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Abstract. It is known that the composition of schema mappings, each specified by
source-to-target tgds (st-tgds), can be specified by a second-order tgd (SO tgd). We
consider the question of what happens when target constraints are allowed. Specifically,
we consider the question of specifying the composition of standard schema mappings (those
specified by st-tgds, target egds, and a weakly acyclic set of target tgds). We show that
SO tgds, even with the assistance of arbitrary source constraints and target constraints,
cannot specify in general the composition of two standard schema mappings. Therefore,
we introduce source-to-target second-order dependencies (st-SO dependencies), which are
similar to SO tgds, but allow equations in the conclusion. We show that st-SO dependen-
cies (along with target egds and target tgds) are sufficient to express the composition of
every finite sequence of standard schema mappings, and further, every st-SO dependency
specifies such a composition. In addition to this expressive power, we show that st-SO
dependencies enjoy other desirable properties. In particular, they have a polynomial-time
chase that generates a universal solution. This universal solution can be used to find the
certain answers to unions of conjunctive queries in polynomial time.

It is easy to show that the composition of an arbitrary number of standard schema
mappings is equivalent to the composition of only two standard schema mappings. We
show that surprisingly, the analogous result holds also for schema mappings specified by
just st-tgds (no target constraints). That is, the composition of an arbitrary number of
such schema mappings is equivalent to the composition of only two such schema mappings.
This is proven by showing that every SO tgd is equivalent to an unnested SO tgd (one
where there is no nesting of function symbols). The language of unnested SO tgds is quite
natural, and we show that unnested SO tgds are capable of specifying the composition of
an arbitrary number of schema mappings, each specified by st-tgds. Similarly, we prove
unnesting results for st-SO dependencies, with the same types of consequences.
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1. Introduction

Schema mappings are high-level specifications that describe the relationship between two
database schemas, a source schema and a target schema. Because of the crucial importance
of schema mappings for data integration and data exchange (see the surveys [35, 36]),
several different operators on schema mappings have been singled out as important objects
of study [9]. One of the most fundamental is the composition operator, which combines
successive schema mappings into a single schema mapping. The composition operator can
play a useful role each time the target of a schema mapping is also the source of another
schema mapping. This scenario occurs, for instance, in schema evolution, where a schema
may undergo several successive changes. It also occurs in extract-transform-load (ETL)
processes in which the output of a transformation may be the input to another [45]. The
composition operator has been studied in depth [23, 39, 41, 42].

One of the most basic questions is: what is the language needed to express the compo-
sition of schema mappings? For example, if the schema mapping M12 is an st-tgd mapping,
that is, a mapping specified by a finite set of the widely-studied source-to-target tuple-
generating dependencies (st-tgds), and the schema mapping M23 is also an st-tgd mapping,
is the composition M12 ◦M23 also an st-tgd mapping? Fagin et al. [23] showed that sur-
prisingly, the answer is “No.” In fact, they showed that it is necessary to pass to existential
second-order logic to express this composition in general. Specifically, they defined a class
of dependencies, which they call second-order tgds (SO tgds), which are source-to-target,
with existentially-quantified function symbols, and they showed that this is the “language
of composition”. That is, they showed that the composition of any number of st-tgd map-
pings can be specified by an SO tgd. They also showed that every SO tgd specifies the
composition of a finite number of st-tgd mappings. Thus, SO tgds are exactly the right
language.

What happens if we allow not only source-to-target constraints, but also target con-
straints? Target constraints are important in practice; examples of important target con-
straints are those that specify the keys of target relations, and referential integrity con-
straints (or inclusion dependencies [10]). This paper is motivated by the question of how
to express the compositions of schema mappings that have target constraints. This ques-
tion was first explored by Nash et al. [42], where an even more general class of constraints
was studied: constraints expressed over the joint source and target schemas without any
restrictions. Here we study a case intermediate between that studied by Fagin et al. in
[23] and that studied by Nash et al. in [42]. Specifically, we study standard schema map-
pings, where the source-to-target constraints are st-tgds, and the target constraints consist
of target equality-generating dependencies (t-egds) and a weakly acyclic set [22] of target
tuple-generating dependencies (t-tgds). Standard schema mappings have a chase that is
guaranteed to terminate in polynomial time. In fact, weak acyclicity was introduced in [22]
in order to provide a fairly general sufficient condition for the chase to terminate in polyno-
mial time (a slightly less general class was introduced in [16], under the name constraints
with stratified witness, for the same purpose).

Standard schema mappings are a natural “sweet spot” between the schema mappings
studied by Fagin et al. [22] (with only source-to-target constraints) and the schema mappings
studied by Nash et al. [42] (with general constraints), for two reasons. The first reason is
the importance of standard schema mappings. Source-to-target tgds are the natural and
common backbone language of data exchange systems [20]. Furthermore, even though the
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notion of weakly acyclic sets of tgds was introduced only recently, it has now been studied
extensively [1, 2, 3, 4, 7, 8, 11, 12, 14, 15, 21, 22, 26, 28, 29, 30, 31, 33, 34, 35, 40, 43,
44]. Among the important special cases of weakly acyclic sets of tgds are sets of full tgds
(those with no existential quantifiers) and acyclic sets of inclusion dependencies [13], a large
class that is common in practice. The second reason for our interest in standard schema
mappings is that as we shall see, compositions of standard schema mappings have especially
nice properties. Thus, the language of standard schema mappings is expressive enough to
be useful in practice, and yet simple enough to allow nice properties, such as having a
polynomial-time chase.

There are various inexpressibility results in [23] and [42] that show the inability of first-
order logic to express compositions. Thus, each of these results says that there is a pair of
schema mappings that are each specified by simple formulas in first-order logic, but where
the composition cannot be expressed in first-order logic. In this paper, we show that some
compositions cannot be expressed even in certain fragments of second-order logic. First,
we show that SO tgds are not adequate to express the composition of an arbitrary pair of
standard schema mappings. It turns out that this is quite easy to show. But what if we
allow not only SO tgds, but also arbitrary source constraints and target constraints? This
is a more delicate problem. By making use of a notion of locality from [5], we show that
even these are not adequate to express the composition of an arbitrary pair of standard
schema mappings.

Therefore, we introduce a richer class of dependencies, which we call source-to-target
second-order dependencies (st-SO dependencies). This class of dependencies is the source-
to-target restriction of the class Sk∀CQ= of dependencies introduced in [42]. Our st-SO
dependencies differ from SO tgds in that st-SO dependencies may have not only relational
atomic formulas R(t1, . . . , tn) in the conclusions, but also equalities t1 = t2. We show
that st-SO dependencies are exactly the right extension of SO tgds for the purpose of
expressing the composition of standard schema mappings. Specifically, we show that (1)
the composition of standard schema mappings can be expressed by an st-SO dependency
(along with target constraints), and (2) every st-SO dependency specifies the composition of
some finite sequence of standard schema mappings. We note that a result analogous to (1),
but for schema mappings that are not necessarily source-to-target, was obtained in [42] by
using their class Sk∀CQ= of dependencies. In fact, our proof of (1) is simply a variation of
the proof in [42].

In addition, we show that st-SO dependencies enjoy other desirable properties. In
particular, we show that they have a polynomial-time chase procedure. This chase procedure
is novel, in that it has to keep track of constantly changing values of functions. As usual,
the chase generates not just a solution, but a universal solution [22]. (Recall that a solution
for a source instance I with respect to a schema mapping M is a target instance J where
the pair (I, J) satisfies the constraints of M, and a universal solution is a solution with
a homomorphism to every solution.) The fact that the chase is guaranteed to terminate
(whether in polynomial time or otherwise) implies that if there is a solution for a given source
instance I, then there is a universal solution. The fact that the chase runs in polynomial
time guarantees that there is a polynomial-time algorithm for deciding if there is a solution,
and, if so, for producing a universal solution.

Let q be a query posed against the target schema. The certain answers for q on a source
instance I, with respect to a schema mappingM, are those tuples that appear in the answer
q(J) for every solution J for I. It is shown in [22] that if q is a union of conjunctive queries,
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and J∗ is a universal solution for I, then the certain answers for q on I can be obtained
by evaluating q on J∗ and then keeping only those tuples formed entirely of values from
I. Since the chase using an st-SO dependency can be carried out in polynomial time, it
follows that we can obtain a universal solution in polynomial time, and so we can compute
the certain answers to unions of conjunctive queries in polynomial time.

In addition to our results about st-SO dependencies, we also have some results directly
about compositions of schema mappings. It is easy to show that the composition of an
arbitrary number of standard schema mappings is equivalent to the composition of only
two standard schema mappings. We show the surprising result that a similar result holds
also for st-tgd mappings (no target constraints). That is, the composition of an arbitrary
number of st-tgd mappings is equivalent to the composition of only two st-tgd mappings.
This is proven by showing that every SO tgd is equivalent to an unnested SO tgd (one
where there is no nesting of function symbols). We also prove a similar denesting result for
st-SO dependencies. These denesting results are the most difficult results technically in the
paper.

We feel that unnested dependencies are more natural, more readable, and easier to
understand than nested dependencies. They are probably easier to use in practice. For
example, it is easy to see that the “nested mappings” in [25] can be expressed by unnested SO
tgds. We show that unnested SO tgds are also expressive enough to specify the composition
of an arbitrary number of st-tgd mappings. This was not known even for the composition
of two st-tgd mappings. Thus, although it was shown in [23] that each unnested SO tgd
specifies the composition of a pair of st-tgd mappings, the converse was not shown. In
fact, for the composition of two st-tgd mappings, the composition construction in [23] can
produce an SO tgd with nesting depth 2, not 1.

We close by discussing an application of our results. In practice, a composition of
many schema mappings may arise (say, as the result of many steps of schema evolution).
If these are st-tgd mappings, then there are several approaches towards “simplifying” this
composition. One approach is to replace the composition of many st-tgd mappings by
a single schema mapping, specified by an unnested SO tgd. For another approach, we
can remain within the language of st-tgds by replacing the composition of many st-tgd
mappings by the composition of only two st-tgd mappings. A similar comment applies to
the composition of many standard schema mappings.

2. Preliminaries

A schema R is a finite set {R1, . . . , Rk} of relation symbols, with each Ri having a fixed
arity ni > 0. Let D be a countably infinite domain. An instance I of R assigns to each
relation symbol Ri of R a finite ni-ary relation RI

i ⊆ Dni . We let Inst(R) be the set
of instances of R. The domain (or active domain) dom(I) of instance I is the set of all
elements that occur in any of the relations RI

i . We say that R(a1, . . . , an) is a fact of I if
(a1, . . . , an) ∈ RI . We sometimes denote an instance by its set of facts.

As is customary in the data exchange literature, we consider instances with two types
of values: constants and nulls [22]. More precisely, let C and N be infinite and disjoint sets
of constants and nulls, respectively, and take the domain D to be C ∪N. If we refer to a
schema S as a source schema, then we assume that for every instance I of S, it holds that
dom(I) ⊆ C. On the other hand, if we refer to a schema T as a target schema, then for
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every instance J of S, it holds that dom(J) ⊆ C ∪N. The distinction between constants
and nulls is important in the definition of a homomorphism (which we give later).

2.1. Source-to-target and target dependencies. Fix a source schema S and a target
schema T, and assume that S and T do not have predicate symbols in common. Then a
source-to-target tuple-generating dependency (st-tgd) is a first-order sentence of the form:

∀x̄ (ϕ(x̄) → ∃ȳ ψ(x̄, ȳ)),

where ϕ(x̄) is a conjunction of relational atoms over S and ψ(x̄, ȳ) is a conjunction of
relational atoms over T. We assume a safety condition, that every member of x̄ actually
appears in a relational atom in ϕ(x̄). A target equality-generating dependency (t-egd) is a
first-order sentence of the form:

∀x̄ (ϕ(x̄) → u = v),

where ϕ(x̄) is a conjunction of relational atoms over T and u, v are among the variables
mentioned in x̄. We again assume the same safety condition. In several of the examples
we give in this paper, we shall make use of special t-egds called key dependencies, which
say that one attribute of a binary relation is a key for that relation (of course, we could
define more general key dependencies if we wanted). The key dependencies we consider are
either of the form R(x, y)∧R(x, z) → y = z (which says that the first attribute is a key) or
S(y, x) ∧ S(z, x) → y = z (which says that the second attribute is a key). Finally, a target
tuple-generating dependency (t-tgd) is a first-order sentence of the form:

∀x̄ (ϕ(x̄) → ∃ȳ ψ(x̄, ȳ)),

where both ϕ(x̄) and ψ(x̄, ȳ) are conjunctions of relational atoms over T, and where we
again assume the same safety condition.

The notion of satisfaction of a t-egd α by a target instance J , denoted by J |= α, is
defined as the standard notion of satisfaction in first-order logic, and likewise for t-tgds.
For the case of an st-tgd α, a source instance I and a target instance J , the pair (I, J) is
said to satisfy α, denoted by (I, J) |= α, if the following instance K of S ∪T satisfies α in
the standard first-order logic sense. For every relation symbol S ∈ S, relation SK is defined
as SI , and for every relation symbol T ∈ T, relation TK is defined as T J . As usual, a set
Σst of st-tgds is said to be satisfied by a pair (I, J), denoted by (I, J) |= Σst, if (I, J) |= α

for every α ∈ Σst (and likewise for a set of t-egds and t-tgds).

2.2. Schema mappings. In general, a schema mapping from a source schema S to a target
schema T is a set of pairs (I, J), where I is an instance of S and J is an instance of T. In
this paper, we restrict our attention to some classes of schema mappings that are specified
in some logical formalisms. We may sometimes refer to two schema mappings with the
same set of (I, J) pairs as equivalent, to capture the idea that the formulas that specify
them are logically equivalent. A schema mapping M from S to T is said to be an st-tgd
mapping if there exists a finite set Σst of st-tgds such that (I, J) belongs to M if and only
if (I, J) |= Σst, for every pair I, J of instances of S and T, respectively. We use notation
M = (S,T,Σst) to indicate that M is specified by Σst. Moreover, a schema mapping M
from S to T is said to be a standard schema mapping if there exists a finite set Σst of st-tgds
and a finite set Σt consisting of a set of t-egds and a weakly acyclic set of t-tgds, such that
(I, J) belongs to M if and only if (I, J) |= Σst and J |= Σt, for every pair I, J of instances
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of S and T, respectively; notation M = (S,T,Σst,Σt) is used in this case to indicate that
M is specified by Σst and Σt. We occasionally allow a finite set Σs of source constraints in
some of our schema mappings: we then use the notation M = (S,T,Σs,Σst,Σt).

To define the widely used notion of weak acyclicity, we need to introduce some termi-
nology. For a set Γ of t-tgds over T, define the dependency graph GΓ of Γ as follows.

• For every relation name T in T of arity n, and for every i ∈ {1, . . . , n}, include a node
(T, i) in GΓ.

• Include an edge (T1, i) → (T2, j) in GΓ if there exist a t-tgd ∀x̄(ϕ(x̄) → ∃ȳ ψ(x̄, ȳ)) in Γ
and a variable x in x̄ such that, x occurs in the i-th attribute of T1 in a conjunct of ϕ
and in the j-th attribute of T2 in a conjunct of ψ.

