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Abstract. A σ-frame is a poset with countable joins and finite meets in which binary
meets distribute over countable joins. The aim of this paper is to show that σ-frames,
actually σ-locales, can be seen as a branch of Formal Topology, that is, intuitionistic and
predicative point-free topology. Every σ-frame L is the lattice of Lindelöf elements (those
for which each of their covers admits a countable subcover) of a formal topology of a
specific kind which, in its turn, is a presentation of the free frame over L. We then give a
constructive characterization of the smallest (strongly) dense σ-sublocale of a given σ-locale,
thus providing a “σ-version” of a Boolean locale. Our development depends on the axiom
of countable choice.

Introduction

It is well known that the set B(H) = {x ∈ H | x = −− x} of stable elements of a complete
Heyting algebra H is a complete Boolean algebra. Actually B(H) is a quotient of H in the
category of frames. From the point of view of the category of locales, this means that every
locale L contains a Boolean sublocale B(L), which can be characterized as the smallest
dense sublocale of L.

Sambin introduced the notion of an overlap algebra (see [CS10, Cir13]) as a “positive”
alternative to that of a complete Boolean algebra. One of the main advantages of his
approach is that powersets are examples of overlap algebras (in fact they are precisely the
atomic ones), although they are not Boolean, constructively.

It has recently turned out [Cir16] (see also [CC20]) that overlap algebras can be under-
stood as the smallest strongly dense sublocales (in the sense of [Joh89]) of overt locales. The
same statement can be given a predicative interpretation by considering a formal topology
(S,C, Pos) in place of an overt locale L.

The notion of a σ-locale is a natural generalization of that of a locale: the underlying
lattice is a σ-frame, rather than a frame, that is, it is required to have just countable, rather
than arbitrary, joins. As shown in [Sim12], σ-locales play an important role in the point-free
approach to measure theory and probability.
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The construction of B(L) from L can be mimicked in the case of σ-locales [Mad91]. In
that case, B(L) is still the smallest dense σ-sublocale of L; however, it is not Boolean any
longer, in general. The σ-frames of the form B(L) are called d-reduced (“d” for “dense”)
in [Mad91].

One of our aims is to give a positive account of d-reduced σ-locales. In order to obtain
this, we work with σ-locales which are overt (in a suitable sense). The positivity predicate
Pos of an overt σ-locale L is then used to define a positive version of the codense congruence
relation on L [Mad91], which corresponds to the smallest dense σ-sublocale B(L) of L.
Actually, because of the positive nature of our definition, the notion of density involved here
is intuitionistically stronger than the usual one (in accordance with what happens in the
case of locales, as mentioned above).

Our arguments are always intuitionistically valid and predicative; but we need the axiom
of countable choice. In fact, our results could be formalized in the extensional level of the
so-called Minimalist Foundations [MS05, Mai09] augmented with countable choice. In such a
foundational framework, Formal Topology is the “native” way to develop point-free topology.

The paper is organized as follows. In Section 1 we recall some constructive results
about the notion of a countable set. Section 2 deals with σ-frames and σ-locales within the
framework of Formal Topology. Finally, Section 3 presents the construction of the smallest
strongly dense σ-sublocale of an overt σ-locale.

1. A constructive look at countable sets

By a countable set we intuitively mean a set S which is either (empty or) finite or countably
infinite, that is, in bijection with the set N of natural numbers. Within usual foundations
(such as ZF with countable choice ACω), this is equivalent to saying that a set is either
empty or enumerable in the sense that there exists an onto map N� S. This case distinction
looks inappropriate for a good constructive definition. Following a quite established tradition
(see for instance [BL12]), we give the following (seemingly tricky but, as we will see, definitely
convenient) definition.

Definition 1.1. A set S is countable if there exists a surjection α : N� S + {⊥}. Equiva-
lently, S is countable if there exists a map α : N→ S + {⊥} such that S ⊆ α[N].

Here S + {⊥} is the disjoint union (or sum) of S and {⊥}, and α[N] is the image of N along
α. For the sake of notational simplicity, we do not distinguish between an element of S
and its copy inside S + {⊥}; otherwise, we should have written ∀a ∈ S.∃n ∈ N.α(n) = i(a),
where i is the canonical injection of S into S + {⊥}, instead of the more readable S ⊆ α[N].

Remark 1.2. The term “Constructive Mathematics” refers, as it is well known, to a variety of
foundational approaches ranging from intuitionistic type theories to constructive set theories,
from topos valid mathematics to constructive mathematics à la Bishop. Pragmatically, we
shall try to keep ourselves as neutral as possible with respect to the different foundational
choices and hence to provide definitions and proofs in such a way that they remain valid
and meaningful within virtually any foundations. In this paper this would be possible only
up to a certain extent, as we shall need the Axiom of Countable Choice ACω

∀n ∈ N.∃x ∈ X.R(n, x) =⇒ ∃α : N→ X.∀n ∈ N.R(n, α(n))

for every set X and every relation R ⊆ N×X. Apart from this, our position automatically
forces us to abandon the so-called Law of Excluded Middle (LEM), the full Powerset Axiom
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(PA), and the full Axiom of Choice (AC). Also, we will have to consider general collections
which cannot be assumed to be sets, an important example being powersets. Of course, only
a formal theory can clarify what is precisely meant by a set. Here we just need the existence
of the set of natural numbers together with its initial (finite) segments, and we need the
class of sets to be closed under disjoint union, exponentiation and quotients. If asked for a
concrete theory to be assumed as a foundations, we would suggest the (extensional level of
the) Minimalist Foundation [Mai09, MS05] augmented with ACω.

