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Abstract. Various extensions of public announcement logic have been proposed with
quantification over announcements. The best-known extension is called arbitrary public
announcement logic, APAL. It contains a primitive language construct 2ϕ intuitively
expressing that “after every public announcement of a formula, formula ϕ is true”. The
logic APAL is undecidable and it has an infinitary axiomatization. Now consider restricting
the APAL quantification to public announcements of Boolean formulas only, such that 2ϕ
intuitively expresses that “after every public announcement of a Boolean formula, formula
ϕ is true”. This logic can therefore be called Boolean arbitrary public announcement logic,
BAPAL. The logic BAPAL is the subject of this work. Unlike APAL it has a finitary
axiomatization. Also, BAPAL is not at least as expressive as APAL. A further claim that
BAPAL is decidable is deferred to a companion paper.

1. Introduction

Public announcement logic (PAL) [GG97, Pla89] extends epistemic logic with operators for
reasoning about the effects of specific public announcements. The formula [ψ]ϕ means that
“ϕ is true after the truthful announcement of ψ”. This means that, when interpreted in a
Kripke model with designated state, after submodel restriction to the states where ϕ is true
(this includes the designated state, ‘truthful’ here means true), ψ is true in that restriction.
Arbitrary public announcement logic (APAL) [BBvD+08] augments this with operators for
quantifying over public announcements. The formula 2ϕ means that “ϕ is true after the
truthful announcement of any formula that does not contain 2”.

Quantifying over the communication of information as in APAL has applications to
epistemic protocol synthesis, where we wish to achieve epistemic goals by communicating
information to agents, but where we do not know of a specific protocol that will achieve
the goal, and where we may not even know if such a protocol exists. In principle, synthesis
problems can be solved by specifying them as formulas in the logic, and applying model-
checking or satisfiability procedures. However in the case of APAL, while there is a PSpace-
complete model-checking procedure [ÅBvDS10], the satisfiability problem is undecidable in
the presence of multiple agents [FvD08].

The quest for a decidable version of public announcement logic with quantification has
been going on for a while. Group announcement logic and coalition announcement logic,
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that are logics with quantifiers over public information change that are similar to APAL,
are also undecidable [ÅvDF16]. Whereas the ‘mental model’ arbitrary public announcement
logic of [CS15] is decidable. Yet other dynamic epistemic logics have more generalized
quantification, namely over non-public information change. Of those, arbitrary arrow update
logic [vDvdHK17] is undecidable, whereas refinement modal logic [BvDF+14] and arbitrary
action model logic [Hal13] are decidable. The above-mentioned [CS15], wherein a decidable
arbitrary public announcement logic is presented, is an interesting case. Decidability is
achieved by restricting epistemic modalities, while retaining arbitrary announcements (of
formulas containing such modalities). These special modalities are not labelled with an
(abstract set of) agents, but with programs using propositional variables. This severely
constrains the relational (‘Kripke’) models (possibly) satisfying the formulas bound by the
epistemic modalities, which is how decidability can then be obtained for this logic. Instead,
in the logic that we will propose, we do not restrict the epistemic modalities, but restrict
the quantification over the announcements, the dynamic modalities.

We propose a multi-agent epistemic logic with public announcements and with quantifi-
cation over public announcements of Boolean formulas (so-called Boolean announcements).
We call this Boolean arbitrary public announcement logic (BAPAL). It is therefore a version
of APAL: as said, in APAL we allow quantification over any quantifier-free (2-free) formulas,
including formulas with announcement modalities and knowledge modalities. For this logic
we obtain the following results.

Unlike APAL, BAPAL has a (complete) finitary axiomatization.

For APAL only an infinitary axiomatization is known [BvD15], although it has not been
proved that a finitary axiomatization cannot exist [Kui17]. A finitary axiomatization for a

logic much like APAL, called ‘APAL with memory’, was proposed in [BÖS18]. Its structures
are topological and its semantics allow to refer to states prior to an announcement (it
is history-based). As non-bisimilar states can become bisimilar after an announcement,
this semantics makes it possible to continue to distinguish such states; which is the basis
for the soundness of their complete axiomatization. Their 2 quantifies over epistemic
formulas, which in their setting is different from quantifying over formulas that may also
contain announcements (the 2-free formulas mentioned above). The semantics are therefore
different from that of APAL and also different from those of BAPAL, with quantification
over Booleans. It is an open question if ‘APAL with memory’ and APAL have the same
validities.

BAPAL is not at least as expressive as APAL.

Also, BAPAL is more expressive than PAL, which can be shown just as for APAL. An open
question remains whether APAL is not at least as expressive as BAPAL.

We further claim that:

Unlike APAL, BAPAL is decidable.

As most such logics with quantification over information change are undecidable, this seems
remarkable. That result in not reported in this work but in a companion paper in progress.

There seems to be many applications, in particular in planning, wherein it makes sense
only to consider quantifications over Booleans.

Consider cards cryptography wherein two communicating agents (the principals) attempt
to learn the card deal without other players (eavesdroppers) learning the card deal, or even
something stronger, such as not learning the ownership of any single card other than their
own [FW96, vD03, CFvDFDST13]. When modelling initial uncertainty about a stack of
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cards being dealt over a finite set of players, single states in such models can be uniquely
identified with a card deal. Therefore, public announcements restricting such models
correspond to Booleans. For example, let there be three cards 0, 1, 2 and three players Alice,
Bob, and Eve, and suppose that Alice announces (truthfully) that she holds card 0. This
corresponds to the public announcement of (some elementary Boolean representation of)
two card deals, namely the one wherein, additionally, Bob holds 1 and Eve holds 2, and the
one wherein Bob holds 2 and Eve holds 1.

As another example, consider multi-agent planning for publicly observable sensing
actions under uncertainty [Lev96, vDHL11, BA11, CHL+16]: given multiple agents that are
uncertain about a number of system parameters (lights, switches, temperature settings) they
may be informed, or they may be informing each other, about their observations of the state
of the light. Or they may be planning to make such observations, and contingent on the
outcome of such observations take further action.

We close the introduction with an outline of the content of this work. In Section 2 we
define the logical language and semantics of BAPAL and in the subsequent Section 3 we
give various results for this semantics that will be used in later sections. Section 4 is on the
expressivity of BAPAL. Section 5 presents the complete axiomatization.

2. Boolean arbitrary public announcement logic

Given are a countable (finite or countably infinite) set of agents A and a countably infinite
set of propositional variables P (a.k.a. atoms, or variables).

2.1. Syntax. We start with defining the logical language and some crucial syntactic notions.

Definition 2.1 (Language). The language of Boolean arbitrary public announcement logic
is defined as follows, where a ∈ A and p ∈ P .

Lbapal (A,P ) 3 ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [ϕ]ϕ | 2ϕ

Other propositional connectives are defined by abbreviation. For Kaϕ read ‘agent a
knows ϕ’. For 2ϕ, read ‘after any Boolean announcement, ϕ (is true)’. For [ϕ]ψ, read
‘after public announcement of ϕ, ψ’. The dual modalities are defined by abbreviation:
K̂aϕ := ¬Ka¬ϕ, 〈ϕ〉ψ := ¬[ϕ]¬ψ, and 3ϕ := ¬2¬ϕ. Unless ambiguity results we often
omit one or both of the parameters A and P in Lbapal (A,P ), and write Lbapal (P ) or Lbapal .
Unless ambiguity results we often omit parentheses occurring in formulas. Formulas are
denoted ϕ,ψ, possibly primed as in ϕ′, ϕ′′, . . . , ψ′, . . .

We also distinguish the language Lel of epistemic logic (without the constructs [ϕ]ϕ and
2ϕ) and the language Lpl of propositional logic (without additionally the construct Kaϕ),
also known as the Booleans. Booleans are denoted ϕ0, ψ0, etc.

The set of propositional variables that occur in a given formula ϕ is denoted var(ϕ)
(where one that does not occur in ϕ is called a fresh variable), its modal depth d(ϕ) is the
maximum nesting of Ka modalities, and its quantifier depth D(ϕ) is the maximum nesting
of 2 modalities. These notions are inductively defined as follows.

• var(p) = {p}, var(¬ϕ) = var(Kaϕ) = var(2ϕ) = var(ϕ), var(ϕ ∧ ψ) = var([ϕ]ψ) =
var(ϕ) ∪ var(ψ);
• D(p) = 0, D(¬ϕ) = D(Kaϕ) = D(ϕ), D(ϕ ∧ ψ) = D([ϕ]ψ) = max{D(ϕ), D(ψ)},
D(2ϕ) = D(ϕ) + 1;
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• d(p) = 0, d(¬ϕ) = d(2ϕ) = d(ϕ), d(ϕ ∧ ψ) = max{d(ϕ), d(ψ)}, d([ϕ]ψ) = d(ϕ) + d(ψ),
d(Kaϕ) = d(ϕ) + 1.

Arbitrary announcement normal form is a syntactic restriction of Lbapal that pairs all
public announcements with arbitrary Boolean announcement operators. It plays a role in
the decidability proof. We will show that any formula in Lbapal is equivalent to one in Laanf .

Definition 2.2 (Arbitrary announcement normal form). The language fragment Laanf is
defined by the following syntax, where a ∈ A and p ∈ P .

