CALL-BY-VALUE TERMINATION IN THE UNTYPED \(\lambda\)-CALCULUS

NEIL D. JONES\(^a\) AND NINA BOHR\(^b\)

\(^a\) DIKU, University of Copenhagen, Denmark
e-mail address: neil@diku.dk

\(^b\) IT-University of Copenhagen, Denmark
e-mail address: nina@itu.dk

Abstract. A fully-automated algorithm is developed able to show that evaluation of a given untyped \(\lambda\)-expression will terminate under CBV (call-by-value). The “size-change principle” from first-order programs is extended to arbitrary untyped \(\lambda\)-expressions in two steps. The first step suffices to show CBV termination of a single, stand-alone \(\lambda\)-expression. The second suffices to show CBV termination of any member of a regular set of \(\lambda\)-expressions, defined by a tree grammar. (A simple example is a minimum function, when applied to arbitrary Church numerals.) The algorithm is sound and proven so in this paper. The Halting Problem’s undecidability implies that any sound algorithm is necessarily incomplete: some \(\lambda\)-expressions may in fact terminate under CBV evaluation, but not be recognised as terminating.

The intensional power of the termination algorithm is reasonably high. It certifies as terminating many interesting and useful general recursive algorithms including programs with mutual recursion and parameter exchanges, and Colson’s “minimum” algorithm. Further, our type-free approach allows use of the Y combinator, and so can identify as terminating a substantial subset of PCF.

Contents

1. Introduction
Contribution of this paper
1.1. Related work
Termination of untyped programs
Termination of typed \(\lambda\)-calculi
2. The call-by-value \(\lambda\)-calculus
2.1. Classical semantics
2.2. Nontermination is sequential
The “calls” relation
A small improvement to the operational semantics

1998 ACM Subject Classification: F.3.2, D.3.1.
Key words and phrases: Program analysis, Termination analysis, Untyped Lambda calculus, The Size-Change Principle.
3. An approach to termination analysis
 3.1. An environment-based semantics
 3.2. States are tree structures
 3.3. Nontermination made visible in an environment-based semantics
 3.4. A control point is a subexpression of a λ-expression
 3.5. Finitely describing a program’s computation space
 3.6. Static control flow graphs for λ-expressions
4. A quick review of size-change analysis
5. Tracing data size changes in call-by-value λ-calculus evaluation
 5.1. Size changes in a computation: a well-founded relation between states
6. Size-change graphs that safely describe a program
 6.1. Safely describing state transitions
6.2. Generating size-change graphs during a computation
6.3. Construction of size-change graphs by abstract interpretation
7. Some examples
 7.1. A simple example
6.2. fnx = x + 2^n by Church numerals
7.3. Ackermann’s function, second-order
7.4. Arbitrary natural numbers as inputs
7.5. A minimum function, with general recursion and Y-combinator
7.6. Ackermann’s function, second-order with constants and Y-combinator
7.7. Imprecision of abstract interpretation
7.8. A counterexample to a conjecture
8. Arbitrary λ-regular program inputs (Extended λ-calculus)
 8.1. λ-regular grammars
 8.2. Extended environment-based semantics.
 8.3. Relating extended and pure λ-calculus
 8.4. The subexpression property
 8.5. Approximate extended semantics with size-change graphs
 8.6. Simulation properties of approximate extended semantics
9. Concluding matters
Acknowledgements.
Appendix A. Proof of Lemma 2.6
Appendix B. Proof of Lemma 3.11
Appendix C. Proof of Lemma 5.4
Appendix D. Proof of Theorem 6.8
Appendix E. Proof of Lemma 6.10
Appendix F. Proof of Lemma 8.19
References
1. Introduction

The size-change analysis by Lee, Jones and Ben-Amram [14] can show termination of programs whose parameter values have a well-founded size order. The method is reasonably general, easily automated, and does not require human invention of lexical or other parameter orders. It applies to first-order functional programs. This paper applies similar ideas to termination of higher-order programs. For simplicity and generality we focus on the simplest such language, the λ-calculus.

Contribution of this paper. Article [12] (prepared for an invited conference lecture) showed how to lift the methods of [14] to show termination of closed λ-expressions. The current paper is a journal version of [12]. It extends [12] to deal not only with a single λ-expression in isolation, but with a regular set of λ-expressions generated by a finite tree grammar. For example, we can show that a λ-expression terminates when applied to Church numerals, even though it may fail to terminate on all possible arguments. This paper includes a number of examples showing its analytical power, including programs with primitive recursion, mutual recursion and parameter exchanges, and Colson’s “minimum” algorithm. Further, examples show that our type-free approach allows free use of the Y combinator, and so can identify as terminating a substantial subset of PCF.

1.1. Related work. Jones [11] was an early paper on control-flow analysis of the untyped λ-calculus. Shivers’ thesis and subsequent work [22, 23] on CFA (control flow analysis) developed this approach considerably further and applied it to the Scheme programming language. This line is closely related to the approximate semantics (static control graph) of Section 3.6 [11].

Termination of untyped programs. Papers based on [14] have used size-change graphs to find bounds on program running times (Frederiksen and Jones [5]); solved related problems, e.g., to ensure that partial evaluation will terminate (Glenstrup and Jones, Lee [10, 15]); and found more efficient (though less precise) algorithms (Lee [16]). Further, Lee’s thesis [17] extends the first-order size-change method [14] to handle higher-order named combinator programs. It uses a different approach than ours, and appears to be less general.

We had anticipated from the start that our framework could naturally be extended to higher-order functional programs, e.g., functional subsets of Scheme or ML. This has since been confirmed by Sereni and Jones, first reported in [19]. Sereni’s Ph.D. thesis [21] develops this direction in considerably more detail with full proofs, and also investigates problems with lazy (call-by-name) languages. Independently and a bit later, Giesl and coauthors have addressed the analysis of the lazy functional language Haskell [8].

Termination of typed λ-calculi. Quite a few people have written about termination based on types. Various subsets of the λ-calculus, in particular subsets typable by various disciplines, have been proven strongly normalising. Work in this direction includes pathbreaking results by Tait [24] and others concerning simple types, and Girard’s System F [9]. Abel, Barthe and others have done newer type-based approaches to show termination of a λ-calculus extended with recursive data types [1, 2, 3].

Typed functional languages: Xi’s Ph.D. research focused on tracing value flow via data types for termination verification in higher order programming languages [28]. Wahlstedt
has an approach to combine size-change termination analysis with constructive type theory [26, 27].

Term rewriting systems: The popular “dependency pair” method was developed by Arts and Giesl [6] for first-order programs in TRS form. This community has begun to study termination of higher order term rewriting systems, including research by Giesl et.al. [7, 8], Toyama [25] and others.

2. The call-by-value λ-calculus

First, we review relevant definitions and results for the call-by-value λ-calculus, and then provide an observable characterisation of the behavior of a nonterminating expression.

2.1. Classical semantics.

Definition 2.1. Exp is the set of all λ-expressions that can be formed by these syntax rules, where @ is the application operator (sometimes omitted). We use the teletype font for λ-expressions.

\[
e, P ::= x | e @ e | \lambda x.e
\]

- The set of free variables \(fv(e)\) is defined as usual: \(fv(x) = \{x\}\), \(fv(e@e') = fv(e) \cup fv(e')\) and \(fv(\lambda x.e) = fv(e) \setminus \{x\}\). A closed λ-expression \(e\) satisfies \(fv(e) = \emptyset\).
- A program, usually denoted by \(P\), is any closed λ-expression.
- The set of subexpressions of a λ-expression \(e\) is denoted by subexp\(e\).

The following is standard, e.g., [18]. Notation: β-reduction is done by substituting \(v\) for all free occurrences of \(x\) in \(e\), written \(e[v/x]\), and renaming λ-bound variables if needed to avoid capture.

Definition 2.2. (Call-by-value semantics) The call-by-value evaluation relation is defined by the following inference rules, with judgement form \(e \downarrow v\) where \(e\) is a closed λ-expression and \(v \in ValueS\). ValueS (for “standard value”) is the set of all abstractions \(\lambda x.e\).

\[
\frac{}{v \downarrow v} \text{ If } v \in ValueS (ValueS) \quad \frac{e_1 \downarrow \lambda x.e_0 \quad e_2 \downarrow v_2 \quad e_0[v_2/x] \downarrow v}{e_1@e_2 \downarrow v} \quad \text{(ApplyS)}
\]

Lemma 2.3. (Determinism) If \(e \downarrow v\) and \(e \downarrow w\) then \(v = w\).

2.2. Nontermination is sequential.

A proof of \(e \downarrow v\) is a finite object, and no such proof exists if the evaluation of \(e\) fails to terminate. Thus in order to be able to trace an arbitrary computation, terminating or not, we introduce a new “calls” relation \(e \rightarrow e'\), in order to make nontermination visible.
The “calls” relation. The rationale is straightforward: $e \rightarrow e'$ if in order to deduce $e \Downarrow v$ for some value v, it is necessary first to deduce $e' \Downarrow u$ for some u, i.e., some inference rule has form $\cdots e' \Downarrow ? \cdots e \Downarrow ?$. Applying this to Definition 2.2 gives the following.

Definition 2.4. (Evaluation and call semantics) The evaluation and call relations are defined by the following inference rules, where \rightarrow_r, \rightarrow_d, $\rightarrow_c \subseteq \text{Exp} \times \text{Exp}$.

- $\frac{v \Downarrow v}{\text{If } v \in \text{ValueS (Value)}}$
- $\frac{e_1 \Downarrow \lambda x. e_0 \quad e_2 \Downarrow v_2}{e_1 @ e_2 \rightarrow_c e_0[v_2/x]}$ (Call$_{0}$)
- $\frac{e_1 \Downarrow \lambda x. e_0 \quad e_2 \Downarrow v_2 \quad e_0[v_2/x] \Downarrow v}{e_1 @ e_2 \Downarrow v}$ (Apply$_{0}$)

For convenience we will sometimes combine the three into a single call relation $\rightarrow = \rightarrow_r \cup \rightarrow_d \cup \rightarrow_c$. As usual, we write \rightarrow^+ for the transitive closure of \rightarrow, and \rightarrow^* for its reflexive transitive closure. We will sometimes write $s \Downarrow$ to mean $s \Downarrow v$ for some $v \in \text{ValueS}$, and write $s \not\Downarrow$ to mean there is no $v \in \text{ValueS}$ such that $s \Downarrow v$, i.e., if evaluation of s does not terminate.

A small improvement to the operational semantics. Note that rules (Call$_{0}$) and (Apply$_{0}$) from Definition 2.4 overlap: $e_2 \Downarrow v_2$ appears in both, as does $e_0[v_2/x]$. Thus (Call$_{0}$) can be used as an intermediate step to simplify (Apply$_{0}$), giving a more orthogonal set of rules. Variations on the following combined set will be used in the rest of the paper:

Definition 2.5. (Combined evaluate and call rules, standard semantics)

- $\frac{v \Downarrow v}{\text{If } v \in \text{ValueS (Value)}}$
- $\frac{e_1 \Downarrow \lambda x. e_0 \quad e_2 \Downarrow v_2}{e_1 @ e_2 \rightarrow_c e_0[v_2/x]}$ (Call)
- $\frac{e_1 \Downarrow \lambda x. e_0 \quad e_2 \Downarrow v_2 \quad e_0[v_2/x] \Downarrow v}{e_1 @ e_2 \Downarrow v}$ (Apply)

The call tree of program P is the smallest set of expressions CT containing P that is closed under \rightarrow. It is not necessarily finite.

Lemma 2.6. (NIS, or Nontermination Is Sequential) Let P be a program. Then $P \Downarrow$ if and only if CT has no infinite call chain starting with P:

$$P = e_0 \rightarrow e_1 \rightarrow e_2 \rightarrow \ldots$$

Naming: r, d in \rightarrow_r, \rightarrow_d are the last letters of operator and operand, and c in \rightarrow_c stands for “call”.

Footnote: 1Naming: r, d in \rightarrow_r, \rightarrow_d are the last letters of operator and operand, and c in \rightarrow_c stands for “call”.
Example: evaluation of expression \(\Omega = (\lambda x. x \@ x) \@ (\lambda y. y \@ y) \) yields an infinite call chain:

\[
\Omega = (\lambda x. x \@ x) \@ (\lambda y. y \@ y) \rightarrow (\lambda y. y \@ y) \@ (\lambda y. y \@ y) \rightarrow (\lambda y. y \@ y) \@ (\lambda y. y \@ y) \rightarrow \ldots
\]

By the NIS Lemma all nonterminating computations give rise to infinite linear call chains. Such call chains need not, however, be repetitive as in this example, or even finite.

Informally \(e_0 \not\Downarrow \) implies existence of an infinite call chain as follows: Try to build, bottom-up and left-to-right, a proof tree for \(e_0 \Downarrow v \). Since call-by-value evaluation cannot “get stuck” this process will continue infinitely, leading to an infinite call chain. Figure 1 shows such a call tree with infinite path starting with \(e_0 \rightarrow e_1 \rightarrow e_2 \rightarrow e_3 \rightarrow \ldots \), where \(\rightarrow = \rightarrow_r \cup \rightarrow_d \cup \rightarrow_c \). The Appendix contains a formal proof.

\[e_0 \Downarrow \] \hspace{1cm} \text{Code: } r = \text{“Operator”}, d = \text{“Operand”}, c = \text{“call”}.

Figure 1: Nontermination implies existence of an infinite call chain

3. An approach to termination analysis

The “size-change termination” analysis of Lee, Jones and Ben-Amram [14] is based on several concepts, including:

1. Identifying nontermination as caused by infinitely long sequential state transitions.
2. A fixed set of program control points.
3. Observable decreases in data value sizes.
4. Construction of one size-change graph for each function call.
5. Finding the program’s control flow graph, and the call sequences that follow it.
The NIS Lemma establishes point (1). However, concepts (2)-(5) all seem a priori absent from the λ-calculus, except that an application must be a call; and even then, it is not a priori clear which function is being called. We will show, one step at a time, that all the concepts do in fact exist in call-by-value λ-calculus evaluation.

3.1. An environment-based semantics.

Program flow analysis usually requires evident program control points. An alternate environment-based formulation remedies their absence in the λ-calculus. The ideas were formalised by Plotkin [18], and have long been used in implementations of functional programming language such as scheme and ml.

Definition 3.1. (States, etc.) Define State, Value, Env to be the smallest sets such that

\[
\begin{align*}
\text{State} & = \{ e : \rho \mid e \in \text{Exp}, \rho \in \text{Env} \text{ and } \text{dom}(\rho) \supseteq \text{fv}(e) \} \\
\text{Value} & = \{ \lambda x.e : \rho \mid \lambda x.e : \rho \in \text{State} \} \\
\text{Env} & = \{ \rho : X \rightarrow \text{Value} \mid X \text{ is a finite set of variables} \}
\end{align*}
\]

Equality of states is defined by:

\[e_1 : \rho_1 = e_2 : \rho_2 \text{ holds if } e_1 = e_2 \text{ and } \rho_1(x) = \rho_2(x) \text{ for all } x \in \text{fv}(e_1) \]

The empty environment with domain $X = \emptyset$ is written []. The environment-based evaluation judgement form is $s \Downarrow v$ where $s \in \text{State}, v \in \text{Value}$.

The Plotkin-style rules follow the pattern of Definition 2.1 except that substitution (β-reduction) $e_0[v_2/x]$ of the (CallS) rule is replaced by a “lazy substitution” that just updates the environment in the new (Call) rule. Further, variable values are fetched from the environment.

