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Abstract. We present a set-theoretic, proof-irrelevant model for Calculus of Construc-
tions (CC) with predicative induction and judgmental equality in Zermelo-Fraenkel set
theory with an axiom for countably many inaccessible cardinals. We use Aczel’s trace
encoding which is universally defined for any function type, regardless of being impredica-
tive. Direct and concrete interpretations of simultaneous induction and mutually recursive
functions are also provided by extending Dybjer’s interpretations on the basis of Aczel’s
rule sets. Our model can be regarded as a higher-order generalization of the truth-table
methods. We provide a relatively simple consistency proof of type theory, which can be
used as the basis for a theorem prover.

1. Introduction

Informal motivation. The types-as-sets interpretation of type theory in a sufficiently
strong classical axiomatic set theory, such as the Zermelo-Fraenkel (ZF) set theory, has
been regarded as the most straightforward approach to demonstrating the consistency of
type theory (cf. [Aczel(1998)] and [Coquand(1990)]). It can be construed as a higher-order
generalization of the truth-table methods. Such a model captures the intuitive meaning
of the constructs: the product, λ-abstraction, and application correspond to the ordinary
set-theoretic product, function, and application, respectively.

A straightforward model of type theory is very useful for establishing the consistency of
type theory, and it can be used to determine the proof-theoretic strength of type theory (cf.
[Aczel(1998), Dybjer(1991), Dybjer(2000), Werner(1997)]). However, a higher-order gener-
alization of the trivial Boolean model is not so simple (cf. [Miquel and Werner(2003)]). The
main cause of this problem, as identified by [Reynolds(1984)], is the fact that type systems
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containing Girard-Reynolds’ second-order calculus cannot have the usual set-theoretic in-
terpretation of types. The only way to provide a set-theoretic meaning for an impredicative
proposition type is to identify all the proof terms of that proposition type: Proposition
types are interpreted either by the empty set or a singleton with a canonical element. Thus,
proof-irrelevant models are necessary for interpreting reasonable higher-order type systems.

Set-theoretic models of type theory can be understood in a straightforward manner.
[Werner(2008)] showed that they can be used as the basis of proof assistants in programming
with dependent types. This is because they provide a mechanism to distinguish between
computational and logical parts. Werner’s system is a proof-irrelevant version of Luo’s
Extended Calculus of Constructions (ECC; [Luo(1989)]), and the set-theoretic model is an
extension of that of Calculus of Constructions (CC) defined by [Miquel and Werner(2003)].

Luo’s ECC is a Martin-Löf-style extension of CC, with strong sum types and a fully
cumulative type hierarchy. At the lowest level, there is an impredicative type Prop of
propositions. This is followed by a hierarchy of predicative type universes Typei, i =
0, 1, 2, . . . :

• Prop is of type Type0;
• Typei is of type Typei+1;
• Prop ≺ Type0 ≺ Type1 ≺ · · · .

Werner’s system, however, does not include the subtyping rule Prop ≺ Type0, which
could complicate the model construction, as identified by [Miquel and Werner(2003)]. Their
model constructions cannot be extended to ECC. We will explain this in detail in Remark
3.1.

In this paper, we investigate the inclusion of Prop ≺ Type0, and we show that type
theory with judgmental equality, à la [Martin-Löf(1984)], can have a simple proof-irrelevant
model. We expect our results to play a key role in the theoretical justification of proof
systems based on Martin-Löf-style type theory.

Overview of the work. Martin-Löf type theory and Logical Framework include typing
rules for the equality of objects and types:

Γ ⊢ M = N : A and Γ ⊢ M : A Γ ⊢ A = B
Γ ⊢ M : B

(conv)

In particular, Barendregt’s PTS-style β-conversion side condition turns into an explicit
judgment. Two objects are not just equal; they are equal with respect to a type (cf.
[Nordström et al.(1990) Nordström, Petersson, and Smith, Goguen(1994), Aczel(1998)]).

The type system considered in our study is CC with predicative induction and judgmen-
tal equality. It is a type system with the following features: dependent types, impredicative
type (Prop) of propositions, a cumulative hierarchy of predicative universes (Typei), pred-
icative inductions, and judgmental equality.

The main difficulty in the construction of a set-theoretic model of our system stems from
the impredicativity of Prop and the subtyping property Prop ≺ Type0. Without subtyp-
ing, one could use the solution provided by [Miquel and Werner(2003)] and [Werner(2008)],
whereby proof-terms are syntactically distinguished from other function terms. Thus, the
problem lies in the case distinction between the impredicative type Prop and the predicative
types Typei, whereas the subsumption eliminates the difference. An interpretation function
f : {0, 1} → V is required, where V is a set universe, that is different from the identity
function. See Section 3 for further details.
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For a set-theoretic interpretation of the cumulative type universes and predicative
inductions, it is sufficient to assume countably many (strongly) inaccessible cardinals.
[Werner(1997)] showed that ZF with an axiom guaranteeing the existence of infinitely many
inaccessible cardinals is a good candidate. However, it is not clear whether the inaccessible
cardinal axiom is necessary for our construction. The required feature of an inaccessible
cardinal κ is the closure property of the universe Vκ under the powerset operation. This is
a necessary condition for the interpretation of inductive types. Following [Dybjer(1991)],
we use Aczel’s rule sets to obtain a direct and concrete interpretation of induction and
recursion rules.

The remainder of this paper is organized as follows. In Section 2, we provide a formal
presentation of CC with predicative induction and judgmental equality. Examples are
presented to enable the reader to understand the syntax and typing rules. This section can
be regarded as an introduction to the base theory of the proof assistant Coq. Indeed, the
syntax we have provided is as close to Coq syntax as that used in practice, except for the
judgmental equality and the restriction on predicative inductions.1

The difficulties in providing set-theoretic interpretations of impredicative or polymor-
phic types, subtypes, etc., are discussed in Section 3. We use the computational information
about the domains saved in the interpretation of a : A to avoid these difficulties. This means
that for the construction of set-theoretic models, type systems with judgmental equality are
more explicit than systems without it. Using some typical examples, we explain the con-
struction of a set-theoretic interpretation of inductive types and recursive functions.

Finally, in Section 4, we prove the soundness of our interpretation. The proof itself is
relatively simple, and it can also be used to verify the consistency of our system. This is
because some types such as Π(α : Prop).α will be interpreted as the empty set; hence, they
cannot be inhabited in the type system.

In Section 5, we summarize the main results, and we discuss related work for future
investigation.

2. Formal presentation of CC with judgmental equality

First, we provide the full presentation of the system, i.e., Coquand’s CC with judgmental
equality and predicative induction over infinitely many cumulative universes.

2.1. Syntax. We assume an infinite set of countably many variables, and we let x, xi,X,Xi, ...
vary over the variables. We also use special constants Prop and Typei, i ∈ N. They are
called sorts. Sorts are usually denoted by s, si, etc.

2

1We remark that many impredicative inductive types can be coded by impredicative definitions (cf.
[Girard et al.(1989)Girard, Taylor, and Lafont, Coquand(1990), Werner(1997)]).

2In this paper, we do not consider the sort Set. Indeed, when (the impredicative or predicative sort)
Set is placed at the lowest level in the hierarchy of sorts, as in the case of the current development of Coq,
there is no way to provide a universal set-theoretic interpretation of both Set and Prop, as identified by
[Reynolds(1984)]. Note, however, that Type0 in our system plays the role of the predicative Set.
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Definition 2.1 (Terms and contexts). The syntax of the objects is given as follows.

t, t′, ti, A,Ai ::= x | s | Πx : t.t′ | λx : t.t′ | let x := t in t′ | t t′ (terms)

| case(t, t′,~t ) | Indn{∆ := ∆′} · x

| fix xi {x0/k0 : A0 := t0, . . . , xn/kn : An := tn}

∆,∆′ ::= [ ] | ∆, (x : t) (declarations)

Γ,Γ′ ::= [ ] | Γ, (x : t) | Γ, (x := t : t′) | Γ, Indn{∆ := ∆′} (contexts)

Here, [ ] denotes the empty sequence.

Definition 2.2 (Atomic terms). Atomic terms are either variables, sorts, or terms of the
form Indn{∆I := ∆C} · x.

Definition 2.3 (Domain of contexts). The domain of a context is defined as follows:

dom([ ]) := ∅, dom(Γ, Indn{∆I := ∆C}) := dom(Γ),
dom(Γ, x = t : A) := dom(Γ, x : A) := dom(Γ) ∪ {x}.

Remark 2.4.

(1) Vector notations are used instead of some sequences of expressions:

• ~t := t1, ..., tn • f ~t := f t1 · · · tn

• Π~x : ~A.t := Πx1 : A1. ...Πxn : An. t • λ~x : ~A.t := λx1 : A1. ... λxn : An. t

•
−−−−−−−−→
x/k : A := t := x0/k0 : A0 := t0, ..., xn/kn : An := tn

(2) Note that we use two subscript styles. One is of the form t1, ..., tn, and the other is of
the form t0, ..., tn, where n is a natural number. The latter style will be used only in
the definition of mutually recursive functions, i.e., in combination with fix.

