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Abstract. We present a framework for obtaining effective characterizations of simple
fragments of future temporal logic (LTL) with the natural numbers as time domain. The
framework is based on a form of strongly unambiguous automata, also known as prophetic
automata or complete unambiguous Büchi automata and referred to as Carton–Michel
automata in this paper. These automata enjoy strong structural properties, in particu-
lar, they separate the “finitary fraction” of a regular language of infinite words from its
“infinitary fraction” in a natural fashion. Within our framework, we provide characteri-
zations of several natural fragments of temporal logic, where, in some cases, no effective
characterization had been known previously, and give lower and upper bounds for their
computational complexity.

1. Introduction

Ever since propositional linear-time temporal logic (LTL) was introduced into computer
science by Amir Pnueli in [23] it has been a major object of research. The particular line of
research we are following here is motivated by the question how each individual temporal
operator contributes to the expressive power of LTL. More precisely, our objective is to
devise decision procedures that determine whether a given LTL property can be expressed
using a given subset of the set of all temporal operators, for instance, the subset that
includes “next” and “eventually”, but not “until”.

As every LTL formula interpreted in the natural numbers (the common time domain)
defines a regular language of infinite words (ω-language), the aforementioned question can
be viewed as part of a larger program: classifying regular ω-languages, that is, finding
effective characterizations of subclasses of the class of all regular ω-languages. Over the
years, many results have been established and specific tools have been developed in this
program, the most fundamental result being the one that says that a regular ω-language
is star-free or, equivalently, expressible in first-order logic or in LTL if, and only if, its
syntactic semigroup is aperiodic [15, 27, 21].
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The previous result is a perfect analogue of the same result for regular languages of
finite words, that is, of the classical theorems by Schützenberger [25], McNaughton and
Papert [18], and Kamp [15]. In general, the situation with infinite words is more complicated
than with finite words; a good example for this is given in [8], where, for instance, tools
from topology and algebra are used to settle characterization problems for ω-languages.

The first characterization of a fragment of LTL over finite linear orderings was given
in [5], another one followed in [10], both following a simple and straightforward approach:
to determine whether a formula is equivalent to a formula in a certain fragment, one com-
putes the minimum reverse DFA for the corresponding regular language and verifies certain
structural properties of this automaton, more precisely, one checks whether certain “for-
bidden patterns” do not occur. The first characterization for infinite words (concerning
stutter-invariant temporal properties) [20] used sequential relations on ω-words; the second
(concerning the nesting depth in the until/since operator) [30] used heavy algebraic machin-
ery and did not shed any light on the computational complexity of the decision procedures
involved. In fact, the upper bound that can be derived from this work is non-elementary.

In this paper, we describe a general, conceptually simple paradigm for characterizing
fragments of LTL when interpreted in the natural numbers, combining ideas from [5, 10] for
finite words with the work by Carton and Michel on unambiguous Büchi automata [3, 4].
The approach works roughly as follows. To determine whether a given formula is equivalent
to a formula in a given fragment, convert the formula into what is called a “prophetic
automaton” in [22], check that the automaton, when viewed as an automaton on finite
words, satisfies certain properties, and check that languages of finite words derived from
the accepting loops (“loop languages”) satisfy certain other properties. In other words, we
reduce the original problem for ω-languages to problems for languages of finite words. We
show that the approach works for all reasonable fragments of future LTL and yields optimal
upper bounds for the complexity of the corresponding decision procedures for all but one
fragment.

Clearly, the prophetic automaton we start out with is the output of a straightforward
translation; one cannot (!) expect that it provides much information about the nature of
the language recognized. When we check properties of the automaton when viewed as an
automaton on finite words, we first take a quotient, which makes the automaton in some
sense canonical. In addition, when we derive the loop languages (representing the infinitary
part of the given language) we do this with respect to that quotient, making the loop
languages canonical in some sense. This approach ensures that overall we do not analyze
more or less arbitrary objects derived from the given formula, but objects (languages)
representing very well the nature of the property defined.

Fragments of temporal logic have been studied from different perspectives. One question
that has been raised several times is what exactly is the right fragment to specify a given
system. A very general answer to this has been given by Leslie Lamport in his seminal
paper, [14], on the Temporal Logic of Actions. Another question that has been worked on
is how the complexity of model checking depends on the particular fragment considered;
results on this can already be found in the groundbreaking paper [26], by A. Prasad Sistla
and Edmund Clarke. The perspective taken in this paper is different, as pointed out above.

A note on terminology. As just explained, we work with a variant (for details, see below) of
the automaton model introduced by Carton and Michel in [3, 4] and named CUBA model
(CompleteUnambiguousBüchiAutomata). In [22], Pin uses “prophetic automata” to refer
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Figure 1: CMA which recognizes (a + b)∗bω

to CUBA’s. In the conference version of this paper, [24], we referred to these automata
as “Carton–Michel automata” (CMA) and we stick to this terminology in this paper. At
the conference, STACS 2012, Thomas Colcombet gave an invited talk on determinism, non-
determinism, and unambiguity with a very broad perspective and used, justified by his
broad perspective, the notion “strongly unambiguous automata” (SUA) for a somewhat
weaker form of unambiguity, see also the contribution to the conference proceedings, [6].

Outline. In Section 2, we provide background on the topics relevant to this paper, in partic-
ular, CMA’s, propositional linear-time temporal logic, and its translation into CMA’s. In
Section 3, we present our characterizations. In Section 4 to Section 8, we give proofs of the
correctness of our characterizations, and in Section 9, we explain how our characterizations
can be used effectively and deal with complexity issues. We conclude with open problems.

2. Basic Notation and Background

2.1. Reverse Deterministic Büchi Automata. A Büchi automaton with a reverse de-
terministic transition function is a tuple (A,Q, I, ⋅, F ) where

− A is a finite set of symbols,
− Q is a finite set of states,
− I ⊆ Q is a set of initial states,
− ⋅ is a reverse transition function A ×Q → Q, and
− F ⊆ Q is a set of final states.

As usual, the transition function is extended to finite words by setting ǫ ⋅ q = q and au ⋅ q =
a ⋅ (u ⋅ q) for q ∈ Q, a ∈ A, and u ∈ A∗. For ease in notation, we write uq for u ⋅ q when the
transition function ⋅ is clear from the context.

A run of an automaton as above on an ω-word u over A is an ω-word r over Q satisfying
the condition r(i) = u(i)r(i + 1) for every i < ω. Such a run is called initial if r(0) ∈ I; it
is final if there exist infinitely many i such that r(i) ∈ F ; it is accepting if it is initial and
final. The language of ω-words recognized by such an automaton, denoted L(A) when A

stands for the automaton, is the set of ω-words for which there exists an accepting run.

2.2. Carton–Michel Automata. An automaton as above is called a Carton–Michel au-
tomaton (CMA) if for every ω-word over A there is exactly one final run. Such an automaton
is trim, if every state occurs in some final run.— The original definition of Carton and Michel
in [3, 4] is slightly different, but for trim automata—the interesting ones—the definitions
coincide.

As an example, consider the automaton depicted in Figure 1, which is a CMA for the
language denoted by (a + b)∗bω. Note that we depict p = aq as
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An initial state has an incoming edge , a final state has a double circle . Note that
both components in Figure 1 belong to the automaton. The right component is needed to
satisfy the condition that every ω-word has a final run in the automaton.

The fundamental result obtained by Carton and Michel is the following.

Theorem 2.1 (Carton and Michel [3, 4]). Every regular ω-language is recognized by some
CMA. More precisely, every Büchi automaton with n states can be transformed into an
equivalent CMA with at most (12n)n states.

Let A be a CMA over an alphabet A and u ∈ A+. The word u is a loop at q if q = uq
and there exist v,w ∈ A∗ satisfying vw = u and wq ∈ F . The set of loops at q is denoted
S(q). What Carton and Michel prove about loops is:

Lemma 2.2 (Carton and Michel [3, 4]). Let A be a CMA over some alphabet A. Then,
for every u ∈ A+, there is exactly one state q, denoted uÁ and called anchor of u, such that
u is a loop at q.

