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Abstract. Reactive systems à la Leifer and Milner, an abstract categorical framework
for rewriting, provide a suitable framework for deriving bisimulation congruences. This is
done by synthesizing interactions with the environment in order to obtain a compositional
semantics.

We enrich the notion of reactive systems by conditions on two levels: first, as in earlier
work, we consider rules enriched with application conditions and second, we investigate the
notion of conditional bisimilarity. Conditional bisimilarity allows us to say that two system
states are bisimilar provided that the environment satisfies a given condition.

We present several equivalent definitions of conditional bisimilarity, including one that
is useful for concrete proofs and that employs an up-to-context technique, and we compare
with related behavioural equivalences. We consider examples based on DPO graph rewriting,
an instantiation of reactive systems.

1. Introduction

Behavioural equivalences, such as bisimilarity, relate system states with the same behaviour.
Here, we are in particular interested in conditional bisimilarity, which allows us to say that
two states a, b are bisimilar provided that the environment satisfies a condition C. Work
on such conditional bisimulations appears somewhat scattered in the literature (see for
instance [Lar86, HL95, Fit02, BKKS17]). They also play a role in the setting of featured
transition systems for modelling software product lines [CCP+12], where the behaviour of
many products is specified in a single transition system. In this setting it is possible to state
that two states are bisimilar for certain products, but not for others.

We believe that conditional notions of behavioural equivalence are worthy of further
study. In practice it may easily happen that two sub-systems are only ever used in restricted
environments and it is too much to ask that they behave equivalently under all possible
contexts. Furthermore, instead of giving a simple yes/no-answer, bisimulation checks can
answer in a more fine-grained way, specifying conditions which ensure bisimilarity.

We state our results in a very general setting: reactive systems à la Leifer and Mil-
ner [LM00], a categorical abstract framework for rewriting, which provides a suitable
framework for deriving bisimulation congruences. In particular, this framework allows to
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synthesize labelled transitions from plain reaction rules, such that the resulting bisimilarity
is automatically a congruence. Intuitively, the label is the minimal context that has to be
borrowed from the environment in order to trigger a reduction. (Transitions labelled with
such a minimal context will be called representative steps in the sequel. They are related to
the idem pushout steps of [LM00].) Here, we rely on the notion of saturated bisimilarity
introduced in [BKM06] and we consider reactive system rules with application conditions,
generalizing [HK12].

Important instances of reactive systems are process calculi with contextualization,
bigraphs [JM03] and double-pushout graph rewriting [CMR+97], or in general rewriting in
adhesive categories [LS05]. Hence we can use our results to reason about process calculi
as well as dynamically evolving graphs and networks for various different types of graphs
(directed or undirected graphs, node- or edge-labelled graphs, hypergraphs, etc.).

Our contributions in this paper can be summarized as follows:

• We define the notion of conditional bisimilarity, in fact we provide three equivalent
definitions: two notions are derived from saturated bisimilarity, where a context step (or
a representative step) can be mimicked by several answering steps. Third, we compare
with the notion of conditional environment congruence, which is based on the idea of
annotating transitions with passive environments enabling a step.
• Conditional bisimulation relations tend to be very large — often infinite in size. To obtain

possibly substantial reductions of proof obligations in a bisimulation proof, we propose an
up-to context technique (for up-to techniques and their history see [PS19]). In particular,
it can replace an infinite conditional bisimulation relation by a possibly finite bisimulation
up-to context, which provides a witness for bisimilarity. We also view our up-to technique
in a general lattice-theoretical setting and prove the compatibility property [PS11b], which
not only implies soundness of the technique, but also allows it to be composed with other
(compatible) up-to techniques.
• We use the notion of representative steps in order to obtain finitely branching transition

systems, further reducing proof obligations.
• We compare conditional bisimilarity with related notions of behavioural equivalence.
• To illustrate our concepts, we work out a small case study in the context of double-pushout

graph rewriting, where we model message passing over reliable and unreliable channels.

The article is structured as follows: First, in Section 2 we introduce the fundamental ideas
for reactive systems without conditions, including all preliminary definitions and techniques
developed for reactive systems relevant to our work. In Section 3, we consider the refinement
to conditional reactive systems, before we turn towards our main contribution in Section 4,
which is conditional bisimulation and its up-to variant in Section 5. In Section 6 we give an
alternative characterization of conditional bisimilarity and compare to related notions of
behavioural equivalence and we conclude in Section 7.

2. Reactive Systems

We denote the composition of arrows f : A→ B, g : B → C by f ;g : A→ C. Usually written

g◦f , we chose f ;g to better match the reading order of the diagram A
f−→ B

g−→ C = A
f ;g−−→ C.
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2.1. Reactive Systems without Conditions. We now define reactive systems, which
were introduced in [LM00] and extended in [HK12] with application conditions for rules.
We initially only look at reactive systems without conditions. Conditions and the definition
of reactive systems with conditions will be introduced later, in Section 3.

Definition 2.1 (Reactive system rules, reaction). Let C be a category with a distinguished
object 0 (not necessarily initial). A rule is a pair (`, r) of arrows `, r : 0→ I (called left-hand
side and right-hand side). A reactive system is a set of rules.

Let S be a reactive system and a, a′ : 0 → J be arrows. We say that a reduces to a′

(a a′) whenever there exists a rule (`, r) ∈ S with `, r : 0→ I and an arrow c : I → J (the
reactive context) such that a = `;c and a′ = r;c.

Using a notation closer to process calculi, we could write C[P ] C[P ′] whenever there
is a reaction rule P → P ′ and a context C[ ]. Fixing a distinguished object 0 means that we
consider only ground reaction rules (as opposed to the open reactive systems investigated
in [KSS05]).

An important instance are reactive systems where the arrows are cospans in a base cate-
gory D with pushouts [SS05, Sob04]. A cospan is a pair of arrows fL : A→ C, fR : B → C.
A cospan is input linear if its left arrow fL is mono.

A X

B

Y C

Z

fL

fR gL
gR

pL pR

f g

f ;g

(PO)

Figure 1: Composition of cospans f and g
is done via pushouts

0 L I R 0

G C H

0

`

a

c

r

a′

Figure 2: Double-pushout graph transfor-
mation as reactive system steps

Two cospans f : A
fL−→ X

fR←− B, g : B
gL−→ Y

gR←− C are composed by taking the pushout

(pL, pR) of (fR, gL) as shown in Figure 1. The result is the cospan f ;g : A
fL;pL−−−→ Z

gR;pR←−−−− C,
where Z is the pushout object of fR, gL. For adhesive categories [LS05] (see Appendix A),
the composition of input linear cospans again yields an input linear cospan (by applying [LS05,
Lemma 4.2] to the cospan composition diagram). Given an adhesive category D, ILC(D) is
the category where the objects are the objects of D, the arrows f : A→ C are input linear
cospans f : A→ B ← C of D and composition is performed via pushouts as described above.
We see an arrow f : A→ C of ILC(D) as an object B of D equipped with two interfaces
A,C and corresponding arrows fL, fR to relate the interfaces to B, and composition glues
the inner objects of two cospans via their common interface. Input linearity is useful since
we rely on adhesive categories where pushouts along monos are well-behaved. In particular,
they always exist and form Van Kampen squares (see Appendix A), the latter being a
requirement for borrowed context diagrams (Subsection 2.3).

In this article, as a running example we consider the category Graphfin, which has
finite graphs (we use directed multigraphs with node and edge labels) as objects and total
graph morphisms (functions that map nodes and edges of one graph to another, with the
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edge map being consistent to the node map) as arrows. In Graphfin, monos are exactly the
injective graph morphisms. We then use reactive systems over ILC(Graphfin) (input-linear
cospans of graphs), i.e. we rewrite graphs with interfaces. If the distinguished object 0 is the
empty graph (the initial object of Graphfin), such reactive systems coincide [SS05] with the
well-known double pushout (DPO) graph transformation approach [EPS73, HMP01] when
used with injective matches. As shown in Figure 2, a DPO rewrite step G ⇒ H can be
expressed as a reactive system reaction a  a′ where the pushouts of the DPO step are
obtained from cospan compositions `;c and r;c.

2.2. Deriving Bisimulation Congruences. The reduction relation  generates an unla-
belled transition system, where the states are the reactive agents (in our example, graphs).
Note that bisimilarity on this transition system only checks whether any reaction is possible:
for two bisimilar agents, it is not required that the same rule is used in their reactions, or
even that the reaction is applied at the same position.

A disadvantage of bisimilarity on  is that it usually is not a congruence: it is easy to
construct an example where neither a nor b can perform a step since no complete left-hand
side is present (hence a would be bisimilar to b). However, by adding a suitable context f ,
a;f could contain a full left-hand side and can reduce, whereas b;f can not.

Therefore, to check whether two components can be exchanged, they have to be combined
with every possible context and bisimilarity has to be shown for each.

In order to obtain a congruence, we can resort to defining bisimulation on labelled
transitions, using as labels the additional contexts that allow an agent to react [LM00, HK12].

0 I 0

J K

` r

a′
a c

f

Definition 2.2 (Context step (without conditions) [HK12]). Let S be a
reactive system and a : 0 → J, f : J → K, a′ : 0 → K be arrows. We

write a
f−→C a

′ whenever a;f  a′ (i.e. there exists a rule (`, r) ∈ S and an
arrow c such that a;f = `;c, a′ = r;c). Such steps are called context steps.

Intuitively we have to find a context f for the arrow a (which we want to rewrite) such
that we obtain the left-hand side ` plus some additional context c. The name context step
stems from the fact that a might not be able to do a reaction on its own, but requires an
additional context f . This can be seen in the following example:

Example 2.3 (Context step (without conditions)). Consider the following reactive system
over ILC(Graphfin), i.e. all arrows (such as `, r, . . . ) are input-linear cospans of graphs
that represent graphs with interfaces. We model a network of nodes that pass messages
(represented by m-loops) over communication channels (represented by ch-edges). The
transmission of a message from the left node to the right node can be represented with the
following rule:

chm ch ch m
P =

( )
` r

L I R

All graph morphisms are induced by edge labels and position of nodes, i.e. the left node
is always mapped to the left node.

We can observe that a channel by itself (a = ∅ → ch ← ) cannot do a reac-
tion, since there is no message to be transferred. However, if a message on the left node
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is borrowed (f = → m ← ), we obtain a;f (Figure 3a), to which the exam-

ple rule can be applied (Figure 3b). As a result, we obtain the context step a
f−→C a′

or (∅ → ch ← )
( →m ← )−−−−−−−−−−−−−−→C (∅ → ch m ← ). y

0

ch

m

chm
a

f

a;f

(a) A channel a together with borrowed
context f , resulting in a;f .

0 0L

chm

I

ch

R

ch m

chm

C

ch ch m

` r

a;f a′

c

(b) a;f can now do a reaction to a′ = r;c.

Figure 3: Visualization of the context step described in Example 2.3.

A bisimulation relation over→C is called saturated bisimulation, as it checks all contexts.
Consequently, saturated bisimilarity ∼C (∼SAT in [HK12]) is a congruence [BKM06, HK12],
i.e., it is closed under contextualization. In other words a ∼C b implies a;c ∼C b;c for all
contexts c.

2.3. Representative Squares. Checking bisimilarity of context steps is impractical be-
cause the transition system is generally infinitely branching: usually, f can be chosen from
an infinite set of possible contexts, which all have to be checked. Most of these contexts
are larger than necessary, that is, they contain elements that do not actively participate in
the reduction. (In Example 2.3, contexts can be arbitrarily large, as long as they have an
m-loop on the left node.) An improvement would be to check only the minimal contexts
from which all other context steps can be derived.

When checking which contexts are required to make a rule applicable, in the reaction
diagram (Definition 2.2) the arrows a, ` are given and we need to check for possible values
of f (which generate matching c, a′). To derive a set of contexts f which is as small as
possible — preferably finite — [BCHK11, HK12] introduced the notion of representative
squares, which describe a way to represent all possible squares that close a pair a, ` by a
smaller set of squares (the so-called representative squares). We can then limit bisimilarity
checking to just the steps using representative squares, which, if this smaller set is indeed
finite, leads to a finitely branching transition system.

Definition 2.4 (Representative squares [BCHK11]). A class κ of commuting squares in a
category C is representative if κ satisfies the following condition: for each commuting square
(α1, α2, δ1, δ2) in C there exists a commuting square (α1, α2, β1, β2) in κ and an arrow γ,
such that δ1 = β1;γ, δ2 = β2;γ. This situation is depicted in Figure 4.
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α2 δ1

δ2
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β2 γ
δ1

δ2

Figure 4: Every commuting square of the category (left) can be reduced to a
representative square in κ and an arrow γ which extends the representative square
to the original square (right).

For two arrows α1 : A→ B, α2 : A→ C, we define κ(α1, α2) as the set of pairs of arrows
(β1, β2) which, together with α1, α2, form representative squares in κ.

The original paper on reactive systems [LM00] used the (more restrictive) notion of
idem pushouts instead of representative squares. Unfortunately, the universal property of
idem pushouts leads to complications, in particular for cospan categories, where one has to
resort to the theory of bicategories in order to be able to express this requirement. For the
purposes of this paper, we stick to the simpler notion of representative squares, in order to
keep our results independent of the concrete class of squares chosen.

The question arises which constructions yield suitable classes of representative squares,
ideally with finite κ(α1, α2), in order to represent all possible contexts δ1, δ2 with a finite set
of representative contexts β1, β2. Pushouts can be used when they exist [HK12], however,
they do not exist for ILC(Graphfin).

For cospan categories over adhesive categories, borrowed context diagrams — initially
introduced as an extension of DPO rewriting [EK04] — can be used as representative squares.
Before we can introduce such diagrams, we first need the notion of jointly epi.

Definition 2.5 (Jointly epi). A pair of arrows f : B → D, g : C → D is jointly epi (JE ) if
for each pair of arrows d1, d2 : D → E the following holds: if f ;d1 = f ;d2 and g;d1 = g;d2,
then d1 = d2.

In Graphfin jointly epi equals jointly surjective, meaning that each node or edge of D
is required to have a preimage under f or g or both (it contains only images of B or C).

