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Abstract. We study the finitary version of the coalgebraic logic introduced by L. Moss.
The syntax of this logic, which is introduced uniformly with respect to a coalgebraic type
functor, required to preserve weak pullbacks, extends that of classical propositional logic
with a so-called coalgebraic cover modality depending on the type functor. Its semantics
is defined in terms of a categorically defined relation lifting operation.

As the main contributions of our paper we introduce a derivation system, and prove
that it provides a sound and complete axiomatization for the collection of coalgebraically
valid inequalities. Our soundness and completeness proof is algebraic, and we employ
Pattinson’s stratification method, showing that our derivation system can be stratified in
countably many layers, corresponding to the modal depth of the formulas involved.

In the proof of our main result we identify some new concepts and obtain some auxiliary
results of independent interest. We survey properties of the notion of relation lifting,
induced by an arbitrary but fixed set functor. We introduce a category of Boolean algebra
presentations, and establish an adjunction between it and the category of Boolean algebras.

Given the fact that our derivation system involves only formulas of depth one, it can
be encoded as a endo-functor on Boolean algebras. We show that this functor is finitary
and preserves embeddings, and we prove that the Lindenbaum-Tarski algebra of our logic
can be identified with the initial algebra for this functor.
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1. Introduction

Coalgebra, introduced to computer science by Aczel in the late 1980s [1, 2], is rapidly
gaining ground as a general mathematical framework for many kinds of state-based evolv-
ing systems. Examples of coalgebras include data streams, (infinite) labelled trees, Kripke
structures, finite automata, (probabilistic/weighted) transition systems, neighborhood mod-
els, and many other familiar structures. As emphasized by Rutten [46], who developed, in
analogy with Universal Algebra, the theory of Universal Coalgebra as a general theory of
such transition systems, the coalgebraic viewpoint combines wide applicability with mathe-
matical simplicity. In particular, one of the main advantages of the coalgebraic approach is
that a substantial part of the theory of systems can be developed uniformly in a functor T
which represents the type of the coalgebras we are dealing with. Here we restrict attention
to systems, where T is an endofunctor on the category Set of sets with functions, so that a
T -coalgebra is a pair of the form

X = 〈X, ξ : X → TX〉

with the set X being the carrier or state space of the coalgebra, and the map ξ its un-
folding or transition map. Many important notions, properties, and results of systems can
be explained just in terms of properties of their type functors. As a key example, any
set functor T canonically induces a notion of observational or behavioural equivalence be-
tween T -coalgebras; this notion generalizes the natural notions of bisimilarity that were
independently developed for each specific type of system.

In order to describe and reason about the kind of behaviour modelled by coalgebras,
there is a clear need for the design of coalgebraic specification languages and derivation
systems, respectively. The resulting research programme of Coalgebraic Logic naturally
supplements that of Coalgebra by searching for logical formalisms that, next to meeting
the usual desiderata such as striking a good balance between expressive power and com-
putational feasibility, can be defined and studied uniformly in the functor T . Given the
fact that Kripke models and frames are prime examples of coalgebras, it should come as no
surprise that in search for suitable coalgebraic logics, researchers looked for inspiration to
modal logic [16].

This research direction was inititiated by Moss [41]; roughly speaking, his idea was to
take the functor T itself as supplying a modality ∇T , in the sense that for every element
α ∈ TL (where L is the collection of formulas), the object ∇Tα is a formula in L. While
Moss’ work was recognized to be of seminal conceptual importance in advocating modal
logic as a specification language for coalgebra, his particular formalism did not find much
acclaim, for at least two reasons. First of all, the semantics of his modality is defined in terms
of relation lifting, and for this to work smoothly, Moss needed to impose a restriction on
the functor (the coalgebra type functor T is required to preserve weak pullbacks). Thus the
scope of his work excluded some interesting and important coalgebras such as neighborhood
models and frames. And second, for practical purposes, the syntax of Moss’ language was
considered to be rather unwieldy, with the nonstandard operator ∇T looking strikingly
different from the usual ✷ and ✸ modalities.

Following on from Moss’ work, attention turned to the question how to obtain modal
languages for T -coalgebras which use more standard modalities [36, 45, 28], and how to find
derivation systems for these formalisms. This approach is now usually described in terms of
predicate liftings [43, 49] or, equivalently, Stone duality [17, 37]. Other approaches towards
coalgebraic logic, such as the one using co-equations [3] until now have received somewhat
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less attention. For a while, this development directed interest away from Moss’ logic, and
the relationship between various approaches towards coalgebraic logic was not completely
clear.

In the mean time, however, it had become obvious that even in standard modal logic,
a nabla-based approach has some advantages. In this setting the coalgebra type T is in-
stantiated by the power set functor P , so that (the finitary version of) the nabla operator
∇P , takes a (finite) set α of formulas and returns a single formula ∇Pα. The semantics of
this so-called cover modality can be explicitly formulated as follows, for an arbitrary Kripke
structure X with accessibility relation R:

X, x  ∇Pα if for all a ∈ α there is a t ∈ R[x] with X, t  a, and
for all t ∈ R[x] there is an a ∈ α with X, t  a.

(1.1)

In short: ∇Pα holds at a state x iff the formulas in α and the set R[x] of successors of
x ‘cover’ one another. Readers familiar with classical first-order logic will recognize the
quantification pattern underlying (1.1) from the theory of Ehrenfeucht-Fräıssé games, Scott
sentences, and the like, see for instance [26]. In modal logic, related ideas made an early
appearance in Fine’s work on normal forms [21].

Using the standard modal language, ∇P can be seen as a defined operator:

∇Pα = ✷
∨
α ∧

∧
✸α, (1.2)

where ✸α denotes the set {✸a | a ∈ α}. But is in fact an easy exercise to prove that with
∇P defined by (1.1), we have the following semantic equivalences:

✸α ≡ ∇P {α,⊤}
✷α ≡ ∇P∅ ∨ ∇P{α}

(1.3)

In other words, the standard modalities ✷ and ✸ can be defined in terms of the nabla
operator (together with ∨ and ⊤). When combined, (1.2) and (1.3) show that the language
based on the nabla operator offers an alternative formulation of standard modal logic.

In fact, independently of Moss’ work, Janin & Walukiewicz [30] had already made the
much stronger observation that the set of connectives {✷,✸,∧,∨} may in some sense be
replaced by the connectives ∇P and ∨, that is, without the conjunction operation. This fact,
which is closely linked to fundamental automata-theoretic constructions, lies at the heart
of the theory of the modal µ-calculus, and has many applications, see for instance [20, 47].
These observations naturally led Venema [55] to introduce, parametric in the coalgebraic
type functor T , a finitary version of Moss’ logic, extended with fixpoint operators, and to
generalize the link between fixpoint logics and automata theory to the coalgebraic level of
generality. Subsequently, Kupke & Venema [35] showed that many fundamental results in
automata theory and fixpoint logics are really theorems of universal coalgebra. The key
role of the nabla modality in these results revived interest in Moss’ logic.

Our paper addresses the main problem left open in the literature on∇-based coalgebraic
logic, namely that of providing a sound and complete derivation system for the logic. Moss’
approach is entirely semantic, and does not provide any kind of syntactic calculus. As a first
result in the direction of a derivation system for nabla modalities, Palmigiano & Venema [42]
gave a complete axiomatization for the cover modality ∇P . This calculus was streamlined
into a formulation that admits a straightforward generalization to an arbitrary set functor
T , by B́ılková, Palmigiano & Venema [13], who also provided suitable Gentzen systems for
the logic based on ∇P . In this paper we will prove the soundness and completeness of this
axiomatization in the general case.
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In the remaining part of the introduction we briefly survey the paper, its main contri-
butions, and its proof method. Throughout the paper we let T denote the coalgebraic type
functor; usually we make the proviso that T preserves weak pullbacks and inclusions (all of
this will be discussed further on in detail). Our key instrument in making Moss’ language
more standard is to base its syntax on the finitary version Tω of the functor T which is
defined on objects as follows: for a set X, TωX :=

⋃
{TY | Y ⊆ω X}. As we will discuss

in detail, for each object α ∈ TωX there is a minimal finite set BaseX(α) ⊆ω X such that
α ∈ TBase(α), and the maps BaseX provide a natural transformation

Base : Tω →̇ Pω.

The formulas of our coalgebraic language L can now be defined by the following grammar:

a ::= ¬a |
∧
ϕ |
∨
ϕ | ∇Tα.

where ϕ ∈ PωL and α ∈ TωL. That is, the propositional basis of our coalgebraic language
L takes the finitary conjunction (

∧
) and disjunction (

∨
) connectives as primitives, and to

this we add the coalgebraic modality ∇T , which returns a formula ∇Tα for every object
α ∈ TωL. The point of restricting Moss’ modality to the set TωL is that the formula ∇Tα
has a finite, clearly defined set of immediate subformulas, namely the set Base(α); thus
every formula has a finite set of subformulas.

The key observation of Moss [41] was that the semantics (1.1) of ∇ can be expressed in
terms of the so-called Egli-Milner lifting of the satisfaction relation  ⊆ X×L. Generalizing
this observation from the Kripke functor P to the arbitrary type T , he uniformly defined
the semantics of ∇T in a T -coalgebra X = 〈X, ξ〉 as follows:

X, x  ∇Tα iff ξ(x) T α.

Here T denotes a categorically defined lifting of the satisfaction relation  ⊆ X × L
between states and formulas to a relation T ⊆ TX × TL. Given the importance of the
relation lifting operation T in Moss’ logic, we include in this paper a fairly detailed survey
of its properties and related concepts.

The coalgebraic validities, that is, the formulas that are true at every state of every
T -coalgebra thus constitute a semantically defined coalgebraic logic, and it is this logic that
we will axiomatize in this paper. Our approach will be algebraic in nature, and so it will be
convenient to work with equations, or rather, inequalities (expressions of the form a 4 b,
where a an b are terms/formulas of the language).

We obtain our derivation system for Moss’ logic by extending a sound and complete
derivation system for propositional logic with three rules for the ∇-operator. The first
rule, denoted by (∇1), can be seen as a combined montonicity and congruence rule. Rule
(∇2) is a distributive law that expresses that any conjunction of ∇-formulas is equivalent
to a (possibly infinite) disjunction of ∇-formulas built from conjunctions. Finally, rule
(∇3) expresses that ∇ distributes over disjunctions. In the case that the functor T under
consideration maps finite sets to finite sets, the rules (∇2) and (∇3) take the form of axioms.

The proof of our soundness and completeness theorem is based on the stratification
method of Pattinson [43]. We will show that not only the language of our system, but also
its semantics and our derivation system can be stratified in ω many layers corresponding
to the modal depth of the formulas involved. (This means for instance that if two formulas
of depth n are provably equivalent, this can be demonstrated by a derivation involving only
formulas of depth at most n.) What glues these layers nicely together can be formulated in
terms of properties of a one-step version of the derivation system M.
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In our algebraic approach, this one-step version of M is incarnated as a functor on the
category of Boolean algebras:

M : BA → BA.

To mention a few interesting properties of this functor, of which the definition is uniformly
parametrized by the functor T : M is finitary, and preserves atomicity of Boolean algebras,
and injectivity of homomorphisms. We will be interested in algebras for the functor M, and
in particular, we will see that the initial M-algebra can be seen as the Lindenbaum-Tarski
algebra of our derivation system M.

For the definition of M, we need to go into quite a bit of detail concerning the theory of
presentations of (Boolean) algebras. In particular, we define a category Pres of presentations
by introducing a suitable notion of presentation morphism, and establish an adjunction
between the categories Pres and BA:

BA
C

33⊥ Pres
Bss

(1.4)

This adjunction (which is almost an equivalence) is the instrument that allows us to turn
the modal rule and axioms of M into the functor M; the key property that makes this work
is that all modal rules and axioms of M are formulated in terms of depth-one formulas.

What is left to do, in order to prove the soundness and completeness of our logic, is
connect the algebra functor M : BA → BA (that is, the ‘logic’) to the coalgebra functor
T : Set → Set (the ‘semantics’). Here we will apply a well-known method in coalgebraic
logic [17, 37] which is often described in terms of Stone duality because its aim is to link
functors on two different base categories that are connected themselves by a Stone-type
duality or adjunction.

In our case, to make the connection between M and T we invoke the already existing
link on the level of the base logic, provided by the (contravariant) power set functor P̆

from Set to BA (we do not need its adjoint functor sending a Boolean algebra to its set of
ultrafilters):

BAM

++
Set

P̆ss
T

ss
(1.5)

The key remaining step in the completeness proof involves the definition of a natural trans-
formation

δ : MP̆ →̇ P̆T.

As usual in the Stone duality approach towards coalgebraic logic, the existence of δ cor-
responds to the soundness of the logic. To get an idea of why this is the case, observe
that the existence of δ enables us to see a T -coalgebra X = 〈X, ξ〉 as an M-algebra, namely

its complex algebra X
∗ := 〈P̆X, P̆ξ ◦ δX〉. Finally, as we will see in the final part of our

stratification-based proof, the completeness of M is based on the observation that

δ is injective, (1.6)

that is, for each set X, the BA-homomorphism δX : MP̆X → P̆TX is an embedding. The
proof of (1.6), which technically forms the heart of our proof, is based on the fact that the
nabla-axioms allow us to write depth-one formulas into a certain normal form, and on the
earlier mentioned properties of the functor M.

This paper replaces, extends and partly corrects (c.q. clarifies, see Remark 7.8) an
earlier version [34]. The main differences with respect to [34] are the following. First
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of all, we provide a detailed, self-contained overview of the notion of relation lifting and
its properties (which was only covered as Fact 3 in the mentioned paper). Second, our
categorical treatment of presentations and the algebras they present (which is novel to the
best of our knowledge) clarifies and substantially extends the treatment in [34]. Third, our
axiomatization simplifies the earlier one; in particular, we show here in detail that we do not
need axioms or rules specifically dealing with negation (more specifically, we prove that an
earlier rule (∇4) is derivable in the system here. Fourth, we provide a more precise definition
and a more detailed discussion of the functor M; for instance, the result that M preserves
atomicity is new. Fifth and final, we show here in much more detail and precision how the
soundness and completeness of our axiomatization follows from the one-step soundness and
completeness.

Overview. In the next section we fix our notation, introduce the necessary basic (co-)alge-
braic terminology and discuss properties of functors on the category of sets that will play
an important role in our paper. After that, in Section 3, we recall the notion of a relation
lifting T induced by a set functor T and give an overview of its properties. Section 4 and
Section 5 introduce the terminology that we need concerning Boolean algebras and their
presentations, and concerning Moss’ coalgebraic logic, respectively.

After that we move to the main results of our paper. First, in Section 6 we introduce the
derivation system for Moss’ coalgebraic logic and we define the algebra functor M : BA →
BA. In Section 7 we prove that our derivation system is one-step sound and complete.
Within the above described categorical framework this is equivalent to establishing the
existence of a natural transformation δ : MP̆ →̇ P̆T (one-step soundness) and proving that
this transformation δ is injective (one-step completeness). Finally, in Section 8 we prove
our main result, namely soundness and completeness of our derivation system with respect
to the coalgebraic semantics. We conclude with an overview of related work and open
questions.

Finally, since this paper features a multitude of categories, functors and natural trans-
formations, for the reader’s convenience we list these in an appendix.

Acknowledgement. We thank the anonymous referee for many useful comments.

2. Preliminaries

The purpose of this section is to fix our notation and terminology, and to introduce some
concepts that underlie our work in all other parts of the paper.

2.1. Basic mathematics and category theory. First we fix some basic mathematical
issues. Given a set X, we let PX and PωX denote the power set and the finite power set
of X, respectively. We write Y ⊆ω X to indicate that Y is a finite subset of X.

Given a relation R ⊆ X ×X ′, we denote the domain and range of R by dom(R) and
rng(R), respectively, and we denote by πR1 : R→ X its first projection and by πR2 : R→ X ′

its second projection map. Given subsets Y ⊆ X, Y ′ ⊆ X ′, the restriction of R to Y and
Y ′ is given as

R↾Y×Y ′ := R ∩ (Y × Y ′).

The converse of a relation R ⊆ X ×X ′ is denoted as R˘⊆ X ′ ×X.
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The composition of two relations R ⊆ X ×X ′ and R′ ⊆ X ′ ×X ′′ is denoted by R ; R′,
while the composition of two functions f : X → X ′ and f ′ : X ′ → X ′′ is denoted by f ′ ◦ f .
That is, we denote function composition by ◦ and write it from right to left and we denote
relation composition of relations by ; and write it from left to right.

It is often convenient to identify a function f : X → X ′ with its graph, that is, the
relation Gr(f) = {(x, f(x)) | x ∈ X} ⊆ X ×X ′. For example given a relation R ⊆ X ×X ′

and a function f : X ′ → X ′′ we write R ; f to denote the composition of relations R ;Gr (f).
We will assume familiarity with basic notions from category theory, including those

of categories, functors, natural transformations, (co-)monads and (co-)limits; see for in-
stance [40]. We denote by Set the category of sets and functions, and by Rel the category
of sets and binary relations. BA is the category with Boolean algebras as objects and
homomorphisms as arrows.

Endofunctors on Set will simply be called set functors. We denote by P the power
set functor which maps a set X to its power set PX and a function f : X → X ′ to
its direct image Pf : PX → PX ′, given by P (X) ∋ Y 7→ {f(y) | y ∈ Y }. Similarly,
PωX denotes the finite power set functor. P is in fact (part of) a monad (P, µ, η), with
ηX : X → P (X) denoting the singleton map ηX : x 7→ {x}, and µX : PPX → PX denoting

union, µX(A) :=
⋃

A. The contravariant power set functor will be denoted as P̆ ; this

functor maps a set X to its power set P̆X = PX, and a function f : X → X ′ to its inverse
image P̆ f : P̆X ′ → P̆X given by P̆X ′ ∋ Y ′ 7→ {x ∈ X | fx ∈ Y ′}.

2.2. (Co-)algebras. We provide some details concerning the notions of an algebra and a
coalgebra for a functor. We start with coalgebras since these provide the semantic structures
of the logics considered in this paper.

Definition 2.1. Given a functor T on a category C, a T -coalgebra (X, ξ) is an arrow
ξ : X → TX in C; a T -coalgebra morphism f : (X, ξ) → (X ′, ξ′) is an arrow f : X → X ′

such that Tf ◦ ξ = ξ′ ◦ f , in a diagram:

X

ξ

��

f // X ′

ξ′

��
TX

Tf // TX ′

The functor T is called the type of the coalgebra (X, ξ), The category of T -coalgebras is
denoted by Coalg(T ) and we denote coalgebras by capital letters X,Y, . . . in blackboard
bold.

In the case of a set coalgebra (that is, a coalgebra for a set functor), elements of the
(carrier of the) coalgebra will be called states of the coalgebra, and a pointed coalgebra is a
pair consisting (X, x) consisting of a coalgebra X = (X, ξ) and a state x of X. ✁

Here are some simple, standard examples of coalgebras for set functors.

Example 2.2.

(1) We let Id denote the identity functor on Set. Given a set C, we let C itself also denote
the constant functor, mapping every set X to C, and every function f to the identity
map idC on C. Coalgebras for this functor are called C-colorings; in case C is of
the form P (Prop) for some set Prop of proposition letters, we may think of a coloring
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ξ : X → C as a Prop-valuation (in the sense that ξ says of every proposition letter p
and every state x whether p is true of x or not).

(2) A Kripke frame 〈S,R〉 can be represented as a coalgebra 〈S, σR〉 for the power set
functor P , with σR : S → PS mapping a point s to its collection of successors. It is
left as an exercise for the reader to verify that the coalgebra morphisms for this functor
precisely coincide with the bounded morphisms of modal logic.

(3) Coalgebras for the functor P̆ ◦ P̆ (that is, the contravariant power set functor composed
with itself) can be identified with the neighborhood frames known from the theory of
modal logic as structures that generalize Kripke frames. As a special case of this, but
also generalizing Kripke frames, the monotone neighborhood functor N maps a set X
to the collection N(X) := {α ∈ P̆ P̆X | α is upward closed }, and a function f to the

map P̆ P̆ f .
(4) For a slightly more involved example, consider the finitary multiset or bag functor Bω.

This functor takes a set X to the collection BωX of maps µ : X → N of finite support
(that is, for which the set Supp(µ) := {x ∈ X | µ(x) > 0} is finite), while its action
on arrows is defined as follows. Given an arrow f : X → X ′ and a map µ ∈ BωX, we
define (Bωf)(µ) : X

′ → N by putting

(Bωf)(µ)(x
′) :=

∑
{µ(x) | f(x) = x′}.

(5) As a variant of Bω, consider the finitary probability functor Dω, where DωX = {δ :
X → [0, 1] | Supp(δ) is finite and

∑
x∈X δ(x) = 1}, while the action of Dω on arrows is

just like that of Bω.

Example 2.3. Many examples of coalgebraically interesting set functors are obtained by
composition of simpler functors. Inductively define the following class EKPF of extended
Kripke polynomial functors:

T := Id | C | P | Bω | Dω | T0 ◦ T1 | T0 + T1 | T0 × T1 | T
D,

where ◦, + and × denote functor composition, coproduct (or disjoint union) and product,
respectively, and (−)D denotes exponentiation with respect to some set D. Examples of
such functors include:

(1) Given an alphabet-color set C, the C-streams are simple specimens of coalgebras for
the functor C × Id ; similarly, C-labelled binary trees are coalgebras for the functor
BC = C × Id × Id .

(2) Labelled transition systems over a set A of atomic actions can be seen as coalgebras for
the functor P (−)A.

(3) Deterministic automata are coalgebras for the functor (−)Σ × 2 where Σ is the finite
alphabet.

(4) Kripke models over a set Prop of proposition letters can be identified with coalgebras
for the functor P (Prop)× P (−) = P ◦ CProp × P ◦ Id .

(5) Generalizing the previous example, viewing T -coalgebra as frames, we can define T -
models over a set Prop of proposition letters as coalgebras for the functor TProp =
P (Prop)× T (−).

As running examples through this paper we will often take the binary tree functor over a
set C of colors, and the power set functor.

The key notion of equivalence in coalgebra is of two states in two coalgebras being
behaviorally equivalent. In case the functor T admits a final coalgebra Z = 〈Z, ζ〉 the
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elements of Z often provide an intuitive encoding of the notion of behaviour, and the
unique coalgebra homomorphism !X can be seen as a map that assigns to a state x in X

its behaviour. In this case we call two states, x in X and x′ in X
′, behaviorally equivalent

if !X(x) =!X′(x′). In the general case, when we may not assume the existence of a final
coalgebra, we define the notion as follows.

Definition 2.4. Two elements (often called states) x, x′ in two coalgebras X and X
′, respec-

tively, are behaviorally equivalent iff there are coalgebra morphisms f, f ′ with a common
codomain such that f(x) = f ′(x′). ✁

Turning to the dual notion of algebra, we shall use algebras mainly to describe logics
for coalgebras, and the notion of an algebra ‘for a functor’ will provide us with an elegant
way to exploit the duality with coalgebras.

Definition 2.5. Given a functor L on a category A, an L-algebra (A,α) is an arrow α :
LA→ A in A and an L-algebra morphism f : (A,α) → (A′, α′) is an arrow f : A→ A′ such
that f ◦ α = α′ ◦ Lf . The category of L-algebras is denoted by Alg(L). ✁

Example 2.6.

(1) If A = Set, then every signature (or similarity type) induces a functor LX =
∐

n<ω Opn×
Xn where Opn is the set of operation symbols of arity n. Then Alg(L) is (isomorphic
to) the category of algebras for the signature.

(2) If A = BA, then we can define a functor L : BA → BA to map an algebra A to the
algebra LA generated by ✷a, a ∈ A, and quotiented by the relation stipulating that
✷ preserves finite meets. Then Alg(L) is isomorphic to the category of modal algebras
[33].

As the second example above shows, functors on BA give rise to modal logics extending
Boolean algebras with operators.

2.3. Properties of set functors. As mentioned in the introduction, in this paper we will
restrict our attention to set functors satisfying certain properties. The first one of these is
crucial.

Weak pullback preservation. Recall that a set P together with functions p1 : P → X1 and
p2 : P → X2 is a pullback of two functions f1 : X1 → X and f2 : X2 → X if f1 ◦ p1 = f2 ◦ p2
and for all sets P ′ and all functions p′1 : P ′ → X1, p

′
2 : P

′ → X2 such that f1 ◦ p
′
1 = f2 ◦ p

′
2

there exists a unique function e : P ′ → P such that pi ◦ e = p′i for i = 1, 2.

P ′

p′1

��

p′2

$$

e

  ❇
❇

❇
❇

P
p2 //

p1

��

X2

f2
��

X1
f1

// X

If the function e is not necessarily unique we call (P, p1, p2) a weak pullback. Furthermore
we call a relation R ⊆ X1 × X2 a (weak) pullback of f1 and f2 if R together with the
projection maps πR1 and πR2 is a (weak) pullback of f1 and f2.

In the category of sets, (weak) pullbacks have a straightforward characterization
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Fact 2.7. [22]. Given two functions f1 : X1 → X3 and f2 : X2 → X3, let

pb(f1, f2) := {(x1, x2) | f1(x1) = f2(x2)}.

Furthermore, given a set P with functions p1 : P → X1 and p2 : P → X2, let

e : y 7→ (p1(y), p2(y)).

define a function e : P → pb(f1, f2). Then

(1) (P, p1, p2) is a pullback of f1 and f2 iff f1 ◦ p1 = f2 ◦ p2 and e is an isomorphism.
(2) (P, p1, p2) is a weak pullback of f1 and f2 iff f1 ◦ p1 = f2 ◦ p2 and e is surjective.

A functor T preserves weak pullbacks if it transforms every weak pullback (P, p1, p2)
for f1 and f2 into a weak pullback (TP, Tp1, T p2) for Tf1 and Tf2. An equivalent char-
acterization is to require T to weakly preserve pullbacks, that is, to turn pullbacks into
weak pullbacks. Further on in Corollary 3.7, we will see yet another, and probably more
motivating, characterization of this property.

Example 2.8. All the functors of Example 2.2 preserve weak pullbacks, except for the
neighborhood functor and its monotone variant. It can be shown that the property of
preserving weak pullbacks is preserved under the operations ◦,+,× and (−)D, so that all
extended polynomial Kripke functors (Example 2.3) preserve weak pullbacks.