A subset D ⊆ S is detachable if there exists an operation χD : S → 2 (the characteristic
function of D), where 2 is the set {0, 1} of Boolean values, such that x ∈ D ⇔ χD(x) = 1.

Proposition 1.3. A set S is countable if and only if there exists a surjective map D � S
with D a detachable subset of N.

Proof. Assume that S is countable and that α : N→ S + {⊥} is the “evidence” of that (as
required by the definition). Define D = {n ∈ N | α(n) ∈ S}, which is detachable (because
one can decide to which part of a disjoint union an element belongs). The restriction of α to
D is a surjection onto S.

Vice versa, given g : D � S, define α(n) as either g(n) or ⊥ according to whether n
belong to D or not (that is, according to whether χD(n) is 1 or 0).

Such a characterization has in fact been taken as a definition in [BR87]. Classically, of
course, every set of natural numbers is detachable and so the previous proposition says just
that S is countable if and only if its cardinality is not greater than ℵ0.

Lemma 1.4. Every detachable subset of a countable set is countable.

Proof. Let α : N → S + {⊥} be such that S ⊆ α[N], and let X be a detachable subset of
S. Define β : N → S + {⊥} as follows: put β(n) = α(n) if α(n) ∈ X, and put β(n) = ⊥
otherwise. Clearly S ∩ β[N] = X.

Note that there cannot be a general way to decide whether a countable set is inhabited
or not: this would imply the Limited Principle of Omniscience LPO (see Remark 1.6 below).
For a Brouwerian counterexample, consider the set of even numbers greater than 4 which
are not the sum of two odd primes: it is detachable, hence countable by Lemma 1.4, but we
still do not know if it is empty.

1.1. The set of countable subsets. Given a set S, a subset X ⊆ S is a countable set if
and only if there exists α : N→ S + {⊥} such that X = S ∩ α[N]. We write Pω1(S) for the
collection of all countable subsets of S. Clearly we have

Pω1(S) ∼= (S + {⊥})N/ ∼
where α ∼ β means S ∩ α[N] = S ∩ β[N]. Hence Pω1(S) is a set (it is a quotient of a
set).1 Note that the set of (Kuratowski-)finite subsets of S (see, for instance, [CS08]) can be
identified with a subset of Pω1(S).

A set S has a decidable equality if the diagonal {(a, a) | a ∈ S} is a detachable subset
of S × S.

Proposition 1.5. For every set S, Pω1(S) is closed under countable unions. And if equality
in S is decidable, then Pω1(S) is closed under binary intersections.

1On the contrary, we do not assume that P(S), the collection of all subsets of S, is a set.
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Proof. Let {Xi | i ∈ I} be a countable family of countable subsets of S. So there exists
α : N → I + {⊥} such that I ⊆ α[N]. For each i ∈ I, we choose (by ACω) a map
βi : N → S + {⊥} such that Xi = S ∩ βi[N]. We want to check that

⋃
i∈I Xi is countable.

Indeed, it is enumerated by the map γ : N→ S + {⊥} defined as follows. First, by means
of a suitable (recursive) pairing function, we identify N with N× N. Second, we define the
image of the pair (n,m) to be βα(n)(m) if α(n) ∈ I, and ⊥ otherwise.

As for the second part of the statement, note that Pω1(S) is closed under binary
intersections if and only if {a} ∩ {b} is countable for every a, b ∈ S. Indeed, given two
countable subsets Xi = {ai,n | n ∈ Di}, i = 1, 2, their intersection X1 ∩X2 can be written
as the countable union

⋃
n∈D1

⋃
m∈D2

({a1,n} ∩ {a2,m}). Now if equality is decidable, then
{a} ∩ {b} is either empty or a singleton, and hence it is countable.

The special case Pω1(1), where 1 = {0}, is sometimes written Σ; it is a subset of
the collection Ω of all truth values (that is, the collection P(1) of all subsets of 1). In
fact, an element of Σ can be identified with (the truth value of) a proposition of the form
∃n.[α(n) = 0], for some α : N→ 1 + {⊥}. Equivalently, an element of Σ can be thought of
as (the truth value of) the proposition “D is inhabited”, for some detachable D ⊆ N. So Σ
is precisely what is known as the Rosolini dominance [Ros86]; it is the set of “open” (or
“semi-decidable”) truth values in Synthetic Topology [BL12].

Remark 1.6. Classically, of course, Σ = 2. Constructively, Σ = 2 is equivalent to requiring
that every p ∈ Σ is either inhabited or empty; and this is equivalent to LPO, that is, the
assertion ∀f : N → 2.(∃n ∈ N.f(n) = 0 ∨ ∀n ∈ N.f(n) = 1). Indeed, by interpreting 2 as
1 +⊥, LPO becomes ∀p ∈ Σ.(p ∨ ¬p).