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [ϕ]2ϕ

We now define necessity forms and possibility forms. Necessity forms are used in
derivation rules in the proof system.

Definition 2.3 (Necessity form). Consider a new symbol ]. The necessity forms are defined
inductively as follows, where ϕ ∈ Lbapal and a ∈ A.

ψ(]) ::= ] | (ϕ→ ψ(])) | Kaψ(]) | [ϕ]ψ(])

By induction on the necessity form ψ(]) the reader may easily verify that each ψ(])
contains a unique occurrence of the symbol ]. If ψ(]) is a necessity form and ϕ ∈ Lbapal ,
then ψ(ϕ) is ψ(])[ϕ/]] (the substitution of ] in ψ(]) by ϕ), where we note that ψ(ϕ) ∈ Lbapal .
A possibility form is the dual of a necessity form. They are therefore defined as:

ψ{]} ::= ] | (ϕ ∧ ψ{]}) | K̂aψ{]} | 〈ϕ〉ψ{]}

Similarly to above, notation ψ{ϕ} means that ] is substituted by ϕ in ψ{]}.
Given necessity form ψ(]), let ψ{]} = t(ψ(])) be obtained by defining inductively:

t(]) = ], t(ϕ → ψ(])) = ϕ ∧ t(ψ(])), t(Kaψ(])) = K̂at(ψ(])) and t([ϕ]ψ(])) = 〈ϕ〉t(ψ(])).
Note that ψ{]} is indeed a possibility form. We will later show that ¬ψ(¬ϕ) is equivalent
to ψ{ϕ}.

2.2. Structures. We consider the following structures and structural notions in this work.

Definition 2.4 (Model). An (epistemic) model M = (S,∼, V ) consists of a non-empty
domain S (or D(M)) of states (or ‘worlds’), an accessibility function ∼: A → P(S × S),
where each ∼a is an equivalence relation, and a valuation V : P → P(S), where each V (p)
represents the set of states where p is true. For s ∈ S, a pair (M, s), for which we write Ms,
is a pointed (epistemic) model.

We will abuse the language and also call Ms a model. We will occasionally use the
following disambiguating notation: if M is a model, SM is its domain, ∼Ma the accessibility
relation for an agent a, and VM its valuation.

Definition 2.5 (Bisimulation). Let M = (S,∼, V ) and M ′ = (S′,∼′, V ′) be epistemic
models. A non-empty relation R ⊆ S × S′ is a bisimulation if for every (s, s′) ∈ R, p ∈ P ,
and a ∈ A the conditions atoms, forth and back hold.

• atoms: s ∈ V (p) iff s′ ∈ V ′(p).
• forth: for every t ∼a s there exists t′ ∼′

a s
′ such that (t, t′) ∈ R.

• back: for every t′ ∼′
a s

′ there exists t ∼a s such that (t, t′) ∈ R.
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If there exists a bisimulation R between M and M ′ such that (s, s′) ∈ R, then Ms and M ′
s′

are bisimilar, notation Ms↔M ′
s′ (or R : Ms↔M ′

s′ , to be explicit about the bisimulation).
Let Q ⊆ P . A relation R between M and M ′ satisfying atoms for all p ∈ Q, and forth

and back, is a Q-bisimulation (a bisimulation restricted to Q). The notation for Q-restricted
bisimilarity is ↔Q.

The notion of n-bisimulation, for n ∈ N, is given by defining relations R0 ⊇ · · · ⊇ Rn.

Definition 2.6 (n-Bisimulation). Let M = (S,∼, V ) and M ′ = (S′,∼′, V ′) be epistemic
models, and let n ∈ N. A non-empty relation R0 ⊆ S×S′ is a 0-bisimulation if atoms holds
for pair (s, s′) ∈ R. Then, a non-empty relation Rn+1 ⊆ S × S′ is a (n+ 1)-bisimulation if
for all p ∈ P and a ∈ A:

• (n+ 1)-forth: for every t ∼a s there exists t′ ∼′
a s

′ such that (t, t′) ∈ Rn;
• (n+ 1)-back: for every t′ ∼′

a s
′ there exists t ∼a s such that (t, t′) ∈ Rn.

Similarly to Q-bisimulations we define Q-n-bisimulations, wherein atoms is only required for
p ∈ Q ⊆ P ; n-bisimilarity is denoted Ms↔nM ′

s′ , and Q-n-bisimilarity is denoted Ms↔n
QM

′
s′ .

2.3. Semantics. We continue with the semantics of our logic.

Definition 2.7 (Semantics). The interpretation of formulas in Lbapal on epistemic models
is defined by induction on formulas.

Assume an epistemic model M = (S,∼, V ), and s ∈ S.

Ms |= p iff s ∈ V (p)
Ms |= ¬ϕ iff Ms 6|= ϕ
Ms |= ϕ ∧ ψ iff Ms |= ϕ and Ms |= ψ
Ms |= Kaϕ iff for all t ∈ S : s ∼a t implies Mt |= ϕ
Ms |= [ϕ]ψ iff Ms |= ϕ implies Mϕ

s |= ψ
Ms |= 2ψ iff for all ϕ0 ∈ Lpl : Ms |= [ϕ0]ψ

where [[ϕ]]M := {s ∈ S | Ms |= ϕ}; and where epistemic model Mϕ = (S′,∼′, V ′) is such
that: S′ = [[ϕ]]M , ∼′

a = ∼a ∩ ([[ϕ]]M × [[ϕ]]M ), and V ′(p) := V (p) ∩ [[ϕ]]M . For (Mϕ)ψ we
may write Mϕψ. Formula ϕ is valid on model M , notation M |= ϕ, if for all s ∈ S, Ms |= ϕ.
Formula ϕ is valid, notation |= ϕ, if for all M , M |= ϕ.

Given Ms and M ′
s′ , if for all ϕ ∈ Lbapal , Ms |= ϕ iff M ′

s′ |= ϕ, we write Ms ≡ M ′
s′ .

Similarly, if this holds for all ϕ with d(ϕ) ≤ n, we write Ms ≡n M ′
s′ , and if this holds for all

ϕ with var(ϕ) ∈ Q ⊆ P , we write Ms ≡Q M ′
s′ .

Note that the languages of APAL and BAPAL are the same, but that their semantics
are different. The only difference is the interpretation of 2ϕ: in APAL, this quantifies over
the 2-free fragment [BBvD+08], so that, given the eliminability of public announcements
from that fragment [Pla89], this amounts to quantifying over formulas of epistemic logic:

Ms |= 2ψ iff for all ϕ ∈ Lel : Ms |= [ϕ]ψ (APAL semantics of 2ϕ)
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3. Semantic results

We continue with basic semantic results for the logic. They will be used in various of the
later sections. Various well-known results for any dynamic epistemic logic with propositional
quantification generalize straightforwardly to BAPAL.

3.1. Bisimulation invariance. We start with the bisimulation invariance of BAPAL. This
is shown as for APAL.

Lemma 3.1. Let Ms, Ns′ be epistemic models. Then Ms↔Ns′ implies Ms ≡ Ns′.

Proof. We prove that: for all ϕ ∈ Lbapal , and for all Ms, Ns′ : if Ms↔Ns′ , then Ms |= ϕ iff
Ns′ |= ϕ; from which the required follows by restricting the scope of ϕ to the consequent of
the implication. The proof is by induction on the structure of ϕ, where the 2-depth D(ϕ)
takes lexicographic precedence over formula structure (i.e., ψ1 is less complex than ψ2, if
D(ψ1) < D(ψ2), or if D(ψ1) = D(ψ2) and ψ1 is a subformula of ψ2). The non-standard
inductive cases are [ϕ]ψ and 2ψ. In either case we only show one direction of the equivalence
in the conclusion; the other direction is similar.

Case [ϕ]ψ. Let Ms↔Ns′ and Ms |= [ϕ]ψ. The latter is by definition equal to: Ms |= ϕ
implies Mϕ

s |= ψ. Let us now assume Ms |= ϕ.
First, from Ms↔Ns′ and Ms |= ϕ, it follows by induction that Ns′ |= ϕ.
Second, this not only holds for s but for any t in the domain of M and t′ in the domain

of N : from Mt↔Nt′ and Mt |= ϕ, it follows by induction that Nt′ |= ϕ.
This allows us to show that Mϕ

s ↔Nϕ
s′ , namely, given R : Ms↔Ns′ , by the relation

R′ : Mϕ
s ↔Nϕ

s′ such that for all t, t′: (t, t′) ∈ R′ iff ((t, t′) ∈ R and Mt |= ϕ). We now show
that the relation R′ is a bisimulation. The clause atoms is obvious. For forth, assuming
some (s, s′) ∈ R′, let s ∼a t in Mϕ. Let t′ be such that (t, t′) ∈ R and s′ ∼′

a t
′. From

(t, t′) ∈ R and Mt |= ϕ, we get with induction that Nt′ |= ϕ. Therefore, (t, t′) ∈ R′. As
s′ ∼′

a t
′ persists in Nϕ, the state t′ satisfies the requirements for forth. The clause back is

shown similarly.
Third, having shown that Mϕ

s ↔Nϕ
s′ , and also using that Ms |= [ϕ]ψ and Ms |= ϕ implies

Mϕ
s |= ψ, we now use the induction hypothesis for ψ on pair of models Mϕ

s , Nϕ
s′ , and thus

obtain that Nϕ
s′ |= ψ as required.