Standard functors. The second property that we will impose on our set functors is that of
standardness. Given two sets X and X ′ such that X ⊆ X ′, let ιX,X′ denote the inclusion
map from X into X ′. A weak pullback-preserving set functor T is standard if it preserves
inclusions, that is, if T ιX,X′ = ιTX,TX′ for every inclusion map ιX,X′ .

Remark 2.9. Unfortunately the definition of standardness is not uniform throughout the
literature. Our definition of standardness is taken from Moss [41], while for instance Adámek
& Trnková [7] have an additional condition involving so-called distinguished points. Fortu-
nately, the two definitions are equivalent in case the functor preserves weak pullbacks, see
Kupke [32, Lemma A.2.12]. Since we almost exclusively consider standard functors that
also preserve weak pullbacks, we have opted for the simpler definition.

For readers who are interested in some more details, fix sets 0,1 and 2 of of the corre-
sponding sizes (0,1 and 2), respectively, and let e, o denote the two maps e, o : 1 → 2. Then
the second condition of standardness in the sense of [7] can be phrased as the requirement
that T0 = {x ∈ T1 | T i(x) = To(x)}, in words: all distinguished points are standard.

In any case the restriction to standard functors is for convenience only, since every set
functor is ‘almost standard’ [7, Theorem III.4.5]. That is, given an arbitrary set functor T ,
we may find a standard set functor T ′ such that the restriction of T and T ′ to all non-empty
sets and non-empty functions are naturally isomorphic. The important observation about
T ′ is that Alg(T ) ∼= Alg(T ′) and Coalg(T ) ∼= Coalg(T ′). Consequently, in our work we can
assume without loss of generality that our functors are standard and we will do so whenever
convenient.

Example 2.10. The finitary bag functor Bω of Example 2.2 is not standard, but we may
‘standardize’ it by representing any map µ : X → N of finite support by its ‘positive graph’
{(x, µx) | µx > 0}. Similarly, the finite distribution functor Dω can be standardized by
identifying a probability distribution µ : X → [0, 1] ∈ DωX with the (finite) set {(x, µx) |
µx > 0}.
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Finitary functors. Let T be a set functor that preserves inclusions. Then T is finitary or
ω-accessible if, for all sets X,

TX =
⋃

{TY | Y ⊆ X,finite}.

Generalizing the construction of Pω from P , we can define, for any set functor T that
preserves inclusions, its finitary version Tω : Set → Set by putting

Tω(X) :=
⋃

{TY | Y ⊆ω X},

Tω(f) := Tf.

It is easy to verify that Tω preserves inclusions, is finitary and a subfunctor of T as we have
a natural transformation τX : TωX →֒ TX. Given the definition of the action of Tω on
arrows, we shall often write Tf instead of Tωf .

In order to avoid confusion, we already mention the following fact, but we postpone its
proof until subsection 3.3.

Proposition 2.11. Let T be a standard set functor that preserves weak pullbacks. Then
Tω is also a standard functor that preserves weak pullbacks.

The reason that we are interested in finitary functors is that we want our language to be
finitary, in the sense that a formula has only finitely many subformulas. The key property
of finitary functors that will make this possible, is that every α ∈ TX is supported by a
finite subset of X, and in fact, there will always be a minimal such set.

Definition 2.12. Given a finitary functor T and an element α ∈ TX, we define

BaseTX(α) :=
⋂

{Y ⊆ω X | α ∈ TY }.

✁

We write BaseT rather than BaseTω , and in fact omit the superscript whenever possible.

Example 2.13. The following examples are easy to check: BaseIdX : X → PωX is the

singleton map, BasePX : PωX → PωX is the identity map on PωX, BaseBC

X : C ×X ×X →

PωX maps the triple (c, x1, x2) to the set {x1, x2}, and BaseDω maps a finitary distribution
to its support.

Proposition 2.14. Let T : Set → Set be a standard functor that preserves weak pullbacks.

(1) For any α ∈ TωX, BaseTX(α) is the smallest set Y such that α ∈ TY .

(2) BaseT provides a natural transformation Base : Tω → Pω.

Proof. Part (1) is proved in [55].
For the second part, consider a map f : X → X ′. We have to show Pωf ◦ BaseX =

BaseX′ ◦ Tωf . Fix α ∈ TωX and write B = BaseX(α) and B′ = BaseX′(Tωf(α)). We need
to prove B′ = f [B].

For the inclusion “⊆”, from

TωB� _

��

// Tω(f [B])
� _

��
TωX

Tωf // TωX
′

we see that f [B] supports Tωf(α) and, as B
′ is the smallest such, B′ ⊆ f [B] follows.
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For the opposite inclusion “⊇”, since Tω preserves weak pullbacks, the dotted arrow in

1

α

!!

Tωf(α)

((%%
Tω(f

−1(B′))
� _

��

// Tω(B
′)

� _

��
TωX

Tωf // TωX
′

exists and shows that α ∈ Tω(f
−1(B′)). By minimality of the base, it follows B ⊆ f−1(B′),

that is, B′ ⊇ f [B].

Remark 2.15. A stronger version of the previous proposition follows from results in [23].
Let us briefly sketch the details using the terminology of [23]. First of all note that it is not
difficult to see that all finitary set functors preserve intersections. Therefore [23, Theorem
7.4] implies that Base is sub-cartesian (not necessarily natural) and this implies together
with [23, Theorem 8.1] that T preserves preimages iff Base is natural. Any weak pullback
preserving functor preserves preimages and thus this statement implies Proposition 2.14.

3. Relation Lifting

Given the key role that the lifting of binary relations plays in the semantics of Moss’ logic,
we need to discuss the notion in some detail. After giving the formal definition, we mention
some of the basic properties of relation lifting: first the ones that hold for any functor, then
the ones for which we require the functor to preserve weak pullbacks, and finally, we see
important technical properties of relation lifting that rest on the fact that the set functor
under consideration is standard. We discuss the connection of the relation lifting with
categorical distributive laws: as we will see later on, this connection plays an important
role in the axiomatization of ∇. Finally we introduce the notion of a slim redistribution,
which is needed to formulate one of our axioms.

3.1. Basics. First we give the formal definition of relation lifting.

Definition 3.1. Let T be a set functor. Given a binary relation R between two sets X1

and X2, we define the relation TR ⊆ TX1 × TX2 as follows:

TR := {((TπR1 )ρ, (Tπ
R
2 )ρ) | ρ ∈ TR}.

The relation TR will be called the T -lifting of R. ✁

In other words, we apply the functor T to the relation R, seen as a span X1 R
π1oo π2 // X2 ,

and define TR as the image of TR under the product map 〈Tπ1, Tπ2〉 obtained from the
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lifted projection maps Tπ and Tπ′. In a diagram:

X1 R
π1oo π2 // X2

TX1 TR
Tπ1oo

����
〈Tπ1,Tπ2〉

��

Tπ2 // TX2

TR� _

��
TX1 × TX2

AA✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄✄

]]❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀❀

Let us first see some concrete examples.

Example 3.2. Fix two sets X and X ′, and a relation R ⊆ X ×X ′. For the identity and
constant functors, we find, respectively:

IdR = R

CR = idC .

The relation lifting associated with the power set functor P can be defined concretely as
follows:

PR = {(A,A′) ∈ PX × PX ′ | ∀a ∈ A∃a′ ∈ A′.aRa′ and ∀a′ ∈ A′ ∃a ∈ A.aRa′}.

This relation is known under many names, of which we mention that of the Egli-Milner
lifting of R. Relation lifting for the finitary multiset functor is slightly more involved: given
two maps µ ∈ BωX,µ

′ ∈ BωX
′, we put

µ BωR µ′ iff there is some map ρ : R→ N such that ∀x ∈ X.
∑

{ρ(x, x′) | x′ ∈ X ′} = µ(x)

and ∀x′ ∈ X ′.
∑

{ρ(x, x′) | x ∈ X} = µ′(x′).

The definition of Dω is similar.
Finally, relation lifting interacts well with various operations on functors [25]. In par-

ticular, we have

T0 ◦ T1R = T0(T1R)

T0 + T1R = T0R ∪ T1R

T0 × T1R =
{(

(ξ0, ξ1), (ξ
′
0, ξ

′
1)
)
| (ξi, ξ

′
i) ∈ TiR, for i ∈ {0, 1}

}

TDR = {(ϕ,ϕ′) | (ϕ(d), ϕ′(d)) ∈ TR for all d ∈ D}.

From this one may easily calculate the relation lifting of all extended Kripke polynomial
functors of Example 2.3.

Remark 3.3. Strictly speaking, when defining the T -lifting of a relation R ⊆ X1 ×X2, we
should explicitly mention the type of R, that is, the pair of sets X1 and X2.

To see this, let X1,X2, Y1 and Y2 be sets such that Yi ⊆ Xi, for i ∈ {1, 2}. Now any
relation R ⊆ Y1 × Y2 can also be seen as a relation between X1 and X2. But in general
we do not have TYi ⊆ TXi, and so the relation TR ⊆ Y1 × Y2 is not necessarily a relation
between X1 and X2. It is easy to see that if T preserves inclusions, then this problem
evaporates. Since we will assume T to be standard almost throughout the paper, we ignore
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this subtlety for the time being. Readers who are worried about this may add the condition
that T preserves inclusions throughout the subsections 3.1 and 3.2.

Remark 3.4. Relation lifting can be used to define the notion of a bisimulation between
two coalgebras. Recall that, given two coalgebras X1 = 〈X1, ξ1〉 and X2 = 〈X2, ξ2〉, a
relation Z ×X1 ×X2 is a bisimulation if there is a coalgebra map ζ : Z → TZ making the
two projection functions π1 : Z → X1 and π2 : Z → X2 into coalgebra morphisms. It can
be shown that this is equivalent to requiring that ξ1(x1) TZ ξ(x2) whenever x1 Z x2.

As mentioned, in this section we will discuss some important properties of relation
lifting. We start with listing a number of properties that T -lifting has for any given set
functor T . The proof of the fact below is elementary.

Fact 3.5. Let T be an arbitrary set functor. Then the relation lifting T

(1) extends T : Tf = Tf for all functions f : X1 → X2,
(2) preserves the diagonal: T IdX = IdTX for any set X;
(3) is monotone: R ⊆ Q implies TR ⊆ TQ for all relations R,Q ⊆ X1 ×X2;
(4) commutes with taking converse: TR˘= (TR)̆ for all relations R ⊆ X1 ×X2.

3.2. Weak pullback preserving functors. Fact 3.5 states a number of operations on re-
lations that interact well with relation lifting. Conspicuously absent in that list is relational
composition: observe that T would be a functor on the category Rel if it would satisfy
T (R ;Q) = TR ; TQ. Here we arrive at the main reason why we are interested in functors
that preserve weak pullbacks: as we will see now, that property is a necessary and sufficient
condition on T for T to be functorial.

In fact, given the characterisation of (weak) pullbacks in the category Set, in terms of
the relation pb (see Fact 2.7), it is easy to formulate the composition R ;Q of two relations

R and Q as a pullback of the projection maps πR2 and πQ1 . Therefore it is not surprising that
the question whether the T -lifting of a relation commutes with the composition of relations
is tightly connected with the preservation of weak pullbacks by T . The following fact was
first proved in [54].

Fact 3.6. A functor T : Set → Set weakly preserves pullbacks iff for all relations R ⊆
X1 ×X2 and Q ⊆ X2 ×X3 we have

T (R ;Q) = TR ; TQ. (3.1)

Proof. First, assume that T preserves weak pullbacks and let R ⊆ X1×X2 and Q ⊆ X2×X3

be two binary relations. The pullback of πR2 and πQ1 is given by the following set:

pb := {〈(x1, x2), (x3, x4)〉 | (x1, x2) ∈ R, (x3, x4) ∈ Q and x2 = x3},

and there is a surjective map e : pb(πR2 , π
Q
1 ) ։ R;Q given by e(〈(x1, x2), (x3, x4)〉) = (x1, x4)

with the property that

πR;Q
1 ◦ e = πR1 ◦ πpb1 and πR;Q

2 ◦ e = πQ2 ◦ πpb2 . (3.2)

The situation is depicted in Figure 1.
We now prove (3.1). For the inclusion “⊆”, let (x, y) ∈ T (R ; Q). By definition

there exists some z ∈ T (R ; Q) such that TπR;Q
1 (z) = x and TπR;Q

2 (z) = y. We know
that e and thus also Te is surjective. Therefore there exists some z′ ∈ T (pb) such that
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pb

π
pb
1

��

π
pb
2



e
����✤
✤
✤

R ;Q
π
R;Q
1



π
R;Q
2

��

R
πR
1

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦ πR

2

!!❉
❉❉

❉❉
❉❉

❉❉
Q

π
Q
1

||③③
③③
③③
③③ π

Q
2

  ❅
❅❅

❅❅
❅❅

❅

X1 X2 X3

Figure 1: Composition of relations & pullback

Te(z′) = z, and using (3.2) we obtain TπR1 (Tπ
pb
1 (z′)) = TπR;Q

1 (Te(z′)) = TπR;Q
1 (z) = x

and similarly TπQ2 (Tπ
pb
2 (z′)) = y. On the other hand, by the definition of pb, we have

TπR2 (Tπ
pb
1 (z′)) = TπQ1 (Tπ

pb
1 (z′)) = u. This implies that (x, u) ∈ T (R) and (u, y) ∈ T (Q)

and we proved (x, y) ∈ T (R) ; T (Q) as required.
For the converse inclusion suppose that (x, y) ∈ T (R);T (Q). We want to prove that this

implies (x, y) ∈ T (R ;Q). It follows from (x, y) ∈ T (R) ; T (Q) that there is some u ∈ TX2

such that (x, u) ∈ T (R) and (u, y) ∈ T (Q); spelling out the definitions we find a ux ∈ TR

and a uy ∈ TQ such that TπR1 (ux) = x, TπQ2 (uy) = y and TπR2 (ux) = TπQ1 (uy) = u. By
our assumption that T is weak pullback preserving we have that T (pb), together with the

maps Tπpb1 , Tπpb2 is the weak pullback of TπR2 and TπQ1 . Therefore there must be some

z ∈ T (pb) such that Tπpb1 (z) = ux and Tπpb2 (z) = uy. This implies

TπR;Q
1 (Te(z)) = TπR1 (Tπ

pb
1 (z)) = TπR1 (ux) = x

and likewise TπR;Q
2 (Te(z)) = y. By definition this means that (x, y) ∈ T (R ;Q) as required.

For the converse implication of the statement of the proposition, suppose that T does
not preserve weak pullbacks and let the following be a pullback that is not weakly preserved
by T :

P

p1

��

p2 // X2

g

��
X1

f
// X3

Then it is not difficult to see that the following isomorphic diagram, is also a pullback
diagram that is not weakly preserved by T :

R

πR
1
��

πR
2 // Gr(g)̆

π
g˘
1

��
Gr (f)

π
f
2

// X3
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where Gr (f) and Gr(g)̆ denote the graph of f and the converse of the graph of g, respec-

tively, and R ⊆ Grf ×Gr ğ is the pullback of πf2 and πg˘1 . We will show the existence of a

pair (x, y) ∈ Tf ; T ğ \ T (f ; ğ ), which is a clear counterexample to (3.1).
As before there is a surjection e′ : R։ f ; ğ satisfying

πf ;g˘1 ◦ e′ = πf1 ◦ πR1 and πf ;g˘2 ◦ e′ = πg˘2 ◦ πR2 (3.3)

By assumption, (TR, TπR1 , π
R
2 ) is not a weak pullback of Tπf2 and Tπg˘1 . Hence by Fact 2.7(2),

there must be a z1 ∈ TGr(f) and a z2 ∈ TGr(g)̆ such that Tπf2 (z1) = Tπg˘1 (z2) = u, while

there is no z ∈ TR such that TπR1 (z) = z1 and TπR2 (z) = z2. (3.4)

Define x := Tπf1 (z1) and y := Tπg˘2 (z2). Since πf2 = f ◦ πf1 , we have Tπf2 = Tf ◦ Tπf1 ,
and so we find u = (Tf)x; likewise, we obtain u = (Tg)y. From this it is clear that
(x, y) ∈ Tf ; T ğ . Now suppose for a contradiction that (x, y) ∈ T (f ; ğ ). By definition this

entails the existence of some z′ ∈ T (f ; ğ ) such that Tπf ;g˘1 (z′) = x and Tπf ;g˘2 (z′) = y. By
surjectivity of e′, and hence, of Te′, then there must be some z′′ ∈ TR such that Te(z′′) = z′.
Furthermore it follows from (3.3) that

x = Tπf ;g˘1 (z′) = Tπf ;g˘1 (Te′(z′′)) = Tπf1 (Tπ
R
1 (z

′′))

and, similarly, y = Tπg˘2 (TπR2 (z
′′)). Both Tπf1 and Tπg˘2 are isomorphisms and thus we

obtain TπR1 (z
′′) = z1 and TπR2 (z

′′) = z2 - a contradiction to (3.4) above.

Putting this together with Fact 3.5(2,3) we immediately obtain the following.

Corollary 3.7. Let T be a set functor and let T be the operation that maps a set X to
TX := TX and a relation R to the T -lifting TR of R. Then the following are equivalent:

(1) T preserves weak pullbacks;
(2) T is a functor on the category Rel of sets and relations;
(3) T is a relator, that is, a monotone functor on the category Rel.

Closely related to this is an important consequence of the functor preserving weak
pullbacks, namely that the notions of bisimilarity and behavioral equivalence coincide.

Remark 3.8. In [46] it is proved that if T preserves weak pullbacks then for any pair of
coalgebras X = 〈X, ξ〉 and X

′ = 〈X ′, ξ′〉, two states x and x′ are behaviorally equivalent iff
there is a bisimulation (see Remark 3.4) linking x to x′.

3.3. Standard functors. As mentioned earlier on we will almost exclusively work with Set-
functors that are standard. In Remark 3.3 we saw that this will ensure that the definition
of the lifting of a relation R is independent of the type of R. Now we will see some further
nice consequences of standardness for the notions of relation lifting.

To start with, in case T is standard, T commutes with the domain and range of a func-
tion; and if T preserves weak pullbacks in addition, then T also commutes with restrictions.

Proposition 3.9. Let T be a standard set functor. Then

(1) T commutes with taking domains: dom(TR) = T (domR) for all relations R ⊆ X1×X2.
(2) T commutes with taking range: rng(TR) = T (rngR) for all relations R ⊆ X1 ×X2.
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(3) If T preserves weak pullbacks, then T commutes with taking restrictions:

T (R↾Y1×Y2 ) = (TR)↾TY1×TY2

for all sets X1,X2, Y1 and Y2, with Y1 ⊆ X1 and Y2 ⊆ Y1, and for all relations R ⊆
X1 ×X2.

Proof. For part 1, we first consider the inclusion dom(TR) = T (domR). Let R ⊆ X1 ×X2

be a relation and take an element α ∈ dom(TR). Then (α, β) ∈ TR, for some β ∈ TX2.
We denote by ι : dom(R) → X1 the inclusion of dom(R) into X1 and by π′1 : R → dom(R)
the restriction of the projection map π1 : R → X1; then we have π1 = ι ◦ π′1. By definition
of T there exists some ρ ∈ TR such that Tπ1(ρ) = α and hence T ι(Tπ′1(ρ)) = α. As T is
standard this shows that α = Tπ′1(ρ) ∈ Tdom(R) as required.

For the opposite inclusion, let f : dom(R) → rng(R) be any map such that f ⊆ R; then
it follows that Tf ⊆ TR. In other words, for all α ∈ T (domR) we have α TR Tf(α). From
this it is immediate that T (domR) ⊆ dom(TR).

The proof of part 2 is completely analogous. For part 3, we refer to [35, Prop. 6.4].

Proposition 3.9 is particularly useful for linking the relation lifting of T to that of its finitary
version Tω.

Proposition 3.10. Let T be a standard and weak pullback preserving set functor, let Tω be
its finitary version and let R ⊆ X1 ×X2 be a relation. Then

TωR = TR ∩ (TωX1 × TωX2).

Proof. Let R ⊆ X1 ×X2 be a relation and take a pair (α, β) ∈ TωX1 × TωX2. By definition
of Tω there must be finite sets X ′

1 ⊆ω X1 and X ′
2 ⊆ω X2 such that α ∈ TωX

′
1 = TX ′

1 and
β ∈ TωX

′
2 = TX ′

2.
In order to prove the inclusion ⊇, assume that (α, β) ∈ TR. By Proposition 3.9 we

have
(α, β) ∈ TR iff (α, β) ∈ T (R↾X′

1×X′
2
) (3.5)

and because Tω(R↾X′
1×X′

2
) ⊆ Tω(R) the inclusion holds if we can prove that (α, β) ∈ TωR

′

with R′ := R↾X′
1×X′

2
. The following diagram commutes:

TωX
′
1 TωR

′oo // TωX
′
2

TX ′
1 TR′oo // TX ′

2

Therefore we have that (α, β) ∈ TR′ iff (α, β) ∈ TωR
′. By (3.5) we have (α, β) ∈ TR′ and

hence (α, β) ∈ TωR
′ as required. The proof of the opposite inclusion is similar.

On the basis of Proposition 3.10 we will often be sloppy and write (α, β) ∈ TR instead
of (α, β) ∈ TωR, for elements α ∈ TωX1 and β ∈ TωX2. More importantly, Proposition 3.10
allow us to prove our earlier claim, that Tω inherits the properties of standardness and weak
pullback preservation from T .

Proof of Proposition 2.11. Let T be a standard, weak pullback preserving set functor.
In order to see that Tω is standard consider two sets X,X ′ with X ′ ⊆ X and let ι : X ′ → X
be the inclusion of X ′ into X. By the definition of Tω for every set X we have that TωX is
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a subset of TX and that the inclusion τX : TωX → TX is natural. It follows by naturality
that Tωι is also an inclusion:

TωX
′

Tωι

��

� �
τX′ // TX ′

� _

T ι

��
TωX

� �

τX
// TωX

More precisely, for all α ∈ TωX we have

Tωι(α) = τX(Tωι(α))
(nat. of τ)

= T ι(τ ′X(α)) = T ι(α)
T standard

= α

which demonstrates that Tωι is the inclusion map from TωX
′ into TωX, and shows that Tω

is standard indeed.
We now prove that Tω preserves weak pullbacks. By Fact 3.6 it suffices to prove that

for arbitrary relations R ⊆ X1 ×X2 and Q ⊆ X2 ×X3 we have Tω(R ;Q) = Tω(R) ; Tω(Q).
In order to see this we use Proposition 3.10. We have

(α, β) ∈ Tω(R ;Q) iff (α, β) ∈ T (R ;Q)↾TωX1×TωX3

iff (α, β) ∈ T (R ;Q)↾TX′
1×TX′

3
for some X ′

1 ⊆ω X1,X
′
3 ⊆ω X3

iff (α, β) ∈ T ((R ;Q)↾X′
1×X′

3
) for some X ′

1 ⊆ω X1,X
′
3 ⊆ω X3

iff (α, β) ∈ T (R↾X′
1×X′

2
;Q↾X′

2×X′
3
)

for some X ′
1 ⊆ω X1,X

′
2 ⊆ω X2,X

′
3 ⊆ω X3

iff (α, β) ∈ T (R↾X′
1×X′

2
) ; T (Q↾X′

2×X′
3
)

for some X ′
1 ⊆ω X1,X

′
2 ⊆ω X2,X

′
3 ⊆ω X3

iff (α, β) ∈ Tω(R) ; Tω(Q)

Finally, we finish this subsection with noting that relation lifting interacts well with the
natural transformation Base : Tω → Pω.

Proposition 3.11. Let T be a standard functor that preserves weak pullbacks. Given a
relation R ⊆ X1 × X2 and elements αi ∈ TXi, i ∈ {1, 2}, it follows from α1 TR α2 that
Base(α1) PR Base(α2). In particular, we have that Base(α1) ⊆ dom(R) and Base(α2) ⊆
rng(R).

Proof. Let πRi be the projection of R to Xi, then it follows from α1 TR α2 that αi = TπRi (ρ)
for some ρ ∈ TR. But then by naturality of Base we find that Base(αi) = Base(TπRi (ρ)) =

(PπRi )(Base(ρ)), and so Base(ρ) ∈ PR is a witness to the fact that Base(α1) PR Base(α2).

3.4. Relation Lifting & distributive laws. A relation that plays an important role in
our paper is the T -lifting of the membership relation ∈. If needed, we will denote the
element relation, restricted to a given set X, as the relation ∈X ⊆ X × PX.

Definition 3.12. Given a standard functor T that preserves weak pullbacks, we define, for
every set X, a function λTX : TPX → PTX by putting

λTX(Φ) := {α ∈ TX | α T∈X Φ}.
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Elements of λTX(Φ) will be referred to as lifted members of Φ. The family λT = {λTX}X∈Set

will be called the T -transformation. ✁

Properties of T are intimately related to those of λT . In order to express the connection,
we need to introduce the concept of a distributive law.

Definition 3.13. Let T be a covariant set functor. A distributive law of T over a (co-
or contravariant) set functor M is a natural transformation θ : TM → MT ; that is, the
following diagram commutes, for every map f : X → Y :

TMX

TMf
��

θX // MTX

MTf
��

TMY
θY // MTY

(Clearly, in case M is a contravariant functor the downward arrows have to be reversed.)
For θ to be distributive law of T over a set monad (M,η, µ), we require in addition that θ
is compatible with the monad structure, in the sense that the following diagrams commute,
for every set X:

TX

ηTX $$■
■■

■■
■■

■■

TηX // TMX

θX
��

MTX

TMMX

TµX

��

θMX // MTMX
MθX // MMTX

µX

��
TMX

θX

// MTX

(3.6)

✁

If the functor T preserves weak pullbacks, the T -transformation λT provides a distribu-
tive laws of T over the power set monad P = (P, {·},

⋃
). A detailed proof of this fact can

be found in [29, Sec. 4].

Fact 3.14. If T preserves weak pullbacks, λT = {λTX}X∈Set is a distributive law of T over
the power set monad P.

