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Abstract. This paper is concerned with the computational complexity of equivalence
and minimisation for automata with transition weights in the ring Q of rational numbers.
We use polynomial identity testing and the Isolation Lemma to obtain complexity bounds,
focussing on the class NC of problems within P solvable in polylogarithmic parallel time.
For finite Q-weighted automata, we give a randomised NC procedure that either outputs
that two automata are equivalent or returns a word on which they differ. We also give an
NC procedure for deciding whether a given automaton is minimal, as well as a randomised
NC procedure that minimises an automaton. We consider probabilistic automata with
rewards, similar to Markov Decision Processes. For these automata we consider two notions
of equivalence: expectation equivalence and distribution equivalence. The former requires
that two automata have the same expected reward on each input word, while the latter
requires that each input word induce the same distribution on rewards in each automaton.
For both notions we give algorithms for deciding equivalence by reduction to equivalence of
Q-weighted automata. Finally we show that the equivalence problem for Q-weighted visibly
pushdown automata is logspace equivalent to the polynomial identity testing problem.

1. Introduction

Probabilistic and weighted automata were introduced in the 1960s, with many fundamen-
tal results established in the papers of Schutzenberger [23] and Rabin [21]. Nowadays
probabilistic automata are widely used in automated verification, natural-language pro-
cessing, and machine learning. In this paper we consider weighted automata over the ring
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(Q,+, ·, 0, 1), which generalise probabilistic automata. Note that we restrict to rational
transition weights to permit effective representation of automata.

Two Q-weighted automata are said to be equivalent if they assign the same weight to
any given word. It has been shown by Schutzenberger [23] and later by Tzeng [28] that
equivalence for Q-weighted automata is decidable in polynomial time. By contrast, the
natural analog of language inclusion, that one automaton accepts each word with weight at
least as great as another automaton, is undecidable [9]. Let us emphasize that we consider
the standard ring structure on Q. For example, for weighted automata over the max-plus
semiring on Q, equivalence is undecidable [2, 18].

In this paper we show that the equivalence problem for Q-weighted automata, and
various extensions thereof, can be efficiently solved by techniques rooted in polynomial
identity testing. We focus on establishing bounds involving complexity classes within the
class P of polynomial-time solvable problems. In particular, we consider the class NC of
problems solvable in polylogarithmic parallel time with polynomially many processors [13]
(see Section 2 for background on complexity theory).

It has long been known that equivalence for Q-weighted automata can be solved in
polynomial time [23, 28]. There is moreover an NC algorithm for solving equivalence [29].
Our first contribution, in Section 3, is a randomised NC algorithm for deciding equivalence,
based on polynomial identity testing. The advantage of using randomisation in this context
is that our algorithm has much lower processor complexity than [29]. The latter performs
quadratically more work than the classical sequential procedure. On the other hand, our
randomised algorithm compared well with the classical sequential algorithm of [23, 28] on
a collection of benchmarks [15].

We also show that our algorithm can be used not just to decide equivalence but also
to generate counterexamples in case of inequivalence. However the counterexample gener-
ation is essentially sequential. We address this deficiency by giving a second randomised
NC algorithm to decide equivalence of automata and output counterexamples in case of
inequivalence. The algorithm is based on the Isolation Lemma, a classical technique in
randomised algorithms that has previously been used, e.g., to derive randomised NC algo-
rithms for matching in graphs [20]. Whether there is a deterministic NC algorithm that
outputs counterexamples in case of inequivalence remains open.

A Q-weighted automaton is minimal if no equivalent automaton has fewer states. Min-
imal automata are unique up to change of basis. In Section 4 we give an NC procedure
to decide if a given automaton is minimal. For the associated function problem, that of
minimising a given automaton, we give a randomised NC procedure. Thus the situation
for minimisation is similar to that for equivalence: the decision problem is in NC whereas
the function problem can only be shown to be in RNC.

In Section 5 we consider probabilistic automata with rewards on transitions, which can
be seen as partially observable Markov decision processes. Rewards (and costs, which can
be considered as negative rewards) are omnipresent in probabilistic modelling for capturing
quantitative effects of probabilistic computations, such as consumption of time, allocation
of memory, energy usage, etc. For these automata we consider a notion of expectation
equivalence, requiring that two automata have the same expected reward on each input word,
and a stronger notion of distribution equivalence, requiring that each word induce the same
distribution on rewards in both automata. In both cases we give decision procedures for
equivalence by reduction to the case of Q-weighted automata, thus inheriting the complexity
bounds established there.
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We present a case study in which costs are used to model the computation time required
by an RSA encryption algorithm, and show that the vulnerability of the algorithm to timing
attacks depends on the equivalence of associated probabilistic reward automata. In [17]
two possible defenses against such timing leaks were suggested. We also analyse their
effectiveness.

In Section 6 we consider pushdown automata. Probabilistic pushdown automata are
a natural model of recursive probabilistic procedures, stochastic grammars and branching
processes [12, 19]. The equivalence problem for deterministic pushdown automata has
been extensively studied [26, 27]. We study the equivalence problem for Q-weighted visibly
pushdown automata (VPA) [3]. In a visibly pushdown automaton the stack operation of a
given transition—whether to pop or push—is determined by the input symbol being read.

We show that the equivalence problem for Q-weighted VPA is logspace equivalent to
Arithmetic Circuit Identity Testing (ACIT), which is the problem of determining equiva-
lence of polynomials presented via arithmetic circuits [1]. Several polynomial-time random-
ized algorithms are known for ACIT, but it is a major open problem whether it can be
solved in polynomial time by a deterministic algorithm. A closely related result is that of
Seidl [25], that equivalence of Q-weighted tree automata is decidable in randomised poly-
nomial time. However [25] does not establish a connection with ACIT in either direction.

2. Preliminaries

2.1. Complexity Classes. Recall that NC is the subclass of P comprising those problems
considered efficiently parallelisable. NC can be defined via parallel random-access machines
(PRAMs), which consist of a set of processors communicating through a shared memory.
A problem is in NC if it can be solved in time (log n)O(1) (polylogarithmic time) on a

PRAM with nO(1) (polynomially many) processors. A more abstract definition of NC is
as the class of languages which have L-uniform Boolean circuits of polylogarithmic depth
and polynomial size. More specifically, denote by NCk the class of languages which have
circuits of depth O(logk n). The complexity class RNC consists of those languages with
randomized NC algorithms. We have the following chain of inclusions, none of which is
known to be strict:

NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC ⊆ RNC ∩P ⊆ P .

We also have NCk ⊆ SPACE(O(logk n)), that is, problems in NC are solvable in polylog-
arithmic space.

Problems in NC include reachability in directed graphs, computing the rank and deter-
minant of an integer matrix, solving linear systems of equations, and the Tree Isomorphism
problem. Problems that are P-hard under logspace reductions include Circuit Value and
Max Flow. Such problems are not in NC unless P = NC. Problems in RNC ∩P include
matching in graphs and max flow in 0/1-valued networks. In both cases these problems
have resisted classification as either being in NC or P-hard. See [13] for more details about
NC and RNC.
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2.2. Linear Algebra. Given an m× n matrix A = (aij) and a k× l matrix B = (bij), the
Kronecker product A⊗B is an km× nl matrix defined by

A⊗B =




a11B · · · a1nB
...