In other words, the S(q)’s are pairwise disjoint and ⋃q∈Q S(q) = A
+.

2.3. Generalized Carton–Michel Automata. A generalized Carton–Michel automaton
(GCMA) is defined as expected. It is the same as a CMA except that the set F of final
states is replaced by a set F ⊆ 2Q of final sets, just as with ordinary generalized Büchi
automata. For such an automaton, a run r is final if for every F ∈ F there exist infinitely
many i such that r(i) ∈ F .

The above definitions for CMA’s can all be adapted to GCMA’s in a natural fashion.
For instance, a word u is a loop at some state q in a GCMA if q = uq and for every F ∈ F
there exist v,w ∈ A∗ such that u = vw and wq ∈ F .

It is a theorem by Carton and Michel that every GCMA can be converted into an
equivalent CMA:

Theorem 2.3 (Carton and Michel [3, 4]). Let A = (A,Q, I, ⋅,F) be a GCMA such that
∣Q∣ = n and ∣F∣ =m. There is an equivalent CMA A′ = (A′,Q′, I ′, ⋅′,F′) such that ∣Q′∣ ≤ 2mn.

The proof of Lemma 2.2 given in [4] carries over to GCMA’s without any change.
Therefore, we sometimes apply the lemma in the context of GCMA’s even though it is not
phrased in this context.

2.4. Temporal Logic. In the following, it is understood that temporal logic refers to
propositional linear-time future temporal logic where the natural numbers are used as the
domain of time. For background on temporal logic, we refer to [9] and [11]. As we are
dealing with automata and formal languages, we use an approach where the atomic formulas
stand for symbols of an alphabet rather than propositional variables, but note that both
approaches are interchangeable.

Given an alphabet A, the set of temporal formulas over A, denoted TLA, is typically
inductively defined by:

(i) for every a ∈ A, the symbol a is an element of TLA,
(ii) if ϕ ∈ TLA, so is ¬ϕ,
(iii) if ϕ,ψ ∈ TLA, so are ϕ ∨ψ and ϕ ∧ ψ,
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(iv) if ϕ ∈ TLA, so is Xϕ (“next ϕ”),
(v) if ϕ ∈ TLA, so are Fϕ and Gϕ (“eventually ϕ” and “always ϕ”),
(vi) if ϕ,ψ ∈ TLA, so are ϕUψ and ϕRψ (“ϕ until ψ” and “ϕ releases ψ”).

Often, the operators XF (“strictly eventually”) and XG (“strictly always”) are part of the
syntax of temporal logic; we view them as abbreviations of XF and XG. For instance, XF(a∧
XG¬b) is viewed as X(F(a ∧ X(G¬b))). (Obviously, F and G can be viewed as abbreviations
of (a ∨ ¬a)U and (a ∧ ¬a)R, respectively.)

Formulas of TLA are interpreted in ω-words over A. For every such word u, we define
what it means for a formula to hold in u, denoted u ⊧ ϕ, where we omit the straightforward
rules for Boolean connectives:

● u ⊧ a if u(0) = a,
● u ⊧ Xϕ if u[1,∗) ⊧ ϕ, where, as usual, u[1,∗) denotes the word u(1)u(2) . . . ,
● u ⊧ Fϕ if there exists i ≥ 0 such that u[i,∗) ⊧ ϕ, similarly, u ⊧ Gϕ if u[i,∗) ⊧ ϕ for all
i ≥ 0,

● u ⊧ ϕUψ if there exists j ≥ 0 such that u[j,∗) ⊧ ψ and u[i,∗) ⊧ ϕ for all i < j, similarly,
u ⊧ ϕRψ if there exists j ≥ 0 such that u[j,∗) ⊧ ϕ and u[i,∗) ⊧ ψ for all i ≤ j or if
u[i,∗) ⊧ ψ for all i ≥ 0.

Clearly, a formula of the form ¬Fϕ is equivalent to G¬ϕ, and a formula of the form ¬(ϕUψ)
is equivalent to ¬ϕR¬ψ, which means F and G as well as U and R are dual to each other; X
is self-dual.

Given a TLA formula ϕ, we write L(ϕ) for the set of ω-words over A where ϕ holds,
that is, L(ϕ) = {u ∈ Aω ∶u ⊧ ϕ}. This ω-language is called the language defined by ϕ.

Given TLA formulas ϕ and ψ, we say ϕ and ψ are equivalent, denoted ϕ ≡ ψ, if L(ϕ) =
L(ψ) holds.

2.5. Negation Normal Form. In the later sections of this paper, we always assume that
LTL formulas can be assumed to be in negation normal form, which means (ii) from above
is not used. The reason that we can do so is that ¬ can easily be “pushed in”, as is explained
in the following lemma.

Lemma 2.4. Let A be some alphabet, a ∈ A, and ϕ,ψ ∈ TLA. Then:

¬a ≡ ⋁
b∈A∖{a}

b , ¬Xϕ ≡ X¬ϕ ,

¬Fϕ ≡ G¬ϕ , ¬Gϕ ≡ F¬ϕ ,

¬(ϕUψ) ≡ ¬ϕR¬ψ , ¬(ϕRψ) ≡ ¬ϕU¬ψ .

Proof hints. The proofs of the individual equivalences are straightforward. Only the proof
of the second one is not generic in the sense that it fails for finite words, but for infinite
words, which we only consider, no problem occurs.

From a complexity point of view, it is important to note that when a formula is con-
verted to negation normal form, the size of the formula does not increase much and neither
does the number of its subformulas: the increase in the length is at most the number of oc-
currences of alphabet symbols in the formula and the increase in the number of subformulas
is at most the number of alphabet symbols. These increases do not have any influence on
the upper bounds we prove in later chapters.
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2.6. Fragments of Temporal Logic. An operator set is a subset of the set of all basic
temporal operators, {X,F,XF,U}. If A is an alphabet and O an operator set, then TLA[O]
denotes all LTL formulas that can be built from A using Boolean connectives and the
operators from O. We say a language L ⊆ Aω is O-expressible if there is a formula ϕ ∈
TLA[O] such that L(ϕ) = L. The O-fragment is the set of all LTL-formulas ϕ such that
L(ϕ) is O-expressible.

Observe that several operator sets determine the same fragment: {XF} and {F,XF}; {U}
and {F,U}; {XF,U} and {F,XF,U}; {X,F}, {X,XF} and {X,F,XF}; {X,U} and every superset
of this.

What we are aiming at are decision procedures for each fragment except for the one
determined by {XF,U}.

2.7. Ehrenfeucht–Fräıssé Games for Temporal Logic. The statements of our results
(Section 3.2) do not involve Ehrenfeucht–Fräıssé games (EF games), but we use them ex-
tensively in our proofs. We make use of them in Section 5.

In the following, we recall the basics of EF games for temporal logic, see [10] for details.
A play of a temporal logic EF game is played by two players, Spoiler and Duplicator,

on two ω-words over some alphabet A, say u and v. The game is played in rounds, where
in every round, Spoiler moves first and Duplicator replies. The basic idea is that Spoiler
is trying to reveal a difference between u and v which can be expressed in temporal logic,
while Duplicator is trying to show—by somehow imitating the moves of Spoiler—that there
is no such difference.

There are different types of rounds, corresponding to the temporal operators considered.
We explain the ones that we need:

▷ X-round. Spoiler chooses either u or v, say v, and chops off the first letter of v, that is,
he replaces v by v[1,∗). Duplicator does the same for u.

▷ F-round. Spoiler chooses either u or v, say v, and chops off an arbitrary finite (possibly
empty) prefix, that is, he replaces v by v[i,∗) for some i ≥ 0. Duplicator replaces u (the
other word) by u[j,∗) for some j ≥ 0.