Winding up, we now have shown that (Ms |= ϕ implies Mϕ
s |= ψ) is equivalent to

(Ns′ |= ϕ implies Nϕ
s′ |= ψ), i.e., Ns′ |= [ϕ]ψ, as required.

Case 2ψ. Let Ms↔Ns′ and Ms |= 2ψ. The latter is by definition equal to: for all ϕ0 ∈ Lpl ,
Ms |= [ϕ0]ψ, i.e., for all ϕ0 ∈ Lpl , Ms |= ϕ0 implies Mϕ0

s |= ψ. As D(ϕ0) < D(2ψ) and
D(ψ) < D(2ψ), by twice using induction we obtain: for all ϕ0 ∈ Lpl , Ns′ |= ϕ0 implies
Nϕ0

s′ |= ψ, i.e., Ns′ |= 2ψ.

The property shown in the case announcement of the above proof is often used in the
continuation and therefore highlighted in a corollary.

Corollary 3.2. Let ϕ ∈ Lbapal such that Ms |= ϕ. Then Ms↔Ns′ implies Mϕ
s ↔Nϕ

s′ .

The next lemma may look obvious but is actually rather special: it holds for BAPAL
but not, for example, for APAL, where the quantifiers are over formulas of arbitrarily large
modal depth. Lemma 3.3 plays a role in Section 4 on expressivity.
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Lemma 3.3. Let two models Ms, Ns′ be given. If Ms↔nNs′, then Ms ≡n Ns′.

Proof. We show the above by proving the following statement:

For all n ∈ N, for all ϕ ∈ Lbapal with d(ϕ) ≤ n, for all models Ms, Ns′ : if
Ms↔nNs′ , then Ms |= ϕ iff Ns′ |= ϕ.

We prove this by refining the complexity measure used in the previous proposition: we now,
additionally, give modal depth d(ϕ) lexicographic precedence over quantifier depth D(ϕ)
(i.e., ψ1 is less complex than ψ2, if d(ψ1) < d(ψ2), or if d(ψ1) = d(ψ2) and D(ψ1) < D(ψ2),
or if d(ψ1) = d(ψ2) and D(ψ1) = D(ψ2) and ψ1 is a subformula of ψ2). For clarity we give
the —essentially different— case Kaϕ and also the —essentially the same— cases [ϕ]ψ and
2ψ. The latter two apply to any n ∈ N and do not require the induction over n. We let
these cases therefore precede the case Kaϕ.

Case [ϕ]ψ. Given are Ms↔nNs′ and Ms |= [ϕ]ψ. We note that d([ϕ]ψ) = max{d(ϕ), d(ψ)}
so that also d(ϕ), d(ψ) ≤ n. In this case of the proof we need to use induction on subformulas
of [ϕ]ψ. By definition, Ms |= [ϕ]ψ iff (Ms |= ϕ implies Mϕ

s |= ψ).
In order to prove that Ns′ |= [ϕ]ψ, assume Ns′ |= ϕ. By induction, from Ms↔nNs′

and Ns′ |= ϕ follows Ms |= ϕ. From that and the given Ms |= [ϕ]ψ follows that Mϕ
s |= ψ.

Similar to the proof of this inductive case of Lemma 3.1, from Ms↔nNs′ follows Mϕ
s ↔nNϕ

s′ .
From that and Mϕ

s |= ψ follows Nϕ
t′ |= ψ, as required.

Case 2ψ. Let Ms↔nNs′ and Ms |= 2ψ. As d(ψ) = d(2ψ), we will now use that D(ψ) <
D(2ψ). This is therefore similar again to the same case in the previous Lemma 3.1. By
definition, Ms |= 2ψ is equal to: for all ϕ0 ∈ Lpl , Ms |= [ϕ0]ψ, i.e., for all ϕ0 ∈ Lpl , Ms |= ϕ0

implies Mϕ0
s |= ψ. It is now crucial to note that, as ϕ0 is Boolean, not only D(ϕ) = 0 but

also d(ϕ0) = 0. We therefore obtain by induction, as in the previous case [ϕ]ψ of this proof:
for all ϕ0 ∈ Lpl , Ns′ |= ϕ0 implies Nϕ0

s′ |= ψ, i.e., Ns′ |= 2ψ.

Case Kaψ. Given are Ms↔n+1Ns′ and Ms |= Kaϕ. Let now t′ ∼a s′. From Ms↔n+1Ns′ ,
t′ ∼a s′, and n− back follows that there is a t ∼a s such that Mt↔nNt′ . From Ms |= Kaϕ
and s ∼a t follows that Mt |= ϕ. As d(ϕ) = d(Kaϕ) − 1 ≤ n, we can apply the induction
hypothesis for n and conclude that Nt′ |= ϕ. As t′ was arbitrary, Ns′ |= Kaϕ.

The interest of the above proof is the precedence of modal depth over quantifier depth,
and of quantifier depth over subformula complexity. Essential in the proof is that in the
case 2ψ, for any [ϕ0]ψ witnessing that, not only D(ϕ0) = 0 but also d(ϕ0) = 0. Without
d(ϕ0) = 0 the inductive hypothesis would not have applied. In contrast, the APAL quantifier
is over formulas of arbitrary finite modal depth, also exceeding the modal depth of the initial
given formula, which rules out use of induction.

Both for APAL and BAPAL restricted bisimilarity does not imply restricted modal
equivalence:

Ms↔QM
′
s′ does not imply Ms ≡Q M ′

s′ .

The failure of this property is indirectly used in Proposition 4.1 in the expressivity Section 4,
later, for Q = {p} (and for models with those same names).
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3.2. Arbitrary announcement normal form and necessity form. We continue with
results for the arbitrary announcement normal form and for the necessity form. The former
are important to show decidability of BAPAL, and the latter to show that the axiomatization
is complete.

Lemma 3.4. Every formula of Lbapal is semantically equivalent to a formula in arbitrary
announcement normal form.

Proof. We give the proof by defining a truth preserving transformation δ from Lbapal to
Laanf . This is defined with the following recursion:

δ(p) = p δ(¬ψ) = ¬δ(ψ)
δ(ψ ∧ ψ′) = δ(ψ) ∧ δ(ψ′) δ(Kaψ) = Kaδ(ψ)

δ([ϕ]p) = δ(ϕ→ p) δ([ϕ]¬ψ) = δ(ϕ→ ¬[ϕ]ψ)
δ([ϕ](ψ ∧ ψ′)) = δ([ϕ]ψ ∧ [ϕ]ψ′) δ([ϕ]Kaψ) = δ(ϕ→ Ka[ϕ]ψ)
δ([ϕ][ϕ′]ψ) = δ([ϕ ∧ [ϕ]ϕ′]ψ)

δ(2ψ) = [>]2δ(ψ) δ([ϕ]2ψ) = [δ(ϕ)]2δ(ψ)

We have to show that the translation is truth preserving and that the translation procedure
terminates.

The truth preservation is obvious for the clauses in rows 1 and 2 and for δ([ϕ]2ψ) =
[δ(ϕ)]2δ(ψ). Concerning δ(2ψ) = [>]2δ(ψ) we note that 2ψ ↔ [>]2ψ is a valid equivalence.
The translation clauses in rows 3 to 5 employ the valid equivalences [ϕ]p ↔ (ϕ → p),
[ϕ]¬ψ ↔ (ϕ → ¬[ϕ]ψ), [ϕ](ψ ∧ ψ′) ↔ ([ϕ]ψ ∧ [ϕ]ψ′), [ϕ]Kaψ ↔ (ϕ → Ka[ϕ]ψ), and
[ϕ][ϕ′]ψ ↔ [ϕ ∧ [ϕ]ϕ′]ψ. These are well-known from PAL [Pla89, vDvdHK08] (and for
further reference we note that they are listed as axioms of BAPAL in Section 5).

We proceed by showing termination. For the clauses in rows 1, 2, and 6 we observe
that each occurrence of δ on the right-hand side of an equation binds a formula that is
less complex than the formula bound by δ on the left-hand side of the equation (and in
δ(p) = p, δ has disappeared on the right-hand side). For the clauses in rows 3 to 5 we refer to
complexity measures in PAL [vDvdHK08, BvD15]. Taking (e.g.) the measure [vDvdHK08,
Def. 7.21], [vDvdHK08, Lemma 7.22] shows that the complexity of the right-hand side of
each equivalence above is either equal to or lower than the complexity of the left-hand side
of the equivalence. Therefore, δ will always return a formula in Laanf .

Lemma 3.5. Given are necessity form ψ(]), possibility form ψ{]}, and ϕ ∈ Lbapal . Then

¬ψ(ϕ) is equivalent to ψ{¬ϕ}.
Proof. This is easily shown by induction on the structure of necessity forms and using that
¬(χ→ ψ(ϕ)) iff χ ∧ ¬ψ(ϕ), ¬Kaψ(ϕ) iff K̂a¬ψ(ϕ), and ¬[χ]ψ(ϕ) iff 〈χ〉¬ψ(ϕ).