• Include a special edge (T1, i) →
∗ (T2, j) in GΓ if there exist a t-tgd ∀x̄(ϕ(x̄) → ∃ȳ ψ(x̄, ȳ))

in Γ and variables x, y in x̄ and ȳ, respectively, such that x occurs in the i-th attribute
of T1 in a conjunct of ϕ and y occurs in the j-th attribute of T2 in a conjunct of ψ.

Then set Γ of t-tgds is said to be weakly acyclic if its dependency graph GΓ has no cycle
through a special edge [22].

Given a schema mapping M, if a pair (I, J) belongs to it, then J is said to be a solution
for I with respect to M. A universal solution [22] for I is a solution with a homomorphism
to every solution for I. A homomorphism from instance J1 to instance J2 is a function h
from C∪N to C∪N such that (1) for each c in C, we have that h(c) = c, and (2) whenever
R(a1, . . . , an) is a fact of J1, then R(h(a1), . . . , h(an)) is a fact of J2.

2.3. Second-order dependencies. In this paper, we also consider schema mappings that
are specified by second-order dependencies. In the definition of these dependencies, the
following terminology is used. Given a collection x̄ of variables and a collection f̄ of function
symbols, a term (based on x̄ and f̄) with depth of nesting d is defined recursively as follows:

(1) Every member of x̄ and every 0-ary function symbol (constant symbol) of f̄ is a term
with depth of nesting 0.

(2) If f is a k-ary function symbol in f̄ with k ≥ 1, and if t1, . . . , tk are terms, with maximum
depth of nesting d− 1, then f(t1, . . . , tk) is a term with depth of nesting d.

Definition 2.1. ([23]) Given a source schema S and a target schema T, a second-order
source-to-target tuple-generating dependency or SO tgd (from S to T) is a second-order
formula of the form

∃f̄ (∀x̄1(ϕ1 → ψ1) ∧ · · · ∧ ∀x̄n(ϕn → ψn)),

where

(1) Each member of f̄ is a function symbol.

(2) Each ϕi is a conjunction of
• relational atomic formulas of the form S(y1, . . . , yk), where S is a k-ary relation symbol
of S and y1, . . ., yk are (not necessarily distinct) variables in x̄i, and

• equality atoms of the form t = t′, where t and t′ are terms based on x̄i and f̄ .

(3) Each ψi is a conjunction of relational atomic formulas of the form T (t1, . . . , tℓ), where
T is an ℓ-ary relation symbol of T and t1, . . . , tℓ are terms based on x̄i and f̄ .

(4) Each variable in x̄i appears in some relational atomic formula of ϕi. �
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The fourth condition is the safety condition for SO tgds. Note that it is “built into”
SO tgds that they are source-to-target. The depth of nesting of an SO tgd is the maximal
depth of nesting of the terms that appear in it. We say that the SO tgd is unnested if its
depth of nesting is at most 1. Thus, an unnested SO tgd can contain terms like f(x), but
not terms like f(g(x)).

As was noted in [23, 42], there is a subtlety in the semantics of SO tgds, namely, the
semantics of existentially quantified function symbols. In particular, in deciding whether
(I, J) |= σ, for an SO tgd σ, what should the domain and range of the functions instantiating
the existentially quantified function symbols be? The obvious choice is to let the domain
and range be the active domain of (I, J), but it is shown in [23, 42] that this does not work
properly. Instead, the solution in [23, 42] is as follows. Let σ be an SO tgd from a source
schema S to a target schema T. Then given an instance I of S and an instance J of T,
instance (I, J) is converted into a structure (U ; I, J), which is just like (I, J) except that
it has a universe U . The domain and range of the functions in σ is then taken to be U .
The universe U is taken to be a countably infinite set that includes dom(I)∪ dom(J). The
intuition is that the universe contains the active domain along with an infinite set of nulls.
Then (I, J) is said to satisfy σ, denoted by (I, J) |= σ, if (U ; I, J) |= σ under the standard
notion of satisfaction in second-order logic (see, for example, [18]). It should be noticed
that it is proven in [23] that in the case of SO tgds, instead of taking the universe U to be
infinite, one can take it to be finite and “sufficiently large”, whereas in [42] this is shown to
be insufficient in the presence of unrestricted target constraints.

The class of SO tgds was introduced in [23] to deal with the problem of composing
schema mappings. More specifically, given a schema mapping M12 from a schema S1 to
a schema S2 and a schema mapping M23 from S2 to a schema S3, the composition of
these two schemas, denoted by M12 ◦M23, is defined as the schema mapping consisting of
all pairs (I1, I3) of instances for which there exists an instance I2 of S2 such that (I1, I2)
belong to M12 and (I2, I3) belong to M23. It was shown in [23] that the composition of
an arbitrary number of st-tgd mappings is specified by an SO tgd, that SO tgds are closed
under composition, and that every SO tgd specifies the composition of a finite number of
st-tgd mappings.

3. A Negative Result: SO tgds are not Enough

As pointed out in the previous section, SO tgds were introduced in [23] to deal with the
problem of composing schema mappings. Thus, SO tgds are a natural starting point for the
study of languages for defining the composition of schema mappings with target constraints,
which is the goal of this paper. Unfortunately, it can be easily proved that this language
is not rich enough to be able to specify the composition of some simple schema mappings
with target constraints. We now give an example.

Example 3.1. Let M12 = (S1,S2,Σ12,Σ2) and M23 = (S2,S3,Σ23), where S1 = {P (·, ·)},
S2 = {R(·, ·)}, S3 = {T (·, ·)} and

Σ12 = {P (x, y) → R(x, y)},

Σ2 = {R(x, y) ∧R(x, z) → y = z},

Σ23 = {R(x, y) → T (x, y)}.

Notice that Σ2 consists of a key dependency over S2.
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Let M13 = M12 ◦ M23. We now show that M13 cannot be specified by an SO tgd
σ. Assume that it were; we shall derive a contradiction. If I1 is an arbitrary instance of
S1, then there is I3 such that (I1, I3) ∈ M13 (for example, we could take I3 to be the
result of chasing I1 with σ as in [23]). However, let I1 be the instance of S1 such that
P I1 = {(1, 2), (1, 3)}. Then there is no instance I3 of S3 such that (I1, I3) ∈ M12 ◦ M23,
since I1 does not have any solutions with respect to M12. �

From the previous example, we obtain the following proposition.

Proposition 3.1. There exist schema mappings M12 = (S1,S2,Σ12,Σ2) and M23 =
(S2,S3,Σ23), where Σ12 and Σ23 are sets of st-tgds and Σ2 is a set of key dependencies,
such that M12 ◦M23 cannot be specified by an SO tgd.

Proposition 3.1 does not rule out the possibility that the composition of M12 and M23

can be specified by using an SO tgd together with some source and target constraints. In
fact, ifM12 andM23 are as in Example 3.1, then the compositionM12◦M23 can be specified
by a set of st-tgds together with some source constraints: specifically, M12 ◦M23 = M13,
where M13 = (S1,S3,Σ1,Σ13) and

Σ1 = {P (x, y) ∧ P (x, z) → y = z},

Σ13 = {P (x, y) → T (x, y)}.

A natural question is then whether the language of SO tgds together with source and target
constraints is the right language for defining the composition of schema mappings with
source and target constraints. Unfortunately, the following theorem shows that this is not
the case.

Theorem 3.2. There exist schema mappings M12 = (S1,S2,Σ12,Σ2) and M23 = (S2,S3,
Σ23), where Σ12 and Σ23 are sets of st-tgds and Σ2 is a set of key dependencies, such that
M12 ◦ M23 cannot be specified by any schema mapping of the form (S1,S3, σ1, σ13, σ3),
where σ1 is an arbitrary source constraint, σ13 is an SO tgd, and σ3 is an arbitrary target
constraint.

If we view a source constraint as a set of allowed source instances, then when we say
that σ1 is an “arbitrary source constraint” in Theorem 3.2, we mean that σ1 allows an
arbitrary set of source instances. A similar comment applies to σ3 being an “arbitrary
target constraint”.

To prove this theorem, we use a notion of locality from [5]. Notions of locality [24, 27,
32, 37] have been widely used to prove inexpressibility results for first-order logic (FO) and
some of its extensions. The intuition underlying those notions of locality is that FO cannot
express properties (such as connectivity, cyclicity, etc.) that involve nontrivial recursive
computations. The setting of locality is as follows. The Gaifman graph G(I) of an instance
I of a schema S is the graph whose nodes are the elements of dom(I), and such that there
exists an edge between a and b in G(I) if and only if a and b belong to the same tuple of a
relation RI , for some R ∈ S. For example, if I is an undirected graph, then G(I) is I itself.
The distance between two elements a and b in I is considered to be the distance between
them in G(I). Given a ∈ dom(I), the instance N I

d (a), called the d-neighborhood of a in I, is
defined as the restriction of I to the elements at distance at most d from a, with a treated
as a distinguished element (a constant in the vocabulary).
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The notion of neighborhood of a point is used in [5] to introduce a notion of locality
for data transformations. Before we give this definition, we give the standard recursive
definition of the quantifier rank qr(φ) of an FO-formula φ.

• If ϕ is quantifier-free, then qr(ϕ) = 0.

• qr(¬ϕ) = qr(ϕ)

• qr(ϕ1 ∧ ϕ2) = max{qr(ϕ1), qr(ϕ2)}
• qr(∀xϕ) = 1 + qr(ϕ)

Following [5], we write N I
d (a) ≡k N

I
d (b) to mean that N I

d (a) and N I
d (b) agree on all FO-

sentences of quantifier rank at most k; that is, for every FO-sentence ϕ of quantifier rank
at most k, we have that N I

d (a) |= ϕ if and only if N I
d (b) |= ϕ.

Definition 3.3. ([5]) Given a source schema S and a target schema T, a mapping F : S →
T is locally consistent under FO-equivalence if for every r, ℓ ≥ 0 there exist d, k ≥ 0 such
that, for every instance I of S and a, b ∈ dom(I), if N I

d (a) ≡k N
I
d (b), then

(1) a ∈ dom(F(I)) if and only if b ∈ dom(F(I)), and

(2) N
F(I)
r (a) ≡ℓ N

F(I)
r (b). �

For a fixed schema mapping (S,T,Σst), we denote by Funiv the transformation from
S to T, such that Funiv(I) is the canonical universal solution for I, which is obtained by
doing a naive chase of I with Σst.

Proposition 3.4 ([5]). For every st-tgd mapping, the transformation Funiv is locally con-
sistent under FO-equivalence.

The previous proposition can be easily extended to the case of a composition of a finite
number of st-tgd mappings.

Lemma 3.5. Let n ≥ 2. For every i ∈ [1, n − 1], let Mi = (Si,Si+1,Σi i+1) be a schema
mapping specified by a set Σi i+1 of st-tgds, and Fi

univ be the canonical universal solution
transformation for Mi. Assume that F is the transformation from S1 to Sn defined as:

F(I1) = F
n−1
univ(· · · (F

2
univ(F

1
univ(I1))) · · · ),

for every instance I1 of S1. Then F is locally consistent under FO-equivalence.

Lemma 3.5 is one of the key components in the proof of Theorem 3.2. We shall also
utilize the next proposition (Proposition 3.6) in the proof of Theorem 3.2. Proposition 3.6
in a generalization of Proposition 7.2 of [19], which says that for the composition of two
st-tgd mappings, the “chase of the chase” is a universal solution.

Proposition 3.6. Let M1, . . . ,Mk be schema mappings, each specified by st-tgds, target
egds, and target tgds. Let M = M1 ◦ · · · ◦Mk, and let I be a source instance for M1. Let
U be a result (if it exists) of chasing I with M1, then chasing the result with M2, ..., and
then chasing the result with Mk. Then U is a universal solution for I with respect to M.

Proof. We use a simple trick from the proof of Proposition 7.2 in [19]. Define M′ to be
a schema mapping whose st-tgds consist of the st-tgds of M1, whose target egds consist
of the union of the target egds of M1, . . . ,Mk, and whose target tgds consist of all of the
st-tgds of M2, . . . ,Mk, along with all of the target tgds of M1, . . . ,Mk. If I be a source
instance for M1, and J is a target instance for Mk, then it is easy to see that J is a solution
for I with respect to M if and only if J is a solution for I with respect to M′. Hence, M
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and M′ are the same schema mapping semantically, in that they consist of the same set of
(I, J) pairs. If I and U are as in the statement of the proposition, then it is easy to see
that U is a result of a chase of I with M′. So from Theorem 3.3 of [22], we have that U is a
universal solution of I with respect to M′. Since M and M′ are the same schema mapping
semantically, it follows that U is a universal solution of I with respect to M.

We need to say “if it exists” in the statement of Proposition 3.6, since there are two
reasons that a result of the chase may not exist. First, a target egd may try to equate
two constants during a chase. Second, target tgds might force an “infinite chase”. These
problems do not arise for the composition of two st-tgd mappings, the case considered in
Proposition 7.2 of [19].

Proof of Theorem 3.2. Let M12 = (S1,S2,Σ12,Σ2) and M23 = (S2,S3,Σ23) be schema
mappings, where:

S1 = {E(·, ·), P1(·), Q1(·)},

S2 = {P2(·), Q2(·), R(·, ·), S(·, ·)},

S3 = {V (·)},

and

Σ12 = {P1(x) → P2(x),

Q1(x) → Q2(x),

E(x, y) → ∃z1∃z2∃z3 (R(x, z1) ∧R(y, z2) ∧ S(z1, z3) ∧ S(z2, z3))},

Σ2 = {R(x, y) ∧R(x, z) → y = z,

S(x, y) ∧ S(x, z) → y = z,

S(y, x) ∧ S(z, x) → y = z},

Σ23 = {P2(x) ∧R(x, z) ∧R(y, z) ∧Q2(y) → V (x)}.

First, we show that M12 ◦ M23 cannot be specified by an SO tgd. For the sake of
contradiction, assume that σ13 is an SO tgd from S1 to S3 and that schema mapping
M13 = (S1,S3, σ13) is the composition of M12 and M23, that is, (I1, I3) ∈ M12 ◦M23 if
and only if (I1, I3) |= σ13.

From Theorem 8.2 in [23], we know that every SO tgd specifies the composition of a finite
number of st-tgd mappings. Thus, given that M13 is the composition of M12 and M23, we
have that there exist schema mappings M′

1 = (S′
1,S

′
2,Σ

′
12), . . ., M

′
n−1 = (S′

n−1,S
′
n,Σ

′
n−1n)

such that n ≥ 2, S′
1 = S1, S

′
n = S3, Σ

′
i i+1 is a set of st-tgds for every i ∈ {1, . . . , n − 1},

and M′
1 ◦ . . . ◦ M′

n−1 equals the composition of M12 and M23, that is, for every pair
(I1, I3) ∈ Inst(S1)× Inst(S3):

(I1, I3) ∈ M12 ◦M23 ⇔ (I1, I3) ∈ M′
1 ◦ . . . ◦M

′
n−1.