This criterion is similar to, but weaker than a pushout: For jointly epi graph morphisms
d1 : B → D, d2 : C → D, there are no restrictions on which elements of B,C can be merged
in D. However, in a pushout constructed from morphisms a1 : A→ B, a2 : A→ C, elements
in D can (and must) only be merged if they have a common preimage in A. (Hence every
pushout generates a pair of jointly epi arrows, but not vice versa.)

Definition 2.6 (Borrowed context diagram [HK12]). A commuting diagram in the category
ILC(C), where C is adhesive, is a borrowed context diagram whenever it has the form of
the diagram shown in Figure 5a, and the four squares in the base category C are pushout
(PO), pullback (PB) or jointly epi (JE) as indicated. In particular L� G+, G� G+ must
be jointly epi.

Figure 5b shows a more concrete version of Figure 5a, where graphs and their overlaps
are depicted by Venn diagrams (assuming that all morphisms are injective). Because
of the two pushout squares, this diagram can be interpreted as composition of cospans
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D L I

G G+ C

J F K

JE PO

PO PB

`

a c

f

(a) Structure of a borrowed context diagram.
The inner, lighter arrows are morphisms of
the base category C, while the outer arrows
are morphisms of ILC(C).

D L I

G G+ C

J F K

JE PO

PO PB

(b) Borrowed context diagrams represented as Venn
diagrams. The outer circles represent graphs L,G,
and the area between the inner and outer circles
represents their interfaces I, J .

Figure 5: Borrowed context diagrams

a;f = `;c = D → G+ ← K with extra conditions on the top left and the bottom right
square. The top left square fixes an overlap G+ of L and G, while D is contained in the
intersection of L and G (shown as a hatched area). Being jointly epi ensures that it really is
an overlap and does not contain unrelated elements. The top right pushout corresponds to
the left pushout of a DPO rewriting diagram. It contains a total match of L in G+. Then,
the bottom left pushout gives us the minimal borrowed context F such that applying the
rule becomes possible. The bottom right pullback ensures that the interface K is as large as
possible.

We will discuss an example of a borrowed context diagram below (Example 2.9). For
additional examples, we refer to [EK04].

For cospan categories over adhesive categories, borrowed context diagrams form a
representative class of squares [BCHK11]. Furthermore, for some categories (such as
Graphfin), there are — up to isomorphism — only finitely many jointly epi squares for a
given span of monos and hence only finitely many borrowed context diagrams given a, ` (since
pushout complements along monos in adhesive categories are unique up to isomorphism).

This motivates the following finiteness assumption that we will refer to in this paper:
given a, `, we require that κ(a, `) is finite. (Fin)

2.4. Representative Steps. It is possible to define a reaction relation based on representa-
tive squares. By requiring that the left square is representative, we ensure that the contexts
f̂ are not larger than necessary:

Definition 2.7 (Representative step (without conditions) [HK12]). Let a : 0→ J, f̂ : J → K,

a′ : 0 → K be arrows. We write a
f̂−→R a′ if a context step a

f̂−→C a′ is possible (i.e.

a;f̂  a′, i.e. for some rule (`, r) and some arrow ĉ we have a;f̂ = `;ĉ and r;ĉ = a′)

and additionally κ(a, `) 3 (f̂ , ĉ) (i.e. the arrows (a, `, f̂ , ĉ) form a representative square).
Such steps are called representative steps.



6:8 M. Hülsbusch, B. König, S. Küpper, and L. Stoltenow Vol. 18:1

Remark 2.8. Definitions 2.2 and 2.4 imply that every context step a
f−→C a

′ (left diagram)

can be reduced to a representative step a
f̂−→R r;ĉ (right diagram), a fact used in the proofs.

0 I

J K

`

a c
f

0
r

a′ →

0 I

J
K ′

K

`

a
ĉ

f̂ ĝ
c

f

0
r

a′

For this, we construct the representative square (a, `, f̂ , ĉ) ∈ κ (which, according to
Definition 2.4, always exists) from the square (a, `, f, c) describing the context step. We

obtain arrows f̂ , ĉ and an arrow ĝ which completes f̂ , ĉ to f, c (i.e. f̂ ;ĝ = f, ĉ;ĝ = c). y

Example 2.9 (Representative steps). Reconsider the reactive system described in Exam-
ple 2.3, i.e., a message m can be transferred along a channel ch. One possible context step
allows a channel ch to borrow a message m (depicted in Figure 6a) and do a transfer:

(∅ → ch ← )
( →m ← )−−−−−−−−−−−−−−→C (∅ → ch m ← ).

Another possible context step is to borrow an additional message on the right node, i.e.

(∅ → ch ← )
( →m m← )−−−−−−−−−−−−−−−−−→C (∅ → ch m

m ← ) (depicted in Figure 6b).
Clearly, this is a valid context step, but the right message is not required by the rule, and
we do not want to consider such steps in our analysis (by adding yet more messages, we
obtain infinitely many context steps).

However, the second context step is not a representative step (assuming that representa-
tive squares correspond to borrowed context diagrams). We try to construct a borrowed
context diagram: First we fill in the graphs given by a, f and `, then we construct the
bottom left pushout, we obtain G+ = chm m as depicted in Figure 6b. Then however
the top left square is not jointly epi, since neither L = chm (from `) nor G = ch

(from a) provide a preimage for the right m-loop m.

0 L ch

m

I ch

C chG ch G+ ch

m

J F

m

K

`

a

f

c

JE PO

PO PB

(a) Borrowed context diagram for a channel
borrowing a message on the left node

0 L ch

m

I ch

C ch

m

G ch G+ ch

m m

J F

m m

K

`

a

f

c

PO

PO

(b) Commuting diagram for a channel addition-
ally borrowing a message on the right, which is
not needed for the reaction

Figure 6: Diagrams for the two steps described in Example 2.9.
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On the other hand, the first context step is representative, since there G+ = chm

does not contain the problematic right m-loop and it is possible to complete the borrowed
context diagram as shown in Figure 6a. (To obtain the result of the context step, the
right-hand side a′ is constructed just as for context steps (see Example 2.3), which is not
depicted here.) y

In a semi-saturated bisimulation, →R-steps are answered by →C-steps (for every

(a, b) ∈ R and step a
f−→R a′ there is b

f−→C b′ such that (a′, b′) ∈ R and vice versa).
The resulting bisimilarity ∼R is identical [HK12] to saturated bisimilarity (i.e. ∼R = ∼C)
and therefore also a congruence. Whenever (Fin) holds, ∼R is amenable to mechanization,
since we have to consider only finitely many →R-steps (→R is finitely branching).

Remark 2.10. Note that answering →R-steps with →R-steps gives a different, finer notion
of behavioural equivalence than answering→R-steps with→C-steps. As an example, consider

the reactive system with two rules: a
b ⇒ a

b and c ⇒ c , where the single node
is in the rule interface. Both rules replace the graphs with themselves, hence, any rewriting
step does not change the graph at all.

By exhaustive enumeration of all representative steps, it is easy to see that a c , c

are semi-saturated bisimilar. It is important to keep in mind that the answering step does

not need to use the same rule. For example, a step a c b−−−→R
a
b c (using the first

rule) can be answered by a step c b−−−→C b c (using the second rule). Because the
resulting graphs both contain a c-loop, they are also bisimilar, since any subsequent steps
(using either rule) can always be answered by applying the second rule.

However, the step c b−−−→C b c is not a representative step, because it borrows
more than what is necessary to apply the second rule. There is also no other representa-
tive step that originates from c and borrows exactly b . Hence, under a notion of

bisimulation where →R-steps are answered by →R-steps, a c , c are not bisimilar. y

3. Conditions for Reactive Systems

The reactive systems defined so far cannot represent rules where a certain component is
required to be absent: whenever a reaction a a′ is possible, a reaction a;c a′;c (with
additional context c) is also possible, with no method to prevent this. Restricting rule
applications can be useful, e.g. to model access to a shared resource, which may only be
accessed if no other entity is currently using it.

For graph transformation systems, application conditions with a first-order logic flavour
have been studied extensively (e.g. in [HHT96, HP09]) and generalized to reactive systems
in [BCHK11]. If we interpret such conditions in ILC(Graphfin), we obtain a logic that
subsumes first-order logic (for more details on expressiveness see [BCHK11]).

In this section, we summarize the definitions from [BCHK11] and define shifting of
conditions as partial evaluation. We then summarize the changes that are necessary to extend
reactive systems with conditions. We illustrate the concepts of this chapter with various
examples. An example for conditional reactive systems will be discussed later (Example 4.7).
For an additional example, we refer to [BCHK11].
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3.1. Conditions and Satisfaction.

Definition 3.1 (Condition [BCHK11]). Let C be a category and A be an object of C. The
set of conditions over A is defined inductively as:

• trueA := (A, ∀, ∅) and falseA := (A,∃, ∅) are conditions over A (base case)
• A = (A,Q, S) is a condition over A, where

– A = Ro(A) is the root object of A,
– Q ∈ {∀, ∃} is a quantifier and
– S is a finite set of pairs (h,A′), where h : A → A′ is an arrow and A′ is a condition

over A′.

Note that conditions can be represented as finite trees.

Definition 3.2 (Satisfaction [BCHK11]). Let A be a condition over A. For an arrow
a : A→ B and a condition A we define the satisfaction relation a |= A as follows:

• a |= (A,∀, S) iff for every pair (h,A′) ∈ S and every arrow g : Ro(A′) → B we have:
if a = h;g, then g |= A′.
• a |= (A,∃, S) iff there exists a pair (h,A′) ∈ S and an arrow g : Ro(A′) → B such that
a = h;g and g |= A′.

From the above it follows that trueA is satisfied by every arrow with domain A, and falseA
is satisfied by no arrow.

We write A |= B (A implies B) if for every arrow c with dom(c) = Ro(A) = Ro(B) we
have: if c |= A, then c |= B. Two conditions are equivalent (A ≡ B) if A |= B and B |= A.

With satisfaction defined in this way, universal conditions implicitly implement con-
junction, i.e., (A,∀, {(f1,A1), (f2,A2), . . . }) can be understood as ∀(f1,A1)∧∀(f2,A2)∧ . . .
(with a meaning analogous to the conditions of [HHT96, HP09]); similarly, existential
conditions implement disjunction (∃(f1,A1) ∨ ∃(f2,A2) ∧ . . . ).

Based on this, we can define negation of conditions, and conjunctions and disjunctions of
arbitrarily quantified conditions such as ∃(. . . ) ∧ ∃(. . . ) (note the flipped logical connective):

Proposition 3.3 (Boolean operations [BCHK11]). Consider the following Boolean opera-
tions:

• ¬(A,∀, S) := (A,∃, {(h,¬A′) | (h,A′) ∈ S}), ¬(A, ∃, S) := (A, ∀, {(h,¬A′) | (h,A′) ∈ S})
• A ∨ B := (A,∃, {(idA,A), (idA,B)}) for two conditions A,B over A
• A ∧ B := (A,∀, {(idA,A), (idA,B)}) for two conditions A,B over A

These operations satisfy the standard laws of propositional logic, i.e. a |= ¬A if and only if
a 6|= A; a |= A ∨ B if and only if a |= A ∨ a |= B, analogously for A ∧ B. Conjunction and
disjunction can be extended in the obvious way to arbitrary, rather than binary, conjunctions
and disjunctions.

Example 3.4 (Examples of conditions).

• Anode recognizes graphs that contain at least one node:

Anode =
(
∅,∃,

{
(∅ → ← , true )

})
The condition is checked as follows: any arrow that satisfies the condition must be
decomposable into two arrows, the first of which is given in the condition and contributes
the required node, and the second optionally provides additional elements. Since the
output interface is not empty, the second arrow is free to connect edges to the required
node, i.e. the condition matches both isolated and non-isolated nodes.
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• The condition Aiso recognizes graphs that contain an isolated node:

Aiso =
(
∅,∃,

{
(∅ → ← ∅, true∅)

})
As the outer interface of h = ∅ → ← ∅ is empty, h;g has to contain an isolated node

(g can only connect an edge to the node provided by h if it is contained in the interface).
• Aab recognizes the graphs where for all occurrences of an a-edge, there also exists a b-edge

in the opposite direction:

Aab =
(
∅,∀,

{
(∅ →

a
← , A′)

})
A′ =

(
,∃,
{

( →
b
← , true• •)

})
Note that in the examples above, the root object of the condition is empty, since we only
consider isolated conditions. When using conditions in a transformation rule, we would use
the interface of the rule instead. This ensures that the condition is evaluated at the same
position where the rule is applied, and not in any other position. y

3.2. Shifting as Partial Evaluation of Conditions. When evaluating conditions, it is
sometimes known that a given context is guaranteed to be present. In this case, a condition
can be rewritten, using representative squares, under the assumption that this context is
provided by the environment. This operation is known as shift [HP09]:

Definition 3.5 (Shift of a condition [BCHK11]). Given a fixed class of representative
squares κ, the shift of a condition A = (A,Q, S) along an arrow c : A → B is inductively
defined as follows:

A↓c :=
(
B,Q,

{
(β,A′↓α)

∣∣∣ (h,A′) ∈ S, (α, β) ∈ κ(h, c)
})

The shift operation can be understood as a partial evaluation of A under the assumption
that c is already present. It satisfies c;d |= A ⇐⇒ d |= A↓c.

Z A B X
a c d

A A↓c

The typical case, which we will encounter throughout the rest of this paper, is that
a condition on the context of some arrow a is given, this arrow is then placed into some
environment c (which might not fully satisfy the condition, but possibly parts of it), and we
are interested in a condition that an additional context d has to satisfy. (For instance, if A
requires the existence of two elements and c already provides one of them, then d only needs
to add the other one, which is reflected in A↓c.)

The representation of the shifted condition may differ depending on the class of repre-
sentative squares chosen. However, no matter which class is chosen, the resulting conditions
are equivalent to each other. Furthermore, if we assume that (Fin) holds, shifting a finite
condition will again result in a finite condition.

Representative squares as well as shift play a major role in the diagrammatic proofs.
The shift operation satisfies a few equivalences that we will use in the proofs of our theorems:
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b

bb b b

b

h

c

β1

α1

JE PO

PO PB

(a) b-loops of h and c are kept separate in the
center graph.

b

b b

h

c

β2

α2

JE PO

PO PB

(b) b-loops of h and c are mapped to a single
loop.

Figure 7: Borrowed context diagrams for h, c as given in Example 3.7.

Theorem 3.6 (Shift laws [BCHK11, Proposition 17]).