What it means, set-theoretically, for λT to be a distributive law of T over P is the
following. The fact that λT is a natural transformation from TP to PT is another way of
saying that for every map f : X → Y , and every object Φ ∈ TPX, we obtain the lifted
members of TPΦ by applying the operation Tf to the lifted members of Φ. The diagram on
the left of (3.6), relating the singleton map ηX : X → PX to the T -transformation, states
that an object α ∈ TX is always the unique lifted member of the lifted set TηX(α). To
understand the diagram on the right, recall that the multiplication µ of P is the union map⋃

X : PPX → PX. Applying the functor to this we obtain a map T
⋃

X : TPPX → TPX.
Observe that given an object Φ ∈ TPPX, we may thus take lifted members of (T

⋃
X)(Φ);

however, we may also take lifted members of Φ itself, and since each of these will belong
to the set TPX, we may repeat the operation of taking lifted members. Now the right
diagram in (3.6) states that the lifted members of (T

⋃
X)(Φ) coincide with the objects we

may obtain as lifted members of lifted members of Φ.

Remark 3.15. The existence of a distributive law of a set functor T over the power set
monad P corresponds to an extension of the functor T to the Kleisli category Kl(P) of
P. Furthermore it is easy to see that Kl(P) is isomorphic to the category Rel of sets
with relations. Putting these facts together it is clear that any distributive law of a set
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functor T over P corresponds to an extension of T to a functor on the category Rel. We
saw in Corollary 3.7 that the T -lifting of a relation can be used to extend T to a functor
T : Rel → Rel iff T preserves weak pullbacks. In this case λT is the corresponding distributive
law. Further remarks and references can be found in Section 3.6.

Perhaps somewhat surprisingly, the T -transformation can be also seen as a distributive
law over the contravariant power set functor.

Proposition 3.16. Let T : Set → Set be a functor that preserves weak pullbacks. Then λT

is a distributive law of T over the contravariant power set functor.

Proof. Let f : X → Y be a function. We have to show that the following diagram commutes:

T P̆Y
λT
Y //

T P̆ f
��

P̆ TY

P̆ T f
��

T P̆X
λTX

// P̆ TX

This can be verified by a straightforward calculation:

α ∈ λTX((T P̆f)(Φ)) iff Φ(T P̆f ; T∋X)α iff Φ(T (P̆ f ; ∋X))α
iff Φ(T (∋Y ; f )̆)α iff Φ(T∋Y ; Tf )̆α

iff Tf(α) ∈ λY (Φ) iff α ∈ (P̆ T f)(λY (Φ))

Here we freely apply properties of relation lifting, and in the third equivalence we use the
easily verified fact that P̆ f ; ∋X = ∋Y ; f .̆

In our paper both distributive laws play an important role. The fact that λT is a dis-
tributive law over P̆ is essential for proving that the semantics of Moss’ logic is bisimulation
invariant, and the distributivity of T over the monad P is crucial for the soundness of our
axiomatization.

To finish this subsection, we gather some elementary facts on the T -transformation.

Proposition 3.17. Let T be a standard, weak pullback-preserving functor, let X be some
set and let Φ ∈ TωPX.

(1) If ∅ ∈ Base(Φ) then λT (Φ) = ∅.
(2) If Base(Φ) ⊆ {Y } for some Y ⊆ X, then λT (Φ) ⊆ TY .
(3) If Base(Φ) consists of singletons only, then |λT (Φ)| = 1.
(4) If T maps finite sets to finite sets, then for all Φ ∈ TωPωX, |λT (Φ)| < ω.
(5) If Φ ∈ TωPωX, then λT (Φ) ∈ PTωX.

Proof. For part 1, assume that ∅ ∈ Base(Φ) and assume for contradiction that α is a lifted
member of Φ. It follows by Proposition 3.11 that Base(α) P∈ Base(Φ). But from this
it would follow, if ∅ ∈ Base(Φ), that Base(α) contains a member of ∅, which is clearly
impossible. Consequently, the set λT (Φ) must be empty.

In order to prove part 2, assume that Φ ∈ T{Y }, for some subset Y of X, and suppose
that α T∈ Φ. Then by Proposition 3.9(3) we have α T∈↾X×{Y }

Φ and so by part 1 of the

same Proposition we find α ∈ Tdom(∈↾X×{Y }
) = TY .

For part 3, observe that another way of saying that Base(Φ) consists of singletons only,
is that Φ ∈ TωSX , where SX ⊆ PX is the collection of singletons from X. Let θX : SX → X
be the inverse of ηX , that is, θX is the bijection mapping a singleton {x} to x. Clearly then,
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the map TωθX : TωX → TωSX is a bijection as well. In addition, we have θX˘= ∈X , from
which it follows by elementary properties of relation lifting that (TθX )̆ = T∈X . From this
it is immediate that if Φ ∈ TωSX , then (TθX)(Φ) is the unique lifted member of Φ.

Concerning part 4, assume that Φ ∈ TωPωX. Then by definition, Φ ∈ TY for some
Y ⊆ω PωX. From this it follows that Y ⊆ PY for some finite Y ⊆ X, and this implies
that Base(Φ) ⊆ PY . If α is a lifted member of Φ, then by Proposition 3.11 we obtain
Base(α) P∈ Base(Φ), and so in particular we find Base(α) ⊆

⋃
Base(Φ) ⊆ Y . From this

it follows that λT (Φ) ⊆ TY , and so by the assumption on T , the set λT (Φ) must be finite.
Finally, we consider part 5. Take an object Φ ∈ TωPωX and let α ∈ TX be an arbitrary

lifted member of Φ. Reasoning just as for part 4, we obtain that α ∈ TY for some finite
Y ⊆ X, and so by definition of Tω we find that α ∈ TωX.

3.5. Slim redistributions. The syntax of Moss’ logic is built using negations, conjunc-
tions, disjunctions and the ∇-operator. An axiomatisation of the logic has to specify the
interaction of these operations. As we will see, so-called slim redistributions are the key to
understand how conjunction interacts with the ∇-operator.

Definition 3.18. Let T be a set functor. A set Φ ∈ TPX is a redistribution of a set
A ∈ PTX if A ⊆ λTX(Φ), that is, every element of A is a lifted member of Φ. In case
A ∈ PωTωX, we call a redistribution Φ slim if Φ ∈ TωPω(

⋃
α∈A Base(α)). The set of slim

redistributions of A is denoted as SRD(A). ✁

Intuitively, redistributions of A are ways to reorganize the material of A. The slimness
condition Φ ∈ TωPω(

⋃
α∈A Base(α)) should be seen as a minimality requirement, ensuring

that Φ is ‘built from the ingredients of A’.

Example 3.19. First we consider the binary C-labelled tree functor BC of Example 2.3.
Let πC , π1 and π2 denote the respective projections from BCX to C, X and X, respectively.
An object Φ ∈ BCPX is of the form (c, Y, Z) with c ∈ C and Y,Z ∈ PX. Such a Φ is a
redistribution of a set A = {(ci, yi, zi) | i ∈ I} ⊆ω BCX iff for all i ∈ I we have ci = c, yi ∈ Y
and zi ∈ Z, and such a redistribution is slim if in addition, Y ∪Z ⊆ {yi | i ∈ I}∪{zi | i ∈ I}.
On this basis it is not hard to derive that

SRD(A) =





{(c,∅,∅) | c ∈ C} if A = ∅

∅ if |πC [A]| ≥ 2
{(cA, S1, S2) | πj[A] ⊆ Sj ⊆ π1[A] ∪ π2[A] for j = 1, 2} if πC [A] = {cA}

Remark 3.20. For our purpose it would suffice to consider instead of SRD(A) a smaller
set SRD ′(A) as long as it order-generates SRD(A) in the sense that for all Φ ∈ SRD(A)
there is Φ′ ∈ SRD ′(A) such that Φ′ T (⊆)Φ. Such an SRD ′(A) can replace the SRD(A) in
the rule (∇2) that will form a crucial part in our derivation system. In the example above,
SRD ′(A) can be given by simplifying the third clause to

{(cA, π1[A], π2[A])} if πC [A] = {cA}

We thank Fredrik Dahlqvist for pointing out that this clause does not give SRD(A).

Example 3.21. In case we are dealing with the power set functor P , first observe that
given a set X, the relation P∈X ⊆ PX × PPX is given by

α P∈ Φ iff α ⊆
⋃

Φ and α ∩ β 6= ∅ for all β ∈ Φ.
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On the basis of this observation it is easy to check that Φ ∈ PX is a redistribution of
A ∈ PPX if

⋃
A ⊆

⋃
Φ and α ∩ β 6= ∅ for all α ∈ A and β ∈ Φ. Furthermore, we obtain

Φ ∈ SRD(A) iff
⋃
A =

⋃
Φ and α ∩ β 6= ∅ for all α ∈ A, β ∈ Φ.

Hence, in the case of the power set functor we are dealing with a symmetric relation:
Φ ∈ SRD(A) iff A ∈ SRD(Φ).

The following observation, which is due to M. B́ılková, shows that slim redistributions
naturally occur in the context of distributive lattices.

Example 3.22. Let D be a distributive lattice. The distributive law for D can be formulated
as follows. For any set A ∈ PωPωD, we have

∧

α∈A

∨
α =

∨

γ∈CF (A)

∧
rng(γ),

where CF (A) is the set of choice functions on A, that is, CF (A) is the set of maps γ : A→ D
such that γ(α) ∈ α, for all α ∈ A. Then it is straightforward to verify that the set
{rng(γ) | γ ∈ CF (A)} is in fact a slim redistribution of A.

In fact, we may prove that
∧

α∈A

∨
α =

∨

Φ∈SRD(A)

∨

ϕ∈Φ

∧
ϕ. (3.7)

Later on we will see that our axiom governing the interaction of ∇ with conjunctions,
generalizes (3.7).

We finish the section with a proposition for future reference.

Proposition 3.23. SRD(∅) = T{∅}.

Proof. If Φ is a slim redistribution of the empty set, then by definition Φ ∈ TPω(∅) = T{∅}.
Conversely, any Φ ∈ T{∅} satisfies the condition that ∅ ⊆ λT (Φ), and so Φ ∈ SRD(∅).

3.6. Notes. The relation lifting via spans as in Definition 3.1 was defined by Barr in [10,
Section 2]. Without stating it explicitly, he also proves that the relation lifting T is a
functor on Rel iff T preserves weak pullbacks; see also Trnková [54] and, for a generalisation
beyond set functors, Carboni, Kelly and Wood [18, 4.3] and Hermida [24, Theorem 2.3]. [18]
also studies the question which functors Rel → Rel arise from functors Set → Set. Closely
related notions of relator, also accounting for simulation as opposed to only bisimulation, are
studied by Thijs [53] and in the context of coalgebraic logic by [9, 19, 27]. The connection
between coalgebraic logic and relation lifting goes back to the original paper by Moss [41]
which introduced ∇ and defined its semantics by using relation liftings, albeit without
making this notion explicit. Independently, essentially the same notion of relation lifting
was studied in a fibrational setting by Hermida and Jacobs [25]. For a comparison of the
notions of bisimulation arising from relation lifting and related definitions see Staton [51].

The relation lifting can also be obtained via a distributive law between a functor and
a monad as in Definition 3.13, which is a slight, commonly used variant of the notion of
a distributive law between monads [11]. As shown in [11], there is a 1-1 correspondence
between distributive laws and liftings of functors to the category of algebras. Similarly,
distributive laws λ : TM →MT between a functor T and a monadM , or monad op-functors
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(T, λ) : (Set,M) → (Set,M) in the terminology of Street [52], are in 1-1 correspondence
with liftings T of T to the Kleisli category of M .

We thank Dirk Hofmann, Jǐŕı Velebil and Steve Vickers for pointing out various refer-
ences and their significance.

4. Boolean algebras and their presentations

4.1. Boolean-type algebras. It will be convenient for us to work with a syntax for
Boolean logic and Boolean algebras, in which the finitary meet and join symbols,

∧
and∨

, respectively, are the primitive symbols for the conjunction and disjunction operation,
respectively.

Definition 4.1. Given a set X, we let L0(X) denote the set of Boolean terms/formulas
over X, defined by the following grammar:

a ::= x ∈ X | ¬a |
∨
ϕ |
∧
ϕ,

where ϕ is a finite set of Boolean terms. We abbreviate ⊥ :=
∨

∅ and ⊤ :=
∧

∅, and if no
confusion is likely we will write L0 := L0(∅). ✁

Observe that each L0(X) is non-empty, always containing the elements ⊤ and ⊥.
The above definition can be brought in coherence with the categorical perspective of

section 2, as follows.

Definition 4.2. We define the category Boole of Boolean-type algebras as the algebras for
the functor Set → Set, X 7→ X + PωX + PωX. A Boolean-type algebra will usually be
introduced as a quadruple B = 〈B,¬B,

∧
B,
∨

B〉, where B is the carrier of the algebra, and

¬B : B → B, and
∧

B,
∨

B : Pω(B) → B the Boolean operations. ✁

Note that this perspective has built in that both conjunction and disjunction are com-
mutative, associative and have a neutral element.

We let U : Boole → Set denote the forgetful functor, and F : Set → Boole its left adjoint;
that is, given a set X, FX denotes the absolutely free Boolean-type algebra, or Boolean
term algebra, over X. Note that FX is not a Boolean algebra. Given a set X, observe that
UF(X) consists of the set L0(X) of all Boolean terms/formulas using the elements of X as
variables. In fact, we may extend L0 to the set functor L0 : Set → Set given by

L0 := UF. (4.1)

In this way we obtain the well-known term monad for the Boolean signature with the usual
unit η : Id → L0 (‘variables are terms’) and multiplication µ : L0L0 → L0 (‘terms built
from terms are terms’).

SetL0 77

F

##
Boole

U

bb

In particular, for any f : X → L0Y there is f̂ : L0X → L0Y which extends f and can be

defined as the composition µY ◦ L0f . Logicians will recognise f̂ as the substitution induced
by f .
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Definition 4.3. Given a set X and a Boolean-type algebra B, a map f : X → UB is called
an assignment. Because of the adjunction F ⊣ U , such an assignment has a unique extension
to a Boole-homomorphism, denoted by

f̃ : FX → B.

This map f̃ is the meaning function induced by f . ✁

Definition 4.4. A Boole-type algebra B is a Boolean algebra if it satisfies the inequalities
of Table 2.

We let P̆ : Set → BAop denote the contravariant power set algebra functor. That is,
given a set X, we let P̆X denote the power set algebra of X, and for a map f : X → Y , the
homomorphism P̆f : P̆Y → P̆X is provided by the map f−1 = P̆ f . ✁

4.2. Presentations of Boolean algebras. It has become a standard tool in mathematics
to define an algebraic structure by means of a presentation by generators and relations.
Usually, these definitions are given in the category-theoretic sense, and in particular do
not distinguish isomorphic structures. Our proof-theoretic analysis of the logic requires us
to be very precise here, and for this purpose we have developed a small piece of theory
on ‘concrete presentations’. We want to stress the fact that whereas we only talk about
Boolean algebras here, the results in this section in fact apply to a wide universal algebraic
setting.

Definition 4.5. A presentation is a pair 〈G;R〉 consisting of a set G of generators and a
set R ⊆ L0(G) × L0(G). Given such a relation R, let ≡R ⊆ L0(G) × L0(G) be the least
congruence relation on the term algebra FG extending R such that the quotient FG/≡R

is
a Boolean algebra. We say that this quotient is the Boolean algebra presented by 〈G;R〉,
and denote it as B〈G;R〉. Given a presentation 〈G;R〉, we let

η〈G;R〉 : g 7→ [g]. (4.2)

define a map η〈G;R〉 : G→ UB〈G;R〉. ✁

It is straightforward to verify that η̃〈G;R〉 is the quotient morphism from FG to B〈G;R〉,
with kernel ker(η̃〈G;R〉) = ≡R.

Relating this definition of presentations to the more usual one, first observe that a
‘relation’ is nothing but an equation over the set of generators (but note that generators
should not be seen as variables). Accordingly, given a presentation 〈G;R〉, a Boolean algebra
B, and an assignment f : G → UB, we say that a relation (s, t) ∈ R is true in B under f ,

notation: B, f |= s ≈ t, if f̃(s) = f̃(t). B is a model for R under f if B, f |= s ≈ t for all
(s, t) ∈ R. It is straightforward to verify that B〈G;R〉 is a model for R under η〈G;R〉. We
can now formulate the following proposition, of which we omit the (straightforward) proof.

Proposition 4.6. Let 〈G;R〉 be a presentation, and let B be a model for R under the
assignment f : G → UB. Then there is a unique homomorphism f ′ : B〈G;R〉 → B that
extends f in the sense that f ′([g]) = f(g). In a diagram:

G

f
((◗◗

◗◗◗
◗◗

◗◗◗
◗◗◗

◗◗
◗

η〈G;R〉 // UB〈G;R〉

f ′

��
UB
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The universal property of B〈G;R〉 expressed by the above proposition is usually taken
as the definition of the Boolean algebra presented by a presentation.

In order to turn the class of presentations into a category we need to define a notion of
morphism between two presentations.

Definition 4.7. A presentation morphism from one presentation 〈G;R〉 to another 〈G′;R′〉

is a map f : G → L0(G
′) satisfying f̂(s) ≡R′ f̂(t) for all s, t ∈ L0(G) such that (s, t) ∈ R.

Given two presentation morphisms f : 〈G;R〉 → 〈G′;R′〉 and g : 〈G′;R′〉 → 〈G′′;R′′〉, we
define their composition g ◦ f : G→ L0(G

′′) as the map given by

g ◦ f(x) := ĝ(f(x)),

and the identity presentation on 〈G;R〉 as the function id 〈G;R〉 : G → L0(G) mapping a
generator x ∈ G to the term x ∈ L0G. ✁

The verification that the above defines a category is routine. Category theorists will
note that identity and composition are those of the Kleisli category associated with the
monad L0.

Definition 4.8. We will let Pres denote the category with presentations as objects and
presentation morphisms as arrows. ✁

We will now extend the construction B of a Boolean algebra out of a presentation to a
functor B : Pres → BA, and define a functor C : BA → Pres in the opposite direction.

Definition 4.9. Given a presentation morphism f : 〈G;R〉 → 〈G′;R′〉, it is easy to see that
the map Bf : FG/≡R

→ FG′/≡R′ given by

Bf : [s]〈G;R〉 7→ [f̂(s)]〈G′;R′〉

is well-defined.
Conversely, given a Boolean algebra B, define its canonical presentation as the pair

CB := 〈UB;∆B〉. Here UB is the underlying set of B, and ∆B is the diagram of B, defined
as follows:

∆B := {(a,¬b) | a, b ∈ UB with a = ¬Bb}

∪ {(a,
∧
ϕ) | {a} ∪ ϕ ⊆ω UB with a =

∧
Bϕ}

∪ {(a,
∨
ϕ) | {a} ∪ ϕ ⊆ω UB with a =

∨
Bϕ}.

Given a homomorphism f : B → B
′ between two Boolean algebras, we let

Cf : b 7→ f(b)

define a map Cf : UB → L0(UB
′). ✁

Proposition 4.10. B : Pres → BA and C : BA → Pres are functors.

Further on we will make good use of the following definition.

Definition 4.11. A presentation morphism f : 〈G;R〉 → 〈G′;R′〉 is a pre-isomorphism if

there is a morphism g : 〈G′;R′〉 → 〈G;R〉 such that ĝf̂(s) ≡R s and f̂ ĝ(s′) ≡R′ s′, for all
terms s ∈ L0G and s′ ∈ L0G

′. This g is called a pre-inverse of f . ✁

Proposition 4.12. Let f : 〈G;R〉 → 〈G′;R′〉 be a presentation morphism. Then f is a
pre-isomorphism iff Bf is an isomorphism.
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Proof. For the direction from left to right, let f be a pre-isomorphism. We confine ourselves
to proving that Bf is injective. For this purpose assume that Bf([s]〈G;R〉) = Bf([t]〈G;R〉).

Then by definition we have [f̂ s]〈G′;R′〉 = [f̂ t]〈G′;R′〉, or equivalently, f̂s ≡R′ f̂ t. From this

it follows by the assumption that s ≡R ĝf̂s ≡R ĝf̂ t ≡R t, and so it is immediate that
[s]〈G;R〉 = [t]〈G;R〉.

Conversely, assume that Bf is an isomorphism between B〈G;R〉 and B〈G′;R′〉. Let
g : G′ → L0G be such that g(x′) ∈ (Bf)−1[x′] for every generator x′ ∈ G′. We claim that
Bg = (Bf)−1. To see this, note that it is straightforward to check that g(s′) ∈ (Bf)−1[s′];
from this it follows that (Bf)−1([s′]〈G′;R′〉) = [ĝs′]〈G;R〉.

In order to see that g is a pre-inverse of f , consider an arbitrary term s ∈ L0G.
Clearly we have [s]〈G;R〉 = (Bf)−1(Bf)[s]〈G;R〉, and so by definition and the above ob-

servation, we find [s]〈G;R〉 = (Bf)−1[f̂ s]〈G′;R′〉 = [ĝf̂s]〈G;R〉. This means that s ≡R ĝf̂s,
as required. Conversely, let s′ be an arbitrary term in L0G

′. Then we have [s′]〈G′;R′〉 =

(Bf)(Bf)−1[s′]〈G′;R′〉 = Bf [ĝs′]〈G;R〉 = [f̂ ĝs′]〈G′;R′〉, or equivalently, s
′ ≡R′ f̂ ĝs′.

The functors B and C are very close to forming an equivalence between the categories
Pres and BA. More precisely, we can formulate the following connections. Given a presenta-
tion 〈G;R〉, it is not hard to verify that the insertion of generators η〈G;R〉 : G→ UB〈G;R〉
defined in (4.2) is in fact a presentation morphism

η〈G;R〉 : 〈G;R〉 → CB〈G;R〉.

Conversely, given a Boolean algebra B, let idB denote the identity map on B := UB, and

recall that ĩdB denotes the unique homomorphism ĩdB : FUB → B extending idB. It is not

difficult to show that ĩdB(t(b1, . . . , bn)) = tB(b1, . . . , bn), and so we may think of ĩd as an
evaluation map. We leave it for the reader to verify that for all s, t ∈ FUB, we have

s ≡CB t iff ĩdB(s) = ĩdB(t). (4.3)

From this it follows that the map ǫB : BCB → B given by putting, for any t(b1, . . . , bn) ∈
L0(UB):

ǫB : [t(b1, . . . , bn)] 7→ tB(b1, . . . , bn) (4.4)

is a well-defined homomorphism from BCB to B.

Theorem 4.13. The functors B and C form an adjoint pair B ⊣ C, with unit η : IdPres →̇
CB and counit ǫ : BC →̇ IdBA given by (4.2) and (4.4), respectively. Furthermore, each
arrow η〈G;R〉 : 〈G;R〉 → CB〈G;R〉 is a pre-isomorphism, and each arrow ǫB : BCB → B is
an isomorphism.

Proof. Let us start with showing that η : IdPres →̇ CB is indeed a natural transformation.
That is, given an presentation morphism f : 〈G;R〉 → 〈G′;R′〉 we have to show that the
following diagram commutes.

〈G;R〉

f

��

η〈G;R〉// CB〈G;R〉

CBf

��
〈G′;R′〉

η〈G′;R′〉// CB〈G′;R′〉
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For this purpose it suffices to check that the two compositions, CBf ◦η〈G;R〉(x) and η〈G′;R′〉◦
f(x) agree on an arbitrary generator x ∈ G. But this is immediate:

CBf ◦ η〈G;R〉(x) = CBf [x] = [f̂x] = η̂〈G′;R′〉(f̂x) = η̂〈G′;R′〉(fx) = (η〈G′;R′〉 ◦ f)(x).

In order to prove that η〈G;R〉 is a pre-isomorphism, let g : UB〈G;R〉 → L0G be any map
such that g([s]) ∈ [s] for any element [s] ∈ UB〈G;R〉. It is easy to check that g is a
presentation morphism and that η〈G;R〉 and g are pre-inverses of each other. From this it is
immediate that η〈G;R〉 is a pre-isomorphism.

Turning to the counit of the adjunction, let f : B → B
′ be a homomorphism between

Boolean algebras. Let [t(b1, . . . , bn)], with each bi in B, be an arbitrary element of BCB.
Then we compute

f ◦ ǫB[t(b1, . . . , bn)] = f(tB(b1, . . . , bn)) (definition of ǫ)

= tB
′
(fb1, . . . , fbn) (f is a homomorphism)

= ǫB′ [t(fb1, . . . , fbn)] (definition of ǫ)

= ǫB′ [f̂(t(b1, . . . , bn))] (definition of f̂)

= ǫB′(BCf)[t(b1, . . . , bn)] (definition of B and C)

This shows that the following diagram commutes:

BCB

BCf
��

ǫB // B

f
��

BCB
′

ǫ
B′ // B′

and thus proves that ǫ is a natural transformation.
To show that ǫB is an isomorphism, it suffices to check injectivity. But by a straight-

forward term induction it is easy to prove that every term t(b1, . . . , tk) in L0UB satisfies

t(b1, . . . , bn) ≡CB t
B(b1, . . . , bn).

Hence if ǫB[s(a1, . . . , ak)] = ǫB[t(b1, . . . , bn)], then by s(a1, . . . , ak) ≡CB sB(a1, . . . , ak) =
tB(b1, . . . , bn) ≡CB t(b1, . . . , bn), we immediately find that [s(a1, . . . , ak)] = [t(b1, . . . , bn)], as
required.

Finally, in order to prove that B ⊣ C, by [40, Theorem IV.1.2] it suffices to prove that
(i) for any Boolean algebra A, the composition

CA
ηCA−→ CBCA

CǫA−→ CA

is the identity on CA, and that (ii) for any presentation 〈G;R〉, the composition

B〈G;R〉
Bη〈G;R〉
−→ BCB〈G;R〉

ǫB〈G;R〉
−→ B〈G;R〉

is the identity on B〈G;R〉. Both of these facts can be checked by a straightforward unrav-
elling of the definitions, which we will leave as an exercise for the reader.
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Remark 4.14. What keeps B and C from forming an equivalence of categories is that the
unit η is a ‘natural pre-isomorphism’ rather than a natural isomorphism. We could remedy
this by changing the notion of arrow in the category of presentations but this would be
disadvantageous in our completeness proof, when we construct a stratification of our logic.