Definition 3.2. (Environment-based evaluation semantics) The evaluation relation \Downarrow, is defined by the following inference rules.

\[
\begin{align*}
\overline{v \Downarrow v} & \text{ If } v \in \text{Value} \quad \text{(ValueE)} \\
\overline{x : \rho \Downarrow \rho(x)} & \quad \text{(VarE)} \\
\overline{e_1 : \rho \Downarrow \lambda x.e_0 : \rho_1 \quad e_2 : \rho \Downarrow v_2 \quad e_0 : \rho_0[x \mapsto v_2] \Downarrow v} & \quad \text{(ApplyE$_0$)}
\end{align*}
\]

3.2. States are tree structures.

A state has form $s = e : \rho$ as in Definition 3.1 where ρ binds the free variables of e to values, which are themselves states. Consider, for two examples, these two states

\[
s = e : \rho = r@(r@a) : [r \mapsto \text{succ} : [] , a \mapsto 2 : []]
\]

\[
s' = e' : \rho' = r@(r@a) : [r \mapsto \lambda a.r@(r@a) : [r \mapsto \text{succ} : [] , a \mapsto 2 : []]
\]

(written in our usual linear notation and using the standard Church numerals $0, 1, 2, \ldots$.)

For brevity details of the successor function succ are omitted. It is straightforward to verify that $s \Downarrow 4$ and $s' \Downarrow 6$ by Definition 3.2.

More generally, each value bound in an environment is a state in turn, so in full detail a state’s structure is a finite tree. (The levels of this tree represent variable bindings, not to be confused with the syntactic or subexpression tree structures from Figure 3.)
3.3. Nontermination made visible in an environment-based semantics. Straightforwardly adapting the approach of Section 2.2. gives the following set of inference rules, variations on which will be used in the rest of the paper:

Definition 3.3. (Combined evaluate and call rules, environment semantics)

\[
\begin{align*}
&v \Downarrow v & \text{If } v \in \text{Value} \ (\text{Value}) \\
&e_1 @ e_2 : \rho \rightarrow e_1 : \rho & \text{(Operator)} \\
&\lambda x. e_0 : \rho_0 \rightarrow e_2 : \rho_2 \Downarrow v_2 & \text{(Call)} \\
&\text{e}_1 @ e_2 : \rho \rightarrow e_0 : \rho_0[x \mapsto v_2] \\
&\text{Apply} \end{align*}
\]

The following is proven in the same way as Lemma 2.6.

Lemma 3.4. (NIS, or Nontermination Is Sequential) Let \(P \) be a program. Then \(P : [] \Downarrow \) if and only if \(CT \) has no infinite call chain staring with \(P : [] \) (where \(\rightarrow = \rightarrow_r \cup \rightarrow_d \cup \rightarrow_c \)):

\[
P : [] = e_0 : \rho_0 \rightarrow e_1 : \rho_1 \rightarrow e_2 : \rho_2 \rightarrow \ldots
\]

Following the lines of Plotkin [18], the environment-based semantics is shown equivalent to the usual semantics in the sense that they have the same termination behaviour. Further, when evaluation terminates the computed values are related by function \(F : \text{States} \rightarrow \text{Exp} \) defined by

\[
F(e : \rho) = e[F(\rho(x_1))/x_1, \ldots, F(\rho(x_k))/x_k] \text{ where } \{x_1, \ldots, x_k\} = fv(e).
\]

Lemma 3.5. \(P : [] \Downarrow v \) (by Definition 3.3) implies \(P \Downarrow F(v) \) (by Definition 2.5), and \(P \Downarrow w \) implies there exists \(v' \) such that \(P : [] \Downarrow v' \) and \(F(v') = w \).
Example: evaluation of closed $\Omega = (\lambda x.x@x)@ (\lambda y.y@y)$ yields an infinite call chain:

$$\Omega : [] \rightarrow x@x : \rho_1 \rightarrow y@y : \rho_2 \rightarrow y@y : \rho_2 \rightarrow \ldots$$

where $\rho_1 = [x \mapsto \lambda y.y@y : []]$ and $\rho_2 = [y \mapsto \lambda y.y@y : []]$. The set of states reachable from $P : []$ is finite, so this computation is in fact a “repetitive loop.” (It is also possible that a computation will reach infinitely many states that are all different.)

3.4. A control point is a subexpression of a λ-expression. The following subexpression property does not hold for the classical rewriting λ-calculus semantics, but does hold for Plotkin-style environment semantics of Definition 3.2. It is central to our program analysis: A control point will be a subexpression of the program P being analysed, and our analyses will trace program information flow to and from subexpressions of P.

Lemma 3.6. If $P : [] \Downarrow \lambda x.e : \rho$ then $\lambda x.e \in \text{subexp}(P)$. [Recall Definition 2.1]

This is proven as follows, using a more general inductive hypothesis.

Definition 3.7. The expression support of a given state s is $\text{exp}_- \text{sup}(s)$, defined by

$$\text{exp}_- \text{sup}(e : \rho) = \text{subexp}(e) \cup \bigcup_{x \in fv(e)} \text{exp}_- \text{sup}(\rho(x))$$

Lemma 3.8. (Subexpression property) If $s \Downarrow s'$ or $s \rightarrow s'$ then $\text{exp}_- \text{sup}(s) \supseteq \text{exp}_- \text{sup}(s')$.

Proof. This follows by induction on the proof of $s \Downarrow v$ or $s \rightarrow s'$. Lemma 3.6 is an immediate corollary.

Base cases: $s = x : \rho$ and $s = \lambda x.e : \rho$ are immediate. For rule (Call) suppose $e_1 : \rho \Downarrow \lambda x.e_0 : \rho_0$ and $e_2 : \rho \Downarrow v_2$. By induction

$$\text{exp}_- \text{sup}(e_1 : \rho) \supseteq \text{exp}_- \text{sup}(\lambda x.e_0 : \rho_0) \quad \text{and} \quad \text{exp}_- \text{sup}(e_2 : \rho) \supseteq \text{exp}_- \text{sup}(v_2)$$

Thus

$$\text{exp}_- \text{sup}(e_1 @ e_2 : \rho) \supseteq \text{exp}_- \text{sup}(e_1 : \rho) \cup \text{exp}_- \text{sup}(e_2 : \rho) \supseteq \text{exp}_- \text{sup}(e_0 : \rho_0) \cup \text{exp}_- \text{sup}(v_2)$$

For rule (Apply) we have $\text{exp}_- \text{sup}(e_1 @ e_2 : \rho) \supseteq \text{exp}_- \text{sup}(e' : \rho') \supseteq \text{exp}_- \text{sup}(v)$. The cases (Operator), (Operand) are immediate.

3.5. Finitely describing a program’s computation space. A standard approach to program analysis is to trace data flow along the arcs of the program’s dynamic control graph or DCG. In our case this is the call relation \rightarrow of Definition 2.5. Unfortunately the DCG may be infinite, so for program analysis we will instead compute a safe finite approximation called the SCG, for static control graph.

Example 3.9. Figure 3 shows the combinator $\Omega = (\lambda x.x@x)@ (\lambda y.y@y)$ as a syntax tree whose subexpressions are labeled by numbers. To its right is the “calls” relation \rightarrow. It has an infinite call chain:

$$\Omega : [] \rightarrow x@x : \rho_1 \rightarrow y@y : \rho_2 \rightarrow y@y : \rho_2 \rightarrow \ldots$$

Using subexpression numbers, the loop is

$$1 : [] \rightarrow 3 : \rho_1 \rightarrow 7 : \rho_2 \rightarrow \ldots$$

where $\rho_1 = [x \mapsto \lambda y.y@y : []]$ and $\rho_2 = [y \mapsto \lambda y.y@y : []]$. The set of states reachable from $P : []$ is finite, so this computation is in fact a “repetitive loop.” (It is also possible that a computation will reach infinitely many states that are all different.)
The "calls" relation \(\rightarrow \)

where \(\rho_1 = [x \mapsto 6 : []] \) and \(\rho_2 = [y \mapsto 6 : []] \)

By the NIS Lemma 3.4, if \(P \not\Downarrow \) then there exists an infinite call chain

\[
P : [] = e_0 : \rho_0 \rightarrow e_1 : \rho_1 \rightarrow e_2 : \rho_2 \rightarrow \ldots
\]

By Lemma 3.8, \(e_i \in \text{subexp}(P) \) for each \(i \). Our termination-detecting algorithm will focus on the size relations between consecutive environments \(\rho_i \) and \(\rho_{i+1} \) in this chain. Since \(\text{subexp}(P) \) is a finite set, at least one subexpression \(e \) occurs infinitely often, so "self-loops" will be of particular interest.

Since all states have an expression component lying in a set of fixed size, and each expression in the environment also lies in this finite set, in an infinite state set \(S \) there will be states whose environment depths are arbitrarily large.

3.6. Static control flow graphs for \(\lambda \)-expressions. The end goal, given program \(P \), is implied by the NIS Lemma 3.4 correctly to assert the nonexistence of any infinite call chain starting at \(P : [] \). By the Subexpression Lemma 3.8 an infinite call chain \(e_0 : \rho_0 \rightarrow e_1 : \rho_1 \rightarrow e_2 : \rho_2 \rightarrow \ldots \) can only contain finitely many different expression components \(e_i \). A static control flow graph (SCG for short) including all expression components can be obtained by abstract interpretation of the "Calls" and "Evaluates-to" relations (Cousot and Cousot [4]). Figure 4 shows a SCG for \(\Omega \).

An approximating SCG may be obtained by removing all environment components from Definition 3.3. To deal with the absence of environments the variable lookup rule is
modified: If $e_1 @ e_2$ is any application in P such that e_1 can evaluate to a value of form $\lambda x.e$ and e_2 can evaluate to value v_2, then v_2 is regarded as a possible value of x.

Although approximate, these rules have the virtue that there are only finitely many possible judgements $e \rightarrow e'$ and $e \Downarrow e'$. Consequently, the runtime behavior of program P may be (approximately) analysed by exhaustively applying these inference rules. A later section will extend the rules so they also generate size-change graphs.

Definition 3.10. (Approximate evaluation and call rules) The new judgement forms are $e \Downarrow e'$ and $e \rightarrow e'$. The inference rules are:

\[
\begin{align*}
&\quad \lambda x.e \Downarrow \lambda x.e \quad (\text{ValueA}) \\
&\quad e_1 @ e_2 \rightarrow e_1 \quad (\text{OperatorA}) \\
&\quad e_1 @ e_2 \rightarrow e' \quad (\text{OperandA}) \\
&\quad e_1 @ e_2 \Downarrow e_0 \quad e_2 \Downarrow v_2 \quad (\text{VarA}) \\
&\quad e_1 @ e_2 \Downarrow e' \quad e' \Downarrow v \quad (\text{CallA}) \\
&\quad e_1 @ e_2 \Downarrow v \quad (\text{ApplyA})
\end{align*}
\]

The (VarA) rule refers globally to P, the program being analysed. The approximate evaluation is nondeterministic, since an expression may evaluate to more than one value.

Following is a central result: that all possible values obtained by the actual evaluation of Definition 3.3 are accounted for by the approximate evaluation of Definition 3.10.

Lemma 3.11.

If $P : [] \rightarrow^* e : \rho$ and $e : \rho \Downarrow e' : \rho'$, then $e \Downarrow e'$.

If $P : [] \rightarrow^* e : \rho$ and $e \rightarrow e' : \rho'$, then $e \rightarrow e'$.

Proof is in the Appendix.

4. A Quick Review of Size-change Analysis

Using the framework of [14], the relation between two states s_1 and s_2 in a call $s_1 \rightarrow s_2$ or an evaluation $s_1 \Downarrow s_2$ will be described by means of a size-change graph G.

Example 4.1. Let first-order functions f and g be defined by mutual recursion:

\[
\begin{align*}
f(x,y) &= \text{if } x=0 \text{ then } y \text{ else } 1 : g(x,y,y) \\
g(u,v,w) &= \text{if } w=0 \text{ then } 3:f(u-1,w) \text{ else } 2:g(u,v-1,w+2)
\end{align*}
\]

Label the three function calls 1, 2 and 3. The “control flow graph” in Figure 5 shows the calling function and called function of each call, e.g., $1 : f \rightarrow g$. Associate with each call a “size-change graph”, e.g., G_1 for call 1, that safely describes the data flow from the calling function’s parameters to the called function’s parameters. Symbol \downarrow indicates a value decrease.

Termination reasoning: We show that all infinite size-change graph sequences $M = g_1 g_2 \ldots \in \{G_1,G_2,G_3\}^\omega$ that follow the program’s control flow are impossible (assuming that the data value set is well-founded):

Case 1: $M \in \ldots (G_2)^\omega$ ends in infinitely many G_2’s: This would imply that variable v descends infinitely.

Case 2: $M \in \ldots (G_1 G_2 G_3)^\omega$. This would imply that variable u descends infinitely.
Both cases are impossible; therefore a call of any program function with any data will terminate.

End of example.

Definition 4.2.

(1) A size-change graph \(A \overset{G}{\rightarrow} B \) consists of a source set \(A \); a target set \(B \); and a set of labeled\(^2\) arcs \(G \subseteq A \times \{=, \downarrow\} \times B \).

(2) The identity size-change graph for \(A \) is \(A \overset{id_A}{\rightarrow} A \) where \(id_A = \{ x \overset{=}{} x \mid x \in A \} \).

(3) Size-change graphs \(A \overset{G_1}{\rightarrow} B \) and \(C \overset{G_2}{\rightarrow} D \) are composable if \(B = C \). The composition of \(A \overset{G_1}{\rightarrow} B \) and \(B \overset{G_2}{\rightarrow} C \) is \(A \overset{G_1; G_2}{\rightarrow} C \) where

\[
G_1; G_2 = \{ x \overset{r}{\rightarrow} z \mid \downarrow \in \{ r, s \mid x \overset{r}{\rightarrow} y \in G_1 \text{ and } y \overset{s}{\rightarrow} z \in G_2 \text{ for some } y \in B \} \}
\]

\[
\cup \{ x \overset{=}{} z \mid \{=\} = \{ r, s \mid x \overset{r}{\rightarrow} y \in G_1 \text{ and } y \overset{s}{\rightarrow} z \in G_2 \text{ for some } y \in B \} \}
\]

Lemma 4.3. Composition is associative, and \(A \overset{G}{\rightarrow} B \) implies \(id_A; G; id_B = G \).

Definition 4.4. A multipath \(M \) over a set \(G \) of size-change graphs is a finite or infinite composable sequence of graphs in \(G \). Define

\[G^\omega = \{ M = G_0, G_1, \ldots \mid \text{graphs } G_i, G_{i+1} \text{ are composable for } i = 0, 1, 2, \ldots \} \]

Definition 4.5.

(1) A thread in a multipath \(M = G_0, G_1, G_2, \ldots \) is a sequence \(t = a_j \overset{r_j}{\rightarrow} a_{j+1} \overset{r_{j+1}}{\rightarrow} \cdots \) such that \(a_k \overset{r_k}{\rightarrow} a_{k+1} \in G_k \) for every \(k \geq j \) (and each \(r_k \) is = or \(\downarrow \)).

(2) Thread \(t \) is of infinite descent if \(r_k = \downarrow \) for infinitely many \(k \geq j \).

Definition 4.6. The size-change condition.

A set \(G \) of size-change graphs satisfies the size-change condition if every infinite multipath \(M \in G^\omega \) contains at least one thread of infinite descent.

Perhaps surprisingly, the size-change condition is decidable. Its worst-case complexity is shown to be complete for PSPACE in \[14\] (for first-order programs, in relation to the length of the program being analysed).

The example revisited

The program of Figure 5 has three size-change graphs, one for each of the calls 1: \(f \rightarrow g \), 2: \(g \rightarrow g \), 3: \(g \rightarrow f \), so \(G = \{ A \overset{G_1}{\rightarrow} B, B \overset{G_2}{\rightarrow} B, B \overset{G_3}{\rightarrow} A \} \) where \(A = \{ x, y \} \) and \(B = \{ u, v, w \} \). (Note: the vertical layout of size-change graphs in Figure 5 is inessential; one could simply write \(G_3 = \{ u \overset{=}{} x, w \overset{=}{} y \} \).