For every i ∈ {1, . . . , n− 1}, let Fi
univ be the canonical solution transformation for M′

i, and
assume that F : Inst(S1) → Inst(S3) is the transformation defined as

F(I1) = Fn−1
univ(· · · (F

2
univ(F

1
univ(I1))) · · · ),

for every instance I1 of S1. From Lemma 3.5, we have that F is locally consistent under
FO-equivalence. Thus, for r = 1 and ℓ = 1, there exist d, k ≥ 0 such that for every instance
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I1 of S1 and for every a, b ∈ dom(I1), if N
I1
d (a) ≡k N

I1
d (b) then (1) a ∈ dom(F(I1)) if and

only if b ∈ dom(F(I1)), and (2) N
F(I1)
r (a) ≡ℓ N

F(I1)
r (b).

Define an instance I1 of S1 with domain {a, a1, . . . , ad, b, b1, . . . , bd, c} as follows: P I1
1 =

{a, b}, QI1
1 = {c}, and EI1 contains the tuples represented by the following figure:

.  .  .

.  .  .b1

E E E E

E E E

a a1 ad c

bdb

Thus, EI1 = {(a, a1), (a1, a2), . . . , (ad−1, ad), (b, b1), (b1, b2), . . . , bd−1, bd)}. As shown in the
figure, EI1 is a union of two paths, one containing d+ 2 elements with first element a and
last element c, and another one containing d+1 elements with first element b. Observe that
N I1

d (a) ≡k N
I1
d (b) sinceN I1

d (a) is isomorphic to N I1
d (b), with a and b treated as distinguished

elements.
Let I3 be the instance of S3 that contains only the tuple a in V (that is, V I3 = {a}).

Next we show that I3 is a universal solution for I1 with respect to M12 ◦M23. A universal
solution for I1 in M12 ◦M23 can be constructed by first chasing with the set Σ12 of st-tgds:

.  .  .

.  .  .

.  .  .

.  .  .

•

a1P2(a)

RR R

S S

R

a2 ad Q2(c)

R R

S S

R R

ad−1

b1P2(b)

RR

b2 bd−1

S S

bd

RRR R

SS

S SS

S S

S

• • • • • • • •

• • • •

• • • • • •

• •

(where each element in the figure that is not in dom(I1) is a fresh null value, which is
represented by a symbol • in the figure), then chasing with the set Σ2 of t-egds:

.  .  .

.  .  .

•

a1

S

a2 adad−1 Q2(c)

RRR R

R R

P2(a)

S

b1P2(b) b2 bd−1 bd

RR
RRR

•

•

•
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and finally chasing with the set Σ23 of st-tgds. The result of this last step is I3, since
after chasing with Σ12 and Σ2, we have that P2 contains elements a and b, Q2 contains
element c, and a, c is the only pair of elements for which there exists an element z such
that P2(a)∧R(a, z) ∧R(c, z) ∧Q2(c) holds. We conclude that I3 is a universal solution for
I1.

By Proposition 3.6, we know that F(I1) is a universal solution for I1 with respect to
M′

1 ◦ · · · ◦ M′
n−1. Hence, F(I1) is a universal solution for I1 with respect to M12 ◦ M23.

Again by Proposition 3.6, we know that I3 is also a universal solution for I1 with respect
to M12 ◦ M23. Therefore, since V I3 = {a}, we conclude that a ∈ V F(I1) and b 6∈ V F(I1).
Hence, we have that a ∈ dom(F(I1)) and b 6∈ dom(F(I1)), which contradicts the fact that F

is locally consistent under FO-equivalence and N I1
d (a) ≡k N

I1
d (b). This concludes the proof

that M12 ◦M23 cannot be specified by an SO tgd.
To conclude the proof of the theorem, we need to show that M12 ◦ M23 cannot be

specified by an SO tgd together with some arbitrary source and target constraints. For
the sake of contradiction, assume that schema mapping M13 = (S1,S3, γ1, γ13, γ3) equals
the composition of M12 and M23, where γ1 is an arbitrary source constraint, γ13 is an SO
tgd and γ3 is an arbitrary target constraint. Given that M12 ◦ M23 cannot be specified
by an SO tgd, we have that either γ1 is not trivial or γ3 is not trivial, where an arbitrary
constraint is said to be trivial if it allows all the possible instances. First assume that γ1 is
not trivial, and let I1 be an instance of S1 such that I1 does not satisfy γ1 (I1 is not allowed
by γ1). Let ⊥ be a fresh null value and I2 an instance of S2 defined as:

P I2
2 = P I1

1 ,

QI2
2 = QI1

1 ,

RI2 = {(a,⊥) | there exists b ∈ dom(I1) such that (a, b) ∈ EI1 or (b, a) ∈ EI1},

SI2 = {(⊥,⊥)}.

Furthermore, let I3 be an instance of S3 defined as V I3 = P I2
2 . It is easy to see that

(I1, I2) |= Σ12, I2 |= Σ2 and (I2, I3) |= Σ23, which implies that (I1, I3) ∈ M12 ◦M23. Thus,
given that M13 is the composition of M12 and M23, we have that (I1, I3) ∈ M13. We
conclude that I1 satisfies γ1, which contradicts our initial assumption.

Now suppose that γ3 is not trivial, and let I3 be an instance of S3 such that I3 does not
satisfy γ3. Assume that I1, I2 are the empty instances of S1 and S2, respectively. It is easy to
see that (I1, I2) |= Σ12, I2 |= Σ2 and (I2, I3) |= Σ23, which implies that (I1, I3) ∈ M12◦M23.
Thus, given that M13 is the composition of M12 and M23, we have that (I1, I3) ∈ M13,
and hence I3 satisfies γ3, which contradicts our initial assumption. This concludes the proof
of the theorem.

4. Source-to-target SO Dependencies

In Section 3, we showed that SO tgds, even with the assistance of arbitrary source con-
straints and arbitrary target constraints, cannot always be used to specify the composition
of mappings with target constraints, even if only key dependencies are allowed as target
constraints of the mappings being composed. In this paper, we define a richer class, called
source-to-target SO dependencies (st-SO dependencies). This class of dependencies is the
source-to-target restriction of the class Sk∀CQ= of dependencies introduced in [42]. We
show that st-SO dependencies (together with appropriate target constraints) are the right
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extension of SO tgds for the purpose of expressing the composition of standard schema
mappings. The definition of st-SO dependencies is exactly like the definition of SO tgds in
Definition 2.1, except that condition 3 is changed to:

(3) Each ψi is a conjunction of
• relational atomic formulas of the form T (t1, . . . , tℓ), where T is an ℓ-ary relation
symbol of T and t1, . . . , tℓ are terms based on x̄i and f̄ , and

• equality atoms of the form t = t′, where t and t′ are terms based on x̄i and f̄ .

It is sometimes convenient to rewrite an st-SO dependency ∃f̄ (∀x̄1(ϕ1 → ψ1) ∧ · · · ∧
∀x̄n(ϕn → ψn)) so that each conclusion ψi is either a conjunction of relational atomic
formulas or a single equality of terms (this is possible because we can recursively replace
∀x̄i(ϕi → (ψ1

i ∧ ψ
2
i )) by ∀x̄i(ϕi → ψ1

i ) ∧ ∀x̄i(ϕi → ψ2
i ) without changing the meaning). Let

Φ be the result of such a rewriting. If ψi is a conjunction of relational atomic formulas,
then we refer to ∀x̄i(ϕi → ψi) as an SO tgd part of Φ, and if ψi is an equality t = t′, then
we refer to ∀x̄i(ϕi → ψi) as an SO egd part of Φ.

We adopt the same convention for the semantics of st-SO dependencies as was given
in Section 2 for SO tgds, by assuming the existence of a countably infinite universe that
includes the active domain. As with SO tgds, it can be shown that the universe can be
taken to be finite but “sufficiently large”.

We shall show that the composition of a finite number of standard schema mappings
can be specified by an st-SO dependency, together with t-egds and a weakly acyclic set of t-
tgds. It is convenient to give these second-order schema mappings a name. To emphasize the
similarity of these second-order schema mappings with the first-order case, we shall refer
to these second-order schema mappings as SO-standard. Thus, an SO-standard schema
mapping is one that is specified by an st-SO dependency, together with t-egds and a weakly
acyclic set of t-tgds.

Note that st-SO dependencies, like SO tgds, are closed under conjunction. That is, the
conjunction of two st-SO dependencies is equivalent to a single st-SO dependency. This is
why we define an SO-standard schema mapping to have only one st-SO dependency, not
several. Note also that every finite set of st-tgds can be expressed with an SO tgd, and so
with an st-SO dependency. In particular, every standard schema mapping is an SO-standard
schema mapping.

5. The Chase for st-SO Dependencies

In [23], the well-known chase process is extended so that it applies to an SO tgd Φ. If
we define an SO tgd part of an SO tgd as we did for st-SO dependencies, then the idea
of the chase with SO tgds is that each SO tgd part of Φ is treated like a tgd (of course,
the conclusion contains Skolem functions rather than existential quantifiers). In deciding
whether the premise of the SO tgd part is instantiated in the instance being chased, two
terms are treated as equal precisely if they are syntactically identical. So a premise con-
taining the equality atom f(x) = g(y) automatically fails to hold over an instance, and a
premise containing the equality atom f(g(x)) = f(g(y)) automatically fails to hold over an
instance unless the instantiation of x equals the instantiation of y.

In this section, we discuss how the chase can be extended to apply to an st-SO depen-
dency. We note that in [42], a chase procedure for the dependencies studied there (which
are like ours but not necessarily source-to-target) was introduced. However, their chase was
not procedural, in that their chase procedure says to set terms t1 and t2 to be equal when
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the dependencies logically imply that t1 = t2. Because of our source-to-target restriction,
we are able to give an explicit, polynomial-time procedure for equating terms.

For clarity, we keep the discussion here informal; it is not hard to convert this into a
formal version. In chasing an instance I with an st-SO dependency Φ, we chase first with
all of the SO egd parts of Φ, and then we chase with all of the SO tgd parts of Φ. We no
longer consider two terms to be equal precisely if they are syntactically identical, since an
SO egd part may force, say, f(0) and g(1) to be equal, even though f(0) and g(1) are not
syntactically identical.

Given a source instance I and an st-SO dependency Φ, we now describe how to chase
I with the SO egd parts of Φ. Let D be the active domain of I (by our assumptions, D
consists of constants only). Let n be the maximal depth of nesting over all terms that
appear in Φ. Let f̄ consist of the function symbols that appear in Φ. Let T be the set of
terms based on D and f̄ that have depth of nesting at most n. This set T is sometimes
called the Herbrand universe (with respect to D and f̄) of depth n. It is straightforward
to see (by induction on depth) that the size of T is polynomial in the size of D, for a fixed
choice of Φ. We note that if we define T ′ to be the subset of T that consists of all terms
t(ā), where t(x̄) is a subterm of Φ, and ā is the result of replacing members of x̄ by values
in D, then we could work just as well with T ′ as with T in defining the chase. However,
the proofs are easier to give using T instead of T ′.

We now define a function F with domain the members of T . The values F (t) are stored
in a table that is updated repeatedly during the chase process. If a is a member of D, then
the initial value of F (a) is a itself (in fact, the value of F (a) will never change for members
a of D). If t is a member of T that is not in D (so that t is of the form f(t1, . . . , tk) for some
function symbol f), then F (t) is initially taken to be a new null value. As we change F , we
shall maintain the invariant that if f(t1, . . . , tk) and f(t

′
1, . . . , t

′
k) are members of T where

F (ti) = F (t′i), for 1 ≤ i ≤ k, then F (f(t1, . . . , tk)) = F (f(t′1, . . . , t
′
k)). This is certainly true

initially, since F is initially one-to-one on members of T .
Let N be the set of all of the new null values (the values initially assigned to F (t) when

t is not in D). We create an ordering ≺ on D ∪N , where the members of D are an initial
segment of the ordering ≺, followed by the members of N .

We now begin chasing I with the SO egd parts of Φ, to change the values of F . Whenever
t is a member of T such that we replace a current value of F (t) by a new value during the
chase process, we will always replace the current value of F (t) by a value that is lower in
the ordering ≺. If s1(ȳ1) = s2(ȳ2) is an equality in the premise of an SO egd part of Φ, then
the equality s1(ē1) = s2(ē2) evaluates to “true” where ē1 and ē2 consist of members of D,
precisely if the current value of F (s1(ē1)) equals the current value of F (s2(ē2)). Each time
an equality t1(ā) = t2(b̄) is forced (because of an SO egd part with conclusion t1(x̄) = t2(ȳ)),
and the current value of F (t1(ā)) does not equal the current value of F (t2(b̄)) we proceed
as follows. Let c1 be the smaller of these two values and let c2 be the larger of these two
values in our ordering ≺. If c2 is a constant, then the chase fails and halts. Otherwise, for
every member s of T where the current value of F (s) is c2, change the value so that the
new value of F (s) is c1. Note that under this change, the new value of F (t1(ā)) and the
new value of F (t2(b̄)) are the same (namely, c1).

These changes in F may propagate new changes in F , which we need to make in order to
maintain the invariant. Assume that as a result of our changes in F so far, there are terms
f(t1, . . . , tk) and f(t

′
1, . . . , t

′
k) in T where F (ti) = F (t′i), for 1 ≤ i ≤ k, but F (f(t1, . . . , tk))

and F (f(t′1, . . . , t
′
k)) are different. As before, let c1 be the smaller of these two values and
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let c2 be the larger of these two values in our ordering ≺. If c2 is a constant, then the chase
fails and halts. Otherwise, for every member s of T where the current value of F (s) is c2,
change the value so that the new value of F (s) is c1. Note that under this change, the new
value of F (f(t1, . . . , tk)) and the new value of F (f(t′1, . . . , t

′
k)) are the same (namely, c1).

Continue this process until no more changes occur. It is easy to see that we have maintained
our invariant. Continue chasing with SO egd parts until no more changes occur. Note that
at most as many changes can occur as the size of T , since every time a change occurs, there
are strictly fewer values of F (t) as t ranges over T . This is the key reason why the chase
runs in polynomial time.

Once F has stabilized, so that no more changes are caused by chasing with the SO egd
parts of Φ, then chase I with the SO tgd parts of Φ. If s1(ȳ1) = s2(ȳ2) is an equality in
the premise of an SO tgd part of Φ, then the equality s1(ē1) = s2(ē2) evaluates to “true”
where ē1 and ē2 consist of members of I, precisely if F (s1(ē1)) = F (s2(ē2)). These chase
steps produce the target relation J that is taken to be the result of the chase (and we say
that the chase succeeds).

We have the following theorem about the chase process.

Theorem 5.1. Let Φ be a fixed st-SO dependency. The chase of a ground instance I with
Φ runs in time polynomial in the size of I. The chase fails precisely if there is no solution
for I with respect to Φ. If the chase succeeds, then it produces a universal solution for I
with respect to Φ.