▷ XF-round. Spoiler chooses either u or v, say v, and chops off an arbitrary non-empty
finite prefix, that is, he replaces v by v[i,∗) for some i > 0. Duplicator replaces u (the
other word) by u[j,∗) for some j > 0.

Before the first round, u(0) and v(0) are compared. If they are distinct, then this is a win
(an early win) for Spoiler. After each round, the same condition is verified, and, again,
if the two symbols are distinct, then this is a win for Spoiler. If, by the end of a play,
Spoiler hasn’t won, then this play is a win for Duplicator. For a fixed n, Duplicator wins
the n-round game, if Duplicator has a strategy to win it.

When only rounds are allowed that correspond to operators in a temporal operator set
O ⊆ {X,F,XF}, then we speak of an O-game.

The fundamental property of EF games we are going to use is the following, which was
essentially proved in [10].

Theorem 2.5. Let L be a language of ω-words over some alphabet A and O ⊆ {X,F,XF} a
temporal operator set. Then the following are equivalent:

(A) L is O-expressible.
(B) There is some k such that for all words u, v ∈ Aω with u ∈ L ↮ v ∈ L, Spoiler has a

strategy to win the O-game on u and v within k rounds.
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2.8. From Temporal Logic to Carton–Michel Automata. Several translations from
temporal logic into Büchi and generalized Büchi automata are known, see, for instance,
[31, 29, 12]. Here, we follow the ideas of these papers and “observe” that the resulting
automaton is a GCMA. This is supposed to be folklore,1 but—to the best of our knowledge—
has not been made precise yet.

Let ϕ ∈ TLA and let sub(ϕ) denote the set of its subformulas. We define a GCMA

Aϕ = (A,2
sub(ϕ), I, ⋅,F). Our goal is to construct the automaton in such a way that in the

unique final run r of this automaton on a given word u the following holds for every i and
every ψ ∈ sub(ϕ):

u[i,∗) ⊧ ψ iff ψ ∈ r(i) . (2.1)

First, we set I = {Φ ⊆ sub(ϕ)∶ϕ ∈ Φ}, which is motivated directly by (2.1).

Second, we define a ⋅Φ to be the smallest set Ψ ∈ 2sub(ϕ) satisfying the following condi-
tions:

(i) if a ∈ sub(ϕ), then a ∈ Ψ,
(ii) if ¬b ∈ sub(ϕ) and b ≠ a, then ¬b ∈ Ψ,
(iii) if ψ ∈ Ψ and χ ∈ Ψ, then ψ ∧ χ ∈ Ψ,
(iv) if ψ ∈ Ψ or χ ∈ Ψ, then ψ ∨ χ ∈ Ψ,
(v) if ψ ∈ Φ, then Xψ ∈ Ψ,
(vi) if ψ ∈ Ψ or Fψ ∈ Φ, then Fψ ∈ Ψ,
(vii) if ψ ∈ Ψ and Gψ ∈ Φ, then Gψ ∈ Ψ,
(viii) if χ ∈ Ψ or if ψ ∈ Ψ and ψUχ ∈ Φ, then ψUχ ∈ Ψ,
(ix) if χ ∈ Ψ and if ψ ∈ Ψ or ψRχ ∈ Φ, then ψRχ ∈ Ψ.

This definition reflects the “local semantics” of temporal logic, for instance, Fψ is true now
if, and only if, ψ is true now or Fψ is true in the next point in time. Observe, however,
that the fulfillment of Fψ must not be deferred forever, which means that local conditions
are not enough to capture the entire semantics of temporal logic. This is taken care of by
the final sets.

Third, we list the subsets of sub(ϕ) which belong to F:

● for every formula Fψ ∈ sub(ϕ), the set {Φ ⊆ sub(ϕ)∶ψ ∈ Φ or Fψ ∉ Φ},
● for every formula Gψ ∈ sub(ϕ), the set {Φ ⊆ sub(ϕ)∶Gψ ∈ Φ or ψ ∉ Φ},2

● for every formula ψUχ, the set {Φ ⊆ sub(ϕ)∶χ ∈ Φ or ψUχ ∉ Φ},
● for every formula ψRχ, the set {Φ ⊆ sub(ϕ)∶ψRχ ∈ Φ or χ ∉ Φ}.3

Example 2.6 (ϕ = aRb). After trimming, the automaton Aϕ for the formula ϕ = aRb looks
as follows.

1Personal communication of the second author with Olivier Carton: the observation can already be found
in the notes by Max Michel which he handed over to Olivier Carton in the last millennium.

2In the conference version of this paper [24] we missed this clause.
3See above.
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{b, aRb}
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a b
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The doubly circled states form the only final state set.

Proposition 2.7. Let A be an alphabet and ϕ ∈ TLA. Then Aϕ is a GCMA and L(Aϕ) =
L(ϕ).

Proof. We first show that Aϕ is a GCMA. To this end, let u be an ω-word over A. We
show that the word r defined by (2.1), for every i and every ψ ∈ sub(ϕ), is a final run on u
and the only one.

The ω-word r is a run on u. To see this, let i ≥ 0 be arbitrary and observe that if we
define Φ and Ψ by Φ = {ψ ∈ sub(ϕ)∶u[i + 1,∗) ⊧ ψ} and Ψ = {ψ ∈ sub(ϕ)∶u[i,∗) ⊧ ψ}, then
the implications (i)–(ix) not only hold, but also hold in the opposite direction. That is,
r(i) = u(i) ⋅ r(i + 1) for every i, in other words, r is a run on u.

The run r is final. Obvious from the semantics of the temporal operators.
The run r is the only possible final run. A proof of this can be carried out along the lines

of the proof of Theorem 5.37 in [1], where a variant of the construction from [31] is presented
and proved correct. The only differences between the setting in [1] and our setting are the
atomic formulas and the set of temporal operators used. In our setting, atomic formulas
correspond to letters of an alphabet; in [1], atomic formulas are propositional variables. We
work with a larger set of temporal operators. In the proof in [1], it is shown that an anlogue
of (2.1) holds for any final run, hence the run r is the only one.

3. General Approach and Individual Results

This section has two purposes: it explains our general approach and presents the charac-
terizations we have found.

3.1. The General Approach. To describe our general approach, we first need to explain
what we understand by the left congruence of a GCMA.

Let A be a GCMA. For every q ∈ Q, let Lq denote the set of words u ∈ A∗ such that
uq ∈ I. The relation ≡A on Q, which we call the left congruence of A, is defined by q ≡A q′

when Lq = Lq′ . The terminology is justified:

Remark 3.1. Let A be a GCMA. Then ≡A is a left congruence, that is, uq ≡A uq′ whenever
u ∈ A∗ and q, q′ ∈ Q are such that q ≡A q′.

In other words, we can define the left quotient of A with respect to ≡A to be the reverse
semi DFA A/≡A given by

A/≡A = (A,Q
′/≡A, I/≡A,○) (3.1)
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where

● Q′ is the set of all states that occur in some final run of A (active states), and
● a ○ (q/≡A) = (a ⋅ q)/≡A for all a ∈ A and q ∈ Q′.

As usual, the attribute “semi” refers to the fact that this automaton has no final states nor
final sets.

Next, we combine the left congruence of a GCMA with its loops. The loop language of
a state q of a GCMA A is denoted LL(q) and defined by

LL(q) = ⋃
q′≡Aq

S(q′) , (3.2)

that is, LL(q) contains all loops at q and at congruent states.
Our general approach is to characterize a fragment of LTL as follows. To check whether

a given formula ϕ is equivalent to a formula in a given fragment, we compute the GCMA
Aϕ and check various conditions on its left quotient and its loop languages. It turns out
that this is sufficient; intuitively, the left quotient accounts for the “finitary fraction” of
L(Aϕ), whereas the loop languages account for its “infinitary fraction”.