Remark 4.15. We indicate how the present section generalises beyond Boolean algebras,
as suggested by a referee. We have been working with three categories, BA, Boole, and Pres.
Instead of Boole consider a category B with forgetful functor U : B → Set and left-adjoint F
of U . Instead of BA consider a category A and a full inclusion I : A → B with a left-adjoint
L of I. Now, we can define a category Pres. Pres has as as objects pairs 〈G,R〉 where
G is a set and R is a relation given by a pair of arrows R ⇒ UFG, or equivalently, by
FR ⇒ FG. A presentation morphism f : 〈G,R〉 → 〈G′, R′〉 is then an algebra morphism
f : FG → FG′ such that for all A ∈ A and all v : FG′ → IA, if v equalises FR′ ⇒ FG′

then v ◦ f equalises FR ⇒ FG. The functors B : Pres → A and C : A → Pres can then
be defined as above. Indeed, for A ∈ A we let the canonical presentation CA be the kernel
pair of the map UFUIA → UIA, given by the counit of F ⊣ U at IA; and B〈G,R〉 is
given by the coequaliser of LFR ⇒ LFG. As in Theorem 4.13, one can now show that
B ⊣ C and that the counit BC → Id is an iso. Moreover, the proofs do not depend on
the base category Set and only require rather general assumptions about kernel pairs and
coequalisers (which are certainly fullfilled whenever A and B are varities, that is, classes of
algebras given by operations of finite arity and equations).

5. Moss’ coalgebraic logic

In this section we will recall the definitions of Moss’ coalgebraic logic and its semantics [41],
or rather, the finitary version thereof developed by Venema [55].

5.1. Syntax. As mentioned in the introduction, the key idea underlying the syntax of
Moss’ language for reasoning about T -coalgebras is to include a modal operator ∇ into the
language whose ‘arity’ is given by the functor T itself, in the same way that Pω is the ‘arity’
of our conjunction and disjunctions. In the finitary version of the language, the arity of
∇ is given by the finitary version Tω of T . In brief, the language L will be defined by the
following grammar:

a ::= ¬a |
∧
ϕ |
∨
ϕ | ∇α

where ϕ ∈ PωL and α ∈ TωL. For the purpose of this paper we need some further syntactic
definitions.

Definition 5.1. Let T : Set → Set be a standard, weak pullback preserving set functor
and let Tω be the finitary version of T . The language L of the finitary Moss language for
T is defined inductively. We first define L0 as the set L0(∅) of closed Boolean formulas
(see Definition 4.1). For the inductive step, we start with introducing the set functor T∇

ω

defined by, for a given set X and function f : X → Y ,

T∇
ω X := {∇α | α ∈ TωX},

T∇
ω f(∇α) := ∇Tf(α).

We continue the inductive definition by putting

Li+1 := L0T
∇
ω Li.
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Finally, we define L as the union L :=
⋃

i∈ω Li, and fix the rank or depth of a formula a ∈ L
is the smallest natural number n such that a ∈ Ln. ✁

Using BNF notation, we can recast the above definition as

L0 ∋ a ::= ¬a |
∧
ϕ |
∨
ϕ

where ϕ ⊆ω L0, and

Li+1 ∋ a ::= ∇α | ¬a |
∧
ϕ |
∨
ϕ

where α ∈ TωLi and ϕ ∈ PωLi+1.
Despite its unconventional appearance, the language L admits fairly standard defini-

tions of most syntactical notions. As an example we mention the notion of a subformula.

Definition 5.2. We define the set Sfor (a) of subformulas of a by the following induction:

Sfor(¬a) := {¬a} ∪ Sfor (a)

Sfor (
∧
ϕ) := {

∧
ϕ} ∪

⋃
a∈ϕSfor (a)

Sfor (
∨
ϕ) := {

∨
ϕ} ∪

⋃
a∈ϕSfor (a)

Sfor (∇α) := {∇α} ∪
⋃

a∈Base(α)Sfor (a).

The elements of Base(α) ⊆ Sfor(∇α) will be called the immediate subformulas of ∇α. ✁

On the basis of this definition it is not difficult to prove that every formula in L has
only finitely many subformulas. This is in fact the reason why we call our language the
finitary version of Moss’.

Remark 5.3. In order to formulate and understand the interaction principles between
nabla and the Boolean operations, we need to think of the propositional connectives as
functions on formulas. Taking disjunction as an example, observe that we may think of
it as a map

∨
: PωL → L. Thus we may apply the functor Tω to this map, obtaining

T
∨

: TωPωL → TωL. (Recall from our discussion on the finitary version of a functor that
to simplify notation we will write T

∨
rather than Tω

∨
.) Hence, for Φ ∈ TωPωL, we find

(T
∨
)Φ ∈ TωL, which means that ∇(T

∨
)Φ is a well-formed formula. The same applies

to the formula ∇(T
∧
)Φ, and similarly, we may think of negation as a map ¬ : L → L,

and obtain T¬ : TL → TL; thus for any formula ∇α, we may also consider the formula
∇(T¬)α.

Remark 5.4. The reader may be surprised that we did not include propositional variables
in our language. The reason for this is that we may encode these into the functor. More
precisely, given a functor T and a set Prop of proposition letters, recall from Example 2.2(5)
that the T -models over Prop can be identified with the coalgebras for the functor TProp =
P (Prop) × T . Hence we may use the language L associated with TProp to describe the
Prop-models based on T -coalgebras, see Example 5.10(3).

Convention 5.5. Since in this paper we will not only be dealing with formulas and sets of
formulas, but also with elements of the sets TωL, PωTωL and TωPωL, it will be convenient
to use some kind of naming convention, see Table 1 below.

It will be useful later on to have a more categorical description of the finitary Moss
language for a functor T . For this purpose we need the following definition.
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Set Elements
L a, b, . . .

TωL α, β, . . .
PωL ϕ,ψ, . . .

PωTωL A,B, . . .
TωPωL Φ,Ψ, . . .

Table 1: Naming convention

Definition 5.6. We define the category Boole∇ of Moss algebras as the algebras for the
Moss functor AM : Set → Set, given as:

AM := Id + Pω + Pω + Tω,

That is, for a set S, AMS is the disjoint union of S, two (disjoint copies) of PωS, and TωS;
for a map f , AMf is defined accordingly.

A Moss algebra will usually be introduced as a quadruple B = 〈B,¬B,
∧

B,
∨

B,∇B〉,

where 〈B,¬B,
∧

B,
∨

B〉 is a Boole-type algebra, called the Boolean reduct of B, and ∇B :
TωB → B is the nabla operator of B. ✁

Given a Moss algebra B, there is a unique, natural way to interpret L-terms as elements
of the carrier B of B. This meaning function mngB : L → UB can be defined by a
straightforward induction on the complexity of formulas. For instance, the clauses for∧

and ∇ are

mngB(
∧
ϕ) :=

∧
B(PmngB)(ϕ)

mngB(∇α) := ∇B(TmngB)(α)

Categorically speaking, this means the following. We may view Moss’ language itself
as a Moss algebra, by interpreting the function symbols as the corresponding syntactic
operation, as usual in universal algebra. Note that in order to prove that ∇Lα belongs to
L, it is crucial that ∇ is a finitary operation: from α ∈ TωL it follows that α ∈ TωLn for
some finite n, and then we may proceed with ∇α ∈ Ln+1 ⊆ L. The arising algebra, that
we will also denote as L, is a rather special Moss algebra, namely, the initial one. Apart
from the fact that the syntax of L is slightly unusual, the proof of the proposition below is
standard universal algebra, and so we omit it.

Proposition 5.7. L is the initial Moss algebra: given an arbitrary Moss algebra B, the
meaning function mngB is the unique homomorphism from L to B.

Before moving on to the coalgebraic semantics of L, we finish our discussion of its
syntax with the following definition, for future reference.

Definition 5.8. Let T : Set → Set be a set functor and let Tω be the finitary version of T .
We define the functor L1 : Set → Boole by putting

L1 := L0 ◦ T
∇
ω ◦ L0.

✁

On occasion, we will consider L1 also as a Boole valued functor allowing us to write
L1 = FT∇

ω L0. The notation L1 is in accordance with the definition of L1 as the fragment
of rank one formulas in L, by the observation that L1 = (L0 ◦ T

∇
ω )(L0) = L0T

∇
ω L0(∅).
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5.2. Semantics. Given all the preparations we have made in the previous sections, the
definition of the semantics of the language is completely straightforward.

Definition 5.9. Let T : Set → Set be a standard, weak pullback preserving functor, and
let X = 〈X, ξ〉 be a T -coalgebra. The satisfaction relation X ⊆ X × L is defined by the
following induction on the complexity of formulas:

x X ¬a if x 6X a,
x X

∧
ϕ if x X a for all a ∈ ϕ,

x X

∨
ϕ if x X a for some a ∈ ϕ,

x X ∇α if ξ(x) TX α.

If x X a we say that a is true, or holds at x in X. We may omit the superscript when no
confusion is likely, writing  instead of X.

In case a holds throughout X, that is, at every state of X, we write X  a. ✁

Before we turn to look at some examples, we should argue for the well-definedness of the
relation . In particular, when looking at the clause for the nabla modality, the reader
might be worried whether this is an inductive definition at all, since the defining clause,
‘ξ(x) T α’, refers to the full forcing relation. The point is that because of our assumptions,
T commutes with restrictions, and so we have

(ξ(x), α) ∈ T () ⇐⇒ (ξ(x), α) ∈ T (↾X×Base(α) ). (5.1)

Thus, in order to determine whether ∇α holds at x or not, we only have to know the
interpretation of the immediate subformulas of α (that is, the elements of Base(α)). In
other words, if using the right hand side of (5.1) rather than the left hand side, we would
have an equivalent, inductive, definition of the semantics.

Example 5.10.

(1) Let T be the C-stream functor given by TX = C ×X for some set C. Then ∇T takes
as its argument a pair (c, a) where c ∈ C and a is a formula in L. The formula ∇(c, a)
is true in a T -coalgebra (X, ξ) at a state x if ξ(x) = (c′, y) with c = c′ and y  a.

(2) The nabla operator ∇P associated with the power set functor P is the cover modality
discussed in the introduction.

(3) If TProp is the T -model functor of Example 2.3(5), associated with a functor T and a
set Prop of proposition letters, then ∇TProp

takes as its argument a pair (π, α) consisting

of a set π ⊆ Prop and a set α ⊆ω LT . The meaning of the formula ∇K(π, α) can be
expressed as

∇TProp
(π, α) ≡ (

∧

p∈π

p ∧
∧

p 6∈π

¬p) ∧ ∇Tα.

(4) Finally, let T = Dω be the finitary distribution functor, In this case, ∇Dω takes as
argument a distribution µ : L → [0, 1] of finite support. Given a T -coalgebra X = (X, ξ)
and some x ∈ X we have x X ∇Dωµ if for all y ∈ X and all a ∈ L there are real numbers
ρy,a ∈ [0, 1] such that

ρy,a 6= 0 implies y  a, ξ(x)(y) 6= 0, µ(a) 6= 0 and
∑

a′∈L

ρy,a′ = ξ(x)(y) for all y ∈ X and

∑

y∈X

ρy,a = µ(a) for all a ∈ L.
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The state-based semantics of the logics as presented in Definition 5.9 can be brought in
accordance with the earlier algebraic perspective by the observation that every T -coalgebra
naturally induces a Moss algebra, namely its complex algebra.

Definition 5.11. Let T : Set → Set be a standard, weak pullback preserving functor, and
let X = 〈X, ξ〉 be a T -coalgebra. The complex algebra X

+ of X is defined as the Moss algebra

B which has the power set algebra P̆(X) as its Boolean reduct, while

∇X+
:= P̆ ξ ◦ λTX

defines the nabla operation of X+. ✁

In words: the Boolean function symbols ¬,
∨

and
∧

are interpreted as the comple-
mentation, union and intersection operations on the power set of X. To understand the
definition of the nabla operation, observe that applying the contravariant power set functor
to the coalgebra map ξ, we obtain a function P̆ ξ : P̆ TX → P̆X, so if we compose this map
with the T -transformation λTX : T P̆X → P̆ TX, we obtain a map P̆ ξ ◦ λTX : T P̆X → P̆X of
the right shape.

It follows by Proposition 5.7 that every L-formula a can uniquely be assigned a meaning
mngX+(a) ∈ PX in the complex algebra of a T -coalgebra X — in the sequel we will write
mngX rather than mngX+ . The Proposition below states that the two approaches to the
coalgebraic semantics of L coincide, so that we can speak without hesitation of ‘the’ meaning
of a formula in a T -coalgebra.

Proposition 5.12. Let T : Set → Set be a standard, weak pullback preserving functor, and
let X = 〈X, ξ〉 be a T -coalgebra. Then we have

mngX(a) = {x ∈ X | x  a},

for every formula a ∈ L.

Proof. The proof of this proposition proceeds by a routine formula induction.

5.3. First observations. In this subsection we gather first observations on L. First we
show that Moss’ logic is adequate; that is, it cannot distinguish behaviorally equivalent
states.

Theorem 5.13 (Adequacy). Let T : Set → Set be a standard, weak pullback preserving
functor, and let f : X → Z be a coalgebra morphism between the T -coalgebras (X, ξ) and
(Z, ζ). For all formulas a ∈ L and all states x ∈ X we have

x X a iff f(x) Z a. (5.2)

We leave it as an exercise for the reader to give a direct proof of Theorem 5.13 — a
straightforward induction will suffice, using the fact that T distributes over relation com-
position in the case of a formula a = ∇α. We will give a proof based on the algebraic
approach, involving the initiality of L (Proposition 5.7), and the following result.

Proposition 5.14. Let T : Set → Set be a standard, weak pullback preserving functor, and
let f : X → Z be a coalgebra morphism between the T -coalgebras X = (X, ξ) and Z = (Z, ζ).

Then P̆ f is an algebraic homomorphism from Z
+ to X

+.
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Proof. It is well-known that P̆ f is a homomorphism from the power set algebra P̆(Z) to

P̆(X). Thus it is left to show that P̆ f also is a homomorphism with respect to the nabla
operators. For that purpose, consider the following diagram:

T P̆Z

T P̆f
��

λT
Z // P̆ TZ

P̆T f
��

P̆ ζ // P̆Z

P̆ f
��

T P̆X
λTX

// P̆ TX
P̆ ζ // P̆X

The left rectangle commutes since λT is a distributive law of T over P̆ (see Proposition 3.16),

and the right rectangle commutes by functoriality of P̆ and the assumption that f is a

coalgebra morphism. As a corollary, the outer diagram commutes, but by definition of ∇X+

and ∇Z+
this just means that P̆ f is a homomorphism for ∇.

On the basis of the previous proposition, the proof of the Theorem is almost immediate.

Proof of Theorem 5.13. By initiality of L as a Moss algebra, mngX is the unique ho-

momorphism mngX : L → X
+. But it follows from Proposition 5.14 that P̆ f ◦mngZ is also

a homomorphism from L to X
+, so that we may conclude that

mngX = P̆ f ◦mngZ. (5.3)

Now let x and a be as in the statement of the theorem, then we have

x X a iff x ∈ mngX(a) (Proposition 5.12)

iff x ∈ P̆ f(mngZ(a)) (5.3)

iff fx ∈ mngZ(a) (definition of P̆ f)

iff fx Z a (Proposition 5.12)

From this the theorem is immediate.

5.4. Logic. The purpose of this paper is to provide a sound and complete axiomatization of
the set of coalgebraically valid formulas in this language, that is, the set of L-formulas that
are true in every state of every coalgebra. Since our completeness proof will be algebraic in
nature, for our purposes it will be convenient to formulate our results in terms of equations,
or rather, inequalities.

Definition 5.15. An inequality is an expression of the form a 4 b, where a and b are
formulas in L. Similarly, an equation is an expression of the form a ≈ b. ✁

One may think of the inequality a 4 b as abbreviating the equation a ∧ b ≈ a, and we
will see the equation a ≈ b as representing the set {a 4 b, b 4 a} of inequations. (In fact,
in our Boolean setting, we could even represent the equation a ≈ b by the single inequality
(a ∧ ¬b) ∨ (¬a ∧ b) 4 ⊥.) Thus it does not really matter whether we base our logic on
equations or on inequalities, and in the sequel we will move from one perspective to the
other if we deem it useful.

Definition 5.16. An inequality a 4 b holds in a Moss algebra A, notation: A |= a 4 b, if
mngA(a) ≤A mngA(b). ✁
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Given the Boolean basis of our logics, we can express coalgebraic validity in terms of
equational validity, and vice versa. More precisely, given a T -coalgebra X = 〈X, ξ〉, it is
easy to see that

X  a ⇐⇒ X
+ |= ⊤ 4 a

and, conversely,

X
+ |= a 4 b ⇐⇒ X  ¬a ∨ b.

As a consequence, in order to axiomatize the coalgebraically valid formulas, we may just as
well find a derivation system for the inequalities that are valid in all complex algebras.

Definition 5.17. An inequality a 4 b is (T -coalgebraically) valid, notation: a |=T b, if it
holds in every complex algebra X

+. ✁

As an example of a validity, we mention the following, for an arbitrary Φ ∈ TωPωL:

∇(T
∨
)Φ 4

∨{
∇β | β T∈ Φ

}
(∇3f )

(see Remark 5.3 for an explanation of the syntax). Note that the right hand side of (∇3f )
is a well-defined formula only if the disjunction is finite; we can guarantee this by requiring
T to map finite sets to finite sets. (We will come back to this issue in the next section.)

Proposition 5.18. If T is a weak pullback preserving, standard set functor that maps finite
sets to finite sets, then the formula (∇3f ) is valid for every Φ ∈ TωPωL.

Proof. In order to understand the validity of (∇3f ), fix some T -coalgebra X = 〈X, ξ〉.
First observe that for any ϕ ⊆ω L we have X, x 

∨
ϕ iff X, x  a, for some a ∈ ϕ.

Putting it differently, the relations  ; ∈ and  ;
∨
˘ coincide. From this it follows that

T ( ; ∈) = T ( ;
∨

)̆. (5.4)

Now fix some object Φ ∈ TωPωL, and suppose that x is a state in X such that x  ∇(T
∨
)Φ.

From this it follows that the pair (ξ(x), (T
∨
)(Φ)) belongs to the relation T , and so

(ξ(x),Φ) belongs to (T) ; (T
∨
)̆ = T ( ;

∨
)̆. But then by (5.4), we find (ξ(x),Φ) ∈

T ( ; ∈) = T ; T∈. In other words, there is some object β such that ξ(x) T β and
β T∈ Φ. Clearly then x  ∇β, and so we have x 

∨
{∇β | β T∈ Φ}, as required.

6. The derivation system

6.1. Introduction. In this section we introduce our derivation system M for the finitary
version of Moss’ logic, as given in the previous section. First we fix some general notation
and terminology concerning derivations.

Definition 6.1. Given a derivation system D, we let each of ⊢D a 4 b, a ⊑D b and b ⊒D a
denote the fact that the inequality a 4 b is derivable in D, and we write a ≡D b if both
a ⊑D b and b ⊑D a. ✁
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In other words, where a 4 b and a ≈ b are syntactic expressions in an object language,
the expressions a ⊑D b and a ≡D b denote statements, in the metalanguage, about the
derivability of such expressions a 4 b and b 4 a. In case no confusion is likely concerning
the derivation system at hand, we will drop subscripts, simply writing a ≡ b and a ⊑ b.

In principle, the derivation system that we are looking for, should have axioms and rules
of three kinds. First of all, it will have a propositional core taking care of the Boolean basis
of our setting. For this purpose, any sound and complete set of axioms and derivation rules
would do; for concreteness, we propose the set given in Table 2. Recall that our language
has

∨
and

∧
as primitive connectives.

a 4 a
a 4 b b 4 c

a 4 c

{a 4 b | a ∈ ϕ}∨
ϕ 4 b

a 4 b
b ∈ ψ

a 4
∨
ψ

{a 4 b | b ∈ ψ}

a 4
∧
ψ

a 4 b
a ∈ ϕ∧

ϕ 4 b

∧
{
∨
ϕ | ϕ ∈ X} 4

∨
{
∧
γ[X] | γ ∈ Choice(X)}

∧
(X ∪ {¬a}) 4

∨
Y∧

X 4
∨
(Y ∪ {a})

∧
(X ∪ {a}) 4

∨
Y∧

X 4
∨
(Y ∪ {¬a})

Table 2: Axioms and rules for classical propositional logic

Second, our system will need some kind of congruence rule for the nabla modality.
Since ∇ has a rather unusual form, perhaps it is not a priori clear what such a rule would
look like. The naive way to formulate a congruence rule for ∇ would be as

from α T≡ β infer ∇α ≡ ∇β (6.1)

Problem is that the premiss of (6.1) is not itself an equation, or a set of equations. This
problem can be remedied by invoking some properties of relation lifting. More precisely,
note that from Proposition 3.9 we may derive the equivalence α T≡ β ⇐⇒ α TZ β, for
some Z ⊆ Base(α)×Base(β). This would lead to the following formulation of a congruence
rule:

{a ≈ b | (a, b) ∈ Z}
(α, β) ∈ TZ

∇α ≈ ∇β
The above rule is supposed to have a set of premisses: {a ≈ b | (a, b) ∈ Z}, where Z ⊆
Base(α)×Base(β) is a relation such that (α, β) ∈ TZ — the latter condition is formulated
as a side condition of the rule.

As it turns out, however, we also want ∇ to be order-preserving, and the most straight-
forward way to formulate that would be by strengthening (6.1) to

from α T⊑ β infer ∇α ⊑ ∇β. (6.2)
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If we want to turn this into a syntactically well-formed derivation rule again, we obtain our
first derivation rule (∇1):

{a 4 b | (a, b) ∈ Z}
(α, β) ∈ TZ

∇α 4 ∇β
(∇1)

which can be read as a congruence and monotonicity rule in one. It has the additional
advantage of being formulated in terms of our primitive symbol, 4.

Example 6.2. First, consider the C-labelled binary tree functor BC = C × Id × Id of
Example 2.3. Here, an application of rule (∇1) looks as follows:

{a1 4 b1, a2 4 b2}

∇(c, a1, a2) 4 ∇(c, b1, b2)

where c is an arbitrary element of C. Note that no inequality of the form ∇(c, a1, a2) 4

∇(d, b1, b2) with c 6= d can be derived using (∇1) because (∇(c, a1, a2),∇(d, b1, b2)) 6∈ T (Z)
for any relation Z.

In the case of the power set functor P , an application of the rule (∇1) looks as follows:

{a 4 b | (a, b) ∈ Z}
(α, β) ∈ PZ

∇α 4 ∇β

where α, β ∈ PωL are finite sets of formulas. It can be easily seen that the premiss of the
rule can be satisfied iff for all a ∈ α there is a b ∈ β such that a 4 b, and vice versa.

In addition, any complete derivation system for Moss’ language will need some inter-
action principles describing the interaction between the nabla modality and the Boolean
connectives. As we will see, the interaction principles between ∇ and the Boolean connec-
tives

∨
and

∧
will take the form of two distributive laws (in the logical meaning of the

word). We postpone discussing the role of negation in our system until subsection 6.5, and
before giving the general formulation of the laws for

∧
and

∨
, we first discuss a simple,

special, case.

6.2. Functors restricting to finite sets. For a gentle introduction of our derivation
system we first consider the special case where the functor restricts to finite sets.

Turning to the interaction principles, we first consider the interaction between the coal-
gebraic modality and conjunctions. More specifically, the purpose of axiom (∇2) will be
to rewrite a conjunction of nabla formulas as an equivalent ‘disjunction of nablas of con-
junctions’, and we think of this axiom as a distributive law (in the logical sense). Formally,
recall from Definition 3.18 that given a finite set A ∈ PωTωL, the set SRD(A) ⊆ TωPωL
denotes the set of slim redistributions of A. Also recall that given an object Φ ∈ TωPωL,
we find (T

∧
)Φ ∈ TωL, which means that ∇(T

∧
)Φ is a well-formed formula. We can now

formulate the axiom (∇2) as the following inequality:
∧{

∇α | α ∈ A
}
4
∨{

∇(T
∧
)Φ | Φ ∈ SRD(A)

}
(∇2f )

Example 6.3. First consider the case of the C-labelled binary tree functor BC of Exam-
ple 2.3. In Example 3.19 we discussed the shape of the collection of slim redistributions
of a collection A ⊆ω TωL. From this it should be clear that we obtain the following three
instances of (∇2f ).
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(1) If A = ∅, we obtain

⊤ 4
∨

{∇(c,⊤,⊤) | c ∈ C}

(2) If A contains two elements (c, a1, a2) and (c′, a′1, a
′
2) with c 6= c′, then we obtain

∧
{∇α | α ∈ A} 4 ⊥.

(3) If πC [A] contains a unique element cA, then we obtain
∧

{∇α | α ∈ A} 4 ∇(cA, π1[A], π2[A])

where πC , π1 and π2 are the projection functions, as in Example 3.19 and where we
used the optimization outlined in Remark 3.20.

Second, in the case of the power set functor in Example 3.21, T = P , an instance of (∇2f )
looks as follows∧

α∈A

∇α 4
∨{

∇{
∧
β | β ∈ Φ} |

⋃
A =

⋃
Φ and α ∩ β 6= ∅ for all α ∈ A, β ∈ Φ

}
(6.3)

Remark 6.4. In fact, we could have formulated this principle as an equation rather than
as an inequality, since the opposite inequality of (∇2f ) can be derived on the basis of (∇1).
To see this, observe that for any formula a ∈ L and any set ϕ ∈ PωL it holds that a ∈ ϕ
implies that a ⊒

∧
ϕ. Reformulating this as (∈;

∧
) ⊆ ⊒, and using the properties of

relation lifting we find that T∈;T
∧

⊆ T⊒. From this it follows that, whenever α ∈ TωL is
a lifted member of Φ ∈ TωPωL, we find that (T

∧
)ΦT (⊑)α. From this, one application of

(∇1) yields the existence of a derivation for the inequality ∇(T
∧
)Φ 4 ∇α. Since this holds

for any α and Φ with αT∈Φ, we may conclude that
∨{

∇(T
∧
)Φ | Φ ∈ SRD(A)

}
⊑
∧{

∇α | α ∈ A
}
.