The second part of Proposition 1.5 can be strengthened, as we are now going to show. We
say that a set S has a semi-decidable equality if there exists an operation ψ : S ×S → Σ
such that a = b⇐⇒ ψ(a, b) = 1.

Proposition 1.7. For every set S the following are equivalent:

(1) Pω1(S) is closed under binary intersections;
(2) equality in S is semi-decidable.

Proof. If Pω1(S) is closed under binary intersections, then we can define a map ψ : S×S → Σ
by putting ϕ(a, b) = {x ∈ 1 | a = b}. We claim that this is a countable subset of 1. By
assumption there exists D � {a} ∩ {b}, with D ⊆ N detachable, which we can compose
with the obvious map from {a} ∩ {b} onto {x ∈ 1 | a = b}.2

Vice versa, given any a, b ∈ S, we have ψ(a, b) ∈ Σ and so there exists f : N → 2
such that ψ(a, b) is the truth value of ∃n ∈ N.f(n) = 0. We can use f to define a map
α : N → S + {⊥} as follows: we put α(n) = a(= b) if f(n) = 0 and α(n) = ⊥ otherwise.
Clearly S ∩ α[N] = {a} ∩ {b}.

Finally, note that Pω1(S) has a largest element if and only if S itself is countable.

Remark 1.8. For future reference, note that the statement “W is inhabited” for W ∈ Pω1(S)
can be seen as an element of Σ. Indeed, if W = {ai | i ∈ D} for some detachable D ⊆ N,
then “W is inhabited” is equivalent to “D is inhabited”.

2Given any set S, there exists precisely one map from S to the terminal set 1 = {0}. Such a map factorizes
via its image, which is just {x ∈ 1 | S is inhabited}.
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2. σ-frames in Formal Topology

A suplattice is a partially ordered collection (P,≤) with all set-indexed joins (hence a
bottom element). Here P need not be a set. A base for P is a subset S ⊆ P such that, for
every p ∈ P , (i) {a ∈ S | a ≤ p} is a set and (ii) p =

∨
{a ∈ S | a ≤ p}. In that case, (P,≤, S)

is called a set-based suplattice.3 All the information about (P,≤, S) can be encoded as a
pair (S,C) where aC U is a ≤

∨
U , for a ∈ S and U ⊆ S. The structure (S,C) is called a

basic cover and it is characterized abstractly by the following two properties:

(1) aC U whenever a ∈ U , and
(2) if aC U and uC V for all u ∈ U , then aC V .

Given (S,C), the suplattice P can be recovered (up to isomorphism) as a quotient P(S)/ =C,
where U =C V means ∀a ∈ S.(aC U ⇔ aC V ). A join

∨
i∈I [Ui] in P(S)/ =C is computed

as [
⋃
i∈I Ui]; in particular, [U ] ≤ [V ] if and only if ∀a ∈ U.aC V .

A frame is a suplattice with finite meets in which binary meets distribute over (set-
indexed) joins. Set-based frames correspond to a special class of basic covers called formal
covers. Actually there are a number of different ways to explicitly define the notion of a
formal cover [CMS13]; in all cases, of course, the resulting category is (dually) equivalent
to that of set-based frames. Here we prefer the following definition which corresponds to
assuming the base S to be closed under finite meets (a property that can always be assumed
for every set-based frame without loss of generality).

Definition 2.1. A formal cover is given by a basic cover (S,C) together with an inf-
semilattice structure (S,∧, 1) such that

(1) aC {1}
(2) aC U =⇒ (a ∧ b)C {u ∧ b | u ∈ U}
for all a, b ∈ S and U ⊆ S.4

Given a formal cover, binary meets in the corresponding frame P(S)/ =C are computed
as [U ] ∧ [V ] = [{u ∧ v | u ∈ U, v ∈ V }] in terms of the meet operation of S; moreover
[{1}] = [S] is the top element of the frame.

A σ-frame is a partial order with countable joins and finite meets, in which binary
meets distribute over countable joins. In this paper, we restrict our attention to σ-frames
whose carriers are sets. For instance, Pω1(S) is a σ-frame if S has semi-decidable equality
(Propositions 1.5 and 1.7) and if, at the same time, S is countable. A homomorphism of
σ-frames is a map which preserves countable joins and finite meets.

It is easy to see that Σ = Pω1(1) is initial in the category of σ-frames (actually, Σ is the
free σ-frame on no generators).

2.1. σ-coherent formal topologies. Formal covers are a powerful tool, for instance when
it comes to constructing the free frame over a given σ-frame. This is done in this section.

Let L be a σ-frame. For a ∈ L and U ⊆ L, let us put

aCL U
def⇐⇒ a ≤

∨
W for some countable subset W ⊆ U (2.1)

3A set-based suplattice has all set-indexed meets too (hence a top element) because
∧

i∈I pi is just∨
{a ∈ S | a ≤ pi for all i ∈ I}.
4A notable consequence of this definition is that a ≤ b ⇒ aC {b}; indeed a ≤ b means that a equals a ∧ b,

and a ∧ bC {b} follows from aC {1} (since 1 ∧ b equals b).
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(note that aCL {b} holds if and only if a ≤ b in L).