3.2. Characterization of the Individual Fragments. The formal statement of our main
result is as follows.

Theorem 3.2. Let A be some alphabet, ϕ an LTL-formula, and O a temporal operator set
as listed in Table 1. Then the following are equivalent:

(A) The formula ϕ belongs to the O-fragment.
(B) The left quotient of Aϕ and its loop languages satisfy the respective conditions listed in

Table 1. (Information on how to read this table follows.)

Conditions on the left quotient of Aϕ are phrased in terms of “forbidden patterns” (also
called “forbidden configurations” in [5]). To explain this, let A = (A,Q, I,○) be any reverse
semi DFA. Its transition graph, denoted T(A), is the A-edge-labeled directed graph (Q,E)
where E = {(a ○ q, a, q)∶a ∈ A,q ∈ Q}.

Now, the conditions depicted in the second column of Table 1 are to be read as follows:
the displayed graph(s) do not (!) occur as subgraphs of the transition graph of the left
quotient of Aϕ, that is, as subgraphs of T(Aϕ/≡Aϕ

). Vertices filled gray must be distinct,
the others may coincide (even with gray ones); dashed arrows stand for non-trivial paths.

For instance, the condition for the left quotient in the case of the {X}-fragment requires
that the following is not true for T(Aϕ/≡Aϕ

): there exist distinct states q and q′ and a word
x ∈ A+ such that q = x ○ q and q′ = x ○ q′.

Note that for the {X}-fragment one forbidden pattern consisting of two strongly con-
nected components is listed, whereas for the {F}-fragment two forbidden patterns (indicated
by the horizontal line) are listed.

The conditions listed in the third column of Table 1 are conditions borrowed from
formal language theory, which we explain in what follows. For a word u ∈ A∗ and k ≥ 0,
we let prfk(u), sffxk(u), and occk(u) denote the set of prefixes, suffixes, and infixes of
u of length ≤ k, respectively. For words u, v ∈ A∗, we write u ≡k+1 v if prfk(u) = prfk(v),
occk+1(u) = occk+1(v), and sffxk(u) = sffxk(v). A language L is called (k+1)-locally testable
if u ∈ L↔ v ∈ L, whenever u ≡k v, and it is called locally testable if it is k-locally testable
for some k, see [2].
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fragment left quotient loop languages

X x x no condition

F
a

a

1-locally testable

aa

XF a

a

1-locally testable

X, F x x locally testable

U aa stutter-invariant

Table 1: Characterizations of the individual fragments of LTL

A language L ⊆ A+ is stutter-invariant if uav ∈ L ↔ uaav ∈ L holds for all a ∈ A,
u, v ∈ A∗.

3.3. Proof techniques. For each fragment dealt with in Theorem 3.2, we have a separate
proof, some of them are similar, others are completely different. In this section, we give a
brief overview of our proofs.

For the operator set {X}, the proof is more or less a simple exercise, given that {X}-
expressibility means that there is some k such that u ⊧ ϕ is determined by prfk(u).

For the operator sets {F}, {XF}, and {X,F}, we use similar proofs.
For {U}, we use a theorem from [19], which says that an LTL formula over some

alphabet A is equivalent to a formula in TLA[U] if the language defined by the formula is
stutter-invariant, where stutter invariance is defined using an appropriate notion of stutter
equivalence on ω-words.

Throughout the next sections, for ease in notation, we often write q̄ for q/≡A, where q
is a state in A. When u ∈ Aω, then u ⋅ ∞ denotes the first state of the unique final run of
A on u, and inf(u) = {a ∈ A∶ ∃∞i(u(i) = a)}. For a ∈ A and u ∈ A∗, ∣u∣a denotes the number
of occurrences of a in u.
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4. Characterization of the {X}-Fragment

We start with the characterization of the {X}-fragment, which is straightforward.

Theorem 4.1. The following are equivalent for a given trim GCMA A:

(A) L(A) is X-expressible.
(B) The transition graph T(A/≡A) does not have a subgraph of the following form (in the

above sense):

p̄ q̄

x x (T1)

Proof. (A) implies (B): Let L(A) be X-expressible. Let ϕ ∈ TLA[X] such that L(A) = L(ϕ).
Let k = length(ϕ) where length may be any reasonable function to determine the length
of a given formula ϕ as a natural number. Obviously for each w ∈ L(ϕ) and v ∈ Aω the
following implication holds: If prfk(v) = prfk(w) then v ∈ L(ϕ). Let p ∈ p̄ and q ∈ q̄. Then
there exists u ∈ A∗ with u ⋅ p ∈ I ↮ u ⋅ q ∈ I. Let v, v′ ∈ Aω such that p = v ⋅ ∞ and q = v′ ⋅ ∞.
Assume that T(A/≡A) has a subgraph of type (T1). Then prfk(ux

kv) = prfk(ux
kv′) but

uxkv ∈ L(A)↮ uxkv′ ∈ L(A), which is a contradiction.
We show that (B) implies (A) by contraposition. Assume L(A) is not X-expressible.

Then for every natural number k there exist u, v ∈ Aω with prfk(u) = prfk(v) and u ∈

L(A) ↮ v ∈ L(A). Let k ≥ ∣Q2∣ and u, v as described. Let r be the run of A on u and s
be the run of A on v. Note that r(i) /≡A s(i) for every i < k because r(0) ∈ I and s(0) ∉ I.
Since k ≥ ∣Q2∣ there exist i < j < k with r(i) = r(j) and s(i) = s(j). From prfk(u) = prfk(v)
we get u(i) . . . u(j − 1) = v(i) . . . v(j − 1) and T(A/≡A) has a subgraph of Type (T1).

5. Characterization of the {XF}-Fragment

The second characterization we prove correct is the one of the {XF}-fragment. Since every
GCMA can obviously be turned into an equivalent trim GCMA, all GCMA are assumed to
be trim subsequently.

We start with a refined version of Theorem 3.2 for the {XF}-fragment.

Theorem 5.1. The following are equivalent for a given trim GCMA A:

(A) L(A) is XF-expressible.
(B) (a) The transition graph T(A/≡A) does not have a subgraph of the following form (in

the above sense):

p̄

q̄

r̄

s̄

a

a

x y
(T2)

(b) For all u, v ∈ A+ with occ1(u) = occ1(v), it holds that uÁ ≡A vÁ.
(C) (a) The same as in (B)(a).

(b) (i) For all u, v ∈ A∗, a ∈ A, it holds that uavÁ ≡A uaavÁ.
(ii) For all u, v ∈ A∗, a, b ∈ A, it holds that uabvÁ ≡A ubavÁ.
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Observe that (B)(b) means that the loop languages are 1-locally testable. In other words, the
above theorem implies that the characterization of the {XF}-fragment given in Theorem 3.2
is correct.

Before we get to the proof of Theorem 5.1 we provide some more notation and prove
some useful lemmas.

Lemma 5.2. Assume T(A/≡A) has a subgraph of type (T2). Then for every k there
exist words u, v ∈ Aω such that Duplicator wins the k-round XF-game on u and v, but
u ∈ L(A)↮ v ∈ L(A).

Proof. Assume T(A/≡A) has a subgraph of type (T2). That is, there are states p̄ ≠ q̄, r̄, s̄,
words x, y ∈ A+, and a letter a ∈ A such that p̄ = a ○ r̄, q̄ = a ○ s̄, s̄ = y ○ r̄ and r̄ = x ○ s̄. We
find states r0, r1, . . . , and s0, s1, . . . such that

● r̄i = r̄ and s̄i = s̄ for all i < ω, and
● x ⋅ si = ri and y ⋅ ri = si+1 for all i < ω.

Because Q is a finite set, we find l > 0 and i such that ri = ri+l. Since A is trim, we
find v such that v ⋅ ∞ = ri and u such that ua ⋅ ri ∈ I iff ua ⋅ si ∉ I. This means that
ua(yx)lmv ∈ L↮ uax(yx)lmv ∈ L for all m ≥ 1.

Clearly, if we choose lm > k, then the two resulting words cannot be distinguished in
the k-round XF-game.