In the following lemma we show that a necessity form of arbitrary shape ψ(]) can be
transformed into a necessity form of unique shape ψ1 → [ψ2]]. With respect to instantiations
ψ(θ) of such necessity forms this is a validity preserving transformation in both directions.
Note that it is not a truth preserving transformation. This result will be used in Section 5
to show that two versions of the axiomatization with different derivation rules are both
complete (the translation is not only validity preserving but also derivability preserving).

Lemma 3.6. Let ψ(]) be a necessity form and θ ∈ Lbapal . Then there are ψ1, ψ2 ∈ Lbapal
such that |= ψ(θ) iff |= ψ1 → [ψ2]θ.



Vol. 18:1 QUANTIFYING OVER BOOLEAN ANNOUNCEMENTS 20:9

Proof. Consider the following recursively defined translation τ (also employing subrecursion
and subsubrecursion).

τ(]) = > → [>]]

τ(ϕ→ ]) = ϕ→ [>]]
τ(ϕ→ ψ1 → ψ2(])) = τ(ϕ ∧ ψ1 → ψ2(]))

τ(ϕ→ Kaψ(])) = τ(K̂aϕ→ ψ(]))
τ(ϕ→ [ψ]]) = ϕ→ [ψ]]
τ(ϕ→ [ψ1](ψ2 → ψ3(]))) = τ(ϕ ∧ [ψ1]ψ2 → [ψ1]ψ3(]))

τ(ϕ→ [ψ1]Kaψ2(])) = τ(K̂a(ϕ ∧ ψ1)→ [ψ1]ψ2(]))
τ(ϕ→ [ψ1][ψ2]ψ3(])) = τ(ϕ→ [ψ1 ∧ [ψ1]ψ2]ψ3(]))

τ(Kaψ(])) = τ(ψ(]))

τ([ϕ]]) = > → [ϕ]]

τ([ϕ]Kaψ(])) = τ(K̂aϕ→ [ϕ]ψ(]))
τ([ϕ](ψ1 → ψ2(])) = τ([ϕ]ψ1 → [ϕ]ψ2(]))
τ([ϕ][ψ1]ψ2(])) = τ([ϕ ∧ [ϕ]ψ1]ψ2(]))

We can now observe that:

• The translation τ terminates.
Here we use again that formulas of shape [ϕ][ψ]η are at least as complex as [ϕ ∧ [ϕ]ψ]η.
We should also observe that in any clause of shape τ(x → y) = τ(z → w), y is at least
as complex as w, and that in any claus of shape τ([x]u) = τ(z → w), [x]u is at least as
complex as w. The complexity the antecedent z of the implication does not matter.
• τ(ψ(θ)) is a neccessity form of shape ψ1 → [ψ2]θ, as required.

There are four clauses in which τ does not appear on the right-hand side, and in all those
cases the right-hand side has the required shape.
• For all θ ∈ Lbapal , |= ψ(θ) iff |= τ(ψ(θ)), as required.

This holds because all clauses are validity preserving in both directions. Apart from
propositional tautologies this can be justified by one or more of the following observations:

In epistemic logic, |= Kaψ implies |= ψ, and |= ψ implies |= Kaψ. The validity of these
in BAPAL is also obvious. This is used in the, maybe surprising, case τ(Kaψ(])).

The PAL validities listed in the above Lemma 3.4, there justifying truth preservation,
are also frequently used here; in addition (as this might otherwise be oblique) we use
the validity [ϕ](ψ → η) ↔ ([ϕ]ψ → [ϕ]η). This is used in various cases including
τ([ϕ](ψ1 → ψ2(])).

In epistemic logic, |= ϕ → Kaψ iff |= K̂aϕ → ψ. Let us prove this. We note that

|= ϕ→ Kaψ implies |= K̂aϕ→ K̂aKaψ, which, as K̂aKaϕ is equivalent in epistemic logic

to Kaϕ, implies |= K̂aϕ→ Kaψ. From that and |= Kaψ → ψ we obtain |= K̂aϕ→ ψ. For

the other direction, |= K̂aϕ→ ψ implies |= KaK̂aϕ→ Kaψ, which as KaK̂aϕ is equivalent

in epistemic logic to K̂aϕ, implies |= K̂aϕ→ Kaψ. From that and |= ϕ→ K̂aϕ we obtain
|= ϕ→ Kaψ. This is used in various cases including τ(ϕ→ Kaψ(])).
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3.3. BAPAL validities involving the quantifier. Some BAPAL validities are as follows.
They play no auxiliary role as tools in later sections, but they serve to compare BAPAL to
other logics with quantification over information change, where such properties sometimes
hold and sometimes not.

Proposition 3.7.

• |= 2ϕ→ ϕ (T)
• |= 2ϕ→ 22ϕ (4)
• |= 23ϕ→ 32ϕ (MK)
• |= 32ϕ→ 23ϕ (CR)

Proof.

• Let Ms be arbitrary. Assume Ms |= 2ϕ. Then Ms |= [>]ϕ. As |= [>]ϕ ↔ ϕ, therefore
Ms |= ϕ.
• The dual validity 33ϕ → 3ϕ follows from the observation that for all ϕ0, ψ0 ∈ Lpl ,
〈ϕ0〉〈ψ0〉ϕ is equivalent to 〈ϕ0 ∧ ψ0〉ϕ.
• The validity of MK is shown as in APAL. Assume that Ms |= 23ϕ. Given the set var(ϕ)

of propositional variables occurring in ϕ, let δs(ϕ) be the characteristic function for the

valuation of var(ϕ) in state s. We then have Ms |= [δs(ϕ)]3ϕ, and M
δs(ϕ)
s |= 3ϕ. In

the model M
δs(ϕ)
s the valuation of the propositional variables in var(ϕ) is constant in

the domain (for each such p ∈ var(ϕ), either V (p) = D(M δs(ϕ)) or V (p) = ∅). We now
use that for on models where the valuation of variables is constant, every formula that
is true in a state of the model is also valid on the model. For APAL this result is found
in [BBvD+08, Lemma 3.2] (see also [vDvdHI12, Lemma 1]). The inductive proof of this
result depends on the validity of 2> ↔ > and 2⊥ ↔ ⊥. These are also valid for BAPAL.
From this it is easy to show that on such models, |= ϕ → 2ϕ [BBvD+08, Lemma 3.3].
Then, with duality and with the validity 2ϕ → ϕ shown in the first item, we obtain
that 3ϕ↔ ϕ and 2ϕ↔ ϕ are both valid on such models, and therefore also 3ϕ→ 2ϕ.

From that and M
δs(ϕ)
s |= 3ϕ then follows that M

δs(ϕ)
s |= 2ϕ. Thus Ms |= 〈δs(ϕ)〉2ϕ, and

Ms |= 32ϕ.
• In order to prove the validity of CR we have to show that: for all ϕ0, ψ0 ∈ Lpl and

for all M with non-empty denotation of ϕ0 and of ψ0 there are ϕ′
0, ψ

′
0 ∈ Lpl such that

Mϕ0ϕ′
0↔Mψ0ψ′

0 . The obvious choice is ϕ′
0 = ψ0 and ψ′

0 = ϕ0, as

Mϕ0ϕ′
0 = Mϕ0ψ0 = Mϕ0∧ψ0 = Mψ0∧ϕ0 = Mψ0ϕ0 = Mψ0ψ′

0 .

The proof of the validity 4 is more direct than in [BBvD+08], where it is used that
〈χ〉〈ψ〉ϕ is equivalent to 〈〈χ〉ψ〉ϕ. Formula 〈χ〉〈ψ〉ϕ is not equivalent to 〈χ ∧ ψ〉ϕ for all
χ, ψ ∈ Lbapal .

The proof of the validity CR for BAPAL is easier than for other quantified epistemic
logics such as APAL, where the proof needs to ‘close the diamond at the bottom’, which
just as in the case of MK needs declaring the values of all atoms, i.e., we must choose
ϕ′
0 = ψ′

0 = δs(ϕ). For such a proof see e.g. [vDFH21, Lemma 3.10].
Note that not all logics with quantification over announcements satisfy all the properties

of the quantifier shown in this subsection. For example, the logic known as APAL+
(quantifying over announcements of so-called positive formulas, corresponding to the universal
fragment in first-order logic) does not satisfy the validity 2ϕ→ 22ϕ [vDFH21].
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3.4. Boolean closure. We will now define the novel notion of Boolean closure, and prove
some lemmas for it. These are used when proving the soundness of the axiomatization of
the logic BAPAL, later.

Definition 3.8 (Boolean closure). Consider the union denoted P̈ of the set of atoms P and
the disjoint set of atoms {pϕ0 | ϕ0 ∈ Lpl (P )}. The Boolean closure of a model M = (S,∼, V )

for atoms P is the model M̈ = (S,∼, V̈ ) that is as M , except that the Boolean closed

valuation V̈ is for atoms P̈ and such that V̈ (p) = V (p) for p ∈ P and V̈ (pϕ0) = [[ϕ0]]M for

pϕ0 ∈ P̈ \ P .

As P is countably infinite, and as the Booleans on P can be enumerated, P̈ is also
countably infinite. Given an epistemic model, then for each atom and for each Boolean there
are also infinitely many atoms with the same value on the Boolean closure of that model.
E.g., p has the same value as pp∧p (i.e., the atom q corresponding to the Boolean p∧ p), and
the same value as pp∧p∧p (the atom q′ corresponding to Boolean p ∧ p ∧ p), etc. We proceed
with some other properties of the Boolean closure, in the form of lemmas.

