3c, we have visited everything after the third step. However, in general,

there may be some elements of J ′ that we have not yet visited, and for which we still
need to define a homomorphic image. Thus, we perform more steps until all elements
are visited. Specifically, in even steps, we go back on copies of e in J ′ from the elements
reached in the previous step to reach elements that were not yet visited, going back
on the path from u to v in I3n−1

e,Π , reaching elements of the form ua (which cannot be

incident to any copy of FL for the same reason as in the second step). In odd steps, we
go forward in J ′ on copies of e, going forward on the path from u to v in I3n−1

e,Π , reaching

elements of the form vb in J ′ that we map to b in I3n−1
e,Π , including the FR-fact that may

be incident to them.
We repeat these additional backward-and-forward steps until everything reachable

has been visited. At the end of the process, from our assumption that H is a connected
bipartite graph, we have visited all the elements of J ′ for which we had not defined a
homomorphic image yet, and we have argued that the way we have mapped them is
indeed a homomorphism. This concludes the construction of the homomorphism, and
concludes the proof.

Thanks to Proposition 5.9, we can now prove the main result of this section:

Proof of Theorem 5.6. Fix the query Q, the instance I, the non-leaf edge e of I which is
non-iterable, the incident pair Π relative to which it is not iterable, and let us take the
smallest n0 > 1 such that In0

e,Π does not satisfy the query, but In0−1
e,Π does.

We show the #P-hardness of PQE(Q) by reducing from #PP2DNF (Definition 3.2). Let
H = (A,B,C) be an input connected bipartite graph. We apply the coding of Definition 5.8
with n0 − 1 and obtain a TID I. This coding can be done in polynomial time.

Now let us use Proposition 5.9. We know that In0−1
e,Π satisfies Q, but I

3(n0−1)−1
e,Π does not,

because n0 > 1 so 3(n0 − 1)− 1 = 3n0 − 4 ≥ n0, and as we know that In0
e,Π violates Q, then

so does I
3(n0−1)−1
e,Π thanks to Observation 5.4. Thus, Proposition 5.9 implies that the number

of good possible worlds of H is the probability that Q is satisfied in a possible world of I,
multiplied by the constant factor 2|A|+|B|. Thus, the number of good possible worlds of H is
PI(Q) · 2|A|+|B|. This shows that the reduction is correct, and concludes the proof.

6. Finding a Minimal Tight Pattern

In the previous section, we have shown hardness for queries (bounded or unbounded) that
have a model with a non-iterable, non-leaf edge. This leaves open the case of unbounded
queries for which all non-leaf edges in all models can be iterated. We first note that this

2:16 A. Amarilli and İ.İ. Ceylan Vol. 18:1

case is not hypothetical, i.e., there actually exist some unbounded queries for which, in all
models, all non-leaf edges can be iterated:

Example 6.1. Consider the following Datalog program:

R(x, y)→ A(y),

A(x), S(x, y)→ B(y),

B(x), S(y, x)→ A(y),

B(x), T (x, y)→ Goal().

This program is unbounded, as it tests if the instance contains a path of the form R(a, a1),
S(a1, a2), S−(a2, a3), . . . , S(a2n+1, a2n+2), T (a2n+2, b). However, it has no model with a non-
iterable, non-leaf edge: in every model, the query is satisfied by a path of the form above,
and we cannot break such a path by iterating a non-leaf edge (i.e., this yields a longer path
of the same form).

Importantly, if we tried to reduce from #PP2DNF for this query as in the previous
section, then the reduction would fail because the edge is iterable: in possible worlds of
the bipartite graph, where we have not retained two adjacent vertices, we would still have
matches of the query in the corresponding possible world of the probabilistic instance, where
we go from a chosen vertex to another by going back-and-forth on the copies of e that code
the edges of the bipartite graph. These are the “back-and-forth matches” which were missed
in [Jun14, JL12] and are discussed in [JL20].

In light of this, we handle the case of such queries in the next two sections. In this
section, we prove a general result for unbounded queries (independent from the previous
section): all unbounded queries must have a model with a tight edge, which is additionally
minimal in some sense. Tight edges and iterable edges will then be used in Section 7 to
show hardness for unbounded queries which are not covered by the previous section.

Let us start by defining this notion of tight edge, via a rewriting operation on instances
called a dissociation.

Definition 6.2. The dissociation of a non-leaf edge e = (u, v) in I is the instance I ′ where:

• dom(I ′) = dom(I) ∪ {u′, v′} where u′ and v′ are fresh.
• I ′ is I where we create a copy of the edge e on (u, v′) and on (u′, v), and then remove all

non-unary facts covered by e in I ′.

Dissociation is illustrated in the following example (see also Figure 4):

Example 6.3. Consider the following instance:

I = {R(a, b), S(b, a), T (b, a), R(a, c), S(c, b), S(d, b), U(a, a), U(b, b)}.
The edge (a, b) is non-leaf, as witnessed by the edges {a, c} and {b, c}. The result of the
dissociation is then:

I ′ = {R(a, b′), S(b′, a), T (b′, a), R(a′, b), S(b, a′), T (b, a′),

R(a, c), S(c, b), S(d, b), U(a, a), U(a′, a′), U(b, b), U(b′, b′)}

We then call an edge tight in a model of Q if dissociating it makes Q false:

Definition 6.4. Let Q be a query and I be a model of Q. An edge e of I is tight if it is
non-leaf, and the result of the dissociation of e in I does not satisfy Q. A tight pattern for
the query Q is a pair (I, e) of a model I of Q and of an edge e of I that is tight.

Vol. 18:1 EVALUATING HOMOMORPHISM-CLOSED QUERIES ON PROBABILISTIC GRAPHS 2:17

l1

l2

u v

r2

r1 l1

l2

u

u′

v

v′ r1

r2

Figure 4. An instance (left) with a non-leaf edge (u, v), and the result
(right) of dissociating (u, v).

Intuitively, a tight pattern is a model of a query containing at least three edges {u, a},
{a, b}, {b, v} (possibly u = v) such that performing a dissociation makes the query false. For
instance, for the unsafe CQ Q0 : R(w, x), S(x, y), T (y, z) from [DS07], a tight pattern would
be {R(a, b), S(b, c), T (c, d)} with the edge (b, c). Again, not all unsafe CQs have a tight pat-
tern, e.g., Q′0 : R(x, x), S(x, y), T (y, y), and Q1 : (R(w, x), S(x, y)) ∨ (S(x, y), T (y, z)) from
Section 5 do not.

For our purposes, we will not only need tight patterns, but minimal tight patterns:

Definition 6.5. Given an instance I with a non-leaf edge e = (a, b), the weight of e is
the number of facts covered by e in I (including unary facts). The side weight of e is the
number of σ↔-facts in I that are left-incident to e, plus the number of σ↔-facts in I that
are right-incident1 to e. Given a query Q, we say that a tight pattern (I, e) is minimal if:

• Q has no tight pattern (I ′, e′) where the weight of e′ is strictly less than that of e; and
• Q has no tight pattern (I ′, e′) where the weight of e′ is equal to that of e and the side

weight of e′ is strictly less than that of e.

We can now state the main result of this section:

Theorem 6.6. Every unbounded UCQ∞ Q has a model I with a non-leaf edge e such that
(I, e) is a minimal tight pattern.