Lemma 5.3. Let A be a GCMA such that T(A/≡A) does not have a subgraph of type (T2).
Further, let r and s be the unique final runs of A on words u, v ∈ Aω and define r̄ and s̄ by
r̄(i) = r(i)/≡A and s̄(i) = s(i)/≡A for all i < ω.

If r̄(0) ≠ s̄(0) and inf(r̄) ∩ inf(s̄) ≠ ∅, then Spoiler wins the k-round XF-game on u and
v where k is twice the number of states of A/≡A.

Proof. In the following, we use SCC as an abbreviation for strongly connected component.
In our context, a state which is not reachable by a non-trivial path from itself is considered
to be an SCC by itself. For every i < ω, let Ri and Si be the SCC’s of r̄(i) and s̄(i) in
A/≡A, respectively. Observe that because of inf(r̄) ∩ inf(s̄) ≠ ∅ there is some l such that
the Ri’s and Sj’s are all the same for i, j ≥ l.

Let R = {Ri∶ i > 0}, S = {Si∶ i > 0}, m = ∣R∣ − 1, and n = ∣S∣ − 1. We show that Spoiler
wins the XF-game in at most m + n rounds. The proof is by induction on m + n.

Base case. Let m = n = 0. Then R1 = S1. Because of the absence of (T2), we have
u(0) ≠ v(0), and Spoiler wins instantly.

Induction step. Note that if r is the unique final run of A on u, then r[i,∗) is the
unique final run of A on u[i,∗) for every i.

Let m + n > 0. If u(0) ≠ v(0), then Spoiler wins instantly. If u(0) = v(0), we proceed
by a case distinction as follows.

Case 1, R1 = S1. This is impossible because of the absence of (T2).
Case 2, R1 ≠ S1, R1 ∉ S. Since R1 ∉ S and inf(r̄) ∩ inf(s̄) ≠ ∅ we have m > 0. So there

must be some i ≥ 1 such that r̄(i) ∈ R1 and r̄(i + 1) ∉ R1. Spoiler chooses the word u and
replaces u by u[i,∗).

Now Duplicator has to replace v by v[j,∗) for some j > 0. Since R1 ∉ S we have
r̄(i) ≠ s̄(j) and the induction hypothesis applies.

Case 3, R1 ≠ S1, S1 ∉ R. Symmetric to Case 2.
Case 4, R1 ≠ S1, R1 ∈ S, and S1 ∈R. Impossible, because R1 would be reachable from

S1 and vice versa, which would mean R1 and S1 coincide.
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Lemma 5.4. Let A be a GCMA. Then the following are equivalent:

(A) For all u, v ∈ A+ with occ1(u) = occ1(v), it holds that uÁ ≡A vÁ.
(B) (a) For all u, v ∈ A∗, a ∈ A, it holds that uavÁ ≡A uaavÁ.

(b) For all u, v ∈ A∗, a, b ∈ A, it holds that uabvÁ ≡A ubavÁ.

Proof. That (A) implies (B) is obvious. For the converse, let u, v ∈ A+ with occ1(u) =
occ1(v). Let occ1(u) = {a0, a1, . . . , an}. Now, we have

uÁ ≡A a
∣u∣a0
0

a
∣u∣a1
1

. . . a∣u∣ann Á≡A a
∣v∣a0
0

a
∣v∣a1
1

. . . a∣v∣ann Á ≡A vÁ ,

where the first and the last equivalence are obtained by iterated application of (b), and the
second equivalence is obtained by iterated application of (a).

In what follows, we need more notation and terminology. A word u ∈ Aω is an infinite
loop at q if q = u ⋅ ∞ and q ∈ inf(r) where r is the unique final run of A on u.

Proof of Theorem 5.1. The implication from (A) to (B)(a) is Lemma 5.2. We prove that
(A) implies (B)(b) by contraposition. Assume (B)(b) does not hold, that is, there are
u, v ∈ A+ with occ1(u) = occ1(v), and uÁ /≡A vÁ. Then there exists x ∈ A∗ such that
x ⋅ uÁ ∈ I ↮ x ⋅ vÁ ∈ I, that is, xuω ∈ L ↮ xvω ∈ L. It is easy to see that Duplicator wins
the XF-game on xuω and xvω for any number of rounds, which, in turn, implies L is not
XF-expressible.

For the implication from (B) to (A), let n be the number of states of A/≡A. We show
that whenever u, v ∈ Aω such that u ∈ L↮ v ∈ L, then Spoiler wins the 2n-round XF-game
on u and v.

Assume u, v ∈ Aω are such that u ∈ L↮ v ∈ L and let r and s be the unique final runs
of A on u and v, respectively, and r̄ and s̄ defined as in Lemma 5.3. We distinguish two
cases.
First case, inf(u) ≠ inf(v). Then Spoiler wins within 2 rounds.
Second case, inf(u) = inf(v). Then there are i, i′ and j, j′ such that

● occ1(u[i, j]) = occ1(v[i
′, j′]),

● u[i,∗) ⋅ ∞ is an infinite loop at u[i, j]Á, and
● v[i′,∗) ⋅ ∞ is an infinite loop at v[i′, j′]Á.

From (B)(b), we conclude u[i, j]Á ≡A v[i′, j′]Á. As a consequence, inf(r̄)∩ inf(s̄) ≠ ∅. Since
r̄(0) ≠ s̄(0), Lemma 5.3 applies: L is XF-expressible.

The equivalence between (B) and (C) follows directly from Lemma 5.4.

6. Characterization of the {F}-Fragment

The characterization of the {F}-fragment is similar to the one of the {XF}-fragment, but a
little more complicated.

Theorem 6.1. The following are equivalent for a given trim GCMA A:

(A) L(A) is F-expressible.
(B) (a) The transition graph T(A/≡A) does not have a subgraph of the following form (in

the above sense):
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p̄

q̄

r̄

s̄

a

a

x y
(T2) p̄ q̄ r̄

aa
(T3)

(b) For all u, v ∈ A+ with occ1(u) = occ1(v) it holds that uÁ ≡A vÁ.
(C) (a) The same as in (B)(a).

(b) (i) For all u, v ∈ A∗, a ∈ A it holds that uavÁ ≡A uaavÁ.
(ii) For all u, v ∈ A∗, a, b ∈ A it holds that uabvÁ ≡A ubavÁ.

As seen above (B)(b) means that the loop languages are 1-locally testable. In other words,
the above theorem implies that the characterization of the {F}-fragment given in Theo-
rem 3.2 is correct.

Before we turn to the proof we will state some useful lemmas:

Lemma 6.2. Assume T(A/≡A) has a subgraph of type (T2) or (T3). Then for every k
there exist words u, v ∈ Aω such that Duplicator wins the k-round F-game on u and v, but
u ∈ L(A)↮ v ∈ L(A).

Proof. First, assume T(A/≡A) has a subgraph of type (T3). That is, there are states
p̄, q̄, r̄ ∈ Q/≡A and a symbol a such that a ○ r̄ = q̄, a ○ q̄ = p̄, and p̄ ≠ q̄. Let r ∈ r̄ and define p
and q by q = a ⋅ r and p = a ⋅ q. Then p ∈ p̄ and q ∈ q̄, because ≡A is a left congruence.

There is some v ∈ Aω such that v ⋅∞ = r. Further, since p̄ ≠ q̄, there is some u ∈ A∗ such
that u ⋅ p ∈ I ↮ u ⋅ q ∈ I. In other words, uav ∈ L↮ uaav ∈ L. Clearly, the two words cannot
be distinguished in the F-game.

Second, assume T(A/≡A) has a subgraph of type (T2). That is, there are states
p̄ ≠ q̄, r̄, s̄ words x, y ∈ A+ and a ∈ A such that p̄ = a ○ r̄, q̄ = a ○ s̄, s̄ = y ○ r̄ and r̄ = x ○ s̄. We
find states r0, r1, . . . and s0, s1, . . . such that

(1) r̄i = r̄ and s̄i = s̄ for all i,
(2) x ⋅ si = ri and y ⋅ ri = si+1 for all i.