Lemma 3.9. On a Boolean closed model M̈ , for all Booleans, including Booleans of atoms
in P̈ \ P , there is an atom with the same value.

Proof. The proof is by induction on the structure of a Boolean ϕ ∈ Lpl (P̈ ).
If ϕ is an atom, it is obvious.
If ϕ = ¬ψ, by induction we may assume that there is an atom p ∈ P̈ such that

V̈ (p) = [[ψ]]M̈ . In case p ∈ P , then p¬p ∈ P̈ \ P , so [[¬ψ]]M̈ = [[¬p]]M̈ = V̈ (p¬p). In case

p ∈ P̈ \ P , there is a ϕ0 ∈ Lpl(P ) such that [[ϕ0]]M = V̈ (p). Now consider q¬ϕ0 ∈ P̈ . We

then have that [[¬ψ]]M̈ = [[¬p]]M̈ = [[¬ϕ0]]M = V̈ (q¬ϕ0), as required.

If ϕ = ϕ′ ∧ ϕ′′, by induction we may assume that there are p′, p′′ ∈ P̈ such that
V̈ (p′) = [[ϕ′]]M̈ and V̈ (p′′) = [[ϕ′′]]M̈ , respectively. We need to distinguish various cases. If

p′, p′′ ∈ P , then pp′∧p′′ ∈ P̈ and [[ϕ′∧ϕ′′]]M̈ = V̈ (pp′∧p′′). If p′, p′′ ∈ P̈ \P , let ψ′, ψ′′ ∈ Lpl (P )

be such that, respectively, V̈ (p′) = [[ψ′]]M and V̈ (p′′) = [[ψ′′]]M . Now consider qψ′∧ψ′′ ∈ P̈ .

As V̈ (qψ′∧ψ′′) = V (ψ′ ∧ ψ′′), we now have that [[ϕ′ ∧ ϕ′′]]M̈ = [[p′ ∧ p′′]]M̈ = V̈ (qψ′∧ψ′′). The

remaining two cases where p′ ∈ P and p′′ ∈ P̈ \ P , and where p′ ∈ P̈ \ P and p′′ ∈ P , are
treated similarly.

Lemma 3.10. The semantics of 2 on a Boolean closure are

M̈s |= 2ψ iff for all p ∈ P̈ : M̈s |= [p]ψ

Proof. Let M̈s and ψ ∈ Lbapal be given. By the semantic definition of 2ψ, we have that

M̈s |= 2ψ iff M̈s |= [ϕ0]ψ for all ϕ0 ∈ Lpl (P̈ ). Assuming the latter, it follows that M̈s |= [p]ψ

for all p ∈ P̈ because atoms are Booleans.
Let us now assume that M̈s |= [p]ψ for all p ∈ P̈ . Towards a contradiction, let

ϕ0 ∈ Lpl(P̈ ) be such that M̈s |= ϕ0 but M̈ϕ0
s 6|= ψ. From Lemma 3.9 it follows that there

is q ∈ P̈ such that V̈ (q) = [[ϕ0]]M̈ . Therefore, M̈s |= q and M̈ q
s 6|= ψ. On the other hand,

from M̈s |= q and the assumption that M̈s |= [p]ψ for all p ∈ P̈ we now obtain M̈ q
s |= ψ, a

contradiction. Therefore M̈s |= 2ψ.

The next lemma involves a translation tr : Lbapal (P̈ )→ Lbapal (P ) defined as tr(pϕ0) = ϕ0

for pϕ0 ∈ P̈ \ P and all other clauses trivial.
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Lemma 3.11. Let ψ ∈ Lbapal(P̈ ), model M = (S,∼, V ) for atoms P and s ∈ S be given.
Then:

M̈s |= ψ iff Ms |= tr(ψ).

Proof. The proof is by induction on ψ. As in other proofs in our contribution, it is important
for the induction that the formula is declared before the model and the state in which it is
interpreted, so that the induction hypothesis applied to a subformula, also applies to other
models and states, namely in particular to restrictions of the given model and to any state
in such a restriction. The interesting cases are:

Case ψ = q. If q ∈ P , then M̈s |= q iff Ms |= q. If q ∈ P̈ \ P , such that q = pϕ0 for some

ϕ0 ∈ Lpl (P ), then M̈s |= q iff Ms |= ϕ0.

Case ψ = [ψ′]ψ′′.

M̈s |= [ψ′]ψ′′ ⇔

M̈s |= ψ′ implies M̈ψ′
s |= ψ′′ ⇔ (∗) induction

Ms |= tr(ψ′) implies M tr(ψ′)
s |= tr(ψ′′)⇔

Ms |= [tr(ψ′)]tr(ψ′′)⇔
Ms |= tr([ψ′]ψ′′)

Case ψ = 2ψ′′.

M̈s |= 2ψ′′ ⇔ by Lemma 3.10

for all q ∈ P̈ , M̈s |= [q]ψ′′ ⇔

for all ϕ0 ∈ Lpl (P ), M̈s |= [ϕ0]ψ
′′ ⇔

for all ϕ0 ∈ Lpl (P ), M̈s |= ϕ0 implies M̈ϕ0
s |= ψ′′ ⇔ (∗∗) induction

for all ϕ0 ∈ Lpl (P ),Ms |= ϕ0 implies Mϕ0
s |= tr(ψ′′)⇔

for all ϕ0 ∈ Lpl (P ),Ms |= [ϕ0]tr(ψ
′′)⇔

Ms |= tr(2ψ′′).

(∗): By induction M̈s |= ψ′ iff Ms |= tr(ψ′), and also ¨(M tr(ψ′))s |= ψ′′ iff M
tr(ψ′)
s |= tr(ψ′′),

where it remains to show that ¨(M tr(ψ′)) = M̈ψ′
: the Boolean closure of the model restriction

to tr(ψ′) is the model restriction to ψ′ of the Boolean closure. In order to show that, we

first show show that M tr(ψ′) and M̈ψ′
have the same domain and accessibility relations, and

then show that the valuation of atoms in the Boolean closure of M tr(ψ′) corresponds to the
valuation of atoms in M̈ψ′

. The models have the same domain because

[[ψ′]]M̈ = {t ∈ S | M̈t |= ψ′} =induction {t ∈ S |Mt |= tr(ψ′)} = [[tr(ψ′)]]M ,

and they therefore also have the same accessibility relations ∼a. The models obviously have
the same valuation of atoms in P . Now consider qϕ0 ∈ P̈ \ P , where ϕ0 ∈ Lpl (P ).

Let V tr(ψ′) be the valuation of M tr(ψ′). Then ¨V tr(ψ′)(qϕ0) = V tr(ψ′)(ϕ0) = [[ϕ0]]M ∩
[[tr(ψ′)]]M . Let now V̈ ψ′

be the valuation of M̈ψ′
. Then V̈ ψ′

(qϕ0) = V̈ (qϕ0) ∩ [[ψ′]]M̈ =
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[[ϕ0]]M ∩ [[ψ′]]M̈ . Again using that [[tr(ψ′)]]M = [[ψ′]]M̈ , we obtain that ¨V tr(ψ′)(qϕ0) = V̈ ψ′
(qϕ0),

as required.

(∗∗): We use the same argument as in (∗), only with (arbitrary) ϕ0 in the role of ψ′, where
we note that tr(ϕ0) = ϕ0.

The property shown in (∗) of the above proof is significant enough to be mentioned as a
corollary.

Corollary 3.12. Let ψ have non-empty denotation on a model M . The model restriction to
ψ of the Boolean closure of M is the Boolean closure of the model restriction to tr(ψ) of M :

¨(M tr(ψ)) = M̈ψ.

For ψ ∈ Lbapal (P ) we have that tr(ψ) = ψ, so that:

Corollary 3.13. Let ψ ∈ Lbapal (P ) and model Ms be given. Then M̈s |= ψ iff Ms |= ψ.

The following result will be needed to show the soundness of a rule in the axiomatization
of BAPAL. As a similar result from the literature ([BBvD+08, Prop. 3.7]) was later shown
false, we give the proof in full detail. We recall that an atom q is fresh with respect to ϕ, if
ϕ does not contain an occurrence of q.

Lemma 3.14. Let ψ{]} be a possibility form, and M = (S,∼, V ) an epistemic model. Then

for all ψ{3ϕ} ∈ Lbapal (P ): Ms |= ψ{3ϕ} iff M̈s |= ψ{〈p〉ϕ} for a fresh p ∈ P̈ \ P .

Proof. The proof is by induction on the structure of possibility forms. Note that in the
formulation of the lemma the formula is declared prior to the model. Therefore, induction
hypotheses for a subformula apply to model restrictions and states in those restrictions.

For all cases, the direction from right to left is the direct application of the semantics of
2, for the dual modality 3, and where we use that any p ∈ P̈ \P must be such that p = qϕ0

for some ϕ0 ∈ Lpl (P ):

Let M̈s |= ψ{〈p〉ϕ} be given. From that, with Lemma 3.11, we get Ms |= tr(ψ{〈p〉ϕ}).
As p ∈ P̈ \ P , tr(p) = ϕ0 for some ϕ0 ∈ Lpl(P ), and therefore Ms |= tr(ψ{〈p〉ϕ}) equals
Ms |= ψ{〈ϕ0〉ϕ}. By the (dual) semantics of 2, from that we obtain Ms |= ψ{3ϕ}.