(3) Given a sequence ~ℓ, let lh(~ℓ ) denote its length.

(4) In the examples presented below, character strings are used instead of single character
variables in order to emphasize the correspondence with real Coq-expressions.

(5) Given a declaration ∆ and a variable x, let ∆(x) = A when A is the only term such
that x : A occurs in ∆.

(6) There are standard definitions of the sets of free variables in a context or a term, and
of the substitution t[x\u], where t, u are terms and x a variable. Formal definitions are
given in Appendix A.

(7) Given a sequence δ = x1 : t1, ..., xn : tn and a term t, let t{δ} := t[x1\ t1] · · · [xn\ tn]
denote consecutive substitution. On the other hand, the simultaneous substitution of
terms t1, ..., tn for x1, ..., xn, respectively, in t is denoted by t[δ] := t[x1\ t1, ..., xn\ tn].

To enable the reader to understand the intended meaning of terms and contexts, we explain
some notations with examples. The examples will also be used in Section 3 to explain our
model.

Remark 2.5. The expression Indn{∆I := ∆C} denotes a (mutually) inductive type, and the
subscript n denotes the number of parameters. ∆I and ∆C are two declarations containing
inductive types and their constructors, respectively. The Parameters are binders shared by
all the constructors of the definition, and they are used to construct polymorphic types. The
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parameters differ from other non-parametric binders in that the conclusion of each type of
constructor invokes the inductive type with the same parameter values as its specification.
We refer to Lemma 3.8 and Lemma 3.9, which show the difference between parameters and
non-parametric binders.

The mutual definition of trees and forests can be represented, for instance, by DTF =
Ind1{∆I := ∆C}, where

∆I = tree : Type0 → Type0, forest : Type0 → Type0 ,

∆C = node : Π(A : Type0). A → forestA → treeA,

emptyf : Π(A : Type0). forestA,

consf : Π(A : Type0). treeA → forestA → forestA .

The subscript 1 implies that (A : Type) is a parameter.

Remark 2.6. If D = Indn{∆I := ∆C} and x ∈ dom(∆I ,∆C), then D · x corresponds to
the names of defined inductive types or their constructors.

The type for natural numbers and its two constructors can be represented by DN ·
nat, DN · O, and DN · S, respectively, where DN = Ind0{∆I := ∆C},∆I = nat : Type0,
and ∆C = 0 : nat, S : nat → nat .

In the examples presented below, however, we use character strings for better readabil-
ity. Thus, for example, nat, 0, and S are used instead of DN · nat,DN · O, and DN · S,
respectively.

Remark 2.7 (case and fix). The term case(e,Q,~h ) corresponds to the following Coq-
expression

match e as y in I~ ~u return Q~u y with · · · | Ci ~p~v => hi | . . . end

where

• the term e is of an inductive type I ~p~u for some terms ~p, ~u,
• lh(~p) = lh(~),

• Q = λ~u : ~U. λy : I ~p ~u.Q′ for some terms ~U,Q′,
• the term y is a fresh variable bound in Q~u y,

• each Ci is a constructor of type Π~p : ~P .Π~v : ~Vi.I ~p ~wi for some terms ~P , ~Vi, ~wi, and

• each hi = λ~v : ~Vi.h
′
i for some term h′i .

The term fix fi {
−−−−−−−−→
f/k : A := t} denotes the (i + 1)th function defined by a mutual re-

cursion. The number ki denotes the position of the inductive binder on which recursion
is performed for fi. It corresponds to Coq’s struct annotation used for the “guarded”
condition in the termination check (cf. [Giménez(1995)]).

(1) The addition function plus can be defined as follows:

plus = fix f {f/1 : Π(m,n : nat). nat := λ(m,n : nat). case(n,Q, h0, h1)} ,

where Q = λ(ℓ : nat). nat, h0 = m, and h1 = λ(p : nat). S (f mp) .
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(2) The functions for measuring the size of trees and forests can be represented by Tsize =

fix g0 {R} and Fsize = fix g1 {R}, where R =
−−−−−−−−→
g/k : B := t, k0 = k1 = 1, and

B0 = Π(A : Type0).Π(t : treeA). nat ,

B1 = Π(A : Type0).Π(f : forestA). nat ,

t0 = λ(A : Type0). λ(t : treeA). case(t,Q0, h0) ,

t1 = λ(A : Type0). λ(f : forestA). case(f,Q1, h1, h2) ,

Q0 = λ(t : treeA). nat ,

Q1 = λ(f : forestA). nat ,

h0 = λ(a : A).λ(f : forestA). S (g1 Af) ,

h1 = O ,

h2 = λ(t : tree A). λ(f : forest A).plus (g0 At) (g1 Af).

2.2. Typing rules. The typing judgment Γ ⊢ M : A or Γ ⊢ M = N : A is defined
simultaneously with the property WF(Γ) of a well-formed valid context and the prop-
erty Γ ⊢ M ≺ N of cumulativity of types in Figures 1 ∼ 4. We provide short explana-
tions of some rules. For a more detailed explanation, refer to [Bertot and Castéran(2004)],
[Letouzey(2004)], or [Paulin-Mohring(1996)].

Typing rules for basic terms and valid contexts (Figure 1). Typing rules for stan-
dard constructions of λ- and Π-terms are given.

(wf): Well-formed contexts contain well-typed terms, and they can be extended by well-
typed inductive types, as in rule (ind-wf) of Figure 2.

(Π) and (Π-eq): P(s1, s2, s3) implies that

• s2 = s3 = Prop, or
• s1 ∈ Typei, s2 = Typej and s3 = Typek where k ≥ max{i, j}.

Typing rules for inductive types and recursive functions (Figure 2). Typing rules
for (mutually) inductive types, case distinctions, and (mutually) recursive functions are
given.
(ind-wf): The positivity condition is crucial for defining an inductive type. A term A is an
arity ending in sort s, Arity(A, s), if it is convertible to s or a product Πx : A.B, where B
is an arity ending in sort s. A is called an arity, Arity(A), if A is an arity ending in sort s
for some sort s.

A term M satisfies the positivity condition for a variable x when M = Π~y : ~A . x ~u

for some terms ~A, ~u and the variable x occurs strictly positively in ~A. A variable x occurs
strictly positively in M when

• x does not occur in M , or

• M ≡ Π~y : ~A . (x ~B) and x does not occur in ~A, ~B.

Now, In(∆I ,∆C) represents the following conditions:

• All the names contained in the domains of ∆I and ∆C must be mutually distinct and
new.
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WF(∅)
Γ ⊢ A : s x /∈ dom(Γ)

WF(Γ, (x : A))

Γ ⊢ t : A x /∈ dom(Γ)

WF(Γ, (x := t : A))
(wf)

WF(Γ)

Γ ⊢ Prop : Typei

WF(Γ) i < j

Γ ⊢ Typei : Typej
(ax)

WF(Γ) (x : A) ∈ Γ or (x := t : A) ∈ Γ

Γ ⊢ x : A
(var)

Γ, (x := t : A) ⊢ u : U

Γ ⊢ let x := t in u : U [x\t]
(let)

Γ ⊢ t = t′ : A Γ, (x := t : A) ⊢ u = u′ : U

Γ ⊢ (let x := t in u) = (let x := t′ in u′) : U [x\t]
(let-eq)

Γ ⊢ A : s1 Γ, x : A ⊢ B : s2 P(s1, s2, s3)

Γ ⊢ Πx : A.B : s3
(Π)

Γ ⊢ A = A′ : s1 Γ, x : A ⊢ B = B′ : s2 P(s1, s2, s3)

Γ ⊢ Πx : A.B = Πx : A′.B′ : s3
(Π-eq)

Γ, x : A ⊢ M : B Γ ⊢ Πx : A.B : s

Γ ⊢ λx : A.M : Πx : A.B
(λ)

Γ ⊢ A = A′ : s Γ, x : A ⊢ M = M ′ : B Γ ⊢ Πx : A.B : s′

Γ ⊢ λx : A.M = λx : A′.M ′ : Πx : A.B
(λ-eq)

Γ ⊢ M : Πx : A.B Γ ⊢ N : A
Γ ⊢ MN : B[x\N ]

(app)

Γ ⊢ M = M ′ : Πx : A.B Γ ⊢ N = N ′ : A
Γ ⊢ MN = M ′N ′ : B[x\N ]

(app-eq)

Figure 1: Basic terms and valid contexts

• All the types of ∆I and ∆C start with the same n products, say, ~p : ~P .
• Any occurrence of some d ∈ dom(∆I) in ∆C is of the form (d ~p ~u), which is not applicable
any more.

• For all d : A ∈ ∆I , A is an arity ending in sort sd such that sd 6= Prop. Thus, we do not
use inductive definitions of type Prop. Some propositions defined inductively can be con-
structed using an impredicative coding. See [Girard et al.(1989)Girard, Taylor, and Lafont,
Coquand(1990)], and [Werner(1997)] for further details.

• For all c : T ∈ ∆C , T is the type of a constructor for an inductive type d ∈ dom(∆I), i.e.,

T is of the form Π~p : ~P .Π~z : ~Z. (d ~p ~u). In this case, the sort sc in the third premise of
the rule must be sd.