Proposition 2.2. For L a σ-frame, the pair (L,CL) is a formal cover.

Proof. Checking that (L,CL) is a formal cover is quite straightforward. Only one point
requires the axiom of countable choice, namely showing that if aCLU and uCLV for all u ∈ U ,
then aCL V . Indeed we have a ≤

∨
W for some countable W ⊆ U and, for each u ∈W , we

also have u ≤
∨
Wu for some countable Wu ⊆ V . So a ≤

∨
W ≤

∨
u∈W

∨
Wu =

∨⋃
u∈W Wu.

Since
⋃
u∈W Wu is a countable subset of V , we can conclude that aCL V .

The frame presented by (L,CL) is called the frame envelope of L in [Ban93]. Some
results about the frame envelope look quite elegant in the language of formal topology. For
instance, the statement that if L is compact as a σ-frame, then its envelope is compact
as a frame [Ban93] can be proved as follows.5 Assume 1CL U , that is, 1 ≤

∨
W for some

countable W ⊆ U . By compactness of L, there is a (Kuratowski-)finite K ⊆W ⊆ U such
that 1 ≤

∨
K. So 1CL K and hence (L,CL) is compact.

The frame envelope P = P(L)/ =CL is the free frame over L as a σ-frame. In general,
a frame P is the6 free frame over the σ-frame L if there exists a σ-frame homomorphism
m : L → P such that for every σ-frame homomorphism f : L → Q with Q a frame there
exists a unique frame homomorphism h : P → Q with h ◦m = f . In the case of the frame
envelope P of L, m and h are defined as m(a) = [a] and h([U ]) =

∨
a∈U f(a).

Free frames over the category of σ-frames, as constructed in the previous proposition,
can be characterized explicitly as follows.

Given a frame P , say that a ∈ P is Lindelöf [Ban93] if

a ≤
∨
X =⇒ a ≤

∨
W for some countable W ⊆ X (2.2)

for all X ⊆ P . Lindelöf elements are closed under countable joins (by ACω), but not under
finite meets, in general.

A frame P is called σ-coherent [Mad91] if

(1) its Lindelöf elements form a set7 and they are closed under finite meets (hence they form
a σ-frame), and

(2) every element of P is a (not necessarily countable) join of Lindelöf elements.

For instance, if S is countable with semi-decidable equality, then P(S) is σ-coherent and its
σ-frame of Lindelöf elements is just Pω1(S). In particular, Ω = P(1) is σ-coherent and Σ is
its σ-frame of Lindelöf elements.

The set L of Lindelöf elements of a σ-coherent frame P is a base for P . Therefore P
can be presented as a formal cover (L,C) where, as usual, aC U means a ≤

∨
U . However,

since a ∈ L is Lindelöf, aC U happens precisely when a ≤
∨
W for some countable W ⊆ U .

In other words, C is just CL as defined in the previous proposition. This immediately gives
the following result.

Proposition 2.3. For a frame P , the following are equivalent:

(1) P is σ-coherent;

5By directly interpreting the notion proposed in [Ban93] in our foundational framework, we say that a
σ-frame L is compact if, for any countable W ⊆ L, 1 =

∨
W implies that 1 =

∨
K for some Kuratowski-finite

K ⊆W .
6As usual, this must be understood up to isomorphism.
7The requirement that the Lindelöf elements form a set seems necessary in our framework.
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(2) P is the frame envelope (L,CL) of some σ-frame L, in which case L is (isomorphic to)
the σ-frame of Lindelöf elements of P ;

(3) P is the free frame over some σ-frame L.

Formal covers of the form (L,CL) are characterized, up to isomorphism, as those formal
covers which satisfy the following equation (2.3). This fact follows immediately from the
previous discussion and the next proposition.

Definition 2.4. A formal cover (S,C) is called a σ-cover if

aC U =⇒ aCW for some countable subset W ⊆ U (2.3)

for every a ∈ S and U ⊆ S.

Proposition 2.5. The frame presented by a σ-cover (S,C) is σ-coherent. The corresponding
σ-frame of Lindelöf elements is Pω1(S)/ =C.

Proof. Condition (2.3) says that [{a}] is Lindelöf for every a ∈ S (in particular the top
element [{1}] is Lindelöf). Therefore, [W ] is Lindelöf for every countable W ⊆ S (this
requires ACω). Moreover, an element [U ] is Lindelöf (if and) only if [U ] = [W ] for some
countable W . Indeed, from [U ] ≤

∨
a∈U [{a}] one gets [U ] ≤

∨
a∈W [{a}] = [W ] for some

countable W ⊆ U . So the collection of Lindelöf elements can be identified with the set
Pω1(S)/ =C.8 If W1 and W2 are countable, then {w1∧w2 | w1 ∈W1, w2 ∈W2} is countable
too (by pairing), so that Lindelöf elements are closed under binary meets.9

2.2. σ-locales as formal topologies. The previous results show that a σ-coherent frame
is essentially the same thing as a σ-frame (namely the σ-frame of its Lindelöf elements).
This suggests to present the category of σ-frames as a (non full) subcategory of the category
of frames. In order to do that, one has to consider only those frame homomorphisms which
preserve Lindelöf elements (by freeness, each σ-frame homomorphism is the restriction of a
unique frame homomorphism between the corresponding envelopes).