Proof. We first show that the chase of a ground instance I with Φ runs in time polynomial
in the size of I (when Φ is held fixed). It is straightforward to show by induction on depth
that the size of T is polynomial in the size of D. As we noted, during the chase with the
SO egd parts, there are at most as many changes in the current value of F as the size of
T . So only polynomially many changes occur in the values of F . For each such change,
there is only a polynomial amount of work: the time needed to chase each SO egd part
and update F if needed along with the time to check the invariant and update F if needed.
Finally, since the SO tgd parts are source-to-target, it follows easily that the final portion
of the chase, that is, chasing with the SO tgd parts, can also be done in polynomial time.
Therefore, the entire chase can be carried out in polynomial time.

Assume for now that there is J such that (I, J) |= Φ. If the existentially quantified
function symbols of Φ are given by f̄ , then let f̄0 denote the instantiation of f̄ that shows
that (I, J) |= Φ. For each member t of T , let t0 be the value obtained by replacing the
function symbols f̄ by f̄0. By induction on the steps in the chase process, we can show
that at all points during the chase process, if the current value of F (t1) equals the current
value of F (t2), then necessarily t01 = t02. Thus, whenever we set two values F (t1) and F (t2)
equal during the process of chasing with the SO egd parts, we are forced to do so. This is
clear when two values are made equal because of the conclusion of an SO egd part. It is
also true when two values are made equal because of maintaining the invariant, because the
invariant is needed for the functions in f̄0 to be well-defined. For example, assume that f0

and g0 are unary functions in f̄0. If f0(a) = b, then necessarily g0(f0(a)) = g0(b), and this
is reflected by the requirement of the invariant that F (g(f(a)) = F (g(b)). Since the only
time we make two values equal in the table for F is when we are forced to, it follows that
if the chase process fails for I (because we try to set two constants to be equal), then there
is no solution for I with respect to Φ. We now consider the other case, where the chase
succeeds for I.
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Assume that the chase succeeds for I. Let n be the maximal depth of nesting of
function symbols in Φ. Use (the final values of) the table for F to define our functions f̄0

on the Herbrand universe of depth n− 1. For example, if a is in the active domain D, and
F (f(a)) = c, then let f0(a) = c. Similarly, if a and b are in D, and F (h(g(a), b)) = d, then
let h0(g0(a), b) = d. The invariant insures that the functions in f̄0 are well-defined on the
Herbrand universe of depth n− 1 (and the table then gives us the values of all members of
the Herbrand universe of depth n). Our semantics requires the functions in f̄0 to be defined
not just on the Herbrand universe of depth n− 1, but on the entire universe. If f is a k-ary
function symbol in f̄ , and if c1, . . . , ck are values such that f0(c1, . . . , ck) is not already
determined by the rules we have given, then let f0(c1, . . . , ck) be arbitrary. The key point
is that Φ refers only to terms in the Herbrand universe of depth n, so what happens outside
of the Herbrand universe of depth n is irrelevant, as far as satisfaction of Φ is concerned.
The chase with the SO egd parts force equalities among the values of the functions so that
I (together with the choice of the functions) satisfies the SO egd parts of Φ. If J is the
result of the chase, then the chase with the SO tgd parts force (I, J) to satisfy the SO tgd
parts of Φ. Hence, J is a solution for I with respect to Φ, as desired.

It is also clear that if J ′ is an arbitrary solution for I with respect to Φ, then up to a
replacement (not necessarily one-to-one) of nulls in J by other values (nulls or constants),
every tuple of every relation that appears in J must appear in the corresponding relation
of J ′ (since tuples are produced in the chase only if needed, and equalities are forced in the
chase only if needed). But this means that there is a homomorphism from J into J ′, so J
is a universal solution, as desired.

Because there is a polynomial-time chase for st-SO dependencies, there is also a polyno-
mial-time chase for SO-standard schema mappings: first, chase with the st-SO dependency,
and then with the target dependencies. The reason that chasing with the target dependen-
cies requires only polynomial time is that the number of steps in this chase is polynomial,
because of the weak acyclicity assumption (Theorem 3.9 of [22]). We therefore can extend
Theorem 5.1 to apply to SO-standard schema mappings. We state this in the following
corollary.

Corollary 5.1. LetM be an SO-standard schema mapping. The chase of a ground instance
I with M runs in time polynomial in the size of I. The chase fails precisely if there is no
solution for I with respect to M. If the chase succeeds, then it produces a universal solution
for I with respect to M.

Note that in particular, Corollary 5.1 tells us that there is a polynomial-time algorithm for
determining, given a source instance I, whether there is a solution for I, and if so, producing
a universal solution for I.

As shown in [22], we can use a universal solution to obtain the certain answers to
unions of conjunctive queries in polynomial time. We now recall the definition of the
certain answers. Let M = (S,T, Σ) be a schema mapping, and let q be a k-ary query
posed against the target schema T. Denote by q(J) the result of evaluating q on a target
instance J . If I is a source instance, then the certain answers of q on I with respect to
M, denoted by certainM(q, I), are the k-tuples t such that, for every solution J of I with
respect to M, we have that t ∈ q(J). It should be noticed that if a source instance I
does not have any solution with respect to the mapping M, then certainM(q, I) = Dk

(recall that D is the countably infinite domain from which the entries of tuples are taken),
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as every k-tuple trivially satisfies the previous condition. In this case, we use the special
symbol ⊤ to indicate that every k-tuple belongs to certainM(q, I), that is, we say that
certainM(q, I) = ⊤. If U is a universal solution for I with respect to M, and q is a union
of conjunctive queries, then it is shown in [22] that certainM(q, I) equals q(U)↓, which is
the result of evaluating q on U and then keeping only those tuples formed entirely of values
from I (that is, tuples that do not contain nulls). The equality certainM(q, I) = q(U)↓
holds for arbitrarily specified schema mappings M (as long as such a universal solution U
exists). Corollary 5.1 therefore has the following corollary, which is analogous to the same
corollary in [23] for mappings specified by SO tgds.

Corollary 5.2. Let M be an SO-standard schema mapping. Let q be a union of conjunc-
tive queries over the target schema T. Then for every ground instance I over S, the set
certainM(q, I) can be computed in polynomial time (in the size of I).

Proof. Assume that the arity of query q is k, where k ≥ 0. Then the polynomial-time
algorithm to compute certainM(q, I) works as follows. It first checks (using the polynomial-
time algorithm of Corollary 5.1) whether I has a solution with respect to M. If not, then
certainM(q, I) = Dk, and the algorithm returns symbol ⊤ to indicate that every tuple with
k elements belongs to certainM(q, I). Otherwise I has at least one solution with respect to
M, and the algorithm computes a universal solution U for I as in Corollary 5.1, and then
it returns q(U)↓ (recall that, as discussed above, certainM(q, I) = q(U)↓).

6. A Positive Result: SO-Standard Schema Mappings are the Needed Class

In this section, we show that SO-standard schema mappings (those specified by an st-SO
dependency, along with target constraints consisting of t-egds and a weakly acyclic set of
t-tgds) exactly correspond to the composition of standard schema mappings.

6.1. Using SO-standard schema mappings to define compositions. Before we show
that the composition of an arbitrary number of standard schema mappings is equivalent to
an SO-standard schema mapping, we first show that target constraints are needed (that is,
st-SO dependencies by themselves are not enough). In fact, the next proposition says that
st-SO dependencies, without target constraints, are not capable of specifying even schema
mappings specified by st-tgds and a set of key dependencies.

Proposition 6.1. There exists a schema mapping M12 = (S1,S2,Σ12,Σ2), where Σ12 is a
set of st-tgds and Σ2 is a set of key dependencies, such that M12 cannot be specified by an
st-SO dependency.

As we shall see, we get an easy proof of Proposition 6.1 by using the following simple
proposition, which is analogous to the same result for st-tgds [19].

Proposition 6.2. Let σ12 be an st-SO dependency, let I be a source instance, and let J be
a target instance. If (I, J) |= σ12 and J ⊆ J ′, then (I, J ′) |= σ12.

Proof of Proposition 6.1. Let S1 = {S(·, ·)}, S2 = {T (·, ·)} and Σ12 = {S(x, y) → T (x, y)},
and assume that Σ2 consists of the single key dependency T (x, y) ∧ T (x, z) → y = z. By
way of contradiction, assume that M12 can be specified by an st-SO dependency σ12. Let
I = {S(1, 2)}, J = {T (1, 2)} and J ′ = {T (1, 2), T (1, 3)}. Given that (I, J) |= Σ12 ∪ Σ2,
and σ12 specifies M12, we have that (I, J) |= σ12. So by Proposition 6.2, we have that
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(I, J ′) |= σ12. Since σ12 specifies M12, we therefore have that (I, J ′) |= Σ12 ∪ Σ2. But this
is a contradiction, since J ′ 6|= Σ2.

Let M12 and M23 be standard schema mappings. The previous negative result implies that
st-SO dependencies by themselves cannot necessarily specify the composition M12 ◦M23.
Our next theorem, which we shall prove shortly, implies that M12 ◦M23 is equivalent to an
SO-standard schema mapping M13. In fact, it says that we can take the target constraints
of M13 to be the set Σ3 of target constraints of M23. Intuitively, this theorem tells us that
st-SO dependencies are expressive enough to capture the intermediate target constraints in
a composition.

Theorem 6.3. Let M12 = (S1,S2,Σ12,Σ2) and M23 = (S2,S3,Σ23,Σ3) be standard
schema mappings (so that Σ12, Σ23 are sets of st-tgds, and Σi (i = 2, 3) is the union of a
set of t-egds and a weakly acyclic set of t-tgds). Then there exists an st-SO dependency σ13
such that the mapping M13 = (S1,S3, σ13,Σ3) is equivalent to the composition M12 ◦M23.

In Section 6.2, we show that the composition of SO-standard schema mappings is also an
SO-standard schema mapping. By combining this result with Theorem 6.3 (and using the
simple fact, noted earlier, that every standard schema mapping is an SO-standard schema
mapping), we obtain our desired result, namely, that the composition of a finite number of
standard schema mappings is equivalent to an SO-standard schema mapping.

It is straightforward to show that Theorem 6.3 is a consequence of the following propo-
sition.

Proposition 6.4. Let M12 be a standard schema mapping, and let M23 be an st-tgd map-
ping (no target constraints). Then the composition M12 ◦M23 can be specified by an st-SO
dependency.

As pointed out in Section 4, the class of st-SO dependencies corresponds to the source-
to-target restriction of the class of Sk∀CQ= dependencies introduced in [42]. In fact, The-
orem 6.3 and Proposition 6.4 were essentially established in [42] (see Theorems 6 and 9
and the paragraph after Theorem 10 in [42]), but they are restated and clarified here for
the sake of completeness. We also show here how Proposition 6.4 is proved, which is a
straightforward adaptation of the proofs of Theorems 6 and 9 in [42], and the comments in
the paragraph after Theorem 10 to handle a weakly acyclic set of target tgds.

We now demonstrate, by example, how an st-SO dependency σ13 is obtained from M12

and M23 in Proposition 6.4 (it will be clear how to extend from the example to the general
case). Assume that S1 = {A(·, ·), B(·)}, S2 = {C(·, ·),D(·, ·)}, S3 = {E(·, ·)}. Furthermore,
suppose that Σ12 consists of the following st-tgds:

A(x, y) → C(x, y),

B(x) → ∃y C(x, y), (6.1)

Σ2 consists of the following t-tgds:

C(x, y) ∧ C(y, z) → C(z, x),

C(x, y) → ∃z D(x, z), (6.2)

C(x, x) → D(x, x),

D(x, y) → D(y, x),
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and Σ23 consists of the st-tgd:

D(x, y) → ∃z E(x, y, z). (6.3)

To obtain σ13, we first Skolemize each dependency in Σ12, Σ2 and Σ23 to obtain the sets
E(Σ12), E(Σ2) and E(Σ23) of dependencies, respectively. So we replace (6.1), (6.2) and (6.3)
by:

B(x) → C(x, f(x)),

C(x, y) → D(x, g(x, y)),

D(x, y) → E(x, y, h(x, y)),

respectively. Then for predicates C and D, we introduce functions fC , gC , fD and gD,
where fC , gC have the same arity as C, and where fD, gD have the same arity as D, and
we define σ13 as:

∃f∃g∃h∃fC∃gC∃fD∃gD Ψ,

where f , g and h are the Skolem functions introduced above and Ψ is a conjunction of a
set of dependencies defined as follows. As predicate C cannot be mentioned in Ψ, functions
fC and gC are used to replace it: the equality fC(ā) = gC(ā) is used to indicate that C(ā)
holds. Thus, the first two conjuncts of Ψ are generated from E(Σ12) by replacing C(x̄) by
fC(x̄) = gC(x̄):

A(x, y) → fC(x, y) = gC(x, y),

B(x) → fC(x, f(x)) = gC(x, f(x)). (6.4)

Similarly, functions fD and gD are used to replace predicate D, and the dependencies in
E(Σ2) are used to generate the following conjuncts of Ψ:

dom(x) ∧ dom(y) ∧ dom(z) ∧ fC(x, y) = gC(x, y) ∧ fC(y, z) = gC(y, z) → fC(z, x) = gC(z, x), (6.5)

dom(x) ∧ dom(y) ∧ fC(x, y) = gC(x, y) → fD(x, g(x, y)) = gD(x, g(x, y)), (6.6)

dom(x) ∧ fC(x, x) = gC(x, x) → fD(x, x) = gD(x, x), (6.7)

dom(x) ∧ dom(y) ∧ fD(x, y) = gD(x, y) → fD(y, x) = gD(y, x), (6.8)

where dom(·) is a formula that defines the domain of the instances of S1, that is, dom(x) is
∃y A(x, y) ∨ ∃z A(z, x) ∨ B(x). This predicate is included in the previous dependencies to
satisfy the safety condition of st-SO dependencies, namely, that every variable mentioned
in a term has to be mentioned in a source predicate. We then use the standard approach
for eliminating disjunctions in a premise (for example, ϕ1 ∨ϕ2 → ψ can be replaced by the
two formulas ϕ1 → ψ and ϕ2 → ψ).