• T satisfies the positivity condition for all x ∈ dom(∆I).

Notation. We use Γ ⊢ Indn{∆I := ∆C} when all the premises of (ind-wf) are satisfied.
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In(∆I ,∆C)
Γ ⊢ A : sd for all (d : A) ∈ ∆I

Γ,∆I ⊢ T : sc for all (c : T ) ∈ ∆C

WF(Γ, Indn{∆I := ∆C})
(ind-wf)

WF(Γ) D = Indn{∆I := ∆C} ∈ Γ d ∈ dom(∆I)

Γ ⊢ D · d : ∆I(d)[.\D]
(ind-type)

WF(Γ) D = Indn{∆I := ∆C} ∈ Γ c ∈ dom(∆C)

Γ ⊢ D · c : ∆C(c)[.\D]
(ind-const)

Indn{∆I := ∆C} ∈ Γ (di : Π~p : ~P .A) ∈ ∆I lh(~p) = n
Γ ⊢ Q : B C(di ~p : A;B) Γ ⊢ e : di ~p~u

Γ ⊢ hk : Π~v : ~Vk. Q ~wk (ck ~p~v) for all (ck : Π~p : ~P .Π~v : ~Vk. di ~p ~wk) ∈ ∆C

Γ ⊢ case(e,Q, (hk)k) : Q~u e
(case)

Indn{∆I := ∆C} ∈ Γ (di : Π~p : ~P .A) ∈ ∆I lh(~p) = n
Γ ⊢ Q = Q′ : B C(di ~p : A;B) Γ ⊢ e = e′ : di ~p ~u

Γ ⊢ hk = h′k : Π~v : ~Vk. Q ~wk (ck ~p~v) for all (ck : Π~p : ~P .Π~v : ~Vk. di ~p ~wk) ∈ ∆C

Γ ⊢ case(e,Q, (hk)k) = case(e′, Q′, (h′k)k) : Q~u e
(case-eq)

F(~f , ~A,~k,~t) n = lh(~k) (Γ ⊢ Ai : si)∀i≤n (Γ, ~f : ~A ⊢ ti : Ai)∀i≤n j ≤ n

Γ ⊢ fix fj {
−−−−−−−−→
f/k : A := t} : Aj

(fix)

F(~f , ~A,~k,~t ) F(~f , ~A′, ~k, ~t′) n = lh(~k)

(Γ ⊢ Ai = A′
i : si)∀i≤n (Γ, ~f : ~A ⊢ ti = t′i : Ai)∀i≤n j ≤ n

Γ ⊢ fix fj {
−−−−−−−−→
f/k : A := t} = fix fj {

−−−−−−−−−→
f/k : A′ := t′} : Aj

(fix-eq)

Figure 2: Inductive types and recursive functions

(ind-type) and (ind-const): Given D = Indn{∆I := ∆C} and a term A, A[.\D] implies that
every occurrence of z ∈ dom(∆I ,∆C) in A is replaced with D · z.

(case) and (case-eq): di and ck denote Indn{∆I := ∆C} · di and Indn{∆I := ∆C} · ck,
respectively. Furthermore, lh(~u) = lh(~wk).

For an inductive type d and an arity B, the relation C(d ~q : A;B) is defined as follows:

• C(d ~q : Prop; d ~q → Prop);
• C(d ~q : Prop; d ~q → Typej) iff d is an inductive type that is empty or has only one

constructor3 such that all the non-parametric arguments are of sort Prop;
• C(d ~q : Typej ; d ~q → s) for any sort s;

• C(d ~q : (Πu : U .A); (Πu : U .B)) iff C(d ~q u : A;B).

3This reflects the fact that no pattern matching is allowed on proof-terms, which would otherwise result
in a paradox, as shown by [Coquand(1990)].
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Γ ⊢ M : A
Γ ⊢ M = M : A

Γ ⊢ M = N : A
Γ ⊢ N = M : A

(ref)(sym)

Γ ⊢ M = N : A Γ ⊢ N = P : A
Γ ⊢ M = P : A

(trans)

Γ ⊢ M : A Γ ⊢ A = B : s
Γ ⊢ M : B

Γ ⊢ M = N : A Γ ⊢ A = B : s
Γ ⊢ M = N : B

(conv)(conv-eq)

Γ, x : A ⊢ M : B Γ ⊢ Πx : A.B : s Γ ⊢ N : A

Γ ⊢ (λx : A.M)N = M [x\N ] : B[x\N ]
(β)

WF(Γ) (x := t : A) ∈ Γ

Γ ⊢ x = t : A
(δ)

Γ ⊢ t : A Γ, (x := t : A) ⊢ u : U

Γ ⊢ (let x := t in u) = u[x\t] : U [x\t]
(ζ)

Indn{∆I := ∆C} ∈ Γ (di : Π~p : ~P .A) ∈ ∆I lh(~p) = n
Γ ⊢ Q : B C(di ~p : A;B) Γ ⊢ cj ~p~a : di ~p~u

Γ ⊢ hk : Π~v : ~Vk. Q ~wk (ck ~p~v) for all (ck : Π~p : ~P .Π~v : ~Vk. di ~p ~wk) ∈ ∆C

Γ ⊢ case(cj ~p~a,Q, (hk)k) = hj ~a : Q~u (cj ~p~a)
(ι)

(Γ ⊢ Ai : si)∀i≤n (Γ, ~f : ~A ⊢ ti : Ai)∀i≤n F(~f , ~A,~k,~t) j ≤ n

R ≡
−−−−−−−−→
f/k : A := t Aj ≡ Π~xj : ~Bj. A

′
j Γ ⊢ ~a : ~Bj lh( ~Bj) = kj + 1

Γ ⊢ (fix fj {R})~a = (tj[fi\(fix fi {R})]~a) : A′
j{~x : ~a}

(ι)

⊢ Prop ≺ Type0 ⊢ Typej ≺ Typej+1 (inc)

Γ ⊢ M ≺ N Γ ⊢ N ≺ P
Γ ⊢ M ≺ P

(trans-inc)

Γ ⊢ A ≺ B Γ ⊢ C : s x /∈ dom(Γ)

Γ, x : C ⊢ A ≺ B
(weak-inc)

Γ ⊢ A1 = B1 : s Γ, x : A1 ⊢ A2 ≺ B2

Γ ⊢ Πx : A1.A2 ≺ Πx : B1.B2
(Π-inc)

Γ ⊢ M = N : s Γ ⊢ M ≺ P
Γ ⊢ N ≺ P

Γ ⊢ M = N : s Γ ⊢ P ≺ M
Γ ⊢ P ≺ N

(eq-inc)

Γ ⊢ M : A Γ ⊢ A ≺ B
Γ ⊢ M : B

Γ ⊢ M = N : A Γ ⊢ A ≺ B
Γ ⊢ M = N : B

(cum)(cum-eq)

Figure 3: Judgmental equality and cumulative type universes
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This means that an object of the inductive type d can be eliminated for proving a property
P of type B. Let C(d ~q;B) denote C(d ~q : A;B), where A is the type of d ~q.

(fix) and (fix-eq): F(~f , ~A,~k,~t) represents the following conditions:

• lh(~f) = lh( ~A) = lh(~k) = lh(~t),
• for each ti ∈ ~t, there is an inductive type D · d, where D = Indn{∆I := ∆C}, and a term
Ti such that
− ti = λ~y : ~Y . λz : (D · d) ~u. t′i, where lh(~Y ) = ki, and
− there is a constrained derivation with respect to z and ∆I ,∆C such that

Γǫ, (~y : ~Y )ǫ, z :=z (D · d) ~u, (~f : ~A)<z~k
⊢ t′i :

ǫ T ǫ
i

where (~f : ~A)<z~k
is the context composed of

fj :
ǫ Π(~u : ~Bj)

ǫ.Πv :<z Xj . P
ǫ
j

if fj : Π(~u : ~Bj).Πv : Xj . Pj is from ~f : ~A and lh(Bj) = kj .

The condition for constrained derivation ensures that the constructed terms are nor-
malizing terms. A formal definition is given in Appendix B. Informally, it means that
ti can only contain decreasing recursive calls: if fj appears in ti, then it must have at
least kj +1 arguments, and its (kj +1)th argument must be structurally smaller than the
initial inductive argument z (Thus, any subterm of an inductive term obtained by going
through at least one constructor is structurally smaller than the initial term.).

Judgmental equality and type universes (Figure 3). The rules in Figure 3 stipulate
that the judgmental equality based on reductions is an equivalence relation. De Bruijn’s

telescope notation is very useful: Γ ⊢ ~t : ~A with lh(t) = n implies that

• Γ, x1 : A1, ..., xj−1 : Aj−1 ⊢ Aj : sj for all j ∈ {1, ..., n}, and
• Γ ⊢ tj : Aj [x1\t1] · · · [xj−1\tj−1] for all j ∈ {1, ..., n}.

3. Set-theoretic model construction

3.1. Background. We must resolve a dilemma related to the construction of a set-theoretic
model of CC and its extensions. In a proof-irrelevant model, each type expression should
have an obvious set-theoretic interpretation; however, it is well known that impredicative
or polymorphic types, such as Prop, can only have a trivial set-theoretic interpretation, as
shown by [Reynolds(1984)]. Hence, it is necessary to assign a singleton or the empty set to
each term of type Prop.