Here we prefer to work with the category of σ-locales, the opposite of the category
of σ-frames. (However, we make no notational distinction between a σ-locale and its
corresponding σ-frame.)

If (S1,C1) and (S2,C2) are basic covers, then a suplattice homomorphism h from
P(S2)/ =C2 to P(S1)/ =C1 (note the direction) can be presented by means of a binary
relation r ⊆ S1 × S2 such that U =C2 V ⇒ r−1U =C1 r

−1V for all U, V ⊆ S2, where
r−1Y = {x ∈ S1 | r(x, y) for some y ∈ Y }. Indeed, every such r induces a homomorphism h
given by h([Y ]) = [r−1Y ]; vice versa, given h it is sufficient to put r(x, y) iff xC1 h([{y}]).

8There is a subtlety in this proof. In the attempt to identify the collection of Lindelöf elements of a σ-cover
(S,C) with the set Pω1(S)/ =C, we can consider the inclusion of the latter into the former, which turns out
to be onto by the definition of a σ-cover. However, if we want to be able to construct the inverse mapping
from the Lindelöf elements to Pω1(S)/ =C, it seems necessary (if we want to avoid the axiom of choice) to
strengthen the definition of a σ-cover by requiring an explicit operation which computes a countable subset
W for each a ∈ S and U ⊆ S with aC U .

9Note that we are not assuming that S is countable with semi-decidable equality here, so Pω1(S) need not
be closed under finite intersections.
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Note that several relations may be used to define the same homomorphism, although the
latter construction always provides a canonical choice.10

If (S1,C1) and (S2,C2) are formal covers, a frame homomorphism from P(S2)/ =C2

to P(S1)/ =C1 corresponds to a relation r which, in addition to the previous conditions,
preserves finite meets, that is, r−1{a ∧ b} =C1 {x ∧ y | x ∈ r−1{a}, y ∈ r−1{b}} and r−1{1}
=C1 {1}.

Now if (S1,C1) and (S2,C2) are σ-covers, frame homomorphisms which preserve Lindelöf
elements correspond to relations r for which r−1{b} is countable “up to the cover” for all
b ∈ S2. Indeed, h : P(S2)/ =C2→ Pω1(S1)/ =C1 preserves Lindelöf elements if, and only if,
for every b ∈ S2, there is a countable W ⊆ S1 with h([{b}]) = [W ].

In view of the previous discussion, the following definition makes the category of σ-covers
equivalent to the category of σ-locales.

Definition 2.6. A morphism between two σ-covers (S1,C1) and (S2,C2) is a binary relation
r ⊆ S1 × S2 such that

(1) if U =C2 V , then r−1U =C1 r
−1V ;

(2) r−1{1} =C1 {1};
(3) r−1{a ∧ b} =C1 {x ∧ y | x ∈ r−1{a}, y ∈ r−1{b}};
(4) for every b ∈ S2 there is some W ∈ Pω1(S1) such that r−1{b} =C1 W ;

and two such relations r and s are equivalent, that is, they are equal as morphisms if
r−1{b} =C1 s

−1{b} for all b ∈ S2.

One can check that r−1{b} =C1 s
−1{b} for all b ∈ S2 yields r−1U =C1 s

−1U for all
U ⊆ S2. And the usual composition of relations is compatible with equality of morphisms.
We note that showing that the composition of morphisms satisfies property 4 requires ACω.

Points. The initial σ-frame Σ is a terminal σ-locale; so the σ-locales arrows from it to a
given L are the (global) points of L. In the case of locales, a point can be identified with a
completely prime filters of opens. Similarly, a point of a σ-frame L is a subset p ⊆ L such
that:

(1) 1 ∈ p;
(2) if a ∈ p and b ∈ p, then a ∧ b ∈ p;
(3) if a ∈ p and a ≤

∨
W with W ∈ Pω1(L), then w ∈ p for some w ∈W ;

(4) the truth value of a ∈ p is in Σ.11

When the category of σ-locales is embedded in the category of locales, as above, then a
point of a σ-locale L is the same thing as a point of its envelope (L,CL) under the proviso
that a ∈ p is “semi-decidable” for all a ∈ L. This justifies the following definition.

Definition 2.7. A (global) point of a σ-cover (S,C) is a subset p ⊆ S which satisfies the
following

(1) 1 ∈ p;
(2) if a ∈ p and b ∈ p, then a ∧ b ∈ P ;

10The relations of the form xC1 h([{y}]) are those which satisfy the additional property xC1 r
−1{y} iff

r(x, y). In principle, this additional property could be required in the definition of a morphism; however, the
composition of two such relations need not satisfy the same property and one needs a somehow unnatural
definition of composition. For this reason, we prefer to work with the usual composition of relations, though
in doing so we must consider relations up to a suitable equivalence.