Because Q is a finite set, we find l > 0 and i such that ri = ri+l. In addition, we find v such
that v ⋅ ∞ = ri and u such that ua ⋅ ri ∈ I ↮ ua ⋅ si ∈ I. This means that ua(yx)lmv ∈ L↮
uax(yx)lmv ∈ L for all m ≥ 1.

Clearly, if we choose lm ≥ k, then the two resulting words cannot be distinguished in
the k-round F-game.

Lemma 6.3. Let A be a GCMA such that T(A/≡A) does not have a subgraph of type (T2)
or (T3). Further, let r and s be the unique final runs of A on words u, v ∈ Aω and define r̄
and s̄ by r̄(i) = r(i)/≡A and s̄(i) = s(i)/≡A for all i < ω.

If r̄(0) ≠ s̄(0) and inf(r̄) ∩ inf(s̄) ≠ ∅, then Spoiler wins the k-round F-game on u and
v where k is twice the number of states of A/≡A.

Proof. Let Ri and Sj be the SCC’s of r̄(i) and s̄(j) in A/≡A, respectively.
There are i and j such that the SCC’s of r̄(i′) and s̄(j′) for i′ ≥ i and j′ ≥ j are all the

same.
Let R = {Ri∶ i > 0}, S = {Si∶ i > 0}, m = ∣R∣, and n = ∣S∣. We show that Spoiler wins the

game in at most m + n rounds. The proof is by induction on m + n. If u(0) ≠ v(0) Spoiler
wins instantly. Otherwise, we distinguish several cases.

Case 1, R1 = S1. This is impossible because of the absence of (T2).
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Case 2, R1 ≠ S1, R1 ∉ S. Since R1 ∉ S and inf(r̄) ∩ inf(s̄) ≠ ∅ we have m > 1. So there
must be some i ≥ 1 such that r̄(i) ∈ R1 and r̄(i + 1) ∉ R1. Spoiler chooses the word u and
replaces u by u[i,∗).

If u(i) ≠ v(0) Duplicator has to replace v by v[j,∗) for some j > 0 if she does not want
to lose right away. The induction hypothesis applies since r̄(i) ∈ R1 /∈ S and so r̄(i) ≠ s̄(j).

If u(i) = v(0)(= u(0)), we have to show that r̄(i) ≠ s̄(0) to be able to apply the
induction hypothesis. Assume that r̄(i) = s̄(0). Since r̄(i) ∈ R1 /∈ S and s̄(1) ∈ S1, we have
s̄(0) ≠ s̄(1) and s̄(0) = v(0) ○ s̄(1), i. e. r̄(i) = v(0) ○ s̄(1) and r̄(i) ≠ s̄(1). The absence of
(T3) leads to r̄(i) = v(0) ○ r̄(i) and the absence of (T2) leads to r̄(0) = v(0) ○ r̄(i). We get
r̄(0) = r̄(i) = s̄(0)—a contradiction.

Case 3, R1 ≠ S1, S1 ∉ R. Symmetric to Case 2.
Case 4, R1 ≠ S1, R1 ∈ S, and S1 ∈R. Impossible, because R1 would be reachable from

S1 and vice versa, which would mean R1 and S1 coincide.

Proof of Theorem 6.1. That (A) implies (B)(a) follows from Lemma 6.2 by contraposition.
We prove that (A) implies (B)(b) by contraposition. Assume (B)(b) does not hold.

Then there are u, v ∈ A+ with occ1(u) = occ1(v) and uÁ /≡A vÁ. Then there exists x ∈ A∗

such that x ⋅ uÁ ∈ I ↮ x ⋅ vÁ ∈ I, that is, xuω ∈ L ↮ xvω ∈ L. Now it is easy to see that
Duplicator wins the F-game on xuω and xvω for any number of rounds, which, in turn,
implies L is not F-expressible.

For the implication from (B) to (A), let n be the number of states of A/≡A. We show
that whenever u, v ∈ Aω such that u ∈ L ↮ v ∈ L Spoiler wins the 2n-round F-game on u

and v.
Assume u, v ∈ Aω are such that u ∈ L and v ∉ L. We distinguish two cases.

First case, inf(u) ≠ inf(v). Then Spoiler wins within at most 2 rounds.
Second case, inf(u) = inf(v). Then there are i, i′ and j, j′ such that

● occ1(u[i, j]) = occ1(v[i
′, j′]),

● u[i,∗) ⋅ ∞ is an infinite loop at u[i, j]Á, and
● v[i′,∗) ⋅ ∞ is an infinite loop at v[i′, j′]Á.

From (B)(b), we conclude u[i, j]Á ≡A v[i′, j′]Á. As a consequence, Lemma 6.3 applies: L is
F-expressible.

The equivalence between (B) and (C) follows directly from Lemma 5.4.

7. Characterization of the {X,F}-Fragment

The correctness proof for the characterization of {X,F}-fragment follows the one for the
{F}-fragment. We begin with a theorem corresponding to Theorems 6.1 and 5.1.

Theorem 7.1. The following are equivalent for a given trim GCMA A:

(A) L(A) is XF-expressible.
(B) (a) The transition graph T(A/≡A) does not have a subgraph of the following form (in

the above sense):

p̄ q̄
z zy

x

(T4)
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(b) For some natural k and all u, v ∈ A+ with u ≡k+1 v we have uÁ ≡A vÁ, i. e., for every
q ∈ Q, the set ⋃q′≡Aq S(q

′) is locally testable.

Before we turn to the proof we will again state some useful lemmas:

Lemma 7.2. Assume the transition graph T(A/≡A) has a subgraph of type (T4). Then
for every k there exist words u, v ∈ Aω such that Duplicator wins the k-round XF-game on
u and v, but u ∈ L↮ v ∈ L.

Proof. Assume (T4) occurs in T(A/≡A). First observe that for every state pi, qj ∈ Q with
p̄i = p̄ and q̄i = q̄ and every l it holds that

zl ○ p̄i = p̄ , zl ○ q̄j = q̄ , p̄ = x ○ q̄j , q̄ = y ○ p̄i .

Then, observe that for every state r there exist k and l > 0 such that zk ⋅ r = zk+l ⋅ r.
Since k can be replaced by any larger number and l by any multiple of l, we can assume k
and l are the same for all states. Let l be fixed with that properties.

Let pi ∈ Q with p̄i = p̄. Since Q is finite, there exist j,m with (xz2lyz2l)j ⋅ pi =
(xz2lyz2l)j+m ⋅ pi. It follows easily, that there exist x′, y′, z′ ∈ A+ and p′, q′ ∈ Q with
p′ ≠ q′, p̄′ = p̄, q̄′ = q̄ and

p′ = z′ ⋅ p′, q′ = z′ ⋅ q′, p′ = x′ ⋅ q′, q′ = y′ ⋅ p′,

meaning that T(A) also has a subgraph of type (T4).
In addition, we find u ∈ A∗ such that u⋅p′ ∈ I ↮ u⋅q′ ∈ I and v ∈ Aω such that p′ = v⋅∞ and

q′ = y′v ⋅∞. This means that u((z′)nx′(z′)ny′)n(z′)nv ∈ L↮ uy′((z′)nx′(z′)ny′)n(z′)nv ∈ L
for all n ≥ 1.

Clearly, if we choose n > k, then the two resulting words cannot be distinguished in the
k-round XF-game.

Lemma 7.3. Let A be a GCMA such that T(A/≡A) does not have a subgraph of type (T4).
Further, let r and s be the unique final runs of A on words u, v ∈ Aω and define r̄ and s̄ by
r̄(i) = r(i)/≡A and s̄(i) = s(i)/≡A for all i < ω.