(A ∨ B)↓c ≡ A↓c ∨ B↓c A↓id ≡ A A |= B =⇒ A↓c |= B↓c
(A ∧ B)↓c ≡ A↓c ∧ B↓c true↓c ≡ true A↓c1;c2 ≡ (A↓c1)↓c2

¬(A↓c) ≡ (¬A)↓c false↓c ≡ false

Example 3.7 (Simplifying conditions by shifting). Let the following condition Anb be given,
which requires that the interface node does not have a b-loop attached:

Anb =
(
,∀,
{

( → b ← , false)
})

Furthermore let the cospan c = → b ← . We now compute the result of the shift

Anb↓c, i.e., the condition Anb under the assumption that c is already given. We expect the
resulting condition to be equivalent to false, since the presence of the b-loop in c already
violates Anb. We will show that this is indeed the case. By Definition 3.5 we have:

Anb↓c =
(
, ∀,
{

(β,A′↓α)
∣∣ (h,A′) ∈ S, (α, β) ∈ κ(h, c)

})
=
(
, ∀,
{

(β,A′↓α)
∣∣ A′ = false, h = → b ← , (α, β) ∈ κ(h, c)

})
We can obtain possible α, β by enumerating the borrowed context diagrams where h, c are
already given. As seen in Figure 7, there are two possible choices for the jointly epi square in
the top left: the b-loops of h and c can be mapped to two different loops in the center graph
(Figure 7a) or they can be mapped to a single loop (Figure 7b). The remaining pushout and
pullback squares are then uniquely determined. We therefore obtain:

=
(
, ∀,
{(
→ b ← , (false)↓α1

)
,
(
→ ← , (false)↓α2

)∣∣ α1 = → b ← , α2 = → ←
})

Shifting false along any arrow αi again results in false:

=
(
, ∀,
{

( → b ← , false), ( → ← , false)
})

Furthermore, since → ← is an identity cospan, the condition is equivalent to
. . . ∧ false ≡ false, which is the expected result. y
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3.3. Conditional Reactive Systems. We now extend reactive systems with application
conditions:

Definition 3.8 (Conditional reactive system [BCHK11]). A rule with condition is a triple
(`, r,R) where `, r : 0→ I are arrows and R is a condition with root object I. A conditional
reactive system is a set of rules with conditions.

As the root object I of the condition is the codomain of the rule arrow, it is also the
domain of the reactive context, which has to satisfy the rule condition in order to be able to
apply the rule:

Definition 3.9 (Reaction). Let a, a′ be arrows of a conditional reactive system with rules S.
We say that a reduces to a′ (a a′) whenever there exists a rule (`, r,R) ∈ S with `, r : 0→ I
and a reactive context c : I → J such that a = `;c, a′ = r;c and additionally c |= R.

In order to define a bisimulation for conditional reactive systems that is also a congruence,
it is necessary to enrich labels with conditions derived from the application conditions. Since
we can not assume that the full context is present, the application condition might refer to
currently unknown parts of the context and this has to be suitably integrated into the label.

0 I 0

J K

` r

a′
a c

f

R

A
d

Definition 3.10 (Context/representative step with conditions [HK12]). Let S be a condi-
tional reactive system, let a : 0→ J, f : J → K, a′ : 0→ K be arrows and A be a condition

over K. We write a
f,A−−→C a

′ whenever there exists a rule (`, r,R) ∈ S
and an arrow c such that a;f = `;c, a′ = r;c (i.e. the reaction is
possible without conditions) and furthermore A |= R↓c (a condition
on an additional context d as explained below). Such steps are called
context steps.

We write a
f,A−−→R a′ whenever a

f,A−−→C a′, κ(a, `) 3 (f, c) and
A = R↓c. Such steps are called representative steps.

Conditions are represented graphically in the form of “arrowhead

shapes” depicted next to the root object. Intuitively a
f,A−−→C a

′ means that a can make a
step to a′ when borrowing f , if the yet unknown context d beyond f satisfies condition A
(since this context d does not directly participate in the reduction, we call it passive context).

The intuition behind this requirement is that A should allow only the contexts that are
allowed by the rule condition R (thereby checking that the rule can actually be applied).
Since A is a condition over an additional context d that is beyond the reaction context c,
and c might partially satisfy R, we shift R over c to obtain a condition that only requires
the parts of R that are still missing. For context steps, A may also be stronger, hence |=.

In the case of a representative step, we require that a context step is possible, the
borrowed context is minimal, and the condition on the passive context is not stronger than
necessary.

In the proofs, we will make extensive use of the following construction to obtain a
representative step for a given context step:

Remark 3.11. Definitions 2.4 and 3.10 imply, analogously to Remark 2.8, that every

context step a
f,A−−→C a

′ (left diagram) can be reduced to a representative step a
f̂, R↓ĉ−−−−→R r;ĉ

(right diagram), with R being the condition of the rule (`, r,R) that enables the given
context step.
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0 I 0

J K

` r

a′a c

f

R

A

→

0 I 0

J
K̂

K

` r

a′
a

c

f

ĉ

f̂
ĝ

R

A

R
↓ĉ

y

We will also make use of the following context-step-rewriting lemma:

Lemma 3.12. A context step a;d
f,A−−→C a

′ is equivalent to a step a
d;f, A−−−→C a

′. In particular,

a;d
f,A−−→C a

′ if and only if a
d;f, A−−−→C a

′.

Proof. According to Definition 3.10, for a step a;d
f,A−−→C a

′ there exists a rule (`, r,R) such
that (a;d);f = `;c, a′ = r;c, A |= R↓c for some arrow c. Since composition is associative, we

rewrite this to a;(d;f) = `;c, which immediately results in the definition of a
d;f, A−−−→C a

′.

We now extend (semi-)saturated bisimilarity to rules with conditions:

Definition 3.13 ((Semi-)Saturated bisimilarity [HK12]). Let S be a conditional reactive
system. A saturated bisimulation is a relation R, relating arrows a, b : 0→ J , such that: for

all (a, b) ∈ R and for every context step a
f,A−−→C a

′ there exist answering moves b
f,Bi−−→C b

′
i,

i ∈ I, such that (a′, b′i) ∈ R and A |=
∨
i∈I Bi, where I is a finite index set; and, vice versa,

for every context step b
f,B−−→C b

′ there exist answering moves a
f, Aj−−−→C a

′
j , j ∈ J , such that

(a′j , b
′) ∈ R and B |=

∨
j∈J Aj .

Two arrows a, b are called saturated bisimilar ((a, b) ∈ ∼C) whenever there exists a
saturated bisimulation R with (a, b) ∈ R. Similarly, for semi-saturated bisimilarity we
require that →R-steps of a can be answered by →C-steps of b, and vice versa for →R-steps
of b. Saturated and semi-saturated bisimilarity agree and both are congruences [HK12].

4. Conditional Bisimilarity

We will now introduce our new results on conditional bisimilarity: as stated earlier, our
motivation is to extend the notion of saturated bisimilarity, which is often too strict, since
it requires that two system states behave identically in all possible contexts. However,
sometimes it is enough to ensure behavioural equivalence only in specific environments.

Hence we now replace standard bisimilarity, which is a binary relation, by a ternary
relation — called conditional relation — with tuples of the form (a, b, C). Then, a conditional
bisimulation is a conditional relation, where a tuple (a, b, C) can be read as: a, b are bisimilar
in all contexts satisfying C.
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4.1. Definition, Properties and Examples.

Definition 4.1 (Conditional relation). A conditional relation is a set of triples (a, b, C),
where a, b : 0→ J are arrows with identical target and C is a condition over J .

Note that for a triple (a, b, C), the root object of the condition C is not the source of a
(as is the case for satisfaction), but the target codom(a). This is because we do not state a
condition on the arrows a, b themselves, but on the context in which they are embedded
(a;f resp. b;f for some context f), so the condition is over dom(f) = codom(a) = codom(b).

Definition 4.2 (Closure under contextualization, u(R), conditional congruence). If R is a
conditional relation, then:

• R is reflexive if (a, a, C) ∈ R for all a, C with codom(a) = Ro(C)
• R is symmetric if (a, b, C) ∈ R implies (b, a, C) ∈ R
• R is transitive if (a, b, C) ∈ R and (b, c, C) ∈ R implies (a, c, C) ∈ R
• R is closed under contextualization if (a, b, C) ∈ R implies (a;d, b;d, C↓d) ∈ R
• R is a conditional congruence if it is an equivalence (reflexive, symmetric, transitive) and

closed under contextualization

For a conditional relation R, u(R) is its closure under contextualization, that is,
u(R) := {(a;d, b;d, C↓d) | (a, b, C) ∈ R, a, b : 0→ J, d : J → K}.

Closure under contextualization means that whenever a, b are related under a context
satisfying C, then they are still related when we contextualize under d, where however the
condition has to be shifted since we commit to the fact that the context is of the form d;c
for some additional context c.

We will now introduce one of the central definitions of this paper. Here, given a
conditional reactive system we will describe when two arrows a, b are bisimilar in all contexts
that satisfy a condition C.
Definition 4.3 (Conditional bisimulation). We fix a conditional reactive system. A condi-
tional bisimulation R is a conditional relation such that the following holds: for each triple

(a, b, C) ∈ R and each context step a
f,A−−→C a′, there are answering steps b

f,Bi−−→C b′i,
i ∈ I (where I is possibly infinite), and conditions C′i such that (a′, b′i, C′i) ∈ R and
A ∧ C↓f |=

∨
i∈I (C′i ∧ Bi); and vice versa1. Two arrows are conditionally bisimilar under C

((a, b, C) ∈ ◦∼C) whenever a conditional bisimulation R with (a, b, C) ∈ R exists.2

The situation for one answer step is depicted in Figure 8. Since the definition is rather
complex, we will discuss its various aspects in the following remarks.

Remark 4.4 (Logical implication). In Definition 4.3, the implication A∧C↓f |=
∨
i∈I(C′i∧Bi)

is to be understood as follows: For every step, we have a borrowed context f and an additional
passive context d (as explained below Definition 3.10). The condition C from the triple refers
to the full context of a (i.e. both the borrowed context f and the passive context d, hence
f ;d |= C or equivalently d |= C↓f ), while A, coming from the context step, only refers to the
passive context d (hence d |= A).

Every environment d that is valid for the context step of a (i.e. which satisfies A ∧ C↓f )
must also be valid for some answering step of b, i.e. satisfies at least one Bi. Depending on

1For each triple (a, b, C) ∈ R and each context step b
f,B−−→C b′, there are answering steps a

f, Aj−−−→C a′
j and

conditions C′j such that (a′
j , b

′, C′j) ∈ R and B ∧ C↓f |=
∨

j∈J

(
C′j ∧ Aj

)
2Note that since conditional bisimulations are closed under union, ◦∼C is itself a conditional bisimulation.
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Figure 8: A context step a
f,A−−→C a

′ (top half) and a single answer step b
f,Bi−−→C b

′
i (bottom

half) in conditional bisimulation

the context, different answering steps may be chosen, and the resulting pair a′, b′i might only
be conditionally bisimilar for some contexts, which is indicated by the condition C′i. y

Remark 4.5 (Necessity of multiple answering steps). As for saturated bisimilarity, we need
to allow several answering moves for a single step of a: the answering step taken by b might
depend on the context, using different rules for contexts satisfying different conditions Bi.
We just have to ensure that all answering step conditions taken together (disjunction on the
right-hand side) fully cover the conditions under which the step of a is feasible (left-hand
side). As an example for this, consider the following example (originally presented in [HK12,
remark after Definition 15]). Assume three rules:

1. RA =
(
∅ → a ← , ∅ → ← , true

)
(unconditionally delete an a-edge)

2. RB1 =
(
∅ → b ← , ∅ → ← , Aq

)
(delete a b-edge if the context satisfies
some condition Aq)

3. RB2 =
(
∅ → b ← , ∅ → ← , ¬Aq

)
(delete a b-edge in contexts not satis-
fying Aq)

(Hence rules 2 and 3 together allow a b-edge to be deleted in any context, since every context
satisfies either Aq or ¬Aq. The condition Aq can be chosen arbitrarily, as long as it is not
equivalent to true or false.) Then, an a-edge is conditionally bisimilar to a b-edge under true
(all contexts): a step that deletes the a-edge can be answered by deleting the b-edge, but
depending on the context that the step happens in, a different rule has to be chosen: two
answering steps with B1 = Aq, B2 = ¬Aq are required, and together they cover true. (The
other direction — deleting the b-edge using either rule 2 or 3 being answered by deleting the
a-edge using rule 1 — does not require multiple answering steps in this example.) y

Remark 4.6 (Infinitely many answering steps). The definition explicitly permits an infinite
index set I for the answering steps (this is in contrast to saturated bisimilarity, cf. Defini-
tion 3.13, which required finite I). If we do not consider conditional bisimilarity and the
finiteness assumption (Fin) holds, it does not make a difference whether we consider finite
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or infinite index sets, since there are only finitely many possible answering steps [HK12].
However, in the presence of conditions, it might make a difference.

Since the logic does not support infinite disjunctions, A∧C↓f |=
∨
i∈I C′i ∧ Bi means that

for every d with d |= A ∧ C↓f , there exists i ∈ I such that d |= C′i ∧ Bi.
In many practical applications, it may be useful to restrict to a variant of the definition

that permits only finitely many answering steps. Our theorems are valid for either variant
(finite or infinite), except for the proof of Theorem 6.4 which in its current version requires
I to be infinite. y

Example 4.7 (Message passing over unreliable channels). We now work in the category of
input-linear cospans of graphs, i.e., ILC(Graphfin).

We extend our previous example (cf. Example 2.3) of networked nodes, introducing
different types of channels. A channel can be reliable or unreliable, indicated by an rel -edge
or unr -edge respectively. Sending a message over a reliable channel always succeeds (rule PR),
while an unreliable channel only transmits a message if there is no noise (indicated by a
parallel noise-edge) in the environment that disturbs the transmission (rule PU ). The reactive
system has the following rules with application conditions, where condition AU@n states that
the unreliable channel must not have an noise-edge in parallel:

rel

m

relR0
rel

m
PR =

(
, trueR0

)

unr

m

unr
U0

unr

m
PU =

(
,AU@n

)

` r
L I R

AU@n =
(
U0,∀,

{(
unr

U0
unr

noise

UN
unr

U0

, falseU0

)})
Hence the application condition AU@n says that the context must not be decomposable

into U0 → UN ← U0 and some other cospan, which is only the case if the unr -edge in the
interface of PU has no parallel noise-edge. In other words: there is no noise.