...
am1B · · · amnB




The following is a key property of the Kronecker product :

Proposition 2.1. (A ⊗ B)(C ⊗D) = (AC ⊗ BD) for matrices A,B,C,D of appropriate
dimensions.

Given two m× n matrices A = (aij) and B = (bij), the Hadamard product C = A⊙B
is the m× n matrix defined by cij = aijbij.

2.3. Laurent Polynomials. A Laurent polynomial in variables t1, . . . , tn with coefficients
in Q is an expression of the form p =

∑
i∈I ait

i1
1 . . . tinn , where I ⊆ Zn is a finite set and ai ∈

Q. We say that p has degree bound d if |i1|+ . . .+ |in| ≤ d. We write Q[t1, t
−1
1 , . . . , tn, t

−1
n ]

for the ring of such polynomials, with the usual addition and multiplication operations;
we furthermore write Q(t1, t

−1
1 , . . . , tn, t

−1
n ) for the corresponding field of fractions, whose

elements are quotients of Laurent polynomials.
The following proposition immediately follows from the cofactor formula for matrix

inversion.

Proposition 2.2. Let M be an m×m matrix with entries in Q[t1, t
−1
1 , . . . , tn, t

−1
n ] of degree

bound d. If det(I −M) 6= 0, then I −M is invertible over Q(t1, t
−1
1 , . . . , tn, t

−1
n ), and each

entry of (I−M)−1 can be represented as the quotient of Laurent polynomials, each of degree
bound at most md.

In the situation of Proposition 2.2 we denote (I −M)−1 by M∗.

3. Equivalence of Q-Weighted Automata

Given a field (F,+, ·, 0, 1), an F-weighted automaton A = (n,Σ,M,α,η) consists of a
positive integer n ∈ N representing the number of states, a finite alphabet Σ, a map
M : Σ → Fn×n assigning a transition matrix to each alphabet symbol, an initial (row)
vector α ∈ Fn, and a final (column) vector η ∈ Fn. We extend M to Σ∗ as the matrix
product M(σ1 . . . σk) := M(σ1) · . . . ·M(σk). The automaton A assigns to each word w a
weight A(w) ∈ F, where A(w) := αM(w)η. An automaton A is said to be zero if A(w) = 0
for all w ∈ Σ∗. Two automata B, C over the same alphabet Σ are said to be equivalent if
B(w) = C(w) for all w ∈ Σ∗.

Given two automata B, C that are to be checked for equivalence, one can compute an
automaton A with A(w) = B(w)−C(w) for all w ∈ Σ∗. Then A is zero if and only if B and C
are equivalent. Given B = (n(B),Σ,M (B),α(B),η(B)) and C = (n(C),Σ,M (C),α(C),η(C)), set

A = (n,Σ,M,α,η) with n := n(B) + n(C) and

M(σ) :=

(
M (B)(σ) 0

0 M (C)(σ)

)
, α := (α(B),−α(C)) , η :=

(
η
(B)

η
(C)

)
.

This reduction allows us to focus on zeroness, i.e., the problem of determining whether a
given F-weighted automaton is zero. (Since transition weights can be negative, zeroness is
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not the same as emptiness of the underlying unweighted automaton.) Note that a witness
word w ∈ Σ∗ against zeroness of A is also a witness against the equivalence of B and C.

In the remainder of this section we present two randomised NC2 algorithm algorithms
for deciding equivalence ofQ-weighted automata. The following result from [28] immediately
implies decidability of testing zeroness, and hence equivalence, of Q-weighted automata.

Proposition 3.1. Let F be any field and A = (n,Σ,M,α,η) an F-weighted automaton.
Then: (i) span{αM(w) : w ∈ Σ∗} = span{αM(w) : w ∈ Σ<n}; (ii) if A is not equal to the
zero automaton then there exists a word w ∈ Σ∗ of length at most n−1 such that A(w) 6= 0.

3.1. Algorithm Based on the Schwartz-Zippel Lemma. By Proposition 3.1 a Q-
weighted automaton with n states is zero if and only if its n-bounded language is zero, that
is, it assigns weight zero to all words of length at most n. Inspired by the work of Blum,
Carter and Wegman on free Boolean graphs [5], we represent the n-bounded language of an
automaton by a polynomial in which each monomial represents a word and the coefficient of
the monomial represents the weight of the word. We thereby reduce the zeroness problem to
polynomial identity testing, for which there are a number of efficient randomised procedures.

Let A = (n,Σ,M,α,η) be a Q-weighted automaton. We introduce a family of variables
x = {xσ,i : σ ∈ Σ, 1 ≤ i ≤ n} and associate the monomial xw1,1xw2,2 . . . xwk,k with a word
w = w1w2 . . . wk of length k ≤ n. Then we define the polynomial P (x) by

P (x) :=

n−1∑

k=0

∑

w∈Σk

A(w) · xw1,1xw2,2 . . . xwk,k . (3.1)

It is immediate from Proposition 3.1 that P (x) ≡ 0 if and only if A is zero.
To test whether P (x) ≡ 0 we select a value for each variable xσ,i independently and

uniformly at random from a set of integers of size Kn, for some constant K. Clearly if
P (x) ≡ 0 then this yields the value 0. On the other hand, if P (x) 6≡ 0 then P will evaluate
to a nonzero value with probability at least (K − 1)/K by the following result of De Millo
and Lipton [11], Schwartz [24] and Zippel [30] and the fact that P has degree n− 1.

Theorem 3.2 ([11, 24, 30]). Let F be a field and Q(x1, . . . , xn) ∈ F[x1, . . . , xn] a multi-
variate polynomial of total degree d. Fix a finite set S ⊆ F, and let r1, . . . , rn be chosen
independently and uniformly at random from S. Then

Pr[Q(r1, . . . , rn) = 0 | Q(x1, . . . , xn) 6≡ 0] ≤
d

|S|
.

While the number of monomials in P is proportional to |Σ|n, i.e., exponential in n,
writing

P (x) = α




n∑

i=0

i∏

j=1

∑

σ∈Σ

xσ,j ·M(σ)


 η (3.2)

it is clear that P can be evaluated on a particular set of numerical arguments in time poly-
nomial in n. The formula (3.2) can be evaluated in a forward direction, starting with the
initial state vector α and post-multiplying by the transition matrices, or in a backward
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Algorithm ZERO

Input: Automaton A = (n,Σ,M,α,η)

if αη 6= 0
return “αη = A(ε) 6= 0”

v := η

for i from 1 to n do
choose a random vector r ∈ {1, 2, . . . ,Kn}Σ

v :=
∑

σ∈Σ r(σ)M(σ)v
if αv 6= 0

return “∃w with |w| = i such that A(w) 6= 0”
return “A is zero with probability at least (K − 1)/K”

Figure 1: Algorithm for testing zeroness

Algorithm ZERO+CEX

Input: Automaton A = (n,Σ,M,α,η)

if αη 6= 0
return “αη = A(ε) 6= 0”

v0 := η

for i from 1 to n do
choose a random vector r ∈ {1, 2, . . . ,Kn}Σ

vi :=
(∑

σ∈Σ r(σ)M(σ)
)
vi−1

if αvi 6= 0
w := ε
u := α

for j from i downto 1 do
choose σ ∈ Σ with uM(σ)vj−1 6= 0
w := wσ
u := uM(σ)

return “uη = A(w) 6= 0”
return “A is zero with probability at least (K − 1)/K”

Figure 2: Algorithm for testing zeroness, with counterexamples

direction, starting with the final state vector η and pre-multiplying by the transition ma-
trices. In either case we get a polynomial-time Monte-Carlo algorithm for testing zeroness
of Q-weighted automata. The backward variant is shown in Figure 1.