Assume r̄(0) ≠ s̄(0) and inf(r̄) ∩ inf(s̄) ≠ ∅. Let

Q = {Qi ⊆ Q/≡A ∶ Qi is an SCC of Q/≡A}

and
K = 2 ∑

Qi∈Q

∣Qi∣
2 + 2.

Then Spoiler wins the K-round XF-game on u and v.

Proof. Let Ri and Sj be the SCC’s of r̄(i) and s̄(j) in A/≡A, respectively.
There are i and j such that the SCC’s of r̄(i′) and s̄(j′) for i′ ≥ i and j′ ≥ j are all the

same.
Let R = {Ri∶ i > 0}, S = {Si∶ i > 0}, m = ∣R∣, and n = ∣S∣. We show that Spoiler wins the

game in at most K rounds. The proof is by induction on the induction parameter

∑
R∈R

∣R∣2 + ∑
S∈S

∣S∣2 + [r̄(0) ∉ R1] + [s̄(0) ∉ S1] .

Here, [r(0) ∉ R1] yields 1 if the condition is true and 0 otherwise, similarly for [s(0) ∉ S1].
Adding [r̄(0) ∉ R1] and [s̄(0) ∉ S1] makes sure that if r̄(0) ∉ R1 or s̄(0) ∉ S1, then a X-move
decreases the induction parameter. If u(0) ≠ v(0) Spoiler wins instantly. Otherwise, we
distinguish several cases.
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Case 1, R1 = S1. Let c = ∣R1∣
2. Spoiler plays c X-rounds. If Spoiler does not win in these

rounds, then r̄(c + 1) ∉ R1 or s̄(c + 1) ∉ S1 because T(A/≡A) does not have a subgraph of
type (T4) , and, since A is co-deterministic, r̄(c) ≠ s̄(c). The induction hypothesis applies.

Case 2, R1 ≠ S1, R1 ∉ S. Then m > 1 and there must be some i ≥ 1 such that r(i) ∈ R1

and r(i + 1) ∉ R1. We distinguish two subcases.
Subcase 2.a, r̄(i) = s̄(0). Spoiler plays a X-round, which means Spoiler wins right away

or the game proceeds with words such that their runs start in r̄(1) and s̄(1), respectively.
The induction hypothesis applies, as s(0) ∉ S1, see above.

Subcase 2.b, r̄(i) ≠ s(0). Spoiler plays an F-round, chooses the word u, and replaces
u by u[i,∗). The induction parameter decreases by this, because ∣R1∣ ≥ 2 or r̄(0) ∉ R1. If
Duplicator chooses to not change v, then the resulting runs start with r̄(i) and s̄(0), which
are distinct. If not, then the runs start with r̄(i) and s̄(j) for some j ≥ 1, which are states
that do not belong to the same SCC and, hence, are distinct.

Case 3, R1 ≠ S1, S1 ∉ R, and n > 1. Symmetric to Case 2.
Case 4, R1 ≠ S1, R1 ∈ S, and S1 ∈R. Impossible, because R1 would be reachable from

S1 and vice versa, which would mean R1 and S1 coincide.

For ω-words u and v and a natural number k, we write u ≈k+1 v if prfk(u) = prfk(v)
and occk+1(u) = occk+1(v) = infk+1(u) = infk+1(v).

Remark 7.4.

(1) ≈k is an equivalence relation.
(2) If u ≈k+1 v, then u and v cannot be distinguished by the k-round FX-game.

We can finally turn to the correctness proof of our characterization.

Proof of Theorem 7.1. That (A) implies (B)(a) follows from Lemma 7.2 by contraposition.
We prove that (A) implies (B)(b) by contraposition. Assume (B)(b) does not hold.

Let k be a natural number. There are u, v ∈ A+ with u ≡k+1 v and uÁ /≡A vÁ. Then there
exists x ∈ A∗ such that x ⋅ uÁ ∈ I ↮ x ⋅ vÁ ∈ I, that is, xuω ∈ L ↮ xvω ∈ L. Remark 7.4
implies Duplicator wins the k-round XF-game on uω and vω because of uω ≈k+1 v

ω. But
this implies Duplicator wins the XF-game on xuω and xvω, which, in turn, implies L is not
XF-expressible.

For the implication from (B) to (A), let K be as in Lemma 7.3.
We show that whenever u, v ∈ Aω such that u ∈ L ↮ v ∈ L Duplicator wins the

max{K,2 + k}-round XF-game on u and v.
Assume u, v ∈ Aω are such that u ∈ L and v ∉ L. We distinguish two cases.

First case, infk(u) ≠ infk(v). Then Spoiler wins within at most 2 + k rounds.
Second case, infk(u) = infk(v). Then there are i, i′ and j, j′ such that

● u[i, j] ≡k v[i
′, j′],

● u[i,∗) ⋅ ∞ is an infinite loop at u[i, j]Á, and
● v[i′,∗) ⋅ ∞ is an infinite loop at v[i′, j′]Á.

From (B)(b), we conclude u[i, j]Á ≡A v[i′, j′]Á. As a consequence, Lemma 7.3 applies: L is
XF-expressible.
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8. Characterization of the {U}-Fragment

As mentioned above, the proof for the characterization of the {U}-Fragment uses a different
approach. We begin by stating the result as a theorem.

Theorem 8.1. The following are equivalent for a given trim GCMA A:

(A) L(A) is U-expressible.
(B) (a) L(A) is TLA-definable.

(b) The transition graph T(A/≡A) does not have a subgraph of the following form (in
the above sense):

p̄ q̄ r̄
aa

(T3)

(c) For all u, v ∈ a∗, a ∈ A ∶ uavÁ ≡A uaavÁ, i. e., for every q ∈ Q, the set ⋃
q′≡Aq

S(q′) is

stutter-invariant.

The definition of stutter-invariance for languages of ω-words is a little different to the one
for finite words. We use the definition from [19]. Two ω-words u and v over an alphabet
A are called stutter-equivalent iff there are two infinite sequences 0 = i0 < i1 < i2 < . . .
and 0 = j0 < j1 < j2 < . . . such that for every k ≥ 0 u(ik) = u(ik + 1) = ⋅ ⋅ ⋅ = u(ik+1 − 1) =
v(jk) = v(jk + 1) = ⋅ ⋅ ⋅ = v(jk+1 − 1). With the notion of stutter-equivalence we define
stutter-invariance for ω-languages. An ω-Language L over an alphabet A is said to be
stutter-invariant iff for each pair u, v of stutter-equivalent words we have u ∈ L↔ v ∈ L

For the proof of the above theorem, we need a theorem from [19] which reads as follows.

Theorem 8.2. A TLA-definable ω-language L ⊆ A
ω is U-expressible if and only if L is

stutter-invariant.

Proof of Theorem 8.1. (A) implies (B)(b): Let L(A) be U-expressible. By Theorem 8.2
L(A) is stutter-invariant. Assume T(A/≡A) has a subgraph of type (T3). Then there exist
u ∈ A∗, p ∈ p̄ and q ∈ q̄ with u ⋅ p ∈ I ↮ u ⋅ p ∈ I. Since A is trim, there exists v ∈ Aω with
v ⋅∞ = q. So we have uav ∈ L(A)↮ uaav ∈ L(A) which means L(A) is not stutter-invariant
— a contradiction.

(A) implies (B)(c) by contraposition: Assume there are u, v ∈ A∗, a ∈ A with uavÁ /≡A
uaavÁ. then there exists w ∈ A∗ with w ⋅uavÁ ∈ I ↮ w ⋅uaavÁ ∈ I. Hence w(uav)ω ∈ L(A)↮
w(uaav)ω ∈ L(A) and so L(A) is not stutter-invariant.

To prove the implication from (B) to (A) we have to show that L(A) is TLA-definable
and stutter-invariant. Then we can apply Theorem 8.2 and the proof is complete.