The idea of how to find tight patterns is as follows. We first note that the only instances
without non-leaf edges are intuitively disjoint unions of star-shaped subinstances. Now, if
a query is unbounded, then its validity cannot be determined simply by looking at such
subinstances (unlike Q′0 or Q1 from Section 5), so there must be a model of the query with
an edge that we cannot dissociate without breaking the query, i.e., a tight pattern. Once we
know that there is a tight pattern, then it is simple to argue that we can find a model with
a tight edge that is minimal in the sense that we require.

To formalize this intuition, let us first note that any iterative dissociation process, i.e.,
any process of iteratively applying dissociation to a given instance, will necessarily terminate.
More precisely, an iterative dissociation process is a sequence of instances starting at an
instance I and where each instance is defined from the previous one by performing the
dissociation of some non-leaf edge. We say that the process terminates if it reaches an
instance where there is no edge left to dissociate, i.e., all edges are leaf edges.

Observation 6.7. For any instance I, any iterative dissociation process will terminate in n
steps, where n is the number of non-leaf edges in I.

Proof. It is sufficient to show that an application of dissociation decreases the number of
non-leaf edges by 1. To do so, we consider an instance I with a non-leaf edge e, and show
that the dissociation I ′ of e in I, has n− 1 non-leaf edges.

1Recall that left-incident and right-incident facts do not include unary facts.

2:18 A. Amarilli and İ.İ. Ceylan Vol. 18:1

Let us write e = (a, b). The new elements a′ and b′ in I ′ are leaf elements, and for any
other element of the domain of I ′, it is a leaf in I ′ iff it was a leaf in I: this is clear for
elements that are not a and b as they occur exactly in the same edges, and for a and b we
know that they were not leaves in I (they occurred in e = {a, b} and in some other edge),
and they are still not leaves in I ′ (they occur in the same other edge and in {a, b′} and
{b, a′}, respectively).

Thus, the edges of I ′ that are not {a, b′} or {a′, b} are leaf edges in I ′ iff they were in I.
So, in terms of non-leaf edges the only difference between I and I ′ is that we removed the
non-leaf edge {a, b} from I and we added the two edges {a, b′} and {a′, b} in I ′ which are
leaf edges because a′ and b′ are leaves. Thus, we conclude the claim.

Let us now consider instances with no non-leaf edges. As we explained, they are intuitively
disjoint unions of star-shaped subinstances, and in particular they homomorphically map to
some constant-sized subset of their facts, as will be crucial when studying our unbounded
query.

Proposition 6.8. For every signature σ, there exists a bound kσ > 0, ensuring the following:
for every instance I on σ having no non-leaf edge, there exists a subinstance I ′ ⊆ I such
that I has a homomorphism to I ′ and such that we have |I ′| < kσ.

Proof. We start by outlining the main idea behind of the proof. Connected instances having
no non-leaf edges can have at most one non-leaf element, with all edges using this element
and a leaf. Now, each edge can be described by the set of facts that it covers, for which
there are finitely many possibilities (exponentially many in the signature size). We can thus
collapse together the edges that have the same set of facts and obtain the subinstance I ′.
Now, disconnected instances having no non-leaf edges are unions of the connected instances
of the form above, so the number of possibilities up to homomorphic equivalence is again
finite (exponential in the number of possible connected instances). We can then conclude by
collapsing together connected components that are isomorphic.

Let us now formally prove the result, first for connected instances I. In this case, we
define the constant k′σ := 24×|σ|. There are two cases. The first case is when all elements
of I are leaves: then, as I is connected, it must consist of a single edge (a, b) and consists of
at most 4 |σ| facts: there are |σ| possible facts of the form R(a, b), plus |σ| possible facts
of the form R(b, a), plus |σ| possible facts of the form R(a, a), plus |σ| possible facts of
the form R(b, b). Thus, taking I ′ = I and the identity homomorphism concludes the proof.
The second case is when I contains a non-leaf element a. In this case, consider all edges
{a, b1}, . . . , {a, bn} incident to a. Each of the bi must be leaves: if some bi is not a leaf then
{a, bi} would be a non-leaf edge because neither a nor bi would be leaves, contradicting our
assumption that I has no non-leaf edge. We then define an equivalence relation ∼ on the bi
by writing bi ∼ bj if the edges {a, bi} and {a, bj} contain the exact same set of facts (up to
the isomorphism mapping bi to bj): there are at most k′σ equivalence classes. The requisite
subset of I and the homomorphism can thus be obtained by picking one representative of
each equivalence class, keeping the edges incident to these representatives, and mapping
each bi to the chosen representative of its class.

Second, we formally show the result for instances I that are not necessarily connected.
Letting I be such an instance, we consider its connected components I1, . . . , Im, i.e., the
disjoint subinstances induced by the connected components of the Gaifman graph of I. Each
of these is connected and has no non-leaf edges, so, by the proof of the previous paragraph,
there are subsets I ′1 ⊆ I1, . . . , I

′
m ⊆ Im with at most k′σ facts each and a homomorphism of

Vol. 18:1 EVALUATING HOMOMORPHISM-CLOSED QUERIES ON PROBABILISTIC GRAPHS 2:19

each Ii to its I ′i. Now, there are only constantly many instances with at most k′σ facts up
to isomorphism: let k′′σ be their number, and let kσ := k′′σ × k′σ. The requisite subinstance
and homomorphism is obtained by again picking one representative for each isomorphism
equivalence class of the I ′i (at most k′′σ of them, so at most kσ facts in total) and mapping
each Ii to the I ′j which is the representative for its I ′i. This concludes the proof.

We can now prove Theorem 6.6 by appealing to the unboundedness of the query. To do
this, we will rephrase unboundedness in terms of minimal models:

Definition 6.9. A minimal model of a query Q is an instance I that satisfies Q and such
that every proper subinstance of I violates Q.

We can rephrase the unboundedness of a UCQ∞ Q in terms of minimal models: Q is
unbounded iff it has infinitely many minimal models. Indeed, if a query Q has finitely many
minimal models, then it is clearly equivalent to the UCQ formed from these minimal models,
because it is closed under homomorphisms. Conversely, if Q is equivalent to a UCQ, then it
has finitely many minimal models which are obtained as homomorphic images of the UCQ
disjuncts. Thus, we can clearly rephrase unboundedness as follows:

Observation 6.10. A UCQ∞ query Q is unbounded iff it has a minimal model I with
more than k facts for any k ∈ N.

We are now ready to conclude the proof of Theorem 6.6:

Proof of Theorem 6.6. We start by showing the first part of the claim: any unbounded
query has a tight pattern. Let kσ be the bound from Proposition 6.8. By Observation 6.10,
let I0 be a minimal model with more than kσ facts. Set I := I0 and let us apply an
iterative dissociation process: while I has edges that are non-leaf but not tight, perform the
dissociation, yielding I ′, and let I := I ′.

Observation 6.7 implies that the dissociation process must terminate after at most n0

steps, where n0 is the number of non-leaf edges of I0. Let In be the result of this process,
with n ≤ n0. If In has a non-leaf edge e which is tight, then we are done as we have found a
tight pattern (I, e). Otherwise, let us reach a contradiction.

First notice that, throughout the rewriting process, it has remained true that I is a
model of Q. Indeed, if performing a dissociation breaks this, then the dissociated edge
was tight. Also notice that, throughout the rewriting, it has remained true that I has a
homomorphism to I0: it is true initially, with the identity homomorphism, and when we
dissociate I to I ′ then I ′ has a homomorphism to I defined by mapping the fresh elements
a′ and b′ to the original elements a and b and as the identity otherwise. Hence, In is a model
of Q having a homomorphism to I0.