We compare the behaviour of a reliable channel (r := ∅ → rel ← ) to that of an
unreliable channel (u := ∅ → unr ← ). It is easy to see that they are not saturated
bisimilar: r can do a step by borrowing a message on the left (f := → m ← )
without further restrictions (i.e. using an environment condition A = true). But u is unable
to answer this step, because the corresponding rule is only applicable if no noise-edge is
present.

However, r and u are conditionally bisimilar under the assumption that no noise-edge
is present between the two nodes (C = An, where An :=

(
,∀,
{

( → noise ← ,

false )
})

), i.e. there exists a conditional bisimulation that contains (r, u,An). A direct
proof is hard, since the proof involves checking infinitely many context steps, since messages
accumulate on the right-hand side. However, in Example 4.18 we will use an argument based
on representative steps to construct a proof. y
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Remark 4.8 (Condition strengthening). It holds that (a, b, C′) ∈ ◦∼C , C |= C′ implies
(a, b, C) ∈ ◦∼C . (This is due to the fact that C |= C′ implies C↓f |= C′↓f which, in Definition 4.3,

implies A ∧ C↓f |= A ∧ C′↓f for any condition A and arrow f .) y

Our motivation for introducing the notion of conditional bisimilarity was to check
whether two systems are behaviourally equivalent when they are put into a context that
satisfies some condition C. It is not immediately obvious that our definition can be used for
this purpose, since all context steps are checked, not just the ones that actually satisfy C.

Hence we now show that our definition is sound, i.e. if two systems are conditionally
bisimilar, then they show identical behaviour under all contexts that satisfy C.
Theorem 4.9. Let R be a conditional bisimulation. Then R′ = {(a;d, b;d) | (a, b, C) ∈ R
∧ d |= C} is a bisimulation for the reaction relation  .

Proof. To prove that R′ is a bisimulation, we need to show that if a;d R′ b;d and a;d a′,
then there exists b′ such that b;d b′ and a′ R′ b′; and vice versa. Equivalently, if a;d can
do a step, then b;d can answer this step (and vice versa) and the result is again contained in
the bisimulation R′. We show only one direction (a;d answered by b;d), the other one can
be done analogously.

Now let some (a;d, b;d) ∈ R′ be given, for which there must exist a triple (a, b, C) ∈ R.
Consider a step a;d  a′. This step is due to some rule (`, r,R), shown graphically in
Figure 9a.

0 I 0

J K

` r

a′
a c

d

R

C

(a) A reaction a;d a′ for some context d that
satisfies C.
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0 Ii 0

` r
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`i ri

b′i

a

b

c

ei

d

R

C

Ri

(b) The same step, together with answering steps
provided by the conditional bisimulation.

Figure 9: The steps considered in the proof of Theorem 4.9

We have c |= R (otherwise the rule would not be applicable and therefore the step
a;d  a′ would not be possible) and d |= C (follows from the given (a;d, b;d) ∈ R′ by
construction of R′). To make them usable for the answering steps, we transform R, C to
be conditions over K. Trivially d = d; idK , so using Definition 3.5 we rewrite d; idK |= C to
idK |= C↓d. Analogously, we rewrite c; idK |= R to idK |= R↓c.

We set A := R↓c and interpret this diagram as a
d,A−−→C a′. Since R is a conditional

bisimulation and (a, b, C) ∈ R, b can answer the step of a, using one of possibly several rules

(`i, ri,Ri) depending on the given context d. Setting Bi := Ri↓ei , we get steps b
d,Bi−−→C b′i

and we extend the diagram as shown in Figure 9b.
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Generally, not every answering step that is possible for our given triple (a, b, C) is a
suitable answering step for the given context d. But since R is a conditional bisimulation,
we know that R↓c ∧C↓d |=

∨
i∈I (C′i ∧ Bi). Previously we derived idK |= R↓c ∧C↓d. Therefore,

idK also satisfies
∨
i∈I (C′i ∧ Bi), that is, idK satisfies C′i ∧ Bi = C′i ∧Ri↓ei for some i. From

now on, we only consider answering steps for which this is indeed the case.
Using Definition 3.5 we rewrite idK |= Ri↓ei to ei; idK = ei |= Ri, which means that

the rule (`i, ri,Ri) can actually be applied, that is, b;d  b′i = ri;ei. So b has a suitable
answering step.

To show that R′ is a bisimulation, we only have to show that (a′, b′i) ∈ R′. As R
is a conditional bisimulation, for the given answering step we know that (a′, b′i, C′i) ∈ R.
Previously we had idK |= C′i, therefore, the requested pair (a′; idK , b

′
i; idK) = (a′, b′i) is added

during the construction of R′.

Remark 4.10. Note that the converse of Theorem 4.9 (if R′ is a bisimulation, then R is a
conditional bisimulation) does not hold. Consider the following counterexample:

R1 =
(
→ a x ← x , → e x ← x , trueX

)
R2 =

(
→ b ← , → e ← , A∃X

)
A∃X =

(
,∃,
{

( → x ← x , trueX)
})

Here X = x . In this case, an a-loop can be replaced with an e-loop if an x-loop is
present, ensured by requiring (and retaining) it in the rule R1. A b-loop can also be replaced
with an e-loop, also if an x-loop is present, this time ensured by an application condition.

Now consider the conditional relation R = {( a , b , true)} ∪ {(G,G, true) | G is
a graph}3 (all graphs are seen as cospans with empty interfaces) and the accompanying
relation R′ = {(a;d, b;d) | (a, b, C) ∈ R ∧ d |= C}.

Clearly, the graphs a and b are bisimilar under all contexts, and therefore R′ is
a bisimulation: either the context contains an x-loop, then they both reduce to a graph that
contains e x and possibly further context (both steps reach the same graph), or the
context does not contain an x-loop, in which case neither rule is applicable.

However, R is not a conditional bisimulation, the violating triple being ( a , b , true):

the step b
id, A∃X−−−−−→C e cannot be answered by a , since in R1, the x-loop is directly

participating in the reaction, but A∃X only guarantees its existence in a passive environment
(i.e. it is not participating in the reaction). ( a could only do a step by borrowing x ,
but this does not constitute a valid answering step for the step of b where id (i.e. no
additional elements) has been borrowed.) y

Next, we will show that conditional bisimilarity ◦∼C is a conditional congruence. This
is an important plausibility check, since reactive systems have been introduced with the
express purpose to define and reason about bisimulation congruences.

Lemma 4.11. Conditional bisimilarity ◦∼C is a conditional congruence.

Proof. We show that ◦∼C is:

reflexive: We prove that R = {(a, a, C) | codom(a) = Ro(C)} is a conditional bisimulation.

3The reflexive triples (G,G, true) are needed because a , b can both be transformed to e in

the presence of x and we require that the resulting (identical) graphs are related.
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Any context step a
f,A−−→C a

′ can be trivially answered by the exact same step, setting
B1 := A, C′1 := C↓f , b′1 := a′, where I = {1}, and we have (a′, b′1, C′1) = (a′, a′, C↓f ) ∈ R.

symmetric: Let R be a conditional bisimulation. It is easily seen that R−1, due to the
symmetric nature of the definition, is also a conditional bisimulation. Then, R ⊆ ◦∼C
implies R−1 ⊆ ◦∼C , which proves symmetry of ◦∼C .

transitive: Let R1, R2 be conditional bisimulations that are closed under condition strength-
ening, i.e. (a, b, C′) ∈ Ri and C |= C′ implies (a, b, C) ∈ Ri. We show that R1R2 :=
{(a, c,D) | there exists b such that (a, b,D) ∈ R1 and (b, c,D) ∈ R2} is a conditional
bisimulation.

Then, since ◦∼C is a conditional bisimulation closed under condition strengthening
(Remark 4.8), (a, b,D) ∈ ◦∼C , (b, c,D) ∈ ◦∼C implies (a, c,D) ∈ ◦∼C ◦∼C and, since we
show that ◦∼C ◦∼C is a conditional bisimulation, a, c are conditionally bisimilar under
D, which proves transitivity of ◦∼C .

Consider a triple (a, c,D) ∈ R1R2, which by construction of R1R2 results from some

(a, b,D) ∈ R1, (b, c,D) ∈ R2. Also consider a step a
f,A−−→C a

′. Then, R1R2 fulfills the
requirements of a conditional bisimulation:

(1) Answering steps c
f, Ci,j−−−→C c′i,j: Since (a, b,D) ∈ R1 and R1 is a conditional

bisimulation, we know that there exist answering steps b
f,Bi−−→C b

′
i such that for

all i ∈ I, (a′, b′i,D′i) ∈ R1 and A ∧D↓f |=
∨
i∈I (D′i ∧ Bi).

Additionally, since (b, c,D) ∈ R2, for each b
f,Bi−−→C b′i there exist answering

steps c
f, Ci,j−−−→C c′i,j such that for all j ∈ Ji we have (b′i, c

′
i,j ,D′i,j) ∈ R2 and

Bi ∧ D↓f |=
∨
j∈Ji

(
D′i,j ∧ Ci,j

)
.

We now collect all answering steps c
f, Ci,j−−−→C c

′
i,j and use them as answering steps

for the original step a
f,A−−→C a

′.
(2) (a′, c′i,j ,D′i,j) ∈ R1R2: Since (a′, b′i,D′i) ∈ R1, and R1 is closed under condition

strengthening, and D′i,j ∧ D′i |= D′i, we also have (a′, b′i, D′i,j ∧ D′i) ∈ R1 for all

j ∈ Ji. Similarly, we obtain (b′i, c
′
i,j , D′i,j ∧ D′i) ∈ R2. By construction of R1R2

we then also have (a′, c′i,j , D′i,j ∧ D′i) ∈ R1R2.

(3) A ∧D↓f |=
∨
i∈I (D′i ∧ C′i): We now rewrite

A ∧D↓f |=
∨

i∈I

(
D′i ∧ Bi

)
(given from (a, b,D) ∈ R1)

A ∧D↓f |=
∨

i∈I

(
D′i ∧ Bi

)
∧ D↓f (since D↓f is given on the left already)

A ∧D↓f |=
∨

i∈I

(
D′i ∧ Bi ∧ D↓f

)
(distributivity)

From (b, c,D) ∈ R2 we know Bi ∧ D↓f |=
∨
j∈Ji

(
D′i,j ∧ Ci,j

)
, therefore this also

implies:

A ∧D↓f |=
∨

i∈I

(
D′i ∧

∨
j∈Ji

(
D′i,j ∧ Ci,j

))
A ∧D↓f |=

∨
i∈I, j∈Ji

(
D′i ∧ D′i,j ∧ Ci,j

)
Observe that this implication is of the required form for the previously derived
tuples (a′, c′i,j , D′i,j ∧ D′i) ∈ R1R2.
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In case I is infinite, the same idea can be applied, but we need to slightly change
the notation to prevent the creation of infinite disjunctions:

c |= (A ∧D↓f ) =⇒ ∃i ∈ I : c |= (D′i ∧ Bi) (since (a, b,D) ∈ R1)

c |= (A ∧D↓f ) =⇒ ∃i ∈ I : c |= (D′i ∧ Bi) ∧ c |= D↓f(D↓f on left)

c |= (A ∧D↓f ) =⇒ ∃i ∈ I : c |= (D′i ∧ Bi ∧ D↓f ) (distributivity)

From (b, c,D) ∈ R2 we know c |= (Bi ∧ D↓f ) =⇒ ∃j ∈ Ji : (D′i,j ∧ Ci,j), therefore
this also implies:

c |= (A ∧D↓f ) =⇒ ∃i ∈ I : c |= D′i ∧ ∃j ∈ Ji : c |= (D′i,j ∧ Ci,j)
c |= (A ∧D↓f ) =⇒ ∃i ∈ I, j ∈ Ji : c |= (D′i ∧ D′i,j ∧ Ci,j)

Symmetrically, steps c
f, C−−→C c

′ can be answered by a. Therefore, R1R2 is a conditional
bisimulation.

closed under contextualization: We show that u(R) = {(a;d, b;d, C↓d) | (a, b, C) ∈ R} is
a conditional bisimulation, assuming R is a conditional bisimulation.

Consider a triple (a;d, b;d, C↓d) ∈ u(R) and a step a;d
f,A−−→C a

′. This step is due to

some rule (`, r,R). We have to show that there exist answering steps b;d
f,Bi−−→C b′i

such that (a′, b′i, C′i) ∈ u(R) and A ∧ (C↓d)↓f |=
∨
i∈I (C′i ∧ Bi).

According to Lemma 3.12, the given step can be rewritten to a
d;f, A−−−→C a

′.
By construction of u(R), for the given triple (a;d, b;d, C↓d) ∈ u(R) there must exist

a triple (a, b, C) ∈ R. As R is a conditional bisimulation, the step a
d;f, A−−−→C a′ has

answering steps b
d;f, Bi−−−−→C b

′
i such that (a′, b′i, C′i) ∈ R and A ∧ C↓d;f |=

∨
i∈I (C′i ∧ Bi).

However, we are not interested in answering steps for the context d;f , but rather

for the original step a;d
f,A−−→C a

′.

(1) Answering steps b;d
f,Bi−−→C b′i: According to Lemma 3.12, the answering steps

b
d;f, Bi−−−−→C b

′
i can be rewritten to b;d

f,Bi−−→C b
′
i.

(2) (a′, b′i, C′i) ∈ u(R): Since (a′, b′i, C′i) ∈ R, we have (a′; id, b′i; id, C′i↓id) = (a′, b′i, C′i) ∈
u(R).

(3) A ∧ (C↓d)↓f |=
∨
i∈I (C′i ∧ Bi): The implication to be shown is identical to the one

that we obtained above, except for (C↓d)↓f , which, however, is equivalent to C↓d;f .

Answering steps for b;d
f,B−−→C b

′ can be derived analogously.

4.2. Alternative Characterization using Fixpoint Theory. Behavioural equivalences
can be characterized as fixpoints of certain functions on complete lattices [PS11b]. Before
we provide definitions that characterize conditional bisimulation relations as fixpoints, we
provide a quick summary of fixpoint theory. We do not rely on this characterization in the
proofs in this section. However, we will use the theory and the alternative definitions for the
proofs of up-to techniques in Section 5.