In constructing a set-theoretic model of Coquand’s CC, [Miquel and Werner(2003)]
provided the following solution. Under the assumption of the existence of a urelement •
that does not belong to the standard universe of set theory, the sort Prop is associated with
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{∅, {•}}. Furthermore, the application and λ-abstraction terms are interpreted by app and
lam, respectively, which are defined as follows:

app(u, x) :=

{

• if u = • ,

u(x) otherwise.

lam(f) :=

{

• if f(x) = • for all x ∈ dom(f) ,

f otherwise.

Remark 3.1. This construction does not correctly model the cumulative relation between
Prop and Typei, as demonstrated in the following example; [Werner(2008)] showed that
it can be easily extended to the cumulative type universes when the subtyping relation
between Prop and Typei does not exist

Consider I = λ(A : Type0). A → A. Then, its type of set-theoretic interpretation is not
deterministic. Suppose that P is a true proposition. Then, JI P K depends on the type we
have assigned to P , that is, Prop or Type0. In the former case, JI P K = {•} since P → P is
a tautology, whereas in the latter case, JI P K = JIK(JP K) = {f | f : {•} → {•}} 6= {•} since
JP K = {•}.

Another solution was provided by [Aczel(1998)]. He used the trace encoding of functions
in order to provide an adequate interpretation of the impredicative type Prop of propositions
and its relationship with Typei. For this reason, we adopt Aczel’s solution.

Definition 3.2 (Trace encoding of set-theoretic functions). Let u, x, f denote sets. Then,

app(u, x) := {z | (x, z) ∈ u},

lam(f) :=
⋃

(x,y)∈f

({x} × y) =
⋃

(x,y)∈f

{(x, z) | z ∈ y}.

Note that for any function f and any x ∈ dom(f), we have

app(lam(f), x) = {y | (x, y) ∈ lam(f)} = {y | y ∈ f(x)} = f(x) .

Notations.

(1) In the remainder of this paper, ↓ is used if something is well defined, and ↑ is used
otherwise.

(2) Given sets A,B(x), x ∈ A, let
∏

x∈AB(x) denote the set of all functions f such that
dom(f) = A and f(x) ∈ B(x) for all x ∈ A.

(3) Given a function f ∈
∏

x1∈A1
· · ·

∏

xn∈An(x1,...,xn−1)
B(x1, ..., xn), we use the notation

~lamn(f) (resp. and ~app(f, ~x)) for the n-times application of lam (resp. app):

~lamn(f) := {(x1, ..., xn, y) |x1 ∈ A1, ..., xn ∈ An(x1, ..., xn−1), y ∈ f(x1, ..., xn)}

~appn(f, ~x ) := app(...(app(app(f, x1), x2), ...), xn)

We suppress the subscript n when the number of times we want to apply lam or app is

obvious from the context. Note that ~lam0(f) = f and ~app0(f, nil) = f .

Lemma 3.3 ([Aczel(1998)]). Given a set A, assume B(x) ⊆ 1 for all x ∈ A.

(1) {lam(f) | f ∈
∏

x∈AB(x)} ⊆ 1.
(2) {lam(f) | f ∈

∏

x∈AB(x)} = 1 iff ∀x ∈ A (B(x) = 1).
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Proof. Let f ∈
∏

x∈AB(x), i.e.,

f =

{

↑ if ∃x ∈ A (B(x) = ∅),

{(x,∅) |x ∈ A} otherwise.

Then, we have

lam(f) =

{

↑ if ∃x ∈ A (B(x) = ∅),

∅ otherwise.

This also implies that {lam(f) | f ∈
∏

x∈AB(x)} = 1 iff ∀x ∈ A (B(x) = 1).

Remark 3.4. A useful feature of trace encoding is that app(u, a) and lam(f) are always
defined for any sets u, a, f , including the empty set. This, however, implies that we some-
times lose the information of the domain of a given function f , i.e., we cannot trace back
to dom(f) starting from lam(f). We will see that the use of judgmental equality enables us
to avoid such a loss when only well-typed terms are involved.

3.2. Inductive types and rule sets. Here, we follow the approaches of [Aczel(1998)] and
[Dybjer(1991)] for the construction of a set-theoretic interpretation of inductive types. We
are particularly interested in rule sets.

We are going to work on the basis of ZF set theory with an axiom guaranteeing the
existence of countably many (strongly) inaccessible cardinals. Note that such an axiom
is independent of ZFC. [Werner(1997)] showed that such an axiom is sufficient for a set-
theoretic interpretation of the cumulative type universes and predicatively inductive types.
However, it is not clear whether this axiom is necessary for our construction. Indeed, the
required feature of an inaccessible cardinal κ is the closure property of the universe Vκ under
the powerset operation. This is a necessary condition for the interpretation of inductive
types.

Henceforth, assume that there are countably many (strongly) inaccessible cardinals.
Let κ0 = ω and κ1, κ2, ... enumerate these inaccessible cardinals. We associate each sort
Typei with its rank(Typei) := κi. If (Vα)α∈Ord denotes the (standard) universe of sets
defined as follows, then Vκ is a model of ZF:

V0 := ∅ and Vα :=
⋃

β∈α

P(Vβ) if α > 0

Ord denotes the class of all ordinals, λ denotes a limit ordinal, and P denotes the power
set operator. In particular, if κ is an inaccessible cardinal, A ∈ Vκ, and for every a ∈ A,
Ba ∈ Vκ, then,

∏

a∈ABa ∈ Vκ. Let rank(Prop) := −1 and V−1 = {0, 1} for convenience.
Refer to [Drake(1974)] for further details about inaccessible cardinals.

A rule on a base set U is a pair of sets 〈u, v〉, often written as u
v
, such that u ⊆ U and

v ∈ U . A set of rules on U is called a rule set on U . Given a rule set Φ on U , a set w ⊆ U
is Φ-closed if for any u

v
∈ Φ, v ∈ w whenever u ⊆ w. Note that there is the least Φ-closed

set
I(Φ) :=

⋂

{w ⊆ U |w Φ-closed} .

In fact, it is well known that each rule set Φ on U generates a monotone operator on P(U)

ΓΦ(X) := {v ∈ U | there exists some u ⊆ X such that
u

v
∈ Φ}
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such that I(Φ) is the least fixed point of ΓΦ. Assuming that Φ is a rule set on I × U , Φ
defines a family IF(Φ) of sets in U over I as

IF(Φ)(i) := {u ∈ U | 〈i, u〉 ∈ I(Φ)}

for each i ∈ I.
A rule set is deterministic provided that it contains at most one rule with a given

conclusion. The rule sets defined below by an inductive definition are deterministic. This
makes it possible to interpret functions defined by structural recursion on a certain inductive
type as set-theoretic functions. The interpretations are defined on the corresponding set-
theoretic inductively defined set, which is the fixpoint of a monotone operator. Refer to
[Aczel(1977)] and [Moschovakis(1974), Moschovakis(1980)] for further details about rule
sets, monotone operators, and fixpoints.

Below, we describe the interpretations of inductive and recursive types with some ex-
amples. Given a well-defined (mutually) inductive type Indn{∆I := ∆C}, where

∆I = x0 : A1, ..., xℓ : Aℓ and Ai = Π~p : ~P .Π~ai : ~Bi. si ,

let rank(xi) := rank(si).

Notations.

(1) With each context Γ, we associate a set JΓK of Γ-valuations of the form 〈α1, · · · , αn〉,
where n is the length of Γ and 〈, ..., 〉 denotes a sequence of a finite length. Given a
sequence L = 〈α1, · · · , αn〉 and a natural number i < n, we set (L)i = αi+1. If αi+1

itself is a sequence of length m, then we write (L)i,j for (αi+1)j if j < m, etc.
(2) α, β, αi, βi vary over single values while γ, δ, γi, δi vary over valuations. nil denotes

the empty sequence. Given two valuations γ and δ, the notation γ, δ denotes their
concatenation. If δ = 〈α〉, then we write γ, α instead of γ, 〈α〉.

(3) With each pair (Γ, t) formed by a context Γ and a term t, we associate a function JΓ ⊢ tK
that is partially defined on Γ-valuations: JΓ ⊢ tKγ denotes JΓ ⊢ tK(γ) when γ ∈ JΓK.

(4) In the following, we write JtK for JΓ ⊢ tKγ if Γ and γ ∈ JΓK are fixed in the context.

Similarly, we use the notation ~u ∈ J ~A K for u1 ∈ JΓ ⊢ A1Kγ , ..., un ∈ JΓ, x1 : A1, ...xn−1 :
An−1 ⊢ An)Kγ,u1...un−1 for some context Γ and Γ-valuation γ ∈ JΓK.

3.3. Interpretation of inductive types. Here, we claim the existence of the interpre-
tations of inductive types that satisfy the soundness of the rules (ind-wf), (ind-type), and
(ind-const) when the conditions in the typing rules are fullfilled. The formal definition is
given in Appendix C. Refer to [Dybjer(1991)], whose idea is generalized in this paper.