That is, the opposite inequality of (∇2f ) is indeed derivable.

Our second interaction principle, (∇3), involves the interaction between ∇ and the
disjunction operation. And again, we think of this axiom as a distributive law (in the
logical sense), stating that the coalgebraic modality distributes over disjunctions. More
precisely, the rule reads as follows:

∇(T
∨
)Φ 4

∨{
∇β | βT (∈)Φ

}
(∇3f )

Example 6.5. In the case of the functor BC = C× Id× Id , axiom (∇3f ) is of the following
shape:

∇(c,
∨
A,
∨
B) 4

∨
{∇(c, a, b) | a ∈ A, b ∈ B}.

For the power set functor P , an instance of axiom (∇3f ) looks as follows

∇{
∨
β | β ∈ Φ} 4

∨
{∇α | α ⊆

⋃
Φ and α ∩ β 6= ∅ for all β ∈ Φ }.

Remark 6.6. In this case the opposite inequality can be derived on the basis of (∇1) as
well. Here we use the fact that a ∈ ϕ implies a ⊑

∨
ϕ, or in other words, that ∈;

∨
⊆ ⊑.

This implies that T∈;T
∨

⊆ T⊑, and hence, whenever β is a lifted member of Φ, we find
that βT⊑(T

∨
)Φ. Thus an application of (∇1) shows the derivability of the inequality

∇β 4 ∇(T
∨
)Φ. And since this applies to every lifted member of Φ, we may conclude that

∨{
∇β | βT (∈)Φ

}
⊑ ∇(T

∨
)Φ,
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meaning that, indeed, the opposite inequality of (∇3f ) is derivable.

Summarizing, in the case of a set functor T that preserves finite sets, our deriva-
tion system Mf extends that of classical proposition logic (Table 2) with one congru-
ence/monotonicity rule, and two axioms that take the form of distributive laws, see Ta-
ble 3. The point of restricting to this case is to ensure that the axioms (∇2f ) and (∇3f )
are well-formed pieces of syntax, in the sense that the disjunctions on the right hand side
are finite.

Remark 6.7. The requirement on the given set functor T to preserve finite sets is obviously
sufficient in order to ensure that the axioms (∇2f ) and (∇3f ) are well-formed. Note,
however, that there are set functors that do not restrict to finite sets and for which the
axioms (∇2f ) and (∇3f ) are nevertheless syntactically well-formed.

Consider for example the bag functor Bω from Example 2.2. In order to show that
(∇2f ) and (∇3f ) are well-formed we have to prove that the sets

{Φ ∈ BωPωX | Φ ∈ SRD(A)} for A ∈ PωBωX and (6.4)

{β ∈ BωX | β(Bω ∈)Φ} for Φ ∈ BωPωX (6.5)

are finite. Using the characterisation of the relation lifting for Bω in Example 3.2 this is
not diffcult to see: Let us consider first the set in (6.4), ie., we consider some A ∈ PωBωX
and we want to prove that the set {Φ ∈ BωPωX | Φ ∈ SRD(A)} is finite. If Φ ∈ SRD(A)
then by the definition of slim redistributions we have (α,Φ) ∈ (Bω ∈) for all α ∈ A and
Φ ∈ BωPω(

⋃
α′∈A Base(α′)). Therefore, using Proposition 3.9, we get that

(α,Φ) ∈ Bω

(
∈↾Base(α)×Pω(

⋃
α′∈A Base(α′))

)
for all α ∈ A.

This implies, by the definition of Bω from Example 3.2, that there exists a function

ρ :∈↾Base(α)×Pω(
⋃

α′∈A Base(α′))→ N

such that for all α ∈ A, all x ∈ Base(α) and all U ∈ Pω(
⋃

α′∈A Base(α′)) we have

Φ(U) =
∑

x′∈Base(α),x′∈U

ρ(x′, U) and ρ(x,U) ≤ α(x)

Therefore we have Φ(U) ≤
∑

x∈U α(x). This shows that the range of Φ has an upper bound
an thus, as Φ is determined by its values on the finite set Pω(

⋃
α′∈A Base(α′)), there can

only finitely many Φ’s that satisfy the requirement of a slim redistribution for the set A.
In a similar way one can show that the set {β ∈ BωX | β(Bω ∈)Φ} in (6.5) is finite for all
Φ ∈ BωPωX. We leave the details of the argument as an exercise to the reader.

One example for a set functor for which the finitary axioms (∇2f ) and (∇3f ) are not
well-formed is provided by the finitary probability functor Dω in Example 2.2.

6.3. The derivation system M. In the case that we are dealing with an arbitrary set
functor T (not necessarily preserving finite sets), we would like to use the same derivation
system as given in Table 3. Unfortunately however, in this case the axioms (∇2f ) and
(∇3f ) are no longer well-formed syntactic expressions, since we cannot guarantee that the
disjunctions on the right hand sides are taken over a finite set. In order to deal with this
problem, we use the following trick: we replace an axiom of the form

a 4
∨

{ai | i ∈ I}
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(∇1)

{
a 4 b | (a, b) ∈ Z

}

(α, β) ∈ TZ
∇α 4 ∇β

(∇2f )
∧{

∇α | α ∈ A
}
4
∨{

∇(T
∧
)Φ | Φ ∈ SRD(A)

}

(∇3f ) ∇(T
∨
)Φ 4

∨{
∇β | βT (∈)Φ

}

Table 3: Rules and axioms of the system M (in case T preserves finite sets)

(∇1)
{a 4 b | (a, b) ∈ Z}

(α, β) ∈ TZ
∇α 4 ∇β

(∇2)
{∇(T

∧
)(Φ) 4 b | Φ ∈ SRD(A)}∧
{∇α | α ∈ A} 4 b

(∇3)
{∇α 4 b | α T∈ Φ}

∇(T
∨
)(Φ) 4 b

Table 4: Rules of the system M

with the derivation rule
{ai 4 b | i ∈ I}

a 4 b
The price that we have to pay for this transformation is that our derivation system will be
infinitary.

Definition 6.8. The derivation system M is given by the axioms and derivation rules of
Table 4, together with the complete set of axioms and rules for classical propositional logic
given in Table 2. ✁

Our notions of derivation and derivability are completely standard.

Definition 6.9. A derivation is a well-founded tree, labelled with inequalities, such that
the leaves of the tree are labelled with axioms of M, whereas with each parent node we may
associate a derivation rule of which the conclusion labels the parent node itself, and the

premisses label its children. If D is a derivation of the inequality a 4 b, we write D
a 4 b

or

D : a ⊑ b. If we want to suppress the actual derivation, we write ⊢M a 4 b or (in accordance
with Definition 6.1) a ⊑M b. ✁

Note that M is not a Gentzen-style derivation system; in particular, we do not have
left- and right introduction- and elimination rules for ∇. Readers who are interested to see
a detailed development of the proof theory of nabla-style coalgebraic logic, are referred to
B́ılková, Palmigiano & Venema [13] (for the power set case).
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6.4. Soundness and completeness. We can now very concisely formulate the main result
of this paper as the following soundness and completeness result:

Theorem 6.10. Let T be a standard set functor that preserves weak pullbacks. For all
formulas a, b ∈ L we have

⊢M a 4 b iff a |=T b. (6.6)

In words, Theorem 6.10 states that for any two L-formulas a and b, the inequality
a 4 b is derivable in our derivation system M iff it is valid in all T -coalgebras. Our proof
of this result will be based on many auxiliary results, which we will discuss in the next two
sections. The final proof will be given at the end of section 8.

6.5. The role of negation. At this point, the reader may be surprised or even worried
that we have formulated our derivation system for a Boolean-based coalgebraic modal logic,
without mentioning the negation connective (or the implication, for that matter) in relation
to the nabla modality at all. Surely there must be some validities involving both ∇ and
¬? The point is that indeed there are such interaction principles, but we do not need to
formulate them explicitly as axioms or derivation rules since they are already derivable in
the system M. The intuition underlying this fact is that in a bounded distributive lattice,
all existing complementations are completely determined by the lattice operations: the
complement ¬a of an element a, if existing, is the unique element b such that a∧ b = ⊥ and
a ∨ b = ⊤.

Nevertheless, the key principle relating ∇ to ¬ will be needed in our proofs below, and
so we discuss it in some detail. For a smooth formulation we need the following definition.

Definition 6.11. Given an element α ∈ TωL, let Q(α) ⊆ TωL be the set defined by

Q(α) :=
{
T (
∧

◦ P¬)Ψ | Ψ ∈ TωPωBase(α) and (α,Ψ) 6∈ T 6∈
}
. ✁

To unravel this definition, observe that P¬ : PωL → PωL, and so we have
∧

◦P¬ : PωL → L.
Thus we find that for Ψ ∈ TωPωBase(α) ⊆ TωPωL we have (T (

∧
◦P¬))Ψ ∈ TωL indeed.

In case T preserves finite sets, Q(α) is a finite set, and we can express the principle
relating ∇ and ¬ as follows:

¬∇α ≈
∨{

∇β | β ∈ Q(α)
}
. (∇4f )

In other words: the negation of a nabla is equivalent to a disjunction of nablas of conjunc-
tions of negations of the base formulas. Putting it yet differently, in the case of T preserving
finite sets, we can define the Boolean dual ∆ of ∇, just in terms of ∇ and

∨
. For more

information on this dual modality ∆ the reader is referred to Kissig & Venema [31].
In the general case, that is, if the functor T does not necessarily take finite sets to finite

sets, we can express the interaction between ∇ and ¬ in the form of a derivation rule,

{∇β 4 b | β ∈ Q(α)}

¬∇α 4 b
(∇4L)

and a collection of axioms:
{∇β 4 ¬∇α | β ∈ Q(α)}, (∇4R)

corresponding to the directions 4 and < of (∇4f ), respectively. The point to make is
that both (∇4L) and (∇4R) are derivable in M. We will prove this in detail for (∇4L).
Given our completeness result, the derivability of (∇4R) is an immediate consequence of its
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validity [31]. The actual derivation of ∇β 4 ¬∇α for β ∈ Q(α) is rather involved, so we
refrain from giving the details here.

In any case, the key instruments in the derivability of both (∇4L) and (∇4R) are the
following two rules.

Proposition 6.12. For any finite set ϕ of formulas, the following rules are M-derivable:

(∇4a)
⊤ 4

∨
ϕ

{
∇α 4 b | α ∈ Tϕ

}

⊤ 4 b

(∇4b)

{
a ∧ a′ 4 ⊥ | a 6= a′ ∈ ϕ

}

α 6= α′ ∈ Tϕ
∇α ∧ ∇α′ 4 ⊥

Proof. In the proof below, the following principle will be used a few times:

Given f : S → S′, for s ∈ S, Tf restricts to a bijection Tf : T{s} → T{f(s)} (6.7)

We first show the derivability of (∇4a). Assume that we have a derivation D⊤ of
⊤ 4

∨
ϕ, and a derivation Dα of ∇α 4 b, for each α ∈ Tϕ.

Consider an arbitrary element Φ ∈ T{ϕ}. By Proposition 3.17(2), each lifted member
α of Φ belongs to Tϕ. If we apply (∇3) to the set {Dα | α T∈ Φ}, we obtain a derivation

DΦ :
{Dα : ∇α 4 b | α T∈ Φ}

∇(T
∨
)(Φ) 4 b

for each Φ ∈ T ({ϕ}).
Applying our principle (6.7) to the map

∨
: PωL → L, we find that each β ∈ T ({

∨
ϕ})

is of the form β = (T
∨
)(Φβ) for some Φβ ∈ T ({ϕ}). Thus in fact for each such β we have

a derivation
Dβ : ∇β 4 b

On the other hand, we may continue the derivation D⊤ as follows. Consider the bijection
f : {⊤} → {

∨
ϕ}, which induces a bijection Tf : T{⊤} → T{

∨
ϕ}. Clearly we find that

f ⊆ {⊑}, so that Tf ⊆ T⊑. From this it follows that we may apply the rule (∇1) to the
inequality ⊤ 4

∨
ϕ and obtain, for each γ ∈ T{⊤}, the derivation

D⊤

⊤ 4
∨
ϕ

∇1
∇γ 4 ∇(Tf)γ

Combining the observations until now, we obtain the following derivation Dγ for each
γ ∈ T{⊤}:

Dγ :

D⊤

⊤ 4
∨
ϕ

∇1
∇γ 4 ∇(Tf)γ

D(Tf)γ

∇(Tf)γ 4 b
cut

∇γ 4 b
Since (T

∧
)(Ψ) ∈ T{⊤} for each Ψ ∈ T{∅}, this means that above we have obtained a

derivation
DΨ : ∇(T

∧
)(Ψ) 4 b

for each Ψ ∈ T{∅}.
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Finally, consider the instantiation of (∇2) with A = ∅. By Proposition 3.23 we have
SRD(∅) = T{∅}, so that the set {∇(T

∧
)(Ψ) 4 b | Ψ ∈ T{∅}} is exactly the set of premises

of this instantiation of (∇2). Hence we may simply take the set of all derivations DΨ, with
Ψ ∈ T{∅}, and continue as follows:

{
DΨ | Ψ ∈ T{∅}

}

∇2
⊤ 4 b

This finishes the proof of the derivability of (∇4a).

In the case of (∇4b) we will proceed a bit faster, leaving the details as to why our
argumentation yields derivability rather than admissibility, as an exercise for the reader.
Let ϕ be a finite set of formulas such that a ∧ a′ ≡ ⊥ for all distinct a, a′ ∈ ϕ, and let α
and α′ be two distinct elements of Tϕ. We will derive the inequality ∇α ∧ ∇α′ 4 ⊥. By
(∇2) it suffices to show that

⊢M ∇(T
∧
)(Φ) 4 ⊥,

where Φ is an arbitrary slim redistribution of the set {α,α′}.
But if Φ ∈ SRD({α,α′}), and both α and α′ belong to Tϕ, then first of all we have

Base(Φ) ⊆ Pϕ, because Φ ∈ TωPω(Base(α) ∪Base(α′)) by the definition of a slim redistri-
bution and thus Base(Φ) ⊆ P (Base(α)∪Base(α′)) ⊆ Pϕ. In addition, it follows by Propo-
sition 3.17(1) that ∅ 6∈ Base(Φ), and then by Proposition 3.17(3) that Base(Φ) contains

some set ψ ⊆ ϕ with |ψ| > 1. Define the following function d : Base(Φ) → P (ϕ) ∪
{
{⊤}

}
:

d(χ) :=





∅ if |χ| > 1
χ if |χ| = 1
{⊤} if |χ| = 0

On the basis of our set of premises {a∧ a′ 4 ⊥ | a 6= a′ ∈ Tϕ}, for each χ ∈ Base(Φ) ⊆ Pϕ
we can find a derivation for the inequality

∧
χ 4

∨
d(χ). Putting these derivations together,

and applying (∇1) with Z = {(
∧
χ,
∨
d(χ)) | χ ∈ Base(Φ)}, we obtain a derivation DΦ for

the inequality ∇(T
∧
)(Φ) 4 ∇(T

∨
)(Td(Φ)).

We also claim that we can derive the inequality ∇(T
∨
)(Td(Φ)) 4 ⊥. Since Base :

Tω → Pω is a natural transformation, we have that Base(Td(Φ)) = (Pd)(Base(Φ)) =
d[Base(Φ)]. Now recall that above we found a ψ ∈ Base(Φ) with |ψ| > 1; it follows that
∅ = d(ψ) ∈ Base(Td(Φ)), so that on the basis of Proposition 3.17(1) we may conclude that
Td(Φ) has no lifted members. But then one single application of (∇3), with the empty set
of premisses, provides the desired derivation for ∇(T

∨
)(Td(Φ)) 4 ⊥.

Finally then, an application of the cut rule gives ∇(T
∧
)(Φ) 4 ⊥, as required.

As a corollary to this we can now prove the derivability of (∇4L).

Proposition 6.13. The rule (∇4L) is derivable in M.

Proof. Let α ∈ TωL and b ∈ L be arbitrary, and assume that for all β ∈ Q(α) we have
∇β ⊑ b. We will show that ¬∇α ⊑ b.

Consider the map t : PωBase(α) → L given by

t : ψ 7→
∧

{a ∈ Base(α) | a 6∈ ψ} ∧
∧

{¬b | b ∈ ψ}.

Then for all ψ ⊆ Base(α) it is straightforward to verify that (i) t(ψ) ⊑ (
∧

◦P¬)ψ, and (ii)
if a 6∈ ψ then t(ψ) ⊑ a.
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Define ϕ to be the range of t. Intuitively, think of ϕ as the set of atoms of a Boolean
algebra; then it is not hard to see that

⊤ ⊑
∨
ϕ. (6.8)

We claim that
for all γ ∈ Tϕ : ∇γ ⊑ b ∨ ∇α. (6.9)

For the proof of (6.9), take an arbitrary γ ∈ Tϕ. By definition of ϕ, the map T t is surjective
when seen as T t : TωPωBase(α) → Tωϕ, and so we may fix an element Ψ ∈ TωPωBase(α)
such that γ = (T t)Ψ. Now distinguish cases.

First assume that (α,Ψ) 6∈ T 6∈. It follows from (i) that γ = (T t)Ψ T⊑ (T (
∧

◦P¬))Ψ,
and so an application of (∇1) shows that ∇γ ⊑ ∇(T (

∧
◦P¬))Ψ. Now by assumption we

have (T (
∧

◦P¬))Ψ ∈ Q(α), and so there is a derivation of the inequality ∇(T (
∧

◦P¬))Ψ 4

b. Then an application of the cut rule shows that ∇γ ⊑ b.
If, on the other hand, the pair (α,Ψ) does belong to the relation T 6∈, then by (ii) we

obtain that γ = (T t)ΨT⊑α. Now an application of (∇1) yields a derivation for ∇γ 4 ∇α.
In either case, a simple propositional continuation of the derivation shows that ∇γ ⊑

b ∨ ∇α, which proves (6.9).
Finally, applying the derived rule (∇4a) to the premisses given by (6.8) and (6.9),

we obtain a derivation of the inequality ⊤ 4 b ∨ ∇α. But from this it follows by some
straightforward classical propositional manipulations that ¬∇α ⊑ b, as required.

7. One-step soundness and completeness

As mentioned in the introduction, our completeness proof is based on Pattinson’s stratifi-
cation method [43], which consists of stratifying the logic in ω many layers which are nicely
glued together by means of a so-called one-step version of the derivation system. The main
technical hurdle in this method consists of showing that this one-step derivation system is
sound and complete with respect to a natural one-step semantics. In this section we will
first properly introduce our version of these notions, and then prove the one-step soundness
and completeness result.

7.1. One-step semantics and one-step axiomatics. Starting with the one-step seman-
tics, fix a set X and think of P̆X as a set of formal objects or propositions. Recall from
Section 5 that L0P̆X and L1P̆X are the sets of formulas of depth zero and depth one over
this language, respectively. The point underlying the one-step semantics is that there is a
natural interpretation of the formulas in L1P̆X as sets of elements of TX, or, expressed
more accurately, as elements of the Boolean algebra P̆TX. To explain this, first note that
we may see the identity map

ι : P̆X → P̆X

as a natural valuation interpreting variables of P̆X as subsets of X, and then extend this
valuation to a unique homomorphism

[[·]]X0 := ι̃ : FP̆X → P̆X.
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We find it convenient to denote Uι̃ : L0P̆X → P̆X by the same symbol [[·]]X0 and also to

occasionally drop the superscript X . We may associate a relation 0
X⊆ X × L0P̆X with

this map, which we define inductively by putting

x 0
X p if x ∈ p, where p ∈ P̆X,

x 0
X

∨
ϕ if x 0

X a for some a ∈ ϕ,
x 0

X

∧
ϕ if x 0

X a for all a ∈ ϕ.

Clearly the relation between [[·]]0 and 0
X is given by

x ∈ [[a]]0 iff x 0
X a,

for all x ∈ X and all a ∈ L0P̆X.
We note for future reference that [[·]]0 gives rise to a natural transformation.

Proposition 7.1. The family of homomorphisms {[[·]]X0 }X∈Set is a natural transformation

FP̆ →̇ P̆ and, therefore, also a natural transformation [[·]]0 : L0P̆ →̇ P̆ .

Proof. Naturality of [[·]]0 is a matter of routine checking. The key for the proof is that for

any function f : X → Y , P̆ f : P̆ Y → P̆X is a Boolean homomorphism.

Turning our attention to depth-one formulas, perhaps the easiest way to explain their
one-step semantics is to introduce a similar relation 1

X ⊆ TX × L1P̆X:

TX, ξ 1
X ∇α if (ξ, α) ∈ T (0

X),
TX, ξ 1

X

∨
ϕ if TX, ξ 1

X c for some c ∈ ϕ,
TX, ξ 1

X

∧
ϕ if TX, ξ 1

X c for all c ∈ ϕ.

Remark 7.2. It is instructive to have a look at the relationship between the one-step
semantics of depth-one formulas and the coalgebraic semantics for arbitrary formulas from
Definition 5.9. Roughly, the definition of the one-step semantics of a formula captures
precisely what is needed to inductively define the semantics of the logic.

More precisely, let (X, ξ) be some T -coalgebra and let, for i < ω, mng i : Li → P̆X be
the map, that maps any formula a ∈ Li of modal rank i to its coalgebraic meaning, that is,
for all a ∈ Li and all x ∈ X we let x ∈ mng i(a) if x  a. Now we claim that for any k < ω
and any ∇α ∈ Lk+1 we have

x X ∇α iff TX, ξ(x) 1
X ∇(Tmngk)α. (7.1)

To see this, first observe that by induction on the Boolean structure of Lk-formulas, we
may show that for any a ∈ Lk and any x ∈ X, we have x X a iff x 0

X mngk(a). In other
words, we have

(X)↾X×Lk
= 0

X ;mngk .̆ (7.2)

Based on this, we may reason as follows:

x X ∇α ⇐⇒ ξ(x) TX α (definition of )

⇐⇒ ξ(x) T ((X)↾X×Lk
) α

⇐⇒ ξ(x) T0
X ;mngk˘α (equation (7.2))

⇐⇒ ξ(x) T0
X (Tmngk)α (properties of relation lifting)

⇐⇒ TX, ξ(x) 1
X ∇(Tmngk)α. (definition of 1)
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In words: if we assume that we have already defined the interpretation of all formulas of
modal rank k then the one-step semantics allows us to extend this interpretation to formulas
of rank k + 1.

The relation 1
X provides a natural semantics for terms of depth one, and induces a

natural semantic equivalence relation.

Definition 7.3. Given a set X, we define the one-step semantics [[a′]]1 of a formula a′ ∈

L1(P̆X) as
[[a′]]1 := {ξ ∈ TX | TX, ξ 1

X a′}.

We say that two formulas a′, b′ ∈ L1(P̆X) are semantically one-step equivalent, notation:
a′ ≡sem b′, if [[a′]]1 = [[b′]]1. ✁

Remark 7.4. Alternatively but equivalently, we can define the [[·]]1 as follows. Apply T to
the map [[·]]0, and compose with the function λTX to obtain

λTX ◦ T [[·]]0 : TωL0P̆X → P̆ TX.

This map then provides us with an interpretation of the basic formulas in L1P̆X =
L0T

∇
ω L0P̆X, namely the ones of the form ∇α ∈ T∇

ω L0P̆X:

µX(∇α) := (λTX ◦ T [[·]]0)(α).

Now [[·]]1 may be identified with Uµ̃X : L0T
∇
ω L0P̆X → P̆ TX. Occasionally, we will write

[[·]]1 also for the Boole-morphism µ̃X : FT∇
ω L0P̆X → P̆TX.

To match the semantic notions of equivalence between L1P̆X-formulas, we introduce
a one-step version of the derivation system M, associated with the presentation CP̆X of
the power set Boolean algebra P̆X. Formal definitions will be given below, but the basic
idea is straightforward: modify M by (i) restricting attention to the depth-0 and depth-1
formulas over the set PX of (formal) variables, and (ii) adding the ‘true facts about PX’ as
additional axioms. The resulting derivation system naturally induces an interderivability
relation on L1P̆X-formulas that we shall denote as ≡MCPX for reasons that we will clarify in
Remark 7.7 further on. This then raises the question whether the two equivalence relations
are the same or not, and the main aim of this section is to provide an affirmative answer to
this question.

Theorem 7.5 (1-step soundness and completeness). For any set X, and for any pair of
formulas c, d ∈ L1PX we have

c ≡sem d iff c ≡MCPX d. (7.3)

Our proof of this result will be algebraic, and before we can move to the details of the
proof, we need to set up the appropriate framework for this.

We now define the one-step derivation system M〈G;R〉 associated with a presentation
〈G;R〉. Recall that L0G and L1G = L0T

∇
ω L0(G) are the set of depth zero and depth one

formulas in G, respectively. In this section if we want to stress the difference between the
two kinds of formulas, we shall use a, b, . . . for formulas in L0(G), and c, d, . . . for formulas
in L1(G). An L0G-inequality is an inequality of the form a 4 b, with a, b ∈ L0G; and
likewise for L1G. Intuitively, we obtain M〈G;R〉 from M by restricting attention to L0G-
and L1G-inequalities, and adding the (in)equalities of R as additional axioms.
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Definition 7.6. Given a presentation 〈G;R〉, we letM〈G;R〉 denote the one-step derivation
system associated with 〈G;R〉. The language of M〈G;R〉 consists of L0G-inequalities, and
L1G-inequalities, and its axioms and rules are those of M, together with the set

R4 := {a 4 b, b 4 a | (a, b) ∈ R}.

A M〈G;R〉-derivation is a well-founded tree, labelled with L0G- and L1G-inequalities, such
that (i) the leaves of the tree are labelled with axioms of M or with inequalities in R4, (ii)
with each parent node we may associate a derivation rule of which the conclusion labels the
parent node itself, and the premisses label its children. ✁

We will leave it for the reader to verify that in M〈G;R〉-derivations, a parent node is
generally labelled with the same type of inequality (i.e. L0G versus L1G) as its children;
the single exception is the rule (∇1) which links L0-inequalities of the premises to an L1-
inequality in the conclusion. As a corollary, M〈G;R〉-derivation trees can be divided into
a (possibly empty) upper L0G-part and a (possibly empty) lower L1G-part.