The algorithm runs in time O(n · |M |), where |M | is the number of nonzero entries in
all M(σ), provided that sparse-matrix representations are used. In a set of case studies this
randomised algorithm outperformed deterministic algorithms [15].

We can obtain counterexamples from the randomised algorithm by exploiting the self-
reducible structure of the equivalence problem. We generate counterexamples incrementally,
starting with the empty string and using the randomised algorithm as an oracle to know at
each stage what to choose as the next letter in our counterexample. For efficiency reasons
it is important to avoid repeatedly running the randomised algorithm. In fact, as shown in
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Figure 2, this can all be made to work with some post-processing following a single run of
the randomised procedure.

To evaluate the polynomial P (x) we substitute a set of randomly chosen rational values
r = {rσ,i : σ ∈ Σ, 1 ≤ i ≤ n} into Equation (3.2). Here we generalize this to a notion
of partial evaluation Pw(r) of polynomial P with respect to values r and a word w ∈ Σm,
m ≤ n. We define

Pw(r) = αM(w)




n∑

i=m

i∏

j=m+1

∑

σ∈Σ

rσ,j M(σ)


η . (3.3)

Notice that Pε(r) = P (r), where ε is the empty word, and, at the other extreme, Pw(r) =
A(w) for any word w of length n.

Proposition 3.3. Suppose that w ∈ Σm, where m < n. If Pw(r) 6= 0 then either A(w) 6= 0
or Pwσ(r) 6= 0 for some σ ∈ Σ.

Proof. We prove the contrapositive: if A(w) = 0 and Pwσ(r) = 0 for each σ ∈ Σ, then
Pw(r) = 0. This immediately follows from the equation

Pw(r) = A(w) +
∑

σ∈Σ

rσ,m+1 Pwσ(r) .

This equation is established from the definition of Pw(r) as follows:

Pw(r) = αM(w)




n∑

i=m

i∏

j=m+1

∑

σ∈Σ

rσ,j M(σ)


η

= A(w) +αM(w)




n∑

i=m+1

i∏

j=m+1

∑

σ∈Σ

rσ,j M(σ)


η

= A(w) +
∑

σ∈Σ

rσ,m+1 αM(wσ)




n∑

i=m+1

i∏

j=m+2

∑

σ∈Σ

rσ,j M(σ)


 η

= A(w) +
∑

σ∈Σ

rσ,m+1 Pwσ(r) .

From Proposition 3.3 it is clear that the algorithm in Figure 2 generates a counterex-
ample trace given r such that P (r) 6= 0.

The algorithm in Figure 1 can be parallelised, yielding an RNC algorithm, as iterated
products of matrices can be computed in NC. On the other hand, the algorithm in Fig-
ure 2 yields a counterexample, but apparently cannot be parallelised efficiently because the
counterexample is produced incrementally.

3.2. Algorithm Based on the Isolating Lemma. We now develop a randomised NC2

procedure that can produce a counterexample in case of inequivalence. To this end we
employ the Isolating Lemma of Mulmuley, Vazirani and Vazirani [20]. We use this lemma
in a very similar way to [20], who are concerned with computing maximum matchings in
graphs in RNC.
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Lemma 3.4. Let F be a family of subsets of a set {x1, . . . , xN}. Suppose that each element
xi is assigned a weight wi chosen independently and uniformly at random from {1, . . . , 2N}.
Define the weight of S ∈ F to be

∑
xi∈S

wi. Then the probability that there is a unique

minimum weight set in F is at least 1/2.

We will apply the Isolating Lemma in conjunction with Proposition 3.1 to decide ze-
roness of a Q-weighted automaton A. Suppose A has n states and alphabet Σ. Given σ ∈ Σ
and 1 ≤ i ≤ n, choose a weight wi,σ independently and uniformly at random from the set

{1, . . . , 2|Σ|n}. Define the weight of a word u = σ1 . . . σk, k ≤ n, to be wt(u) :=
∑k

i=1wi,σi
.

(The reader should not confuse this with the weight A(u) assigned to u by the automa-
ton A.) Then we obtain a univariate polynomial P from automaton A as follows:

P (x) =

n∑

k=0

∑

u∈Σk

A(u)xwt(u) .

If A is equivalent to the zero automaton then clearly P ≡ 0. On the other hand, if
A is non-zero, then by Proposition 3.1 the set F = {u ∈ Σ≤n : A(u) 6= 0} is non-empty.
Thus there is a unique minimum-weight word u ∈ F with probability at least 1/2 by the
Isolating Lemma. In this case P contains the monomial xwt(u) with coefficient A(u) as its
smallest-degree monomial. Thus P 6≡ 0 with probability at least 1/2.

It remains to observe that from the formula

P (x) = α




n∑

i=0

i∏

j=1

∑

σ∈Σ

M(σ)xwj,σ


η

and the fact that iterated products of matrices of univariate polynomials can be computed in
NC2 [10] we obtain an RNC algorithm for determining zeroness of Q-weighted automata.

It is straightforward to extend the above algorithm to obtain an RNC procedure that
not only decides zeroness of A but also outputs a word u such that A(u) 6= 0 in case A is
non-zero. Assume that A is non-zero and that the random choice of weights has isolated
a unique minimum-weight word u = σ1 . . . σk such that A(u) 6= 0. To determine whether
σ ∈ Σ is the i-th letter of u we can increase the weight wi,σ by 1 while leaving all other
weights unchanged and recompute the polynomial P (x). Then σ is the i-th letter in u if
and only if the minimum-degree monomial in P changes. All of these tests can be done
independently, yielding an RNC procedure.

Theorem 3.5. Given two Q-weighted automata A and B, there is an RNC procedure
that determines whether or not A and B are equivalent and that outputs a word w with
A(w) 6= B(w) in case A and B are inequivalent.

From a practical perspective, the algorithm is less efficient than those from the previous
subsection, as it requires computations on univariate polynomials rather than on mere
numbers.

4. Minimisation of Q-Weighted Automata

A Q-weighted automaton is minimal if there is no equivalent automaton with strictly fewer
states. It is known that minimal automata are unique up to a change of basis [7]. In this
section we give an NC algorithm to decide whether a given Q-weighted automaton A is
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minimal. We also give an RNC algorithm that computes a minimal automaton equivalent
to a given Q-weighted automaton A.