\(G \) satisfies the size-change condition, since every infinite multipath has either a thread that decreases \(u \) infinitely, or a thread that decreases \(v \) infinitely.

\(^2\)Arc label \(\uparrow \) signifying \(\geq \) was used in [14] instead of =, but this makes no difference in our context.
5. Tracing data size changes in call-by-value λ-calculus evaluation

The next focus is on size relations between consecutive environments in a call chain.

5.1. Size changes in a computation: a well-founded relation between states.

Definition 5.1.
(1) A name path is a finite string p of variable names, where the empty string is (as usual) written ϵ.
(2) The graph basis of a state $s = e : \rho$ is the smallest set $gb(s)$ of name paths satisfying

$$gb(e : \rho) = \{\epsilon\} \cup \{xp \mid x \in fv(e) \text{ and } p \in gb(\rho(x))\}$$

By this definition, for the two states in the example above we have $gb(s) = \{\epsilon, r, a\}$ and $gb(s') = \{\epsilon, r, rr, a\}$. Further, given a state s and a path $p \in gb(s)$, we can find the substate identified by name path p as follows:

Definition 5.2. The valuation function $\overline{s} : gb(s) \rightarrow State$ of a state s is defined by:

$$\overline{s}(\epsilon) = s$$

We need to develop a size ordering on states. This will be modeled by size-change arcs \Rightarrow and \Rightarrow. The size relation we use is partly the “subtree” relation on closure values $e : \rho$, and partly the “subexpression” relation on λ-expressions.

Definition 5.3.
(1) The state support of a state $e : \rho$ is given by

$$support(e : \rho) = \{e : \rho\} \cup \bigcup_{x \in fv(e)} support(\rho(x))$$

(2) Relations \succ_1, \succ_2, \succeq and \succ on states are defined by:

- $s_1 \succ_1 s_2$ holds if $support(s_1) \supseteq s_2$ and $s_1 \neq s_2$;
- $s_1 \succ_2 s_2$ holds if $s_1 = e_1 : \rho_1$ and $s_2 = e_2 : \rho_2$, where $subexp(e_1) \supsete e_2$ and $e_1 \neq e_2$ and $\forall x \in fv(e_2).\rho_1(x) = \rho_2(x)$.

- Relation \succeq is defined to be the transitive closure of $\succ_1 \cup \succ_2 \cup =$.
- Finally, $s_1 \succ s_2$ if $s_1 \succeq s_2$ and $s_1 \neq s_2$

Lemma 5.4. The relation $\succ \subseteq State \times State$ is well-founded.

We prove that the relation \succ on states is well-founded by proving that

$$e_1 : \rho_1 \succ e_2 : \rho_2 \text{ implies that } (H(e_1 : \rho_1), L(e_1)) \succ_{lex} (H(e_2 : \rho_2), L(e_2))$$

in the lexicographic order, where H gives the height of the environment and L gives the length of the expression. The proof is in the Appendix.

Lemma 5.5. If $p \in gb(s)$ then $s \succeq_1 \overline{s}(p)$. If $p \in gb(s)$ and $p \neq \epsilon$ then $s \succ_1 \overline{s}(p)$.
6. Size-change graphs that safely describe a program

6.1. Safely describing state transitions. We now define the arcs of the size-change graphs (recalling Definition 4.2):

Definition 6.1. A size-change graph G relating state s_1 to state s_2 has source $gb(s_1)$ and target $gb(s_2)$.

Definition 6.2. Let $s_1 = e_1 : \rho_1$ and $s_2 = e_2 : \rho_2$. Size-change graph $s_1 \rightarrow s_2, G$ is safe for (s_1, s_2) if

$$p_1 \rightarrow p_2 \in G \text{ implies } \overline{s_1(p_1)} = \overline{s_2(p_2)} \text{ and } p_1 \leftarrow p_2 \in G \text{ implies } \overline{s_1(p_1)} \succ \overline{s_2(p_2)}$$

By $\text{dom}(G)$ we denote the subset of $\text{source}(G)$ from where arcs begin. By $\text{codom}(G)$ we denote the subset of $\text{target}(G)$ where arcs end. Notice that if a size-change graph G is safe for the states (s_1, s_2), then any subset size-change graph $G' \subset G$ with $\text{source}(G') = \text{source}(G)$ and $\text{target}(G') = \text{target}(G)$ is safe for (s_1, s_2).

Definition 6.3. A set \mathcal{G} of size-change graphs is safe for program P if $P : [] \rightarrow^* s_1 \rightarrow s_2$ implies some $G \in \mathcal{G}$ is safe for the pair (s_1, s_2).

Example 6.4. Figure 6 below shows a graph set \mathcal{G} that is safe for the program $\Omega = (\lambda x.x \@ x)(\lambda y.y \@ y)$. For brevity, each subexpression of Ω is referred to by number in the diagram of \mathcal{G}. Subexpression $1 = \Omega$ has no free variables, so arcs from node 1 are labeled with size-change graphs $G_0 = \emptyset$.

![Figure 6: A set of size-change graphs that safely describe Ω's nonterminating computation](image)

Theorem 6.5. If \mathcal{G} is safe for program P and satisfies the size-change condition, then call-by-value evaluation of P terminates.

Proof. Suppose call-by-value-evaluation of P does not terminate. Then by Lemma 3.4 there is an infinite call chain

$$P : [] = e_0 : \rho_0 \rightarrow e_1 : \rho_1 \rightarrow e_2 : \rho_2 \rightarrow \ldots$$

Letting $s_i = e_i : \rho_i$, by safety of \mathcal{G} (Definition 6.3), there is a size-change graph $G_i \in \mathcal{G}$ that safely describes each pair (s_i, s_{i+1}). By the size-change condition (Definition 4.6) the multipath $\mathcal{M} = G_0, G_1, \ldots$ has an infinite thread $t = a_j \rightarrow a_{j+1} \rightarrow a_{j+2} \rightarrow \ldots$ such that

3The term “safe” comes from abstract interpretation [13]. An alternative would be “sound.”
$k \geq j$ implies $a_k \xrightarrow{\mathcal{R}_k} a_{k+1} \in G_k$, and each r_k is \downarrow or $=$, and there are infinitely many $r_k = \downarrow$. Consider the value sequence $\overline{s_j}(a_j), \overline{s_{j+1}}(a_{j+1}), \ldots$. By safety of G_k (Definition 6.2) we have $\overline{s_k}(a_k) \geq \overline{s_{k+1}}(a_{k+1})$ for every $k \geq j$, and infinitely many proper decreases $\overline{s_k}(a_k) > \overline{s_{k+1}}(a_{k+1})$. However this is impossible since by Lemma 5.3 the relation $>$ on State is well-founded.

Conclusion: call-by-value-evaluation of P terminates.

The goal is partly achieved: We have found a sufficient condition on a set of size-change graphs to guarantee program termination. What we have not yet done is to find an algorithm to construct a size-change graph set G that is safe for P (The safety condition of Definition 6.3 is in general undecidable, so enumeration of all graphs won’t work.) Our graph construction algorithm is developed in two stages:

- First, the exact evaluation and call relations are “instrumented” so as to produce safe size-change graphs during evaluation.
- Second, an extension of the abstract interpretation from Section 3.6 yields a computable over-approximation G that contains all graphs that can be built during exact evaluation.

6.2. Generating size-change graphs during a computation.

We now “instrument” the exact evaluation and call relations so as to produce safe size-change graphs during evaluation. In the definition of the size-change graphs x, y, z are variables, and p, q can be variables or ϵ, the empty path. Recall the valuation function for a state gives $\bar{s}(\epsilon) = s$, so in a sense ϵ is bound to the whole state.

Definition 6.6. (Evaluation and call with graph generation) The extended evaluation and call judgement forms are $e : \rho \rightarrow e' : \rho', G$ and $e : \rho \Downarrow e' : \rho', G$, where $\text{source}(G) = \text{fv}(e) \cup \{\epsilon\}$ and $\text{target}(G) = \text{fv}(e') \cup \{\epsilon\}$. The inference rules are:

\[
\frac{}{\lambda x. e : \rho \Downarrow \lambda x. e : \rho, \text{id}^{\lambda x. e}} \quad \text{(ValueG)}
\]

\[
\frac{e_1 \uparrow e_2 : \rho \xrightarrow{\mathcal{R}} e_1 : \rho, \text{id}^{e_1}}{e_1 \uparrow e_2 : \rho \xrightarrow{\mathcal{R}} e_2 : \rho, \text{id}^{e_2}} \quad \text{(OperatorG)}
\]

\[
\frac{e_1 : \rho \Downarrow v_1}{e_1 \uparrow e_2 : \rho \xrightarrow{\mathcal{R}} e_2 : \rho, \text{id}^{e_2}} \quad \text{(OperandG)}
\]

id^ϵ_\rightarrow stands for $\{e \xrightarrow{\epsilon} \epsilon\} \cup \{y \xrightarrow{\epsilon} y \mid y \in \text{fv}(e)\}$

id^ϵ_\leftarrow stands for $\{\epsilon \xrightarrow{\epsilon} \epsilon\} \cup \{y \xrightarrow{\epsilon} y \mid y \in \text{fv}(e)\}$

An arc $y \xrightarrow{\epsilon} y$ express that the state bound to the variable y is the same in both sides, before and after the evaluation or call.

The ϵ “represent” the whole state. In the (ValueG) rule the state $\lambda x. e : \rho$ is the same in both sides and so there is an arc $\epsilon \xrightarrow{\epsilon} \epsilon$. In the (OperatorG) and (OperandG) rules the state is smaller in the right hand side because we go to a strict subexpression and possibly also restrict the environment ρ accordingly. So there are $\epsilon \xrightarrow{\epsilon} \epsilon$ arcs.

\[
\frac{\rho(x) = e' : \rho'}{\text{rho}(x) = x \Downarrow \rho(x), \{x \xrightarrow{\epsilon} y \mid y \in \text{fv}(e')\} \cup \{x \xrightarrow{\epsilon} \epsilon\}} \quad \text{(VarG)}
\]

In the (VarG) rule the state on the right side is $\rho(x)$. This is the state which x is bound to in the environment in the left hand side, therefore we have an arc $x \xrightarrow{\epsilon} \epsilon$. Suppose
\[\rho(x) = e' : \rho' \] and \(y \in f v(e') \). Then \(y \) is bound in \(\rho' \) and this binding is then a subtree of \(e' : \rho' \). So we have an arc \(x \Downarrow y \).

\[\begin{align*}
e_1 & : \rho \downarrow \lambda x. e_0 : \rho_0, G_1 \\
e_2 & : \rho \downarrow v_2, G_2 \\
e_1 \circ e_2 & : \rho \rightarrow e_0 : \rho_0[x \mapsto v_2], G_1^{\rho/\lambda x. e_0} \cup \{e_2\rightarrow x\} \quad \text{(CallG)}
\end{align*} \]

In the definition of the size-change graphs used in the (CallG) rule \(x, y, z \) are variables, and \(p, q \) can be variables or \(\epsilon \). In \(\xrightarrow{r} \) the \(r \) can be either \(\downarrow \) or \(= \). The construction of the size-change graph associated with the call is explained below.

\[\begin{align*}G_1^{\rho/\lambda x. e_0} \quad & \text{stands for cases} \\
x \in f v(e_0) & : \{y \rightarrow z \mid y \xrightarrow{r} z \in G_1\} \cup \{\epsilon \rightarrow z \mid \epsilon \xrightarrow{r} z \in G_1\} \\
x \notin f v(e_0) & : \{y \rightarrow z \mid y \xrightarrow{r} z \in G_1\} \cup \{\epsilon \rightarrow q \mid \epsilon \xrightarrow{r} q \in G_1\} \cup \{p \rightarrow q \mid p \xrightarrow{r} \epsilon \in G_1\}
\end{align*} \]

\[\begin{align*}G_2^{\epsilon \rightarrow x} \quad & \text{stands for} \\
\{y \rightarrow x \mid y \xrightarrow{r} \epsilon \in G_2\} \cup \{\epsilon \rightarrow x \mid \epsilon \xrightarrow{r} \epsilon \in G_2\}
\end{align*} \]

\[G \cup e G' \quad \text{stands for the restriction of } G \cup G' \text{ such that the codomain } \subseteq f v(e) \cup \{\epsilon\} \]

First we consider how much information from \(G_1 \) we can preserve. We have that the whole state \(e_1 \circ e_2 : \rho \) in left hand side for the \(c \)-call is strictly larger than \(e_1 : \rho \). The variable \(x \) is not free in \(\lambda x. e_0 \) and so does not belong to the target of \(G_1 \). If a variable \(z \in f v(\lambda x. e_0) \) is bound in \(\rho_0 \) then it is bound to the same state in \(\rho_0[x \mapsto v_2] \). Therefore, if there is an arc \(y \rightarrow z \) in \(G_1 \), then it also safely describes the \(c \)-call and can be preserved. Also, if there is an arc \(\epsilon \rightarrow z \) in \(G_1 \), then an arc \(\epsilon \rightarrow z \) describes the \(c \)-call. Further, if \(x \notin f v(e_0) \) then \(e_0 : \rho_0[x \mapsto v_2] = e_0 : \rho_0 \) and then \(\lambda x. e_0 : \rho_0 \rightarrow e_0 : \rho_0[x \mapsto v_2] = e_0 : \rho_0 \). In this case, if there is an arc \(p \rightarrow \epsilon \) going to \(\epsilon \) in \(G_1 \), then the arc \(p \Downarrow \epsilon \) describes the \(c \)-call.

Now consider which information we can gain from \(G_2 \). We have that the whole state \(e_1 \circ e_2 : \rho \) in left hand side for the \(c \)-call is strictly larger than \(e_2 : \rho \). If \(x \in f v(e_0) \) then in \(e_0 : \rho_0[x \mapsto v_2] \) we have that \(x \) is bound to the whole state in the right hand side for the evaluation of the operand. So in this case, if there is an arc \(y \rightarrow \epsilon \) in \(G_2 \) then the arc \(y \rightarrow x \) describes the \(c \)-call, and if there is an arc \(\epsilon \rightarrow \epsilon \) in \(G_2 \) then the arc \(\epsilon \rightarrow x \) describes the \(c \)-call. If \(x \notin f v(e_0) \) then we cannot gain any information from \(G_2 \). The restriction built into the definition of \(\cup e_0 \) ensures that this holds.

\[\begin{align*}e_1 \circ e_2 & : \rho \rightarrow e' : \rho', G' \\
e' : \rho' \downarrow v, G \\
e_1 \circ e_2 & : \rho \downarrow v, (G'; G) \quad \text{(ApplyG)}
\end{align*} \]

The size-change graph \((G'; G) \) is the composition of the two graphs.

In the size-change graphs generated by the rules above, the less-than relations \(x \Downarrow y \) in (VarG)-rule arise from the sub-environment property of \(\supset \) from Lemma 5.5. The remaining relations \(\Downarrow \) arise from the subexpression property of \(\supset \). The relations based on the sub-environment property capture the case that the state on the right hand side is fetched from the environment in the left hand side. The equality relations \(\equiv \) describe how values are preserved under calls and evaluations.
Lemma 6.7. \(s \rightarrow s' \) (by Definition 2.5) iff \(s \rightarrow s', G \) (by Definition 6.6) for some \(G \). Further, \(s \Downarrow s' \) iff \(s \Downarrow s', G \) for some \(G \).

Theorem 6.8. (The extracted graphs are safe) \(s \rightarrow s', G \) or \(s \Downarrow s', G \) (by Definition 6.6) implies \(G \) is safe for \((s, s')\) (with source and target sets extended as necessary).

Lemma 6.7 is immediate since the new rules extend the old, without any restriction on their applicability. Proof of “safety” Theorem 6.8 is in Appendix.