Remark 7.7. We can now clarify the syntactic interderivability notion of our one-step
soundness and completeness theorem. Given a set X, recall that CP̆X is the canonical
presentation of the Boolean algebra P̆X, and observe that ≡

MCP̆X
is the associated relation

of derivable equivalence of L1P̆X-terms in the one-step derivation system MCP̆X. It is
this derivation system that Theorem 7.5, stating that the semantic equivalence relation is
the same as the relation ≡

MCP̆X
, is concerned with.

Remark 7.8. Definition 7.6 corrects and clarifies the corresponding definition in this pa-
per’s earlier incarnation, where the one-step proof system M〈G;R〉 was not properly spec-
ified. In particular, the sentence in [34, Definition 22], ‘in which only elements of X and
L(X) may be used’ (where X denotes the set of generators) was not only rather vague, but
in fact mistaken: it would not permit nontrivial applications of the derivation rules (∇2)
and (∇3), since these require the use of more terms in L0(X) than only the generators in
X themselves.

7.2. The functor M on presentations. As we will see now, the notion of a one-step
derivation system induces a functor on the category of presentations.

Definition 7.9. Given a presentation 〈G;R〉, we letM〈G;R〉 denote the presentation given
as

M〈G;R〉 := 〈T∇
ω L0(G);≡M〈G;R〉〉.

For a presentation morphism f : 〈G;R〉 → 〈G′;R′〉, the definition

Mf : ∇α 7→ ∇(Tωf̂)α

provides us with a map Mf : T∇
ω L0(G) → T∇

ω L0(G
′). ✁

In other words, Mf maps generators of the presentation M〈G;R〉 to generators of the
presentation M〈G′;R′〉. We will now show that Mf is in fact a presentation morphism
from M〈G;R〉 to M〈G′;R′〉.

Remark 7.10. To be more precise, we need to compose Mf with the unit ηT∇
ω L0(G′) of the

monad L0, instantiated at T∇
ω L0(G

′), in order to obtain a map with the right codomain,
L0T

∇
ω L0(G

′). In the sequel we will suppress this sublety.
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Our key tool in the proof that Mf is a presentation morphism, consists of a natural
way to transform M〈G;R〉-derivations into M〈G′;R′〉-proofs.

Proposition 7.11. If f : 〈G;R〉 → 〈G′;R′〉 is a presentation morphism, then there is a
map (·)f transforming M〈G;R〉-derivations into M〈G′;R′〉-derivations such that

D : c 4 d ⇒ Df : M̂fc 4 M̂fd.

for every L1G-inequality c 4 d.

Proof. As an easy auxiliary result we need that for any two terms a, b ∈ L0G,

a ⊑M〈G;R〉 b ⇐⇒ a ⊑R b, (7.4)

where a ⊑R b means that a ≡R a ∧ b. From (7.4) and the fact that f is a presentation
morphism it is easy to derive that

a ⊑M〈G;R〉 b only if f̂a ⊑M〈G′;R′〉 f̂ b. (7.5)

We now turn to the proof of the Proposition proper, which will be based on a straight-
forward induction on the complexity of D : c 4 d, where c and d are L1-formulas. We make
a case distinction as to the last rule applied in D.

First assume that the last applied rule in D was (∇1). That is, the formulas c and d
in D : c 4 d are of the form c = ∇α and d = ∇β, for some α and β in TωL0G, respectively,
and we may assume that D is of the following form:

D :
{Dab : a 4 b | (a, b) ∈ Z}

∇α 4 ∇β

Here Z ⊆ Base(α) × Base(β) is some set with (α, β) ∈ TZ, and such that for every pair
(a, b) ∈ Z, there is a depth zero derivation Dab : a 4 b.

Define Z ′ := {(f̂ a, f̂ b) | (a, b) ∈ Z}, or, equivalently, Z ′ := (f̂ )̆ ;Z; f̂ . Then it follows

from (7.5) that for each (a′, b′) ∈ Z ′, there is a derivation Df
a′b′ : a

′ 4 b′. Using the properties

of relation lifting we find that TZ ′ = (T f̂ )̆ ;TZ;T f̂ , and from this it is immediate that

(T f̂α, T f̂β) ∈ TZ ′. Combining these observations, we may transform the derivation D into

Df :
{Da′b′ : a

′ 4 b′ | (a′, b′) ∈ Z ′}

∇T f̂α 4 ∇T f̂β

But then we are done, since Mf(∇α) = ∇T f̂α, and likewise for β.

Second, suppose that the last applied rule in D was (∇2). That is, D ends with

D :
{DΦ : ∇(T

∧
)Φ 4 d | Φ ∈ SRD(A)}∧

{∇α | α ∈ A} 4 d

We are to transform D into a derivation Df of the inequality
∧
{∇α′ | α′ ∈ A′} 4 M̂fd,

where A′ := {T f̂α | α ∈ A}. Working towards an application of (∇2), we claim that

SRD(A′) ⊆
{
Φ′ ∈ Tω

(⋃

α∈A

Base(T f̂α)

)
| ∃Φ ∈ SRD(A) such that TP f̂(Φ) = Φ′

}
. (7.6)

To see why this is so, consider an arbitrary slim redistribution Φ′ of A′. First observe that

f̂ [Base[A]] =
⋃

α∈A

(P f̂)(Base(α)) =
⋃

α∈A

Base((T f̂)α) = Base[A′], (7.7)
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where the second identity is by the fact that Base : Tω →̇ Pω is a natural transformation

(cf. Fact 2.14). If we restrict f̂ to the set Base[A], by (7.7) we obtain a surjective map

g : Base [A] → Base[A′].

From the surjectiveness of g it follows that (Pg) ◦ (P̆ g) = idPBase[A′], and so we also find

that (TPg) ◦ (T P̆g) = idTωPBase[A′]. Hence if we define

Φ := (T P̆g)Φ′,

we see that Φ′ = TPg(Φ) = TP f̂(Φ). Therefore, using ∈;Pf ⊆ f ;∈, it is easy to see that
α(T ∈)Φ implies Tfα(T ∈)Φ′ for all α ∈ TωL0G. Thus, in order to prove (7.6) it suffices
to prove that Φ is a slim redistribution of A. To see why this is the case, first observe that
by definition of g we have that T P̆g : TωPBase [A

′] → TωPBase[A], and so we find that
Φ ∈ TωPBase [A]. It is left to prove that every element of A is a lifted member of Φ.

Take an arbitrary element α ∈ A, then Tg(α) ∈ A′ by definition of A′ and g, and so
Tg(α) is a lifted member of Φ′ by the assumption that Φ′ ∈ SRD(A′). This means that

(α,Φ) ∈ (Tg); (T∈); (T P̆ g). The key observation now is that (Tg); (T∈); (T P̆g) ⊆ T∈,

which is immediate from g;∈; (P̆ g) ⊆ ∈ by the properties of relation lifting. Applying this
key observation we find that (α,Φ) ∈ T∈ as required. This finishes the proof of (7.6).

Returning to the construction of our derivation Df , consider an arbitrary slim re-

distribution Φ′ of A′, which by (7.6) we may assume to be of the form (TP f̂)Φ with
Φ ∈ SRD(A). Applying the inductive hypothesis to the derivation DΦ we obtain a proof

Df
Φ : M̂f∇(T

∧
)(Φ) 4 M̂fd. However, from f̂ ◦

∧
=
∧

◦(P f̂) we obtain that

M̂f∇(T
∧
)(Φ) = ∇(T f̂)(T

∧
)(Φ) = ∇(T

∧
)(TP f̂)(Φ) = ∇(T

∧
)Φ′.

In other words, for any Φ′ ∈ SRD(A′) there is a derivation of the inequality ∇(T
∧
)Φ′ 4

M̂fq. Putting all these derivations together, one application of (∇2) gives the desired
derivation

Df : (Mf̂)
(∧

{∇α | α ∈ A}
)
4 M̂fd.

Now suppose that the last applied rule in D was (∇3). In this case D has the following
shape:

D :
{Dα : ∇α 4 q | αT (∈)Φ}

∇(T
∨
)Φ 4 d

In order to see which inequality we need to derive, we first compute

M̂f(∇(T
∨
)Φ) = ∇(T f̂)(T

∨
)Φ = ∇(T

∨
)(TP f̂)Φ,

where the latter identity follows from the fact that f̂ ◦
∨

=
∨

◦P f̂ . We are looking for a

derivation of the inequality ∇(T
∨
)(TP f̂)Φ 4 M̂fd. Since we want to apply the rule (∇3),

we first compute the set of lifted members of (TP f̂)Φ. But since ∈; (P f̂ )̆ = f̂ ;̆∈, applying

relation lifting we obtain T ∈; (TP f̂ )̆ = (T f̂ )̆ ;T∈. This immediately shows that

(α′, (TP f̂)Φ) ∈ T∈ iff α′ = T f̂α for some αT∈Φ.

By the induction hypothesis, for each αT∈Φ we have a derivation Df
α : ∇T f̂α 4 M̂fd. In

other words, for every lifted member α′ of (TP f̂)Φ, there is a derivation Dα′ : ∇α′ 4 M̂fd.
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But then by one application of (∇3) we are done:

Df :
{Dα′ : ∇α′ 4 q | αT (∈)(TP f̂)Φ}

M̂f(∇(T
∨
)Φ) 4 M̂fd

Finally, the cases where the last applied rule in D was a propositional one, are left as
exercises to the reader.

Given Proposition 7.11 it is not difficult to prove that M is a functor.

Theorem 7.12. M : Pres → Pres is a functor. In addition, M maps pre-isomorphisms to
pre-isomorphisms.

Proof. Since it is not difficult to verify thatM preserves identity arrows and distributes over
composition, we confine our attention to the proof that M maps presentation morphisms
to presentation morphisms.

Let f : 〈G;R〉 → 〈G′;R′〉 be a presentation morphism, and let c, d ∈ L0(T
∇
ω L0G) =

L1G be such that c ≡M〈G;R〉 d, that is, there are M〈G;R〉-derivations D1 : c 4 d and

D2 : d 4 c. Proposition 7.11 provides us with M〈G′;R′〉-derivations Df
1 : M̂fc 4 M̂fd and

Df
2 : M̂fd 4 M̂fc. This means that we have M̂fc ≡M〈G′;R′〉 M̂fd, as is required for Mf

to be a presentation morphism.
In order to prove that M maps pre-isomorphisms to pre-isomorphisms, a routine proof

will show that M preserves pre-inverses.

7.3. The functor M and its algebras. Given the intimate relation between Boolean
algebras and their presentations, it should come as no suprise that the presentation functor
M naturally induces a functor on the category of Boolean algebras.

Definition 7.13. The functor M : BA → BA is defined as M := B ◦M ◦ C. ✁

To explain this functor in words, first consider the objects. Given a Boolean algebra A

with carrier A := UA, the elements of MA are the equivalence classes of the form [a]MCA,
where a ∈ L1A is a depth-one term over the carrier of A, and the equivalence relation ≡MCA

is the interderivability relation in the one-step derivation system MCA which takes, as its
additional axioms, the diagram ∆A of A (listing the ‘true facts’ about A). Summarizing,
we find that

UMA = L1A/≡MCA.

In order to explain the action of M on a homomorphism f : A → A
′, the upshot of

Theorem 7.12 is that the map

Mf : [a]MCA 7→ [L1Uf(a)]MCA′ , (7.8)

correctly defines a homomorphism Mf : MA → MA
′. Here L1 is given in Definition 5.8,

and the observation (7.8) is a direct consequence of the definitions and of the following
proposition.

Proposition 7.14. Let f : 〈G;R〉 → 〈G′;R′〉 be a presentation morphism. If f maps
generators to generators (in the sense that f [G] ⊆ G′), then

M̂f = L1f.
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Proof. Suppose that f : 〈G;R〉 → 〈G′;R′〉 maps generators to generators, then it is imme-

diate that f̂ = L0f . From this it follows that Mf = T∇
ω f̂ = T∇

ω L0f , and since Mf also

maps generators to generators, we find that M̂f = L0Mf = L0T
∇
ω L0f = L1f .

For future reference we mention the following.

Definition 7.15. Given algebra B, we shall denote with ρB : L1(UB) → MB the map

ρB : b 7→ [b]MCB,

that is, ρB = η̃MCB is the quotient map sending a formula b to its equivalence class under
≡MCB. ✁

Proposition 7.16. The family of homomorphisms ρB, with B ranging over the class of
Boolean algebras, provides a natural transformation ρ : L1U →̇ M.

Proof. Let f : B → B
′ be some Boolean homomorphism. In order to prove that ρ is a

natural transformation, we need to show that the diagram below commutes:

B

f
��

L1UB

L1Uf
��

ρB // MB

Mf
��

B
′ L1UB

′
ρ
B′ // MB

′

(7.9)

This follows from a straightforward unfolding of the definitions: For any b ∈ L1UB we have

(Mf ◦ ρB)(b) = Mf([b]MCB) = [L1Uf(b)]MCB′ = ρB′(L1Uf(b)) = (ρB′ ◦ L1Uf)(b).

Here the second step is by (7.8) above.

It turns out that M has some nice properties that will be of use later on. In particular,
we may show that M is finitary and preserves embeddings. Intuitively, being finitary means
proof-theoretically, that for any Boolean algebra A, a derivation of ⊢M(A) a1 4 a2 can be
carried out in a finite subalgebra of A. (Note that this is not obvious since we may be dealing
with an infinitary proof system.) Formally, we need the following definition, referring to [6]
for more details. Recall that a partial order is directed if any finite set of elements has an
upper bound.

Definition 7.17. Given a category C, a directed diagram over C is a diagram which is
indexed by a directed partial order. An endofunctor on C is finitary if it preserves colimits
of directed diagrams. ✁

In case of an endofunctor on Set this definition is equivalent to the one of Section 2.

Example 7.18. Given a Boolean algebra B, let 〈Sub(B),⊆〉 be the set of finite subalgebras
of B, ordered by inclusion. We can turn this poset into a diagram SB by supplying, for
each pair of finite subalgebras B

′ and B
′′ such that B

′ ⊆ B
′′, the (unique) inclusion ιB′B′′ .

Since the variety BA is locally finite, which means that every finitely generated Boolean
algebra is finite, one may easily see that every Boolean algebra B is the directed colimit of
its associated diagram SB.

In fact, it is a routine exercise to verify that for an endofunctor on the category on
Boolean algebras to be finitary, it suffices to preserve the directed colimits of the subalgebra
diagrams described in Example 7.18.
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Proposition 7.19. M is a finitary functor that preserves embeddings.

Proof. Fix a Boolean algebra A with carrier set A := UA. Given two elements a1, a2 ∈ L1A,
consider the collection of elements of A that occur as subformulas of a1 and a2. It follows
from our earlier remarks on subformulas that this is a finite set, which then generates a
finite subalgebra A

′ of A. By definition we have a1, a2 ∈ L1A
′, where we define A′ := UA

′.
We claim that

⊢MCA a1 4 a2 iff ⊢MCA′ a1 4 a2. (7.10)

The interesting direction of (7.10) is from left to right. The key observation here is that
from the fact that A′ is a finite subalgebra of A, we may infer the existence of a surjective
homomorphism f : A → A

′ such that f(a′) = a′ for all a′ ∈ A′. (In other words, A′ is a
retract of A.) There are various ways to prove this statement; here we refer to Sikorski’s
theorem that complete Boolean algebras are injective [50]. But if f is a homomorphism,

by Proposition 7.11 it follows from ⊢MCA a1 4 a2 that ⊢MCA′ M̂f(a1) 4 M̂f(a2). Since f

restricts to the identity on A′, so does M̂f = L1f on L1A
′. As a direct consequence we find

that M̂f(ai) = ai, for both i = 1, 2. Thus, indeed, ⊢MCA′ a1 4 a2, which proves (7.10).
It is now easy to see that M is a finitary functor. As mentioned above, it suffices to

show that MA is a directed colimit of the image MSA under M of the subalgebra diagram
SA of A (see Example 7.18). Given a finite subalgebra B of A, let eB denote the inclusion
homomorphism, eB : B →֒ A. We claim that

〈MA,MeB〉B∈SA
is a colimit of MSA. (7.11)

Since for every pair B,B′ such that B →֒ B
′ →֒ A, we have eB = eB′ ◦ ιBB′ , it is obvious

from the functoriality of M that 〈MA,MeB〉B∈SA
is a cocone over MSA. To see why it is in

fact a colimit, suppose that 〈D, dB〉B∈SA
is another cocone over MSA, and take an arbitrary

element of MA. By definition, this element is of the form [a]MCA for some formula a ∈ L1A.
Let, as above, A′ be a finite subalgebra of A such that a ∈ L1A

′, then it follows from (7.10)
that the following provides a well-defined homomorphism d : MA → D:

d([a]MCA) := dA′([a]MCA′).

We leave it as an exercise for the reader to verify that d is the unique homomorphism
d : MA → D such that for all B →֒ A, the following diagram commutes:

MB
Me

B′ //

d
B′ ""❋

❋❋
❋❋

❋❋
❋❋

MA

d
��
D

This proves (7.11), and as mentioned this suffices to establish that M is finitary.
For the second part of the Proposition, let e : A → B be an embedding. Without loss

of generality we will assume that e is actually an inclusion (that is, A is a subalgebra of B).
In order to prove that Me : MA → MB is also injective, it suffices to prove the following,
for all a1, a2 ∈ A:

⊢MCB a1 4 a2 implies ⊢MCA a1 4 a2. (7.12)

But the proof of (7.12) simply follows from two applications of (7.10).



52 C. KUPKE, A. KURZ, AND Y. VENEMA

In the sequel we will be interested in algebras for the functor M. Recall that these are
pairs of the form 〈A, f〉, where A is some Boolean algebra, and f is a homomorphism from
MA to A. First of all, we will see that such M-algebras are Moss algebras in disguise.

Definition 7.20. Given an M-algebra 〈A, f〉, we let V 〈A, f〉 denote the Moss algebra

V 〈A, f〉 := 〈UA,¬A,
∨

A,
∧

A,∇V 〈A,f〉〉.

Here we define ∇V 〈A,f〉 : TωUA → UA by recalling that TωUA is a subset of L1UA, and
putting

∇V 〈A,f〉α := f(ρA(∇α)),

where ρA is as in Definition 7.15. In addition, given an M-morphism g : 〈A, f〉 → 〈A′, f〉,
we define V g to be the morphism V g : V A → V A

′ given by

V g := Ug.

That is, as a map, V g is simply the same as g. ✁

We leave it for the reader to verify that with this definition, V actually defines a functor
transforming M-algebras into Moss algebras.

Proposition 7.21. The operation V defines a functor

V : AlgBA(M) → AlgSet(AM ).

Because M is a finitary functor we can define the initial M-algebra to be the colimit of
the first ω steps of the initial sequence of M.

Definition 7.22. The initial sequence

2

j0 // M2

j1 // M2
2

j2 // . . . M
k
2

jk // Mk+1
2

jk+1 // . . . (7.13)

results from starting with j0 as the unique homomorphism from 2 to M2, and defining
jk+1 := Mjk, for all k ∈ N. We let Mω

2, with the collection of maps (ik : Mk
2→ M

ω
2)k∈ω,

denote the colimit of this sequence. ✁

In the following Proposition we gather some facts about these structures.

Proposition 7.23.

(1) For each k ∈ ω, the map jk : M
k
2 → M

k+1
2 is an embedding, and so is the map

ik : Mk
2→ M

ω
2.

(2) There is a map jω : Mω
2 → M

ω+1
2 such that the following diagram commutes, for

every k ∈ ω:

M
k
2

ik
��

jk // Mk+1
2

Mik
��

M
ω
2

jω

// Mω+1
2

(3) The map jω has an inverse ♥M : Mω+1
2→ M

ω
2.

(4) The structure 〈Mω
2,♥M〉 is an initial M-algebra.

(5) For all k ∈ ω we have that ik+1 = ♥M ◦Mik.
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Proof. Part 1 is immediate by Proposition 7.19 and basic category theory. Part 2 follows
from M

ω
2 being a colimit of the initial sequence (7.13). The inverse of jω, mentioned in

part 3, exists by the facts that the initial sequence is a chain, and hence directed, and that
T preserves directed colimits.

For part 4, consider an arbitrary M-algebra A MA
αoo , and define the co-cone

〈A, αk : Mk
2 → A〉 as follows: α0 : 2 → A is given by initiality, and for k ∈ ω we put

αk+1 := λ ◦ αk. Then by M
ω
2 being the colimit of the initial sequence, there is a unique

map αω : Mω
2 → A such that αk = αω ◦ ik, for all k ∈ ω. Now consider the following

diagram:

M
ω
2

αω

��

jω // Mω+1
2

Mαω

��
A MA

αoo

(7.14)

This diagram commutes by M
ω
2 being the colimit of the initial sequence. Finally, consider

the map ♥M of part 3. Then

αω ◦ ♥M = (α ◦Mαω ◦ jω) ◦ ♥
M (diagram (7.14) commutes)

= α ◦ αω (jω and ♥M are converses)

and from this part 4 is immediate.
Finally, for part 5, fix k ∈ ω. By definition, 〈M, in〉n∈ω is a co-cone of the initial

sequence, and so we have ik = jk ◦ ik+1. From this it follows by (the diagram of) part 2
of this Proposition that jω ◦ ik+1 = Mik, and from this we easily derive by part 3 that
ik+1 = j−1

ω ◦Mik = ♥M ◦Mik.

The above Proposition justifies the following Definition.

Definition 7.24. We let M denote the M-algebra 〈Mω
2,♥M〉, and we will refer to this

structure as the initial M-algebra. ✁

Remark 7.25. In the sequel, we will be interested in the Moss algebra VM. Observe that
the nabla operation ∇VM of this structure is defined as ∇VM(α) = ♥M(ρMω

2

(∇α)), and
so by definition of ♥M we find that

∇VM(α) = j−1
ω (ρMω

2

(∇α)).

7.4. Proof of One-Step Soundness. In this subsection we will establish one-step sound-
ness of the one-step derivation system; that is, we prove the direction from right to left of
Theorem 7.5.

Proposition 7.26. For any set X, and for any pair of formulas c, d ∈ L1PX we have

c ≡sem d if c ≡MCPX d. (7.15)

Proof. We argue by induction on derivations, so that clearly it suffices to show that each of
the rules (∇1) − (∇3) is sound. Fix a set X.

Case (∇1). Let ⊑0 ⊆ L0P̆X × L0P̆X be the relation of ‘provable inequality’ a ⊑0 b if

the inequality a 4 b is derivable. It is straightforward to see that for all a, b ∈ L0P̆X, it
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follows from a ⊑ b that [[a]]0 ⊆ [[b]]0. (This boils down to showing that our Boolean axioms

of Table 2 are sound.) Hence it remains to show that for all α, β ∈ L1P̆X, we have

if α TZ β for some Z ⊆ ⊑0, then [[∇α]]1 ⊆ [[∇β]]1. (7.16)

For this purpose, assume that α TZ β for some Z ⊆ ⊑0, and take an arbitrary element
ξ ∈ TX such that TX, ξ 1 ∇α. Then by definition of 1, we have ξ T0 α, so that by the
properties of relation lifting we obtain that ξ T (0 ; Z) β. However, it is straightforward to
verify that 0 ;Z ⊆ 0 ;⊑0 ⊆ 0, and so we obtain that ξ T 0 β. From this it is immediate
that TX, ξ 1 ∇β.

Case (∇2). Given a set A ⊆ TωL0(PX) and an element ξ ∈ TX, assume that TX, ξ 1 ∇α
for each α ∈ A. We need to prove that TX, ξ 1 ∇(T

∧
)Φ for some Φ ∈ SRD(A). To come

up with a suitable Φ, let B :=
⋃
Base [A] and consider the map ϕ : X → PωB given by

ϕ : x 7→ {b ∈ B | X,x 0 b}.

We claim that the set
Φ := (Tϕ)(ξ)

fulfills our requirements.
First of all, in order to prove that TX, ξ  ∇(T

∧
)(Φ), observe that by definition of ϕ,

we have ϕ;
∧

⊆ 0. Hence by the properties of relation lifting, it follows that Tϕ;T
∧

⊆ T0.
In particular, we find that (ξ, (T

∧
)(Φ)) ∈ T0; but then it is immediate from the definitions

that TX, ξ  ∇(T
∧
)(Φ).

Second, by definition we have Φ ∈ TωPωB and so, in order to show that Φ ∈ SRD(A),
it suffices to prove that α ∈ λTPX(Φ) for all α ∈ A. For this purpose, observe that ϕ ; ∈̆ =

0 ↾X×B . Then by the properties of relation lifting we obtain Tϕ ; (T ∈̆ ) = T0 ↾TX×TB .
In particular, since ξ T0 ↾TX×TB α by assumption, it follows that α T∈ Tϕ(ξ) = Φ, as
required.

Case (∇3). We could prove the soundness of (∇3) analogously to our proof of Proposi-
tion 5.18, but we prefer to give a different proof here, stressing the role of the distributive
of λT over the power set monad, cf. Fact 3.14.

Fix an element Φ ∈ TωPωL0PX. Given Remark 7.4, it suffices to show that

[[∇(T
∨
)(Φ)]]1 =

⋃
{λTX(T [[·]]0(α)) | α T∈ Φ}. (7.17)

The point is now that (7.17) can be read off the following diagram, where we tacitly use the
fact that λT restricts to a natural transformation λTX : TωPω → PTω (see Proposition 3.17).

TωPωL0PX
λTL0PX //

Tω

∨

��

TωPω([[·]]0)

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

PTωL0PX

PT [[·]]0
��

TωL0PX

Tω [[·]]0
��

TωPωPX

Tω

⋃
ww♦♦♦

♦♦
♦♦
♦♦
♦♦

λT
PX // PTωPX

PλT
X

��

TωPX

λTX
��

PTωX PPTωX

⋃
TXoo

(7.18)
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To see this, first observe that the left hand side of (7.17) corresponds to the left edge of the
diagram, where an arbitrary element Φ ∈ TωPωL0PX is mapped to

λTX (Tω[[·]]0(Tω
∨
(Φ))) = [[∇(T

∨
)(Φ)]]1.

Similarly, the right hand side of (7.17) corresponds to clockwise following Φ ∈ TωPωL0PX
along the outer edges of the diagram, from the upper left to the lower left corner, arriving
at the object

⋃
{λTX(T [[·]]0(α)) | α T∈ Φ}.