Notice that if an equality fC(a, f(a)) = gC(a, f(a)) can be inferred by using de-
pendency (6.4), then we know that C(a, f(a)) holds. Thus, since D(a, g(a, f(a))) can
be obtained from C(a, f(a)) and the dependency C(x, y) → D(x, g(x, y)), it should be
possible to infer that fD(a, g(a, f(a))) = gD(a, g(a, f(a))) holds by using the fact that
fC(a, f(a)) = gC(a, f(a)) holds and the dependencies in Ψ. However, if dom(f(a)) does not
hold, then fC(a, f(a)) = gC(a, f(a)) does not satisfy the premise of dependency (6.6) and,
therefore, fD(a, g(a, f(a))) = gD(a, g(a, f(a))) cannot be inferred by using this dependency.
To overcome this limitation, we also instantiate the above four dependencies with the terms
that appear in the tuples that are generated by repeatedly applying the formulas in E(Σ2).
More precisely, it is possible to infer that only terms of the form x and f(y) need to be
considered for the case of predicate C and, thus, dependencies (6.5), (6.6) and (6.7) are
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instantiated with all the possible combinations of these types of terms. For example, the
following is one of the conjuncts of Ψ generated from formula (6.5):

dom(x) ∧ dom(y) ∧ dom(z) ∧

fC(f(x), y) = gC(f(x), y) ∧ fC(y, f(z)) = gC(y, f(z)) →

fC(f(z), f(x)) = gC(f(z), f(x)),

while the following dependency is one of the conjuncts of Ψ generated from formula (6.7):

dom(x) ∧ dom(y) ∧ fC(f(x), f(y)) = gC(f(x), f(y)) ∧

f(x) = f(y) → fD(f(x), f(y)) = gD(f(x), f(y)). (6.9)

Notice that in the previous dependency we have included the equality f(x) = f(y), as it
can be the case that f(a) = f(b) holds for distinct elements a and b. Similarly, it is possible
to infer that only terms of the form x, f(y), g(x, y), g(x, f(y)), g(f(x), y) and g(f(x), f(y))
need to be considered for the case of predicate D. Thus, dependency (6.8) is instantiated
with all the possible combinations of these types of terms. For example, the following is
one of the conjuncts of Ψ generated by this process:

dom(x) ∧ dom(y) ∧ dom(z) ∧ fD(f(x), g(f(y), z)) = gD(f(x), g(f(y), z)) →

fD(g(f(y), z), f(x)) = gD(g(f(y), z), f(x)).

Finally, the last conjuncts of Ψ are generated from dependency D(x, y) → E(x, y, h(x, y))
as above. For example, the following are two of these conjuncts:

dom(x) ∧ dom(y) ∧ fD(x, y) = gD(x, y) → E(x, y, h(x, y)),

dom(x) ∧ dom(y) ∧ dom(z) ∧ fD(f(x), g(f(y), f(z))) = gD(f(x), g(f(y), f(z))) →

E(f(x), g(f(y), f(z)), h(f(x), g(f(y), f(z)))).

It is important to notice that the weak acyclicity of Σ2 guarantees that the above process
terminates. That is, we need only consider terms up to a certain fixed depth of nesting. In
particular, in the above example, we need to consider only terms where the nesting depth
of functions is at most 2.

Example 6.1. We conclude this section by showing why weak acyclicity is necessary to
guarantee the termination of the above process. Assume that M12 = (S1,S2,Σ12,Σ2) and
M23 = (S2,S3,Σ23), where S1 = {A(·, ·)}, S2 = {B(·, ·)}, S3 = {C(·, ·)}, Σ12 consists of
the following st-tgd:

A(x, y) → B(x, y),

Σ2 consists of the following t-tgd:

B(x, y) → ∃z B(y, z), (6.10)

and Σ23 consists of the st-tgd:

B(x, y) → C(x, y).

Notice that M12 is not a standard schema mapping, as Σ2 is not weakly acyclic.
In order to obtain an st-SO dependency σ13 that specifies the composition of M12 and

M23, the above process first Skolemizes each dependency in Σ12, Σ2 and Σ23 to obtain the
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sets E(Σ12), E(Σ2) and E(Σ23) of dependencies, respectively. In particular, the t-tgd (6.10)
is replaced by the dependency:

B(x, y) → B(y, h(x, y)). (6.11)

Then binary functions fB and gB are introduced, and σ13 is defined as ∃h∃fB∃gB Ψ, where
Ψ is a conjunction of a set of dependencies defined as follows. The first conjunct of Ψ is
generated from E(Σ12) by replacing B(x, y) by fB(x, y) = gB(x, y):

A(x, y) → fB(x, y) = gB(x, y). (6.12)

Then functions fB and gB are used to eliminate predicate B from E(Σ2). In particular, the
following conjunct is included in Ψ:

dom(x) ∧ dom(y) ∧ fB(x, y) = gB(x, y) → fB(y, h(x, y)) = gB(y, h(x, y)), (6.13)

where dom(·) is a formula that defines the domain of the instances of S1, that is, dom(x) is
∃uA(x, u) ∨ ∃v A(v, x). As mentioned above, predicate dom(·) is included in the previous
dependency to satisfy the safety condition of st-SO dependencies.

It should be noticed if (a, b) is a tuple in A, one can infer that fB(a, b) = gB(a, b) holds
by considering dependency (6.12), and then one can infer that fB(b, h(a, b)) = gB(b, h(a, b))
holds by considering dependency (6.13). By definition of σ13, this implies that B(b, h(a, b))
holds, from which one concludes that B(h(a, b), h(b, h(a, b))) also holds (from dependency
(6.11)). Thus, in this case it should be possible to infer that

fB(h(a, b), h(b, h(a, b))) = gB(h(a, b), h(b, h(a, b))) (6.14)

holds from the dependencies in Ψ. However, if dom(h(a, b)) does not hold, then one cannot
infer equality (6.14) from dependency (6.13) and the fact that fB(b, h(a, b)) = gB(b, h(a, b))
holds. This forces one to instantiate dependency (6.13) with the terms that appear in
the tuples that are generated by repeatedly applying (6.11). In particular, the follow-
ing dependency is included as a conjunct of Ψ to be able to infer (6.14) from equality
fB(b, h(a, b)) = gB(b, h(a, b)):

dom(x) ∧ dom(y) ∧ fB(x, h(x, y)) = gB(x, h(x, y)) →

fB(h(x, y), h(x, h(x, y))) = gB(h(x, y), h(x, h(x, y))).

The previous dependencies are used to deal with the terms where the nesting depth of
functions is at most 2. But given that Σ2 is not weakly acyclic, one also needs to deal
with the terms where the nesting depth of functions is 3, which forces one to include the
following dependency as a conjunct of Ψ:

dom(x) ∧ dom(y) ∧ fB(h(x, y), h(x, h(x, y))) = gB(h(x, y), h(x, h(x, y))) →

fB(h(x, h(x, y)), h(h(x, y), h(x, h(x, y)))) = gB(h(x, h(x, y)), h(h(x, y), h(x, h(x, y)))).

It is not difficult to see that the process does not terminate in this case, as from the preceding
dependency one needs to generate a formula to deal with the terms where the nesting depth
of functions is 4, which in turn has to be used to generate a dependency to deal with nesting
depth 5, and so on. �
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6.2. Composability of SO-standard schema mappings. The next theorem implies
that the composition of SO-standard schema mappings is an SO-standard schema mapping.
This is the final step we need to show that the composition of a finite number of standard
schema mappings is given by an SO-standard schema mapping.

Theorem 6.5. For every pair M12 = (S1,S2, σ12,Σ2) and M23 = (S2,S3, σ23,Σ3) of
schema mappings, where σ12, σ23 are st-SO dependencies and Σi (i = 2, 3) is the union of a
set of t-egds and a weakly acyclic set of t-tgds, there exists an st-SO dependency σ13 such that
the schema mapping M13 = (S1,S3, σ13,Σ3) is equivalent to the composition M12 ◦M23.

Note that, just as in Theorem 6.3, the set Σ3 used in M23 is also used in M13. Theorem
6.5 was essentially established in [42] (see Theorems 6 and 9 and the paragraph after The-
orem 10 in [42]), since the class of st-SO dependencies corresponds to the source-to-target
restriction of the class of Sk∀CQ= dependencies introduced in [42].

As pointed out in Section 6.1, the previous result is fundamental to showing that SO-
standard schema mappings can define the composition of standard schema mappings, since
from the combination of this result with Theorem 6.3 (and using the simple fact that every
standard schema mapping is an SO-standard schema mapping), we obtain the following
theorem as a consequence.

Theorem 6.6. The composition of a finite number of standard schema mappings is equiv-
alent to an SO-standard schema mapping.

6.3. SO-standard schema mappings are exactly the needed class. We have intro-
duced st-SO dependencies (and SO-standard schema mappings) because of Theorem 6.6.
In this section, we show that SO-standard schema mappings are exactly the needed class,
since the converse of Theorem 6.6 also holds. Specifically, we have the following theorem.

Theorem 6.7. Every SO-standard schema mapping is equivalent to the composition of a
finite number of standard schema mappings.

This is proven by showing the following:

Theorem 6.8. Every schema mapping M = (S,T, σst), where σst is an st-SO dependency,
is equivalent to the composition of a finite number of schema mappings, each specified by
st-tgds and t-egds.

Note that, somewhat surprisingly, we do not need to make use of a weakly acyclic set
of t-tgds (or any t-tgds at all) in Theorem 6.8. In particular, let M12 and M23 be as in
Proposition 6.4 (where the specification of M12 may make use of a weakly acyclic set of t-
tgds). By Proposition 6.4, the composition is given by a schema mapping M13 specified by
an st-SO dependency; furthermore, by Theorem 6.8, we know that M13 is the composition
of a finite number of schema mappings, each specified by st-tgds and t-egds (no t-tgds). So
M12 ◦M23 needs no t-tgds to specify it, even though M12 makes use of t-tgds.

We now show how Theorem 6.7 follows from Theorem 6.8. Let M = (S,T, σst, Σt) be
an SO-standard schema mapping (where σst is an st-SO dependency, and Σt is the union
of a set of t-egds and a weakly acyclic set of t-tgds). Let M′ = (S,T, σst), where we
discard Σt from M. By Theorem 6.8, where the role of M is played by M′, we know
that there are schema mappings M1, . . . ,Mk, each specified by st-tgds and t-egds, such
that M′ = M1 ◦ · · · ◦ Mk. Assume that Mk = (S′,T, σst, Tk), with Tk consisting only
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of t-egds. Let M′
k = (S′,T, σst, Tk ∪ Σt). Then M1, . . . ,Mk−1,M

′
k are standard schema

mappings (M′
k is a standard schema mapping, since its only t-tgds are those in Σt). Since

(S,T, σst) = M1 ◦ · · · ◦Mk, it follows easily that (S,T, σst, Σt) = M1 ◦ · · · ◦Mk−1 ◦M
′
k.

Thus, M = M1 ◦ · · · ◦Mk−1 ◦M
′
k.

We now demonstrate, by example, how Theorem 6.8 is proved (again, it will be clear
how to extend from the example to the general case). Our proof is an extension of the proof
of Theorem 8.2 in [23], that every SO tgd specifies the composition of a finite number of
st-tgd mappings.

Assume that S = {S(·)}, T = {T (·, ·)}, Σt = ∅ and σst is the following st-SO depen-
dency:

∃f∃g [∀x (S(x) → T (f(g(x)), g(f(x)))) ∧ ∀x∀y (S(x) ∧ S(y) ∧ f(x) = f(y) → g(x) = g(y))].

Next we construct schema mappings M12 = (S1,S2,Σ12,Σ2), M23 = (S2,S3,Σ23,Σ3) and
M34 = (S3,S4,Σ34) such that (1) S1 = S, (2) S4 = T, (3) Σ12, Σ23 and Σ34 are sets of
st-tgds, (4) Σ2 and Σ3 are set of t-egds, and (5) the mapping specified by σst is equivalent
to M12 ◦M23 ◦M34.

Define S2 as {R1(·), F1(·, ·), G1(·, ·)} and Σ12 to consist of the following st-tgds:

S(x) → R1(x),

S(x) → ∃y F1(x, y),

S(x) → ∃y G1(x, y).

Intuitively, we take R1 to copy S, we take F1(x, y) to encode f(x) = y, and we take
G1(x, y) to encode g(x) = y. In particular, the second and third dependencies have the
effect of guaranteeing that f(x) and g(x) are defined for every element x in S, respectively.

Given that Σ12 cannot guarantee that F1 and G1 each define a single image for every
element in S, we let Σ2 consist of the following t-egds:

F1(x, y) ∧ F1(x, z) → y = z,

G1(x, y) ∧G1(x, z) → y = z,

which guarantee that F1 and G1 encode functions. In the same way, define S3 as {R2(·),
F2(·, ·), G2(·, ·)} and Σ23 to consist of the following st-tgds:

R1(x) → R2(x),

F1(x, y) → F2(x, y),

G1(x, y) → G2(x, y),

F1(x, y) → ∃z G2(y, z),

G1(x, y) → ∃z F2(y, z).

Intuitively, we take R2 to copy R1, F2 to copy F1, and G2 to copy G1, and we include the
fourth dependency to guarantee that g(y) is defined for all y in the range of f , and we
include the fifth dependency to guarantee that f(y) is defined for all y in the range of g.
Also as in the previous case, we include in Σ3 two t-egds that guarantee that F2 and G2

are indeed functions:

F2(x, y) ∧ F2(x, z) → y = z,

G2(x, y) ∧G2(x, z) → y = z.
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Given that at this point, we have predicates that encode the values of all the terms that
are used in σst, we also include in Σ3 dependencies that encode the conjuncts of σst of the
form ∀x̄ (ϕ→ t1 = t2). Thus, in this case we include in Σ3 the following t-egd that encodes
the conjunct ∀x∀y (S(x) ∧ S(y) ∧ f(x) = f(y) → g(x) = g(y)):

R2(x) ∧R2(y) ∧ F2(x, z) ∧ F2(y, z) ∧G2(x, u) ∧G2(y, v) → u = v.

Finally, we use R2, F2 and G2 to encode the remaining conjuncts of σst, which indicate
how to populate the target relations of σst. Thus, we define Σ34 to consist of the following
st-tgd:

R2(x) ∧G2(x, y1) ∧ F2(y1, y2) ∧ F2(x, z1) ∧G2(z1, z2) → T (y2, z2).

This concludes the demonstration by example of how to prove Theorem 6.8. This demon-
stration gives, as a special case (when the st-SO dependency is unnested) the following
lemma (where we note also the number of schema mappings that are composed).

Lemma 6.9. Every schema mapping M = (S,T, σst), where σst is an unnested st-SO
dependency, is equivalent to the composition of two schema mappings, each specified by
st-tgds and t-egds.

We note that Theorem 6.8 follows immediately from Lemma 6.9 and the fact, as we show
later, that every st-SO dependency is equivalent to an unnested st-SO dependency, There-
fore, we really needed to prove only Lemma 6.9 (the unnested case) rather than the general
case that we dealt with in proving Theorem 6.8.

7. Collapsing Results: Nesting is Not Necessary

Recall that we say that an st-SO dependency or SO tgd is unnested if its depth of nesting
is at most 1. Thus, an unnested st-SO dependency or SO tgd can contain terms like f(x),
but not terms like f(g(x)). In this section, we present collapsing results about the depth of
nesting of function symbols in st-SO dependencies and SO tgds. Specifically, we prove the
following two theorems.

Theorem 7.1. Every st-SO dependency is equivalent to an unnested st-SO dependency.

Theorem 7.2. Every SO tgd is equivalent to an unnested SO tgd

These two results, especially the second one, are the most technically difficult results
in the paper. Both results are surprising, since the “obvious” way to try to denest, which
we now describe, does not work. Consider for example the SO tgd

∃f∃g∀x∀y(P (x, y) ∧ (f(g(x)) = y) → Q(x, y)) (7.1)

The “obvious” way to denest (7.1) is to introduce a new variable z and rewrite (7.1) as

∃f∃g∀x∀y∀z(P (x, y) ∧ (g(x) = z) ∧ (f(z) = y) → Q(x, y)) (7.2)

However, the formula (7.2) is not an SO tgd, since it violates the safety condition (because
the variable z does not appear in P (x, y), the only relational atomic formula in the premise
of (7.2)).