4.1. Deciding Minimality. Let A = (n,Σ,M,α,η) be an automaton. Define the (infi-
nite) matrix F to have rows indexed by Σ∗ and columns indexed by {1, . . . , n}, with the row
indexed by w ∈ Σ∗ being the vector αM(w). The forward space F is defined to be the row
space of F . Similarly define the matrix B to have rows indexed by {1, . . . , n} and columns
indexed by Σ∗, with the column indexed by w ∈ Σ∗ being the vector M(w)η. The backward
space B is defined to be the column space of B. The product H = FB is called the Hankel
matrix ; it has rows and columns indexed by Σ∗ with Hx,y = αM(x)M(y)η = A(xy). By
linear algebra we have rank(H) ≤ min{rank(F ), rank(B)} ≤ n. A fundamental result [7] is
that the above inequalities are tight precisely when A is minimal:

Proposition 4.1 (Carlyle and Paz). An automaton A with n states is minimal if and only
if the Hankel matrix H has rank n.

Using this result we show

Theorem 4.2. Deciding whether a Q-weighted automaton is minimal is in NC.

Proof. To check that a given automaton A = (n,Σ,M,α,η) is minimal it suffices to verify
that the associated Hankel matrix H has rank n. Since H = FB, this holds if and only if
the matrices F and B both have rank n. We show how to check that F has rank n; the
procedure for B is entirely analogous.

Let F̃ be the sub-matrix of F obtained by retaining only those rows indexed by words

in Σ<n. By Proposition 3.1(i) we have rank(F ) = rank(F̃ ). Thus

rank(F ) = n ⇔ rank(F̃ ) = n

⇔ ker(F̃ ) = {0}

⇔ ker(F̃ T F̃ ) = {0}

⇔ det(F̃ T F̃ ) 6= 0 .

The middle equivalence holds because for any vector x ∈ Qn, F̃ T F̃ x = 0 implies 0 =

xT F̃ T F̃ x = (F̃ x)T F̃ x, which in turn implies that F̃ x = 0.
Since determinants can be computed in NC it only remains to show that we can

compute each entry of the n × n matrix F̃ T F̃ in NC. Let ei ∈ Qn be the column vector
with 1 in the i-th position and 0 in all other positions. Given 1 ≤ i, j ≤ n we have

(F̃ T F̃ )ij =
∑

w∈Σ<n

(αM(w)ei)(αM(w)ej)

=
∑

w∈Σ<n

(α⊗α)(M(w) ⊗M(w))(ei ⊗ ej)

= (α⊗α)




n−1∑

k=0

∑

w∈Σk

(M(w) ⊗M(w))


 (ei ⊗ ej)

= (α⊗α)




n−1∑

k=0

(
∑

σ∈Σ

(M(σ) ⊗M(σ))

)k

 (ei ⊗ ej) .
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Algorithm Forward-Basis

Input: Automaton A = (n,Σ,M,α,η) and error parameter K

for i from 1 to n do
choose a random vector r(i) ∈ {1, 2, . . . ,Kn}Σ×n

vi := ρ(r(i))
let k be maximum such that {v1, . . . ,vk} is linearly independent
return “{v1, . . . ,vk} is a basis of F”

Figure 3: Algorithm for generating a basis of the forward space

But this last expression can be computed in NC since sums and matrix powers can be
computed in NC [10].

4.2. Minimising an Automaton. Next we give an RNC algorithm to minimise a given
automaton. The key idea is that we can compute a basis of the forward space F by generating
random vectors in the space. We show that a randomly generated set of such vectors of
cardinality equal to the dimension of F is likely to be a basis of F. We can likewise compute
a basis of the backward space B. We give the construction of the forward space; the proof
for the backward space is similar.

The construction involves an application of polynomial identity testing in similar man-
ner to Section 3.1. Consider again a family of variables x = {xσ,i : σ ∈ Σ, 1 ≤ i ≤ n} and
associate the monomial xw1,1xw2,2 . . . xwk,k with a word w = w1w2 . . . wk. Then we define
the row vector ρ(x) ∈ Q[x]n by

ρ(x) :=

n∑

k=0

∑

w∈Σk

αM(w) · xw1,1xw2,2 . . . xwk,k . (4.1)

Note that evaluating ρ(x) at a vector of rationals r = (rσ,i : σ ∈ Σ, 1 ≤ i ≤ n) yields a
vector ρ(r) in the forward space F.

Proposition 4.3. Let U be a proper subspace of F and let K be a positive integer. Then
for r chosen uniformly at random from {1, . . . ,Kn}Σ×n we have Pr(ρ(r) ∈ U) ≤ 1/K.

Proof. Pick a non-zero vector v ∈ F that is orthogonal to U. Notice that the polynomial
ρ(x)vT is non-zero since the coefficient of the monomial corresponding to a word w ∈ Σ<n is
αM(w)vT , and this is clearly non-zero for at least one w. Now ρ(r) ∈ U only if ρ(r)vT = 0.
Since ρ(x)vT has degree at most n, it follows from Theorem 3.2 that Pr(ρ(r) ∈ U) is at
most 1/K.

The procedure to generate a basis for the forward space F is shown in Figure 3. The
algorithm Forward-Basis necessarily returns a linearly independent set of vectors in the
forward space. It only fails to output a basis if vm+1 ∈ span{v1, . . . ,vm} for some m <
dim(F). By Proposition 4.3 this happens with probability at most 1/K for any given m, so
the total probability that Forward-Basis does not give a correct output is at most n/K.
Thus, e.g., choosing K = 3n we have an error probability of at most 1/3.

It remains to observe that Forward-Basis can be made to run in O(log2 n) parallel

time. We perform the assignments vi := ρ(r(i)) for i = 1, . . . , n in parallel. As observed

in Section 3.1, the computation of ρ(r(i)) involves an iterated matrix product, which can
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be done in O(log2 n) parallel time. We also check linear independence of {v1, . . . ,vk} for
k = 1, . . . , n in parallel. Each check involves computing the rank of an k× n matrix, which
can again be done in O(log2 n) parallel time [14].

Given bases of F and B, minimisation proceeds via a classical construction of Schützen-
berger [23]. We briefly recall this construction and show that it can be implemented in
NC by making one call to algorithm Forward-Basis and one call to the corresponding
backward version of this algorithm.

Let −→n ∈ N and
−→
F ∈ Q

−→n×n be such that the rows of
−→
F form a basis of the forward

space F, with the first row of
−→
F being α. Similarly, let ←−n ∈ N and

←−
B ∈ Qn×←−n be such that

the columns of
←−
B form a basis of the backward space B, with the first column of

←−
B being

η. Since FM(σ) ⊆ F and M(σ)B ⊆ B for all σ ∈ Σ, there exist maps
−→
M : Σ→ Q

−→n×−→n and
←−
M : Σ→ Q

←−n×←−n such that
−→
F M(σ) =

−→
M(σ)

−→
F and M(σ)

←−
B =

←−
B
←−
M (σ) for all σ ∈ Σ. (4.2)

Call
−→
A := (−→n ,Σ,

−→
M,e1,

−→
F η) a forward reduction of A with base

−→
F and similarly

←−
A :=

(←−n ,Σ,
←−
M,α

←−
B,eT1 ) a backward reduction of A with base

←−
B .