11More mathematically, this means that {x ∈ 1 | a ∈ p} is a countable subset of 1.
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(3) if a ∈ p and aC U , then u ∈ p for some u ∈ U ;
(4) the truth value of “a ∈ p” is in Σ.

Note that a point of (S,C) as a σ-cover is, in particular, a point of (S,C) as a formal cover,
but the converse fails, in general. And a morphism between σ-covers must map points (in
this stronger sense) to points (in this stronger sense).

2.3. Inductive generation of σ-covers. There are several important cases of formal
covers which can be inductively generated. The general method is described in [CSSV03]
(see also [CMS13]). Although we are not going to give all details, the idea is to construct
C as the smallest cover which satisfies some set of “axioms” of the form a C C(a, i), for
a ∈ S and i in some given set I(a). When S is assumed to have an inf-semilattice structure,
as we always do in this paper, the cover generated by such a set of axioms is the smallest
sub-collection C ⊆ S × P(S) that satisfies the following clauses:

(1) if a ∈ U , then aC U ;
(2) if a ≤ b and bC U , then aC U ;
(3) if a ≤ b and c ∧ aC U for all c ∈ C(b, i), then aC U ;

(we refer the reader to [CSSV03, CMS13] for details).

Proposition 2.8. A cover (S,C) is a σ-cover if and only if it can be inductively generated
by means of axioms C(a, i) which are all countable.

Proof. Let (S,C) be a σ-cover, put I(a) = {W ∈ Pω1(S) | a CW} and C(a,W ) = W for
W ∈ I(a), and let C′ be the cover generated by these axioms. We claim that C = C′.
Clearly C′ is contained in C because C′ is the smallest cover satisfying the axioms, but C
satisfies them as well. Also, C is contained in C′; for if aC U , then aCW ⊆ U for some
countable W ; so W ∈ I(a) and hence aC′ C(a,W ) = W ⊆ U .

Vice versa, let (S,C) be inductively generated with all C(a, i)’s countable. Assume
aC U ; we must show that aCW for some countable W ⊆ U . The proof is by induction on
the generation of the cover, of course; three cases can occur: (i) a ∈ U , (ii) there is a ≤ b
with bC U , (iii) there is b ≥ a and i ∈ I(b) with c ∧ aC U for all c ∈ C(b, i). The first case
is trivial because {a} is a countable subset of U . The second case is easy: we have bCW
for some countable W ⊆ U , by inductive hypothesis; so aCW by clause 2. The third case
requires ACω: for each c ∈ C(b, i) we have c∧ aCWc ⊆ U , with Wc countable, by inductive
hypothesis; let W be the union of the Wc’s, which is a countable subset of C(b, i) because
C(b, i) is countable by assumption; so c ∧ aCW for all c, and hence aCW by clause 3.

Many important examples of generated covers are in fact σ-covers, such as (the point-free
versions of) the Cantor space, the Baire space, and the (Dedekind) reals. Let us analyse the
last example in details.

The reals. The locale of the reals can be presented as follows. Let Q be the set of rational
numbers. Put S = {(a, b) ∈ Q × Q | a < b}; this is a poset where (a1, b1) ≤ (a2, b2)
means a2 ≤ a1 < b1 ≤ b2. Note that S is countable, because it is a detachable subset of
a countable set (Lemma 1.4). In order to turn S into an inf-semilattice, we add a top
element (−∞,+∞); we also need a bottom element, say (0, 0), so that (a1, b1) ∧ (a2, b2) is
(max{a1, a2},min{b1, b2}) if max{a1, a2} < min{b1, b2}, and (0, 0) otherwise.
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An element (a, b) ∈ S is thought of as the open interval ]a, b[. We want to define a cover
(a, b)CU in such a way to capture the intuition that ]a, b[⊆

⋃
(x,y)∈U ]x, y[. This can be done

by induction by means of the following axioms:

(1) (a, b)C {(a, b′), (a′, b)} whenever a < a′ < b′ < b;
(2) (a, b)C {(a′, b′) | a < a′ < b′ < b}.
And the previous proposition applies, because {(a′, b′) | a < a′ < b′ < b} is a detachable
subset of the countable set S. So this is a σ-cover and it makes sense to consider the σ-locale
of its Lindelöf elements, namely, the countable unions of basic opens. Classically, this is the
whole frame of opens, because every open set can be written as a countable union of open
intervals with rational endpoints; constructively, since a subset of a countable set (the base,
in this case) need not be countable, the σ-locale of Lindelöf opens seems to keep its own
independence.

As explained in the previous section, a point of this σ-locale is a particular filter p
of opens such that (a, b) ∈ p is semi-decidable for every basic open (a, b). So we can
think of p as a recursively enumerable set of basic opens: this is often called a computable
point (see [DJES06, Definition 2.2] for example). Thus a σ-locale morphism between reals
corresponds to the idea of a continuous function which maps computable points to computable
points.