It should be mentioned that in [38], Libkin and Sirangelo introduce the second-order
language of Skolemized STDs (SkSTDs), and study some of its fundamental properties. In
particular, it is shown in [38] that this language is closed under composition if the premises
of SkSTDs are restricted to be conjunctive queries. Interestingly, this fragment of SkSTDs
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is similar to the language of SO tgds but does not allow nesting of functions, which may lead
one to think that Theorem 7.2 can be deduced from the results in [38]. However, no safety
condition is imposed on the premises of SkSTDs in [38] and, thus, nesting of functions is
not needed in this language as it can be eliminated in the “obvious” way shown above. In
fact, dependency (7.2) is a valid constraint according to [38].

Before giving the proofs of Theorems 7.1 and 7.2, we present and discuss some corollaries
of these theorems.

Corollary 7.1. The composition of a finite number of st-tgd mappings can be specified by
an unnested SO tgd.

This is a strengthening of the result (Theorem 8.1 in [23]) that the composition of a
finite number of st-tgd mappings can be specified by an SO tgd (thus, Corollary 7.1 says
that we can replace “SO tgd” in Theorem 8.1 in [23] by “unnested SO tgd”). Corollary 7.1
follows immediately from the result we just cited (Theorem 8.1 in [23]) and our Theorem 7.2.
It was not even known before that the composition of two st-tgd mappings can be specified
by an unnested SO tgd. Thus, although it was shown in [23] that each unnested SO tgd
specifies the composition of some pair of st-tgd mappings, the converse was not shown.
In fact, for the composition of two st-tgd mappings, the composition construction in [23]
produces an SO tgd whose depth of nesting can be 2, not 1.

We feel that nested dependencies are difficult to understand (just think about an equal-
ity like f(g(x), h(f(x, y))) = g(f(x, h(y)))), and probably also difficult to use in practice.
On the other hand, unnested dependencies seem to be more natural and readable. For
example, it is easy to see that the “nested mappings” in [25] can be expressed by unnested
SO tgds. Corollary 7.1 tells us that unnested SO tgds are also expressive enough to specify
the composition of an arbitrary number of st-tgd mappings.

Theorem 7.2 has as another corollary the following collapsing result about the number
of compositions of st-tgd mappings.

Corollary 7.2. The composition of a finite number of st-tgd mappings is equivalent to the
composition of two st-tgd mappings.

This follows from Corollary 7.1 and the fact (which is a special case of Theorem 8.4 of
[23]) that a schema mapping specified by an unnested SO tgd is equivalent to the compo-
sition of two st-tgd mappings.

The next two corollaries follow from Theorem 7.1 just as Corollaries 7.1 and 7.2 follow
from Theorem 7.2.

Corollary 7.3. The composition of a finite number of standard schema mappings can be
specified by an unnested st-SO dependency, along with t-egds and a weakly acyclic set of
t-tgds.

Corollary 7.4. The composition of a finite number of standard schema mappings is equiv-
alent to the composition of two standard schema mappings.

In fact, it follows from Corollary 7.3 and Lemma 6.9 that we can slightly strengthen
Corollary 7.4 as follows.

Corollary 7.5. The composition of a finite number of standard schema mappings is equiv-
alent to the composition M1 ◦M2 of two standard schema mappings M1 and M2, where
the target constraints of M1 are only t-egds (no t-tgds).
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Corollary 7.4 has a direct, almost trivial proof that does not use our heavy machinery,
as we now show. Let M12, M23, . . ., Mk−1 k be standard schema mappings. Define M′

12
to have source schema the same as M12, target schema equal to the union of the target
schemas of M12, . . ., Mk−2 k−1, and constraints equal to the union of the constraints of
M12, . . ., Mk−2 k−1. Because all of the schemas are disjoint, it is easy to see that M′

12 is
a standard schema mapping (note that the st-tgds of M23, . . ., Mk−2 k−1 are now being
treated as t-tgds of M′

12). Then it is clear that

M12 ◦M23 ◦ . . . ◦Mk−1 k = M′
12 ◦Mk−1 k.

In contrast to Corollary 7.4, the reason that Corollary 7.2 is quite unexpected is that there
is no obvious way to deal with all of the st-tgds in the intermediate schema mappings.

Corollary 7.3, unlike Corollary 7.4, does not seem to have a simple direct proof that
avoids the machinery of Theorem 7.1. This is because our construction of the composition
of two standard schema mappings produces an st-SO dependency whose nesting depth can
be arbitrarily large.

Based on our collapsing results, there are two alternative ways to deal with the compo-
sition of multiple st-tgd mappings. First, by Corollary 7.1, we can replace this composition
by a single schema mapping, specified by an unnested SO tgd. Second, by Corollary 7.2,
we can replace the composition by the composition of only two st-tgd mappings. Similarly,
by using Corollaries 7.3 and 7.4, we have two alternative ways to deal with the composition
of a large number of standard schema mappings.

We now provide the proofs of Theorems 7.1 and 7.2.

Proof of Theorem 7.1. In this proof, we use the following terminology. Given a term t,
recursively define the set of non-atomic sub-terms of t, denoted by non-atomic(t), and the
list of variables of t, denoted by list-var(t), as follows: (1) if t = x, where x is a variable,
then non-atomic(t) = ∅ and list-var(t) = [x]; (2) if t = f(t1, t2, . . . , tn), where t1, t2, . . ., tn
are terms, then

non-atomic(t) = {f(t1, . . . , tn)} ∪
n
⋃

i=1

non-atomic(ti)

and list-var(t) = list-var[t1]·list-var[t2]·. . .·list-var[tn], where L1·L2 is the result of appending
L2 to L1. For example, if t = f(x, h(z, y, g(x))), then non-atomic(t) = {f(x, h(z, y, g(x))),
h(z, y, g(x)), g(x)} and list-var(f(x, h(z, y, g(x)))) = [x, z, y, x]. Moreover, consider a term
replacement skel(·) that describes the skeleton of a term. For example, if t = f(x, g(y)), then
skel(t) is f( , g( )), as this shows what are the functions that have been included in t and
how they have been nested in this term.1 More precisely, recursively define skel(·) as follows:
(1) skel(x) = for every variable x, and (2) skel(f(t1, . . . , tn)) = f(skel(t1), . . . , skel(tn)),
for every n-ary symbol f and terms t1, . . ., tn. For example, skel(f(x, h(z, y, g(x)))) =
f( , h( , , g( ))). Finally, by considering function skel(·), define a second term replacement
ξ(·) as follows:

ξ(t) =

{

t if t is a variable

ξskel(t)(x1, . . . , xn) if t is a non-atomic term and list-var(t) = [x1, . . . , xn]
(7.3)

1It should be noticed that a similar term replacement was used in [17] to eliminate function expressions
from a logic program. However, the term replacement used in [17] considers only terms without nesting of
function symbols.
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For example, if t = f(x, h(z, y, g(x))), then ξ(t) = ξf( ,h( , ,g( )))(x, z, y, x).
Given an st-SO dependency σ from a source schema S to a target schema T, next we

show how to construct an unnested st-SO dependency σ⋆ from S to T such that σ and σ⋆

are equivalent. Let t1, . . ., tℓ be the non-atomic terms t such that there exists an atomic
formula mentioned in σ of the form either t = t′ or t′ = t or R(t1, . . . , ti−i, t, ti+1, . . . , tk)
(where k is the arity of R and i ∈ {1, . . . , k}), let H(σ) = {t1, . . . , tℓ}, and let ST (σ) be the

set of all non-atomic sub-terms of t1, . . ., tℓ, that is, ST (σ) =
⋃ℓ

i=1 non-atomic(ti). Then
define Ξ(σ) as the following set of function symbols:

Ξ(σ) = {ξskel(t) | t ∈ ST (σ)}.

For example, if σ is the following st-SO dependency:

∃f∃g [∀x∀y S(x, y) → T (x, f(x, g(y)), g(f(y, g(x))))],

then H(σ) is the set {f(x, g(y)), g(f(y, g(x)))}. Thus, given that non-atomic(f(x, g(y))) =
{f(x, g(y)), g(y)} and non-atomic(g(f(y, g(x)))) = {g(f(y, g(x))), f(y, g(x)), g(x)}, we have
that ST (σ) = {f(x, g(y)), g(y), g(f(y, g(x))), f(y, g(x)), g(x)}, and

Ξ(σ) = {ξf( ,g( )), ξg( ), ξg(f( ,g( )))},

Note that two members of ST (σ), namely g(y) and g(x), have the same skeleton g( ), as
do f(x, g(y)) and f(y, g(x)), which have the same skeleton f( , g( )). The set Ξ(σ) plays a
fundamental role in the definition of the st-SO dependency σ⋆. More precisely, assume that
Ξ(σ) = {χ1, χ2, . . . , χm}. Then σ⋆ is defined as:

∃χ1∃χ2 · · · ∃χmΨ,

where Ψ is defined as the conjunction of the following dependencies. For every conjunct
∀x̄ (ϕ → ψ) of σ, the st-SO dependency σ⋆ contains a conjunct ∀x̄(ϕ′ → ψ′), where (1)
ϕ′ is obtained from ϕ by replacing every non-atomic term t ∈ ST (σ) by ξ(t), and (2) ψ′

is obtained from ψ by replacing every non-atomic term t ∈ ST (σ) by ξ(t). Furthermore,
for every pair of (non-necessarily distinct) terms t, t′ ∈ ST (σ), if t = f(t1, . . . , tn) and
t′ = f(t′1, . . . , t

′
n), the following procedure is executed to obtain a set Γt,t′ of dependencies,

and then
∧

Γt,t′ is included as a conjunct of σ⋆. First, replace each occurrence of a variable
in t by a fresh variable to obtain a term s = f(s1, . . . , sn), and replace each occurrence of
a variable in t′ by a fresh variable to obtain a term s′ = f(s′1, . . . , s

′
n) (in particular, s and

s′ have no variables in common). Assume that x1, . . ., xp is the set of variables mentioned
in s, s′. Second, as in the proof of Proposition 6.4, let dom(·) be a formula that defines the
domain of the instances of S. Finally, let Γt,t′ be a set of dependencies obtained from the
dependency:

∀x1 · · · ∀xp

[( p
∧

i=1

dom(xi)

)

∧

( n
∧

j=1

ξ(si) = ξ(s′i)

)

→ ξ(s) = ξ(s′)

]

(7.4)

by repeatedly using the equivalences:

((α ∨ β) ∧ γ) → δ ≡ ((α ∧ γ) → δ) ∧ ((β ∧ γ) → δ), (7.5)

(∃xα) → β ≡ ∀x (α→ β) if x is not mentioned in β, (7.6)

until all the disjunctions and existential quantifications in the left-hand side of (7.4) have
been eliminated.
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Example 7.6. Let us give the intuition behind the definition of σ⋆ through an example.
Assume that σ is the following st-SO dependency:

∃f∃g

[

∀x

(

A(x) → (T (x, f(g(x))) ∧ f(x) = g(x))

)

∧ ∀x

(

B(x) → U(x, g(f(x)))

)]

. (7.7)

Then we have that ST (σ) = {f(g(x)), g(x), g(f(x)), f(x)} and Ξ(σ) = {ξf(g( )), ξg( ), ξg(f( )),
ξf( )}. Intuitively, ξf( ) and ξg( ) are used to represent functions f and g, respectively, and
ξf(g( )) and ξg(f( )) are used to represent the composition functions (g ◦ f) and (f ◦ g),
respectively, thus eliminating the nesting of functions from σ. More precisely, the st-SO
dependency σ⋆ is defined as:

∃ξf(g( ))∃ξg( )∃ξg(f( ))∃ξf( )Ψ,

where Ψ is defined as the conjunction of the following dependencies. First, given that
∀x (A(x) → (T (x, f(g(x)))∧f(x) = g(x))) and ∀x (B(x) → U(x, g(f(x)))) are the conjuncts
of σ, the following dependencies are conjuncts of Ψ:

∀x (A(x) → (T (x, ξf(g( ))(x)) ∧ ξf( )(x) = ξg( )(x))),

∀x (B(x) → U(x, ξg(f( ))(x))).

Furthermore, for every pair t, t′ of (non-necessarily distinct) terms from ST (σ), if either
t = f(t1) and t

′ = f(t′1) or t = g(t1) and t
′ = g(t′1), then the following conjuncts are included

in Ψ. Assume that t = t′ = f(g(x)). First, each occurrence of a variable in these terms is
replaced by a fresh variable, generating the terms s = f(g(u)) and s′ = f(g(v)). Second,
given that the source schema consists of the unary predicates A and B, formula dom(x) is
defined as A(x) ∨ B(x) (that is, dom(x) holds if x is in the domain of a source instance).
Finally, assuming that s1 = g(u) and s′1 = g(v), let α be the following dependency:

∀u∀v

[

dom(u) ∧ dom(v) ∧ ξ(s1) = ξ(s′1) → ξ(s) = ξ(s′)

]

,

that is, α is:

∀u∀v

[

(A(u) ∨B(u)) ∧ (A(v) ∨B(v)) ∧ ξg( )(u) = ξg( )(v) → ξf(g( ))(u) = ξf(g( ))(v)

]

.

Then the set Γt,t′ consists of the following dependencies:

∀u∀v

[

A(u) ∧A(v) ∧ ξg( )(u) = ξg( )(v) → ξf(g( ))(u) = ξf(g( ))(v)

]

,

∀u∀v

[

A(u) ∧B(v) ∧ ξg( )(u) = ξg( )(v) → ξf(g( ))(u) = ξf(g( ))(v)

]

,

∀u∀v

[

B(u) ∧A(v) ∧ ξg( )(u) = ξg( )(v) → ξf(g( ))(u) = ξf(g( ))(v)

]

,

∀u∀v

[

B(u) ∧B(v) ∧ ξg( )(u) = ξg( )(v) → ξf(g( ))(u) = ξf(g( ))(v)

]

,

and each one of these four dependencies is a conjunct of σ⋆. It is important to notice that
these dependencies make explicit some properties that are implicit in σ. Given that f and
g are function symbols in σ, we know that if g(u) = g(v), then f(g(u)) = f(g(v)). But
this property does not immediately hold for ξf(g( )) and ξg( ) and, thus, we have to include
the above four conjuncts into σ⋆ to enforce it. It should also be noticed that the formula
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dom(·) is included in the previous dependencies to satisfy the safety condition of st-SO
dependencies, namely that every variable mentioned in a term has to be mentioned in a
source predicate.

To give more intuition about the definition of dependency σ⋆, we also consider the case
t = f(g(x)) and t′ = f(x). As above, we start by replacing each occurrence of a variable
in these terms by a fresh variable, generating the terms s = f(s1) and s′ = f(s′1), where
s1 = g(u) and s′1 = v. Then we define a dependency β as:

β = ∀u∀v

[

(A(u) ∨B(u)) ∧ (A(v) ∨B(v)) ∧ ξg( )(u) = v → ξf(g( ))(u) = ξf( )(v)

]

,

and, therefore, in this case the set Γt,t′ consists of the following dependencies:

∀u∀v

[

A(u) ∧A(v) ∧ ξg( )(u) = v → ξf(g( ))(u) = ξf( )(v)

]

,

∀u∀v

[

A(u) ∧B(v) ∧ ξg( )(u) = v → ξf(g( ))(u) = ξf( )(v)

]

,

∀u∀v

[

B(u) ∧A(v) ∧ ξg( )(u) = v → ξf(g( ))(u) = ξf( )(v)

]

,

∀u∀v

[

B(u) ∧B(v) ∧ ξg( )(u) = v → ξf(g( ))(u) = ξf( )(v)

]

.