Note that In has no non-leaf edges. Thus, Proposition 6.8 tells us that In admits a
homomorphism to some subset I ′n of size at most kσ. This homomorphism witnesses that I ′n
also satisfies Q. But now, I ′n is a subset of In so it has a homomorphism to In, which has a
homomorphism to I0. Let I ′0 ⊆ I0 be the image of I ′n in I0 by the composed homomorphism.
It has at most kσ facts, because I ′n does; and it satisfies Q because I ′n does. But as I0

had more than kσ facts, I ′0 is a strict subset of I0 that satisfies Q. This contradicts the
minimality of I0. Thus, we conclude the first part of the claim.

It only remains to show the second part of the claim: there exists a minimal tight
pattern. We already concluded that Q has a tight pattern (I, e), and e has some finite
weight w1 > 0 in I. Pick the minimal 0 < w′1 ≤ w1 such that Q has a tight pattern (I ′, e′)

2:20 A. Amarilli and İ.İ. Ceylan Vol. 18:1

where e′ has weight w′1. Now, e′ has some finite side weight w2 ≥ 2 in I ′. Pick the minimal
2 ≤ w′2 ≤ w2 such that Q has a tight pattern (I ′′, e′′), where e′ has weight w′1 and has side
weight w′2. We can then see that (I ′′, e′′) is a minimal tight pattern by minimality of w′1
and w′2. This concludes the proof.

7. Hardness with Tight Iterable Edges

In this section, we conclude the proof of Theorem 4.3 by showing that a minimal tight
pattern can be used to show hardness when it is iterable. Formally:

Theorem 7.1. For every UCQ∞ Q, if Q has a model I with a non-leaf edge e that is
iterable then PQE(Q) is #P-hard.

This covers all the queries to which Section 5 did not apply. We note however that it
does not subsume the result of that section, i.e., there are some unbounded queries to which
it does not apply.

Example 7.2. Consider again the RPQ RS∗T from Example 5.7. Recall that we can find
some models with iterable edges (e.g., {R(a, b), S(b, c), T (c, d), R(a′, b′), S(b′, c′), T (c′, d′)}),
but this query has no models with an iterable edge which is tight. Thus, hardness for this
query cannot be shown with the result in this section, and we really need Theorem 5.6 to
cover it. Of course, there are also some unbounded queries for which hardness can be shown
with either of the two results, e.g., a disjunction of the RPQ RS∗T and of the query of
Example 6.1 on a disjoint signature.

From Theorem 7.1, it is easy to conclude the proof of Theorem 4.3:

Proof of Theorem 4.3. Let Q be an unbounded UCQ∞. If we have a model of Q with a
non-iterable edge, then we conclude by Theorem 5.6 that PQE(Q) is #P-hard. Otherwise,
by Theorem 6.6, we have a minimal tight pattern, and its edge is then iterable (otherwise
the first case would have applied), so that we can apply Theorem 7.1.

Thus, it only remains to show Theorem 7.1. The idea is to use the iterable edge e of
the minimal tight pattern (I, e) for some incident pair Π to reduce from the undirected
st-connectivity problem #U-ST-CON (Definition 3.3). Given an input st-graph G for
#U-ST-CON, we will code it as a TID I built using Ie,Π, with one probabilistic fact per
edge of G. To show a reduction, we will argue that good possible worlds of G correspond to
possible worlds J ′ of I containing some iterate Ine,Π of the instance (Definition 5.3), with n

being the length of the path, and J ′ then satisfies Q because e is iterable. Conversely, we
will argue that bad possible worlds of G correspond to possible worlds J ′ of I that have a
homomorphism to a so-called fine dissociation of e in I, and we will argue that this violates
the query Q thanks to our choice of (I, e) as a minimal tight pattern. The notion of fine
dissociation will be defined for an edge relative to an incident pair, but also relative to a
specific choice of fact covered by the edge, as we formally define below (and illustrate in
Figure 5):

Definition 7.3. Let I be a σ-instance, let e = (u, v) be a non-leaf edge in I, let FL = RL(l, u)
and FR = RR(v, r) be an incident pair of e in I, and let FM be a non-unary fact covered by
the edge e. The result of performing the fine dissociation of e in I relative to FL, FR and
FM is a σ-instance I ′ on the domain dom(I ′) = dom(I) ∪ {u′, v′}, where the new elements
are fresh. It is obtained by applying the following steps:

Vol. 18:1 EVALUATING HOMOMORPHISM-CLOSED QUERIES ON PROBABILISTIC GRAPHS 2:21

e with FM

e without FM

eL with FL

eL without FL

eR with FR

eR without FR

other incident
edges

I
l

l1

u v

r

r1

I ′

l

l1

u

u′

v

v′

r

r1

Figure 5. Example of fine dissociation from an instance I (left) to I ′ (middle)
for a choice of e, of Π = (FL, FR), and of FM. We call eL and eR the edges
of FL and FR.

• Copy non-incident facts: Initialize I ′ as the induced subinstance of I on dom(I) \ {u, v}.
• Copy incident facts FL and FR: Add the facts FL and FR to I ′.
• Copy other left-incident facts: For every σ↔-fact F ′L = R′L(l′, u) of I that is left-incident

to e (i.e., l′ /∈ {u, v}) and where F ′L 6= FL, add to I ′ the fact R′L(l′, u′).
• Copy other right-incident facts: For every σ↔-fact F ′R = R′R(v, r′) of I that is right-incident

to e (i.e., r′ /∈ {u, v}) and where F ′R 6= FR, add to I ′ the fact R′R(v′, r′).
• Create the copies of e: Copy e on the pairs (u, v′) and (u′, v) of I ′, and copy e except the

fact Fm on the pairs (u, v) and (u′, v′) of I ′.

Note that if the only non-unary fact covered by the edge e in I is FM, then (u, v) and
(u′, v′) are not edges in the result of the fine dissociation; otherwise, they are edges but
with a smaller weight than e. Observe that fine dissociation is related both to dissociation
(Section 6) and to iteration (Section 5). We will study later when fine dissociation can make
the query false.

We can now start the proof of Theorem 7.1 by describing the coding. It depends on
our choice of Ie,Π and of a fact FM, but like in Section 5 it does not depend on the query Q.
Given an input st-graph G, we construct a TID I whose possible worlds will have a bijection
to those of G. The process is illustrated on an example in Figure 6, and defined formally
below:

Definition 7.4. Let Ie,Π be a σ-instance where e = (u, v), Π = (FL, FR), FL = RL(l, u),
FR = RR(v, r) and let FM be a non-unary fact of I covered by e. Let G = (W,C) be an
st-graph with source s and target t. The coding of G relative to Ie,Π and FM is a TID
I = (J, π) with domain dom(J) := dom(I) ∪ {uc | c ∈ C} ∪ {vw | w ∈ W \ {t}}, where the
new elements are fresh, and where we use vt to refer to v for convenience. The facts of the
σ-instance J and the probability mapping π are defined as follows:

• Copy non-incident facts: Initialize J as the induced subinstance of I on dom(I) \ {u, v}.
• Copy incident facts FL and FR: Add the facts FL and FR to J .
• Copy other left-incident facts: For every σ↔-fact F ′L = R′L(l′, u) of I that is left-incident

to e (i.e., l′ /∈ {u, v}) and where F ′L 6= FL, add to J the facts R′L(l′, uc) for each edge
c ∈ C.