Lemma 3.5. Suppose Γ ⊢ D, where D = Indn{∆I := ∆C}. Let γ ∈ JΓK be given. As
mentioned before, we suppress Γ and γ for better readability. Further suppose that

∆I := d0 : A0, ..., dℓ : Aℓ , ∆C := c1 : T1, ..., cm : Tm ,

Ai := Π~p : ~P .Π~bi : ~Bi. si , Tk := Π~p : ~P .Π~zk : ~Zk. dik ~p~tk .

Then, there is some rule set Φ such that the following interpretation of D · di and D · ck
satisfies the soundness of the rules (ind-type) and (ind-const):

• JD · diK := ~lam(fi) where fi(~p,~bi) := IF(Φ)(i, ~p,~bi) for ~p,~bi : J~P , ~BiK ,

• JD · ckK := ~lam(gk) where gk(~p, ~zk) := 〈k, ~zk〉 for ~p, ~zk : J~P , ~ZkK .
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Remark 3.6. The positivity condition is crucial for showing that the construction of the
rule set Φ in Appendix C is well defined.

The elements of our rule sets Φ are of the form u

〈i,~p,~t,〈j,~v 〉〉
, where i denotes the ith

inductive type di, ~p denote the parameters, ~t denote the non-parametric arguments of di,
j denotes the jth constructor of di, and ~v denote the non-parametric arguments of the jth
constructor. Note that ~p,~t, ~v could be empty.

Example 3.7 (Natural numbers). Let DN be the inductive type for natural numbers, as
in Remark 2.6. Then,

Φnat =

{

∅

〈0, 〈1〉〉

}

∪

{

{v}

〈0, 〈2, v〉〉

∣

∣

∣
v ∈ Vκ0

}

,

JnatK = IF(Φnat)(0), JOK = 〈1〉, and app(JSK, n) = 〈2, n〉 for any n ∈ JnatK.

Example 3.8 (Inductive families). The following Coq-expression shows a typical use of
inductive families.

Inductive toto : Type -> Type :=

| Y1 : forall x : Type, toto x

| Y2 : forall x : Type, toto nat -> toto x -> toto x.

The inductive type toto can be represented by Dtoto = Ind0{∆I := ∆C}, where

∆I := toto : Type1 → Type1 ,

∆C := Y1 : Πx : Type1. toto x, Y2 : Πx : Type1. toto nat → toto x → toto x .

Then,

Φtoto =

{

∅

〈0, x, 〈1, x〉〉

∣

∣

∣
x ∈ Vκ1

}

∪

{

{〈0, JnatK, v1〉, 〈0, x, v2〉}

〈0, x, 〈2, x, v1 , v2〉〉

∣

∣

∣
x, v1, v2 ∈ Vκ1

}

,

app(JtotoK, x) = IF(Φtoto)(0, x), app(JY1K, x) = 〈1, x〉, and app(JY2K, x, a, b) = 〈2, x, a, b〉,

where x ∈ Vκ1 , a ∈ app(JtotoK, JnatK), and b ∈ app(JtotoK, x).

Example 3.9 (Inductive types with parameters). The following Coq-expression shows a
typical use of parametric inductive types.

Inductive titi (x : Type) : Type :=

| Z1 : titi x

| Z2 : titi nat -> titi x -> titi x.

The inductive type titi can be represented by Dtiti = Ind1{∆I := ∆C}, where

∆I := titi : Type1 → Type0 ,

∆C := Z1 : Πx : Type1. titi x, Z2 : Πx : Type1. titi nat → titi x → titi x .

Then,

Φtiti =

{

∅

〈0, x, 〈1〉〉

∣

∣

∣
x ∈ Vκ1

}

∪

{

{〈0, JnatK, v1〉, 〈0, x, v2〉}

〈0, x, 〈2, v1 , v2〉〉

∣

∣

∣
x ∈ Vκ1 , v1, v2 ∈ Vκ0

}

,

app(JtitiK, x) = IF(Φtiti)(0, x), app(JZ1K, x) := 〈1〉, and app(JZ2K, x, a, b) := 〈2, a, b〉,
where x ∈ Vκ1 , a ∈ app(JtitiK, JnatK), and b ∈ app(JtitiK, x).
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Remark 3.10. Note that in Coq, toto cannot have Type -> Set as its type, unlike titi.
This difference is also reflected in their interpretations.

Example 3.11 (Mutually inductive types with parameters). Two inductive types tree and
forest defined by DTF in Remark 2.5 can be interpreted by means of the following rule
set:

Φ :=

{

{〈1, A, v1〉}

〈0, A, 〈1, a, v1〉〉

∣

∣

∣
A, v1 ∈ Vκ0 , a ∈ A

}

∪

{

∅

〈1, A, 〈2〉〉

∣

∣

∣
A ∈ Vκ0

}

∪

{

{〈0, A, v1〉, 〈1, A, v2〉}

〈1, A, 〈3, v1 , v2〉〉

∣

∣

∣
A, v1, v2 ∈ Vκ0

}

.

3.4. Interpretation of well-founded structured recursion. A set defined by a (mu-
tual) induction generates a canonical well-founded relation on the set, i.e., the relation
defined according to the inductive construction of the elements, the so-called structurally-
smaller-than-relation. This is the basis for the discipline of structural recursion, which
stipulates that recursive calls consume structurally smaller data.

Here, we claim the existence of the interpretations of recursive types that satisfy the
soundness of the rules (fix), (fix-eq), and (ι). A formal definition is given in Appendix D.
Refer to [Dybjer(1991)], whose study provides the basic idea.

Lemma 3.12. Suppose Γ ⊢ fix fℓ {R} : Aj , where

R =
−−−−−−−−→
f/k : A := t, Ai ≡ Π~xi : ~Bi. A

′
i, lh( ~Bi) = ki + 1, ℓ ≤ n,

(Γ ⊢ Ai : si)∀i≤n, (Γ, ~f : ~A ⊢ ti : Ai)∀i≤n, F(~f , ~A,~k,~t) .

Let γ ∈ JΓK be given. We suppress Γ and γ for better readability. Then, there is a rule
set Ψ such that the following interpretation of fix fℓ {R} satisfies the soundness of the rules
(fix), (fix-eq), and (ι):

• Jfix fℓ {R}K = ~lam(h), where h(a1, ..., akℓ , 〈k, ~zk〉) = IF(Ψ)(a1, ..., akℓ , 〈k, ~zk〉) for ~a, 〈k, ~zk〉 ∈

J ~BℓK.

Remark 3.13. The condition for constrained derivation is essential. Indeed, constrained
derivation corresponds to guarded recursion defined by [Giménez(1995)]; hence, it guaran-
tees that the construction of the rule set Ψ in Appendix D is well defined.

The elements of our rule sets Ψ are of the form u
〈~x,〈k,~y 〉,b〉 , where k denotes the kth

constructor of the inductive type d on which the recursion is performed, ~y denote the non-
parametric arguments of d, ~x denotes the list of rest arguments of the constructor, and b is
the result of the function. Note that ~x, ~y could be empty.

Example 3.14 (Primitive recursion). The Coq-expression stated below is a general form
of primitive recursion.

Fixpoint PRec (A:Type)(g:A)(h:nat -> A -> A)(n:nat) {struct n} : A :=

match n with

| O => g

| S p => h p (PRec A g h p)

end.
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The corresponding term is PRec := fix f0 {f0/3 : B := t}, where

B = Π(A : Typei).Π(g : A).Π(h : nat → A → A).Π(n : nat). nat ,

t = λ(A : Typei). λ(g : A). λ(h : nat → A → A). λ(n : nat). case(n, P, h1, h2) ,

P = λ(ℓ : nat). A, h1 = g, and h2 = λ(p : nat). h p (f0 Ag hp). JPRecK is characterized by
the following rule set ΨPRec :=

{

∅

〈A, g, h, 〈1〉, g〉

∣

∣

∣
A ∈ Vκi

, g ∈ A,h ∈ Jnat → A → AK

}

∪

{

{〈A, g, h, p, v〉}

〈A, g, h, 〈2, p〉, ~app(h, p, v)〉

∣

∣

∣
A ∈ Vκi

, g ∈ A,h ∈ Jnat → A → AK, p ∈ JnatK, v ∈ A

}

.

Given a type A, JPRecAK denotes the primitive recursor with values from A. For
instance,

~app(JplusK,m, n) = IF(Prec)(JnatK,m, JhK, n)

where h = λ(p : nat). λ(ℓ : nat). S ℓ and m,n ∈ JnatK.

Example 3.15 (Mutually recursive functions). The interpretations of Tsize and Fsize

from Remark 2.7 are characterized by the following rule set ΨSize :=
{

{〈A, f, v′〉}

〈A, 〈1, a, f〉, JS v′K〉

∣

∣

∣
A ∈ Vκ0 , f ∈ app(JforestK, A), v′ ∈ JnatK, a ∈ A

}

∪

{

∅

〈A, 〈2〉, JOK〉

∣

∣

∣
A ∈ Vκ0

}

∪

{

{〈A, t, v′1〉, 〈A, f
′, v′2〉}

〈A, 〈3, t, f ′〉,app(JplusK, v′1, v
′
2)〉

∣

∣

∣
A ∈ Vκ0 , t ∈ app(JtreeK, A),

f ′ ∈ app(JforestK, A), v′1, v
′
2 ∈ JnatK

}

.