We continue with the direction from left to right.

Case ]. Let Ms |= 3ϕ. Then, there is a ϕ0 ∈ Lpl such that Ms |= 〈ϕ0〉ϕ. Therefore

M̈s |= 〈pϕ0〉ϕ. As pϕ0 ∈ P̈ \ P , pϕ0 is fresh with respect to ϕ ∈ Lbapal (P ).

Case ψ ∧ ψ′{]}. Let Ms |= ψ ∧ ψ′{3ϕ}. Then Ms |= ψ and Ms |= ψ′{3ϕ}. From Ms |= ψ

and tr(ψ) = ψ it follows from Lemma 3.11 that M̈s |= ψ. From Ms |= ψ′{3ϕ} and induction

it follows that M̈s |= ψ′{〈p〉ϕ}, where p ∈ P̈ \ P is fresh. From M̈s |= ψ and M̈s |= ψ′{〈p〉ϕ}
we now obtain M̈s |= ψ ∧ψ′{〈p〉ϕ}, where we observe that, as p ∈ P̈ \P is fresh in ψ′{〈p〉ϕ}
and ψ ∈ Lbapal (P ), p remains fresh in ψ ∧ ψ′{〈p〉ϕ}.

Case K̂aψ
′{]}. Let Ms |= K̂aψ

′{3ϕ}. Then there is t ∼a s such that Mt |= ψ′{3ϕ}.
Therefore, by induction, there is t ∼a s such that M̈t |= ψ′{〈p〉ϕ} and where p ∈ P̈ \ P is

fresh, so that M̈s |= K̂aψ
′{〈p〉ϕ}.
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Case 〈ψ〉ψ′{]}. Let Ms |= 〈ψ〉ψ′{3ϕ}. Then Ms |= ψ and Mψ
s |= ψ′{3ϕ}. Lemma 3.11

and tr(ψ) = ψ give that Ms |= ψ iff M̈s |= ψ. By induction we get that Mψ
s |= ψ′{3ϕ} iff

M̈ψ
s |= ψ′{〈p〉ϕ}, where p ∈ P̈ \ P is fresh, and where we have also used that M̈ψ = ¨(Mψ)

(Corollary 3.12). From M̈s |= ψ and M̈ψ
s |= ψ′{〈p〉ϕ} we now obtain that M̈s |= 〈ψ〉ψ′{〈p〉ϕ},

where, just as in the case for conjunction, as p is fresh in ψ′{〈p〉ϕ}, p ∈ P̈ \ P and
ψ ∈ Lbapal (P ), p remains fresh in 〈ψ〉ψ′{〈p〉ϕ}.

In the proof of the following Lemma 3.15 (and only in this proof), we do not only have to
keep track explicitly of the parameter set of atoms for which the logical language is defined,
but similarly of the set of atoms for which a model is defined, and where this set of atoms
may contain P instead of being contained in it. We therefore resort to let Ms(Q) denote
that model M is defined for variables Q (and where s is the designated state). This also

implies that, given some Ms(P ), its Boolean closure is M̈s(P̈ ). We also let BAPAL(Q) mean
‘BAPAL for set of atoms Q’. Outside this proof, the parameter set of atoms remains P .

Lemma 3.15. Let ϕ ∈ Lbapal(P ) and p ∈ var(ϕ), and let Ms be an epistemic model. If ϕ

is valid, then M̈s |= ϕ[q/p] for any q ∈ P̈ \ P .

Proof. Let ϕ be BAPAL(P ) valid. We first show that for any Q with P ⊆ Q:

If ϕ ∈ Lbapal (P ) is BAPAL(P ) valid, then ϕ is BAPAL(Q) valid. (3.1)

It is more intuitive to show the contrapositive, where for notational convencience we replaced
ϕ by ¬ϕ:

If ϕ ∈ Lbapal (P ) is BAPAL(Q) satisfiable, then ϕ is BAPAL(P ) satisfiable. (3.2)

This follows directly from the following statement:

For all ϕ ∈ Lbapal (P ) and for all Ms(Q), Ms(Q) |= ϕ implies Ms(P ) |= ϕ. (3.3)

This statement is proved by formula induction. The non-trivial cases of the proof are
ϕ = 〈ϕ′′〉ϕ′ and ϕ = 3ϕ′.

Case ϕ = 〈ϕ′′〉ϕ′. Suppose Ms(Q) |= 〈ϕ′′〉ϕ′. Then Ms(Q) |= ϕ′′ and Mϕ′′
s (Q) |= ϕ′.

By induction it follows that Ms(P ) |= ϕ′′ and Mϕ′′
s (P ) |= ϕ′ (as usual, note that the

inductive hypothesis applies to any model Nt(Q), not merely to Ms(Q); it therefore applies

to Nt = Mϕ′′
s (Q)). Therefore Ms(P ) |= 〈ϕ′′〉ϕ′.

Case ϕ = 3ϕ′. Suppose Ms(Q) |= 3ϕ′. Then there is ψ0 ∈ Lpl(Q) such that Ms(Q) |=
〈ψ0〉ϕ′, and therefore Ms(Q) |= ψ0 and Mψ0

s (Q) |= ϕ′. For any atom q ∈ var(ψ0) such that
q ∈ Q \ P , choose a fresh atom p′ ∈ P (fresh with respect to ψ0 and ϕ′, and with respect
to prior choices of such atoms in var(ψ0)), and transform M into N = (S,∼, V ′) with
V ′(p′) = V (q) and V ′(q) = V (p′). Let ψ′

0 ∈ Lpl(P ) be the result of all such substitutions.
It is clear that Ms(Q) |= ψ0 iff Ns(Q) |= ψ′

0 and that [[ψ0]]M = [[ψ′
0]]N . We also have

Mψ0
s (Q) |= ϕ′ iff N

ψ′
0

s (Q) |= ϕ′, as the truth of ϕ′ does not depend on swapping the values
of variables p′ and q not occurring in it. Note that ϕ′ may contain quantifiers 3, so strictly
this requires a subinduction on the number of 3 occurrences in ϕ′, where in the inductive
step, given a witness 〈χ0〉 for 3, we need to simultaneously substitute all occurrences of q
and p′ in χ0 for each other.
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So we now have Ns(Q) |= ψ′
0 and N

ψ′
0

s (Q) |= ϕ′. By induction, and as ψ′
0 ∈ Lbapal(P ),

Ns(Q) |= ψ′
0 implies Ns(P ) |= ψ′

0, and N
ψ′
0

s (Q) |= ϕ′ implies N
ψ′
0

s (P ) |= ϕ′. From Ns(P ) |=
ψ′
0 and N

ψ′
0

s (P ) |= ϕ′ follows Ns(P ) |= 3ϕ′. Now observe that Ns(P ) and Ms(P ) only differ
in variables not occurring in 3ϕ′, so that Ns(P ) |= 3ϕ′ iff Ms(P ) |= 3ϕ′ (where similarly
to above we take into account occurrences of 3 in ϕ′). Therefore, Ms(P ) |= 3ϕ′.

This shows (3.3). We can now quickly close the argument. Let ϕ be satisfiable for
Q. Then there is Ms(Q) such that Ms(Q) |= ϕ. Using (3.3), Ms(P ) |= ϕ. Therefore ϕ is
satisfiable for P . This shows (3.2). Therefore, we have now shown, for arbitrary ϕ, (3.1): if

ϕ is valid for P , and P ⊆ Q, then ϕ is valid for Q. We now apply (3.1) for Q = P̈ .

Clearly P ⊂ P̈ . So, if ϕ is BAPAL(P ) valid, then ϕ is BAPAL(P̈ ) valid. For any validity
ϕ′′ in a logic BAPAL(P ′′), p′′ ∈ P ′′, and fresh q′′ ∈ P ′′, ϕ[q′′/p′′] is also a BAPAL(P ′′) validity.

Therefore, given that ϕ is a validity of BAPAL(P̈ ) and a (obviously) fresh q ∈ P̈ \ P , also

ϕ[q/p] is a validity of BAPAL(P̈ ). Here is it important to observe that this is a validity for

the class of epistemic models for variables P̈ , and that this is not a validity for the class of
Boolean closures of epistemic models for variables P . But of course, the latter is contained
in the former: a Boolean closed model for P is, after all, a model for P̈ . Therefore, also
M̈s(P̈ ) |= ϕ[q/p], as required.

4. Expressivity

Given logical languages L and L′, and a class of models in which L and L′ are both interpreted
(employing a satisfaction relation |= resp. |=′), we say that L is at least as expressive as L′,
if for every formula ϕ′ ∈ L′ there is a formula ϕ ∈ L such that for all models M and states
s ∈ D(M), Ms |=′ ϕ′ iff Ms |= ϕ. If L is not at least as expressive as L′ and L′ is not at least
as expressive as L, then L is incomparable to L′. If L is at least as expressive as L′, and L′
is at least as expressive as L, then L is as expressive as L′. If L is at least as expressive
as L′ but L′ is not at least as expressive as L, then L is (strictly) more expressive than L′.
The combination of a language with a semantics given a class of models determines a logic.
In this work we only consider model class S5. We abbreviate “given logic L determined by
language L, model class S5 and satisfaction relation |=, and logic L′ determined by language
L′, model class S5 and satisfaction relation |=′, L is at least as expressive as L′,” by “L is at
least as expressive as L′,” and similarly for other expressivity terminology. Note that in this
work the language Lbapal is the same for BAPAL and APAL, whereas the semantics of the
quantifier are different in BAPAL and APAL. We also consider language fragments, namely
Lpal and Lel .