Figure 7: Data-flow in a variable evaluation

Figure 8: Data-flow in an application

The diagram of Figure 7 illustrates the data-flow in a variable evaluation. The diagram of Figure 8 may be of some use in visualising data-flow during evaluation of \(e_1 @ e_2 \). States are in ovals and triangles represent environments. In the application \(e_1 @ e_2 : \rho \) on the left,
operator $e_1 : \rho$ evaluates to $\lambda x.e_0 : \rho_0, G_1$ and operand $e_2 : \rho$ evaluates to $e' : \rho', G_2$. The size-change graphs G_1 and G_2 show relations between variables bound in their environments. There is a call from the application $e_1 \circ e_2 : \rho$ to $e_0 : \rho_0[x \mapsto e' : \rho']$ the body of the operator-value with the environment extended with a binding of x to the operand-value $e' : \rho'$.

It is possible to approximate the calls and evaluates to relations with different degrees of precision depending on how much information is kept about the bindings in the environment. Here we aim at a coarse approximation, where we remove all environment components.

6.3. Construction of size-change graphs by abstract interpretation.

We now extend the coarse approximation to construct size-change graphs.

Definition 6.9. (Approximate evaluation and call with graph generation)
The judgement forms are now $e \rightarrow e', G$ and $e \downarrow e', G$, where source$(G) = fv(e) \cup \{\epsilon\}$ and target$(G) = fv(e') \cup \{\epsilon\}$. The inference rules are:

$$
\frac{}{\lambda x.e \downarrow \lambda x.e, id_{\lambda x.e}} \quad (ValueAG) \quad \frac{e_1 @ e_2 \in subexp(P) \quad e_1 \downarrow \lambda x.e_0, G_1 \quad e_2 \downarrow v_2, G_2}{x \downarrow v_2, \{x \mapsto y \mid y \in fv(v_2)\} \cup \{x \mapsto \epsilon\}} \quad (VarAG)
$$

$$
\frac{e_1 @ e_2 \rightarrow \tau_{e_1}}{e_1 @ e_2 \rightarrow \tau_{e_1}, id_{e_1}} \quad (OperatorAG) \quad \frac{e_1 @ e_2 \rightarrow \tau_{e_2}}{e_1 @ e_2 \rightarrow \tau_{e_2}, id_{e_2}} \quad (OperandAG)
$$

$$
\frac{e_1 \downarrow \lambda x.e_0, G_1 \quad e_2 \downarrow v_2, G_2}{e_1 @ e_2 \rightarrow e', G' \quad e' \downarrow v, G} \quad (CallAG)
$$

$$
\frac{e_1 @ e_2 \rightarrow e', G' \quad e' \downarrow v, G}{e_1 @ e_2 \downarrow v, G'; G} \quad (ApplyAG)
$$

Lemma 6.10. Suppose $P : [] \rightarrow^* e : \rho$. If $e : \rho \rightarrow e' : \rho', G$ by definition 6.6 then $e \rightarrow e', G$. Further, if $e : \rho \downarrow e' : \rho', G$ then $e \downarrow e', G$.

Proof. Follows from Lemma [3.11] see the Appendix.

Definition 6.11.

$$
absint(P) = \{ G_j \mid j > 0 \land \exists e_i, G_i (0 \leq i \leq j) : P = e_0 \wedge (e_0 \rightarrow e_1, G_1) \wedge \ldots \wedge (e_{j-1} \rightarrow e_j, G_j) \}
$$

Theorem 6.12.

1. The set $absint(P)$ is safe for P.
2. The set $absint(P)$ can be effectively computed from P.

Proof. Part 1: Suppose $P : [] = s_0 \rightarrow s_1 \rightarrow \ldots \rightarrow s_j$. Theorem 6.8 implies $s_i \rightarrow s_{i+1}, G_i$ where each G_i is safe for the pair (s_i, s_{i+1}). Let $s_i = e_i : \rho_i$. By Lemma 6.10, $e_i \rightarrow e_{i+1}, G_i$. By the definition of $absint(P)$, $G_j \in absint(P)$.

Part 2: There is only a fixed number of subexpressions of P, or of possible size-change graphs with source and target $\subseteq \{\epsilon\} \cup \{x \mid x$ is a variable in $P\}$. Thus $absint(P)$ can be computed by applying Definition 6.9 exhaustively, starting with P, until no new graphs or subexpressions are obtained.

4It is possible to keep a little more information in the graphs than we do here even with no knowledge about value-bindings in the environment. We have chosen the given presentation for simplicity.
7. Some examples

7.1. A simple example. Using Church numerals \(n = \lambda s \lambda z.s^n(z) \), we expect \(2 \text{ succ } 0 \) to reduce to \(\text{succ}(\text{succ } 0) \). However, this contains unreduced redexes because call-by-value does not reduce under a \(\lambda \), so we force the computation to carry on through by applying \(2 \text{ succ } 0 \) to the identity (twice). This gives:

\[
2 \text{ succ } 0 \text{ id1 id2 where}
\]
\[
\text{succ} = \lambda m. \lambda s. \lambda z. m \cdot s (s \cdot z)
\]
\[
id1 = \lambda x. x
\]
\[
id2 = \lambda y. y
\]

After writing this out in full as a \(\lambda \)-expression, our analyser yields (syntactically sugared):

\[
\begin{array}{c}
[\lambda s2. \lambda z2. (s2 \cdot (s2 \cdot z2))], \quad \text{-- two --}
\end{array}
\]
\[
\begin{array}{c}
\otimes [\lambda m. \lambda s. \lambda z. [15: ((m \cdot s) \cdot (s \cdot z))]], \quad \text{-- succ --}
\end{array}
\]
\[
\begin{array}{c}
\otimes [\lambda s1. \lambda z1. z1], \quad \text{-- zero --}
\end{array}
\]
\[
\begin{array}{c}
\otimes [\lambda x. x],\quad \text{-- id1 --}
\end{array}
\]
\[
\begin{array}{c}
\otimes [\lambda y. y],\quad \text{-- id2 --}
\end{array}
\]

Output of loops from an analysis of this program:

\[
15 \rightarrow^* 15: [(m, >, m), (s, =, s), (z, =, z)], \quad \emptyset
\]

Size-Change Termination: Yes

The first number refers to the program point, then comes a list of edges. The loop occurs because application of \(2 \) forces the code for the successor function to be executed twice, with decreasing argument values \(m \). The notation for edges is a little different from previously, here \((m, >, m)\) stands for \(m \downarrow \rightarrow m \).

7.2. \(fnx = x + 2^n \) by Church numerals. This more interesting program computes \(fnx = x + 2^n \) by higher-order primitive recursion. If \(n \) is a Church numeral then expression \(n \text{ g x} \) reduces to \(g^n(x) \). Let \(x \) be the successor function, and \(g \) be a “double application” functional. Expressed in a readable named combinator form, we get:

\[
\begin{align*}
&\text{f n x where} \\
&f n = \text{if } n = 0 \text{ then succ else } g(f(n-1)) \\
g ra = r(ra)
\end{align*}
\]

As a lambda-expression (applied to values \(n = 3, x = 4 \)) this can be written:

\[
\begin{array}{c}
[\lambda n. \lambda x. \quad n], \quad \text{-- n --}
\end{array}
\]
\[
\begin{array}{c}
\otimes [\lambda r. \lambda a. [13: (r@13: (r@a))], \quad \text{-- g --}
\end{array}
\]
\[
\begin{array}{c}
\otimes [\lambda k. \lambda l. \lambda z. (s@((k@s)@z))], \quad \text{-- succ --}
\end{array}
\]
\[
\begin{array}{c}
\otimes x, \quad \text{-- x --}
\end{array}
\]
\[
\begin{array}{c}
\otimes [\lambda s2. \lambda z2. \ (s2@((s2@((s2@z2))))), \quad \text{-- 3 --}
\end{array}
\]
\[
\begin{array}{c}
\otimes [\lambda s1. \lambda z1. \ ((s1@((s1@((s1@((s1@z1)))))))), \quad \text{-- 4 --}
\end{array}
\]

\end{document}
Following is the output from program analysis. The analysis found the following loops from a program point to itself with the associated size-change graph and path. The first number refers to the program point, then comes a list of edges and last a list of numbers, the other program points that the loop passes through.

SELF Size-Change Graphs, no repetition of graphs:

11 \rightarrow^* 11: $[(r,>,r)]$ [11]

11 \rightarrow^* 11: $[(a,=,a),(r,>,r)]$ [9, 13]

13 \rightarrow^* 13: $[(a,=,a),(r,>,r)]$ [11]

13 \rightarrow^* 13: $[(r,>,r)]$ [11, 11]

Size-Change Termination: Yes

7.3. Ackermann’s function, second-order.

This can be written without recursion using Church numerals as: $a \ m \ n$ where $a = \lambda m. \ b \ succ$ and $b = \lambda g. \ n \ g \ (g \ 1)$. Consequently $a \ m = b^n (succ)$ and $b \ g \ n = g^{n+1}(1)$, which can be seen to agree with the usual first-order definition of Ackermann’s function. Following is the same as a lambda-expression applied to argument values $m=2$, $n=3$, with numeric labels on some subexpressions.

```
(\lambda m. m \ b \ succ) \ 2 \ 3 = (\lambda m. m@b@succ)@2@3
(\lambda m. m@((\lambda g. \ n@g@(g@1))@succ)@2@3
(\lambda m. m@(\lambda g. \ n@g@13:(g@1)))@succ)@2@3
```

where

\begin{align*}
1 &= \lambda s1. \lambda z1. \ [17: (s1@z1)] \\
\text{succ} &= \lambda k. \lambda s. \lambda z. \ [23: (s@25: (k@s@z))]
\end{align*}

\begin{align*}
2 &= \lambda s2. \lambda z2. \ s2@s2@z2] \\
3 &= \lambda s3. \lambda z3. \ [39: (s3@41: (s3@s3@z3))]
\end{align*}

Output from an analysis of this program is shown here. (It is not always the case that the same loop is shown for all program points in its path)

SELF Size-Change Graphs, no repetition of graphs:

9 \rightarrow^* 9: $[(\epsilon,>,n),(g,>,g)]$ [13]

9 \rightarrow^* 9: $[(g,>,g)]$ [17]

13 \rightarrow^* 13: $[(g,>,g)]$ [9]

17 \rightarrow^* 17: $[(s1,>,s1)]$ [9]

23 \rightarrow^* 23: $[(k,>,k),(s,=,s),(z,=,z)]$ [25]

23 \rightarrow^* 23: $[(s,>,s)]$ [9]

23 \rightarrow^* 23: $[(s,>,s),(z,>,k)]$ [25, 17, 9]

25 \rightarrow^* 25: $[(k,>,k),(s,=,s),(z,=,z)]$ [23]

25 \rightarrow^* 25: $[(s,>,s),(z,>,k)]$ [17, 9, 23]

25 \rightarrow^* 25: $[(s,>,s)]$ [23, 9, 23]

39 \rightarrow^* 39: $[(s3,>,s3)]$ [9]

41 \rightarrow^* 41: $[(s3,>,s3)]$ [9, 39]

43 \rightarrow^* 43: $[(s3,>,s3)]$ [9, 39, 41]

Size-Change Termination: Yes
7.4. **Arbitrary natural numbers as inputs.** The astute reader may have noticed a limitation in the above examples: each only concerns a single \(\lambda \)-expression, e.g., Ackermann’s function applied to argument values \(m=2, n=3 \).

In an implemented version of the \(\lambda \)-termination analysis a program may have an arbitrary natural number as input; this is represented by •. Further, programs can have as constants the predecessor, successor and zero-test functions, and if-then-else expressions. We show, by some examples using •, that the size-change termination approach can handle the Y-combinator.

In Section 8 we show how to do size-change analysis of \(\lambda \)-expressions applied to sets of argument values in a more classic context, using Church or other numeral notations instead of •.

7.5. **A minimum function, with general recursion and Y-combinator.** This program computes the minimum of its two inputs using the call-by-value combinator \(Y = \lambda p. [\lambda q.p(\lambda s.qs@q)] @ [\lambda t.p(\lambda u.t@tu)] \). The program, first as a first-order recursive definition.

\[
\begin{align*}
m \times y &= \text{if } x=0 \text{ then } 0 \text{ else if } y=0 \text{ then } 0 \text{ else succ } (m \ (\text{pred } x) \ (\text{pred } y))
\end{align*}
\]

Now, in \(\lambda \)-expression form for analysis.

\[
\begin{align*}
\{ \lambda p. [\lambda q.p(\lambda s.qs@q)] @ [\lambda t.p(\lambda u.t@tu)] \} -- \text{the Y combinator} -- @ \\
[\lambda m. \lambda x. \lambda y. 27: \text{if } ((\text{ztst } @ x), 0, 32: \text{if } ((\text{ztst } @ y), 0, 37: \text{succ } @ 39: m @ (\text{pred } x) @ (\text{pred } y)) \}
\end{align*}
\]

Output of loops from an analysis of this program:

\[
\begin{align*}
27 & \rightarrow^* 27: [(x,>,x),(y,>,y)] & [32,37,39] \\
32 & \rightarrow^* 32: [(x,>,x),(y,>,y)] & [37,39,27] \\
37 & \rightarrow^* 37: [(x,>,x),(y,>,y)] & [39,27,32] \\
39 & \rightarrow^* 39: [(x,>,x),(y,>,y)] & [27,32,37]
\end{align*}
\]

Size-Change Termination: Yes

7.6. **Ackermann’s function, second-order with constants and Y-combinator.** Ackermann’s function can be written as: \(a \ m \ n \) where \(a \ m = b^m(suc) \) and \(b \ g \ n = g^{n+1}(1) \). The following program expresses the computations of both \(a \) and \(b \) by loops, using the Y combinator (twice).
\[\lambda y. \lambda y_1. \]
\[(y_1 \circ \lambda a. \lambda m. [\lambda \nu.(suc@\nu), \lambda b. \lambda f. \lambda n. [\lambda \nu.(zst@\nu), \lambda v.(suc@v), \lambda f. \lambda n. [f@1, f@b @ f @ (pred@n)]] \circ 41: a \circ (pred@m)] \]
\@
\[\{ \lambda p. [\lambda q.p@((\lambda s. q@q@s)) \circ [\lambda t.p@((\lambda u.t@t@u))] \}
\@
\{ \lambda p_1. [\lambda q_1.p_1@((\lambda s_1.q_1@q_1@s_1)) \circ [\lambda t_1.p_1@((\lambda u_1.t_1@t_1@u_1))] \}
\@
\{[a,>,y],(m,>,m)] \circ [19,41,72]
\]
\[11 \rightarrow^* 11: [(m,>,m)] \circ [19,41,72,11,19,41,72]
\]
\[19 \rightarrow^* 19: [(a,>,y), (m,>,m)] \circ [41,72,11]
\]
\[19 \rightarrow^* 19: [(m,>,m)] \circ [41,72,11,19,41,72,11]
\]
\[25 \rightarrow^* 25: [(f,>,b),(f,>,f)] \circ [29]
\]
\[25 \rightarrow^* 25: [(f,=,f),(n,>,n)] \circ [32,34]
\]
\[25 \rightarrow^* 25: [(f,>,f)] \circ [29,25,32,34]
\]
\[29 \rightarrow^* 29: [(f,>,f)] \circ [25]
\]
\[32 \rightarrow^* 32: [(f,>,b),(f,>,f)] \circ [25]
\]
\[32 \rightarrow^* 32: [(f,=,f),(n,>,n)] \circ [34,25]
\]
\[32 \rightarrow^* 32: [(f,>,f)] \circ [25,32,34,25]
\]
\[34 \rightarrow^* 34: [(f,=,f),(n,>,n)] \circ [25,32]
\]
\[34 \rightarrow^* 34: [(f,>,b),(f,>,f)] \circ [25,29,25,32]
\]
\[34 \rightarrow^* 34: [(f,>,f)] \circ [25,29,25,32,34,25,32]
\]
\[41 \rightarrow^* 41: [(m,>,m)] \circ [72,11,19]
\]
\[72 \rightarrow^* 72: [(s_1,>,s_1)] \circ [11,19,41]
\]
\[81 \rightarrow^* 81: [(u_1,>,u_1)] \circ [11,19,41]
\]

Output of loops from an analysis of this program:

SELF Size-Change Graphs no repetition of graphs:

7.7. **Imprecision of abstract interpretation.** It is natural to wonder whether the gross approximation of Definition 3.10 comes at a cost. The (VarA) rule can in effect “mix up” different function applications, losing the coordination between operator and operand that is present in the exact semantics.