4. Set-theoretic model and soundness

Since the denotations JΓK and JΓ ⊢ tK will be defined by mutual induction on the size of
their arguments, we need a size function | · | that guarantees the termination. In particular,
the following properties should be satisfied:

• |Γ| < |Γ ⊢ A| < |Γ, x : A|,
• |Γ ⊢ t|, |Γ ⊢ A| < |Γ, x := t : A|,
• |∆I(d)|, |∆C(c)| < |Indn{∆I := ∆C} · x| for all x ∈ dom(∆I ,∆C), d ∈ dom(∆I), and
c ∈ dom(∆C),

• |Ai|, |tj | < |
−−−−−−−−→
f/k : A := t| for all Ai ∈ ~A and tj ∈ ~t.

An adequate size function can be defined by a simple extension of the one defined by
[Miquel and Werner(2003)]:

• The size |t| of a term t is (recursively) defined as the sum of the sizes of its immediate
subterms plus 1.
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− The immediate subterms of Indn{∆I := ∆C} · x are ∆I(d) and ∆C(c), where d ∈
dom(∆I) and c ∈ dom(∆C).

− The immediate subterms of fix fj {
−−−−−−−−→
f/k : A := t} are ~A,~t.

• The size of a context Γ is defined as follows:
− |[ ]| = 1/2,
− |Γ, (x : t)| = |Γ|+ |t|,
− |Γ, (x := t : A)| = |Γ|+ |t|+ |A|,
− |Γ, Indn{∆I := ∆C}| = |Γ|+ 1.

• |Γ ⊢ t| = |Γ|+ |t| − 1
2 .

Remark 4.1. As mentioned in Remark 3.6 and Remark 3.13, the positivity condition and
the condition for constrained derivation play a crucial role for establishing the soundness
proof of Theorem 4.4.

Definition 4.2. The set-theoretic interpretations of JΓK and Jγ ⊢ tK are defined by a mutual
induction on the size of their arguments.

(1) For each context Γ, the set JΓK is defined as follows:

J[ ]K := {nil},

JΓ, x : AK := {γ, α | γ ∈ JΓK, JΓ ⊢ AKγ ↓ and α ∈ JΓ ⊢ AKγ},

JΓ, x := t : AK := {γ, α | γ ∈ JΓK, JΓ ⊢ AKγ ↓, JΓ ⊢ tKγ ↓

and α = JΓ ⊢ tKγ ∈ JΓ ⊢ AKγ},

JΓ, Indn{∆I := ∆C}K := {γ | γ ∈ JΓK}.

(2) The interpretation JΓ ⊢ tK of a term t in a context Γ is a partial function defined on
JΓK: Given γ ∈ JΓK,

JΓ ⊢ PropKγ := {0, 1},

JΓ ⊢ TypeiKγ := Vκi
,

JΓ ⊢ xK(α1,...,αn) := αi if x is the ith declared variable in Γ, (∗)

JΓ ⊢ Πx : A.BKγ := {lam(f) : f ∈ Πα∈JΓ⊢AKγ JΓ, x : A ⊢ BK(γ,α)},

JΓ ⊢ λx : A.tKγ := lam(α ∈ JΓ ⊢ AKγ 7→ JΓ, x : A ⊢ tK(γ,α)),

JΓ ⊢ t uKγ := app(JΓ ⊢ tKγ, JΓ ⊢ uKγ),

JΓ ⊢ let x := t in uKγ := JΓ, (x := t : A) ⊢ uKγ,JΓ⊢tKγ ,

where A is such that JΓ ⊢ tK ∈ JΓ ⊢ AK, (†)

JΓ ⊢ Indn{∆I := ∆C} · zKγ := as explained above if defined,

JΓ ⊢ case(e, P,M1, . . . ,Mℓ)Kγ := ~app(JΓ ⊢ MjK, (JΓ ⊢ eK)1, ..., (JΓ ⊢ eK)q)

if (JΓ ⊢ eK)0 = j where lh(e) = q + 1,

JΓ ⊢ (fix fj {
−−−−−−−−→
f/k : A := t})Kγ := as explained above if defined.

(∗) If x ∈ dom(Γ), then the occurrence should be unique.
(†) A could be any term with the given property since the interpretation, when defined,
is independent of it.

The following lemma is crucial for the soundness proof.
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Lemma 4.3 (Substitutivity). Let Γ be a context and let u,A be terms such that JΓ ⊢
uKγ ∈ JΓ ⊢ AKγ for some γ ∈ JΓK (assuming that both of them are defined), and write
α = JΓ ⊢ uKγ .

(1) Suppose (γ, α), δ ∈ JΓ, x : A,∆K. Then, γ, δ ∈ JΓ,∆[x\u]K.
(2) Suppose (γ, α), δ ∈ JΓ, x : A,∆K and JΓ, x : A,∆ ⊢ tK(γ,α),δ ↓. Then,

• JΓ,∆[x\u] ⊢ t[x\u]Kγ,δ ↓.
• JΓ,∆[x\u] ⊢ t[x\u]Kγ,δ = JΓ, x : A,∆ ⊢ tK(γ,α),δ = JΓ, x := u : A,∆ ⊢ tK(γ,α),δ .

Proof. The assertions are proved for each ∆ and t by a mutual induction on the size of their
arguments. In particular, given ∆, the first assertion is proved before the second one for all
t. In the case of ∆ = [ ], the claims are obvious. Assume that ∆ = ∆0, y : B and δ = δ0, β.
The other cases can be considered similarly.

(1) (γ, α), δ0, β ∈ JΓ, x : A,∆0, y : BK. Then, using the I.H. of the second claim, we have

β ∈ JΓ, x : A,∆0 ⊢ BKγ,α,δ0 = JΓ,∆0[x\u] ⊢ B[x\u]Kγ,δ0 .

That is, γ, δ0, β ∈ JΓ,∆0[x\u], y : B[x\u]K.
(2) We proceed by induction on t. If t = x, the claim follows because JΓ ⊢ uKγ ↓ implies

that JΓ,∆[x\u] ⊢ uKγ,δ ↓ and JΓ,∆[x\u] ⊢ uKγ,δ = JΓ ⊢ uKγ . This is because the
interpretation of u does not depend on dom(∆). Other cases can be easily shown by
using induction hypotheses.

Theorem 4.4 (Soundness). Our type system is sound with respect to the set-theoretic
interpretation defined in Definition 4.2 in the following sense:

(1) If WF(Γ), then JΓK is defined.
(2) If Γ ⊢ M : A, then JΓK is defined, and for any γ ∈ JΓK, it holds that JΓ ⊢ MKγ and

JΓ ⊢ AKγ are defined, and that

JΓ ⊢ MKγ ∈ JΓ ⊢ AKγ .

(3) If Γ ⊢ M = N : A, then JΓK is defined, and for any γ ∈ JΓK, it holds that JΓ ⊢ MKγ,
JΓ ⊢ NKγ, and JΓ ⊢ AKγ are defined, and that

JΓ ⊢ MKγ = JΓ ⊢ NKγ ∈ JΓ ⊢ AKγ .

(4) If Γ ⊢ M ≺ N , then JΓK is defined, and for any γ ∈ JΓK, it holds that JΓ ⊢ MKγ and
JΓ ⊢ NKγ are defined, and that

JΓ ⊢ MKγ ⊆ JΓ ⊢ NKγ .

Proof. We proceed by a simultaneous induction over the typing derivation. The cases
(wf), (ax), (var), (weak), and (weak-eq) are obvious.

(Π) Suppose
Γ ⊢ A : s1 Γ, x : A ⊢ B : s2

Γ ⊢ Πx : A.B : s3 .

By I.H., it holds that JΓ ⊢ AKγ ∈ JΓ ⊢ s1Kγ and JΓ, x : A ⊢ BKγ,α ∈ JΓ, x : A ⊢ s2Kγ,α for all
α ∈ JΓ ⊢ AKγ . Now, we need to show that

JΓ ⊢ Πx : A.BKγ ∈ JΓ ⊢ s3Kγ .
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If s2 = s3 = Prop, then Lemma 3.3 implies the claim. Assume s1 = Typei, s2 = Typej , s3 =
Typek, and i, j ≤ k. Then, JΓ ⊢ s3K = Vκk

, where κk is the kth inaccessible cardinal; hence,
Vκk

is closed under the power set operation.

The cases (Π-eq), (λ), and (λ-eq) are obvious.

(app) Suppose
Γ ⊢ M : Πx : A.B Γ ⊢ N : A

Γ ⊢ MN : B[x\N ] .