Therefore in order to show (7.17) it suffices to show that the diagram commutes. But
this is fairly straightforward. First observe that

[[·]]0 ◦
∨

=
⋃

◦Pω [[·]]0, (7.19)

as a straightforward verification will reveal. After applying the functor Tω to (7.19), we
immediately obtain that the left quadrangle of (7.18) commutes. The right-hand quadrangle
commutes since λT is natural. And finally, the pentagon commutes since λT is a distributive
law over the power set monad, see Fact 3.14. As a consequence, the diagram (7.18) itself
commutes.

7.5. Proof of One-Step Completeness. We now turn to the one-step completeness of
our derivation system. Our proof is based on properties of algebras of the form MB, with
B an arbitrary finite Boolean algebra. With AtB denoting the set of atoms of B, we can
formulate our key insight by stating that the Boolean algebra MB is join-generated by its
‘lifted atoms’, that is, its elements of the form [∇α] with α ∈ T (AtB). That is to say, we
can prove that every element x of MB is the join of the elements in T (AtB) below it:

x =
∨{

[∇α] | α ∈ Tω(AtB), [∇α] ≤ x
}
.

Here, as elsewhere in this subsection, the join is taken in the algebra MB, and may be
happen to be taken over an infinite set; in that case, the statement should be read as saying
that ‘the join on the righthandside exists, and it is equal to the lefthandside’. As we will
see, in the case that the functor does not preserve finite sets, this is a convenient way of
treating infinitary rules as identities.

Arriving at the proof details, in order to establish the one-step completeness of M, we
need to prove the direction from left to right of (7.3). We will reason by contraposition,

showing that for arbitrary a′, b′ ∈ L1P̆X:

a′ 6≡MCPX b′ implies [[a′]]1 6= [[b′]]1.

Given the fact that our logic extends classical propositional logic, we may confine ourselves
to the case where b′ = ⊥.

Fix an element a′ ∈ L1P̆X, and assume that a′ is one-step consistent: a′ 6≡ax ⊥, or,
equivalently, [a′] > ⊥MB. We will prove that a′ is one-step satisfiable: [[a′]]1 6= ∅. Let

{α1, . . . , αn} be the (finite!) set of elements α ∈ TωP̆X such that ∇α occurs in a′, and
define

Base(a′) :=
⋃

1≤i≤n

Base(αi).

This is a finite subset of L0P̆X, that is, a finite set of Boolean formulas in which the subsets
of X are the formal generators. Let D ⊆ω PX be the collection of those subsets of X that
actually occur (as a formal object) in one of the formulas in Base(a′), and let B be the
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subalgebra of P̆X that is generated by D. Then both D and B are finite (whereas their
elements may themselves be infinite subsets of X). The point is that B is a finite subalgebra

of P̆X such that a′ ∈ L1(UB).
It follows by the key lemma in the one-step completeness proof, Theorem 7.28 below,

that
[a′] =

∨
MB{[∇α] | α ∈ Tω(AtB),∇α ⊑ a′}. (7.20)

But since a′ is consistent, we have that [a′] > ⊥, and so we may conclude that there
actually exists an α ∈ TωAtB such that ∇α ⊑ a′ — if there were no such α, then the
righthandside of (7.20) would evaluate to ⊥. By Proposition 7.27 we obtain for this α that
[[∇α]]1 6= ∅, and so by soundness we may conclude that [[a′]]1 ⊇ [[∇α]]1 6= ∅. In other words,
we find that [[a′]]1 is one-step satisfiable, as required.

Proposition 7.27. Fix a set X and let α ∈ Tω(AtB) for some finite subalgebra B of PX.
Then [[∇α]]1 6= ∅.

Proof. Clearly the set AtB ⊆ PX forms a partition of X. Let h : AtB → X be a choice
function, that is, h(a) ∈ a for each a ∈ AtB. Using the properties of relation lifting, it is not
hard to derive from this that (Th)(α)T (∈X)α for each lifted atom α. It follows immediately
that (Th)(α) ∈ [[∇α]]1.

The following is the key lemma in the one-step completeness proof.

Theorem 7.28. Let B be a finite Boolean algebra.

(1) For any two elements α, β ∈ Tω(AtB), we have

[∇α] ∧ [∇β] > ⊥ iff α = β. (7.21)

(2) The top element of MB satisfies

⊤MB =
∨

{[∇α] | α ∈ Tω(AtB)}. (7.22)

(3) The set {[∇α] | α ∈ Tω(AtB)} join-generates MB; that is, for all a′ ∈ L1UB:

[a′] =
∨

{[∇α] | α ∈ Tω(AtB), [∇α] ≤ [a′]}. (7.23)

Summarizing, the algebra MB is atomic, with At(MB) = {[∇α] | α ∈ Tω(AtB)}.

Proof. Throughout the proof we will abbreviate A := AtB and B := UB.
The proof of first two statements is immediate by Proposition 6.12 (take for ϕ the set

A). Concerning the third statement of the Theorem, observe that the inequality ‘≥’ of (7.23)
always holds, so it will be the opposite inequality that we need to establish. Our proof will
be by induction on the complexity of a′ (as a boolean formula over the set T∇

ω L0B).

In the base case of the induction, a′ is of the form ∇β, with β ∈ TωL0B. Our first claim
is that without loss of generality, we may assume that ∇β actually belongs to TωB. The
justification for this claim is that for any b ∈ L0B there is a b0 ∈ B such that the equation
b0 ≈ b is derivable in the proof system CB associated with the canonical presentation of

B: simply let b0 := ĩdB(b) be the element of B to which the term b evaluates. (For the

definition of ĩdB we refer to 4.3.) Thus an application of (∇1) shows that for any β ∈ TωL0B

there is a β0 ∈ TωB such that ⊢MCB ∇β ≈ ∇β0: simply take β0 := T ĩdB(β).
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Hence, assume that indeed, β ∈ TωB. Think of the finitary join as a map
∨

: PωA→ B.
As such it is a bijection, and this property is inherited by the map T

∨
: TωPωA → TωB.

Furthermore, it is easy to verify that for any ϕ ∈ PωA and any a ∈ A, we have that

a ∈X ϕ iff a ≤
∨
ϕ, (7.24)

which can be succinctly formulated as ∋X=
∨
;≥ (where

∨
now denotes the graph of the

disjunction function). By the properties of relation lifting, this implies T (∋X) = T
∨
;T≥,

which can again be reformulated as stating that for any Φ ∈ TωPA and any α ∈ TωA it
holds that

αT (∈X)Φ iff αT≤(T
∨
)Φ. (7.25)

Now consider an arbitrary element β ∈ TωB, and let Φ be the (unique) element of
TωPωA such that β = (T

∨
)(Φ). Then (7.25) reads that αT (∈X)Φ iff αT (≤)β, for all

α ∈ TωA, and so axiom (∇3) instantiates to

[∇β] =
∨

{[∇α] | α ∈ TωA and αT (≤)β}. (7.26)

But since by the nature of the one-step derivation system we have ≤ = ⊑ on elements of
PX, we also have T (≤) = T (⊑). So if αT (≤)β then one application of (∇1) gives that
∇α ⊑ ∇β, which implies that [∇α] ≤ [∇β]. From this and (7.26) is immediate that

[∇β] ≤
∨

{[∇α] | α ∈ Tω(AtB), [∇α] ≤ [∇β]}.

This finishes the base case of the inductive proof of (7.23).

For the inductive step of the proof there are three cases to consider. First, assume that
a′ is of the form

∨
i∈I a

′
i for some finite index set I. Then we may compute

[a′] =
∨

{[a′i] | i ∈ I} (assumption)

=
∨{∨

{[∇α] | α ∈ TωA, [∇α] ≤ [a′i]} | i ∈ I
}

(induction hypothesis)

=
∨{

[∇α] | α ∈ TωA, [∇α] ≤ [a′i] for some i ∈ I
}

(associativity of
∨
)

≤
∨{

[∇α] | α ∈ TωA, [∇α] ≤
∨

i∈I [a
′
i] = a′

}
(properties of

∨
)

Second, consider the case that a′ is a conjunction
∧

i∈I a
′
i for some finite I. Now we

have

[a′] =
∧

{[a′i] | i ∈ I} (assumption)

=
∧{∨

{[∇α] | α ∈ TωA, [∇α] ≤ [a′i]} | i ∈ I
}

(induction hypothesis)

=
∨{∧

i∈I [∇γ(i)] | γ : I → TωA such that [∇γ(i)] ≤ [a′i] for all i
}

(distributivity)

=
∨{

[∇γ] | γ ∈ TωA such that [∇γ] ≤ [a′i] for all i
}

(part 1)

=
∨{

[∇γ] | γ ∈ TωA, [∇γ] ≤
∧

i∈I [a
′
i] = a′

}
(properties of

∨
)

Here ‘distributivity’ refers to the fact that in any Boolean algebra, finite meets distribute
over arbitrary joins, and ‘part 1’ refers to the first statement of this Theorem. The point
here is that we only need to consider those meets

∧
i∈I [∇γ(i)] for which γ(i) = γ(j) for all

i, j ∈ I, since the other meets will reduce to ⊥.
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Finally, suppose that a′ is a negation, say a′ = ¬b′. We first claim that

for all α ∈ TωA either ∇α ⊑ b′ or ∇α ⊑ ¬b′. (7.27)

To see this, assume that ∇α 6⊑ ¬b′; then by propositional logic,

[∇α] ∧ [b′] > ⊥.

By the inductive hypothesis, we have [b′] =
∨
{[∇β] | β ∈ TωA, [∇β] ≤ [b′]}, and so by

distributivity we obtain
∨

{[∇α] ∧ [∇β] | β ∈ TωA, [∇β] ≤ [b′]} > ⊥.

But then there must be at least one β ∈ TωA with [∇α] ∧ [∇β] > ⊥ and [∇β] ≤ [b′]. By
the first statement of this Theorem, we can only have [∇α] ∧ [∇β] > ⊥ if α is identical to
β, and so indeed we find that [∇α] ≤ [b′]. This proves (7.27).

Because of this we can rewrite [¬b′] as follows:

[¬b′] = [¬b′] ∧
∨

{[∇α] | α ∈ TωA} (part 2)

=
∨

{[¬b′] ∧ [∇α] | α ∈ TωA} (distributivity)

=
∨(

{[¬b′ ∧ ∇α] | b′ ⊒ ∇α,α ∈ TωA} ∪ {[¬b′ ∧ ∇α] | ¬b′ ⊒ ∇α,α ∈ TωA}
)

(7.27)

=
∨(

{[⊥] | b′ ⊒ ∇α,α ∈ TωA} ∪ {[∇α] | ¬b′ ⊒ ∇α,α ∈ TωA}
)

(immediate)

=
∨

{[∇α] | [¬b′] ≥ [∇α], α ∈ TωA} (immediate)

This settles the remaining inductive case, and thus finishes the proof of the third part of
the Theorem.

7.6. Connecting algebra and coalgebra. Now that we have proved the one-step sound-
ness and completeness of our logic, we will show how to connect the algebraic functor M to
the coalgebraic functor T by defining a natural transformation

δ : MP̆ →̇ P̆T

which in fact provides an embedding δX for each set X.
For the definition of δ, note that given a set X, it follows from one-step soundness

that [[a]]1 = [[b]]1 for all a, b ∈ L1P̆X such that [a]
MCP̆X

= [b]
MCP̆X

. This ensures that the
following is well-defined.

Definition 7.29. Given a set X, let

δX([a]
MCP̆X

) := [[a]]1

define a map δX : MP̆X → P̆TX. ✁

Proposition 7.30. The family of maps δX , with X ranging over the category Set, provides
a natural transformation δ : MP̆ →̇ P̆T . Furthermore, each δX : MP̆X → P̆TX is an
embedding.
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Proof. In order to demonstrate that δ is a natural transformation, we have to prove that
for any function f : X → Y the following diagram commutes:

MP̆X
δX // P̆TX

MP̆Y

MP̆f

OO

δY

// P̆TY

P̆Tf

OO

In order to see that the above diagram commutes it suffices to show that it commutes on
the generators of MP̆Y . Consider such a generator ∇α ∈ T∇

ω L0P̆ Y . Then

δX(MP̆(f)(∇α)) = δX([T∇
ω L0P̆ (f)(∇α)]) = [[T∇

ω L0P̆ (f)(∇α)]]1
Remark 7.4

= λTX(T [[·]]0(TL0P̆ (f)(α))) = λTX(T ([[·]]0 ◦ L0P̆ (f))(α))
[[·]]0 natural, Lem. 7.1

= λTX(T (P̆ f ◦ [[·]]0)(α)) = λTX(T P̆f ◦ T [[·]]0(α))
λ natural

= P̆ T f(λTY (T [[·]]0(α))) = P̆ T f([[∇α]]1)

= P̆ T f(δY ([∇α]))

Let us finally show that δX is injective for an arbitrary setX. Suppose that δX([a]) = δX([b])

for some a, b ∈ L0T
∇
ω L0P̆X. By definition of δX that means that [[a]]1 = [[b]]1 which by one-

step completeness of the logic entails that [a] = [a′] in MP̆X.

On the basis of this natural transformation we can define a second notion of complex
algebra of a coalgebra, next to the Moss complex algebra of Definition 5.11.

Definition 7.31. Let T : Set → Set be a standard, weak pullback preserving functor,
and let X = 〈X, ξ〉 be a T -coalgebra. We define the complex M-algebra of X as the pair

X
∗ := 〈P̆X, δX ◦ P̆ξ〉. ✁

The link between the two kinds of complex algebras is given by the functor V from
Definition 7.20 which allows us to see M-algebras as Moss algebras.

Proposition 7.32. Let T : Set → Set be a standard, weak pullback preserving functor.
Then

X
+ = V X

∗.

for any T -coalgebra X. Therefore, for any T -coalgebra X and any formula a ∈ L we have

mngV X∗(a) = mngX+(a) = {x ∈ X | x  a}.

8. Soundness and completeness

In this section we will apply Pattinson’s stratification method [43] in order to prove the
soundness and completeness of our axiom system M with respect to the coalgebraic se-
mantics. This stratification method consists in showing that not only the language of our
system, but also its semantics and our logic can be stratified in ω many layers. As we will
see further on, the results in the previous section will then serve to glue these layers nicely
together.

In order to understand the idea of the proof, first assume that a final T -coalgebra
Z = 〈Z, ζ : Z → TZ〉 exists. Then we could prove that the unique Moss morphism mngZ
from the initial Moss algebra L to the algebra Z

+ actually factors as mngZ = Vmng∗
Z
◦ q,
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where q : L → M is the quotient map modulo derivability (in the sense that ker(q) is the
relation ≡M of interderivability in M), and mng∗

Z
is an injective M-algebra morphism from

M to Z
∗:

L

mngZ %%❏❏
❏❏

❏❏
❏❏

❏❏
q // VM��

Vmng∗
Z

��
V Z

∗ = Z
+

On the basis of this we would prove that a 6⊑M b implies that q(a) 6≤M q(b), and so by
injectivity of m we would conclude that mngZ(a) 6⊆ mngZ(b), providing a state z ∈ Z such
that z Z a and z 6Z b.

Since our set functor T generally does not admit a final coalgebra, we replace the final
coalgebra with the final sequence.

Definition 8.1. The final T -sequence is defined as follows.

1 T1
h0oo T 21

h1oo . . . T n1
hnoo T n+11

hn+1oo . . . (8.1)

We denote by 1 = T 01 the final object in Set. The map h0 : T1 → 1 is given by finality and
inductively, hn+1 : T (T

n1) → T n1 is defined to be the map T nh0 = Thn. ✁

The reader may think of the T n1 as approximating the final coalgebra. Indeed, if we
let the final sequence run through all ordinals, we obtain the final coalgebra as a limit if it
exists [4]. Intuitively, where the states of the final coalgebra provide all possible T -behaviors,
the elements of T n1 represent all ‘n-step behaviors’. Given a T -coalgebra X = 〈X, ξ〉, for
each n ∈ ω we may canonically define a map ξn : X → T n1 providing the n-step behavior
of the states of X.

Definition 8.2. Given a T -coalgebra X = 〈X, ξ〉, we define the arrows ξn : X → T n1, for
n ∈ ω, to the approximants of the final coalgebra by the following induction: ξ0 : X → 1 is
given by finality of 1 in Set, and ξn+1 := Tξn ◦ ξ . ✁

Interestingly, every object T n1 in the final sequence can be equipped with coalgebra
structure.

Definition 8.3. Let, for each n ∈ ω, Zn be the coalgebra

Zn := (T n1, T ng),

where g is an arbitrary but fixed map g : 1 → T1. ✁

As we will see in a moment, these ‘n-final coalgebras’ display all possible n-step be-
haviours, and thus act as a canonical witness for all non-provable inequalities between
formulas of depth n.

8.1. A stratification of the semantics. We first show how to slice the semantics of
nabla formulas into layers. For that purpose we define the n-step meaning of depth-n
modal formulas as a subset of the set T n1.

Definition 8.4. By induction on n we define maps mngn : Ln → PT n1. For n = 0, we
define mng0 by initiality of L0, or equivalently:

mng0(a) :=

{
1 if a is a tautology,
∅ otherwise.
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Inductively, assuming that mngn : Ln → PT n1 has been defined, we may compose Tmngn :
TLn → TPT n1 with λTPTn1 : TPT

n1 → PT n+11 to obtain

λTPTn1 ◦ Tmngn : TωLn → PT n+11.

Then we let mngn+1 : Ln+1 → PT n+11 be the unique Boole-homomorphism from F(T∇
ω Ln)

to PT n+11 that extends the mapping given by

∇α 7→
(
λTPTn1 ◦ Tmngn(α)

)
for ∇α ∈ T∇

ω Ln. ✁

The following proposition provides a clear link between the n-step meaning of formulas and
the n-step behaviour map of a coalgebra.

Proposition 8.5. Let X be a coalgebra, and a ∈ Ln a formula of rank n. Then

mngX(a) = (P̆ ξn)(mngn(a)).

Proof. The proof of the proposition is by induction on the modal depth and on the structure
of the formula a. We only provide the induction case for a = ∇α ∈ Ln+1 for some n ∈ ω.
In this case we have

mngX(∇α) = P̆ ξ(λX(TmngX(α))) (definition of mngX)

= P̆ ξ(λX(T P̆ ξn(Tmngn(α)))) (induction hypothesis)

= P̆ ξ
(
P̆ T ξn(λTn1(Tmngn(α)))

)
(naturality of λ)

= P̆ ξn+1(mngn+1(∇α)) (definition of mngn+1 and ξn+1)

The n-final coalgebra of Definition 8.3 has the interesting property that its n-step
behaviour map is the identity map on T n1. As a corollary, the n-step meaning of any
depth-n formula a coincides with its meaning in the n-step coalgebra.

Proposition 8.6. Let a be a formula of depth n. Then

mngZn
(a) = mngn(a).

Proof. It is not difficult to see that for the coalgebra Zn (and for this n), we have

(T ng)n := idTn1. (8.2)

We confine ourselves to a proof sketch. The basic idea of the proof is to prove inductively
that (T ng)k = hnk for all k ≤ n, where hnk : T n1 → T k1 is the map hnk := hk◦hk+1◦· · ·◦hn.
Further details can be found in [43, Section 4].

The Proposition itself is immediate by Proposition 8.5 and (8.2).

As a fairly direct corollary to the previous two propositions we can formulate our
semantic stratification theorem. Basically it states that the meaning of depth-n formulas is
determined at level n of the final sequence, and in the n-step final coalgebra Zn.

Theorem 8.7 (Semantic Stratification Theorem). Let a, b ∈ Ln be formulas. Then the
following are equivalent:

(1) a |=T b;
(2) mngn(a) ⊆ mngn(b);
(3) mngZn

(a) ⊆ mngZn
(b).
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Proof. The implication 1 ⇒ 3 is immediate by the definitions, while the implication 2 ⇒ 1
follows by Proposition 8.5: given a coalgebra X = 〈X, ξ〉, we conclude from mngn(a) ⊆

mngn(b) that mngX(a) = (P̆ξn)(mngn(a)) ⊆ (P̆ξn)(mngn(b)) = mngX(b). The remaining
implication 3 ⇒ 2 follows directly by Proposition 8.6.

8.2. A stratification of the logic. To see in detail how our logic can be stratified, let us
first introduce some terminology concerning the stratification of the language.

Definition 8.8. Let G0 := ∅, and define inductively Gn+1 := T∇
ω L0Gn = {∇α | α ∈

TωL0(Gn)}. In addition, let e0 : G0 → L0G1 be the empty map, and define en+1 : Gn+1 →
L0Gn+2 by putting en+1 :=Men. Finally, we let dn denote the inclusion dn : Ln →֒ L. ✁

Recall that Ln denotes the set of formulas of rank n (see Definition 5.1), and observe
that Ln = L0Gn, for all n, and that each Ln is also the carrier of an algebra in Boole; this
algebra will also be denoted as Ln. Consequently, Ln+1 = L1(Gn), which is different from
L1(Ln) = L1(L0(Gn))) since in Boole we do not identify terms which are equivalent in the
theory of Boolean algebras. Also observe that the map ên : L0Gn → L0Gn+1 is in fact the
embedding of Ln into Ln+1:

ên : Ln →֒ Ln+1,

and that the embedding dn : Ln →֒ L commutes with the one-step embeddings, in the sense
that dn = dn+1 ◦ ên.

We can now formulate our stratification theorem as follows. Recall that L is the initial
algebra in the category Boole∇.

Theorem 8.9 (Axiomatic Stratification Theorem). Let m := mngVM be the unique homo-
morphism m : L → VM in the category of Moss algebras.

(1) There are maps qn : Ln → M
n
2, with each qn a Boole-homomorphism, such that the

following diagram (in the category Boole) commutes:

L0

q0

��

� � ê0 //

d0

))L1

q1

��

� � ê1 //

d1

))L2

q2
��

d2

**. . . Ln

qn

��

� � ên //
dn

**Ln+1

qn+1

��

dn+1 **. . . L

m

��
2

// j0 //

i0

55M2

// j1 //

i1

44M
2
2

i2

44. . . M
n
2

// jn //

in

44M
n+1

2

in+1
33. . . M

ω
2

(8.3)

(2) In addition, ker(m) = ≡M; that is, m(a) = m(b) iff a and b are provably equivalent in
M.

Before turning to the proof of this result, let us briefly summarize its meaning. Most
importantly, Theorem 8.9 states that for each n < ω, the Boolean algebra M

n
2 coincides

with the quotient of the Boole-algebra Ln under the relation ≡M of provable equivalence in
our derivation system M. In addition, the quotient maps qn commute with the inclusions
ên of Ln into Ln+1, and jn from M

n
2 into M

n+1
2.

In order to prove Theorem 8.9, we will inductively define a relation ≡n of “n-inter-
derivability” between Ln-formulas. We will see that for every n, the Boolean algebra Ln =
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Ln/≡n is isomorphic to M
n
2, but also, that for formulas a, b ∈ Ln, we have a ≡n b iff

a ≡M b. The definition of ≡n will be such that

〈Gn+1;≡n+1〉 =M〈Gn;≡n〉.

Definition 8.10. Let ≡0 ⊆ L0 ×L0 be the relation of provable equivalence between closed
Boolean terms. Inductively, define the relation ≡n+1 ⊆ Ln+1 × Ln+1 as the congruence
relation of the presentation M〈Gn;≡n〉, and let Ln denote the Boolean algebra B〈Gn;≡n〉,
or equivalently, Ln = Ln/≡n . Given a formula a ∈ Ln, we let [a]n denote the equivalence
class of a under the relation ≡n. ✁

As we will see, the algebras Ln form an intermediate row in the stratification diagram (8.3)
(in the category Boole):

L0

η̃0
����

� � ê0 // L1

η̃1
����

� � ê1 // L2

η̃2
����

. . . Ln

η̃n
����

� � ên // Ln+1

η̃n+1
����

. . .

L0��

f0
����

// Be0 // L1��

f1
����

// Be1 // L2��

f2 ����

. . . Ln��

fn
����

// Ben // Ln+1��

fn+1 ����

. . .

2

// j0 // M2

// j1 // M2
2 . . . M

n
2

// jn // Mn+1
2 . . .

(8.4)

We now turn to the details of the proof of Theorem 8.9, step by step filling in diagram (8.4).
Since we already discussed the embeddings ên, n ∈ ω, we start with the map η̃n, which will
denote the quotient map associated with the congruence ≡n.

Definition 8.11. Let ηn : Gn → Ln/≡n be the map given by ηn : g 7→ [g]n. ✁

We may see the map ηn as a presentation morphism from 〈Gn;≡n〉 to C(Ln) — as such
it is the unit η〈Gn;≡n〉 of the adjunction B ⊣ C, and hence, a pre-isomorphism (cf. Theo-
rem 4.13). This function extends to a homomorphism in Boole:

η̃n : Ln → Ln

which maps a formula a ∈ Ln to its n-equivalence class:

η̃n : a 7→ [a]n.

Concerning the maps Ben : Ln → Ln+1, it is easy to see that they are indeed well-
typed, but in order to prove that each Ben is an embedding, some work will be needed.
The embeddings jn : Mn

2→ M
n+1

2 have been defined in Definition 7.22.
Finally, the isomorphisms fn of diagram (8.4) will be defined inductively.

Definition 8.12. By induction on n we define Boolean homomorphisms fn : Ln → M
n
2.