As in the previous case, each one of the dependencies of Γt,t′ is a conjunct of σ⋆. It is
important to notice that these dependencies make explicit the fact that in σ, if g(u) = v,
then f(g(u)) = f(v).

For the st-SO dependency (7.7), we took dom(u) to be A(u)∨B(u). We then made use
of (7.5) to eliminate the disjunction in A(u)∨B(u). If the left-hand side of the first conjunct
of (7.7) had been P (x, y) instead of A(x), we would have taken dom(u) to be ∃wP (u,w) ∨
∃wP (w, u) ∨ B(u). We then would have made use not only of (7.5), but also (7.6), to
eliminate the disjunctions and existential quantifiers in ∃wP (u,w) ∨ ∃wP (w, u) ∨B(u).

�

We now prove that σ ⇔ σ⋆, that is, that σ and σ⋆ are equivalent.
(⇒) If (I, J) |= σ, then it is straightforward to prove that (I, J) |= σ⋆ (the interpreta-

tion of each function symbol in Ξ(σ) is defined from the corresponding composition of the
interpretations of the function symbols from σ).

(⇐) Assume that Ξ(σ) = {χ1, . . . , χm} and that (I, J) |= σ⋆ with the instantiations χ0
1,

. . ., χ0
m of χ1, . . ., χm. Moreover, assume that f1, . . ., fℓ are the function symbols mentioned

in σ. To show that (I, J) |= σ, we first need to define from χ0
1, . . ., χ

0
m the instantiations

f01 , . . ., f
0
ℓ of function symbols f1, . . ., fℓ, and then we have to show that (I, J) satisfies all

the conjuncts of σ with these instantiations.
Given that (I, J) |= σ⋆, we have by definition of satisfaction for st-SO dependencies that

there exists a countably infinite universe2 U such that (1) U is the union of dom(I)∪dom(J)
and a set of nulls, and (2) (U ; I, J) satisfies σ⋆ in the standard second-order logic sense.
Assume that ⊥ is a fresh null value (⊥ 6∈ U) and that the arity of function symbol fi is
ki (1 ≤ i ≤ ℓ). Then the domain of each one of the functions f01 , . . ., f

0
ℓ is defined to be

U ∪ {⊥}, and for every (a1, . . . , aki) ∈ (U ∪ {⊥})ki , we define f0i (a1, . . . , aki) as follows. If
there exist fi(t1, . . . , tki) ∈ ST (σ) and tuples b̄1, . . ., b̄ki such that for every i ∈ {1, . . . , ki}:

2As noted earlier, the universe can even be taken to be finite, but we do not need this.
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• ti is a variable, b̄i = (ai) and ai ∈ dom(I); or

• ti is a non-atomic term, ai = ξ0skel(ti)(b̄i) and b̄i ⊆ dom(I) (that is, every element mentioned

in b̄i is in dom(I));

then f0i (a1, . . . , aki) is defined as ξ0skel(fi(t1,...,tki ))
(b̄1, . . . , b̄ki). Otherwise, f0i (a1, . . . , aki) is

defined as ⊥ (in particular, if ai = ⊥ for some i ∈ {1, . . . , ki}, then f
0
i (a1, . . . , aki) = ⊥).

Before showing that all the conjuncts of σ are satisfied by (I, J) under the instantiations
f01 , . . ., f

0
ℓ of function symbols f1, . . ., fℓ, we need to show that these functions are well

defined. That is, we have to show that if by using the above definition, one has different
ways of assigning a value to f0i (a1, . . . , aki), then all these ways assign the same value to
f0i (a1, . . . , aki). In order to prove this, we need to consider several cases. In this proof,
we consider only one of these cases, as the other ones can be handled in the same way.
Assume that for i ∈ {1, . . . , ℓ} and elements a1, . . ., aki from U ∪ {⊥}, it holds that (1)
fi(t1, . . . , tki) ∈ ST (σ), (2) ai = ξ0skel(ti)(b̄i) and b̄i ⊆ dom(I), for every i ∈ {1, . . . , ki}, (3)

fi(s1, . . . , ski) ∈ ST (σ), and (4) ai = ξ0skel(si)(c̄i) and c̄i ⊆ dom(I), for every i ∈ {1, . . . , ki}.

Then we have to prove that:

ξ0skel(fi(t1,...,tki))
(b̄1, . . . , b̄ki) = ξ0skel(fi(s1,...,ski))

(c̄1, . . . , c̄ki). (7.8)

Given a tuple x̄ = (x1, . . . , xp) of variables, let dom(x̄) be a shorthand for dom(x1) ∧ · · · ∧
dom(xp). By definition of σ⋆ and the fact that (I, J) |= σ⋆, we have that (I, J) satisfies the
following instantiated dependency:

( ki
∧

i=1

dom(b̄i)

)

∧

( ki
∧

i=1

dom(c̄i)

)

∧

( ki
∧

i=1

ξskel(ti)(b̄i) = ξskel(si)(c̄i)

)

→

ξskel(fi(t1,...,tki ))
(b̄1, . . . , b̄ki) = ξskel(fi(s1,...,ski))

(c̄1, . . . , c̄ki).

Thus, we conclude that (7.8) holds, since for every i ∈ {1, . . . , ki}, it holds that ξ
0
skel(ti)

(b̄i) =

ai = ξ0skel(si)(c̄i), b̄i ⊆ dom(I) and c̄i ⊆ dom(I).

Now we move to the proof that all the conjuncts of σ are satisfied by (I, J) under
the instantiations f01 , . . ., f

0
ℓ of function symbols f1, . . ., fℓ. In this proof, we need the

following claim, where we use the following terminology. Given a non-atomic term t =
fi(t1, . . . , tki) based on variables x1, . . ., xk and function symbols f1, . . ., fℓ, and given a
variable substitution ρ : {x1, . . . , xk} → (U ∪ {⊥}), the evaluation of ρ over t is recursively
defined as ρ(t) = f0i (ρ(t1), . . . , ρ(tki)).

Claim 7.7. Let t ∈ ST (σ) such that list-var(t) = [x1, . . . , xk]. Then for every variable
substitution ρ : {x1, . . . , xk} → dom(I), it holds that ρ(t) = ξ0skel(t)(ρ(x1), . . . , ρ(xk)).

Proof. By induction on the depth of nesting of functions in t.

• Base case: If the depth of nesting of functions in t is 1, then t = fi(x1, . . . , xk) and k = ki.
Then we have that ρ(fi(x1, . . . , xk)) = f0i (ρ(x1), . . . , ρ(xk)). But given that ρ(xj) ∈
dom(I) for every j ∈ {1, . . . , k}, we have by definition of f0i that f0i (ρ(x1), . . . , ρ(xk)) =
ξ0skel(fi(x1,...,xk))

(ρ(x1), . . . , ρ(xk)). Thus, we conclude that ρ(t) = ξ0skel(t)(ρ(x1), . . . , ρ(xk)).

• Inductive step: Assume that the depth of nesting of functions in t is p, and that the
property holds for every term with depth of nesting of functions smaller than p. In this
case, we have that t = fi(t1, . . . , tki). Thus, we have that ρ(t) = f0i (ρ(t1), . . . , ρ(tki)).
If ti is a variable, then we have that ρ(ti) ∈ dom(I) since ρ : {x1, . . . , xk} → dom(I).
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On the other hand, if ti is a non-atomic term such that list-var(ti) = [u1, . . . , uq] (with
[u1, . . . , uq] a sub-list of [x1, . . . , xk], that is, [u1, . . . , uq] consisting of consecutive elements
of [x1, . . . , xk]), then given that the depth of nesting of functions in ti is smaller than
p, we have by induction hypothesis that ρ(ti) = ξ0skel(ti)(ρ(u1), . . . , ρ(uq)). Thus, given

that ρ : {x1, . . . , xk} → dom(I), we have by definition of f0i that f0i (ρ(t1), . . . , ρ(tki)) =
ξ0skel(fi(t1,...,tki ))

(ρ(x1), . . . , ρ(xk)) and, therefore, ρ(t) = ξ0skel(t)(ρ(x1), . . . , ρ(xk)). This

concludes the proof of the claim.

We finally have all the necessary ingredients to prove that (I, J) |= σ. More precisely, we
show next that all the conjuncts of σ are satisfied by (I, J) under the instantiations f01 , . . .,
f0ℓ of function symbols f1, . . ., fℓ. Let

∀x1 · · · ∀xk∀y1 · · · ∀ym (ϕ(x1, . . . , xk, y1, . . . , ym) → ψ(x1, . . . , xk)) (7.9)

be a conjunct of σ, and let ρ be a variable substitution with domain {x1, . . . , xk, y1, . . . , ym}
and range contained in dom(I), and assume that I |= ϕ(ρ(x1), . . . , ρ(xk), ρ(y1), . . . , ρ(ym))
with the instantiations f01 , . . ., f

0
ℓ . Next we show that J |= ψ(ρ(x1), . . . , ρ(xk)). Assume

that

∀x1 · · · ∀xk∀y1 · · · ∀ym (ϕ′(x1, . . . , xk, y1, . . . , ym) → ψ′(x1, . . . , xk))

is the conjunct of σ⋆ obtained from (7.9) by replacing every non-atomic term t ∈ ST (σ)
by ξ(t). Then given that the range of ρ is contained in dom(I), we have by Claim 7.7 and
definition of σ⋆ that I |= ϕ′(ρ(x1), . . . , ρ(xk), ρ(y1), . . . , ρ(ym)) with the instantiations χ0

1,
. . ., χ0

m of the function symbols χ1, . . ., χm (recall that Ξ(σ) = {χ1, . . . , χm}). Thus, we
conclude that J |= ψ′(ρ(x1), . . . , ρ(xk)) with the instantiations χ0

1, . . ., χ
0
m (as (I, J) satisfies

the conjuncts of σ⋆ with these instantiations). Therefore, again by Claim 7.7 and definition
of σ⋆, we have that J |= ψ(ρ(x1), . . . , ρ(xk)) with the instantiations f01 , . . ., f

0
ℓ , which was

to be shown. This concludes the proof of the theorem.

We now move to the proof of Theorem 7.2. The following lemma will be used in this proof.

Lemma 7.3. For every SO tgd σ of nesting depth 2, there exists an unnested SO tgd σ⋆

that is equivalent to σ.

Proof. In this proof, we extensively used the terminology defined in the proof of Theorem
7.1. Besides, we say that a term t is an i-term if the depth of nesting of function symbols
in t is i. For example, f(x, y) is a 1-term while g(f(x, y), z) is a 2-term.

Let σ be an SO tgd from a source schema S to a target schema T. Assume that the
depth of nesting of function symbols in every term mentioned in σ is at most 2, and that
f1, . . ., fℓ are the function symbols mentioned in σ. Then define a set Θ of dependencies as
follows. For every conjunct α of σ, we include the following dependencies as elements of Θ.
Assume that t1, . . ., tm are the 1-terms t for which there exists a 2-term t′ mentioned in α
such that t ∈ non-atomic(t′). For example, if α is the following dependency:

∀x∀y (S(x, y) ∧ f(x) = g(f(x), f(y)) → T (f(g(x, x)))), (7.10)

then f(x), f(y) and g(x, x) are the only 1-terms satisfying the preceding condition. Fur-
thermore, for every i ∈ {1, . . . ,m}, define Ti as the set {x, f1(x̄1), . . . , fℓ(x̄ℓ)} of terms,
where: (1) x is a variable, (2) each x̄j (1 ≤ j ≤ ℓ) is a tuple of pairwise distinct variables,
(3) for every j ∈ {1, . . . , ℓ}, we have that x is not mentioned in x̄j , and (4) for every pair j,
k of distinct values in {1, . . . , ℓ}, we have that x̄j and x̄k do not have variables in common.
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Besides, assume that for every pair i, j of distinct values in {1, . . . ,m}, we have that Ti
and Tj do not have variables in common, and for every i ∈ {1, . . . ,m}, we have that Ti and
α do not have variables in common. For example, assuming that t1 = f(x), t2 = f(y) and
t3 = g(x, x) for the case of conjunct (7.10), we have that:

T1 = {u1, f(u2), g(u3, u4)},

T2 = {u5, f(u6), g(u7, u8)},

T3 = {u9, f(u10), g(u11, u12)},

satisfy the preceding conditions.
Assume that α is ∀x̄ (ϕ→ ψ). Then for every s1 ∈ T1, . . ., sm ∈ Tm, define dependency

θs1,...,sm as:

∀x̄∀y1 · · · ∀yn

[(( n
∧

i=1

dom(yi)

)

∧

( m
∧

j=1

ξ(tj) = ξ(sj)

)

∧ ϕ′

)

→ ψ′

]

,

where ξ is defined as in the proof of Theorem 7.1 (see (7.3)), y1, . . ., yn are the variables
mentioned in the terms s1, . . ., sm, and ϕ′, ψ′ are obtained from ϕ and ψ, respectively, by
replacing as follows the 1-terms and 2-terms of these formulas. Every 1-term t mentioned in
ϕ (resp. ψ) is replaced by ξ(t) in ϕ′ (resp. ψ′). Furthermore, every 2-term t = f(t′1, . . . , t

′
p)

mentioned in ϕ (resp. ψ) is replaced by ξ(f(t′′1, . . . , t
′′
p)) in ϕ

′ (resp. ψ′), where t′′i (1 ≤ i ≤ p)

is defined as follows. If t′i is a 1-term, and so t′i is tj for some j in {1, . . . ,m}, then let t′′i be
sj. If t

′
i is a variable v, then let t′′i be v.

Finally, for each dependency θs1,...,sm, let Θs1,...,sm be a set of dependencies obtained
from θs1,...,sm by repeatedly using the equivalences:

((α ∨ β) ∧ γ) → δ ≡ ((α ∧ γ) → δ) ∧ ((β ∧ γ) → δ),

(∃xα) → β ≡ ∀x (α→ β) if x is not mentioned in β,

until all the disjunctions and existential quantifications in the left-hand side of θs1,...,sm have
been eliminated. Then all the dependencies in Θs1,...,sm are included in Θ.

Example 7.8. Let us give the intuition behind the definition of Θ through an example.
Assume that α is the following conjunct of SO tgd σ:

∀x∀y (S(x, y) ∧ f(x) = g(f(x), f(y)) → T (f(g(x, x)))).

Then, as mentioned above, we have that t1 = f(x), t2 = f(y), t3 = g(x, x) are the 1-terms
t for which there exists a 2-term t′ in α such that t ∈ non-atomic(t′). Furthermore, as also
mentioned above, we can assume that:

T1 = {u1, f(u2), g(u3, u4)},

T2 = {u5, f(u6), g(u7, u8)},

T3 = {u9, f(u10), g(u11, u12)}.