We have observed this in practice: The first time we had programmed Ackermann’s using explicit recursion, we used the same instance of Y-combinator for both loops, so the single Y-combinator expression was “shared”. The analysis did not discover that the program terminated.
However when this was replaced by the “unshared” version above, with two instances of the Y-combinator (\(y\) and \(y_1\)) (one for each application), the problem disappeared and termination was correctly recognised.

7.8. A counterexample to a conjecture. Sereni disproved in [20][21] our conjecture that the size-change method would recognise as terminating any simply typed \(\lambda\)-expression. The root of the problem is the imprecision of abstract interpretation just noted. A counterexample: the \(\lambda\)-expression

\[
E = (\lambda a.a(\lambda b.a(\lambda cd.d)))(\lambda e.e(\lambda f.f))
\]

is simply-typable but not size-change terminating. Its types are any instantiation of

\[
\begin{align*}
a & : (\tau \to \tau) \to \mu \to \mu \\
b, c & : \tau \to \tau \\
d & : \mu \\
e & : (\tau \to \tau) \to \mu \to \mu \\
f & : \tau
\end{align*}
\]

8. Arbitrary \(\lambda\)-regular program inputs (Extended \(\lambda\)-calculus)

Above we have analysed the termination behaviour of a single closed \(\lambda\)-expression. We now analyse the termination behaviour for a program in the \(\lambda\)-calculus for all possible inputs from a given input-set of \(\lambda\)-expressions (e.g., Church numerals). The first step is to define which sets of \(\lambda\)-expressions we consider. A well-defined input set will be the set of closed expressions in the “language” generated by a \(\lambda\)-regular grammar.

We extend the syntax and semantics of the \(\lambda\)-calculus to handle expressions containing nonterminals. An extended lambda term represents all instances of a program with input taken from the input set. If our analysis certifies that the extended term terminates, then this implies that the program will terminate for all possible inputs.

8.1. \(\lambda\)-regular grammars. We are interested in a \(\lambda\)-regular grammar for the sake of the language that it generates: a set of pure \(\lambda\)-expressions (without nonterminals). This is done using the derivation relation \(\Rightarrow^*_\Gamma\), soon to be defined.

Definition 8.1.

1. A \(\lambda\)-regular grammar has form \(\Gamma = (N, \Pi)\) where \(N\) is a finite set of nonterminal symbols and \(\Pi\) is a finite set of productions.

2. A \(\Gamma\)-extended \(\lambda\)-expression has the following syntax:

\[
\begin{align*}
e, P & := x \mid A \mid e @ e \mid \lambda x.e \\
A & := \text{Non-terminal name, } A \in N \\
x & := \text{Variable name}
\end{align*}
\]

\(Exp\) denotes the set of \(\Gamma\)-extended \(\lambda\)-expressions. \(Exp\) denotes the set of pure \(\lambda\)-expressions (without nonterminals). Clearly \(Exp_\Gamma \supseteq Exp\).

3. A production has form \(A := e\) where \(e\) is a \(\Gamma\)-extended \(\lambda\)-expression.
Definition 8.2. Let \(\mathsf{nt}(e) = \{x_1, \ldots, x_k\} \) denote the multi-set of nonterminal occurrences in \(e \in \mathsf{Expr} \). The derivation relation \(\Rightarrow^* \subseteq \mathsf{Expr} \times \mathsf{Expr} \) is the smallest relation such that

1. If \(\mathsf{nt}(e) = \{x_1, \ldots, x_k\} \) and \(x_i \Rightarrow^* t_i \in \mathsf{Expr} \) for \(i = 1, \ldots, k \),
 then \(e \Rightarrow^* e[t_1/x_1, \ldots, t_k/x_k] \).
2. If \(A ::= e \in \Gamma \) and \(e \Rightarrow^* e' \) then \(A \Rightarrow^* e' \).

Notice that \(\Rightarrow^* \) relates extended \(\lambda \)-terms to pure \(\lambda \)-terms.

Example 8.3. A grammar for Church Numerals: Consider

\[\Gamma = (\{C, A\}, \{C ::= \lambda s \lambda z. A, A ::= z, A ::= s @ A\} \]

Here \(A \Rightarrow^* v \) iff \(v \) has form \(s^n(z) \) for some \(n \geq 0 \). Clearly \(C \Rightarrow^* v \) iff \(v \) has form \(\lambda s \lambda z. s^n(z) \) for some \(n \geq 0 \).

The following assumption makes proofs more convenient; proof is standard and so omitted.

Lemma 8.4. For any \(\lambda \)-regular grammar \(\Gamma_0 \) there exists an equivalent \(\lambda \)-regular grammar \(\Gamma_1 \) such that no production in \(\Gamma_1 \) has form \(A ::= A' \) where \(A' \in N \). We henceforth assume that all productions in a \(\lambda \)-regular grammar have form \(A ::= e \) where \(e \notin N \). \(\square \)

Definition 8.5. In the following \(e \) is a \(\Gamma \)-extended \(\lambda \)-expression:

1. Define the free variables of \(e \) by \(\mathsf{fv}(e) = \{x \mid \exists t. e \Rightarrow^* t \text{ and } x \in \mathsf{fv}(t)\} \).
2. Define that \(e \) is closed iff \(t \) is closed for all \(t \) such that \(e \Rightarrow^* t \). It follows that \(e \) is closed iff \(\mathsf{fv}(e) = \{\} \).
3. Define \(\mathsf{subterms}(e) \) inductively by:
 For a variable \(x \): \(\mathsf{subterms}(x) = \{x\} \).
 For an abstraction \(\lambda x.e \): \(\mathsf{subterms}(\lambda x.e) = \{\lambda x.e\} \cup \mathsf{subterms}(e) \).
 For an application \(e_1 @ e_2 \): \(\mathsf{subterms}(e_1 @ e_2) = \{e_1 @ e_2\} \cup \mathsf{subterms}(e_1) \cup \mathsf{subterms}(e_2) \).
 For a nonterminal \(A \): \(\mathsf{subterms}(A) = \{A\} \).
4. Define \(\mathsf{subexps}(e) \) as the smallest set satisfying:
 For a variable \(x \): \(\mathsf{subexps}(x) = \{x\} \).
 For an abstraction \(\lambda x.e \): \(\mathsf{subexps}(\lambda x.e) = \{\lambda x.e\} \cup \mathsf{subexps}(e) \).
 For an application \(e_1 @ e_2 \): \(\mathsf{subexps}(e_1 @ e_2) = \{e_1 @ e_2\} \cup \mathsf{subexps}(e_1) \cup \mathsf{subexps}(e_2) \).
 For a nonterminal \(A \): \(\mathsf{subexps}(A) = \{A\} \cup \{t \mid \exists e. A ::= e \in \Gamma \text{ and } t \in \mathsf{subexps}(e)\} \).

If \(e' \in \mathsf{subterms}(e) \) then \(e' \) is syntactically present as part of \(e \).
If \(e' \in \mathsf{subexps}(e) \) then \(e' \) is either a subterm of \(e \) or a subexpression of a nonterminal \(A \in \mathsf{subterms}(e) \).

Sets \(\mathsf{subterms}(e) \), \(\mathsf{subexps}(e) \) are both finite, and \(\mathsf{subterms}(e) = \mathsf{subexps}(e) \) for expressions \(e \) in the pure \(\lambda \)-calculus.

Example 8.6. In the grammar for Church Numerals \(C \) is a closed \(\Gamma \)-extended expression, but \(A \) is not a closed \(\Gamma \)-extended expression. Further, \(\mathsf{subexps}(A) = \{A, z, s @ A, s\} \), \(\mathsf{subexps}(C) = \{C, \lambda s \lambda z. A, \lambda z. A, A, z, s @ A, s\} \), \(\mathsf{fv}(C) = \{\} \), \(\mathsf{fv}(A) = \{s, z\} \).

Lemma 8.7. Let \(x \) be a variable. If \(A \Rightarrow^* x \) then \(A ::= x \in \Gamma \).
If \(A \Rightarrow^* \lambda x.e \) then there exists \(e' \in \mathsf{Expr} \) such that \(A ::= \lambda x.e' \in \Gamma \).
If \(A \Rightarrow^* e_1 @ e_2 \) then there exist \(e_1', e_2' \in \mathsf{Expr} \) such that \(A ::= e_1' @ e_2' \in \Gamma \).
Any production has one of the forms $A ::= x$, $A ::= \lambda x.e$, $A ::= e_1 @ e_2$. No production performed on a subterm (which must be a nonterminal) can give a new outermost syntactic term-constructor.

The following Lemma follows from the definition of free variables of an extended expression.

Lemma 8.8. For a variable x: $fv(x) = \{x\}$.
For an abstraction $\lambda x.e$: $fv(\lambda x.e) = fv(e) \setminus \{x\}$.
For an application $e_1 @ e_2$: $fv(e_1 @ e_2) = fv(e_1) \cup fv(e_2)$.
For a nonterminal $A \in N$: $fv(A) = \{x \mid \exists t. A \xRightarrow{t}^n t$ and $x \in fv(t)\}$.

Lemma 8.9. For $A \in N$ the sets $\text{subexp}(A)$ and $fv(A)$ are finite and computable.

Proof is straightforward.

8.2. Extended environment-based semantics.

A semantics extending Definition 3.3 addresses the problem of substitution in expressions with non-terminals. Environments bind λ-variables (and not non-terminals) to values.

Definition 8.10. (Extended states, values and environments) $State$, $Value$, Env are the smallest sets such that

\[
\begin{align*}
State & = \{ e : \rho \mid e \in Exp_\Gamma, \rho \in Env \text{ and } fv(e) \subseteq \text{dom}(\rho) \} \\
Value & = \{ \lambda x.e : \rho \mid \lambda x.e : \rho \in State \} \\
Env & = \{ \rho : X \rightarrow Value \mid X \text{ is a finite set of variables} \}
\end{align*}
\]

The empty environment with domain $X = \emptyset$ is written \emptyset. The evaluation judgement form is $s \downarrow v$ where $s \in State$, $v \in Value$.

The following rules for calls and evaluations in the extended language are simple extensions of the rules for pure λ-calculus to also handle non-terminals.

Definition 8.11. (Extended environment-based evaluation) The judgement forms are $e : \rho \rightarrow e' : \rho'$ and $e : \rho \downarrow e' : \rho'$, where $e, e' \in Exp_\Gamma$, $e : \rho$ and $e' : \rho'$ are states. The evaluation and call relations \downarrow, \rightarrow are defined by the following inference rules, where $\rightarrow = \rightarrow_r \cup \rightarrow_d \cup \rightarrow_c \cup \rightarrow_n$.

\[
A : \rho \rightarrow \rho \\
\ vac => A \in Grm \ 	ext{(GramX)} \quad \text{New rule}
\]

\[
e : \rho \rightarrow e' : \rho' \quad e' : \rho' \downarrow \downarrow v \\
\text{x \in \{c,n\} (ResultX) \quad \text{Extended Def. 3.3 (Apply)}
\]

The following rules have not been changed (but now expressions belong to Exp_Γ).

\[
\lambda x.e : \rho \downarrow \lambda x.e : \rho \quad \text{(ValueX)} \\
x : \rho \downarrow e' : \rho' \quad \rho(x) = e' : \rho' \quad \text{(VarX)}
\]

\[
e_1 @ e_2 : \rho \rightarrow e_1 : \rho \quad \text{(OperatorX)} \\
e_1 @ e_2 : \rho \downarrow v_1 \quad e_1 @ e_2 : \rho \downarrow e_2 : \rho \quad \text{(OperandX)}
\]

\[
e_1 : \rho \downarrow \lambda x.e_0 : \rho_0 \quad e_2 : \rho \downarrow v_2 \\
e_1 @ e_2 \rightarrow c e_0 : \rho_0[x \mapsto v_2] \quad \text{(CallX)}
\]
A Γ-extended program is a closed expression \(\mathcal{P} \in \text{Exp}_\Gamma \). While evaluating a program in the extended language (\(\mathcal{P} : [] \downarrow \cdot \)), all calls and subevaluations will be from state to state.

In pure λ-calculus the evaluation relation is deterministic. The extended language is nondeterministic since a nonterminal \(A \) may have \(A := e \) for more than one \(e \).

Informally explained, consider closed extended λ-expression \(e @ B \) where nonterminal \(B \) satisfies \(\text{fv}(B) = \{ \} \). Then \(e @ B \) represents application of \(e \) to all possible inputs generated by \(B \). The analysis developed below can safely determine that \(e \) terminates on all inputs by analysing \(e @ B \).

If a program in the extended language takes more than one input at a time, then we may rename the nonterminals and bound variables similarly as in \(\alpha \)-conversion. As an example, if a program takes two Church numerals as input, then they can be given by two grammars identical in structure:

\[
\begin{align*}
C_1 & := \lambda s_1. \lambda z_1. A_1 & A_1 & := z_1 & A_1 & := s_1 @ A_1 \\
C_2 & := \lambda s_2. \lambda z_2. A_2 & A_2 & := z_2 & A_2 & := s_2 @ A_2
\end{align*}
\]

and we can analyse the termination behaviour for \((e @ C_1) @ C_2\). Such renaming can sometimes make the termination analysis more precise.

Definition 8.12. Suppose \(e \) is a closed Γ-extended expression and \(nt(e) = \{ A_1, \ldots, A_k \} \) where \(\Gamma = (N, \Pi) \) is a \(\lambda \)-regular grammar. By definition \(e \) is Γ-terminating iff

\[e[t_1/A_1, \ldots, t_k/A_k] : [] \downarrow \]

for all pure λ-expressions \(t_1, \ldots, t_k \) such that \(A_i \Rightarrow^*_r t_i \) for \(i = 1, \ldots, k \).

The following rules for calls and evaluations with size-change graphs in the extended language are simple extensions of the rules for pure λ-calculus to also handle nonterminals.

Definition 8.13. (Environment-based evaluation and call semantics utilizing size-change graphs) The judgement forms are \(e : \rho \rightarrow e' : \rho', G \) and \(e : \rho \downarrow e' : \rho', G \), where \(e, e' \in \text{Exp}_\Gamma \), \(e : \rho \) and \(e' : \rho' \) are states, \(\text{source}(G) = \text{fv}(e) \cup \{ \epsilon \} \) and \(\text{target}(G) = \text{fv}(e') \cup \{ \epsilon \} \).

The evaluation and call relations \(\downarrow, \rightarrow \) are defined by the following inference rules, where \(\rightarrow = \rightarrow_r \cup \rightarrow_d \cup \rightarrow_c \cup \rightarrow_n \).

\[
\begin{array}{c}
\frac{A : \rho \rightarrow e : \rho, \text{id}^\equiv_e A := e \in \Gamma (\text{Gram}G)}{A : \rho \rightarrow e : \rho, \text{id}^\equiv_e}
\end{array}
\]

New rule

\[
\begin{array}{c}
\frac{e : \rho \rightarrow e' : \rho', G' \quad e' : \rho' \downarrow v, G}{e : \rho \downarrow v, G'}
\end{array}
\]

Extended Def. 6.6 (ApplyG)

The following rules have not been changed (but now expressions belong to \(\text{Exp}_\Gamma \)).

\[
\begin{array}{c}
\frac{\lambda x.e : \rho \downarrow \lambda x.e : \rho, \text{id}^\equiv_{\lambda x.e}}{x : \rho \downarrow e' : \rho', \{ x \Downarrow \equiv \epsilon \} \cup \{ x \Downarrow \rightarrow y \mid y \in \text{fv}(e') \}}
\end{array}
\]

\(\rho(x) = e' : \rho' \) (VarG)

\[
\begin{array}{c}
\frac{e_1 @ e_2 \rightarrow e_1 : \rho, \text{id}^\equiv_{e_1}}{e_1 @ e_2 : \rho \rightarrow e_2 : \rho, \text{id}^\equiv_{e_2}}
\end{array}
\]

(OperatorG)
The relation $\xRightarrow{}$ when applied to arbitrary Church numerals. An example is given at the end of this section.