2:22 A. Amarilli and İ.İ. Ceylan Vol. 18:1

e with FM

e without FM

eL with FL

eL without FL

eR with FR

eR without FR

other incident
edges

s

a

b

c d

t

e1

e2

e3

e4

e5

e9

e6

e8
e7

(a) An st-graph G.

l

l1

u v

r1

r

(b) An instance Ie,Π.

l

l1

u
ue1
ue2
ue3
ue4
ue5
ue6
ue7
ue8
ue9

vs

va

vb

vc

vd

vt

r1

r

(c) Coding of the graph G relative to Ie,Π
and some FM.

l

l1

u
ue1
ue4
ue8

vs
va
vc
vt

r1

r

(d) The image of an s-t path in the coding.

Figure 6. Example of the coding on an st-graph G shown in Figure 6a. We
encode G relative to an instance Ie,Π shown in Figure 6b, and relative to
some choice of a non-unary fact FM covered by e. The coding of G relative
to Ie,Π and FM is shown in Figure 6c, with the probabilistic facts being
exactly one copy of FM for one of every pair of cyan edges adjacent to an
element in {ue1 , . . . , ue9}. Each st-path in G gives rise to a subinstance in the
coding: consider for instance the st-path which is via the edges e1, e4, e8. The
corresponding subinstance in the coding for this path is shown in Figure 6d:
it is an iterate of the form In+1

e,Π where n is the number of edges on the path

(here n = 3).

• Copy other right-incident facts: For every σ↔-fact F ′R = R′R(v, r′) of I that is right-
incident to e (i.e., r′ /∈ {u, v}) and where F ′R 6= FR, add to J the facts R′R(vw, r

′) for each
w ∈W .
• Create copies of e: Copy e on the pair (u, vs) of J , and for each edge c = {a, b} in C,

copy e on the pairs (uc, va) and (uc, vb) of J .

Finally, we define the function π as follows. For each edge c of C, we choose one arbitrary
vertex w ∈ c, and set π to map the copy of the fact FM in the edge (uc, vw) to 0.5, All other
facts are mapped to 1 by π.

Vol. 18:1 EVALUATING HOMOMORPHISM-CLOSED QUERIES ON PROBABILISTIC GRAPHS 2:23

It is important to note that the edges are coded by paths of length 2. This choice is
critical, because the source graph in the reduction is undirected, but the facts on edges
are directed; so, intuitively, we symmetrize by having two copies of the edge in opposite
directions in order to traverse them in both ways. The choice on how to orient the edges
(i.e., the choice of w ∈ c when defining π) has no impact in how the edges can be traversed
when their probabilistic fact is present, but it has an impact when the probabilistic fact is
missing. Indeed, this is the reason why fine dissociation includes two copies of e with one
missing fact.

It is easy to see that the given coding is in polynomial time in the input G for every
choice of Ie,Π and FM. Let us now define the bijection φ, mapping each possible world ω of G
to a possible world of the TID I as follows. For each edge c ∈ C, we keep the probabilistic
fact incident to uc in the instance φ(ω) if c is kept in the possible world ω, and we do not
keep it otherwise. It is obvious that this correspondence is bijective and that all possible
worlds have the same probability 0.5|C|. We can now explain why φ defines a reduction.
Recall from Definition 3.3 that a possible world of G is good if it contains an s, t-path, and
bad otherwise. Here is the formal statement:

Proposition 7.5. Let the TID I = (J, π) be the coding of an undirected st-graph G relative
to an instance Ie,Π and to FM as described in Definition 7.4. Let φ be the bijective function
defined above from the possible worlds of G to those of I. Then:

(1) For any good possible world ω of G with a witnessing simple s, t-path traversing n edges,
φ(ω) has a homomorphism from the iterate In+1

e,Π .

(2) For any bad possible world ω of G, φ(ω) has a homomorphism to the result of finely
dissociating e in I relative to Π and FM.

Proof. As before, we start with the easier forward direction (1), and then prove the backward
direction (2).

(1) Consider a witnessing path s = w1, . . . , wn+1 = t in the possible world ω of G, and
assume without loss of generality that the path is simple, i.e., it traverses each vertex
at most once. We claim that the possible world J ′ := φ(ω) actually has a subinstance
isomorphic to In+1

e,Π . See Figure 6d for an example.

To see why this is true, we take as usual the facts of J ′ that do not involve any copy
of u or v and keep them as-is, because they occur in J ′ as they do in In+1

e,Π . Now, we
start by taking the one copy of FL leading to u and the copy of e leading to vs. We now
follow the path which gives a path of copies of e: for each edge c = {wj , wj+1} of the
path, we have two successive copies of e between vwj and uc, and between uc and vwj+1 .
Note that, as the path uses edge c, it was kept in ω, so all the copies of e in question
have all their facts, i.e., neither of the copies of FM can be missing. The assumption that
the path is simple ensures that we do not visit the same vertex multiple times. After
traversing these 2n copies of e in alternating directions, we reach vt = v, and finally we
use the fact FR which is incident to v. So, we have indeed found a subinstance of J ′

which is isomorphic to In+1
e,Π .

(2) Let us write J ′ := φ(ω), and let us write e = (u, v). Let us denote by I ′ the result of
finely dissociating in I the edge e relative to the incident pair Π and the fact FM: this is
depicted in Figure 5. Let us show that J ′ has a homomorphism to I ′. See Figure 7b
for an example of a bad possible world J ′, and Figure 7a for the corresponding possible
world ω of G.

2:24 A. Amarilli and İ.İ. Ceylan Vol. 18:1

e with FM

e without FM

eL with FL

eL without FL

eR with FR

eR without FR

other incident
edges

s

a

b

c d

t

e1

e2

e3

e4

e5

e9

e6

e8
e7

(a) A possible world ω of G with no s, t-
path (dashed edges are the ones that are
not kept): the vertices are colored in red
or green depending on their side of the
cut.

l

l1

u
ue1
ue2
ue3
ue4
ue5
ue6
ue7
ue8
ue9

vs

va

vb

vc

vd

vt

r1

r

(b) Possible world of the coding in Figure 6c for
the possible world of G at the left. Copies of e
are dashed when they are missing the fact FM.
Vertices uei corresponding to edges across the cut
are in bold.

Figure 7. Illustration of a possible world (Figure 7a) of the graph G from
Figure 6a, and the corresponding possible world (Figure 7b) of the coding
(Figure 6c). The homomorphism of Figure 7b to the fine dissociation is given
by the vertex colors: the red u-vertices are mapped to u, the red v-vertices are
mapped to v′, the green u-vertices are mapped to u′, and the green v-vertices
are mapped to v. The vertex colors are determined by the cut (Figure 7a)
except for the bold vertices where it depends on the orientation choice.

We use the fact that, as the possible world ω of G has no path from s to t, there is
an s, t-cut of ω, i.e., a function ψ mapping each vertex of G to either L or R such that s
is mapped to L, t is mapped to R, and every edge {x, y} for which ψ(x) 6= ψ(y) was not
kept in ω. See Figure 7a for an illustration, where the red vertices are mapped to L and
the green vertices are mapped to R.

We map u in J ′ to u in I ′ and vs to v, which maps the copy of e between u and vs
in J ′ to a copy of e in I ′. Now observe that we can map to v′ in I ′ all the nodes vw
such that ψ(w) = L, including vs. The edges between these nodes in J ′, whether they
were kept in ω or not, are mapped by going back-and-forth on the edge (u, v′) in I ′.
In Figure 7b, this defines the image of va, vb, and ue1 , ue2 , ue3 corresponding to the
edges between them. In the same way we can map to v in I ′ all the nodes vw such
that ψ(w) = R, including vt and all edges between these nodes, going back-and-forth
on edge (u′, v) in I ′. In Figure 7b, this defines the image of vc, vd, vt, and ue6 , ue7 , ue8
corresponding to the edges between them.