We show that BAPAL is more expressive than EL and that BAPAL is not as least as
expressive as two other logics with quantification over announcements: APAL, and group
announcement logic (GAL) [ÅBvDS10]. It is not known whether APAL (or GAL) is at least
as expressive as BAPAL or not. We conjecture that it is not. To prove that, one would
somehow have to show that the BAPAL-2 in a given formula 2ϕ can be ‘simulated’ by an
APAL-2 that is properly entrenched in preconditions and postconditions relative to ϕ, thus
providing an embedding of Lbapal into Lapal . This seems quite hard.

In the models depicted below we use the following visual conventions: the names of
states are replaced by the sets of atoms true in those states; the accessibility relations for the
two agents a, b are reflexively and symmetrically (and transitively) closed, in other words,
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they partition the domain into equivalence classes; and the actual state (the designated
world) is underlined.

Proposition 4.1. BAPAL is more expressive than EL.

Proof. To prove that BAPAL is more expressive than EL we first observe that Lel ⊆ Lbapal
(and that on that restriction they have the same semantics), so that BAPAL is at least as
expressive as EL, and we then observe that the (standard) proof that EL is not at least
as expressive as APAL [BBvD+08] can also be used to show that EL is not at least as
expressive as BAPAL.

We recall the proof in [BBvD+08], wherein the formula 3(Kap∧¬KbKap) is shown not
to be equivalent to an epistemic logical formula ψ as follows. There must be a propositional
variable q not occurring in ψ. Two models that are bisimilar except for q will either make ψ
true in both or false in both. On the other hand, 3(Kap ∧ ¬KbKap) may be true in one
and false in the other, as it quantifies over variable q as well. This quantification is implicit,
as q 6∈ var(3(Kap ∧ ¬KbKap). We can therefore easily make 〈q〉(Kap ∧ ¬KbKap) true in
one and false in the other, as shown below for Ms and M ′

s′ .
As the announcement q witnessing the diamond is a Boolean, this also proves the case

for BAPAL.

{p} {}

{p, q} {q}

Ms:
a {p, q} {}

{p, q} {q}

a

a

b b

M ′
s′ :

Proposition 4.2. BAPAL is not at least as expressive as APAL.

Proof. Consider (again, but to other usage) Lapal formula 3(Kap∧¬KbKap). Let us suppose
that there exists an equivalent Lbapal formula ψ. Given the modal depth d(ψ) of ψ, consider
two models Nt, Ot′ , with a difference between them further away from the root than d(ψ),

ensuring that Nt↔d(ψ)Ot′ .
Formally, Nt and Ot′ can be defined as follows. Model Nt has domain Z, equivalence

classes for relation ∼a consisting of pairs {2i, 2i+ 1} for i ∈ Z and for relation ∼b consisting
of pairs {2i− 1, 2i} for i ∈ Z, and with V (p) =

⋃
i∈Z{4i− 1, 4i}. The actual state t is state

0. Note that Ms↔Nt, where Ms is the model that was used in the previous proposition.
Model Ot′ is as model Nt (and with t′ = 0), except that the domain is restricted to the range
i ≤ 4j, where j is the least positive integer for which d(ψ) < 4j (so, on the left model O is
infinite, on the right it ends in two p worlds). As the argument in the proof is abstract (ψ is

hypothetical) and only needs j to be in excess of d(ψ)
4 (we only need to refer to formulas of

modal depth larger than d(ψ)), the schematic visualization of these models below, wherein
we have abstracted from the names of states, suffices in the proof.

{p} {} {}{p}{}{} {p} {p}a
Ms:

{p} {} {}{p}{}{} {p} {p}a b a b
Nt:
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{p} {} {}{p}{}{} {p} {p}a b a b > d(ψ) b
Ot′ :

{p} {} {}{p}{}{} {p} {p}a b
Oϕt′ :

We use Lemma 3.3 that n-bisimilarity implies n-logical equivalence: from Nt↔d(ψ)Ot′ it
follows that Nt ≡d(ψ) Ot′ and thus, as the formula ψ itself has depth d(ψ), that Nt |= ψ iff
Ot′ |= ψ (†). On the other hand, Nt 6|= 3(Kap ∧ ¬KbKap) (obviously, consider the bisimilar
Ms) whereas Ot′ |= 3(Kap ∧ ¬KbKap). To prove the latter we observe that any finite
subset of the model O can be distinguished from its complement by a formula in the logic
(by ‘distinguished’ we mean that the formula is true in all the states of that subset and
false in all other states of the domain of that model), where we use that any state can
be distinguished from all others by its distance to the rightmost terminal state1, that is
distinguished by Kap. In particular, there must therefore be a distinguishing formula ϕ of a
three-state subset of O such that Oϕ is as depicted. As Oϕt′ |= Kap ∧ ¬KbKap, we get that
Ot′ |= 〈ϕ〉(Kap∧¬KbKap), and thus Ot′ |= 3(Kap∧¬KbKap). This is a contradiction with
(†). Therefore, no such ψ ∈ Lbapal exists.

As a corollary of Proposition 4.2 we can very similarly show that BAPAL is not at least
as expressive as GAL, as in GAL we also quantify over announcements of arbitrarily large
modal depth. We then use the same models as above but with an additional agent c who has
the identity accessibility relation on the model. On models where the accessibility relation
for c is the identity, Kcϕ↔ ϕ is valid for any ϕ. The language of GAL has a primitive 〈c〉ϕ
which stands for ‘there is a formula ψ ∈ Lel such that 〈Kcψ〉ϕ’ (see [ÅBvDS10]). On this
three-agent model, 〈Kcψ〉ϕ is equivalent to 〈ψ〉ϕ, and as ‘there is a formula ψ ∈ Lel such
that 〈ψ〉ϕ’ is equivalent to ‘3ϕ’ in the APAL semantics, we obtain that on this model 〈c〉ϕ
is equivalent to 3ϕ. We now copy the above argument but with 〈c〉(Kap∧¬KbKap) instead
of 3(Kap ∧ ¬KbKap). Therefore:

Corollary 4.3. BAPAL is not at least as expressive as GAL.

5. Axiomatization

We now provide a sound and complete finitary axiomatisation for BAPAL.

Definition 5.1 (Axiomatization bapalbapalbapal). The axiomatization bapalbapalbapal of BAPAL.

P propositional tautologies K Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ)
T Kaϕ→ ϕ 4 Kaϕ→ KaKaϕ
5 ¬Kaϕ→ Ka¬Kaϕ AP [ϕ]p↔ (ϕ→ p)
AN [ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ) AC [ϕ](ψ ∧ ψ′)↔ ([ϕ]ψ ∧ [ϕ]ψ′)
AK [ϕ]Kaψ ↔ (ϕ→ Ka[ϕ]ψ) AA [ϕ][ψ]ψ′ ↔ [ϕ ∧ [ϕ]ψ]ψ′

A2 2ϕ→ [ψ0]ϕ where ψ0∈Lpl MP ϕ and ϕ→ ψ imply ψ
NecK ϕ implies Kaϕ NecA ϕ implies [ψ]ϕ

R2 ψ → [ϕ′][p]ϕ for p fresh implies ψ → [ϕ′]2ϕ

1The rightmost state in O is distinguished by Kap. The state to its left (in the picture) is distinguished

by K̂bKap ∧ ¬Kap, and the state to the left of that by K̂aK̂bKap ∧ ¬(K̂bKap ∧ ¬Kap) ∧ ¬Kap. And so on.
To distinguish any finite subset in O from its complement, take the disjunction of the distinguishing formulas
of its members.
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The rules and axioms in bapalbapalbapal are as in the axiomatization of APAL, except for the
axiom A2 and the derivation rule R2. A formula ϕ is a theorem (notation ` ϕ) if it belongs
to the least set of formulas containing all axioms and closed under the derivation rules.

The main interest of bapalbapalbapal is that it is finitary, unlike other known axiomatizations
for logics with quantification over announcements [BBvD+08, ÅBvDS10, GA17] (except

for [BÖS18], see Section 1). Essential towards proving that result is Lemma 3.14, stating
that every diamond 3 in a possibility form is witnessed by the announcement 〈p〉 of a fresh
variable2.

To demonstrate soundness and completeness of the axiomatization bapalbapalbapal we can (still)
use the line of reasoning in [BBvD+08].

We start with soundness, in other words, we will show that all axioms are validities and
all rules are validity preserving (if all premisses of the rule are valid, then the conclusion is
valid). The validity of axiom A2 directly follows from the semantics of 2. To establish the
validity preservation of rule R2, consider three versions of this derivation rule (let ψ(]) be a
necessity form).

• R2ω: (ψ([ϕ0]ϕ) for all ϕ0 ∈ Lpl ) implies ψ(2ϕ).
• R21: (ψ([p]ϕ) for a fresh p ∈ P ) implies ψ(2ϕ).
• R2: (ψ′ → [ϕ′][p]ϕ for a fresh p ∈ P ) implies ψ′ → [ϕ′]2ϕ.