For n = 0, we let f0 be the (unique) isomorphism from L0 to 2. For n = k + 1, we first
define pn+1 : Ln+1 → MLn by putting pn+1 := BMηn. Then we compose the maps

Ln+1
pn+1
−→ MLn

Mfn
−→ M

n+1
2,

and define fn+1 := (Mfn) ◦ pn+1. ✁

The following proposition gathers all the facts about the maps defined until now that
are needed to prove that diagram (8.4) commutes:

Proposition 8.13.
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(1) In the category Pres of presentation each map en is a morphism en : 〈Gn;≡n〉 →
〈Gn+1;≡n+1〉, each map ηn : 〈Gn+1;≡n+1〉 → CLn is a pre-isomorphism, and each
of the following diagrams commutes:

〈Gn;≡n〉

ηn

��

en // 〈Gn+1;≡n+1〉

ηn+1

��
C(Ln)

CBen // C(Ln+1)

(8.5)

(2) In the category Boole, each of the following diagrams commutes:

Ln

η̃n
��

ên // Ln+1

η̃n+1

��
Ln

Ben // Ln+1

(8.6)

(3) In the category BA of Boolean algebras, each map pn+1 is an isomorphism, and each of
the following diagrams commutes:

Ln+1��
pn+1

����

Ben+1 // Ln+2��
pn+2

����
M(Ln)

MBen// M(Ln+1)

(8.7)

(4) In the category Boole, each of the following diagrams commutes:

Ln+1

L1ηn
��

η̃n+1 // Ln+1

pn+1

��
L1U(Ln)

ρLn // M(Ln)

(8.8)

with ρLn as in Definition 7.15.
(5) In the category BA of Boolean algebras, each map fn is an isomorphism; each map

Ben : Ln → Ln+1 is an embedding; and each of the following diagrams commutes:

Ln��

fn
����

// Ben // Ln+1��

fn+1 ����
M

n
2

// jn // Mn+1
2

(8.9)

Proof.

(1) It follows by a straightforward induction that every en is a presentation morphism. The
other statements of this item follow from the fact that ηn = η〈Gn;≡n〉, together with our
earlier observation (cf. Theorem 4.13) that η : IdPres → CB is a natural transformation
of which each η〈G;R〉 is a pre-isomorphism.

(2) We claim that if f : 〈G;R〉 → 〈G′;R′〉 is the presentation morphism represented by

one of the four arrows of the diagram (8.5), then the corresponding arrow f̂ in (8.6) is
the unique Boole-morphism extending f (seen as a map between sets). For instance,
if f is the presentation morphism ηn : 〈Gn;≡n〉 → CLn, then using the fact that
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Ln = L0Gn is the free Boole-algebra over Gn, it follows that f̂ = η̃n is the unique
homomorphism in Boole from Ln to Ln. Or, to give a second example, Ben is clearly
the only homomorphism from Ln to Ln+1 which “extends” CBen : CLn → CLn+1.

From this it follows that both η̃n+1 ◦ ên and Ben ◦ η̃n are morphisms in Boole that
extend the map ηn+1 ◦en = CBen ◦ηn (with the identity holding because diagram (8.5)
commutes). But then, again by the freeness of Ln over Gn in Boole, these two extensions
must be equal, which is the same as to say that (8.6) commutes.

(3) It is easy to see that our definition of the map pn+1 indeed provides an isomorphism,
because

Mηn : 〈Gn+1;≡n+1〉 =M〈Gn;≡n〉 →MCLn,

is a pre-isomorphism in Pres, by Theorem 7.12 inheriting this property from ηn : 〈Gn;≡n

〉 → CLn, and B maps pre-isomorphisms to isomorphisms, see Proposition 4.12.
To prove that diagram (8.7) commutes it suffices to see that we may obtain it from

diagram (8.5) by applying the functor BM .
(4) Recall that the family of presentation morphisms η〈G;R〉 : 〈G;R〉 → CB〈G;R〉, defined

by (4.2), constitutes a natural transformation η : IdPres →̇ CB. Instantiating the
diagram which expresses this fact for the arrow Mηn :M〈Gn;≡n〉 →MCLn, we obtain
the following commuting diagram:

M〈Gn;≡n〉

Mηn
��

ηM〈Gn ;≡n〉// CBM〈Gn;≡n〉 = CLn+1

CBMηn
��

MCLn

ηMCLn // CBMCLn = CMLn

(8.10)

Now we can, similarly as in the proof of item 2, show that each of the arrows in (8.8)
is the unique morphism in Boole that extends the corresponding map in (8.10). For
example, consider the map L1ηn : Ln+1 → L1ULn. It follows from a straightforward
unravelling of the definitions that L1ηn extendsMηn (see Proposition 7.14). The latter,
as a function between sets, is just a map from T∇

ω L0Gn = Gn+1 to the set of generators
of the presentation MCLn, which is nothing but the set T∇

ω L0ULn.
But then, again similar to the proof of item 2, we can prove that the maps pn+1◦ η̃n+1

and ρLn ◦ L1ηn are identical, by noting that both are morphisms in Boole that extend
the presentation morphism CBMηn ◦ ηM〈Gn;≡n〉 = ηMCLn ◦Mηn of diagram (8.10).

(5) This part of the Proposition is proved by induction on n. For n = 0, the map f0 is an
isomorphism by definition, and the map Be0 is an embedding by initiality of 2 in BA.
Finally, the following diagram commutes simply by the initiality of the algebra L0 in
the category BA:

L0��

f0
����

// Be0 // L1

f1
��

2

// j0 // M2

(8.11)

In the inductive case for n + 1, by hypothesis the map fn is an isomorphism, and the
map Ben an embedding. From this it is immediate that Mfn is an isomorphism as well,
and since pn+1 is an isomorphism by Proposition 8.13(2), it follows that the map fn+1,
being the composition of two isomorphisms, is an isomorphism as well.
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Now consider the following diagram:

Ln+1

fn+1

((

��
pn+1

����

Ben+1 // Ln+2

fn+2

vv

��
pn+2

����
M(Ln)��

Mfn ����

// MBen// M(Ln+1)��

Mfn+1 ����
M

n+1
2

// jn+1 // Mn+2
2

(8.12)

The upper rectangle of this diagram commutes by Proposition 8.13(2), and the lower
rectangle, by applying the functor M to the diagram (8.9) which commutes by the
inductive hypothesis. As a consequence, the outer rectangle, which exactly corresponds
to the diagram (8.9) for the case n+1, commutes as well. Finally, then, the injectivity
of Ben+1 is immediate by that of jn+1, which was established in Lemma 7.23(1).

By Proposition 8.13 it follows that the diagram (8.4) commutes.

For future reference we state the following technical fact, which links the quotient maps
qn and qn+1 to the natural transformation ρ of Definition 7.15, instantiated at the Boolean
algebra M

n
2.

Proposition 8.14. For any element α ∈ TωLn, we have

qn+1(∇α) = ρMn
2

∇(Tqn(α)). (8.13)

Proof. To see why this proposition holds, recall that qk = fk ◦ η̃k for each k ∈ ω, and
consider the diagram below

TωLn

T η̃n
��

∇Gn// L1(Gn) = Ln+1

L1ηn
��

η̃n+1 // Ln+1

pn+1

��
fn+1

vv

TωU(Ln)

Tfn
��

∇U(Ln) // L1U(Ln)

L1fn
��

ρLn // M(Ln)

Mfn
��

TωU(Mn
2)

∇UMn
2 // L1U(Mn

2)
ρMn

2 // Mn+1
2

(8.14)

where, in order to simplify the diagram, we omit the forgetful functors to Set on the right-
hand side of the diagram and exploit our ambiguous notation allowing L1 to be considered
as Set-valued or Boole-valued.

Here an arrow labelled ∇G represents the function mapping an object α ∈ TωL0G to the
corresponding formula ∇α ∈ L1(G). Note that in the case that G = U(Ln) and G = UM

n
2

we use the fact that TωG ⊆ TωL0G.
We claim that all squares of (8.14) commute. To check this for the left squares this is

simply a matter of unravelling the definitions, and the upper right square has been shown
to commute in Proposition 8.13(4). Finally, that the lower right square commutes is a
consequence of the fact that ρ is a natural transformation ρ : L1U →̇ M, cf. Proposition 7.16.

But if indeed all squares of (8.14) commute, then the identity (8.13) can simply be read
off from the outer sides of the diagram.
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Continuing the proof of the Stratification Theorem, what is left to do is link the algebras
L and M to diagram (8.4). We first need a proof-theoretical result stating that on formulas
in Ln, the notions of n-derivability and derivability coincide.

Proposition 8.15. Let a and b be two formula in Ln.

(1) a ≡n b iff a ≡m b for some m ∈ ω;
(2) a ≡n b iff a≡Mb.

Proof. Part 1 of the proposition is a direct consequence of diagram (8.4) commuting. Con-
cerning the second part, the left-to-right direction can be proved by a straightforward
induction on n. For the opposite direction ‘⇐’, it suffices to establish that for two formulas
a, b ∈ Ln we have

D : ⊢M a 4 b implies a ⊑n b, (8.15)

where we use a ⊑n b to denote that a ≡n a ∧ b. The proof of (8.15) is by induction on the
complexity of the derivation D.

We confine ourselves to the most difficult case of the inductive step, namely where the
last applied rule in D is the cut rule; that is, we assume D to be of the form

D :
D1

a 4 c
D2

c 4 b
cut

a 4 b

(This case is the most difficult one since here we may not assume c to be in Ln.) Let m be
such that c ∈ Lm, and put k := max(m,n). Then inductively, we have a ⊑k c and c ⊑k b,
from which we easily obtain that a ⊑k b. But then by the first part of the Proposition, we
see that a ⊑n b, as required.

Proposition 8.16. The relation ≡M ⊆ L × L is the kernel of the unique Boole∇-quotient
map from L to VM.

Proof. Define the map q : L → M
ω
2 as follows. Given a formula a ∈ L, there is some n ∈ ω

such that a ∈ Ln. Now define
q(a) := inqn(a)

This is well-defined by the fact that diagram (8.4) commutes and we have ker(q) = ≡M by
Proposition 8.15.

Then by initiality of L in Boole∇ it suffices to prove that q is an algebraic homomor-
phism. For the Boolean connectives/operators this is straightforward, and so we leave this
as an exercise for the reader. For the ∇ modality we need to prove that the following
diagram commutes:

TωL

Tq

��

∇L
// L

q

��
TωUM

ω
2

∇V M
// UM

ω
2

(8.16)

In order to prove this, take an arbitrary element α ∈ Tω(L). Without loss of generality,
assume that α ∈ Tω(Ln), so that ∇α ∈ Ln+1. Then by definition of q, we have

(q ◦ ∇L)(α) = q(∇α) = in+1qn+1(∇α). (8.17)

Computing (∇VM ◦ Tq)(α), we first calculate

(Tq)(α) = T in
(
(Tqn)(α)

)
,
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where (Tqn)(α) belongs to the set TωUM
n
2. Now we claim that for all β ∈ TωUM

n
2:

∇VM(T in)β = in+1ρMn
2

(∇β), (8.18)

with ρMn
2

as in Definition 7.15. To see this, consider the following calculation:

∇VM(T in)β = j−1
ω (ρMω

2

(∇ (T in) (β))) (Remark 7.25)

= j−1
ω

(
ρMω

2

((
T∇
ω in

)
(∇β)

))
(definition of T∇

ω )

= j−1
ω (ρMω

2

((L1Uin) (∇β))) (L1Uin ↾T∇
ω UMn

2

= T∇
ω in)

= j−1
ω ((Min ◦ ρMn

2

) (∇β)) (naturality of ρ)

= in+1ρMn
2

(∇β) (†)

where the last equality (†) follows by Proposition 7.23(5).
And so we obtain that

(∇VM ◦ Tq)(α) = in+1ρMn
2

(∇(Tqn)(α)) (8.19)

Thus in order to prove the commutativity of (8.16), by (8.17) and (8.19) it suffices to
prove that

qn+1(∇α) = ρMn
2

(∇(Tqn)(α)). (8.20)

But this is precisely the content of Proposition 8.14.

We can now prove the Stratification Theorem.

Proof of Theorem 8.9. Given the Propositions 8.13, 8.15 and 8.16, all that is left to do
is prove that the following diagram commutes for each n ∈ ω:

Ln

qn
����

� � dn // L

m
����

M
n
2

//
in

// VM

(8.21)

We already saw in the proof of Proposition 8.16 that the map q : L → M
ω
2, defined by

putting, for a ∈ Ln,
q(a) := in(qn(a)),

is the unique Moss homomorphism from L to VM; in other words, this map q coincides with
m. Reformulating this in terms that explicitize the role of the inclusion map dn : Ln →֒ L,
we obtain that m(dn(a)) = q(dn(a)) = in(qn(a)). In other words, the diagram (8.21)
commutes indeed.

As a corollary we obtain that the algebra VM is the initial algebra in the class of
Moss algebras that satisfy the nabla-equations. This means that we may see M as the
Lindenbaum-Tarski algebra of our logic.

Corollary 8.17. Let B = 〈B,¬B,
∧

B,
∨

B,∇B〉 be a Moss algebra such that B validates every
instance of the axioms (∇1) – (∇3). Then there is a unique morphism mng∗

B
: VM → B
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through which the meaning function mngB factors:

L

mngB ""❉
❉❉

❉❉
❉❉

❉❉
m // VM

mng∗
B

��
B

Proof. An arbitrary element of (the carrier of) VM is of the form m(a) for some formula
a ∈ L. We leave it as an exercise for the reader to verify that the following map

mng∗B(m(a)) := mngB(a)

is well-defined and has the right properties.

Remark 8.18. In fact, we can show that the functor V constitutes an isomorphism between
the category CoalgBA(M) and the variety of Moss algebras validating the nabla axioms. We
omit the details of this proof.

8.3. Proof of soundness and completeness. We are almost ready to prove our main
result. What is left to do is link the final T -sequence to the initial M-sequence. Recall
that the elements of T n1 intuitively correspond to the n-behaviors associated with T , and
that M, the initial M-algebra, is the colimit of the initial sequence 〈Mn

2, jn〉n<ω, where
elements of Mn

2 correspond to (equivalence classes of) formulas of depth n.

Definition 8.19. We define the sequence of maps sn : Mn
2 → P̆T n1 as follows. The map

s0 : 2 → P̆1 is given by initiality (and is actually the identity). For the definition of sn+1,

recall from Defintion 7.29 that δTn1 : MP̆T n1 → P̆T n+11, and assume inductively that
sn : Mn

2 → P̆T n1 has been defined, so that Msn : Mn+1
2 → MP̆T n1. Composing these

two maps, we obtain sn+1 := δTn1 ◦M(sn). ✁

Intuitively, the reader may think of the map sn as providing semantics of elements of
M

n
2. This can be made more precise by proving that the following diagram commutes:

Ln

mngn ""❊
❊❊

❊❊
❊❊

qn // Mn
2

sn
��

P̆T n1

Here qn is the quotient map under n-step derivability of Theorem 8.9 and mngn is the n-step
meaning function of Definition 8.4.

From this perspective, the following proposition states that the semantics of a formula
with respect to the final sequence is independent of the particular approximant we choose.

Proposition 8.20. The following diagram commutes:

P̆1
P̆h0 // . . . P̆T n1

P̆hn // P̆T n+11 . . .

2

s0

OO

j0

// . . . M
n
2

sn

OO

jn

// Mn+1
2

sn+1

OO

. . .

(8.22)

In addition, each map sn is injective.
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Proof. In order to show that diagram (8.22) commutes, we will prove that

sn+1 ◦ jn = P̆hn ◦ sn

for all n ∈ ω . The proof is by induction on n. The base case s1 ◦ j0 = P̆h0 ◦ s0 is a
consequence of the fact that 2 is the initial object in BA. For the inductive case, where
n = k + 1 for some k ∈ ω, we reason as follows:

sk+2 ◦ jk+1 = δT k+11 ◦M(sk+1) ◦M(jk) (unfolding definitions)

= δT k+11 ◦M(sk+1 ◦ jk) (functoriality of M)

= δT k+11 ◦M(P̆hk ◦ sk) (inductive hypothesis)

= P̆Thk ◦ δT k1 ◦M(sk) (naturality of δ)

= P̆hk+1 ◦ sk+1 (definition sk+1)

Since δ is injective (Proposition 7.30) and M preserves embeddings (Proposition 7.19), a
straightforward inductive proof shows that all sn, n ∈ ω, are injective.

We are now going to demonstrate that the coalgebraic semantics and the semantics via
the final sequence coincide.

Proposition 8.21. For a given coalgebra X = 〈X, ξ〉 and any formula a ∈ Ln, the following
holds:

mngX(a) = ξ−1
n (sn(qn(a))), for all a ∈ Ln and n ∈ ω. (8.23)

Proof. First note that P̆X together with the maps P̆ξn ◦ sn = ξ−1
n ◦ sn form a cocone over

the initial sequence of M. Therefore there is a mediating arrow

mng∗X : Mω
2→ P̆X

from the carrier of the initialM-algebraM to P̆X with the property thatmng∗
X
◦in = ξ−1

n ◦sn.
We claim that

the map mng∗X is an M-algebra morphism from M to X
∗. (8.24)

In order to prove (8.24), observe that by Proposition 7.23, for all n ∈ ω we have

jω ◦ in+1 = M(in), (8.25)

where jω : Mω
2→ MM

ω
2 is the inverse of the algebra structure map ♥M of the initial M-

algebra. In order to prove the claim it suffices to show that the following diagram commutes

MM
ω
2

Mmng∗
X // MP̆X

δX
��

P̆TX

P̆ξ
��

M
ω
2

jω

OO

mng∗
X

// P̆X

We prove that the diagram commutes by showing that f := P̆ξ ◦ δX ◦ M(mng∗
X
) ◦ jω is a

mediating arrow from (Mω
2, {in}n∈ω) to (P̆X, {P̆ξn ◦ sn}n∈ω). Therefore f has to be equal
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to mng∗
X
by the universal property of the colimit (Mω

2, {in}n∈ω). We show that f has the
claimed property by proving that for all n ∈ ω we have

P̆(ξn) ◦ sn = f ◦ in (8.26)

For n = 0 the equation holds by initiality of 2. Furthermore for an arbitrary n ≥ 0 we have

P̆(ξn+1) ◦ sn+1 = P̆(Tξn ◦ ξ) ◦ δTn1 ◦Msn (definition of ξn+1 and of sn+1)

= P̆(ξ) ◦ P̆(Tξn) ◦ δTn1 ◦Msn (functoriality of P̆)

= P̆(ξ) ◦ δX ◦MP̆ξn ◦Msn (naturality of δ)

= P̆(ξ) ◦ δX ◦M(P̆ξn ◦ sn) (functoriality of M)

= P̆(ξ) ◦ δX ◦M(mng∗X ◦ in) (mng∗X mediating arrow)

= P̆(ξ) ◦ δX ◦Mmng∗X ◦Min (functoriality of M)

= P̆(ξ) ◦ δX ◦Mmng∗X ◦ jω ◦ in+1. (equation (8.25))

Therefore equation (8.26) holds for all n, which finishes the proof of (8.24).
From this it follows that Vmng∗ : VM → V X

∗ is a Moss algebra homomorphism.
Recalling from Proposition 7.32 that V X

∗ = X
+, we obtain by initiality of L as a Moss

algebra, that Vmng∗
X
◦ m = mngX. Here mngX : L → X

+ is the unique Moss algebra
homomorphism that maps an element of L to its semantics in X

+, and m := mngVM is
the unique homomorphism m : L → VM in the category of Moss algebras. But then by
the Axiomatic Stratification Theorem 8.9, for all n ∈ ω and all formulas a ∈ Ln we have
mngX(a) = mng∗

X
(m(a)) = mng∗

X
(in(qn(a))) = P̆ξn◦sn(qn(a)), where the last identity holds

by the definition of mng∗
X
as a mediating arrow. This shows that (8.23) holds, and finishes

the proof of the claim.

On the basis of the results obtained so far, the proof of our soundness and completeness
results is now more or less immediate.

Proof of Theorem 6.10. Let a and b be two formulas in L. Fix a natural number n
such that a, b ∈ Ln. Recall that Fn = 〈T n1, T ng〉 denotes the ‘n-step coalgebra’ defined in
Definition 8.3.

Now consider the following sequence of equivalences:

a ⊑M b ⇐⇒ qn(a) ⊆ qn(b) (Axiomatic Stratification Theorem 8.9)

⇐⇒ snqn(a) ⊆ snqn(b) (injectivity of sn)

⇐⇒ (P̆(T ng)n)(snqn(a)) ⊆ (P̆(T ng)n)(snqn(b)) (equation (8.2))

⇐⇒ mngFn
(a) ⊆ mngFn

(b) (Proposition 8.21)

⇐⇒ a |=T b (Semantic Stratification Theorem 8.7)

From this the Theorem is immediate.

9. Conclusions

Summary of results. Obviously, as the main contributions of this paper we see the defi-
nition of the derivation system M for the finitary version of Moss’ coalgebraic logic, the
result stating that M provides a sound and complete axiomatization for the collection of
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coalgebraically valid inequalities, and the fact that all of our definitions, results and our
proofs are completely uniform in the coalgebraic type functor T

Our proof of the soundness and completeness theorem is rather elaborate and technical,
but we believe that the effort has been worth the while, and that on the way we have iden-
tified some new concepts and obtained some auxiliary results that may be of independent
interest. Of these we list the following:

(1) a survey of the properties of the notion T of relation lifting, induecd by an arbitrary
but fixed set functor T (section 3);

(2) the introduction in Definition 4.8 of the category Pres of Boolean algebra presentations,
and the establishment in Theorem 4.13 of an adjunction between Pres and the category
BA of Boolean algebras;

(3) the introduction in section 7.3 of the functor M : BA → BA, and the results in Propo-
sition 7.19 that M is finitary and preserves embeddings, and in Theorem 7.28 that it
preserves atomicity of Boolean algebras.

(4) the stratification of our logic, both semantically (Theorem 8.7) and syntactically (The-
orem 8.9);

(5) the identification, in Corollary 8.17, of the initial M-algebra M, through the functor V ,
as the Lindenbaum-Tarski algebra of our logic.

Related and ongoing work. As mentioned in the introduction, this paper replaces, extends
and partly corrects an earlier version [34]. Since the publication of the latter paper, and
the preparation of the current manuscript there have been a number of developments in the
area of Moss’ logic that we would like to mention here. First of all, based on our one-step
soundness and completeness results, Bergfeld gave a more direct version of our completeness
proof in his MSc thesis [12]; as a corollary he established a strong completeness theorem for
Moss’ logic (modulo some restrictions on the functor T ). Second, B́ılková, Palmigiano &
Venema generalized their earlier result on the power set nabla [13] to the general case of a
standard, weak pullback preserving functor T : in [14] they provide a sound, complete, and
cut-free proof system for (the finitary version of) Moss’ coalgebraic logic. Systematically
using Stone duality, Kurz & Leal [38] make a detailed comparison between Moss’ approach
towards coalgebraic logic, and the one based on associating standard modalities with pred-
icate liftings; their main contribution is a new coalgebraic logic combining features of both
approaches. Venema, Vickers & Vosmaer [56] study a variant of the derivation system M
in the setting of geometric logic; their main contribution is to generalize Johnstone’s power
construction on locales, to a functor VT , parametrically defined in a set functor T , on the
category of locales. Finally, B́ılková, Velebil & Venema [15] prove that on the (semantically
defined) Lindenbaum-Tarski algebra of our logic, the nabla modality has the interesting
order-theoretic property of being a so-called O-adjoint.

Future research. We finish with mentioning some directions for future research. To start
with, in this paper we have studied the nabla operator in the setting of the diagram (1.5),
which is a particular instantiation of the general Stone duality diagram

AlgL

,,

S

22 Sp
op

Pss
T

ll
(9.1)

where Alg denotes a category of algebras representing the base logic, Sp is a category of
spaces representing the semantics of the logic, T is the coalgebra functor representing all
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one-step behaviours, and L represents the one-step version of the coalgebraic modal logic.
Given the flexibility of the Stone duality approach we believe it to be of interest to consider
more instances of the diagram (9.1) where L is some version of our nabla logic. Of particular
interest are the cases where for Alg we take the variety of distributive lattices, because this
could clarify the role of the negation in our setting.

Second, a clear drawback of the current nabla-based approach towards coalgebraic logic
is the restriction to functors that preserve weak pullbacks. It would therefore be interesting
to see whether this restriction can be removed. A first step in this direction has been
made by Santocanale & Venema [48], who introduce a nabla-based version of monotone
modal logic, a variant of basic modal logic that is naturally interpreted in coalgebras for the
monotone neighborhood functor of Example 2.2 — a functor that does not preserve weak
pullbacks.

Finally, in the introduction we mentioned that the work of Janin & Walukiewicz [30]
on automata theory and modal fixpoint logics is an independent source for the introduction
of the cover modality ∇P as a primitive modality. Since ∇P also plays a fundamental
role in Walukiewicz’ completeness result for the modal µ-calculus [57], this naturally raises
the question whether we can extend our completeness result to the setting with fixpoint
operators.
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[49] Lutz Schröder. Expressivity of coalgebraic modal logic: The limits and beyond. Theoretical Computer

Science, 390:230–247, 2008.



COMPLETENESS FOR THE COALGEBRAIC COVER MODALITY 75

[50] R. Sikorski. A theorem on extensions of homomorphisms. Annals of the Polish Mathematical Society,
21, 1948.

[51] S. Staton. Relating coalgebraic notions of bisimulation with applications to name-passing process calculi.
In Kurz et al. [39], pages 191–205.

[52] R. Street. The formal theory of monads. Journal of Pure and Applied Algebra, 2(2):149–168, 1972.
[53] A. Thijs. Simulation and Fixpoint Semantics. PhD thesis, Rijksuniversiteit Groningen, 1996.
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10. Appendix: overview of notation

Since this paper features a multitude of categories, functors and natural transformations,
for the reader’s convenience we list these in the tables below.
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Categories
BA section 2.1
Boole Definition 4.2
Pres Definition 4.8
Set,Rel section 2.1
Boole∇ Definition 5.6

Natural Transformations

BaseT : Tω →̇ Pω Definition 2.12
λT : TP →̇ PT Definition 3.12
ρ : L0U →̇ M Definition 7.15

δ : MP̆ →̇ P̆T Definition 7.29

Functors
B : Pres → BA Definition 4.5, 4.9
C : BA → Pres Definition 4.9
F : Set → Boole page 23
Id ,Bω,Dω : Set → Set Example 2.2
AM : Set → Set Definition 5.6
M : Pres → Pres Definition 7.9
M : BA → BA Definition 7.13
L0 : Set → Set Definition 4.1 & (4.1)
L1 : Set → Boole/Set Definition 5.8
P,Pω : Set → Set section 2.1

P̆ : Set → Setop section 2.1

P̆ : Set → BAop Definition 4.4
Tω : Set → Set page 11
T∇
ω : Set → Set Definition 5.8
U : Boole → Set page 23
V : AlgBA(M) → AlgSet(AM ) Definition 7.20
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