A complete lattice is a partially ordered set (L,v) where each subset Y ⊆ L has an
infimum, denoted by

d
Y and a supremum, denoted by

⊔
Y . In this paper, the type of

lattices that we consider contain relations ordered by inclusion, i.e. the elements of the
lattice are relations and thus the functions we consider map relations to relations.
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A function f : L → L is monotone if for all l1, l2 ∈ L, l1 v l2 implies f(l1) v f(l2),
idempotent if f ◦ f = f , and extensive if l v f(l) for all l ∈ L. When f is monotone,
extensive and idempotent it is called an (upper) closure. In this case, f(L) = {f(l) | l ∈ L}
is a complete lattice.

Given some behavioural equivalence, we define a monotone function f : L→ L in such a
way that its greatest fixpoint νf equals the behavioural equivalence. Behavioural equivalence
can then be checked by establishing whether some given element of the lattice l ∈ L (for
instance a relation consisting of a single pair) is under the fixpoint, i.e., if l v νf . By Tarski’s
Theorem [Tar55], νf =

⊔
{x | x v f(x)}, i.e., the greatest fixpoint is the supremum of all

post-fixpoints. Hence for showing that l v νf , it is sufficient to prove that l is under some
post-fixpoint l′, i.e., l v l′ v f(l′).

Using these preliminaries, we can now give an alternative characterization of conditional
bisimulation using fixpoint theory:

Remark 4.12 (Conditional bisimulation function fC). Consider the complete lattice
Condrel, which is the set of all conditional relations ordered by set inclusion. Then,
conditional bisimulations can also be seen as post-fixpoints of fC (i.e. R is a conditional
bisimulation if and only if R ⊆ fC(R)), and conditional bisimilarity as the greatest fix-
point of fC (i.e. ◦∼C = νfC), where the monotone function fC : Condrel→ Condrel is the
conditional bisimulation function defined by

fC(R) :=
{

(a, b, C)
∣∣ for each a

f,A−−→C a
′ there exist b

f,Bi−−→C b
′
i and conditions C′i

such that (a′, b′i, C′i) ∈ R and A ∧ C↓f |=
∨
i∈I(C

′
i ∧ Bi),

and vice versa (for each b
f,B−−→C b

′. . . )
}

The correctness of this characterization (i.e. that “fC is the right function”) can be seen by
expanding the definition of fC on the right-hand side of (a, b, C) ∈ R =⇒ (a, b, C) ∈ fC(R),
which results in exactly the definition of a conditional bisimulation relation. y

4.3. Representative Conditional Bisimulations. Checking whether two arrows are
conditionally bisimilar, or whether a given relation is a conditional bisimulation, can be hard
in practice, since we have to check all possible context steps, of which there are typically
infinitely many.

For saturated bisimilarity, we used representative steps instead of context steps (cf.
Subsections 2.3 and 2.4) to reduce the number of contexts to be checked. In this section, we
extend our definition of conditional bisimulation to use representative steps and prove that
the resulting bisimilarity is identical to the one previously defined.

Definition 4.13 (Representative conditional bisimulation). We fix a conditional reactive
system. A representative conditional bisimulation R is a conditional relation such that

the following holds: for each triple (a, b, C) ∈ R and each representative step a
f,A−−→R a′,

there are answering context steps b
f,Bi−−→C b′i and conditions C′i such that (a′, b′i, C′i) ∈ R

and A ∧ C↓f |=
∨
i∈I (C′i ∧ Bi); and vice versa. Two arrows are representative conditionally

bisimilar under C ((a, b, C) ∈ ◦∼R) whenever a representative conditional bisimulation R with
(a, b, C) ∈ R exists.
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Remark 4.14. Analogously to Remark 4.12, we can define representative conditional
bisimulations as post-fixpoints of fR, and representative conditional bisimilarity as the
greatest fixpoint of fR, where fR is defined on Condrel as follows:

fR(R) :=
{

(a, b, C)
∣∣ for each a

f,A−−→R a
′ there exist b

f,Bi−−→C b
′
i and conditions C′i

such that (a′, b′i, C′i) ∈ R and A ∧ C↓f |=
∨
i∈I(C

′
i ∧ Bi),

and vice versa (for each b
f,B−−→R b

′. . . )
}

It is easy to see that fC ⊆ fR: Their definitions differ only in the type of steps which are
checked. A triple that satisfies the requirements for all context steps (is in fC(R)) naturally
satisfies them for all representative steps (is in fR(R)), since every representative step is
also a context step. y

To show that the two conditional bisimilarities using context and representative steps
are equivalent (Theorem 4.17) and for the proofs of Theorems 5.16, 6.4 and 6.6, we need the
following two lemmas:

Lemma 4.15 [HK12, Lemma 16]. Given a context step a
f,A−−→C a

′, the borrowed context f

can be extended by an additional context c′, that is: a
f,A−−→C a

′ implies a
f ;c′, A↓c′−−−−−−→C a

′;c′

Lemma 4.16. Representative conditional bisimilarity is closed under contextualization, that
is, (a, b, C) ∈ ◦∼R implies (a;d, b;d, C↓d) ∈ ◦∼R.

Proof. We show that u(R) = {(a;d, b;d, C↓d) | (a, b, C) ∈ R} is a representative conditional
bisimulation, assuming R is a representative conditional bisimulation.

Consider a triple (a;d, b;d, C↓d) ∈ u(R) and a step a;d
f,A−−→R a′. This step is due to

some rule (`, r,R). We have to show that there exist answering steps b;d
f,Bi−−→C b

′
i such that

(a′, b′i, C′i) ∈ u(R) and A ∧ (C↓d)↓f |=
∨
i∈I (C′i ∧ Bi).

The representative step is of course also a context step (a;d
f,A−−→C a

′), which, according

to Lemma 3.12, can be rewritten to a
d;f, A−−−→C a

′. As a result, the step is not necessarily a
representative one anymore. However we can find a matching representative step (see also
Remark 3.11):

0 I 0

J K

` r

a′a c

d f

R

A

→

0 I 0

J
K̂

K

` r

a′
a

c

d
f

ĉ

f̂
ĝ

R

A

R
↓ĉ
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Note that f̂ ;ĝ = d;f, ĉ;ĝ = c. Variables with a hat (e.g. ĉ) refer to the representative
step, but otherwise play the same role than their unhatted counterparts (e.g. c), which refer

to the original step. The result is a representative step a
f̂, R↓ĉ−−−−→R r;ĉ.

By construction of u(R), for the given triple (a;d, b;d, C↓d) ∈ u(R) there must exist a

triple (a, b, C) ∈ R. As R is a representative conditional bisimulation, the step a
f̂, R↓ĉ−−−−→R r;ĉ

has answering steps b
f̂, B̂i−−−→C b̂′i such that (r;ĉ, b̂′i, Ĉ′i) ∈ R and R↓ĉ ∧ C↓f̂ |=

∨
i∈I

(
Ĉ′i ∧ B̂i

)
.

However we are not interested in answering steps for the representative context f̂ , but

rather for the original step a;d
f,A−−→R a

′, that is, we need answering steps of b;d using context

f . So we need (1) answering steps b;d
f,Bi−−→C b′i (2) such that (a′, b′i, C′i) ∈ u(R) and (3)

A ∧ (C↓d)↓f |=
∨
i∈I (C′i ∧ Bi).

(1) Answering steps b;d
f,Bi−−→C b

′
i: Lemma 4.15 and b

f̂, B̂i−−−→C b̂′i imply that steps b
f̂ ;ĝ, B̂i↓ĝ−−−−−→C

b̂′i;ĝ are possible. Since d;f = f̂ ;ĝ, these are equivalent to b
d;f, B̂i↓ĝ−−−−−→C b̂′i;ĝ. We set

b′i := b̂′i;ĝ, Bi := B̂i↓ĝ and get steps b
d;f, Bi−−−−→C b

′
i, which, according to Lemma 3.12, are

equivalent to steps b;d
f,Bi−−→C b

′
i.

(2) (a′, b′i, C′i) ∈ u(R): Set C′i := Ĉ′i↓ĝ. By construction of u(R), (r;ĉ, b̂′i, Ĉ′i) ∈ R implies

(r;ĉ;ĝ, b̂′i;ĝ, Ĉ′i↓ĝ) = (a′, b′i, C′i) ∈ u(R).

(3) A ∧ (C↓d)↓f |=
∨
i∈I (C′i ∧ Bi): Above, we already showed R↓ĉ ∧ C↓f̂ |=

∨
i∈I

(
Ĉ′i ∧ B̂i

)
.

By shifting both sides with ĝ and applying the rules of Theorem 3.6, we get:

R↓ĉ ∧ C↓f̂ |=
∨

i∈I

(
Ĉi ∧ B̂i

)
⇒
(
R↓ĉ ∧ C↓f̂

)
↓ĝ
|=
(∨

i∈I

(
Ĉ′i ∧ B̂i

))
↓ĝ

⇔ R↓ĉ;ĝ ∧ C↓f̂ ;ĝ |=
∨

i∈I

(
Ĉ′i↓ĝ ∧ B̂i↓ĝ

)
By substituting ĉ;ĝ = c, f̂ ;ĝ = d;f, C′i = Ĉ′i↓ĝ, Bi = B̂i↓ĝ, we obtain R↓c ∧ C↓d;f |=∨
i∈I (C′i ∧ Bi). Since A |= R↓c, we have A∧ C↓d;f |= R↓c ∧ C↓d;f |=

∨
i∈I (C′i ∧ Bi), which

was to be shown.

Analogously, answering steps for b;d
f,B−−→R b

′ can be constructed.

The following theorem is based on a proof strategy similar to Lemma 4.16.

Theorem 4.17. Conditional bisimilarity and representative conditional bisimilarity coincide,
that is, ◦∼C = ◦∼R.

Proof.

• ( ◦∼C ⊆ ◦∼R):

Consider a triple (a, b, C) ∈ ◦∼C . By Definition 4.3, for each step a
f,A−−→C a′ there exist

answering steps of b with the requirements listed there; symmetrically, each step b
f,B−−→C b

′

can be answered by a. To show that (a, b, C) ∈ ◦∼R, the same statement has to be shown

for each representative step a
f,A−−→R a′ (and b

f,B−−→R b′). Since it already holds for all
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context steps, which are a superset of representative steps (every →R step is also a →C

step), Definition 4.13 is trivially satisfied.
• ( ◦∼C ⊇ ◦∼R):

By definition of ◦∼C , if a conditional relation R is a conditional bisimulation, then R ⊆ ◦∼C .
We show that R = ◦∼R is a conditional bisimulation, i.e. that it satisfies the requirements
of Definition 4.3.

Consider a triple (a, b, C) ∈ R and a context step a
f,A−−→C a′. This step is due to

some rule (`, r,R). According to Remark 3.11, this context step can be reduced to a

representative step a
f̂, R↓ĉ−−−−→R r;ĉ, and there exists ĝ such that f̂ ;ĝ = f, ĉ;ĝ = c. Again,

all variables with a hat (e.g. ĉ) refer to the representative step, but otherwise take the
same role as their unhatted counterparts.

Since R is the representative conditional bisimilarity, R is a representative conditional
bisimulation. Together with (a, b, C) ∈ R, this means that for the aforementioned step

there exist answering steps b
f̂, B̂i−−−→C b̂′i and conditions Ĉ′i, such that (r;ĉ, b̂′i, Ĉ′i) ∈ R and

R↓ĉ ∧ C↓f̂ |=
∨
i∈I
(
Ĉ′i ∧ B̂i

)
.

However we are not interested in answering steps for the representative step, but rather

for the original step a
f,A−−→C a′, that is, we need answering steps of b using context

f . So we need (1) answering steps b
f,Bi−−→C b′i (2) such that (a′, b′i, C′i) ∈ R and (3)

A ∧ C↓f |=
∨
i∈I (C′i ∧ Bi). Analogously to the proof of Lemma 4.16, we have:

(1) Answering steps: Having steps b
f̂, B̂i−−−→C b̂′i implies that steps b

f̂ ;ĝ, B̂i↓ĝ−−−−−→C b̂′i;ĝ are

possible (Lemma 4.15). Rewritten as b
f,Bi−−→C b

′
i (where Bi := B̂i↓ĝ, b′i := b̂′i;ĝ), we get

the desired answering steps for the original step.
(2) (a′, b′i, C′i) ∈ R: Since R is the representative conditional bisimilarity, by Lemma 4.16

we know that R is closed under contextualization. Therefore, (r;ĉ, b̂′i, Ĉ′i) ∈ R implies

(r;ĉ;ĝ, b̂′i;ĝ, Ĉ′i↓ĝ) = (a′, b′i, C′i) ∈ R, i.e. the original target a′ is conditionally bisimilar

to the targets b̂′i;ĝ of the answering steps.
(3) A ∧ C↓f |=

∨
i∈I (C′i ∧ Bi): Using the rules of Theorem 3.6 we get:

R↓ĉ ∧ C↓f̂ |=
∨(
Ĉ′i ∧ B̂i

)
⇒ (R↓ĉ)↓ĝ ∧ (C↓f̂ )↓ĝ |=

∨(
Ĉ′i↓ĝ ∧ B̂i↓ĝ

)
⇔ R↓ĉ;ĝ ∧ C↓f̂ ;ĝ |=

∨(
Ĉ′i↓ĝ ∧ B̂i↓ĝ

)
⇔ R↓c ∧ C↓f |=

∨(
C′i ∧ Bi

)
Since A |= R↓c, we have A ∧ C↓f |= R↓c ∧ C↓f |=

∨
(C′i ∧ Bi), which is the required

condition for the triple (a, b, C).
Analogously, we can construct answering steps for b

f,B−−→C b
′. We have therefore shown

that R = ◦∼R is a conditional bisimulation and therefore ◦∼R ⊆ ◦∼C .

We now discuss the notion of representative condition bisimulation in two examples.

Example 4.18 (Message passing over unreliable channels, continued). Consider the reactive
system of Example 4.7. There exists a representative conditional bisimulation R such that
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(∅ → rel ← , ∅ → unr ← , An) ∈ R (where An requires that no noise-edge
exists).

We consider the representative steps that are possible from either rel or unr and
only explain the most interesting cases (cf. Figure 10a).