We can analogously consider three axiomatizations:

• bapalbapalbapalω = bapalbapalbapal−R2 + R2ω

• bapalbapalbapal1 = bapalbapalbapal−R2 + R21

• bapalbapalbapal

We show that all three of R2ω, R21, and R2 are validity preserving, and that all three
axiomatizations are sound and complete. It is thus a matter of taste which one is preferred.
Note that bapalbapalbapalω is infinitary whereas bapalbapalbapal1 and bapalbapalbapal are finitary. Finitary axiom-
atizations are considered preferable over infinitary axiomatizations. Both R21 and R2

have (an instantiation of) a necessity form as premiss. The difference is that ψ′ → [ϕ′][p]ϕ
is a particular necessity form whereas ψ([p]ϕ) can be any necessity form. As R2 is more
restrictive in logical structure, it may be considered preferable. Again, this is a matter of
taste.

Lemma 5.2. Derivation rule R2ω is validity preserving.

Proof. This directly follows from the semantics of 2. Let model Ms be given. Assuming that
ψ([ϕ0]ϕ) is valid for all ϕ0 ∈ Lpl , we obtain that Ms |= ψ([ϕ0]ϕ) for all ϕ0 ∈ Lpl . By the
semantics of 2, it follows that Ms |= ψ(2ϕ). As M and s ∈ D(M) were arbitrary, ψ(2ϕ) is
valid.

We now show that the derivation rule R21 is sound. This is the main technical result of
this section, wherein we use results for the Boolean completion of models, introduced in
Section 2.

Proposition 5.3. Derivation rule R21 is validity preserving.

2A similar lemma and finitary axiomatization reported for APAL [BBvD+08] are in fact incorrect, see http:
//personal.us.es/hvd/errors.html, although for APAL the infinitary axiomatization stands [BBvD+08,
Bal15, BvD15].

http://personal.us.es/hvd/errors.html
http://personal.us.es/hvd/errors.html
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Proof. We recall that for any ψ(ϕ′) ∈ Lbapal (where ψ(]) is a necessity form), ψ{¬ϕ′} (where
ψ′{]} is a possibility form) is equivalent to ¬ψ(ϕ′) (Lemma 3.5).

Suppose that ψ([p]ϕ) ∈ Lbapal(P ) is valid where p is fresh. Let M be any epistemic

model and s ∈ D(M). Then from Lemma 3.15 follows that M̈s |= ψ([q]ϕ) for any fresh atom

q ∈ P̈ \ P . Therefore it is not the case that: there is a q ∈ P̈ \ P such that M̈s |= ψ{〈q〉¬ϕ}
where q is fresh. By applying the contrapositive of Lemma 3.14, we obtain Ms 6|= ψ{3¬ϕ},
i.e., Ms |= ψ(2ϕ).

Corollary 5.4. Derivation rule R2 is validity preserving.

Theorem 5.5. bapalbapalbapal is sound.

We proceed to show that the three axiomatizations are complete, by way of showing
that they all define the same set of theorems.

Proposition 5.6 ([BvD15]). bapalbapalbapalω is sound and complete.

Proof. The soundness of the infinitary axiomatization bapalbapalbapalω follows from the validity
preservation of the infinitary derivation rule R2ω (Lemma 5.2).

The completeness of bapalbapalbapalω can be shown almost exactly as in [BvD15], where we
note that the original proof in [BBvD+08] contains errors that are corrected in this subse-
quent [BvD15]. The completeness part involves a canonical model construction and a fairly
involved complexity measure and truth lemma with induction and subinduction using that
complexity. We will only point out the exact differences with [BvD15]. All proof details are
therefore omitted.

The names of the axioms and rules in [BvD15] are different from ours. For example, the
axiom Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ) that we call K, they call A1, etc. This is not a relevant
difference. Instead of the axiom A2 and the rule R2ω involving Booleans, the system
in [BvD15] has an axiom and rule involving epistemic formulas (but that are otherwise
identical): an axiom “2ϕ → [ψ]ϕ where ψ ∈ Lel” and a rule “ψ([ϕ′]ϕ) for all ϕ′ ∈ Lel ,
implies ψ(2ϕ)”. Careful examination of the entire proof in [BvD15] reveals about a dozen
occurrences of the word ‘epistemic’ that have to be replaced by the word ‘Boolean’ to match
our case, where we can observe that they continue to perform the same role in the proof:
their role is in all occasions that these formulas do not contain 2 operators and thus have
lower complexity, which is required for inductive assumptions.

A final difference is that the system in [BvD15] contains an additional derivation rule
“ϕ implies 2ϕ”, that does not occur in bapalbapalbapalω. But it is derivable in the axiomatization of
APAL in [BvD15] (and similarly in bapalbapalbapalω, by again substituting ‘Boolean’ for ‘epistemic’ in
the following): let ϕ be given, then for all ψ we get, with NecA, [ψ]ϕ, so in particular we get
that for all epistemic ψ, from which with their version of R2ω follows 2ϕ, as required.

Lemma 5.7 ([BBvD+08]). A bapalbapalbapal1 derivation can be transformed into a bapalbapalbapal derivation.

Proof. This proof is found in [BBvD+08], so we do not claim originality. However, the reader
may appreciate that we present it in the context of Lemma 3.6 and therefore in more detail.

First note that the translation τ defined in Lemma 3.6 (page 8), where ] is instantiated
by a Lbapal formula, is not only validity preserving (in both directions) but also derivability
preserving (in both directions). This we can justify as follows. Concerning the translation
step τ(Kaψ(])) = τ(ψ(])), we observe that Kaψ implies ψ by the T axiom of knowledge,
whereas ψ implies Kaψ by the NecK derivation rule of necessitation for knowledge. All
other translation steps correspond to derivable equivalences in PAL.
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Now consider a derivation in bapalbapalbapal1 and an application in that derivation of rule R21:
(ψ([p]ϕ) for a fresh p ∈ P ) implies ψ(2ϕ). From premiss ψ([p]ϕ) we first derive τ(ψ([p]ϕ)),
we then apply derivation rule R2 obtaining τ(ψ(2ϕ)), and from that we subsequently
derive ψ(2ϕ). Successively doing this for all applications of R21 in the bapalbapalbapal1 derivation
transforms it into a bapalbapalbapal derivation.

With these results we can now easily demonstrate that not only bapalbapalbapalω but also the
other two axiomatizations are complete and define the same set of theorems. Below, let the
name of the axiomatization stand for the set of derivable theorems. Again, we follow the
same argument as in [BBvD+08].

• bapalbapalbapalω ⊆ bapalbapalbapal1: A derivation in bapalbapalbapalω is not a finite sequence of formulas but
a converse well-founded sequence of formulas, because a R2ω rule application has an
infinite number of premisses. We can transform such a bapalbapalbapalω derivation into a bapalbapalbapal1

derivation as follows. If it contains no R2ω rule applications it is already a bapalbapalbapal1

derivation. Otherwise, consider a R2ω rule application with conclusion ψ(2ϕ). One of its
infinite premisses must be ψ([p]ϕ) for a fresh atom p. Discarding all other premisses from
that R2ω rule application makes it a R21 rule application. Successively doing this for all
R2ω rule applications in the derivation (where we note that this is a finite number, as the
derivation is converse well-founded) therefore transforms this bapalbapalbapalω derivation into a
bapalbapalbapal1 derivation.
• bapalbapalbapal1 = bapalbapalbapal: In Lemma 5.7, using the transformation τ defined in Lemma 3.6,

was shown that a derivation with R21 rule applications can be transformed into one
with R2 rule applications. This shows bapalbapalbapal1 ⊆ bapalbapalbapal. The other direction of the
mutual inclusion, bapalbapalbapal ⊆ bapalbapalbapal1, is trivial, as a R2 rule application is also a R21 rule
application, and therefore a bapalbapalbapal derivation also a bapalbapalbapal1 derivation.
• bapalbapalbapal ⊆ bapalbapalbapalω: Here we use completeness of bapalbapalbapalω. Let a bapalbapalbapal theorem be given.

Using soundness of bapalbapalbapal, we obtain that it is valid. The completeness proof of bapalbapalbapalω

involves showing that every bapalbapalbapalω consistent formula is satisfiable. In other words, all
BAPAL validities are bapalbapalbapalω theorems. So, our bapalbapalbapal theorem, that is a BAPAL validity,
is a bapalbapalbapalω theorem.

Theorem 5.8. bapalbapalbapal is complete.

6. Conclusions and further research

We proposed the logic BAPAL. It is an extension of public announcement logic. It contains
a modality 2ϕ intuitively corresponding to: “after every public announcement of a Boolean
formula, ϕ is true”. We have shown that BAPAL is more expressive than EL and not at
least as expressive as APAL, and that it has a finitary complete axiomatization.

For further research we wish to report the decidability of the satisfiability problem of
BAPAL and of yet another logic with quantification over announcements, called positive
arbitrary public announcement logic, APAL+. The logic APAL+ has a primitive modality
“after every public announcement of a positive formula, ϕ is true”. The positive formulas
correspond to the universal fragment in first-order logic. These are the formulas where
negations do not bind modalities. It has been reported in [vDFH21].
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