Then for every s1 ∈ T1, s2 ∈ T2 and s3 ∈ T3, we have to compute the formula θs1,s2,s3 , and
then to include all the dependencies of Θs1,s2,s3 as elements of Θ. Assume that s1 = u1,
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s2 = g(u7, u8) and s3 = f(u10). Then θs1,s2,s3 is the following dependency:

∀x∀y∀u1∀u7∀u8∀u10

[(

S(x, y) ∧ dom(u1) ∧ dom(u7) ∧ dom(u8) ∧ dom(u10) ∧

ξf( )(x) = u1 ∧ ξf( )(y) = ξg( , )(u7, u8) ∧ ξg( , )(x, x) = ξf( )(u10) ∧

ξf( )(x) = ξg( ,g( , ))(u1, u7, u8)

)

→ T (ξf(f( ))(u10))

]

.

We note that equalities ξf( )(x) = u1, ξf( )(y) = ξg( , )(u7, u8) and ξg( , )(x, x) = ξf( )(u10)
correspond to ξ(t1) = ξ(s1), ξ(t2) = ξ(s2) and ξ(t3) = ξ(s3) in the definition of dependency
θs1,s2,s3 , respectively. Furthermore, we note that equality ξf( )(x) = ξg( ,g( , ))(u1, u7, u8)
is generated as follows from equality f(x) = g(f(x), f(y)) in α. The 1-term f(x) in the
left-hand side of this equality is replaced by ξ(f(x)) = ξf( )(x) in θs1,s2,s3 , and the 2-
term g(f(x), f(y)) is replaced by ξ(g(u1, g(u7, u8))) = ξg( ,g( , ))(u1, u7, u8) in θs1,s2,s3 (since
t1 = f(x), s1 = u1, t2 = f(y) and s2 = g(u7, u8)). Finally, we note that T (ξf(f( ))(u10))
is obtained by replacing the 2-term f(g(x, x)) by ξ(f(f(u10))) = ξf(f( ))(u10) (since t3 =
g(x, x) and s3 = f(u10)).

Given that dom(x) = ∃uS(x, u) ∨ ∃vS(v, x) in this case, we have that the following
dependency is one of the elements of Θs1,s2,s3 :

∀x∀y∀u1∀u7∀u8∀u10∀z1∀z7∀z8∀z10

[(

S(x, y) ∧ S(u1, z1) ∧ S(z7, u7) ∧ S(z8, u8) ∧

S(u10, z10) ∧ ξf( )(x) = u1 ∧ ξf( )(y) = ξg( , )(u7, u8) ∧ ξg( , )(x, x) = ξf( )(u10) ∧

ξf( )(x) = ξg( ,g( , ))(u1, u7, u8)

)

→ T (ξf(f( ))(u10))

]

.

As in the proof of Theorem 7.1, function symbols ξf( ), ξg( , ) are used to represent functions
f and g, respectively, and ξg( ,g( , )), ξf(f( )) are used to represent functions g(x, g(y, z)) and
f(f(x)), respectively, thus eliminating the nesting of functions from α. It is important to
notice that the preceding dependency makes explicit some properties that are implicit in α.
Given that f and g are function symbols in α, we know that if f(x) = u1, f(y) = g(u7, u8),
g(x, x) = f(u10), f(x) = g(f(x), f(y)) and T (f(g(x, x))) hold, then f(x) = g(u1, g(u7, u8))
and T (f(f(u10))) also hold. But this property is not immediately true for ξg( ,g( , )) and
ξf(f( )), and, thus, we have to include the preceding dependency in Θ to enforce it. �

Assume that χ1, . . ., χk are the function symbols mentioned in Θ. Then unnested SO
tgd σ⋆ is defined as:

∃χ1 · · · ∃χk

(

∧

Θ
)

.

Next we show that σ and σ⋆ are equivalent.
(⇒) If (I, J) |= σ, then it is straightforward to prove that (I, J) |= σ⋆ (the interpretation

of each function symbol mentioned in Θ is defined from the corresponding composition of
the interpretations of the function symbols from σ).

(⇐) Assume that (I, J) |= σ⋆ with the instantiations χ0
1, . . ., χ

0
k of the function symbols

χ1, . . ., χk. To show that (I, J) |= σ, we first need to define from χ0
1, . . ., χ

0
k the instanti-

ations f01 , . . ., f
0
ℓ of the function symbols f1, . . ., fℓ, and then we have to show that (I, J)

satisfies all the conjuncts of σ with these instantiations.
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Let FT (I) be the set of all pairs (fi, ā) such that (1) i ∈ {1, . . . , ℓ}, (2) ā is a tuple of
elements from dom(I), and (3) the length of ā is the same as the arity of function symbol
fi. Furthermore, let < be an arbitrary linear order over FT (I), and define DT (J) as the
set of elements a ∈ dom(J) such that a ∈ dom(I) or a = ξ0

fi( ,..., )(ā) for some i ∈ {1, . . . , ℓ}

and tuple ā of elements from dom(I). The sets FT (I) and DT (J) are used to define a
substitution κ, which in turn is used to define the interpretations of function symbols f1,
. . ., fℓ. More precisely, for every a ∈ DT (J), define:

κ(a) =

{

( , a) if a ∈ dom(I)

(fj( , . . . , ), b̄) if a 6∈ dom(I) and (fj, b̄) = min
<

{(fk, c̄) ∈ FT (I) | ξ0fk( ,..., )(c̄) = a}

Note that in the second case in the definition of κ(a), the set over which the min is taken
is nonempty, because a ∈ DT (J) and a 6∈ dom(I).

Define the instantiations f01 , . . ., f
0
ℓ of function symbols f1, . . ., fℓ as follows. Given that

(I, J) |= σ⋆, we have by definition of satisfaction for SO tgds that there exists a countably
infinite universe3 U such that (1) U is the union of dom(I) ∪ dom(J) and a set of nulls,
and (2) (U ; I, J) satisfies σ⋆ in the standard second-order logic sense. Assume that ⊥ is a
fresh null value (⊥ 6∈ U) and that the arity of function symbol fi is ki (1 ≤ i ≤ ℓ). Then
the domain of each one of the functions f01 , . . ., f

0
ℓ is defined to be U ∪ {⊥}, and for every

(a1, . . . , aki) ∈ (U ∪ {⊥})ki , we define:

f0i (a1, . . . , aki) =











ξ0
fi(w1,...,wki

)(b̄1, . . . , b̄ki) if for every i ∈ {1, . . . , ki}, it holds that

ai ∈ DT (J) and κ(ai) = (wi, b̄i)

⊥ otherwise

Notice that if ai = ⊥ in the definition above, for some i ∈ {1, . . . , ki}, then f
0
i (a1, . . . , aki) =

⊥.
Next we show that (I, J) satisfies4 every conjunct of σ with the instantiations f01 , . . .,

f0ℓ of function symbols f1, . . ., fℓ. But before doing this, we give an example that shows
how the strategy of the proof works.

Example 7.9. Consider again conjunct (7.10). To prove that (I, J) satisfies this conjunct
under the preceding definition of the functions in σ, we have to prove that if:

I |= S(a, b) ∧ f(a) = g(f(a), f(b)),

then J |= T (f(g(a, a))). In order to prove this, we first need to figure out what the values
of f0(a), f0(b), g0(f0(a), f0(b)) and f0(g0(a, a)) are. Given that a, b ∈ dom(I), we have
that f0(a) = ξ0

f( )(a) and f0(b) = ξ0
f( )(b). The definition of g0(f0(a), f0(b)) depends on

whether ξ0
f( )(a) and ξ

0
f( )(b) belong to dom(I). Assume that ξ0

f( )(a) = a1 and ξ0
f( )(b) = b1,

where a1 ∈ dom(I) and b1 6∈ dom(I). Then by the preceding definition, we have to compute
κ(a1) and κ(b1) in order to compute the value of g0(f0(a), f0(b)). We have that κ(a1) =
( , a1) since a1 ∈ dom(I), and we assume for this example that κ(b1) = (g( , ), (c1, c2)),
where c1, c2 ∈ dom(I). That is, we assume that ξ0

g( , )(c1, c2) = b1 and (g, (c1, c2)) is the

3Again, the universe can even be taken to be finite, but we do not need this.
4When we say that (I, J) satisfies a formula, we mean that (U ; I, J) satisfies the formula. Similarly, when

we say that I satisfies a formula, we mean that (U ; I) satisfies the formula, and likewise for J satisfying a
formula.



COMPOSITION WITH TARGET CONSTRAINTS 35

smallest element (h, d̄) in FT (I), according to the linear order <, satisfying the condition
ξ0
h( ,..., )(d̄) = b1. Thus, by the preceding definition, we have that:

g0(f0(a), f0(b)) = g0(a1, b1) = ξ0g( ,g( , ))(a1, c1, c2).

Finally, we also need to know what the value of f0(g0(a, a)) is. By the preceding definition,
we know that g0(a, a) = ξ0

g( , )(a, a). Assume that ξ0
g( , )(a, a) = d1 with d1 6∈ dom(I).

Then, as in the previous case, we need to compute κ(d1) in order to compute f0(g0(a, a)).
Assume for this example that κ(d1) = (f( ), d2), where d2 ∈ dom(I). That is, assume that
ξf( )(d2) = d1 and (f, d2) is the smallest element (h, d̄) in FT (I), according to the linear

order <, satisfying the condition ξ0
h( ,..., )(d̄) = d1. Thus, by the preceding definition, we

have that:

f0(g0(a, a)) = f0(d1) = ξ0f(f( ))(d2). (7.11)

Therefore, from the previous discussion and the fact that that I |= f(a) = g(f(a), f(b)), we
conclude that:

I |= S(a, b) ∧ dom(a1) ∧ dom(c1) ∧ dom(c2) ∧ dom(d2) ∧ ξf( )(a) = a1 ∧

ξf( )(b) = ξg( , )(c1, c2) ∧ ξg( , )(a, a) = ξf( )(d2) ∧ ξf( )(a) = ξg( ,g( , ))(a1, c1, c2).

Hence, given that we assume that (I, J) |= σ⋆ and the following dependency is one of the
formulas θs1,s2,s3 (see Example 7.8):

∀x∀y∀u1∀u7∀u8∀u10

[(

S(x, y) ∧ dom(u1) ∧ dom(u7) ∧ dom(u8) ∧ dom(u10) ∧

ξf( )(x) = u1 ∧ ξf( )(y) = ξg( , )(u7, u8) ∧ ξg( , )(x, x) = ξf( )(u10) ∧

ξf( )(x) = ξg( ,g( , ))(u1, u7, u8)

)

→ T (ξf(f( ))(u10))

]

,

we conclude that J |= T (ξf(f( ))(d2)). But we know from (7.11) that f0(g0(a, a)) =

ξ0
f(f( ))(d2) and, thus, we have that J |= T (f(g(a, a))), which was to be shown. �

In general, we have to show that if ∀x̄ (ϕ(x̄) → ψ(x̄)) is a conjunct of σ and I |= ϕ(ā)
with the instantiations f01 , . . ., f

0
ℓ of the function symbols f1, . . ., fℓ, then J |= ψ(ā) with

these instantiations. It is straightforward but lengthy to generalize the strategy shown in
the previous example to this case. In particular, given that in the construction of σ⋆ we
consider all the possible cases for substitution κ, the previous strategy can be applied in
general. This concludes the proof of the lemma.

Proof of Theorem 7.2. The theorem is proved by induction on the nesting depth n of an
SO tgd. If n = 1, then the property trivially holds, and if n = 2, then the property holds
by Lemma 7.3. Thus, let σ be an SO tgd from a source schema S to a target schema T,
and assume that the nesting depth of σ is n ≥ 3. Moreover, assume that the theorem holds
for every SO tgd σ′ of nesting depth n′ < n.

By Theorem 8.4 in [23], we know that there exist schema mappings M1, M2, M3, . . .,
Mn+1 such that σ specifiesM1◦M2◦M3◦· · ·◦Mn+1 and every mappingMi (1 ≤ i ≤ n+1)
is specified by a set of st-tgds. For every i ∈ {1, . . . , n + 1}, let σi be an unnested SO tgd
that specifies Mi. We know, by the definition of the algorithm Compose in [23], that there
exists an SO tgd σ12 that specifies the composition of the schema mappings specified by σ1
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and σ2 and whose nesting depth is at most 2. By Lemma 7.3, we have that there exists an
unnested SO tgd σ⋆12 that is equivalent to σ12. Thus, by considering again the definition
of the algorithm Compose in [23], we have that there exists an SO tgd σ13 such that σ13
specifies the composition of the schema mappings specified by σ⋆12 and σ3 and whose nesting
depth is at most 2. Hence, by considering again Lemma 7.3, we conclude that there exists
an unnested SO tgd σ⋆13 that specifies the composition of the schema mappings specified
by σ⋆12 and σ3 and, thus, also specifies M1 ◦M2 ◦M3. Finally, by considering again the
definition of algorithm Compose in [23], we have that there exists an SO tgd σ′ such that:
(1) σ′ specifies the composition of the mappings specified by σ⋆13, σ4, . . ., σn+1; and (2)
the depth of nesting of σ′ is at most n − 1 (since σ⋆13, σ4, . . ., σn+1 are all unnested SO
tgds). Therefore, we conclude that there exists an SO tgd σ′ that is equivalent to σ and
whose depth of nesting is at most n− 1. But then by induction hypothesis, there exists an
unnested SO tgd σ⋆ that is equivalent to σ′ and, hence, there exists an unnested SO tgd σ⋆

that is equivalent to σ. This concludes the proof of the theorem.

8. Concluding Remarks

We have investigated the question of what language is needed to specify the composition of
schema mappings with target constraints. In particular, we showed that st-SO dependencies
(along with appropriate target constraints) are exactly the right language for specifying the
composition of standard schema mappings (those specified by st-tgds, target egds, and
a weakly acyclic set of target tgds). By contrast, we showed that SO tgds, even with
arbitrary source and target constraints, are not rich enough to be able to specify in general
the composition of two standard schema mappings. In addition to their expressive power,
we also showed that st-SO dependencies enjoy other desirable properties. In particular,
they have a polynomial-time chase that generates a universal solution, which can be used
to find the certain answers to unions of conjunctive queries in polynomial time.

We proved the surprising result that SO tgds and st-SO dependencies can be denested:
that is, each such dependency is equivalent to another dependency of that type with no
nested function symbols. These denesting results can be used to “collapse” multiple com-
positions of schema mappings into the composition of two schema mappings of that type.
In particular, we obtain the unexpected result that the composition of an arbitrary number
of st-tgd mappings is equivalent to the composition of only two st-tgd mappings.

Our results gave us two ways to “simplify” the composition of an arbitrary number of st-
tgd mappings. First, we could replace the composition by a single schema mapping, specified
by an unnested SO tgd. Second, we could replace the composition by the composition of
only two st-tgd schema mappings. A similar comment applies to the composition of an
arbitrary number of standard schema mappings.
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