Proposition 4.4 ( [23]). Let A be an automaton. Then
−→←−
A is minimal and equivalent to A.

Theorem 4.5. There is an RNC algorithm that transforms a given automaton into an
equivalent minimal automaton.

Proof. Let A = (n,Σ,M,α,η) be an automaton. We have already shown that we can

compute in randomised NC a matrix
−→
F whose rows form a basis of the forward space of

A. Given
−→
F we can compute the forward reduction

−→
A in NC since each transition matrix

−→
M(σ) is uniquely defined as the solution to the linear system of equations (4.2). Using

the same reasoning we can compute
−→←−
A from

−→
A in randomised NC. This is the minimal

automaton that we seek.

5. Probabilistic Reward Automata

In this section we consider probabilistic reward automata, which extend Rabin’s probabilistic
automata [21] with rewards on transitions. The resulting notion can be seen as a type of
partially observable Markov Decision Process [4]. A similar model has been investigated
from the point of view of language theory in [8]. Rewards are allowed to be negative, in
which case they can be seen as costs. In Example 5.5 we use costs to record the passage of
time in an encryption protocol.

A Probabilistic Reward Automaton is a tuple A = (n, s,Σ,M,R,α,η), where n ∈ N is
the number of states; s ∈ N is the number of types of reward; Σ is a finite alphabet, M(σ)
is an n × n rational sub-stochastic matrix for each σ ∈ Σ; R(σ) is an n × n matrix with
entries in {−1, 0, 1}s for each σ ∈ Σ; α is an n-dimensional rational stochastic row vector;
η is a rational n-dimensional column vector with all entries lying in the interval [0, 1]. We
think of M(σ) as the transition matrix, R(σ) as the reward matrix, α as the initial-state
vector, and η as the final-state vector.

The total reward of a run is the sum of the rewards along all its transitions. The
expected reward of a word is the sum of the rewards of all runs over that word, weighted by
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their respective probabilities. Formally, given a word w = w1, . . . , wk and a path of states
p = p0, . . . , pk, the probability and total reward of the path are respectively defined by

Pr(p) = αp0

(
k∏

i=1

M(σ)pi−1,pi

)
ηpk

and Reward(p) =

k∑

i=1

R(wi)pi−1,pi .

The value of the word w is the expected reward over all runs:

A(w) =
∑

p∈{1,...,n}k+1

Pr(p) ·Reward(p) . (5.1)

5.1. Expectation Equivalence. Two probabilistic reward automata A and B over the
same alphabet Σ are defined to be equivalent in expectation if A(w) = B(w) for all words w ∈
Σ∗. In this section we give a simple reduction of the equivalence problem for probabilistic
reward automata to the equivalence problem for Q-weighted automata. The idea is to
combine transition probabilities and rewards in a single matrix. Without loss of generality
we consider automata with a single type of reward; the general problem can be reduced to
this by considering each component separately.

Let A = (n,Σ,M,R,α,η) be a probabilistic reward automaton. We define a Q-
weighted automaton B = (2n,Σ,M ′,α′,η′) such that A(w) = B(w) for each word w ∈ Σ∗.
First we introduce the following matrices:

A =
[
1 0

]
E =

[
0
1

]
C =

[
0 1
0 0

]

We also write In for the n× n identity matrix. Now we define

α
′ := α⊗A

η
′ := η ⊗ E

M ′(σ) := (M(σ) ⊗ I2) + ((M(σ) ⊙R(σ))⊗ C)

where ⊗ denotes Kronecker product and ⊙ denotes Hadamard product (cf. Section 2.2).

Proposition 5.1. A(w) = B(w) for all words w ∈ Σ∗.

Proof. We show by induction that for all words w ∈ Σ∗ we have

M ′(w) = (M(w)⊗ I2) +

(
∑

w′,w′′

w=w′aw′′

(M(w′)(M(a)⊙R(σ))M(w′′))⊗ C

)
. (5.2)

The base case, w = ε, is clear. For the induction step we have

M ′(wσ) = M ′(w)M ′(σ)

= (M(w) ⊗ I2)(M(σ) ⊗ I2) + (M(w) ⊗ I2)((M(σ) ⊙R(σ)) ⊗ C)

+

(
∑

w′,w′′

w=w′aw′′

(M(w′)(M(a) ⊙R(σ))M(w′′))⊗ C

)
(M(σ)⊗ I2)

+

(
∑

w′,w′′

w=w′aw′′

(M(w′)(M(a) ⊙R(σ))M(w′′))⊗ C

)
((M(σ) ⊙R(σ)) ⊗ C)
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But using Proposition 2.1 and the identity C2 = 0, the above expression simplifies to

(M(wσ) ⊗ I2) +

(
∑

w′,w′′

wσ=w′aw′′

(M(w′)(M(a)⊙R(σ))M(w′′))⊗ C

)
.

This completes the induction step.
Using Proposition 2.1 and the fact that AE = 0 and ACE = I1 it follows from (5.2)

that

B(w) = α
′M ′(w)η′ =

∑

w′,w′′

w=w′aw′′

α(M(w′)(M(a)⊙R(a))M(w′′))η

=

k∑

i=1

∑

p∈{1,...,n}k+1

αp0




k∏

j=1

M(wj)pj−1,pj R(wi)pi−1,pi


 ηpk .

But the equivalence of the above expression and (5.1) follows from distributivity of multi-
plication over addition.

Corollary 5.2. Expectation equivalence of probabilistic reward automata can be decided in
NC. Moreover there is an RNC procedure that determines whether or not two automata
are equivalent and outputs a word on which they differ in case they are inequivalent.

Proof. The first part follows by combining Proposition 5.1 with the NC algorithm for
Q-weighted automaton equivalence in [29]. The second part follows by combining Proposi-
tion 5.1 with Theorem 3.5.

5.2. Distribution Equivalence. Two probabilistic reward automata are called distribu-
tion equivalent if they induce identical distributions on rewards for each input word w ∈ Σ∗.
We formalise this notion by translating probabilistic reward automata into Q-weighted au-
tomata over the field F = Q(t1, t

−1
1 , . . . , ts, t

−1
s ) of rational Laurent functions, as defined in

Section 2. We consider ε-transitions in this section because they are convenient for applica-
tions (cf. Example 5.4) and because we cannot rely on existing ε-elimination results in the
presence of rewards.