Theorem 8.14. (The extracted graphs are safe) $s \rightarrow s', G$ or $s \not\downarrow s', G$ implies G is safe for (s, s').

Proof. This is shown by a case analysis as in the pure λ-calculus. For the (GramG) rule it is immediate from the definition of free variables for non-terminals.

8.3. Relating extended and pure λ-calculus.

The aim is now to show that execution of a program P in the extended language can simulate execution of any program Q in the pure λ-calculus, where Q is derived from P by replacing each nonterminal occurrence A in P with a pure λ-expression A can produce. The converse does not hold: it is possible that there are simulated executions that do not correspond to any instantiated program Q. We have however certified a number of programs to terminate when applied to arbitrary Church numerals. An example is given at the end of this section.

Properties of the relation \Rightarrow^*_Γ.

\Rightarrow^*_Γ relates expressions $e' \in Exp_\Gamma$ in the extended language to expressions $e \in Exp$ in the pure lambda-calculus. Notice that there are only the following possible forms of \Rightarrow^*_Γ-related expressions:

- $x \Rightarrow^*_\Gamma x$
- $\lambda x.e' \Rightarrow^*_\Gamma \lambda x.e$
- $e_1 \@ e_2 \Rightarrow^*_\Gamma e_1 \@ e_2$
- $A \Rightarrow^*_\Gamma A$
- $A \Rightarrow^*_\Gamma \lambda x.e$
- $A \Rightarrow^*_\Gamma e_1 \@ e_2$

The relation \Rightarrow^*_Γ has the following inductive properties:

- $A \Rightarrow^*_\Gamma t$, for $A \in N$ is given by definition S.2.
- $x \Rightarrow^*_\Gamma x$, a variable x corresponds to the same variable x and nothing else.
- $\lambda x.e' \Rightarrow^*_\Gamma \lambda x.e$, if $e' \Rightarrow^*_\Gamma e$, same x.
- $e_1 \@ e_2 \Rightarrow^*_\Gamma e_1 \@ e_2$ if $e_1 \Rightarrow^*_\Gamma e_1$ and $e_2 \Rightarrow^*_\Gamma e_2$.

Lemma 8.15. If $e' \Rightarrow^*_\Gamma e$ then $fv(e') \supseteq fv(e)$.

Proof. This is by induction on the structure of e'.

Case $x \Rightarrow^*_\Gamma x$, immediate.

Case $A \Rightarrow^*_\Gamma t$ where $A \in N$. By definition $fv(A) = \{x|\exists t.A \Rightarrow^*_\Gamma t$ and $x \in fv(t)\}$.

Case $\lambda x.e' \Rightarrow^*_\Gamma \lambda x.e$, if $e' \Rightarrow^*_\Gamma e$. By induction the lemma holds for e' and e. Therefore $fv(\lambda x.e') = fv(e') \setminus \{x\} \supseteq fv(e) \setminus \{x\} = fv(\lambda x.e)$.

Case $e_1 \@ e_2 \Rightarrow^*_\Gamma e_1 \@ e_2$, if $e_1 \Rightarrow^*_\Gamma e_1$ and $e_2 \Rightarrow^*_\Gamma e_2$. By induction the lemma holds for e_1, e_1 and e_2, e_2. Hence $fv(e_1 \@ e_2) = fv(e_1) \cup fv(e_2) \supseteq fv(e_1) \cup fv(e_2) = fv(e_1 \@ e_2)$.

If \(e \in \text{Exp} \), i.e., no nonterminals occur in \(e \), then \(e \Rightarrow^*_T e \). If \(A \Rightarrow^*_T e \) then there exist \(t \notin N \) such that \(A ::= t \) and \(t \Rightarrow^*_T e \).

Definition 8.16. The relation \(S \) between states

Define the relation \(S \) between states in the extended language and states in the pure \(\lambda \)-calculus as the smallest relation \(S \) such that:

\[
S(e': \rho', e: \rho) \text{ if } e' \Rightarrow^*_T e \text{ and for all } x \in \text{fv}(e) \\
\text{it holds that } S(\rho'(x), \rho(x)).
\]

If \(e : \rho \) is a state in the pure lambda calculus then it is also a state in the extended language and \(S(e : \rho, e : \rho) \).

Lemma 8.17. If \(S(A : \rho', e : \rho) \) and \(A ::= t \) then also \(S(t : \rho', e : \rho) \).

We now define a relation \(T \) between size-change graphs. The intention is that \(T(G', G) \) is to hold when the only difference in the generation of the graphs is due to nonterminals that take the place of pure lambda expressions.

Definition 8.18. The relation \(T \) between size-change graphs

Define \(T(G', G) \) to hold if:

i) \(\text{source}(G') \supseteq \text{source}(G) \) and \(\text{target}(G') \supseteq \text{target}(G) \).

ii) The subgraph of \(G' \) restricted to \(\text{source}(G) \) and \(\text{target}(G) \) is a subset of \(G \).

iii) Furthermore if \(z \in \text{source}(G') \setminus \text{source}(G) \) then either there is no edge from \(z \) in \(G' \) or the only edge from \(z \) in \(G' \) is \((z \rightarrow z) \), and if \((z \rightarrow z) \in G' \) then \(z \notin \text{target}(G) \).

We have that \(T(G'_0, G_0), T(G'_1, G_1), \text{target}(G'_0) = \text{source}(G'_1) \) and \(\text{target}(G_0) = \text{source}(G_1) \) together imply that \(T((G'_0, G'_1), (G_0, G_1)) \) holds.

Lemma 8.19. Simulation Property

i) If \(S(e': \rho', e: \rho) \) and \(e : \rho \Downarrow e_0 : \rho_0, G \) then there exist \(e'_0 : \rho'_0, G' \) with \(S(e'_0 : \rho'_0, e_0 : \rho_0) \) and \(T(G', G) \) such that \(e' : \rho' \Downarrow e'_0 : \rho'_0, G' \).

ii) If \(S(e': \rho', e: \rho) \) and \(e : \rho \rightarrow_x e_0 : \rho_0, G \) with \(x \in \{r, d, c\} \) then there exist \(e'_0 : \rho'_0, G' \) and possibly \(s \) such that either \(e' : \rho' \rightarrow_x e'_0 : \rho'_0, G' \) or \(e' : \rho' \rightarrow_s e'_0 : \rho'_0, G' \) with \(S(e'_0 : \rho'_0, e_0 : \rho_0), T(G', G) \), and in the last case \(S(s, e : \rho) \).

The composite size-change graph for the double-call \(e' : \rho' \rightarrow_s e'_0 : \rho'_0 \) will have the same edges as \(G' \) because the \(_n \rightarrow \) call generates an \(\text{id} \) graph.

Corollary 8.20. For programs \(P \in \text{Exp} \) and \(Q \in \text{Exp} \) with \(P \Rightarrow^*_T Q \) it holds that:

If \(Q : [] \rightarrow^* e : \rho \) then there exists \(e' : \rho' \) such that \(P : [] \rightarrow^* e' : \rho' \) and \(S(e' : \rho', e : \rho) \).

If \(Q : [] \Downarrow e : \rho \) then there exists \(e' : \rho' \) such that \(P : [] \Downarrow e' : \rho' \) and \(S(e' : \rho', e : \rho) \).

Also notice that if \(e_1 : \rho_1 \rightarrow_n e_2 : \rho_2 \) then \(\text{fv}(e_1) \supseteq \text{fv}(e_2) \) by the definition of free variables for nonterminals. (By definition, \(S(e' : \rho', e : \rho) \) implies \(\text{fv}(e') \supseteq \text{fv}(e) \).

Proof. Lemma 8.19 is shown by induction on the tree for the proof of evaluation or call in the pure \(\lambda \)-calculus and uses the observation about free variables. Proof is in the appendix. \(\square \)
8.4. The subexpression property.

Definition 8.21. Given a state s in the extended language, we define its expression support $\text{exp}_{\text{sup}}(s)$ by

$$\text{exp}_{\text{sup}}(e : \rho) = \text{subexps}(e) \cup \bigcup_{x \in \text{fv}(e)} \text{exp}_{\text{sup}}(\rho(x))$$

Lemma 8.22. (Subexpression property) If $s \downarrow s'$ or $s \rightarrow s'$ then $\text{exp}_{\text{sup}}(s) \supseteq \text{exp}_{\text{sup}}(s')$.

Corollary 8.23. If $P : \emptyset \downarrow \lambda x. e : \rho$ then $\lambda x. e \in \text{subexp}(P)$. If $P : \emptyset \rightarrow^* e : \rho$ then $e \in \text{subexps}(P)$.

The proof of Lemma 8.22 follows the same lines as the proof of Lemma 3.8. The proof for the rule (Gram) is immediate from the definition of subexpressions in the extended language. Proof omitted.

8.5. Approximate extended semantics with size-change graphs.

Definition 8.24. (Approximate evaluation and call rules for extended semantics with size-change graphs). The judgement forms are now $e \rightarrow e', G$ and $e \downarrow e', G$, where $e, e' \in \text{Exp}_\Gamma$, and $\text{source}(G) = \text{fv}(e) \cup \{e\}$ and $\text{target}(G) = \text{fv}(e') \cup \{e\}$.

$$\boxed{\text{ResultAG}} \quad \frac{\frac{\frac{e \rightarrow e', G'}{e \downarrow v, G'; G}}{x \in \{c,n\}} \quad \frac{x \downarrow v_2, \{x \mapsto \epsilon\} \cup \{x \rightarrow y \mid y \in \text{fv}(v_2)\} \quad e_1 \downarrow v_1, e_2 \downarrow v_2, G_1, G_2} {e_1 \oplus e_2 \in \text{subexps}(P)} \quad e_1 \downarrow \lambda x. e_0, G_1, e_2 \downarrow v_2, G_2 \quad \frac{\lambda x. e \downarrow \lambda x. e, id_{\lambda x. e}} {e_1 \oplus e_2 \rightarrow e_1, id_{e_1}^l}}$$

Putting the pieces together, we now show how to analyse any program in the regular grammar-extended λ-calculus. Let P be a program in the extended language.

Definition 8.25.

$$\text{absintExt}(P) = \{ G_j \mid j > 0 \land \exists e_i, G_i, (0 \leq i \leq j) : P = e_0 \land (e_0 \rightarrow e_1, G_1) \land \ldots \land (e_{j-1} \rightarrow e_j, G_j) \}$$

Theorem 8.26. The set $\text{absintExt}(P)$ can be effectively computed from P.

Proof. In the extended λ-calculus there is only a fixed number of subexpressions of P, and a fixed number of possible size-change graphs with

$$\text{source, target} \subseteq \{e\} \cup \{x \mid x \text{ is a variable that occurs in a subexpression of } P\}$$

Thus $\text{absintExt}(P)$ can be computed in finite time by applying Definition 8.24 exhaustively, starting with P, until no new graphs or subexpressions are obtained. □
8.6. Simulation properties of approximate extended semantics. We will show the following properties of approximate extended semantics:

(1) Calls and evaluations for a program in extended semantics with environments can be stepwise simulated by approximate extended semantics with identical size-change graphs associated with corresponding calls and evaluations. To a call or evaluation in the extended \(\lambda \)-calculus with environments corresponds the same call or evaluation with environments removed.

(2) Suppose \(P \Rightarrow^*_T Q \) for programs \(P,Q \). Then calls and evaluations for \(Q \) in the pure lambda calculus with environments can be simulated by calls and evaluations in the approximate extended semantics for \(P \) using the relations \(\Rightarrow^*_T \) and \(T \).

(3) The extra edges in the size-change graphs in extended semantics can never give rise to incorrect termination analysis.

Lemma 8.27. Let \(P \) be a program in the extended language and \(P : [] \rightarrow^* e : \rho \).

If \(e : \rho \rightarrow e_0 : \rho_0, G \) then \(e \rightarrow e_0, G \) in approximate semantics.

If \(e : \rho \downarrow e_0 : \rho_0, G \) then \(e \downarrow e_0, G \) in approximate semantics.

Proof. The proof is similar to the proof for approximation of the pure lambda-calculus and 6.10. For rules (Value), (Operator), (Operand) it is immediate. The (Gram)-rule does not refer to the environment, hence the lemma holds if the (Gram)-rule has been applied. For rules (Call) and (Result) it holds by induction. For the (Var)-rule we need induction on the total size of the derivation, and we can argue as in the case of the pure lambda calculus.

Lemma 8.28. Let \(P \) be a program in the extended language and \(Q \) a program in the pure \(\lambda \)-calculus with \(P \Rightarrow^*_T Q \).

If \(Q : [] \rightarrow^* e : \rho \) and \(e : \rho \downarrow e_0 : \rho_0, G \) then there exist \(e', e'_0, G' \) with \(e' \Rightarrow^*_T e, e'_0 \Rightarrow^*_T e_0, T(G', G) \) such that \(P \rightarrow^* e' \) and \(e' \downarrow e'_0, G' \).

If \(Q : [] \rightarrow^* e : \rho \) and \(e : \rho \rightarrow e_0 : \rho_0, G, x \in \{r,d,c\} \) then there exist \(e', e'_0, G' \) with \(e' \Rightarrow^*_T e, e'_0 \Rightarrow^*_T e_0, T(G', G) \) such that \(P \rightarrow^* e' \) and either \(e' \rightarrow x e'_0, G' \) or \(e' \rightarrow e'' \rightarrow x e'_0, G' \) where in the last case \(G' \) is the composite size-change graph for the double call.

Proof. The lemma follows from the simulation property lemma together with lemma 8.27.

Theorem 8.29.

(1) Let \(P \) be a program in the extended language. If there is a program \(Q \) in the pure lambda-calculus such that \(P \Rightarrow^*_T Q \) and there exists an infinite call-sequence in the call-graph for \(Q \) in the exact semantics, then there exists an infinite call-sequence with no infinitely descending thread in the call-graph for \(P \) in the approximate extended semantics.

(2) It follows that if each infinite call-sequence in the call-graphs for \(P \) in the approximate extended semantics has an infinitely descending thread, then \(P \) is \(\Gamma \)-terminating.

Proof. (1): Assume an infinite call-sequence exists in the call-graph for \(Q \). By the safety of the size-change graphs in the pure \(\lambda \)-calculus, the size-change graphs associated with this call sequence cannot have an infinitely descending thread. By lemma 8.28 there exists a simulating call-sequence in the call-graph for \(P \) such that the corresponding size-change graphs are in the \(T \)-relation. Let \(G_P, G_Q \) be any such two corresponding \(T \)-related size-change graphs from these call-sequences, \(T(G_P, G_Q) \). By the definition of the \(T \)-relation
it holds that the largest subgraph of G_P, with source and target the same as $source(G_Q)$ and $target(G_Q)$, is equal to or a subset of G_Q. We need to show that the possible extra variables in the size-change graphs for the simulating sequence in the call-graph for P can never take part in an infinitely descending thread. By the definition of the T-relation it holds that an edge leaving from such a variable x must have have the form $(x \rightarrow x)$ if any exists in the simulating sequence. Also by the definition of the T-relation, if $T(G_P, G_Q)$ and $(x \rightarrow x) \in G_P$ then $x \notin codomain(G_Q)$. Hence either an extra thread in the size-change graphs going out from x will be finite or it will be infinitely equal $x \rightarrow x \rightarrow x \rightarrow \ldots$, i.e. an extra variable can never take part in an infinitely descending thread in the simulating sequence.