We must still map the edges across the cut, i.e., edges c = {x, y} such that ψ(x) = L
and ψ(y) = R. In J ′, these edges give rise to two edges (uc, vx) and (uc, vy), one of
which is a copy of e and the other one is a copy of e with the fact FM missing — which
one is which depends on the arbitrary orientation choice that we made when defining π.

Vol. 18:1 EVALUATING HOMOMORPHISM-CLOSED QUERIES ON PROBABILISTIC GRAPHS 2:25

Depending on the case, we map uc either to u or to u′ so that the two incident edges
to uc are mapped in I ′ either to (u, v′) (a copy of e) and (u, v) (a copy of e minus FM),
or to (u′, v′) (a copy of e minus FM) and (u′, v) (a copy of e). In Figure 7b, this allows
us to define the image of the bold vertices (ue4 , ue5 , ue9) corresponding to the edges
across the cut. We follow the orientation choice when defining π, which can be seen by
examining which edges are dashed, and we map ue4 and ue9 to u and map ue5 to v.

Thus, we have explained how we map the copies of u and v, the copies of e (including
the ones without FM), and the two facts FL and FR. As usual, we have not discussed
the facts that do not involve a copy of u or v in J ′, or the facts that involve one of them
and are not facts of e, FL, or FR, but these are found in I ′ in the same way that they
occur in J ′ (noting that we have only mapped copies of u to copies of u, and copies of v
to copies of v). This concludes the definition of the homomorphism and concludes the
proof.

Proposition 7.5 leads us to a proof of Theorem 7.1: good possible worlds of G give a possible
world of I that satisfies Q thanks to the iterability of e, and bad possible worlds of G give a
possible world of I having a homomorphism to the fine dissociation. The only missing piece
is to argue that the fine dissociation does not satisfy the query. We can do this using the
minimality and tightness of the pattern:

Lemma 7.6. Let Q be a query, let (I, e) be a minimal tight pattern for Q, let Π be an
arbitrary incident pair of e in I, and let FM be an arbitrary non-unary fact covered by e in I.
Then, the result of the fine dissociation of e in I relative to Π and FM does not satisfy Q.

Proof. We assume that the fine dissociation I1 satisfies Q, and show a contradiction by
rewriting it in several steps. The process of the proof is illustrated as Figure 8.

Fix the query Q, the minimal tight pattern (I, e), and the choice of FL, FM, and FR.
Assume by way of contradiction that the result I1 of the fine dissociation satisfies the query Q.
Consider now the edges e′′1 = (u, v) and e′1 = (u′, v′): their weight in I1, by construction,
is one less than the weight of e. Hence, as (I, e) is minimal, by Definition 6.5, we know
that each of these edges cannot be tight: if one of these edges were, say e′1, then (I1, e

′
1)

would be a tight pattern with e′1 having a strictly smaller weight, which is impossible. Thus,
as we assumed that I satisfies Q, it must mean that we can dissociate e′1, then e′′1 using
the dissociation process of Definition 6.2 without violating Q. Formally, we first dissociate
e′′1 = (u, v) to remove this edge, rename u and v to u1 and v1, create u2 and v2, and add
back copies of the edge from u1 to v2 and from u2 to v1. The dissociated edge is not tight as
we argued, so Q is still satisfied in the result I ′1. Second, we dissociate e′1 = (u′, v′), remove
e′1, rename u′ and v′ to u′1 and v′1, create u′2 and v′2, and create copies of e′1 from u′1 to v′2
and from u′2 to v′1. The dissociated edge e′1 has the same weight in I ′1 as it did in I1, so
again it is not tight, and Q still holds in the result I2. (See Figure 8.)

Note that u2, v2, u′2, v′2 are leaf vertices in I2, which only occur on the copies of the
dissociated edges (the edges with the same facts as e except FM). We have copies of the
edge e (from the fine dissociation) from u1 to v′1 and from u′1 to v1.

Observe now that we can map the leaves u2, v2, u′2 and v′2 to define a homomorphism:

• we map u2 to u′1 and map the edge (u2, v1) to the edge (u′1, v1) whose facts are those of e,
so a superset of the facts;
• we map v2 to v′1 and map the edge (u1, v2) to (u1, v

′
1);

• we map u′2 to u1 and map the edge (u′2, v
′
1) to the edge (u1, v

′
1);

2:26 A. Amarilli and İ.İ. Ceylan Vol. 18:1

e with FM

e without FM

eL with FL

eL without FL

eR with FR

eR without FR

other incident
edges

I1
l

l1

u

u′

v

v′

r

r1

I2
l

l1

u1

u′1

v1

v′1
u2

u′2 v2

v′2

r

r1

I3
l

l1

u1

u′1

v1

v′1

r

r1
I4

l

l1

u1

u′1

v1

v′1
u5

u′5 v5

v′5

r

r1

I5l

l1

u1 v1

u′5

v′5

r

r1

Figure 8. Illustration of the proof of Lemma 7.6, with I1 being the fine
dissociation I ′ of Figure 5, and I5 being isomorphic to the dissociation on
Figure 4.

• we map v′2 to v1 and map the edge (u′1, v
′
2) to the edge (u′1, v1).

The resulting instance I3 (see Figure 8) is a homomorphic image of I2, so it still satisfies Q.
Relative to I1, it is the result of replacing u with copies u1, u

′
1, and v with copies v1, v

′
1, and

having one copy of e from u′1 to v1 and from u1 to v′1, with all facts incident to u and v
replicated on u1, u

′
1 and v1, v

′
1, except FL and FR which only involve u1 and v1. In other

words, the instance I3 is isomorphic to the result I1 of the fine dissociation (Figure 5), except
that we have not created copies of e without FM between u1 and v1 and between u′1 and v′1.
We have justified, from our assumption that I1 satisfies Q, that I3 also does.

Let us now modify I3 using the second minimality criterion on e to dissociate the edges
e4 = (u1, v

′
1) and e′4 = (u′1, v1), simplifying the instance further. The weight of these edges

is the same as that of e, but their side weight is smaller: indeed, u1 has exactly as many
incident facts as u did in I1, and v′1 has the same number as v in I1 except that FR is missing,
so the side weight of e4 is indeed smaller. The same holds for e′4 because v1 has exactly the
same incident facts as v and u′1 has the same as u except FL. This means that these edges are
not tight, as otherwise it would contradict the second criterion in Definition 6.5. Thus, we
can dissociate one and then the other, and Q will still be satisfied. Say we first dissociate e4:
we create u5 and v′5 and replace e4 by copies from u1 to v′5 and from u5 to v′1, with v′5 and
u5 being leaves. Next, we dissociate e′4, whose weight and side weight is unchanged relative

Vol. 18:1 EVALUATING HOMOMORPHISM-CLOSED QUERIES ON PROBABILISTIC GRAPHS 2:27

to I3: and we create u′5 and v5 and replace e′4 by copies from u′1 to v5 and from u′5 to v1,
with v5 and u′5 being leaves. As we argued, the minimality of e ensures that the edges that
we dissociate are not tight, so the resulting instance I4 (see Figure 8) still satisfies Q.