• The graph rel can do a step using rule PR by borrowing a message on the left node,
that is, f = → m ← , reacting to rel m. No further restrictions on the
environment are necessary, so A = true. The graph unr can answer this step using PU
and reacts to unr m, but only if no noise is present (environment satisfies Bi = An). We
evaluate the implication A ∧ C↓f ≡ true ∧ An↓f ≡ An |=

∨
i∈I (C′i ∧ An) ≡

∨
i∈I (C′i ∧ Bi),

setting C′i = An. (Note that An↓f ≡ An since An forbids the existence of an noise-edge
between the two interface nodes and f is unrelated, providing an m-loop on the left-hand
node.) We now require (∅ → rel m ← , ∅ → unr m ← , An) ∈ R.
• Symmetrically, unr can do a step using PU by borrowing a message on the left node,

reacting to unr m in an environment without noise (A = An). rel can answer this
step under any condition Bi. Then, the implication is satisfied if we set C′i = An, so we

require again (∅ → rel m ← , ∅ → unr m ← , An) ∈ R.
• There are additional representative steps that differ in how much of the left-hand side is

borrowed, but can be proven analogously to the two previously discussed steps.
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(a) Showing conditional bisimilarity may require
an infinite number of steps
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(b) Removing unrelated context (dotted edge)
before relating the pair would allow stopping
after a single step

Figure 10: Showing conditional bisimilarity of two types of channels using the rules
of Example 4.7

This means we have to add the pair (∅ → rel m ← , ∅ → unr m ← , An) to
R and to continue adding pairs until we obtain a bisimulation: with every step, a new triple
with an additional m-loop on the right node is added to the relation, therefore, the smallest
conditional bisimulation has infinite size. This is visualized in Figure 10a.
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However, except for the additional m-loop on the right node, which does not affect rule
application, this pair is identical to the initial one and we can hence use a similar argument.
In Section 5 we show how to make this formal, using up-to technique. In summary, we
conclude that rel is conditionally bisimilar to unr under the condition An. y

Example 4.19 (Unreliable channel vs. no channel). For Examples 4.7 and 4.18, it can
also be shown that under the condition ¬An, the unreliable channel ∅ → unr ← is
conditionally bisimilar to not having a channel between the two nodes (∅ → ← ).

In this case, unr can still do a reaction under An. Then, can answer with an empty
set of steps. The implication An∧C↓f |=

∨
i∈I (C′i ∧ Bi) is then simplified to An∧¬An |= false,

which is easily seen to be valid. y

5. Up-to Techniques for Proving Conditional Bisimilarity

Our optimizations so far involved replacing context steps by representative steps, which ensure
finite branching and thus greatly reduce the proof obligations for a single step. However, it
can still happen very easily that the smallest possible bisimulation is of infinite size, in which
case automated proving of conditional bisimilarity becomes impossible. For instance, in
Example 4.18, the least conditional bisimulation relating the two cospans u, r (representing
(un)reliable channels) under An contains infinitely many triples (u;mn, r;mn, An) for any
number n of messages on the right node (m = → m ← ).

On the other hand, conditional bisimilarity is closed under contextualization, hence
if u, r are related, we can conclude that u;m and r;m must be related as well. Intuitively
the relation R = {(u, r,An)} is a sufficient witness, since after one step we reach the triple
(u;m, r;m, An), from which we can “peel off” a common context m to obtain a triple already
contained in R (visualized in Figure 10b).

This is an instance of an up-to technique, which can be used to obtain smaller witness
relations by identifying and removing redundant elements from a bisimulation relation.
Instead of requiring the redundant triple (u;m, r;m, An) to be contained in the relation, it
is sufficient to say that up to the passive context m, the triple is represented by (u, r,An),
which is already contained in the relation. In particular, this specific up-to technique is
known as up-to context [PS11b], a well-known proof technique for process calculi.4

Note that in general, a bisimulation up-to context is not a bisimulation relation. However,
it can be converted into a bisimulation by closing it under all contexts.

In this section, we show how to adapt this concept to conditional bisimilarity and in
particular discuss how to deal with the conditions in a conditional bisimulation up-to context.

5.1. Up-To Techniques and Fixpoint Theory. As in Section 4, we will provide defini-
tions and proofs that are based on fixpoint theory. Hence, we first introduce the remaining
preliminary concepts for implementing up-to techniques using fixpoint theory, again mostly
following [PS11b].

In Subsection 4.2 we already explained that to show that some element l of the lattice
is contained in behavioural equivalence (l v νf), it is sufficient to prove that l is under
some post-fixpoint l′ (l v l′ v f(l′)). The idea of using up-to techniques is now to define

4Stated in the language of process algebra, a symmetric relation R is a bisimulation up-to context, if

whenever (P,Q) ∈ R and P
a−→ P ′, then Q

a−→ Q′, where P ′ = C[P ′′], Q′ = C[Q′′] and (P ′′, Q′′) ∈ R.
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a monotone function u (the up-to function) and check if l v ν(f ◦ u) by showing that
l is a post-fixpoint of f ◦ u. Typically, the characteristics of u should make it easier to
prove l v f(u(l)) than proving l v f(l). This is clearly the case when u is extensive,
since extensiveness of u and monotonicity of f implies f(l) v f(u(l)) and thus obtaining
l v f(u(l)) is easier than obtaining l v f(l).

Naturally, for the up-to technique to be useful, it also has to be shown that ν(f ◦u) v νf :

Definition 5.1 (sound up-to function). Let L be a complete lattice and let f : L→ L be a
monotone function. A sound up-to function for f is any monotone function u : L→ L such
that ν(f ◦ u) v νf .

Instead of soundness, we will use the stronger notion of compatibility:

Definition 5.2 (f -compatibility of u). Let L be a complete lattice and let f : L→ L be a
monotone function. A monotone function u : L→ L is f -compatible if u ◦ f v f ◦ u.

Compatibility has several advantages over soundness: First, compatibility implies
soundness, second, f -compatible up-to techniques can be combined with each other to obtain
more powerful proof techniques, and third, it implies that the up-to function preserves the
greatest fixpoint (a kind of congruence result):

Lemma 5.3 (Compatibility implies soundness). Let f : L→ L be a monotone function and
let u : L→ L be an f -compatible closure. Then νf = ν(f ◦ u).

Proof. ν(f ◦ u) v νf by [PS11a, Theorem 6.3.9]. νf v ν(f ◦ u) because u is a closure and
therefore extensive.

Note that the first inclusion is sufficient to show soundness, but we will later also use
the second one to simplify some of the proofs.

This lemma gives rise to the following proof rule: to show that l is in the behavioural
equivalence (l v νf), it is sufficient to show that l is a post-fixpoint of f ◦u (i.e., l v f(u(l))),
which implies l v ν(f ◦ u) = νf .

Lemma 5.4 (Compositionality of f -compatible functions [Pou07, Proposition 1.6]). If u1, u2
are f -compatible, then u1 ◦ u2 is also f -compatible.

Proposition 5.5. Let f : L → L be a monotone function and let u : L → L be an f-
compatible closure. Then u(νf) = νf .

Proof. νf v u(νf) holds because u is a closure and therefore extensive.
Since u is f -compatible, [Pou07, Remark 1.5] guarantees u(νf) v νf .

We will also need the following (straightforward) result.

Lemma 5.6 (Characterization of post-fixpoints of f ◦ u). Let f : L → L be a monotone
function, let u : L → L be an f-compatible closure, and let l ∈ L. Then, l v f(u(l)) ⇐⇒
u(l) v f(u(l)).

Proof.

• (l v f(u(l))⇒ u(l) v f(u(l))):
Since u is monotone, l v f(u(l)) implies u(l) v u(f(u(l))). By f -compatibility of u
(u ◦ f v f ◦ u), then also u(l) v f(u(u(l))), which by idempotence of u is equivalent to
u(l) v f(u(l)).
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• (l v f(u(l))⇐ u(l) v f(u(l))):
u is extensive, therefore l v u(l). Combined, we obtain l v u(l) v f(u(l)) and hence our
desired result.

5.2. Conditional Bisimilarity Up-To Context. We start our investigation of conditional
bisimilarity up-to context with the idea of a relation that can be extended to a conditional
bisimulation. To show, using such a conditional bisimulation up-to context R, that a pair
of arrows is conditionally bisimilar, it is not in general necessary to find this pair in R,
but one can instead extend a pair in R to the pair under review. As this extension might
provide parts of the context that the original condition referred to, it is necessary to shift
the associated condition over the extension.

Definition 5.7 (Conditional bisimulation up-to context (CBUC)). A conditional relation R
is a conditional bisimulation up-to context if the following holds: for each triple (a, b, C) ∈ R
and each context step a

f,A−−→C a
′, there are answering steps b

f,Bi−−→C b
′
i, i ∈ I, and conditions

C′′i such that for each i ∈ I there exists (a′′i , b
′′
i , C′′i ) ∈ R with a′ = a′′i ;ji, b

′
i = b′′i ;ji for some

arrow ji and additionally A ∧ C↓f |=
∨
i∈I
(
C′′i↓ji ∧ Bi

)
; vice versa for steps b

f,B−−→C b
′.

The situation for one answer step is depicted in Figure 11. The weakest possible A,Bi
can be derived from the rule conditions as A = R↓c, Bi = Ri↓ei .

0 I 0

J K J ′

0 Ii 0

` r

a′

`i ri

b′i

a

b

c

ei

a′′i

b′′i

f ji

R

C

Ri

C′′i

A

Bi

Figure 11: A single answer step in conditional bisimulation up-to context

Compared to a regular conditional bisimulation, which directly relates the results of
the answering steps (a′, b′i, C′i), in a CBUC it is sufficient to relate some pair (a′′i , b

′′
i , C′′i ),

where a′′i , b
′′
i are obtained from a′, b′i by removing an identical context ji. (The conditional

bisimilarity of the actual successors a′, b′i can then be derived by contextualizing the relation,
i.e., we use Theorem 5.10 and refer to a triple in u(R) that is contextualized under ji.)

Remark 5.8. A CBUC can also be defined based on the closure under contextualization u
(see Definition 4.2, note that u is easily seen to be a closure5): A conditional relation R is a

5Monotonicity: trivial. Extensiveness: (a, b, C) ∈ R implies (a; id, b; id, C↓id) = (a, b, C) ∈ u(R). Idempo-
tence: u ⊆ u ◦ u by extensiveness and monotonicity, u ◦ u ⊆ u because subsequent contextualization first
under d1 then d2 can also be done in a single step of d1;d2.
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CBUC if and only if R ⊆ fC(u(R)) (i.e. R is a post-fixpoint of fC ◦ u). This can be seen by
expanding the definitions of fC and u on the right-hand side of (a, b, C) ∈ R =⇒ (a, b, C) ∈
fC(u(R)), which results in exactly the definition of a CBUC. y

We now show that this up-to technique is useful or sound (Definition 5.1), that is, all
elements recognized as bisimilar by the up-to technique are actually bisimilar [San98, PS11b].
In fact, we prove the stronger result that the technique is fC-compatible, which (as outlined
in Subsection 4.2) not only implies soundness, but also makes it possible to combine our
technique with other fC-compatible up-to techniques.

Theorem 5.9 (u is fC-compatible). Let R be a conditional relation. Then it holds that
u(fC(R)) ⊆ fC(R). This implies that u(fC(R)) ⊆ fC(u(R)), i.e., u is fC-compatible.

Proof. We show that (a, b, C) ∈ u(fC(R)) implies (a, b, C) ∈ fC(R).
Within this proof, we use the following notation: Given arrows x, d, x\d indicates an

arrow such that x = x\d;d. Given a condition C, C↑d is a condition such that C = (C↑d)↓d.
• Since (a, b, C) ∈ u(fC(R)), by definition of u this means that

there exist d, a\d, b\d, C↑d such that a = a\d;d, b = b\d;d, C = (C↑d)↓d, and
(a\d, b\d, C↑d) ∈ fC(R)

• This means that

for all steps a\d
f,A−−→C a

′ there exist answering steps b\d
f,Bi−−→C b

′
i and conditions

C′i such that (a′, b′i, C′i) ∈ R and A∧ (C↑d)↓f |=
∨
i∈I(C′i ∧ Bi); vice versa for steps

of b\d
• Some of the borrowed contexts f for which this statement holds are of the shape f = d;f ′,

therefore, we also know that

for all steps a\d
d;f ′, A−−−−→C a′ there exist answering steps b\d

d;f ′, Bi−−−−→C b′i and
conditions C′i such that (a′, b′i, C′i) ∈ R and A ∧ (C↑d)↓d;f ′ |=

∨
i∈I(C′i ∧ Bi); vice

versa for steps of b\d
• Applying Lemma 3.12 and Theorem 3.6 to this statement, we obtain:

for all steps a\d;d
f ′, A−−−→C a′ there exist answering steps b\d;d

f ′, Bi−−−→C b′i and
conditions C′i such that (a′, b′i, C′i) ∈ R and A∧ ((C↑d)↓d)↓f ′ |=

∨
i∈I(C′i ∧ Bi); vice

versa for steps of b\d;d
• Applying the equalities for the variables annotated with \d and ↑d, we get:

for all steps a
f ′, A−−−→C a

′ there exist answering steps b
f ′, Bi−−−→C b

′
i and conditions C′i

such that (a′, b′i, C′i) ∈ R and A∧ (C)↓f ′ |=
∨
i∈I(C′i ∧Bi); vice versa for steps of b

This is exactly the definition of (a, b, C) ∈ fC(R). Therefore, u(fC(R)) ⊆ fC(R).
Since R ⊆ u(R) due to extensiveness of u, we can infer fC(R) ⊆ fC(u(R)) since fC is

monotone. Combined, this gives us fC-compatibility of u.

Note the stronger result (u(fC(R)) ⊆ fC(R) instead of just u(fC(R)) ⊆ fC(u(R))) can
intuitively be explained as follows: since fC quantifies over all context steps and the size of
the borrowed context f is not bounded, this means the successor triples are already closed
under contextualization.

From compatibility, we obtain as a corollary that this up-to technique is useful or sound,
that is, all elements recognized as bisimilar by the up-to technique are actually bisimilar
(see Lemma 5.3 and [San98, PS11b]).
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Theorem 5.10 (Characterization of CBUC). A conditional relation R satisfies Defini-
tion 5.7 (i.e. it is a CBUC) if and only if its closure under contextualization u(R) is a
conditional bisimulation.