(2) is a corollary to (1).

Example 8.30. The following is an example of a program certified to terminate by our proof method. The program computes $x + 2^n$ when applied to two arbitrary Church numerals for x and n. In Section 7 we analysed the program applied to Church numerals 3 and 4 (Example 7.2).

Grammar for Church numerals: $C ::= \lambda s.\lambda z.A \quad A ::= z | s@A$

The program applied to two Church numerals:

```plaintext
[\lambda n_1.\lambda n_2. \ n_1 \quad \ -- n -- 
  @ [\lambda r.\lambda a. [11: (r@13: (r@a))]] \quad \ -- g -- 
  @ [\lambda k.\lambda p.\lambda q. (p@((k@p)@q))] \quad \ -- succ -- 
  @ n_2 ] \quad \ -- x -- 

@ C \quad \ -- Church numeral -- 
@ C \quad \ -- Church numeral --
```

Following is the output from program analysis. The analysis found the following loops from a program point to itself with the associated size-change graph and path. The first number refers to the program point, then comes a list of edges and last a list of numbers, the other program points that the loop passes through. The program points are found automatically by the analysis. The program points 30 and 32 are not written into the presentation of the program because they involve the subexpression A of a Church numeral. The subexpression associated with 30 is A and the subexpression associated with 32 is $s@A$. The loops from 30 to itself and from 32 to itself in the output correspond to the call sequence $A \rightarrow s@A \rightarrow A \rightarrow s@A \ldots$

SELF SCGS no repetition of graphs:

```
11 \rightarrow 11: [(r, >, r)]
11 \rightarrow 11: [(a, =, a), (r, >, r)] [13]
13 \rightarrow 13: [(a, =, a), (r, >, r)] [11]
13 \rightarrow 13: [(r, >, r)] [11, 11]
30 \rightarrow 30: [(\epsilon, >, \epsilon), (s, =, s), (z, =, z)] [32]
32 \rightarrow 32: [(\epsilon, >, \epsilon), (s, =, s), (z, =, z)] [30]
```

Size-Change Termination: Yes
9. Concluding matters

We have developed a method based on The Size-Change Principle to show termination of a closed expression in the untyped λ-calculus. This is further developed to analyse if a program in the λ-calculus will terminate when applied to any input from a given input set defined by a tree grammar. The analysis is safe and the method can be completely automated. We have a simple first implementation. The method certifies termination of many interesting recursive programs, including programs with mutual recursion and parameter exchange.

Acknowledgements. The authors gratefully acknowledge detailed and constructive comments by Arne Glenstrup, Chin Soon Lee and Damien Sereni, and insightful comments by Luke Ong, David Wahlstedt and Andreas Abel.

Appendix A. Proof of Lemma 2.6

Proof. \Rightarrow: Assume $P \downarrow$. To show: CT has no infinite call chain starting with P. The proof is by induction on the height of the proof tree. Each call rule of 2.6 is associated with a use of rule (ApplyS) from Definition 2.2. So if $P \downarrow$ is a value, there is no call from P. If $P \downarrow$ is concluded by rule (ApplyS), then $P = e_1 @ e_2$ and by induction there is no infinite call chain starting with e_1, e_2 and $e_0[v_2/x]$. All call chains starting with P go directly to one of these. So, there are no infinite call chains starting with P.

\Leftarrow: Assume CT has no infinite call chain starting with P. To show: $P \downarrow$. Since the call tree is finitely branching, by König’s lemma the whole call tree is finite, and hence there exists a finite number m bounding the length of all branches.

We prove that $e \downarrow$ for any expression in the call tree, by induction on the maximal length n of a call chain from e.

$n = 0 : e$ is an abstraction that evaluates to itself.

$n > 0 : e$ must be an application $e = e_1 @ e_2$. By rule (Operator) there is a call $e_1 @ e_2 \rightarrow d e_1$, and the maximal length of a call chain from e_1 is less than n. By induction there exists v_1 such that $e_1 \downarrow v_1$. We now conclude by rule (Operand) that $e_1 @ e_2 \rightarrow r e_2$. By induction there exists v_2 such that $e_2 \downarrow v_2$.

All values are abstractions, so we can write $v_1 = \lambda x.e_0$. We now conclude by rule (Call) that $e_1 @ e_2 \rightarrow c e_0[v_2/x]$. By induction again, $e_0[v_2/x] \downarrow v$ for some v. This gives us all premises for the (ApplyS) rule of Definition 2.2 so $e = e_1 @ e_2 \downarrow v$.

Appendix B. Proof of Lemma 3.11

Proof. To be shown:

If $P : \emptyset \rightarrow^* e : \rho$ and $e : \rho \downarrow e' : \rho'$, then $e \downarrow e'$.

If $P : \emptyset \rightarrow e : \rho$ and $e : \rho \rightarrow e' : \rho'$, then $e \rightarrow e'$.

We prove both parts of Lemma 3.11 by course-of-value induction over the size $n = |D|$ of a deduction D by Definition 3.13 of the assumption

$P : \emptyset \rightarrow^* e : \rho \land e : \rho \downarrow e' : \rho'$ or $P : \emptyset \rightarrow^* e : \rho \land e : \rho \rightarrow e' : \rho'$

The deduction size may be thought of as the number of steps in the computation of $e : \rho \downarrow e' : \rho'$ or $e : \rho \rightarrow e' : \rho'$ starting from $P : \emptyset$.

The induction hypothesis IH(n) is that the Lemma holds for all deductions of size not exceeding n. This implies that the Lemma holds for all calls and evaluations performed in the computation before the last conclusion giving ($P : [] \rightarrow^* e : \rho$ and $e : \rho \downarrow e' : \rho'$) or ($P : [] \rightarrow^* e : \rho$ and $e : \rho \rightarrow e' : \rho'$), i.e., the Lemma holds for premises of the rule last applied, and for any call and evaluation in the computation until then.

Proof is by cases on which rule is applied to conclude $e : \rho \downarrow e' : \rho'$ or $e : \rho \rightarrow e' : \rho'$. In all cases we show that some corresponding abstract interpretation rules can be applied to give the desired conclusion.

Base cases: Rule (Value), (Operator) and (Operand) in the exact semantics (def. 3.3) are modeled by axioms (ValueA), (OperatorA) and (OperandA) in the abstract semantics (def. 3.10). These are the same as their exact-evaluation counterparts, after removal of environments for (ValueA) and (OperatorA), and a premise as well for (OperandA). Hence the Lemma holds if one of these rules was the last one applied.

The (Var) rule is, however, rather different from the (VarA) rule. If (Var) was applied to a variable x then the assumption is ($P : [] \rightarrow^* x : \rho$ and $x : \rho \downarrow e' : \rho'$). In this case $x \in \text{dom}(\rho)$ and $e' : \rho' = \rho(x)$. The total size of the deduction (of both parts together) is n.

Now $P : [] \rightarrow^* x : \rho$ begins from the empty environment, and we know all calls are from state to state. The only possible way x can have been bound is by a previous use of the (Call) rule, the only rule that extends an environment.

The premises of the (Call) rule require that operator and operand in an application have previously been evaluated. So it must be the case that there exist $e_1 @ e_2 : \rho''$ and $\lambda x.e_0 : \rho_0$ such that ($P : [] \rightarrow^* e_1 @ e_2 : \rho''$ and $e_1 : \rho'' \downarrow \lambda x.e_0 : \rho_0$ and $e_2 : \rho'' \downarrow e' : \rho'$) and the size of both deductions are strictly smaller than n. By the Subexpression Lemma, $e_1 @ e_2 \in \text{subexp}(P)$. By induction, Lemma 3.11 holds for both $e_1 : \rho'' \downarrow \lambda x.e_0 : \rho_0$ and $e_2 : \rho'' \downarrow e' : \rho'$, so $e_1 \downarrow \lambda x.e_0$ and $e_2 \downarrow e'$ in the abstract semantics. Now we have all premises of rule (VarA), so we can conclude that $x \downarrow e'$ as required.

For remaining rules (Apply) and (Call), when we assume that the Lemma holds for the premises in the rule applied to conclude $e \downarrow e'$ or $e \rightarrow e'$, then this gives us the premises for the corresponding rule for abstract interpretation. From this we can conclude the desired result. \qed

Appendix C. Proof of Lemma 5.3

Proof. Define the length $L(e)$ of an expression e by:

$$L(x) = 1 \quad L(\lambda x.e) = 1 + L(e) \quad L(e_1 @ e_2) = 1 + L(e_1) + L(e_2)$$

For any expression e, $L(e)$ is a natural number ≥ 0. For a program, the length of the initial expression bounds all lengths of occurring expressions.

Define for a state s the height $H(s)$ of the state to be the height of the environment:

$$H(e : \rho) = \max \{(1 + H(\rho(s))) \mid s \in \text{fv}(e)\}$$

So, $H(\epsilon : []) = 0$ the maximum of the empty set, and for any state $e : \rho, H(e : \rho)$ is a natural number ≥ 0. Let $\triangleright_{\text{lex}}$ stand for lexicographic order relation on pairs of natural

5 This must have occurred in the part $P : [] \rightarrow^* x : \rho$.

33 CALL-BY-VALUE TERMINATION IN THE UNTYPED λ-CALCULUS
numbers, hence $>_{\text{lex}}$ is well-founded. We prove that the relation \succ on states is well-founded by proving that $e_1 : \rho_1 \succ e_2 : \rho_2$ implies that

$$(H(e_1 : \rho_1), L(e_1)) >_{\text{lex}} (H(e_2 : \rho_2), L(e_2))$$

First, consider \succ_1. Clearly, if $e_1 : \rho_1 \succ_1 e_2 : \rho_2$ then $H(e_1 : \rho_1) > H(e_2 : \rho_2)$. Hence even though $L(e_2)$ might be larger than $L(e_1)$, it holds that in the lexicographic order $(H(e_1 : \rho_1), L(e_1)) >_{\text{lex}} (H(e_2 : \rho_2), L(e_2))$.

Now, consider \succ_2. If $e_1 : \rho_1 \succ_2 e_2 : \rho_2$ then $H(e_1 : \rho_1) \equiv H(e_2 : \rho_2)$ and $L(e_1) > L(e_2)$, hence in the lexicographic order $(H(e_1 : \rho_1), L(e_1)) >_{\text{lex}} (H(e_2 : \rho_2), L(e_2))$. Trivially, $e_1 : \rho_1 = e_2 : \rho_2$ implies $(H(e_1 : \rho_1), L(e_1)) =_{\text{lex}} (H(e_2 : \rho_2), L(e_2))$.

Recall, by definition \geq is the transitive closure of $\succ_1 \cup \succ_2 \cup =$, and $s_1 \succ s_2$ holds when $s_1 \succeq s_2$ and $s_1 \neq s_2$. So, from the derivations above we can conclude that $e_1 : \rho_1 \succ e_2 : \rho_2$ implies $(H(e_1 : \rho_1), L(e_1)) >_{\text{lex}} (H(e_2 : \rho_2), L(e_2))$, hence the relation \succ on states is well-founded.

\[\square\]

APPENDIX D. PROOF OF THEOREM 6.8

Proof. For the “safety” theorem we use induction on proofs of $s \downarrow s', G$ or $s \rightarrow s', G$. Safety of the constructed graphs for rules (ValueG), (OperatorG) and (OperandG) is immediate by Definitions [5.2] and [5.3].

In the following x, y, z are variables and p, q can be variables or ϵ.

The variable lookup rule (VarG) yields $x : \rho \Downarrow \rho(x), G$ with $G = \{x \xrightarrow{\downarrow} y \mid y \in fv(e') \} \cup \{x \xrightarrow{\rightarrow} \epsilon\}$ and $\rho(x) = e' : \rho'$. By Definition [5.2] $\overline{x : \rho(x)} = \overline{\rho(x)}(\epsilon)$, so arc $x \xrightarrow{\rightarrow} \epsilon$ satisfies Definition [5.2]. Further, if $x \xrightarrow{\downarrow} y \in G$ then $y \in fv(e')$. Thus $\overline{x : \rho(x)} = \rho(x) = e' : \rho' > \rho'(y) = \overline{\rho(x)}(y)$ as required.

The rule (CallG) concludes $s \xrightarrow{c} s', G$, where $s = e_1 @ e_2 : \rho$ and $s' = e_0 : \rho_0[x \mapsto v_2]$ and $G = G_1^{-\epsilon/\lambda x.e_0} \cup e_0 G_2^{-\epsilon}$. Its premises are $e_1 : \rho \Downarrow \lambda x.e_0 : \rho_0, G_1$ and $e_2 : \rho \Downarrow v_2, G_2$. We assume inductively that G_1 is safe for $(e_1 : \rho, \lambda x.e_0 : \rho_0)$ and that G_2 is safe for $(e_2 : \rho, v_2)$. Let $v_2 = e' : \rho'$.

We wish to show safety: that $p \xrightarrow{\rightarrow} p' \in G$ implies $\overline{\pi(p)} = \overline{\pi(p')}$, and $p \xrightarrow{\downarrow} p' \in G$ implies $\overline{\pi(p)} > \overline{\pi(p')}$. By definition of $G_1^{-\epsilon/\lambda x.e_0}$ and $G_2^{-\epsilon}$, $p \xrightarrow{r} p' \in G = G_1^{-\epsilon/\lambda x.e_0} \cup e_0 G_2^{-\epsilon}$ breaks into 7 cases:

Case 1: $y \xrightarrow{\downarrow} z \in G_1^{-\epsilon/\lambda x.e_0}$ because $y \xrightarrow{\downarrow} z \in G_1$. By safety of $G_1, \overline{\pi(y)} > \overline{\lambda x.e_0 : \rho_0(z)}$.

Thus, as required,

$$\overline{\pi(y)} = e_1 @ e_2 : \rho(y) = e_1 : \rho(y) > \overline{\lambda x.e_0 : \rho_0(z)} = e_0 : \rho_0[x \mapsto v_2](z) = \overline{\pi(z)}$$

Case 2: $y \xrightarrow{\rightarrow} z \in G_1^{-\epsilon/\lambda x.e_0}$ because $y \xrightarrow{\rightarrow} z \in G_1$. Like Case 1.

Case 3: $y \xrightarrow{\downarrow} e \in G_1^{-\epsilon/\lambda x.e_0}$ because $y \xrightarrow{\downarrow} e \in G_1$, then $x \notin fv(e_0)$ by the definition of $G_1^{-\epsilon/\lambda x.e_0}$ and then $e_0 : \rho_0[x \mapsto v_2] = e_0 : \rho_0$. By safety of $G_1, \overline{\pi(y)} \geq \overline{\lambda x.e_0 : \rho_0(\epsilon)} = \overline{\lambda x.e_0 : \rho_0}$.