First we show, that L(A) is stutter-invariant. Let w ∈ L(A) with the unique final run
r and r̄ the factorization of r as seen above. Let i ∈ N with r(i) ∈ inf(r) and u = w[0, i)
and v = w[i,∗). Then r(i) = v ⋅ ∞. Since the loop languages are stutter-invariant and
r(i) ∈ inf(r), for every v′ ∈ A∗, a ∈ A and v′′ ∈ Aω with v′av′′ = v there exists r′(i) ∈ Q with
r′(i) ≡A r(i) and r′(i) = v′aav′′ ⋅ ∞ which means uv′aav′′ ∈ L(A). Since r(i) ∈ inf(r) this
argument can be applied infinitely often at once. The absence of (T3) means that for every
x ∈ A∗ and every a ∈ A the equivalence ax ⋅ r(i) ≡A aax ⋅ r(i) holds. If u ≠ ε let u′ ∈ A∗, a ∈ A
and u′′ ∈ A∗ with u′au′′ = u. Then u′aau′′ ⋅ r(i) ∈ I and u′aau′′v ∈ L(A). So L(A) is
stutter-invariant.
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9. Effectiveness and Computational Complexity

To conclude, we explain how Theorem 3.2 can be used effectively. In general, we have:

Theorem 9.1. Each of the fragments listed in Table 1 is decidable.

Observe that for the fragment with operator set {F,U}, this is a result from [20], and
for the fragment with operator set {X,F}, this is a result from [30].

Proof of Theorem 9.1. First, observe that Aϕ can be constructed effectively. Also, it is
easy to derive the left quotient of Aϕ from Aϕ itself and DFA’s for the loop languages,
even minimum-state DFA’s for them, simply by using any of the available minimization
procedures, for instance, the one described in [13].

Second, observe that the presence of the listed forbidden patterns can be checked effec-
tively. The reason is as follows. The test for the existence of a path between two states can
be restricted to paths of length at most the number of states. The test for the existence
of two loops with the same label but distinct starting states (see forbidden patterns for
{X} and {X,F}) in some semi automaton A = (A,Q, δ) amounts to searching for a loop
in the semi automaton (A,Q ×Q ∖ {(q, q) ∣ q ∈ Q}, δ′) with transition function defined by
δ′((q, q′), a) = (δ(q, a), δ(q′ , a)). In other words, this amounts to a search in the original
automaton restricted to paths of length at most the number of states squared.

Third, the conditions on the loop languages can be checked effectively. For 1-local
testability, this is because a language L ⊆ A∗ is not 1-locally testable if, and only if, one of
the following conditions holds:

(1) There are words u, v ∈ A∗ and there is a letter a ∈ A such that uav ∈ L↮ uaav ∈ L.
(2) There are words u ∈ A∗, v ∈ A∗ and letters a, b ∈ A such that uabv ∈ L↮ ubav ∈ L.

Again, u and v can be bounded in length by the number of states. For local testability,
we refer to [16], where it was shown this can be decided in polynomial time. For stutter
invariance, remember that a language L ⊆ A∗ is not stutter-invariant if, and only if, the
first from the above conditions holds. So this can be checked effectively, too. (One could
also use the forbidden pattern listed.)

As to the computational complexity of the problems considered, we first note:

Proposition 9.2. Each of the fragments listed in Table 1 is PSPACE-hard.

Proof. The proof is an adaptation of a proof for a slightly weaker result given in [20].
First, recall that LTL satisfiability is PSPACE-hard for some fixed alphabet [26], hence

LTL unsatisfiability for this alphabet is PSPACE-hard, too. Let A denote such an alphabet
in the following.

Second, let c, d, and e be three distinct symbols not in A, let C = {c, d, e}, and let
F = A ∪C. For every TLA-formula ϕ, set

αϕ = c ∧Xc ∧ X(CUGA) ∧ F(d ∧X(cUd)) ∧CU(A ∧ ϕ) ,

where A stands for ⋁a∈A a and C for c ∨ d ∨ e.
The formula αϕ is chosen in such a way that for every u ∈ Fω the following are equiva-

lent:

● u ⊧ αϕ,
● u can be written as vw with v ∈ C+ and w ∈ Aω and such that v ⊧ c∧Xc, v ⊧ F(d∧X(cUd)),
and w ⊧ ϕ.
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From [19] and [10], it follows that the set of finite words satisfying c∧Xc and F(d∧X(cUd))
is not expressible in any of the fragments considered. So if ϕ is satisfiable, then αϕ is not
expressible in any of the fragments. But if ϕ is not satisfiable, then so is αϕ, which means αϕ

is expressible in any of the fragments considered. In other words, ϕ↦ αϕ is an appropriate
reduction to prove the claim of the proposition.

Our upper bounds are as follows:

Theorem 9.3. The {X,F}-fragment is in E (exponential time), the other fragments listed
in Table 1 are in PSPACE.

Observe that the result for the {U}-fragment is not new, but was already obtained
in [20].

Proof. The proof is a refinement of the proof of Theorem 9.1.
Observe that each property expressed as forbidden pattern (as used in our characteriza-

tions) can not only be checked in polynomial time (which is folklore), it can also be checked
non-deterministically in logarithmic space, simply by guessing the paths in questions, even
if we are given a GCMA and need to check it on its left quotient. So if we interweave the
construction of Aϕ, which has an exponential number of states, with the non-deterministic
logarithmic-space tests for the existence of forbidden patterns, we obtain a polynomial-
space procedure for testing the conditions on T(Aϕ/≡Aϕ

). (This is a standard argument in
computational complexity.)

The situation is more complicated for the conditions on the loop languages. First
observe that from the automaton Aϕ we can get reverse DFA’s of size polynomial in the
size of Aϕ such that every loop language is the union of the languages recognized by these
reverse DFA’s, which allows us to analyze the loop languages effectively.

We first deal with 1-local testability and stutter invariance and start with the observa-
tion that 1. and 2. from the proof of Theorem 9.1 can be adapted as follows. There are two
states p and q in Aϕ that are not equivalent with respect to ≡A and such that one of the
following conditions is true:

(1) There are words u, v ∈ A∗ and there is a letter a ∈ A such that uav ∈ LL(p) and
uaav ∈ LL(q).

(2) There are words u, v ∈ A∗ and letters a, b ∈ A such that uabv ∈ LL(p) and ubav ∈ LL(q).

From this, it follows that we can bound the length of u and v polynomially in the size of
Aϕ, which again yields polynomial-space procedures for both, 1-local testability and stutter
invariance.

For (general) local testability, we apply the polynomial-time decision procedure for local
testability developed in [16] to the product of the reverse DFA’s mentioned above, which
yields an exponential-time algorithm altogether.

We conclude this section with a more general version of Theorem 9.1:

Corollary 9.4. For each of the fragments listed in Table 1, the following is decidable. Given
an ω-regular language L, is L definable in the fragment?

Proof. Given L we can construct effectively a Büchi automaton A which recognizes L, see
[28] for example. In [7] the decidability of the LTL-definability of L(A) = L is shown.
Theorem 2.1 yields a GCMA B with L(B) = L(A). Theorem 9.1 completes the proof.
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10. Open problems

We would like to state some questions:

(1) Our lower and upper bounds for the complexity of the {X,F}-fragment don’t match.
What is the exact complexity of this fragment?

(2) Clearly, from our proofs it can be deduced that if a formula ϕ is equivalent to a formula in
a fragment, an equivalent formula can be constructed effectively. What is the complexity
of this construction task?

(3) It is not difficult to come up with examples where every equivalent formula has expo-
nential size (even exponential circuit size). What is the worst-case blow-up?— Observe
that, in terms of circuit size, there is a polynomial upper bound for the {U}-fragment,
see [17].
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[5] Joëlle Cohen, Dominique Prion, and Jean-Éric Pin. On the expressive power of temporal logic. J.
Comput. System Sci., 46(3):271–294, 1993.

[6] Thomas Colcombet. Forms of determinism for automata (invited talk). In Christoph Dürr and Thomas
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