Let A = (n, s,Σ,M,R,α,η) be a probabilistic reward automaton, where ε ∈ Σ. To
make ε-elimination more straightforward, we assume that the transition matrix M(ε) has
no recurrent states, i.e., that its spectral radius is strictly less than one. We now define an
F-weighted automaton A′ = (n,Σ,M ′,α,η) as follows. For 1 ≤ i, j ≤ n, let M ′(σ)i,j =

atk11 . . . , tkss , where M(σ)i,j = a and R(σ)i,j = (k1, . . . , ks). We extend M ′ to a map M ′ :
Σ∗ → Fn×n by defining

M ′(w) := M ′(ε)∗M ′(w1)M
′(ε)∗ · · ·M ′(wm)M ′(ε)∗ (5.3)

for a word w = w1 . . . wm. Our convention on ε-transitions implies that det(I −M ′(ε)) 6=
0 and therefore, by Proposition 2.2, that M ′(ε)∗ is well-defined and has entries whose
numerators and denominators are Laurent polynomials with degree bound sn. It follows
that the entries of M ′(w) have degree bound (sn+ 1)m.
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Two probabilistic reward automata B, C over the same alphabet Σ and with the same
number of reward types are said to be equivalent if the corresponding F-weighted au-
tomata B′ and C′ are equivalent, i.e., B′(w) = C′(w) for all words w ∈ Σ∗. Now Propo-
sition 3.1 implies that equivalence for F-weighted automata is decidable, but the algo-
rithms of Schützenberger [23] and Tzeng [28] do not yield polynomial-time procedures
in our case because the complexity of solving systems of linear equations over the field
Q(t1, t

−1
1 , . . . , ts, t

−1
s ) is not polynomial in s (indeed the solution need not have length ex-

ponential in s). However, it not difficult to give a randomised polynomial-time algorithm
to decide equivalence of probabilistic reward automata.

Let A′ be the F-weighted automaton corresponding to a probabilistic reward automaton
A with n states. For each word w ∈ Σ∗ of length at most n we have a rational function
A′(w) whose numerator and denominator are polynomials of degree at most d := (sn+1)n,
as observed above. Now consider the set R := {1, 2, . . . , 2d}s. Suppose that we pick
r ∈ R uniformly at random. Denote by A′(w)(r) the result of substituting r for the formal
variables t1, . . . , ts in the rational function A′(w). Clearly if A′ is a zero automaton then
A′(w)(r) = 0 for all r ∈ R. On the other hand, if A′ is non-zero then by Proposition 3.1
there exists a word w ∈ Σ∗ of length at most n such that A′(w) 6≡ 0. Since the degree of
the rational expression A′(w) is at most d it follows from the Schwartz-Zippel theorem [11,
24, 30] that the probability that A(w)(r) = 0 is at most 1/2.

Thus our randomised procedure is to pick r ∈ R uniformly at random and to check
whether A(w)(r) = 0 for some w ∈ Σ∗. To perform this final check we show that there
is a Q-weighted automaton B such that A′(w)(r) = B(w) for all w ∈ Σ∗. Then check
B for zeroness using, e.g., Tzeng’s algorithm [28]. The automaton B has the form B =

(n(B),Σ,M (B),α(B),η(B)), where n(B) = n, α(B) = α, η(B) = η and M (B)(σ) = M(σ)(r)
for all σ ∈ Σ.

Theorem 5.3. There is an RNC procedure that determines whether or not two probabilistic
reward automata are distribution equivalent, and which outputs a word on which they differ
in case they are inequivalent.

Example 5.4. We consider probabilistic programs that randomly increase and decrease
a single counter (initialised with 0) so that upon termination the counter has a random
value X ∈ Z. The programs should be such that X is a random variable with X =
Y −Z where Y and Z are independent random variables with a geometric distribution with
parameters p = 1/2 and p = 1/3, respectively. (By that we mean that Pr(Y = k) = (1−p)kp
for k ∈ {0, 1, . . .}, and similarly for Z.) Figure 4 shows code in the syntax of the apex

tool [16].
The program on the left consecutively runs two while loops: it first increments the

counter according to a geometric distribution with parameter 1/2 and then decrements
the counter according to a geometric distribution with parameter 1/3, so that the final
counter value is distributed as desired. The program on the right is more efficient in that
it runs only one of two while loops, depending on a single coin flip at the beginning. It
may not be obvious though that the final counter value follows the same distribution as
in the left program. We used the apex tool to translate the programs to the probabilistic
reward automata B and C shown in Figure 5. Here each counter increment corresponds to
a reward of 1 and each counter decrement to a reward of −1. Since the input alphabets are
empty, it suffices to consider the input word ε when comparing B and C for equivalence.
If we construct the difference automaton A = (5, 1, ∅,M,α,η) and invert the matrix of



ON THE COMPLEXITY OF EQUIVALENCE AND MINIMISATION FOR Q-WEIGHTED AUTOMATA 15

inc:com, dec:com |-

var%2 flip;

flip := 0;

while (flip = 0) do {

flip := coin[0:1/2,1:1/2];

if (flip = 0) then {

inc;

};

};

flip := 0;

while (flip = 0) do {

flip := coin[0:2/3,1:1/3];

if (flip = 0) then {

dec;

};

}

:com

inc:com, dec:com |-

var%2 flip;

flip := coin[0:1/2,1:1/2];

if (flip = 0) then {

while (flip = 0) do {

flip := coin[0:1/2,1:1/2];

if (flip = 0) then {

inc;

};

};

} else {

flip := 0;

while (flip = 0) do {

dec;

flip := coin[0:2/3,1:1/3];

};

}

:com

Figure 4: Two apex programs for producing a counter that is distributed as the difference
between two geometrically distributed random variables.

1, 16 2, 13

ε
1
2 : inc

ε
2
3 : dec

ε
1
3 : dec

1, 14

2, 12

3, 13

ε

1
4
: inc

ε
1
2 : inc

ε
1
2 : dec

ε
2
3 : dec

(B) (C)

Figure 5: Automata produced from the code in Figure 4. The states are labelled with their
number and their “acceptance probability” (η-weight). In both automata, state 1
is the only initial state (α1 = 1 and αi = 0 for i 6= 1). The transitions are labelled
with the input symbol ε, with a probability (weight) and a cost.

polynomials I −M(ε), we obtain

A(ε)(x) =

(
2

x− 2
,

2

(3x− 2)(x − 2)
, 1,

−x

2(x− 2)
,

3

2(3x− 2)

)
η ≡ 0 ,
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which proves equivalence of B and C. Notice that the actual algorithm would not compute
A(ε)(x) as a polynomial, but it would compute A(ε)(r) only for a few concrete values r ∈ Q.

Example 5.5. RSA [22] is a widely-used cryptographic algorithm. Popular implementa-
tions of the RSA algorithm have been shown to be vulnerable to timing attacks that reveal
private keys [17, 6]. The preferred countermeasures are blinding techniques that randomise
certain aspects of the computation, which are described in, e.g., [17]. We model the timing
behaviour of the RSA algorithm using probabilistic cost automata, where costs encode time.
These automata are produced by apex, and are then used to check for timing leaks with
and without blinding.

At the heart of RSA decryption is a modular exponentiation, which computes the value
md mod N where m ∈ {0, . . . , N − 1} is the encrypted message, d ∈ N is the private
decryption exponent and N ∈ N is a modulus. An attacker wants to find out d. We model
RSA decryption in apex by implementing modular exponentiation by iterative squaring
(see Figure 6). We consider the situation where the attacker is able to control the message
m, and tries to derive d by observing the runtime distribution over different messages m.
Following [17] we assume that the running time of multiplication depends on the operand
values (because a source-level multiplication typically corresponds to a cascade of processor-
level multiplications). By choosing the ‘right’ input message m, an attacker can observe
which private keys are most likely.