Proof. R satisfying Definition 5.7 is, by Remark 5.8, equivalent to R being a post-fixpoint
of fC ◦ u, i.e., R ⊆ fC(u(R)). Also, R satisfying the definition from Theorem 5.10, i.e., u(R)
being a conditional bisimulation, is, by Remark 4.12, equivalent to u(R) ⊆ fC(u(R)).

Since u is fC-compatible and u is a closure, we can instantiate Lemma 5.6 to obtain
the desired result. Hence, every relation that our initial definition recognizes as a CBUC
indeed represents a conditional bisimulation (when closed under contextualization), and all
relations that should intuitively be a CBUC are recognized by Definition 5.7 as such.

Remark 5.11. From Theorem 5.10 we easily obtain as a corollary that every CBUC R is
contained in ◦∼C (R ⊆ ◦∼C), i.e. all elements contained in some CBUC are indeed conditionally
bisimilar. This follows from the fact that R ⊆ u(R) (set d = idJ) and u(R) ⊆ ◦∼C (since by
Theorem 5.10 u(R) is a conditional bisimulation). y

Note that while Theorem 5.10 gives a more accessible definition of CBUCs than Defini-
tion 5.7, the latter definition is more amenable to mechanization, since R might be finite,
whereas u(R) is infinite.

5.3. Conditional Bisimilarity Up-To Context with Representative Steps. CBUCs
allow us to represent certain infinite bisimulation relations in a finite way. For instance,
we can use a finite CBUC in Example 4.18. However, automated checking if two agents
are conditionally bisimilar — which can be done by incrementally extending a conditional
bisimulation relation — is still hard, even using up-to context, since up-to context can only
reduce the size of the relation itself. However, for just a single triple, there are infinitely
many context steps to be checked.

For conditional bisimulations, we introduced an alternative definition using representa-
tive steps (Definition 4.13) and showed that it yields an equivalent notion of conditional
bisimilarity (Theorem 4.17). We will show that the same approach can be used for CBUCs.

Definition 5.12 (CBUC with representative steps). A CBUC with representative steps is a
conditional relation R such that the following holds: for each triple (a, b, C) ∈ R and each

representative step a
f,A−−→R a

′, there are answering steps b
f,Bi−−→C b

′
i and conditions C′′i such

that for each answering step there exists (a′′i , b
′′
i , C′′i ) ∈ R with a′ = a′′i ;ji, b

′
i = b′′i ;ji for some

arrow ji per answering step, and additionally A ∧ C↓f |=
∨
i∈I
(
C′′i↓ji ∧ Bi

)
; vice versa for

steps b
f,B−−→R b

′.

Remark 5.13. A CBUC with representative steps can also be defined based on the closure
under contextualization u: A conditional relation R satisfies Definition 5.12 if and only if
R ⊆ fR(u(R)) (i.e. R is a post-fixpoint of fR ◦ u). Analogously to Remark 5.8, this can be
seen by expanding definitions. y

To show that CBUCs defined using context and representative steps are essentially
equivalent, we first relate the underlying functions by showing fR ⊆ fC ◦ u.6 Afterwards, we
use that result to show that the two up-to techniques are equivalent.

6Intuitively, fR guarantees only that representative steps are answered by context steps and that their
successors are related again, but fC requires this for non-representative steps as well, so generally fR * fC .

Therefore we contextualize using u to let fC access the non-representative successors as well.
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Lemma 5.14. fR(R) ⊆ fC(u(R)).

Proof. Let (a, b, C) ∈ fR(R) be given, which by its definition means that:

for all representative steps a
f̂,A−−→R â′ (1) there are answering steps b

f̂, B̂i−−−→C b̂′i
and conditions Ĉ′i (2) such that (â′, b̂′i, Ĉ′i) ∈ R and (3)A ∧ C↓f̂ |=

∨
i∈I(Ĉ′i ∧ B̂i);

vice versa for representative steps of b

We show that this implies (a, b, C) ∈ fC(u(R)). Consider a context step a
f,A−−→C a

′. This
step is not necessarily a representative step. According to Remark 3.11, this context step

can be reduced to a representative step a
f̂, R↓ĉ−−−−→R â′, where R is the condition of the rule

used for the step, c is the reactive context of the context step, and there exists ĝ such that
f̂ ;ĝ = f, ĉ;ĝ = c, â′;ĝ = a′, with f̂ , ĉ, â′ referring to the representative step.

Since (a, b, C) ∈ fR(R), we know that answering steps for our representative step exist.
From that we can conclude the following:

(1) b
f̂, B̂i−−−→C b̂′i implies, according to Lemma 4.15, that a step b

f̂ ;ĝ, B̂i↓ĝ−−−−−→C b̂′i;ĝ, equivalently,

b
f, B̂i↓ĝ−−−−→C b̂′i;ĝ, is possible. We select Bi := B̂i↓ĝ, b′i := b̂′i;ĝ, C′i := Ĉ′i↓ĝ for the answering

steps of b using borrowed context f .

(2) (â′, b̂′i, Ĉ′i) ∈ R implies (â′;ĝ, b̂′i;ĝ, Ĉ′i↓ĝ) = (a′, b′i, C′i) ∈ u(R).

(3) Using the rules of Theorem 3.6 we get:

R↓ĉ ∧ C↓f̂ |=
∨(
Ĉ′i ∧ B̂i

)
⇒ (R↓ĉ)↓ĝ ∧

(
C↓f̂
)
↓ĝ
|=
∨(
Ĉ′i↓ĝ ∧ B̂i↓ĝ

)
⇔ R↓ĉ;ĝ ∧ C↓f̂ ;ĝ |=

∨(
Ĉ′i↓ĝ ∧ B̂i↓ĝ

)
⇔ R↓c ∧ C↓f |=

∨(
C′i ∧ Bi

)
For context steps, A |= R↓c holds, so we have A ∧ C↓f |= R↓c ∧ C↓f |=

∨
(C′i ∧ Bi).

Analogously, we can construct answering steps for b
f,B−−→C b

′. To summarize, for the given
(a, b, C) ∈ fR(R) we have concluded that

for all context steps a
f,A−−→C a

′ (1) there exist answering steps b
f,Bi−−→C b

′
i and

conditions C′i (2) such that (a′, b′i, C′i) ∈ u(R) and (3) A∧C↓f |=
∨
i∈I(C′i∧Bi);

vice versa for context steps of b

which is exactly the definition of (a, b, C) ∈ fC(u(R)).

Corollary 5.15. It holds that fC ◦ u = fR ◦ u.

Proof.

• (fC ◦ u ⊆ fR ◦ u):

fC ⊆ fR =⇒ fC ◦ u ⊆ fR ◦ u
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• (fR ◦ u ⊆ fC ◦ u):

(Lemma 5.14) fR ⊆ fC ◦ u
=⇒ fR ◦ u ⊆ fC ◦ u ◦ u

(u idempotent) ⇐⇒ fR ◦ u ⊆ fC ◦ u

Theorem 5.16. A conditional relation is a CBUC (Definition 5.7) if and only if it is a
CBUC with representative steps (Definition 5.12).

Proof. R satisfying Definitions 5.7 and 5.12 means that R is a post-fixpoint of fC ◦ u or
fR ◦ u, respectively. By Corollary 5.15, fC ◦ u = fR ◦ u, therefore post-fixpoints of one are
also post-fixpoints of the other.

Observe that this is a stronger result than for normal conditional bisimilarity: for
that, we know that the bisimilarities are the same (νfC = νfR) but the bisimulation
functions are not (fC 6= fR). On the other hand, using up-to techniques, the difference
between the bisimulation functions themselves disappears (i.e. fC ◦u = fR ◦u instead of just
ν(fC ◦ u) = ν(fR ◦ u)). This results from Lemma 5.14 and can be explained intuitively as
follows: the function fR requires that every representative step can be answered by a context
step and the resulting pair is in R, while fC requires such an answer for all context steps.
This means that fC(R) ⊆ fR(R) as explained earlier. The pairs potentially missing in fC(R)
resulted from larger-than-necessary contexts and hence fR did not require them. Using u,
however, the relation is contextualized beforehand, using all (even non-representative)
contexts, and hence makes these triples “available” to fC .

Note that even though the difference between the two variants disappears, using repre-
sentative steps with CBUCs still is advantageous because it typically results in a finitely
branching transition system. This can be seen in the continuation of our example:

Example 5.17. Consider again Examples 4.7 and 4.18. We have previously seen that it
is possible to repeatedly borrow a message on the left-hand node and transfer it to the
right-hand node, which leads to more and more received messages accumulating at the
right-hand node. We now show that the two types of channels are conditionally bisimilar by
showing that R =

{
(∅ → rel ← , ∅ → unr ← , An)

}
is a CBUC, i.e. it satisfies

Definition 5.12. We consider the same steps as in Example 4.18:

• The graph rel can do a step using rule PR by borrowing a message on the left
node, with environment condition A = true, and reduces to a′ = ∅ → rel m ← .
Then, unr can answer this step using PU under Bi = An (no noise) and reacts to
b′i = ∅ → unr m ← .

Now set ji = → m ← , i.e. we consider the m-loop on the right node as
irrelevant context. Then, using a′′i = ∅ → rel ← , b′′i = ∅ → unr ← , C′′i = An
we have a′ = a′′i ;ji, b

′
i = b′′i ;ji, and we find that the triple without the irrelevant context

ji, that is (a′′i , b
′′
i , C′′i ) (which happens to be the same as our initial triple), is contained in

R. As before, the implication A ∧ C↓f |=
∨
i∈I (C′′i ∧ Bi) holds.

• Symmetrically, unr borrows a message on the left node and reacts to unr m under
A = An. Analogously to the previous case and to Example 4.18, rel answers this step,
using C′′i = An and ji = → m ← .
• Again, the remaining representative steps can be proven in an analogous way.

Figure 10 shows a comparison of the necessary steps with and without using up-to techniques.
Note that instead of working with an infinite bisimulation, we now have a singleton. y
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Finally, we show compatibility of fR and summarize the theorems of this section.

Corollary 5.18 (u is fR-compatible). Let R be a conditional relation. Then it holds that
u(fR(R)) ⊆ fR(u(R)), i.e., u is fR-compatible.

Proof. By transitivity from previous results:

(Lemma 5.14) fR ⊆ fC ◦ u
=⇒ u ◦ fR ⊆ u ◦ fC ◦ u

(u ◦ fC ⊆ fC by Theorem 5.9) ⊆ fC ◦ u
(by Corollary 5.15) = fR ◦ u

Figure 12 summarizes the known inclusions and equalities that were proven throughout
this section.

u ◦ fCfC

fR

u ◦ fR

fC ◦ ufR ◦ u u ◦ fC ◦ u

5.9
∀→C ⇒ ∀→R / 4.14

5.14
(5.9 or
trans.)

fC ⊆ fR

5.15

fR ⊆ fC ◦ u

u ◦ fC ⊆ fC

id ⊆ u

id ⊆ u

id ⊆ u

Figure 12: Known relations (X → Y indicates X ⊆ Y )

Note that using the results of this section, it is possible to provide alternative proofs of
various theorems of Section 4, in particular:

• Remark 4.8 ( ◦∼C is closed under condition strengthening): We can define the function
str(R) := {(a, b, C) | (a, b, C′) ∈ R, C |= C′} and show that str is fC-compatible by showing
(a, b, C) ∈ str(fC(R)) =⇒ (a, b, C) ∈ fC(str(R)). This can be done by expanding the
definitions of str, fC in (a, b, C) ∈ str(fC(R)) and rewriting it to match the definition of
(a, b, C) ∈ fC(str(R)). Then, we can apply Proposition 5.5.
• Lemma 4.11 part 4 ( ◦∼C is closed under contextualization): Restated using u, fC (note

that ◦∼C = νfC), we have to show that u(νfC) ⊆ νfC . This follows immediately from
fC-compatibility and Proposition 5.5.
• Lemma 4.16 ( ◦∼R is closed under contextualization): As for ◦∼C , but use fR instead of fC .
• Theorem 4.17 ( ◦∼C = ◦∼R): We show that νfC = νfR. For this we use the fact that
fR ◦ u = fC ◦ u (Corollary 5.15) and therefore also ν(fR ◦ u) = ν(fC ◦ u). u is
fC-compatible (Theorem 5.9), so by Lemma 5.3, ν(fC ◦ u) = νfC . Similarly, u is fR-
compatible (Corollary 5.18) and therefore ν(fR ◦ u) = νfR. Combining these results, we
have ◦∼C = νfC = ν(fC ◦ u) = ν(fR ◦ u) = νfR = ◦∼R.
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6. Comparison and An Alternative Characterization

6.1. An Equivalent Characterization Based on Environment Steps. We will now
give an alternative characterization of conditional bisimilarity, in order to justify Defini-
tions 4.3 and 4.13. This alternative definition is more elegant since it characterizes ◦∼C as
the largest conditional congruence that is a conditional environment bisimulation. On the
other hand, this definition is (like conditional bisimilarity, as described in Example 4.18)
not directly suitable for mechanization, since the underlying transition system is not finitely
branching.

In [HK12], environment steps, which capture the idea that a reaction is possible under
some passive context d, have been defined to obtain a more natural characterization of
saturated bisimilarity. Unlike the borrowed context f , the passive context d does not
participate in the reaction itself, but we refer to it to ensure that the application condition
of the rule holds.

Definition 6.1 (Environment step [HK12]). Let S be a conditional reactive system and let

a : 0→ K, a′ : 0→ K, d : K → J be arrows. We write a
d
 a′ whenever there exists a rule

(`, r,R) ∈ S and an arrow c such that a = `;c, a′ = r;c and c;d |= R.

Environment steps and context steps are related: they can be transformed into each other.
Furthermore saturated bisimilarity is the coarsest bisimulation relation over environment
steps that is also a congruence [HK12]. We now give a characterization of conditional
bisimilarity based on environment steps:

Definition 6.2 (Conditional environment congruence). A conditional relation R is a condi-

tional environment bisimulation if whenever (a, b, C) ∈ R and a
d
 a′ for some d |= C, then

b
d
 b′ and (a′, b′, C′) ∈ R for some condition C′ such that d |= C′; vice versa for b

d
 b′. We

denote by ◦∼E the largest conditional environment bisimulation that is also a conditional
congruence and call it conditional environment congruence.