Now, we can finally merge back vertices to reach an instance I5 isomorphic to the
dissociation of e in I. This will yield our contradiction, because we assumed that e is tight.
Specifically, let us map u′1 to u1 and v5 to v′5: this defines a homomorphism because the
edge (u′1, v5) can be mapped to (u1, v

′
5), this was the only edge involving v5, and all other

facts involving u′1 have a copy involving u1 by definition of the fine dissociation. Let us also
map v′1 to v1 and v5 to v′5 in the same fashion, which defines a homomorphism for the same
reason. The resulting instance I5 (see Figure 8) still satisfies Q. Now observe that I5 is
isomorphic to the result of the (non-fine) dissociation of e in I (Figure 4): we have added
two leaves u′5 and v′5, the vertices u1 and v1 indeed correspond to u and v, we have removed
the edge from u to v and replaced it by copies from u1 to v′5 and from u′5 to v1.

Thus we have deduced that dissociating e in I yields an instance that satisfies Q. But
as (I, e) was a tight pattern, this is impossible, so we have reached a contradiction and the
proof is finished.

We can now conclude the proof of the main result of the section, Theorem 7.1:

Proof of Theorem 7.1. Fix the query Q and the minimal tight pattern (I, e). By definition,
e is then a non-leaf edge: pick an arbitrary incident pair Π and a non-unary fact FM covered
by e. We show the #P-hardness of PQE(Q) by reducing from U-ST-CON (Definition 3.3).
Given an st-graph G, we apply the coding of Definition 7.4 and obtain a TID I, which can
be computed in polynomial time. As in the proof of Theorem 5.6, given a possible world ω
of G, what matters is to show that (1.) if ω is good then φ(ω) satisfies Q, and (2.) if ω is
bad then φ(ω) violates Q.

For this, we use Proposition 7.5. For (1.), the result follows from the fact that the query Q
is closed under homomorphisms, and the edge e was assumed to be iterable (Definition 5.3),
so it is iterable relative to any incident pair, in particular Π. Thus, the iterates satisfy Q,
so φ(ω) also does when ω is good. For (2.), we know by Lemma 7.6 that the result of the
fine dissociation does not satisfy Q, so φ(ω) does not satisfy it either when ω is bad. This
establishes the correctness of the reduction and concludes the proof.

We have thus established Theorem 4.3, and the main result of this paper.

8. Generalizations of the Dichotomy Result

This section presents two generalizations of our main result. We first show that the dichotomy
also applies to a special case of probabilistic query evaluation, known as generalized model
counting. Second, we strengthen the dichotomy result to the case where the signature can
include unary predicates in addition to binary predicates.

A special case of probabilistic query evaluation. Recent work has studied the gen-
eralized (first-order) model counting problem (GFOMC) [KS21]: given a TID I where
PI(t) ∈ {0, 0.5, 1} for every tuple t ∈ I, GFOMC(Q) for a query Q is the problem of
computing PI(Q). In other words, GFOMC(Q) is a special case of PQE(Q), where each
atom t in the TID can only have a probability p ∈ {0, 0.5, 1}.

2:28 A. Amarilli and İ.İ. Ceylan Vol. 18:1

To extend our result to this setting, we simply observe that all the reductions presented
in this paper only use tuple probabilities from {0, 0.5, 1}. Thus, all our hardness results
for PQE(Q) thus immediately apply to GFOMC(Q) and we obtain a corollary to our main
hardness result (Theorem 4.3):

Corollary 8.1. Let Q be an unbounded UCQ∞ query over an arity-two signature. Then,
the problem GFOMC(Q) is #P-hard.

One can then ask if our dichotomy (Theorem 4.2) also generalizes to the GFOMC
problem. Clearly, if PQE(Q) can be computed in polynomial time, then so can GFOMC(Q),
and hence, for any safe UCQ Q, the GFOMC(Q) problem is immediately in FP by Dalvi
and Suciu [DS12]. The other direction is more interesting, i.e., assuming a UCQ Q is unsafe
for PQE, is it also unsafe for GFOMC? This was very recently shown to be true:

Theorem 8.2 (Theorem 2.2, [KS21]). For any unsafe UCQ Q, GFOMC(Q) is #P-hard.

In particular, this implies that all safe and unsafe queries coincide for UCQs, across
the problems GFOMC and PQE. Then, combining this theorem with Corollary 8.1, we can
state our dichotomy result also for GFOMC:

Theorem 8.3 (Dichotomy of GFOMC). Let Q be a UCQ∞ over an arity-two signature.
Then, either Q is equivalent to a safe UCQ and GFOMC(Q) is in FP, or it is not and
GFOMC(Q) is #P-hard.

Proof. Let Q be a safe UCQ. Then, since PQE(Q) is in FP, so is GFOMC(Q). If Q is not
equivalent to a safe UCQ, then either it is equivalent to an unsafe UCQ and GFOMC(Q) is
#P-hard by Theorem 2.2 of [KS21], or it is an unbounded query in UCQ∞ and GFOMC(Q)
is #P-hard by Corollary 8.1.

Allowing unary predicates. We now turn to the question of extending our results to
support unary predicates. Recall that we claimed in Section 3 that our results extend if the
signature can feature unary and binary predicates. We now justify this claim formally by
showing the analogue of Theorem 4.3 and Corollary 8.1 for signatures with relations of arity
1 and 2.

Theorem 8.4. Let Q be an unbounded UCQ∞ over a signature with relations of arity 1
and 2. Then, GFOMC(Q), and hence PQE(Q), is #P-hard.

Proof. Fix the signature σ and query Q. Let σ′ be the arity-two signature constructed
from σ by replacing each relation R of arity 1 by a relation R′ of arity 2. Considering Q as an
infinite union of CQs, we define Q′ as a UCQ∞ on σ′ obtained by replacing every unary atom
R(x) in Q with the atom R′(x, x). The resulting query Q′ is unbounded. Indeed, assume
to the contrary that Q′ is equivalent to a UCQ Q′′. As the truth of Q′ by construction
only depends on the presence or absence of facts of the form R′(a, a), not R′(a, b) with
a 6= b, we can assume that Q′′ only contains atoms of the form R′(x, x) and not R′(x, y).
Now, replacing back each atom R′(x, x) in Q′′ with R(x), we would obtain a UCQ that is
equivalent to Q over the signature σ, contradicting the unboundedness of Q.

Thus, as Q′ is an unbounded UCQ∞, we know by Theorem 4.3 and Corollary 8.1 that
GFOMC(Q′) is #P-hard. Moreover, again by construction of Q′, its satisfaction does not
depend on the presence or absence of facts of the form R′(a, b) with a 6= b. This implies that
GFOMC(Q′) is #P-hard even when assuming that the input TIDs contain no such facts.

Vol. 18:1 EVALUATING HOMOMORPHISM-CLOSED QUERIES ON PROBABILISTIC GRAPHS 2:29

Now, to show that GFOMC(Q) is #P-hard, we reduce from GFOMC(Q′) where input
TIDs are restricted to satisfy this additional assumption. Consider such a TID I ′ = (I ′, π′).
Consider the function φ that maps any instance I over σ′ to the instance φ(I) obtained
by replacing each fact R′(a, a) by the fact R(a). We build in polynomial time the TID
I = (I, π) on σ, with I := φ(I ′), and with π giving to each σ-fact of arity two in I the same
probability as in I ′, and giving to each σ-fact R(a) of arity 1 in I the probability of the fact
R′(a, a) in I ′. Then, φ defines a probability-preserving bijection between the possible worlds
of I ′ and the possible worlds of I ′, and by construction φ guarantees that a possible world
of I ′ satisfies Q′ iff its φ image satisfies Q. This establishes that the reduction is correct,
and concludes the proof.