By induction hypothesis, it holds that JΓ ⊢ NKγ ∈ JΓ ⊢ AKγ and JΓ ⊢ MKγ = lam(f) for
some function f with dom(f) = JΓ ⊢ AK and f(α) ∈ JΓ, x : A ⊢ BKγ,α for any α ∈ JΓ ⊢ AKγ .
Thus, we have

JΓ ⊢ MNKγ = app(JΓ ⊢ MKγ , JΓ ⊢ NKγ) = f(JΓ ⊢ NKγ)

∈ JΓ, x : A ⊢ BKγ,JΓ⊢NKγ = JΓ ⊢ B[x\N ]Kγ .

The cases (app-eq), (let), and (let-eq) are similar.

The soundness of (ind-wf), (ind-type), and (ind-cons) are obvious from the interpre-
tation constructions. The interpretations of inductive types and constructors are possible
because of the induction hypotheses. This is the same for (fix), (fix-eq), (case), and
(case-eq).

The cases (ref), (sym), (trans), (conv), and (conv-eq) are obvious.

(β) Suppose

Γ, x : A ⊢ M : B Γ ⊢ A : s1 Γ, x : A ⊢ B : s2 Γ ⊢ N : A

Γ ⊢ (λx : A.M)N = M [x\N ] : B[x\N ] .

It remains to show that JΓ ⊢ (λx : A : M)NKγ = JM [x\N ]Kγ :

JΓ ⊢ (λx : A : M)NKγ = app(JΓ ⊢ λx : A.MKγ , JΓ ⊢ NKγ)

= app(lam(α ∈ JΓ ⊢ AKγ 7→ JΓ, x : A ⊢ MKγ,α), JΓ ⊢ NKγ)

= JΓ, x : A ⊢ MKγ,JΓ⊢NKγ

= JM [x\N ]Kγ

by Lemma 4.3 because we know that JΓ ⊢ NKγ ∈ JΓ ⊢ AKγ by induction hypothesis. The
judgmental equality plays a crucial role in this case.

The case (δ) is obvious, and the case (ζ) follows from Lemma 4.3 and induction hy-
pothesis. The case (ι) is obvious by definition. The cumulativity rules are obviously sound.
Finally, the soundness of the the constrained typing rules in Figure 4 follows directly from
the arguments stated above.

Theorem 4.5 (Consistency). There is no term t such that ⊢ t : Πx : ∗.x .

Proof. Note that J⊢ Πx : ∗.xKnil = ∅ .
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5. Conclusion

We identified some critical issues in constructing a set-theoretic, proof-irrelevant model of
CC with cumulative type universes. Our construction reconfirmed that proof-irrelevance
is a subtle and difficult subject to tackle when it is combined with the subtyping of the
universes, in particular, Prop ≺ Type. We showed that the set-theoretic interpretation
can be relatively easy when we work with judgmental equality. We believe that our study
provides a (relatively) easy way for justifying the correctness of type theory in Martin-Löf-
styled, i.e., with simple model and, in particular, no proof of the strong normalization,
which is usually very difficult to establish.

Besides the historical importance of Martin-Löf-style type theory and the technical
difficulties with external β-reduction, there is another theoretical and practical reason for
studying type systems with judgmental equality. In general, the equivalence of two systems
with or without judgmental equality remains an open problem. Proving the equivalence of
two systems with or without judgmental equality is not a simple task, even though some
positive results have been achieved by [Coquand(1991)], [Goguen(1994), Goguen(1999)],
[Adams(2006)], and [Siles and Herbelin(2010)]. However, they are not sufficiently general
to cover the case with cumulative type universes. Although [Adams(2006)] mentioned that
it might be possible to extend his proof to more general systems with unique principal
types instead of type uniqueness as in the case of Luo’s ECC [Luo(1990), Luo(1994)] and
Coquand’s CIC, it still remains an open question.

A positive consequence of the work of [Adams(2006)] and [Siles and Herbelin(2010)] is
that the failed attempt of [Miquel and Werner(2003)], i.e., without using sorted variables,
would work if one first considers the system CC with judgmental equality and uses its
equivalence to the usual CC. This is indeed the case for the model construction described
in this paper, where we restrict the model construction to CC.
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[Martin-Löf(1984)] Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory. Lecture
Notes. Bibliopolis, 1984.

[Miquel and Werner(2003)] Alexandre Miquel and Benjamin Werner. The not so simple proof-irrelevant
model of CC. In Types for proofs and programs, volume 2646 of Lecture Notes in Comput. Sci., pages
240–258. Springer, 2003.

[Moschovakis(1974)] Yiannis N. Moschovakis. Elementary induction on abstract structures, volume 77 of
Studies in logic and the foundations of mathematics. North Holland, 1974.

[Moschovakis(1980)] Yiannis N. Moschovakis. Descriptive set theory, volume 100 of Studies in logic and the
foundations of mathematics. North Holland, 1980.

[Nordström et al.(1990) Nordström, Petersson, and Smith] Bengt Nordström, Kent Petersson, and Jan M.
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Appendix A. Definition of free variables and substitution

The definitions of the sets of free variables in a context or term are standard.

y[x\u] :=

{

u if x = y,

y otherwise,

s[x\u] := s,

(Πy : A.B)[x\u] :=

{

Πy : A[x\u].B if x = y,

Πy : A[x\u].(B[x\u]) otherwise,
(∗)

(λy : A.B)[x\u] :=

{

λy : A[x\u].B if x = y,

λy : A[x\u].(B[x\u]) otherwise,
(∗)

(let y := t1 in t2)[x\u] :=

{

(let y := t1[x\u] in t2) if x = y,

let y := (t1[x\u]) in t2[x\u] otherwise,
(∗)

(t1 t2)[x\u] := (t1[x\u])(t2[x\u]),

case(e, P, ~f )[x\u] := case(e[x\u], P [x\u], ~f [x\u]),

(Indn{∆I := ∆C} · y)[x\u] :=







(Indn{∆I := ∆C} · y)
if x ∈ dom(∆I ,∆C) or FV (u) ∩ dom(∆I ,∆C) 6= ∅,
(Indn{∆I [x\u] := ∆C [x\u]} · y) otherwise,

(†)

(fix yi {
−−−−−−−−→
y/k : A := t})[x\u] :=











fix yi {
−−−−−−−−→
y/k : A := t}

if x ∈ {~y} or FV (u) ∩ {~y} 6= ∅,

fix yi {
−−−−−−−−−−−−−−−−−→
y/k : (A[x\u]) := t[x\u]} otherwise.

(†)

(∗) By using α-conversion, if needed, y is assumed to be not free in u such that the variable
condition is satisfied.
(†) The variable condition here implies that the names of inductive types, constructors, and
recursive functions are uniquely determined, and that they will never be changed once they
are defined. Thus, these names are bound variables that differ from variables bound by Π
and λ.

Appendix B. Constrained typing

Note that not all fix-point definitions can be accepted because of the possibility of non-
normalizing terms. If one of the arguments belongs to an inductive type, then the function
starts with a case analysis, and recursive calls are performed on variables coming from
patterns and representing subterms. This is the usual restriction implemented in Coq
when a case distinction with respect to a distinguished inductive type in a definition of a
(mutual) recursive function occurs. These restrictions are imposed by the so-called guarded-
by-destructors condition defined by [Giménez(1995)]. Here, we follow the simplified version
given by [Paulin-Mohring(1996)] by using constrained typing.

The constraints will be imposed with respect to a variable z and an inductive specifica-
tion ∆I ,∆C , and they have three forms: the empty constraint ǫ, the constraint <z, which
describes the structural smallness with respect to z, and the constraint =z, which describes
the equivalence to z. The constraints will be added to any occurrence of a variable in a
term. Let c,d, ... vary over constraints. The judgments of constrained typing have the form
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Indn{∆I := ∆C} ∈ Γ (di : Π~p : ~P .A) ∈ ∆I lh(~p) = n
Γ ⊢ Q :ǫ B C(di ~p : A;B) Γ ⊢ e :c di ~p~u

Γ ⊢ hk :d Π(~v : ~Vk)
<c. Q ~wk (ck ~p~v) for all (ck : Π~p : ~P .Π~v : ~Vk. di ~p ~wk) ∈ ∆C

Γ ⊢ case(e,Q, (hk)k) :
d Q~u e

Γ ⊢ M : s
WF(Γ, x :c M)

WF(Γ) x :c A ∈ Γ

Γ ⊢ x :c A
Γ ⊢ t :c A
Γ ⊢ t :ǫ A

Γ ⊢ A :ǫ s1 Γ, x :c A ⊢ B :ǫ s2 P(s1, s2, s3)

Γ ⊢ Πx :c A.B :ǫ s3

Γ ⊢ A = A′ :ǫ s1 Γ, x :c A ⊢ B = B′ :ǫ s2 P(s1, s2, s3)

Γ ⊢ Πx :c A.B = Πx :c A′.B′ :ǫ s3

Γ ⊢ A :ǫ s1 Γ, x :c A ⊢ B :ǫ s2
Γ, x :c A ⊢ M :d B

Γ ⊢ λx :c A.M :d Πx :c A.B

Γ ⊢ A = A′ :ǫ s1 Γ, x :c A ⊢ B :ǫ s2
Γ, x :c A ⊢ M = M ′ :d B

Γ ⊢ λx :c A.M = λx :c A′.M ′ :d Πx :c A.B

Γ ⊢ M :d Πx :c A.B Γ ⊢ N :c A

Γ ⊢ MN :d B[x\N ]

Γ ⊢ M = M ′ :d Πx :c A.B Γ ⊢ N = N :c A

Γ ⊢ MN = M ′N ′ :d B[x\N ]

Figure 4: Constrained typing

Γ ⊢ M :c N , where the constraints are added to all the variables from dom(Γ). M ǫ and Γǫ

denote the term M and the term sequence Γ, respectively, where only the constraint ǫ is
added.