We consider two blinding techniques mentioned in Kocher [17]. The first one is base
blinding, i.e., the message is multiplied by rd before exponentiation where d is a random
number, which gives a result that can be fixed by dividing by r but makes it impossible
for the attacker to control the basis of the exponentiation. The second one is exponent
blinding, which adds a multiple of the group order ϕ(N) of Z/NZ to the exponent, which
doesn’t change the result of the exponentiation1 but changes the timing behaviour.

Figure 7 shows the automaton for N = 10, and private key 0, 1, 0, 1 with message
blinding enabled. The apex program is given in Figure 6.

We investigate the effectiveness of blinding. Two private keys are indistinguishable if
the resulting automata are equivalent. The more keys are indistinguishable the safer the
algorithm. We analyse which private keys are identified by plain RSA, RSA with a blinded
message and RSA with blinded exponent.

For example, in plain RSA, the following keys 0, 1, 0, 1 and 1, 0, 0, 1 are indistinguish-
able, keys 0, 1, 1, 0 and 0, 0, 1, 1 are indistinguishable with base blinding, lastly 1, 0, 0, 1 and
1, 0, 1, 1 are equivalent only with exponent blinding. Overall 9 different keys are distinguish-
able with plain RSA, 7 classes with base blinding and 4 classes with exponent blinding.

6. Pushdown Automata and Arithmetic Circuits

In a visibly pushdown automaton [3] the stack operations are determined by the input word.
Consequently VPA have a more tractable language theory than ordinary pushdown au-
tomata. The main result of this section shows that the equivalence problem for Q-weighted
VPA is logspace equivalent to the problem ACIT of determining whether a polynomial
represented by an arithmetic circuit is identically zero.

1Euler’s totient function ϕ satisfies aϕ(N) ≡ 1 mod N for all a ∈ Z.
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const N := 10; // modulus

const Bits := 4 ; // number of bits of the key

m :int%N, inc:com |-

var%2 exponent[Bits] = [0,1,0,1];

com power(x:int%N) {

var%N s := 1;

var%N R;

for(var%(Bits + 1) k; k < Bits; ++k) do {

R:=s;

if(exponent[k]) then {

R := R*x;

if(5<=R) then { inc; inc } else { inc }

}

s := R*R;

}

}

var%N message := m*rand[N]; // blinding

power(message) : com

Figure 6: apex code for RSA.

0 5

	 0 _ m ,  1

6

	 1 _ m ,  1

	 3 _ m ,  1

	 7 _ m ,  1

	 9 _ m ,  1

7
	 5 _ m ,  1

8

	 2 _ m ,  1

	 4 _ m ,  1

	 6 _ m ,  1

	 8 _ m ,  1

4

	 i n c ,  1

	 i n c ,  1 / 5

1

	 i n c ,  1 / 5

	 i n c ,  3 / 1 0

9

	 i n c ,  3 / 1 0

	 i n c ,  1 / 2

	 i n c ,  1 / 2

	 i n c ,  1 / 5

	 i n c ,  1 / 5

	 i n c ,  2 / 5

	 i n c ,  1 / 5

	 i n c ,  1

(0 ,1)3
	 i n c ,  1	 i n c ,  1

	 i n c ,  1

Figure 7: Modeling RSA decryption with apex.

A visibly pushdown alphabet Σ = Σc∪Σr∪Σint consists of a finite set of calls Σc, a finite
set of returns Σr, and a finite set of internal actions Σint . A visibly pushdown automaton
over alphabet Σ is restricted so that it pushes onto the stack when it reads a call, pops the
stack when it reads a return, and leaves the stack untouched when reading internal actions.
Due to this restriction visibly pushdown automata only accept words in which calls and
returns are appropriately matched. Define the set of well-matched words to be

⋃
i∈N Li,

where L0 = Σint + {ε} and Li+1 = ΣcLiΣr + LiLi.
A Q-weighted visibly pushdown automaton on alphabet Σ is a tuple A = (n,α,η,Γ,M),

where n is the number of states, α is an n-dimensional initial (row) vector, η is an n-
dimensional final (column) vector, Γ is a finite stack alphabet, and M = (Mc,Mr,Mint ) is a



18 S. KIEFER, A.S. MURAWSKI, J. OUAKNINE, B. WACHTER, AND J. WORRELL

tuple of matrix-valued transition functions with types Mc : Σc×Γ→ Qn×n, Mr : Σr ×Γ→
Qn×n and Mint : Σint → Qn×n. If a ∈ Σc and γ ∈ Γ then Mc(a, γ)i,j gives the weight of an
a-labelled transition from state i to state j that pushes γ on the stack. If a ∈ Σr and γ ∈ Γ
then Mr(a, γ)i,j gives the weight of an a-labelled transition from state i to j that pops γ
from the stack.

For each well-matched word u ∈ Σ∗ we define an n× n rational matrix M (A)(u) whose
(i, j)-th entry denotes the total weight of all paths from state i to state j along input u.

The definition of M (A)(u) follows the inductive definition of well-matched words. The base

cases are M (A)(ε) = I and M (A)(a)i,j = Mint(a)i,j . The inductive cases are

M (A)(uv) = M (A)(u) ·M (A)(v) (6.1)

M (A)(aub) =
∑

γ∈Γ

Mc(a, γ) ·M
(A)(u) ·Mr(b, γ) , (6.2)

for a ∈ Σc, b ∈ Σr.
The weight assigned by A to a well-matched word w is defined as A(w) := αM (A)(u)η.

We say that two Q-weighted VPA A and B are equivalent if for each well-matched word w
we have A(w) = B(w).

An arithmetic circuit is a finite directed acyclic multigraph whose vertices, called gates,
have indegree 0 or 2. Vertices of indegree 0 are called input gates and are labelled with a
constant 0 or 1, or a variable from the set {xi : i ∈ N}. Vertices of indegree 2 are called
internal gates and are labelled with one of the arithmetic operations +, ∗ or −. We assume
that there is a unique gate with outdegree 0 called the output. Note that C is a multigraph,
so there can be two edges between a pair of gates, i.e., both inputs to a given gate can lead
from the same source. We call a circuit variable-free if all inputs gates are labelled 0 or 1.

The Arithmetic Circuit Identity Testing (ACIT) problem asks whether the output of a
given circuit is equal to the zero polynomial. ACIT is known to be in coRP but it remains
open whether there is a polynomial or even sub-exponential algorithm for this problem [1].
Utilising the fact that a variable-free arithmetic circuit of size O(n) can compute 22

n

,
Allender et al. [1] give a logspace reduction of the general ACIT problem to the special
case of variable-free circuits. Henceforth we assume without loss of generality that all
circuits are variable-free. Furthermore we recall that ACIT can be reformulated as the
problem of deciding whether two variable-free circuits using only the arithmetic operations
+ and ∗ compute the same number [1].

We have the following proposition:

Proposition 6.1. ACIT is logspace reducible to the equivalence problem for Q-weighted
visibly pushdown automata.