Thus, as required,

$$\overline{\pi(y)} = e_1 @ e_2 : \rho(y) = e_1 : \rho(y) \geq \overline{\lambda x.e_0 : \rho_0} \succ e_0 : \rho_0 = \overline{\pi(\epsilon)}$$
Case 4: \(\epsilon \downarrow p \in G_1^{\epsilon_1} \) because \(\epsilon \overset{r}{\rightarrow} p \in G_1 \). Then it holds that either \(p \) is a variable-name or \(x \notin fv(e_0) \). Now \(\epsilon \) in \(G_1 \) refers to \(e_1 : \rho \), so \(e_1 : \rho \geq \lambda x.e_0 : \rho_0(p) \) by safety of \(G_1 \). Thus, as required,
\[
\overline{\pi}(\epsilon) = e_1 \@ e_2 : \rho \succ e_1 : \rho \geq \lambda x.e_0 : \rho_0(p) \geq e_0 : \rho_0[x \mapsto v_2](p) = \overline{s}(p)
\]
Case 5: \(y \downarrow x \in G \) because \(x \in fv(e_0) \) and \(y \downarrow x \in G_2^{\epsilon_2} \) because \(y \downarrow \epsilon \in G_2 \). By safety of \(G_2, e_2 : \rho(y) \succ v_2(\epsilon) \). Thus, as required,
\[
\overline{\pi}(y) = e_1 \@ e_2 : \rho(y) = e_2 : \rho(y) > v_2(\epsilon) = e_0 : \rho_0[x \mapsto v_2](x) = \overline{s}(x)
\]
Case 6: \(y \Rightarrow x \in G \) because \(x \in fv(e_0) \) and \(y \Rightarrow x \in G_2^{\epsilon_2} \) because \(y \Rightarrow \epsilon \in G_2 \). Like Case 5.
Case 7: \(\epsilon \downarrow x \in G \) because \(x \in fv(e_0) \) and \(\epsilon \downarrow x \in G_2^{\epsilon_2} \) because \(\epsilon \overset{r}{\rightarrow} \epsilon \in G_2 \). By safety of \(G_2, e_2 : \rho(\epsilon) = e_2 : \rho \). Thus, as required,
\[
\overline{\pi}(\epsilon) = e_1 \@ e_2 : \rho \succ e_2 : \rho \geq \overline{\pi_2}(\epsilon) = e_0 : \rho_0[x \mapsto v_2](x) = \overline{s}(x)
\]
The rule \((ApplyG)\) concludes \(s \downarrow v, G' ; G \) from premises \(s \rightarrow s', G' \) and \(s' \downarrow v, G \), where \(s = e_1 \@ e_2 : \rho \) and \(s' = e' : \rho' \). We assume inductively that \(G' \) is safe for \((s, s')\) and \(G \) is safe for \((s', v)\). Let \(G_0 = G' ; G \).

We wish to show that \(G_0 \) is safe: that \(p \rightarrow q \in G_0 \) implies \(\overline{\pi}(p) = \overline{\pi}(q) \), and \(p \downarrow q \in G_0 \) implies \(\overline{\pi}(p) > \overline{\pi}(q) \) \((p, q) \) can be variables or \(\epsilon \). First, consider the case \(p \rightarrow q \in G_0 \). Definition \(\text{[4.2]} \) implies \(p \Rightarrow p' \in G' \) and \(p' \rightarrow q \in G \) for some \(p' \). Thus by the inductive assumptions we have \(\overline{\pi}(p) = \overline{s}(p') = \overline{\pi}(q) \), as required.

Second, consider the case \(p \downarrow q \in G_0 \). Definition \(\text{[4.2]} \) implies \(p \overset{r_1}{\rightarrow} p' \in G' \) and \(p' \overset{r_2}{\rightarrow} q \in G \) for some \(p' \), where either one or both of \(r_1, r_2 \) are \(\downarrow \). By the inductive assumptions we have \(\overline{\pi}(p) \geq \overline{s}(p') \) and \(\overline{s}(p') \geq \overline{\pi}(q) \), and one or both of \(\overline{\pi}(p) > \overline{s}(p') \) and \(\overline{s}(p') > \overline{\pi}(q) \) hold. By Definition of \(\succ \) and \(\geq \) this implies \(\overline{\pi}(p) > \overline{\pi}(q) \), as required.

\[\square\]

Appendix E. Proof of Lemma 6.10

Proof. The rules are the same as in Section 3.10 only extended with size-change graphs. We need to add to Lemma 3.11 that the size-change graphs generated for calls and evaluations can also be generated by the abstract interpretation. The proof is by cases on which rule is applied to conclude \(e \downarrow e', G \) or \(e : \rho \rightarrow e' : \rho', G \).

We build on Lemma 3.11 and we saw in the proof of this that in abstract interpretation we can always use a rule corresponding to the one used in exact computation to prove corresponding steps. The induction hypothesis is that the Lemma holds for the premises of the rule in exact semantics.

Base case (VarAG): By Lemma 3.11 we have \(x : \rho \downarrow e' : \rho' \) implies \(x \downarrow e' \). The size-change graph built in (VarAG) is derived in the same way from \(x \) and \(e' \) as in rule (VarG), and they will therefore be identical.

For other call- and evaluation rules without premises, the abstract evaluation rule is as the exact-evaluation rule, only with environments removed, and the generated size-change graphs are not influenced by environments. Hence the Lemma will hold if these rules are applied.
For all other rules in a computation: When we know that Lemma 3.11 holds and assume that Lemma 6.10 hold for the premises, then we can conclude that if this rule is applied, then Lemma 6.10 holds by the corresponding rule from abstract interpretation.

\[\Box\]

APPENDIX F. PROOF OF LEMMA 8.19

Proof. By induction on the tree for the proof of evaluation or call in the pure \(\lambda\)-calculus. Possible cases of the structure of \(e' : \rho'\) and \(e : \rho\) in \(S\)-related states:

\[
\begin{align*}
(x : \rho', \ x : \rho) & \quad (\lambda x.e' : \rho', \ \lambda x.e : \rho) & \quad (e_1 @ e_2 : \rho', \ e_1 @ e_2 : \rho) \\
(A : \rho', \ x : \rho) & \quad (A : \rho', \ \lambda x.e : \rho) & \quad (A : \rho', \ e_1 @ e_2 : \rho)
\end{align*}
\]

Base cases, evaluations and calls in pure \(\lambda\)-calculus by rules without premisses.

Case \(S(x : \rho', x : \rho)\): No calls from \(x : \rho\).

\((\Var)\)-rule, \(x : \rho \Downarrow \rho(x) = e_0 : \rho_0\), \(\{x \rightarrow \epsilon\} \cup \{x \rightarrow y \mid y \in f v(e_0)\}\) and \(x : \rho' \Downarrow \rho'(x) = e_0' : \rho_0'\), \(\{x \rightarrow \epsilon\} \cup \{x \rightarrow y \mid y \in f v(e_0')\}\). Beginning from \(S\)-related states, by definition of the relation \(S\) we have \(S(\rho'(x), \rho(x))\) and \(f v(e_0') \supseteq f v(e_0)\). \(source(G') = source(G)\) and the generation of size-change graphs gives that the restriction of \(G'\) to \(target(G)\) equals \(G\), hence \(T(G', G)\).

Case \(S(\lambda x.e' : \rho', \lambda x.e : \rho)\): No calls from \(\lambda x.e : \rho\).

\((\Value)\)-rule, \(\lambda x.e : \rho \Downarrow \lambda x.e : \rho, id_{\lambda x.e}\) and \(\lambda x.e' : \rho' \Downarrow \lambda x.e' : \rho', id_{\lambda x.e'}\). \(T(id_{\lambda x.e'}, id_{\lambda x.e})\).

Case \(S(e_1 @ e_2 : \rho', e_1 @ e_2 : \rho)\):

\((\Operator)\)-rule, \(e_1 @ e_2 : \rho \rightarrow e_1 : \rho, id_{e_2}\) and \(e_1 @ e_2 : \rho' \rightarrow e'_1 : \rho', id_{e'_2}\). Beginning from \(S\)-related states, by definition of the relation \(S\) we have \(S(e'_1 : \rho', e_1 : \rho)\). Then \(T(id_{e'_1}, id_{e_2})\)

Case \(S(A : \rho', x : \rho)\):

\((\Var)\)-rule: \(x : \rho \Downarrow \rho(x) = e_0 : \rho_0, G\) where \(G = \{x \rightarrow \epsilon\} \cup \{x \rightarrow y \mid y \in f v(e_0)\}\). By the definition of \(S\) we must have \(A \Rightarrow_{\eta} x\). This again by lemma 8.7 gives that we must have \(A ::= x\). Then \(A : \rho' \Rightarrow_{\eta} x : \rho', id_{x'}\) by \((\Gram)\)-rule, and we have \(S(x : \rho', x : \rho)\). Also \(x : \rho' \Downarrow \rho'(x) = e_0' : \rho_0', G''\) where \(G'' = \{x \rightarrow \epsilon\} \cup \{x \rightarrow y \mid y \in f v(e_0')\}\) by \((\Var)\)-rule. The edges in \(G''\) are the same as the edges in \(G' = id_{x'}^{-1}, G''\). Hence by \((\Result)\)-rule \(A \Downarrow \rho'(x), G'\). As before \(S(\rho'(x), \rho(x))\) and \(T(G', G)\).

Cases \(S(A : \rho', \lambda x.e : \rho)\) with \((\Value)\)-rule, and \(S(A : \rho', e_1 @ e_2 : \rho)\) with \((\Operator)\)-rule: Similarly by use of lemma 8.7 and reasoning as above. We will use the rules \((\Gram)(\Value)\) \((\Result)\) and \((\Gram)(\Operator)\) respectively, where \((\Value)\) and \((\Operator)\) do not have premisses.

Step cases.

Case \(S(e'_1 @ e'_2 : \rho', e_1 @ e_2 : \rho)\). \(e_1 @ e_2 : \rho \rightarrow e_2 : \rho, id_{e_2}\) by \((\Operand)\)-rule. It follows from the definition of \(S\) that also \(S(e'_1 : \rho', e_1 : \rho)\) hence by IH since \(e_1 : \rho \Downarrow\) then also \(e'_1 : \rho' \Downarrow\) and then \(e'_1 @ e'_2 : \rho' \rightarrow e'_2 : \rho', id_{e'_2}\) and by the definition of \(S\) we have \(S(e'_2 : \rho', e_2 : \rho)\),
$T(id^1_{e_2}, id^1_{e_2})$.

The next case is the one that requires the most consideration to see that we stay within the T-relation. Assume we know for graphs G', G, that the restriction of G' to source and target of G is a subset of G. Notice, if $x, y \in source(G') \setminus source(G)$ and $x, z \in target(G') \setminus target(G)$, then for testing $T(G', G)$ we only need to look at which edges leaves from x, y; we do not need to care about if other edges goes into x, z.

Case $S(e'_1 @ e_2 : \rho', e_1 @ e_2 : \rho)$. $e_1 @ e_2 : \rho \Rightarrow e_0 : \rho_0[x \mapsto v_2], G_1^{-\epsilon/\lambda x.e_0 \cup e_0} G_2^{\epsilon-x}$ by (Call)-rule, where we have the premises $e_1 : \rho \Downarrow \lambda x.e_0 : \rho_0, G_1$ and $e_2 : \rho \Downarrow v_2, G_2$.

It follows from the definition of S that also $S(e'_1 : \rho', e_1 : \rho)$ and $S(e_1 : \rho_0, e_2 : \rho)$. Hence by IH since $e_1 : \rho \Downarrow \lambda x.e_0 : \rho_0, G_1$ then also $e'_1 : \rho' \Downarrow v, G'_1$ where $T(G'_1, G'_1)$ and $S(v, \lambda x.e_0 : \rho_0)$. Then by definition of values, relations \Rightarrow^{*}_T, and S we must have $v = \lambda x.e'_0 : \rho'_0$. Also by IH since $e_2 : \rho \Downarrow v_2, G_2$ then also $e'_2 : \rho' \Downarrow v'_2, G'_2$ where $T(G'_2, G_2)$ and $S(v_2, v_2)$. Then we have the premises to conclude $e'_1 @ e'_2 : \rho' \Rightarrow e'_0 : \rho'_0[x \mapsto v'_2], G'_1^{-\epsilon/\lambda x.e'_0 \cup e_0} G'_2^{\epsilon-x}$. By definition of S we have $S(e'_0 : \rho'_0[x \mapsto v'_2], e_0 : \rho_0[x \mapsto v_2])$. We notice that $x \notin fv(\lambda x.e'_0)$ and therefore $(\rho \xrightarrow{v} x) \notin G'_1$.

We consider different possibilities for the generated graphs:

If $x \in fv(e'_0)$ but $x \notin fv(e_0)$ then we can have some extra edges going to x in extended semantics where we will have no edges to x in pure semantics because x is not in the target, but this is acceptable in the T-relation. There can also be some extra edges going to x in pure semantics where no edges go to x in exact semantics, but as x is within the codomain in pure semantics, this is also acceptable in the T-relation. Since $T(G'_1, G_1)$ it will still hold that $T(G_1^{-\epsilon/\lambda x.e_0 \cup e_0} G_2^{\epsilon-x}, G_1^{-\epsilon/\lambda x.e_0 \cup e_0} G_2^{\epsilon-x})$.

If $x \in fv(e_0)$ then also $x \in fv(e'_0)$ and if $x \notin fv(e'_0)$ then $x \notin fv(e_0)$, in these cases since $T(G'_1, G_1)$ and $T(G'_2, G_2)$ also $T(G_1^{-\epsilon/\lambda x.e'_0 \cup e'_0} G_2^{\epsilon-x}, G_1^{-\epsilon/\lambda x.e'_0 \cup e'_0} G_2^{\epsilon-x})$.

Case $S(A : \rho', e_1 @ e_2 : \rho)$ with $e_1 @ e_2 : \rho \Rightarrow e_2 : \rho, id^1_{e_2}$ by (Operand)-rule. By the definition of S we must have $A \Rightarrow^{*}_T e_1 @ e_2$. This agree by lemma 31 gives that we must have $A ::= e'_1 @ e_2$. Then $A : \rho' \Rightarrow e'_1 @ e_2 : \rho', id^1_{e'_1 @ e_2}$ by (Gram)-rule, and we have $S(e'_1 @ e_2 : \rho, e_1 @ e_2 : \rho)$. Then we have seen that $e'_1 @ e_2 : \rho' \Rightarrow e'_2 : \rho', id^1_{e'_2}$ with $S(e'_2 : \rho', e_2 : \rho)$, $T(id^1_{e'_2}, id^1_{e'_2})$ and we have that the edges of $id^1_{e'_2}$ are the same as the edges of $(id^1_{e'_2} @ e_2 : id^1_{e'_2})$. Hence $T((id^1_{e'_2} @ e_2 : id^1_{e'_2} ; id^1_{e'_2})).$

Case $S(A : \rho', e_1 @ e_2 : \rho)$ with (Call)-rule $e_1 @ e_2 : \rho \Rightarrow e_0 : \rho_0[x \mapsto v_2], G$: Similarly as before we have $A : \rho' \Rightarrow e'_1 @ e'_2 : \rho', id^1_{e'_1 @ e'_2}$ by (Gram)-rule, and we have $S(e_1 @ e_2 : \rho, e'_1 @ e'_2 : \rho')$.

We can now use the derivation above and with the notation from above we have $e'_1 @ e'_2 : \rho' \Rightarrow e'_0 : \rho'_0[x \mapsto v'_2], G'$ with $S(e'_0 : \rho'_0[x \mapsto v'_2], e_0 : \rho_0[x \mapsto v_2])$ and $T(G', G)$. Looking into the derivation of G' we find that the edges of G' are the same as the edges of $(id^1_{e'_1 @ e'_2} G')$.

Case $S(e' : \rho', e : \rho) : \rho \Downarrow v, G$ by (Result)-rule, where we have the premises $e : \rho \Rightarrow e_s : \rho_s, G_s$ and $e_s : \rho_s \Downarrow v, G_v, G = G_s; G_v$: By IH since $e : \rho \Rightarrow e_s : \rho_s, G_s$ then
e′ : ρ′ → j s : ρ′ → e′ s : ρ′, G s with S(e′ s : ρ′, e s : ρ s), and T(G s, G s), j ∈ {0, 1}. Again by IH since e s : ρ s ↓ v, G v then e′ s : ρ′ ↓ v′, G′ v with S(v, v′) and T(G′ v, G v). Let G′ = G s; G v then T(G′, G). If j = 0 we have the premises to conclude e′ : ρ′ ↓ v′, G′. If j = 1 by lemma 8.17 we have S(s : ρ′, e : ρ) and we have the premises to conclude s : ρ′ ↓ v′, G, and by applications of (Result)-rule once more in the extended semantics we can also conclude e′ : ρ′ ↓ v′, id s; G′ where the edge set of G′ is the same as the edge set of id s; G′.

References

[20] D. Sereni. λ-SCT and simple types. E-mail communication. April, 2005.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.