9. Conclusions

We have shown that PQE is #P-hard for any unbounded UCQ∞ over an arity-two signature,
and hence proved a dichotomy on PQE for all UCQ∞ queries: either they are unbounded and
PQE is #P-hard, or they are bounded and the dichotomy by Dalvi and Suciu applies. Our
result captures many query languages; in particular disjunctive Datalog over binary signatures,
regular path queries, and all ontology-mediated queries closed under homomorphisms.

There are three natural directions to extend our result. First, we could study queries
that are not homomorphism-closed, e.g., with disequalities or negation. We believe that this
would require different techniques as the problem is still open even when extending UCQs
in this fashion (beyond the results of [FO16]). Second, we could lift the arity restriction
and work over signatures of arbitrary arity: we conjecture that PQE is still #P-hard for
any unbounded UCQ∞ in that case. Much of our proof techniques may adapt, but we do
not know how to extend the definitions of dissociation, fine dissociation, and iteration. In
particular, dissociation on a fact is difficult to adapt because incident facts over arbitrary
arity signatures may intersect in complicated ways. We believe that the result could extend
with a suitable dissociation notion and tight patterns with a more elaborate minimality
criterion, but for now we leave the extension to arbitrary-arity signatures to future work.
Third, a natural question for future work is whether our hardness result on unbounded
homomorphism-closed queries also applies to the (unweighted) model counting problem,
where all facts of the TID must have probability 0.5: the hardness of this problem has only
been shown recently on the class of self-join free CQs [AK21] and on the so-called unsafe
final type-I queries [KS21], but remains open as of this writing for unsafe UCQs in general.

Acknowledgments

This work was supported by the UK EPSRC grant EP/R013667/1.

References

[ABS16] Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Tractable lineages on treelike instances:
Limits and extensions. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems (PODS-16). ACM, 2016.

[AC20] Antoine Amarilli and İsmail İlkan Ceylan. A dichotomy for homomorphism-closed queries on
probabilistic graphs. In Proceedings of the 23rd International Conference on Database Theory
(ICDT-20). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020.

https://arxiv.org/abs/1604.02761
https://arxiv.org/abs/1604.02761
https://drops.dagstuhl.de/opus/volltexte/2020/11929/
https://drops.dagstuhl.de/opus/volltexte/2020/11929/

2:30 A. Amarilli and İ.İ. Ceylan Vol. 18:1

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases. Addison-Wesley,
1995.

[AK21] Antoine Amarilli and Benny Kimelfeld. Uniform reliability of self-join-free conjunctive queries.
In Proceedings of the 24th International Conference on Database Theory (ICDT-21). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2021.

[Bar13] Pablo Barceló. Querying graph databases. In Proceedings of the 32nd ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems (PODS-13), 2013.

[BBLP18] Pablo Barceló, Gerald Berger, Carsten Lutz, and Andreas Pieris. First-order rewritability
of frontier-guarded ontology-mediated queries. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI-18). IJCAI, 2018.

[BCL17] Stefan Borgwardt, İsmail İlkan Ceylan, and Thomas Lukasiewicz. Ontology-mediated queries for
probabilistic databases. In Proceedings of the 31th AAAI Conference on Artificial Intelligence
(AAAI-17). AAAI Press, 2017.

[BCL19] Stefan Borgwardt, İsmail İlkan Ceylan, and Thomas Lukasiewicz. Ontology-mediated query
answering over log-linear probabilistic data. In Proceedings of the 33rd National Conference on
Artificial Intelligence (AAAI-19). AAAI Press, 2019.

[BCLW14] Meghyn Bienvenu, Balder Ten Cate, Carsten Lutz, and Frank Wolter. Ontology-based data
access: A study through disjunctive Datalog, CSP, and MMSNP. ACM Transactions on Database
Systems (TODS), 39(4):33:1–33:44, 2014.

[BCM+07] Franz Baader, Diego Calvanese, Deborah L McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic handbook. Cambridge University Press, 2007.

[BFR19] Pablo Barceló, Diego Figueira, and Miguel Romero. Boundedness of conjunctive regular path
queries. In Proceedings of the 46th International Colloquium on Automata, Languages, and
Programming (ICALP-19), 2019. doi:10.4230/LIPIcs.ICALP.2019.104.

[BTCCB15] Michael Benedikt, Balder Ten Cate, Thomas Colcombet, and Michael Vanden Boom. The
complexity of boundedness for guarded logics. In 2015 30th Annual ACM/IEEE Symposium on
Logic in Computer Science. IEEE, 2015.

[BUGD+13] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In Proceedings of the 26th Inter-
national Conference on Neural Information Processing Systems (NIPS-13). Curran Associates
Inc., 2013.

[CDV21] İsmail İlkan Ceylan, Adnan Darwiche, and Guy Van den Broeck. Open-world probabilistic
databases: Semantics, algorithms, complexity. Artificial Intelligence, 295, 2021.

[Cey17] İsmail İlkan Ceylan. Query answering in probabilistic data and knowledge bases. Doctoral thesis,
TU Dresden, 2017.

[CGK13] Andrea Cal̀ı, Georg Gottlob, and Michael Kifer. Taming the infinite chase: Query answering
under expressive relational constraints. JAIR, 48:115–174, 2013.

[CGL12] Andrea Cal̀ı, Georg Gottlob, and Thomas Lukasiewicz. A general Datalog-based framework for
tractable query answering over ontologies. J. Web Sem., 14:57–83, 2012.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing (STOC-71), pages 151–158. ACM, 1971.

[DGH+14] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy, Thomas
Strohmann, Shaohua Sun, and Wei Zhang. Knowledge Vault: A Web-scale approach to proba-
bilistic knowledge fusion. In Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 2014.

[DK08] Anuj Dawar and Stephan Kreutzer. On Datalog vs. LFP. In International Colloquium on
Automata, Languages, and Programming (ICALP-08). Springer, 2008.

[DRDT+15] Luc De Raedt, Anton Dries, Ingo Thon, Guy Van den Broeck, and Mathias Verbeke. Inducing
probabilistic relational rules from probabilistic examples. In Proceedings of the 24th International
Joint Conference on Artificial Intelligence (IJCAI-15). AAAI Press, 2015.

[DS07] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. The VLDB
Journal, 16(4):523–544, 2007.

[DS12] Nilesh Dalvi and Dan Suciu. The dichotomy of probabilistic inference for unions of conjunctive
queries. J. ACM, 59(6), 2012.