Given a constraint c, the constraint <c is defined as follows:

< ǫ := ǫ , <=z :=<z , <<z :=<z .

The following defines the restriction of a recursive call of inductive type when defining a
mutual recursion. Given a declaration ∆, ∆<z is defined as follows:

([ ])<z := [ ],

(∆, x : A)<z := ∆<z, x :ǫ A if FV (A) ∩ dom(∆I ,∆C) = ∅,

(∆, x : A)<z := ∆<z, x :<z A if FV (A) ∩ dom(∆I ,∆C) 6= ∅.

Γ<z is defined similarly for a term sequence Γ. In Figure 4, we list the rules for constrained
typing. The omitted rules contain only the empty constraint ǫ.
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Appendix C. Interpretation of Inductive types

Suppose Γ ⊢ D, where D = Indn{∆I := ∆C}, and γ ∈ JΓK. As mentioned before, we
suppress Γ and γ for better readability. Suppose that

∆I := d0 : A0, ..., dℓ : Aℓ , ∆C := c1 : T1, ..., cm : Tm ,

Ai := Π~p : ~P .Π~bi : ~Bi. si , Tk := Π~p : ~P .Π~zk : ~Zk. dik ~p~tk , Zk,j := Π~uk,j : ~Hk,j. dik,j ~p ~wk,j ,

where lh(~p) = n, lh( ~Bi) = ℓi, lh(~tk) = ℓik , j ∈ ν(k) := {j |FV (Zk,j) ∩ dom(∆I) 6= ∅}, and

ik, ik,j ≤ ℓ . Furthermore, ~Z ′
k is defined as

Z ′
k,j :=

{

Zk,j if j 6∈ νk,

Π~uk,j : ~Hk,j. d
′
ik,j

if j ∈ νk,

where d′ik,j are fresh variables. Further, we suppose that J~P K, J ~Z ′
kKρk , ... are already well

defined below in the definition of Φ (This will be the case by induction hypothesis.).

Then, we set JDK := I(Φ), where Φ :=

⋃

i≤ℓ

⋃

k∈µi

{

⋃

j∈νk
{〈ik,j , ~p, J~wk,jK~p,~zk,~u, ~app(zk,j , ~u )〉 | ~u ∈ J ~Hk,jK~p,~zk}

〈i, ~p, J~tkK~p,~zk , 〈k, ~zk〉〉

∣

∣

∣
~p, ~zk ∈ J~P K, J~Z ′

kKρk

}

.

Here, µi := {k | dik = di}, and ρk associates Vκr(k,j)
with d′ik,j , where r(k, j) := rank(dik,j ).

We also set JD · diK := ~lam(fi), where fi(~p,~bi) = IF(Φ)(i, ~p,~bi) for ~p,~bi : J~P , ~BiK, and

JD · ckK := ~lam(gk), where gk(~p, ~zk) = 〈k, ~zk〉 for ~p, ~zk : J~P , ~ZkK .

Appendix D. Interpretation of well-founded structured recursion

Below, we use the same notation as that used in Appendix C for the inductive types on
which the recursive call is running.

Suppose Γ ⊢ fix fℓ {R} : Aj, where

R :=
−−−−−−−−→
f/k : A := t, Ai ≡ Π~xi : ~Bi. A

′
i, lh( ~Bi) = ki + 1, ℓ ≤ n,

(Γ ⊢ Ai : si)∀i≤n, (Γ, ~f : ~A ⊢ ti : Ai)∀i≤n, F(~f , ~A,~k,~t) .

Let γ ∈ JΓK be given. We suppress Γ and γ for better readability. Then, Jfix fℓ {R}K will
depend on the ι-reduction.

Suppose Γ ⊢ ~a, akℓ+1 : ~Bℓ, where akℓ+1 = Tk ~p ~uk, and Bℓ,kℓ+1 = xiℓ ~p~tk, i.e., k ∈ µiℓ ,
and that ~a, ~p are all fresh variables, while ~uk represents a branch in the tree-like structure.
All the free variables occurring in ~uk should be fresh. Then, (tℓ[fi\(fix fi {R})])~a (Tk ~p ~uk)
β-, ι-reduces to the term Mℓ,k which is obtained from the node term of the branch which
Tk ~p ~uk represents.

Suppose that for some gℓ,k, hℓ,k ∈ N, u′1, ..., u
′
gℓ,k

, u′gℓ,k+1, ..., u
′
hℓ,k

list all the subterms of

Mℓ,k that are structurally smaller than ~uk. Each u′q with q ≤ gℓ,k occurs as the (knq + 1)th
argument of (fix fnq {R}). Thus,

((fix fnq {R})~bnq u
′
q)
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is a subterm of Mj,k for some ~bnq : Bnq,1, ..., Bnq ,knq
. Note that each u′q is an argument

of some constructor Tmq : Π~p : ~P .Π~zmq : ~Zmq . ximq
~p~tmq such that the head of u′q is

of some type Zmq,jq = Π~umq ,jq : ~Hmq,jq . ximq,jq
~p ~wmq ,jq and that ximq,jq

= xinq
if q ≤ gℓ,k.

Furthermore, we suppose that u′q1 , ..., u
′
qh

are all terms among u′1, ..., u
′
hℓ,k

, which are headed

by some variables.
Thus, u′qr = a′qr ~u

′
mqr ,jqr

for a variable a′qr of type

Zmqr ,jqr = Π~umqr ,jqr : ~Hmqr ,jqr . ximqr ,jqr
~p ~wmqr ,jqr

and for some terms ~u′mqr ,jqr
. Note that a′q1 , ..., a

′
qh

are exactly the free variables occurring

in ~uk. Suppose that u′qr1
, ..., u′qrq are all such terms structurally smaller than u′q. Then,

u′q = (λ~umqr1
,jqr1

: ~Hmqr1
,jqr1

. ... λ~umqrq
,jqrq

: ~Hmqrq
,jqrq

. ũ′q) ~u
′
mqr1

,jqr1
· · · ~u′mqrq

,jqrq

for some ũ′q. Similarly, Mℓ,k can be written as follows:

(λ~umqr1
,jqr1

: ~Hmqr1
,jqr1

. ... λ~umqrq
,jqrq

: ~Hmqrq
,jqrq

. (fix fnq {R})~bnq ū
′
q) ~u

′
mqr1

,jqr1
· · · ~u′mqrq

,jqrq

where
ū′q = λ~umqr1

,jqr1
: ~Hmqr1

,jqr1
. ... λ~umqrq

,jqrq
: ~Hmqrq

,jqrq
. ũ′q .

Further, set

M̄ℓ,k = (λ~umqrc
,jqrc

: ~Hmqrc
,jqrc

)c. (fix fnq {R})~bnq ū
′
q

of type (Π~umqrc
,jqrc

: ~Hmqrc
,jqrc

)c. A
′
nq
{~xnq : ~bnq , u

′
q}, where c ranges over 1, ..., q. Lastly, let

M ′
ℓ,k be obtained from Mℓ,k by replacing M̄ℓ,k with a fresh variable Xnq .

Then,
⋃

ℓ

Jfix fℓ {R}K will correspond to the fixpoint of the following rule set:

Ψ :=
⋃

ℓ≤n

⋃

k∈µiℓ

{
⋃

q∈{1,...,gℓ,k}
{〈J~bnqKρ, Ju

′
qKρ, ~app(v′q, ~umqr1

,jqr1
, ..., ~umqrq

,jqrq
)〉 | C}

〈α1, ..., αkℓ , 〈k, J~ukKρ〉, JM
′
ℓ,kKη〉

∣

∣

∣

C ≡ ~umqr1
,jqr1

∈ J ~Hmqr1
,jqr1

K, ..., ~umqrq
,jqrq

∈ J ~Hmqrq
,jqrq

K,

~α ∈ JBℓ,1K, ..., JBℓ,kℓK,

vqr ∈ JΠ~umqr ,jqr : ~Hmqr ,jqr . ximqr ,jqr
~p ~wmqr ,jqr K,

ρ associates ~α to ~a, vqr to a′qr , r ∈ {1, ..., h},

v′q ∈ J(Π~umqrc
,jqrc

: ~Hmqrc
,jqrc

)c. A
′
nq
{~xnq : ~bnq , u

′
q}Kρ,

η associates ~α to ~a, vqr to a′qr , r ∈ {1, ..., h}, and v′q to Xnq .

}

We set Jfix fℓ {R}K := ~lam(h), where h is a function such that

h(a1, ..., akℓ , 〈k, ~zk〉) = IF(Ψ)(a1, ..., akℓ , 〈k, ~zk〉)

where ~a, 〈k, ~zk〉 ∈ J ~BℓK.
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