Proof. Let C and C ′ be two circuits over basis {+, ∗}. Without loss of generality we assume
that in each circuit the inputs of a depth-i gate both have depth i+ 1, +-nodes have even
depth, ∗-nodes have odd depth, and input nodes all have the same depth d. Notice that in
either circuit any path from an input gate to an output gate has length d.

We define two automata A and A′ that are equivalent if and only if C and C ′ have the
same output. Both automata are defined over the alphabet {c, r, ι}, with c a call, r a return
and ι an internal event. We explain how A arises from C; the definition of A′ is entirely
analogous.



ON THE COMPLEXITY OF EQUIVALENCE AND MINIMISATION FOR Q-WEIGHTED AUTOMATA 19

Suppose that C has set of gates {g0, g1, . . . , gn}, with g0 the output gate. For each gate
gi of C we include a state si of A and a stack symbol γi. The initial state of A is s0, and
all states are accepting. The transitions of A are defined as follows:

• For each +-gate gi := gj + gk in C we include an internal transition from si that goes to
sj with probability 1/2 and to sk with probability 1/2.
• For each ∗-gate gi := gj ∗ gk we include a probability-1 call transition from si to sj that
pushes γk onto the stack.
• An input gate gi with label 0 contributes no transitions.
• For each input gate gi with label 1 and each stack symbol γj, we include a return transition
from si that pops γj off the stack and ends in state sj with probability 1.

Recall that acceptance is by empty stack and final state. By construction A only accepts
a single word, as we now explain. Define a sequence of words wn ∈ {c, r, ι}

∗ by w0 = ι,
wn+1 = ιwn for n even, and wn+1 = cwnrwn for n odd. Furthermore, write M0 = 1,
Mn+1 = 2Mn for n even, and Mn+1 = M2

n for n odd. Then A accepts wd with probability
N/Md, where d is the depth of the circuit C and N is output of C. All other words are
accepted with probability 0. We conclude that C and C ′ have the same value if and only if
A and A′ are equivalent.

In the remainder of this section we give a converse reduction: from equivalence of Q-
weighted VPA to ACIT. The following result gives a decision procedure for the equivalence
of two Q-weighted VPA A and B.

Proposition 6.2. A is equivalent to B if and only if A(w) = B(w) for all words w ∈ Ln2,
where n is the sum of the number of states of A and the number of states of B.

Proof. Recall that for each balanced word u ∈ Σ∗ we have rational matrices M (A)(u) and

M (B)(u) giving the respective state-to-state transition weights of A and B on reading u.
These two families of matrices can be combined into a single family

M =

{(
M (A)(u) 0

0 M (B)(u)

)
: u well-matched

}

of n×nmatrices. Let us also writeMi for the subset ofM generated by those well-matched
words u ∈ Li.

Let α(A),η(A) and α
(B),η(B) be the respective initial and final-state vectors of A and

B. Then A is equivalent to B if and only if

( α
(A)

α
(B) )M

(
η
(A)

−η(B)

)
= 0 (6.3)

for all M ∈ M. It follows that A is equivalent to B if and only if (6.3) holds for all M in
span(M), where the span is taken in the rational vector space of n × n rational matrices.
But span(Mi) is an ascending sequence of vector spaces:

Span(M0) ⊆ Span(M1) ⊆ Span(M2) ⊆ . . .

It follows from a dimension argument that this sequence stops in at most n2 steps and we
conclude that span(M) = span(Mn2).
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Proposition 6.3. Given a Q-weighted visibly pushdown automaton A and n ∈ N one can
compute in logarithmic space a circuit that represents

∑
w∈L

n2
A(w).

Proof. From the definition of the language Li and the family of matrices M (A) we have:

∑

w∈Li+1

M (A)(w) =
∑

a∈Σc

∑

b∈Σr

∑

γ∈Γ

M (A)(a, γ)



∑

u∈Li

M (A)(u)


M (A)(b, γ)

+



∑

u∈Li

M (A)(u)





∑

u∈Li

M (A)(u)


 .

The above equation implies that we can compute in logarithmic space a circuit that repre-
sents

∑
w∈Ln

M (A)(w). The result of the proposition immediately follows by premultiplying
by the initial state vector and postmultiplying by the final state vector.

A key property of Q-weighted VPA is their closure under product.

Proposition 6.4. Given Q-weighted VPA A and B on the same alphabet Σ one can define
a synchronous-product automaton, denoted A⊗ B, such that (A⊗ B)(w) = A(w)B(w) for
all w ∈ Σ∗.

Proof. The proof exploits the fact that the stack height is determined by the input word,
so the respective stacks of A and B operating in parallel can be simulated in a single stack.

Let A = (n(A),Σ,Γ(A),M (A),α(A),η(A)) and B = (n(B),Σ,Γ(A),M (B),α(B),η(B)). We
define a product automaton C. Note that since the stack height is determined by the input
word we can simulate the respective stacks of A and B using a single stack in C whose
alphabet is the product of the respective stack alphabets of A and B.

The number of states of C is n(A) ·n(B). The initial vector α(C) in the vector α(A)⊗α
(B)

and the final vector η
(C) is η

(A) ⊗ η
(B). The stack alphabet of C is Γ(A) × Γ(B). Given

a ∈ Σc ∪ Σr the transition matrix M (C)(a, (γ, γ′)) is M (A)(a, γ) ⊗M (B)(a, γ′). Likewise,

given a ∈ Σint the transition matrix M (C)(a) is M (A)(a)⊗M (C)(a).

It is now straightforward to show that M (C)(w) = M (A)(w)⊗M (B)(w) for all balanced
words w ∈ Σ∗. The proof proceeds by induction on balanced words, following (6.1) and
(6.2), and using Proposition 2.1 on Kronecker products.

Proposition 6.5. The equivalence problem for Q-weighted visibly pushdown automata is
logspace reducible to ACIT.

Proof. Let A and B be Q-weighted visibly pushdown automata with a total of n states
between them. Then∑

w∈Ln

(A(w)− B(w))2 =
∑

w∈Ln

A(w)2 + B(w)2 − 2A(w)B(w)

=
∑

w∈Ln

(A⊗A)(w) + (B ⊗ B)(w) − 2(A⊗ B)(w)

Thus A is equivalent to B iff
∑

w∈Ln
(A⊗A)(w) + (B ⊗ B)(w) = 2

∑
w∈Ln

(A⊗ B)(w). But
Propositions 6.3 and 6.4 allow us to translate the above equation into an instance of ACIT.
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The trick of considering sums-of-squares of acceptance weights in the above proof is
inspired by [29, Lemma 1].

7. Conclusion

It is known that deciding equivalence of Q-weighted finite automata is in NC [29]. We have
shown that deciding minimality is also in NC. Regarding the corresponding function prob-
lems, we have given an RNC algorithm to decide equivalence and output a counterexample
word in case the input automata differ, and an RNC algorithm to minimise an automaton.
We do not know whether either of these problems is in NC. It would be interesting to
explore whether there is a relationship between these two problems, and to relate them to
other problems in RNC that are not known to be in NC, such as bipartite matching.

For Q-weighted VPA the situation is more complete. We have shown that deciding
equivalence is equivalent to polynomial identity testing, the complexity of which is an im-
portant open problem.
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