3. On strongly dense σ-sublocales

A congruence ∼ on a σ-frame L is an equivalence relation which is compatible with finite
meets and countable joins; this says that L/ ∼ is a σ-frame as well. From the “dual” point
of view of locale theory [Joh82], L/ ∼ is what is called a σ-sublocale of L.12

A σ-sublocale L/ ∼ is called dense when ∀x ∈ L.(x ∼ 0 ⇒ x = 0). Every σ-locale L
has a smallest dense σ-sublocale13 which corresponds to the congruence a ∼ b defined by
∀x ∈ L.(a ∧ x = 0⇔ b ∧ x = 0).

By extending the notion given in [Joh89] from locales to σ-locales, we say that L/ ∼ is
a strongly dense σ-sublocale of L if x ∼ !L(p) implies x ≤ !L(p), for all x ∈ L and p ∈ Σ,
where !L is the unique σ-frame homomorphism from Σ to L. Clearly, strong density implies
density by choosing p = 0; and they coincide in a classical framework because Σ = {0, 1} in
that case.

In what follows we are going to characterize the smallest strongly dense σ-sublocale of
an overt σ-locale. First we need to introduce the notion of overtness for σ-locales.

3.1. Overt σ-locales. Recall that a formal cover (S,C) is overt if there is a predicate
Pos(x) on S (the positivity predicate) such that

(1) if aC U and Pos(a), then Pos(b) for some b ∈ U ,
(2) aC {a} ∩ Pos,

12In the case of frames, congruences correspond to nuclei [Joh82]; such a correspondence relies on the
existence of the implication operation (every frame has a Heyting algebra structure) and does not hold in the
case of σ-frames. As in the case of frames, the family of congruences on a given σ-frame is a frame: we refer
the reader to [Mad91, Sim12] for more on this topic.

13See [Mad91, Proposition 6.2] where the σ-frames arising in this way are called d-reduced.
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where Pos is {x ∈ S | Pos(x)}. For instance, the locale of the reals is overt with Pos((a, b))
whenever a < b and (hence) also Pos((−∞,+∞)).

The idea is that Pos(a) is a positive way to say that a is not the bottom element. Note
that ¬Pos(a) is (intuitionistically) equivalent to aC ∅ and hence also to a = 0. Classically,
therefore, Pos(a) means just a 6=C ∅, and the conditions above are automatically satisfied.

It is well known, that a formal cover is overt precisely when the unique frame homomor-
phism Ω = P(1)→ P(S)/ =C has a left adjoint (see, for instance, [CS18]).

We want to extend this notion to σ-locales. We say that a σ-locale L is overt if its
envelope (L,CL) is overt.14 Explicitly, L is overt if and only if there is a predicate Pos(x)
on L such that

(1) if x ≤
∨
W with W countable and Pos(x), then Pos(w) for some w ∈W ;

(2) for each x, there is a countable W ⊆ {x} ∩ Pos such that x ≤
∨
W .

The second condition can be replaced with the simpler

2’. {x} ∩ Pos is countable and x ≤
∨

({x} ∩ Pos)

because if W ⊆ {x}∩ Pos and x ≤
∨
W , then W = {x}∩ Pos. To see this, let y ∈ {x}∩ Pos;

so Pos(x), and hence Pos(w) for some w ∈W by condition 1.; in particular, {w} ⊆W ⊆ {x}
and hence w = x; therefore x ∈W .

As a consequence of 2′, we always have Pos(x) ∈ Σ, because Pos(x) means that {x}∩ Pos
is inhabited (Remark 1.8). And, vice versa, if Pos(x) ∈ Σ, then {x} ∩ Pos is countable.
Indeed Pos(x), seen as a subset of 1, is {z ∈ 1 | Pos(x)}; and there is a detachable D ⊆ N
and a function α : D → 1 such that α[D] = {z ∈ 1 | Pos(x)}. If kx : 1 → S is the
constant map with value x, we have kx[α[D]] = kx[{z ∈ 1 | Pos(x)}] = {y ∈ {x} | Pos(x)}
= {y ∈ {x} | Pos(y)} = {x} ∩ Pos. Therefore we can replace 2′ with

2”. Pos(x) ∈ Σ (hence {x} ∩ Pos is countable) and x ≤
∨

({x} ∩ Pos).

It is routine to check that Pos is left adjoint to the unique σ-frame homomorphism !L : Σ→ L,
that is, Pos(a) ⇒ p if and only if a ≤ !L(p), for all a ∈ L and p ∈ Σ. And a σ-locale L is
overt if and only if !L has a left adjoint.

Proposition 3.1. Let L be an overt σ-locale and let ∼ be a congruence on L. Then L/ ∼
is strongly dense if and only if Pos(x)⇒ Pos(y) whenever x ∼ y.

Proof. Let L/ ∼ be strongly dense and assume x ∼ y. Since y ≤ !L( Pos(y)), we also have
(x∨ !L( Pos(y))) ∼ !L( Pos(y)). So x∨ !L( Pos(y)) ≤ !L( Pos(y)) and hence x ≤ !L( Pos(y)),
that is, Pos(x)⇒ Pos(y).

Vice versa, if x ∼ !L(p), then Pos(x) ⇒ Pos(!L(p)) by assumption; now the usual
properties of an adjunction gives x ≤ !L( Pos(!L(p))) =!L(p).