For the proof of Theorem 6.4, we need the following lemma:

Lemma 6.3 [HK12, Lemma 22]. Given a context step a
f,A−−→C a

′ and a passive context d

such that d |= A, we have an environment step a;f
d
 a′. Conversely, given an environment

step a;f
d
 a′, there exists a condition A such that d |= A and we have a context step

a
f,A−−→C a

′.

Theorem 6.4. Conditional bisimilarity and conditional environment congruence coincide,
that is, ◦∼C = ◦∼E.

Proof. In both parts we show only how steps of a can be answered by b, the other direction
can be shown analogously.

• ( ◦∼C ⊆ ◦∼E):
We show that ◦∼C is a conditional environment bisimulation. Together with the fact that
◦∼C is a conditional congruence (Lemma 4.11), we obtain the result that ◦∼C is contained
in conditional environment congruence.

Let (a, b, C) ∈ ◦∼C and a
d
 a′ for some d |= C. We rewrite a

d
 a′ as a; id

d
 a′ and,

using Lemma 6.3, obtain a context step a
id, A−−−→C a

′ for some condition A such that d |= A.
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Since (a, b, C) ∈ ◦∼C , there exist answering steps b
id, Bi−−−→C b

′
i such that (a′, b′i, C′i) ∈

◦∼C
for some C′i and A ∧ C↓id |=

∨
i∈I (Bi ∧ C′i). Since d satisfies both A and C ≡ C↓id, there

exists an index i such that d |= Bi ∧ C′i and (a′, b′i, C′i) ∈
◦∼C . This directly gives us the

answering step required by conditional environment bisimilarity: Since d |= Bi, using

Lemma 6.3 we rewrite the corresponding context step b
id, Bi−−−→C b

′
i to an environment step

b; id = b
d
 b′i. Setting b′ := b′i, C′ := C′i, we obtain the required triple (a′, b′, C′) ∈ ◦∼C .

• ( ◦∼E ⊆ ◦∼C):

We show that ◦∼E is a conditional bisimulation. Let (a, b, C) ∈ ◦∼E and a
f,A−−→C a

′.
Let d be some context. If d 6|= A ∧ C↓f , we can easily satisfy Definition 4.3 by letting b

answer with an empty set of answering steps. We therefore assume that d |= A ∧ C↓f .

Since d |= A, using Lemma 6.3 we rewrite a
f,A−−→C a′ to a;f

d
 a′. As ◦∼E is, by

definition, a conditional congruence, (a, b, C) ∈ ◦∼E implies (a;f, b;f, C↓f ) ∈ ◦∼E .

Since (a;f, b;f, C↓f ) ∈ ◦∼E , a;f
d
 a′ and d |= C↓f , there exists an answering step

b;f
d
 b′d and for some condition C′d such that d |= C′d we have (a′, b′d, C′d) ∈

◦∼E .

By Lemma 6.3, b;f
d
 b′d implies b

f, Bd−−−→C b
′
d for some Bd such that d |= Bd.

Thus, whenever d |= A ∧ C↓f , there exists an answering step b
f, Bd−−−→C b′d such that

d |= Bd ∧ C′d and (a′, b′d, C′d) ∈
◦∼E . which concludes the proof of ◦∼E being a conditional

bisimulation.

Note that in the second part of the proof, we use the fact that b can reply with an infinite

set of answering steps, since the infinitely many answering steps b;f
d
 b′d might give rise to

infinitely many different Bd and accompanying C′d.
It is an open question if the proof is also possible with finitely many answering steps.

In [HK12, Theorem 23], a similar comparison of saturated bisimilarity and environment
congruence was done, although for binary relations which did not include conditions in the
relation itself. In that proof, the finiteness assumption (Fin) was used to obtain a finite set
of answering steps, which is however not possible in the presence of conditions.

6.2. Comparison to Other Equivalences. We conclude this section by considering the
binary relation ◦∼T := {(a, b) | (a, b, true) ∈ ◦∼C}, derived from conditional bisimilarity, which
is ternary. Intuitively it contains pairs (a, b), where a, b are system states that behave
equivalently in every possible context. We investigate how ◦∼T compares to other behavioural
equivalences that also check for identical behaviour in all contexts. First, we consider
saturated bisimilarity (∼C), which has been characterized in [HK12] as the coarsest relation
which is a congruence as well as a bisimilarity:

Theorem 6.5. Saturated bisimilarity implies true-conditional bisimilarity (∼C ⊆ ◦∼T ).
However, true-conditional bisimilarity does not imply saturated bisimilarity ( ◦∼T * ∼C).

Proof.

• (∼C ⊆ ◦∼T ):
Let R be a saturated bisimulation relation. Then we define R′ = R×{true} and show that
R′ is a conditional bisimulation relation. For that purpose, let some (a, b, true) ∈ R′ be

given, i.e. (a, b) ∈ R. Now assume a transition a
f,A−−→C a

′, then by the fact that (a, b) ∈ R
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we know that there exist some answering steps b
f,Bi−−→C b

′
i, i ∈ I, such that (a′, b′i) ∈ R for

all i ∈ I. By definition of R′ it follows that, for all i ∈ I, (a′, b′i, true) ∈ R′. So it remains
to show that A ∧ true↓f |=

∨
i∈I (true∧Bi). We can simplify this to A |=

∨
i∈I Bi, which

holds because R is a saturated bisimulation.

Steps b
f,B−−→C b

′ can be answered analogously.
• ( ◦∼T * ∼C):

Consider the following reactive system {RA, RB1, TB1, RB2, TB2}:

RA =
(
∅ → a ← ∅, ∅ →ea ← ∅, true∅

)
RB1 =

(
∅ → b ← ∅, ∅ → b1 ← ∅,AC

)
TB1 =

(
∅ → b1 ← ∅, ∅ → e1 ← ∅,¬AC

)
RB2 =

(
∅ → b ← ∅, ∅ → b2 ← ∅,¬AC

)
TB2 =

(
∅ → b2 ← ∅, ∅ → e2 ← ∅,AC

)
where AC =

(
∅, ∀,

{
(∅ → c ← c , trueC)

})
. An a-loop can be replaced with a

graph which allows no further steps. A b-loop can, in case the environment contains a
c-loop (AC), transition to a b1-loop, from which another transition is possible if no c-loop
is present (as this contradicts the condition of the first step, this transition can never
actually be executed). Similarly, if no c-loop is present, a transition to a b2-loop is possible
and subsequently another transition is possible if there is a c-loop.

It is easy to see that no matter which context a and b are placed into, both admit
at most one transition. Therefore, ( a , b ) ∈ ◦∼T , as witnessed by the conditional
bisimulation relation R = {( a , b , true), (ea , b1 ,AC), (ea , b2 ,¬AC)}.
For saturated bisimilarity however, the initial step of a to ea can be answered
by b with two steps as for conditional bisimilarity, and it would be required that
(ea , b1 ), (ea , b2 ) ∈ ∼C . But then, b1 can do a step (under ¬AC as indicated
by rule TB1) which ea cannot answer.

For saturated bisimilarity, if a step of a is answered by b with multiple steps, all b′i reached
in this way must be saturated bisimilar to a′ (that is, show the same behaviour even if the
environment is later changed to one which did not allow the given b′i to be reached). In
fact, it was an explicit goal in the design of saturated bisimilarity to account for external
modification of the environment.

On the other hand, for conditional bisimilarity, each b′i is only required to be conditionally
bisimilar to a′ under the condition which allowed this particular answering step — that
is, after a step, the environment is fixed (or, depending on the system, can only assume a
subset of all possible environments, cf. Definition 6.2 and Theorem 6.4).

Next, we compare ◦∼T to id-congruence, the coarsest congruence contained in bisimilarity
over the reaction relation  . It simply relates two agents whenever they are bisimilar in all
contexts, i.e. ∼id := {(a, b) | for all contexts d, a;d, b;d are bisimilar wrt. }.

Theorem 6.6. It holds that true-conditional bisimilarity implies id-congruence ( ◦∼T ⊆ ∼id).
However, id-congruence does not imply true-conditional bisimilarity (∼id * ◦∼T ).

Proof.

• ( ◦∼T ⊆ ∼id):
Given (a, b) ∈ ◦∼T , equivalently (a, b, true) ∈ ◦∼C , by Theorem 4.9 we know that for all
contexts d such that d |= true (i.e. all contexts), (a;d, b;d) is contained in a bisimulation
relation over  . This, however, is the exact requirement for (a, b) ∈ ∼id.
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• (∼id * ◦∼T ):
Consider the example presented in Remark 4.10: The graphs A and B are bisimilar under
all contexts (i.e., (a, b) ∈ ∼id), however, they are not conditionally bisimilar under true
(i.e., (a, b) /∈ ◦∼T ).

Intuitively, true-conditional bisimilarity allows to observe whether some item is consumed
and recreated (by including it in both sides of a rule) or whether it is simply required (using
an existential rule condition, cf. Theorem 6.6). On the other hand, id-congruence does not
recognize this and simply checks whether reactions are possible in the same set of contexts.

Hence we have ∼C ( ◦∼T ( ∼id, which implies that checking for identical behaviour in
all contexts using conditional bisimilarity gives rise to a new kind of behavioural equiva-
lence, which does not allow arbitrary changes to the environment (as ∼C does), yet allows
distinguishing borrowed and passive context (which ∼id does not).

7. Conclusion, Related and Future Work

The conditions that we studied in this paper are also known under the name of nested
conditions or graph conditions and were introduced in [Ren04], where their equivalence
to first-order logic was shown. They were studied more extensively in [HP09, Pen09] and
generalized to reactive systems in [BCHK11]. In fact, the related notion of Q-trees was
introduced earlier in [FS90].

As stated earlier, there are some scattered approaches to notions of behavioural equiva-
lence that can be compared to conditional bisimilarity. The concept of behaviour depend-
ing on a context is also present in Larsen’s PhD thesis [Lar86]. There, the idea is to embed an
LTS into an environment, which is modelled as an action transducer, an LTS that consumes
transitions of the system under investigation — similar to CCS synchronization. Larsen
then defines environment-parameterized bisimulation by considering only those transitions
that are consumed in a certain environment. In [HL95], Hennessy and Lin describe symbolic
bisimulations in the setting of value-passing processes, where Boolean expressions restrict the
interpretations for which one shows bisimilarity. Instead in [BBB02], Baldan, Bracciali and
Bruni propose bisimilarity on open systems, specified by terms with a hole or place-holder.
Instead of imposing conditions on the environment, they restrict the components that are
filling the holes.

In [Fit02], Fitting studies a matrix view of unlabelled transition systems, annotated
by Boolean conditions. In [BKKS17] we have shown that such systems can alternatively
be viewed as conditional transition systems, where activation of transitions depends on
conditions of the environment and one can state the bisimilarity of two states provided that
the environment meets certain requirements. This view is closely tied to featured transition
systems, which have been studied extensively in the software engineering literature. The
idea here is to specify system behaviour dependent on the features that are present in the
product (see for instance [CCP+12] for simulations on featured transition systems).

Our contribution in this paper is to consider conditional bisimilarity based on contextu-
alization in a rule-based setting. That is, system behaviour is specified by generic rewriting
rules, system states can be composed with a context specifying the environment and we
impose restrictions on those contexts. By viewing both system states and contexts as arrows
of a category, we can work in the framework of reactive systems à la Leifer and Milner and
define a general theory of conditional bisimilarity. While in [HK12] conditions were only used
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to restrict applicability of the rules and bisimilarity was checked for all contexts, we here
additionally use conditions to establish behavioural equivalence only in specific contexts.

As future work we want to take a closer look at the logic that we used to specify
conditions. Conditional bisimilarity is defined in a way that is largely independent of the
kind of logic, provided that the logic supports Boolean operators and shift. It is unclear and
worth exploring whether the logic considered by us is expressive enough to characterize all
contexts that ensure bisimilarity of two given arrows. This also affects the question whether
or not infinitely many answering steps are required in Theorem 6.4.

Furthermore, it is an open question whether there is an alternative characterization of
the id-congruence of Theorem 6.6 that is amenable to mechanization.

We have already implemented label derivation and bisimulation checking in the borrowed
context approach, see for instance [Nol12], and successfully applied it to a system with
message-passing rules similar to the ones given in Example 4.18, however without conditions
in either the rules or the bisimulation relation. Our aim is to also obtain an efficient
implementation for the scenario described in this paper. Note that our conditions subsume
first-order logic [BCHK11] and hence in order to come to terms with the undecidability of
implication we have to resort to simpler conditions or use approximative methods.

Another natural question is whether our results can be stated in a coalgebraic setting,
since coalgebra provides a generic framework for behavioural equivalences. We have already
studied a much simplified coalgebraic version of conditional systems (without considering
contextualization) in [ABH+12], using coalgebras living in Kleisli categories. Reactive
systems can also be viewed as coalgebras (see [Bon08]). However, a combination of these
features has not yet been considered as far as we know.

Another direction for future research are further optimizations in terms of the up-to
context technique. Note, that even bisimulations up-to context can still be infinite in size,
which is somehow unavoidable due to undecidability issues, so further optimizations should
be investigated. Furthermore we plan to integrate this method with other kinds of up-to
techniques such as up-to bisimilarity, which should be easy due to the integration into the
lattice-theoretical framework.

Acknowledgements: We would like to thank the anonymous reviewers of the conference
version of the paper for many useful hints, in particular for suggesting to integrate our
contribution into the lattice-theoretical view of up-to functions.
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Appendix A. Supplementary Material on Adhesive Categories

We recall here the definition of adhesive categories [LS05]. We do not provide any introduction
to basic categorical constructions such as products, pullbacks and pushouts, instead referring
the reader to Sections 5 and 9 of [BW99].

Definition A.1 (adhesive categories). A category is called adhesive if

• it has pushouts along monos;
• it has pullbacks;
• pushouts along monos are Van Kampen (vk) squares.

Referring to Figure 13, a VK square is a pushout such as (i), such that for each commuting
cube as in (ii) having (i) as bottom face and the back faces of which are pullbacks, the front
faces are pullbacks if and only if the top face is a pushout.
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Figure 13: A pushout square (i), and a commutative cube (ii).

The motivation for using adhesive categories is that they are a suitable categorical
framework for reasoning one rewriting of abstract objects, in the spirit of graph rewriting.
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