http://webdam.inria.fr/Alice/pdfs/all.pdf
https://drops.dagstuhl.de/opus/volltexte/2021/13725/pdf/LIPIcs-ICDT-2021-17.pdf
http://personales.dcc.uchile.cl/~pbarcelo/pods001i-barcelo.pdf
https://www.ijcai.org/Proceedings/2018/0236.pdf
https://www.ijcai.org/Proceedings/2018/0236.pdf
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14365/13881
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14365/13881
https://lat.inf.tu-dresden.de/research/papers/2019/BoCL-AAAI19.pdf
https://lat.inf.tu-dresden.de/research/papers/2019/BoCL-AAAI19.pdf
https://arxiv.org/abs/1301.6479
https://arxiv.org/abs/1301.6479
https://www.researchgate.net/publication/230745455_The_Description_Logic_Handbook_Theory_Implementation_and_Applications
https://drops.dagstuhl.de/opus/volltexte/2019/10680/
https://drops.dagstuhl.de/opus/volltexte/2019/10680/
https://doi.org/10.4230/LIPIcs.ICALP.2019.104
https://web.comlab.ox.ac.uk/people/michael.vandenboom/papers/LICS15-gnfpb-long.pdf
https://web.comlab.ox.ac.uk/people/michael.vandenboom/papers/LICS15-gnfpb-long.pdf
https://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf
http://starai.cs.ucla.edu/papers/CeylanAIJ21.pdf
http://starai.cs.ucla.edu/papers/CeylanAIJ21.pdf
https://lat.inf.tu-dresden.de/research/theses/2017/Ceylan-Diss-2017.pdf
https://www.jair.org/index.php/jair/article/view/10837
https://www.jair.org/index.php/jair/article/view/10837
https://www.cs.ox.ac.uk/files/3608/rr1021.pdf
https://www.cs.ox.ac.uk/files/3608/rr1021.pdf
https://www.cs.toronto.edu/~sacook/homepage/1971.pdf
https://www.cs.ubc.ca/~murphyk/Papers/kv-kdd14.pdf
https://www.cs.ubc.ca/~murphyk/Papers/kv-kdd14.pdf
https://ora.ox.ac.uk/objects/uuid:73527af8-31b9-4108-a07d-058967ba97e4/download_file?safe_filename=08-icalp.pdf&file_format=application%2Fpdf&type_of_work=Conference+item
https://www.ijcai.org/Proceedings/15/Papers/261.pdf
https://www.ijcai.org/Proceedings/15/Papers/261.pdf
https://homes.cs.washington.edu/~suciu/vldbj-probdb.pdf
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf

Vol. 18:1 EVALUATING HOMOMORPHISM-CLOSED QUERIES ON PROBABILISTIC GRAPHS 2:31

[EOŠ+12] Thomas Eiter, Magdalena Ortiz, Mantas Šimkus, Trung-Kien Tran, and Guohui Xiao. Query
rewriting for Horn-SHIQ plus rules. In Proceedings of the 26th AAAI Conference on Artificial
Intelligence (AAAI-12), 2012.

[FO16] Robert Fink and Dan Olteanu. Dichotomies for queries with negation in probabilistic databases.
ACM Transactions on Database Systems (TODS), 41(1):4:1–4:47, 2016.

[GMSV93] Haim Gaifman, Harry Mairson, Yehoshua Sagiv, and Moshe Y. Vardi. Undecidable optimization
problems for database logic programs. J. ACM, 40(3):683–713, July 1993.

[GS12] Georg Gottlob and Thomas Schwentick. Rewriting ontological queries into small nonrecur-
sive Datalog programs. In Proceedings of the 13th International Conference on Principles of
Knowledge Representation and Reasoning (KR-12), 2012.

[HKMV95] Gerd G Hillebrand, Paris C Kanellakis, Harry G Mairson, and Moshe Y Vardi. Undecidable
boundedness problems for Datalog programs. The Journal of Logic Programming, 25(2):163 –
190, 1995.

[HSBW13] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum. YAGO2: A
spatially and temporally enhanced knowledge base from Wikipedia. Artificial Intelligence,
194:28–61, 2013.

[JL12] Jean Christoph Jung and Carsten Lutz. Ontology-based access to probabilistic data with OWL
QL. In Proceedings of the 11th International Conference on The Semantic Web - Volume Part I
(ISWC-12), pages 182–197. Springer-Verlag, 2012.

[JL20] Jean Christoph Jung and Carsten Lutz. Erratum for ‘Ontology-based access to probabilistic
data with OWL-QL’, 2020.

[Jun14] Jean Christoph Jung. Reasoning in many dimensions: uncertainty and products of modal logics.
PhD thesis, University of Bremen, 2014.

[KS21] Batya Kenig and Dan Suciu. A dichotomy for the generalized model counting problem for unions
of conjunctive queries. In Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems (PODS-21), 2021.

[MBSJ09] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision for relation
extraction without labeled data. In Proceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing
of the AFNLP, pages 1003–1011. ACL, 2009.

[MCH+15] T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi, M. Gardner,
B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. Platanios,
A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov,
M. Greaves, and J. Welling. Never-ending learning. In Proceedings of the 29th AAAI Conference
on Artificial Intelligence (AAAI-15), 2015.

[OH08] Dan Olteanu and Jiewen Huang. Using OBDDs for efficient query evaluation on probabilis-
tic databases. In Proceedings of the 2nd International Conference on Scalable Uncertainty
Management (SUM-08), volume 5291 of LNCS, 2008.

[OH09] Dan Olteanu and Jiewen Huang. Secondary-storage confidence computation for conjunctive
queries with inequalities. In Proceedings of the 2009 ACM SIGMOD International Conference
on Management of Data, pages 389–402. ACM, 2009.

[PB83] J. Scott Provan and Michael O. Ball. The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM Journal on Computing, 12(4), 1983.

[RS09] Christopher Ré and Dan Suciu. The trichotomy of HAVING queries on a probabilistic database.
The VLDB Journal, 18(5):1091–1116, 2009.

[SORK11] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Databases, volume 3.
Morgan-Claypool, 2011.

[Val79] Leslie Gabriel Valiant. The complexity of computing the permanent. TCS, 8(2):189–201, 1979.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://pdfs.semanticscholar.org/9716/6f9b284d8e7da46bd6cd43b43a7af14b773c.pdf
https://pdfs.semanticscholar.org/9716/6f9b284d8e7da46bd6cd43b43a7af14b773c.pdf
http://www.cs.ox.ac.uk/people/Dan.Olteanu/papers/fo-tods16.pdf
https://dl.acm.org/doi/abs/10.1145/174130.174142
https://dl.acm.org/doi/abs/10.1145/174130.174142
http://ceur-ws.org/Vol-745/paper_21.pdf
http://ceur-ws.org/Vol-745/paper_21.pdf
https://www.sciencedirect.com/science/article/pii/074310669500051K
https://www.sciencedirect.com/science/article/pii/074310669500051K
https://www.sciencedirect.com/science/article/pii/S0004370212000719
https://www.sciencedirect.com/science/article/pii/S0004370212000719
https://iswc2012.semanticweb.org/sites/default/files/76490177.pdf
https://iswc2012.semanticweb.org/sites/default/files/76490177.pdf
http://www.informatik.uni-bremen.de/tdki/research/papers/2012/JuLu-2012.erratum.pdf
http://www.informatik.uni-bremen.de/tdki/research/papers/2012/JuLu-2012.erratum.pdf
http://www.informatik.uni-bremen.de/~jeanjung/pub/phdjung.pdf
https://arxiv.org/abs/2008.00896
https://arxiv.org/abs/2008.00896
https://www.aclweb.org/anthology/P09-1113.pdf
https://www.aclweb.org/anthology/P09-1113.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10049/9557
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sum08.pdf
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sum08.pdf
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sigmod09.pdf
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sigmod09.pdf
https://www.cs.stanford.edu/people/chrismre/papers/journal_having_queries.pdf
https://www.sciencedirect.com/science/article/pii/0304397579900446

	1. Introduction
	2. Related Work
	3. Preliminaries
	Vocabulary.
	Database instances.
	Query languages.
	Probabilistic query evaluation.
	Complexity background.
	Problems.

	4. Result Statement
	Effectiveness and uniformity.
	Proof outline.
	Generalizations.

	5. Hardness with Non-Iterable Edges
	6. Finding a Minimal Tight Pattern
	7. Hardness with Tight Iterable Edges
	8. Generalizations of the Dichotomy Result
	A special case of probabilistic query evaluation.
	Allowing unary predicates.

	9. Conclusions
	Acknowledgments
	References