3.2. Overlap algebras. Complete Boolean algebras lose some of their important features
when LEM is not assumed. For instance, discrete locales, that is, frames of the form P(S)
for some set S, are never Boolean, apart from the trivial case S = ∅.
Sambin’s notion of an overlap algebra (see below) is a constructive alternative to that of a
complete Boolean algebra (see [CS10, Cir13] for some basic results). For instance, powersets
are examples of overlap algebras, in fact they are precisely the atomic ones.

14It is well known that for an overt (S,C) the predicate Pos(a) becomes equivalent to the “impredicative”
formula ∀U ⊆ S.(a C U ⇒ U is inhabited). When (S,C) is σ-coherent, that formula can be replaced by
∀W ∈ Pω1(S).(aCW ⇒W is inhabited).
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It has recently turned out [Cir16] (see also [CC20]) that overlap algebras can be understood as
the smallest strongly dense sublocales of overt locales. Under a classical reading, this means
that overlap algebras are precisely the Boolean locales (since these can be characterized as
the smallest dense sublocales).
Such a result can be adapted to characterize the strongly dense σ-sublocales, which is the
main point of the current section.

An overlap algebra is (the locale corresponding to) an overt formal cover (S,C, Pos)
such that

∀b ∈ S.[ Pos(a ∧ b)⇒ ∃u ∈ U.Pos(u ∧ b)] =⇒ aC U (3.1)

for every a ∈ S and U ⊆ S.15

Definition 3.2. A σ-overlap algebra is an overt σ-locale L such that

∀b ∈ L.[ Pos(a ∧ b)⇒ Pos(u ∧ b)] =⇒ a ≤ u (3.2)

for all a, u ∈ L.

Classically, σ-overlap algebras are precisely the d-reduced σ-frames in the sense of [Mad91,
Section 6] where they play an important role in connection with regularity (see [Mad91,
Proposition 6.5] for instance).

If S is countable with semi-decidable equality, then Pω1(S) is a σ-overlap algebra where
Pos(W ) is “W is inhabited” (see Propositions 1.5 and 1.7 and Remark 1.8). More generally,
if the envelope (L,CL) of a σ-frame L is an overlap algebra, then L is a σ-overlap algebra;
indeed, (3.2) is clearly a special case of (3.1) in that case.

Further examples of σ-overlap algebras can be constructed as follows. Let L be an overt
σ-locale and let ∼B(L) be the binary relation on L defined by

x ∼B(L) y
def⇐⇒ ∀z ∈ L.( Pos(x ∧ z)⇔ Pos(y ∧ z)). (3.3)

It is quite straightforward to check that (3.3) defines a congruence on L, hence a σ-sublocale
of L.

Definition 3.3. Given any overt σ-locale L, we write B(L) for the σ-sublocale of L
corresponding to the congruence ∼B(L) as defined in (3.3).

Note that [x] ≤ [y] in B(L) if and only if Pos(x∧ z)⇒ Pos(y ∧ z) for all z ∈ L. Indeed
[x] ≤ [y] iff x ∼B(L) x∧y iff Pos(x∧z)⇔ Pos(x∧y∧z) for all z iff Pos(x∧z)⇒ Pos(x∧y∧z)

for all z iff Pos(x ∧ z)⇒ Pos(y ∧ z) for all z.16

The σ-sublocale B(L) is always dense in L. Indeed, if a ∼B(L) 0, that is, ∀z[ Pos(a∧z)⇔
Pos(0∧ z)], then ∀z.¬Pos(a∧ z) because Pos(0) = Pos(

∨
∅) is false. In particular, ¬Pos(a)

and so a = 0. Actually, we have the following.

Proposition 3.4. If L is an overt σ-locale, then

(1) B(L) is the smallest strongly-dense σ-sublocale of L;
(2) B(L) is a σ-overlap algebra.

Proof.

15Actually, this is the definition of a set-based overlap algebra: for the general definition one has to
consider an arbitrary locale, not necessarily corresponding to a formal cover (such a distinction makes sense
in a predicative framework).

16The last step holds because if Pos(x∧z)⇒ Pos(y∧z) for all z, then also Pos(x∧x∧z)⇒ Pos(y∧x∧z)
for all z.
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(1) Let L/ ∼ be strongly dense. If x ∼ y, then (x ∧ z) ∼ (y ∧ z) because ∼ is a congruence;
hence Pos(x∧ z)⇔ Pos(y∧ z) by strong density. This means that B(L) is a σ-sublocale
of L/ ∼.

(2) First we check that B(L) is overt. This is easy because Pos respects the congruence (3.3)
and so it makes sense to define [a] positive in B(L) if a is positive in L. The two
conditions on Pos are easy to check.
Now, if x and y are such that Pos(x ∧ z) ⇒ Pos(y ∧ z) holds in B(L) for all z, then
x ≤ y in B(L).

When L is a σ-overlap algebra, we have B(L) = L because ∼B(L) becomes the identity in
that case. So we immediately have the following.

Corollary 3.5. A(n overt) σ-locale L is a σ-overlap algebra if and only if L is (isomorphic
to) the smallest strongly-dense σ-sublocale B(X) of some overt σ-locale X.
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